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ABSTRACT
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The Internet has evolved into a worldwide information backbone with vast user

base. Internet users are diverse and they receive varying utilities from their network

connections. In many cases high-level user decisions appear to have direct conse-

quences on the network performance. In this thesis, our motivation is to characterize

the effects of user behaviors in terms of lower layer network metrics such as network

latency. We consider the Content Delivery Networks for our analysis, since they are

the interconnection of network elements at the application layer and thus are directly

affected by the user preferences.

It has been a common practice to use caches to store the most popular data in order

to improve user latency and reduce the network load. Recently, a more systematic

approach to the caching has been developed in the framework of Content Delivery

Networks. Content Delivery Networks (CDNs) are the networks of caches that are

distributed throughout the Internet serving user requests directed to their subscriber



web sites (publishers). They distribute the publisher’s original content intelligently to

the caching servers (surrogates) all over the world. Users receive their information from

the surrogates, which are closer and usually much less loaded than the origin server.

The objective is to minimize the user latency by intelligently distributing the content

and serving the user requests from the most efficient surrogates. We use price-directed

market based algorithms to achieve this goal. As it is the case in the current Internet,

we model the agents with a selfish self-maximizing behavior and define the problem

as a non-cooperative game played among the publishers and the surrogates. We show

that the system has an equilibrium and if this equilibrium is unique, even though

the agents are non-cooperative we achieve the global optimum. We also determine a

uniqueness condition, which states that if the publishers are not willing to pay high

amounts and the cache sizes are sufficiently small, then the equilibrium is unique. We

noticed that the global system optimum that minimizes total average user latency

requires the publishers to make very high investments, which in practice may prohibit

the applicability of the distributed market method. Thus, we consider an investment

strategy, which leads to a near-optimum system solution at much lower investments.

The abovementioned method gives publishers infinite granularity to determine their

quality of service. Next, we investigated the case where the publishers can offer only

finite number of QoS classes. In this model, surrogate partitions its total capacity

among different service classes and among each class publishers receive equal shares of

the resources. In our model, publishers try to get as large cache space as possible, while

the surrogate is required to achieve fair allocation among the publishers. Specifically,

each publisher should be charged the same if they receive equal share of caching

space. We determine the optimal pricing strategy of the surrogate maximizing its

revenue. We also analyzed the competition among two surrogates under this model

and determined the condition that leads to a Nash equilibrium. We showed that at

equilibrium surrogates peer as if they are a single combined surrogate server.
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July 1, 2002

This comment page is not part of the dissertation.

Typeset by LATEX using the dissertation class by Pablo A. Straub, University of

Maryland.

0



Chapter 1

Introduction and Background

Internet has gained an important place in our lives by enabling us to reach any in-

formation anytime and anywhere we want. From its early stages as an experimen-

tal network (ARPANET) connecting defense and academic institutions, Internet has

grown exponentially in dimensionality and user traffic. This growth has resulted in

congestion over the network links and excruciating end-user delays while downloading

the information. Caches and proxies are installed to alleviate the congestion on the

network links and the delays associated with them. Caches and proxies together store

information closer to the users and serve the user requests on behalf of the corre-

sponding servers. Although caches and proxies have been successful in alleviating the

congestion, they are basically best-effort solutions to the more important problem of

content distribution in the Internet. The objective of content distribution problem is

to determine the best location between the original source and client for the content

to be delivered. This problem has been investigated for the past couple of decades

not only in the context of web content delivery but also in the context of file storage

in large scale file systems. Recently, Content Delivery Networks (CDNs) have been

developed to solve this problem.

In the following, we first review the past research in the area of content delivery,
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especially in the context of web access. We also review the current efforts in integrat-

ing price-based user-centric network control. This topic has received much attention

recently, since it promises to migrate the control of the network to the edges, and thus

reducing the complexity of the network. Furthermore, by using certain incentives, the

users can be differentiated and the most efficient resource allocation can be achieved.

In Chapter 2, we describe the content distribution and its more practical counter-

part content delivery problems. Unlike the content distribution problem, the content

delivery problem maximizes the total web server utility by efficiently distributing the

content and routing the user requests to the most suitable caches in the network.

We develop a distributed algorithm for efficient dissemination and routing by price-

oriented market-based resource allocation schemes. In Chapters 3 and 4, we analyze

the operation of the distribution and routing sub-problems. In Chapter 5, we analyze

the possibility of best-effort QoS by nonlinear pricing mechanisms.

1.1 Internet Content Delivery

1.1.1 World Wide Web Overview

The ease of use of World Wide Web (WWW) applications such as Microsoft’s In-

ternet Explorer and Netscape has facilitated the revolution in the communications.

Common users can now access the network and retrieve any type of information they

wish. Users employ an agent that is called browser, which displays to the user the

requested information and provides numerous configuration and navigational features.

In WWW, the information is available in the form of a web page. A web page is a

collection of web objects. An object is a file such as an HTML (Hyper Text Markup

Language) file, a JPEG or GIF image, a Java applet, an audio clip, etc. The base
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HTML page references the other objects in the page with the objects’ Uniform Re-

souce Locator, or URL in short. The URL uniquely defines the location of an object

in human-understandable format. URL consists of two parts: host name and the di-

rectory, and the name of the object in the host computer where the object resides. A

web server stores the web objects, each addressable by an URL.

Hypertext Transfer Protocol (HTTP) is the communications protocol used be-

tween web applications. HTTP defines the structure of the messages and how these

messages are exchanged between the servers and the users during the transfer of the

web pages. HTTP is an application level protocol that use reliable TCP (Transport

Control Protocol) as an underlying transport layer protocol. In order for an HTTP

client to initiate a TCP connection with the server, the client requires the IP address

of the server itself. In HTTP, the servers are assigned alphanumeric names for ease

of use for the human users. These names are associated with IP addresses, where the

objects pointed by the URLs reside. At the beginning of a HTTP connection, the user

first determines the IP address of the server from the server’s URL. This is done by

Internet directory service called Domain Name Server (DNS). The details of the DNS

is discussed in the later sections. TCP connection between the client and the server

provides reliable data transfer between the two parties.

HTTP can use both non-persistent and persistent connections. With a non-

persistent connection, each object referenced by the main HTML page is delivered

to the user by a separate TCP connection. The server tears down the TCP connec-

tion after sending the requested object. However, these connections can be set up

in parallel. With persistent connections, the server leaves the TCP connection open

after sending the requests. Subsequent requests and responses between the same client

and the server can be sent over the same connection. Consequently, the delay due to

3



three-way handshake for multiple TCP connection set up can be avoided.

1.1.2 Internet Caching

With explosive growth of demand for Internet services, the network traffic has in-

creased exponentially. As the load exceeded the network capacity, network congestion

and server overloading become common phenomena resulting in increased traffic de-

lays. Web caches are developed and implemented to reduce the traffic congestion and

the latency. Web caches are located between Web servers (or origin servers) and users,

and satisfies HTTP requests on behalf of the servers. Web cache has its own storage

space and keeps in this storage copies of the recently requested objects. In case an-

other request for the same object is received, the request is immediately satisfied by

the cache avoiding the transfer of document from the distant original server.

Caches reduce latency by responding to the user requests from a closer location

compared to the original servers. They also reduce the network traffic, since each

popular object is requested from the original server only once (during lifetime of the

object), after which the cache satisfies all future requests for the same object. Another

advantage of web caching is the rapid deployment of content. As the web caches

get widely-deployed, the content providers with popular data but without high-speed

connections to the Internet, will be able to distribute their information to the users

rapidly through these caches.

Web caching can be divided in three categories according to the location of the

caches. The most common form of caching is done at the client side. The client-side

caches store the most popular pages on the client’s computer. Most of the modern

browsers have this capability. The browser cache is useful for only the client and

as long as the client continues to browse a web site which has multiple pages with
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common objects. The main objective of the browser cache is to reduce the object

retrieval latency.

Another type of caching used in the Internet is the server-side caching. In server-

side caching an accelerator cache is located in front of one or more web servers. If the

requested object is found in the cache, the accelerator returns the object, otherwise the

request is routed to a back-end (origin) server. Server-based caching (or also called the

reverse proxy) is implemented to avoid the overloading of the web servers. Reference

[10] considers the problem of caching multiple web servers at a given location. The

objective is to minimize the fraction of the requests forwarded to the back-end servers

from the accelerator subject to fixed storage space. The paper models the problem

as constrained-maximization problem and obtains the solution by Lagrange multiplier

theorem.

Both client-side and server-side caching provide little help in alleviating the In-

ternet congestion and server load. For this reason a third type of caching, the proxy

caching is introduced. The proxy caches are placed between the clients and the orig-

inal servers. They are implemented by the content providers, the enterprises or the

ISPs. ISPs and enterprises implement proxies to reduce the WAN bandwidth without

degrading the user performance. Content providers implement proxies to serve the

user requests more rapidly and to avoid the overloading of the main server with large

numbers of requests. Initial proxy servers that were implemented acted as the mirrors

of the origin servers, where complete content was replicated.

The effectiveness of a proxy depends on its location. A web proxy located in

a wrong place does little to improve the system performance. Finding the optimal

placement of web proxies in a network like the Internet is a challenging if not an

impossible task. Most existing proxies are placed in prominent locations such as the
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routers for the LANs, ISPs’ gateways, etc. The optimal location of web proxies depend

on the user traffic and the network state. The determination of the best proxy locations

in a network was investigated in [55], [56]. In [55] and [56], the authors explored the

optimal placement of the multiple web proxies among potential sites, so that the overall

user latency is minimized under a given traffic pattern. They showed that the optimal

placement of proxies among potential sites in a linear or ring topology can be modeled

as a dynamic programming problem.

The servers may install their own proxy caches or share the caches of the CDNs. Re-

cently, the interest in CDNs has flourished due to the success of such CDNs as Akamai

[93], MirrorImage [94], DigitalIsland [95], etc. These companies provide caching ser-

vices for web servers. They are appropriately called content providers. Their promise

is to improve the user performance significantly without having the content providers

make huge investments in the mirror sites. Such a promise is made possible by many

caching servers geographically dispersed all over the globe. These caching servers se-

lectively cache documents from the host web content providers and use this content

to serve user requests locally with less latency.

1.1.3 Cooperative and Hierarchical Caching

Multiple web caches placed at different locations in the Internet may cooperate and

improve overall performance. For example, an institutional cache can be configured to

send its HTTP requests to a cache in a backbone ISP at the national level. When the

object is not available at the institutional cache, the request can be forwarded to the

national cache. If the requested object is available in the national cache, it is served;

otherwise the request is forwarded to the original server. The benefit of the hierarchi-

cal caching architectures is that higher-level caches have larger user population and
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therefore higher hit rates.

The cooperation among the web cache sharing is first proposed in the context of

the Harvest project [24]. An example of cooperative caching system is the NLANR

[90] which consists of a number of backbone caches in the US providing service to

institutional and regional caches. The caches obtain objects from each other using

HTTP and ICP (Internet Caching Protocol). The Harvest group designed the ICP

that supports discovery and retrieval of documents from neighboring caches. Today,

ICP is widely used by institutions and countries that has established hierarchies of

proxy caches which cooperate to reduce traffic to the Internet backbone.

Even if ICP is the de-facto standard for inter-cache communications, the large

messaging overhead associated with the cache cooperation makes ICP unsuitable for

wide-scale deployment for the web proxies. In ICP, a proxy cache discovers the content

of other proxies by multicasting a query message to all other proxies whenever a cache

miss occurs. Thus, as the number of proxies increases, both the communications

and the processing costs increase dramatically. This query/reply exchange introduces

additional delay as well. However, since the caches can process ICP queries very

quickly, the delay is mainly due to the round-trip delay between the caches. The delay

caused by the ICP depends on the caches’ proximity to each other. Another deficiency

of the ICP is its inability to deliver the objects to users from the optimal sites. An ICP

proxy retrieves the object from the cache that has responded first to the inquiry. ICP

does not consider the bandwidth available for the connection between the caches or

the network states. Thus, it may be possible to retrieve the object from a cache, but

that is located closer to the inquiring cache, which has low available bandwidth while

there may be another cache which is located farther but has a high bandwidth link

[22]. It is shown [73], [24], [26] that the use of ICP in a WAN creates large message
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overhead and causes large additional retrieval delays. Often, users are better off by

requesting the object directly from the original server.

Several alternatives have been proposed to address this problem, e.g. Cache Ar-

ray Routing Protocol (CARP), Summary Cache, Cache Digest. CARP is specifically

designed for clusters of caches implemented in a LAN environment, where multiple

caches are placed mainly for scalability purposes. Often a single cache is not sufficient

to handle the traffic or provide for the necessary storage space. Multiple caches share

the load and provide a larger storage space. The problem of determining to which

cache the user request should be forwarded to is then solved by CARP(Cache Array

Routing Protocol) [91]. In CARP, URL space is partitioned by the help of hash func-

tions. The proxy server or the client browser with CARP uses the destination URL of

the user request in a hash function to determine the cache that the request should be

forwarded to. When every user browser uses the same hash function, an object will

never be present in more than one cache in the cluster. Unfortunately, this method

is not appropriate for sharing caching resources in a WAN, since the caches have to

coordinate the selection of the hash function. Such a coordination may be infeasible

due to the limited network bandwidth among the proxies. Furthermore the network

distance between the proxies and their users is usually non-homogeneous. However,

CARP forwards the user requests only with respect to the destination URL, so some

of the web objects may experience much higher retrieval delays.

Another proposal for this problem was given by two research groups simultaneously

but independently: The Summary Cache [26] from University of Wisconsin and the

Cache Digest [73] from NLANR. The proposed solution in both cases is to keep a

summary of the contents of the neighboring proxy caches at each proxy. Thus, an

incoming request is forwarded to a cache containing the requested object without
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requiring a search for the object among the peered caches every time the object is

requested. To keep the amount of information stored/transferred by the proxies low

a technique called Bloom filters is suggested. The drawback of this technique is the

possibility of false hits for the objects in the neighboring caches. That is, a user request

can be forwarded to a neighboring cache even though that object is not stored there.

However, numerical studies have shown that this technique can achieve comparable

hit rates with reduced overall traffic and user latency compared to ICP [73].

Adaptive Web Caching [66] takes the idea of keeping the state of the neighboring

caches one step further, and proposes URL routing. The idea is to forward the user

request to a nearby cache which has high probability of having the requested object.

However, in order to minimize the delay in the case of a miss, the request must be

routed to a cache that is also closer to the origin server. Web caches maintain a

URL routing table which is similar to IP routing table. The URL table’s main key

is the URL prefixes, with which one or more identifiers to the next-hop caches are

associated. The information in the table includes a URL prefix, an identifier for the

cache where the object is stored, and a metric reflecting that cache’s average measured

delay in seconds to retrieve a request from a matching URL. Such a system may be

attractive for forwarding the requests of a few popular web sites, however this solution

is not scalable. The amount of information that needs to be stored/transferred for

large numbers of URLs seems prohibitive. Furthermore, the HTTP requests have to

be constructed at the routers to determine the URLs of the pages, which may result

in large processing delays.

LSAM project [78], and WebCanal [57] investigated the use of multicast channels

to effectively deliver common information to distributed proxy caches. The LSAM

(Large Scale Active Middleware) is a project on automatic distribution of Web pages
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to proxy servers. Its proxy cache server tracks the requests and determines the com-

mon interests of the proxy caches. The proxy cache server forms multiple multicast

channels according to these interests. Whenever a user request that belongs to one of

these channels is received by the original server, the reply is sent to all proxy caches

that are subscribed to that channel. By this way, the web pages are pushed to the

clients anticipatively according to the requests of the peer proxy caches. When a user

requests one of these pages, the page is already in the cache and can be served to the

user immediately. Web Canal [57] generalizes this idea and suggests to use multicast

channel not only for web page delivery but also for other push-based applications.

Cache Update Policies

Cache buffer sizes are limited and not all objects can be stored at every proxy. Thus,

caches should try to store the most appropriate objects. The simplest and the most

common approach to cache management is the LRU (Least Recently Used) algorithm,

which removes the least recently accessed objects from the cache until there is sufficient

space for the new object. The advantage of this algorithm is its simplicity. In fact,

many current actual production cache engines and browser caches use some variation

of this algorithm. However, one of the main weaknesses of LRU is that the cache can

be flooded by objects that are referenced only once, flushing out objects with higher

probability of being reused. The authors of [45] observed that the probability of an

object being referenced again quickly grows after the second reference. Another widely

implemented cache update policy is the Least Frequently Used (LFU). By disposing

off the objects that are least frequently accessed, LFU avoids the shorthcoming of the

LRU; however, LFU does not remove old objects with large reference counts from the

cache, which result in cache pollution. An aging policy is often used to cope with this
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problem.

The objective of cache management is to reduce latency and traffic. Due to the

high variability and the complex structure of the Internet, achieving optimal solutions

with respect to these objectives is almost impossible. For this reason, in the context

of web caching several performance measures have been introduced. Three popular

performance measures used in web caching are hit rate (HR), byte hit rate (BHR),

and delay-savings ratio (DSR). These measures can be described as follows:

HR =
∑

hi∑
ri

BHR =
∑

sihi∑
siri

DSR =
∑

dihi∑
diri

where hi is the number of hit references to document i, ri is the total number of

references to document i, si size of the document i, and di is the delay time to fetch

document i from the original server to the cache. HR is the traditional measure for

caching systems, and represents the number of hit references over the total number of

references. BHR represents the number of bytes saved from retransmissions by using

the cache over the total amount of bytes referenced. While BHR considers the size of

the document, it does not consider the difference in retrieval costs. Among documents

that are of the same size, those with higher retrieval costs should be kept in the cache.

DSR is the measure that considers this issue.

The related research focused on determining an appropriate performance measure

(e.g HR, BHR, etc) and optimizing the system with respect to this measure, so that

the main objective of maximizing the throughput and minimizing the user latency
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is also met. A good summary of web caching algorithms can be found in [4]. Sev-

eral algorithms such as LRU, LFU, SIZE [83], HYBRID [84], LNC-R-W3 [75] have

attempted to optimize performance for a particular measure. The weakness of each

of these algorithms is their inability to adjust to new network and objective situa-

tions since they are designed for a single performance measure. More complicated

algorithms such as Greedy-Dual-Size [15], LRV [60], sw-LFU [49], and LUV [4] have

arbitrary objective functions which are not built into the cache replacement policy.

The motivation for such algorithms is the need to provide different service levels to

different content providers. Some servers will have clients who are much less tolerant

to delay and are willing to pay for a higher quality of service. Some servers may be

quite constrained in their network connections and thus may value off-loading traffic

to a network cache. Basically what these algorithms do is that they assign a weighting

function to each object in the cache. This weighting function has several parameters

that can be adjusted to fit user needs. When needed, the algorithms replace the object

that has the smallest weight. For example LUV algorithm uses a weight that is the

retrieval cost of an object per unit size.

Recently Kelly et al. [50] discussed the user-centric design of web caching replace-

ment algorithms. The authors explored a scenario in which the content providers

reveal to a shared cache the value they receive from the hits to their objects. The

authors proposed the Value Hit Rate (VHR) measure, which is a generalization of

BHR measure. The servers associate each object i with a weight Wi to indicate the

value they receive per byte when i is served from the cache. VHR metric is defined as

V HR =
∑

hits Wi × sizei∑
requests Wi × sizei

The drawback of such user-centered algorithms is that the servers may misreport
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their valuations to receive larger share of the caching resources. Successful imple-

mentations of such designs require incentive mechanisms that induce truthful value

reporting. These incentives can be provided by economic means (i.e., pricing of the

cache resources). Reference [50] discusses the use of the generalized Vickrey auctions

[81], [80] for truthful revealiation of the user valuations. In Vickrey auction, the win-

ner of a single good auction pays the second highest bid. The bidder’s announcement

affects only when he wins, not how much he pays, and it can be shown that the bid-

der’s dominant strategy is to bid his true valuation. Unfortunately, such auction-based

strategies are not suitable for the large scale and highly dynamic structure of Internet.

Cache Consistency

For web caches to be useful, all caches should maintain an up-to-date copy of the

objects. That is, all cached copies of the objects should be consistent. There are

two types of consistency models: weak and strong [58]. In weak consistency a stale

(non-up-to-date) document may be returned to the user, while in strong consistency

no stale copy of the modified object is ever returned to the user after the server

updates all caches. Weak consistency protocols include adaptive TTL (time-to-live)

and client polling protocols. In the adaptive TTL approach a client considers a cached

copy up-to-date if its time-to-live has not expired. The difficulty in TTL approach

is in assigning TTL values to the objects. The adaptive TTL handles the problem

by taking advantage of the the fact that a file is unlikely to be changed if it has not

been modified for a long time. Thus, in adaptive TTL, the cache manager assigns a

time-to-live attribute to a document, and the TTL is a percentage of the document’s

current age. Studies have shown that the adaptive TTL protocol keeps the probability

of stale documents low (< 5%) and it is argued that the adaptive TTL is the best
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protocol for keeping weak consistency [37].

Strong consistency of the objects can be ensured by invalidation protocols. In this

approach, the web server keeps track of all clients that store an object from the web

server and when the object is updated, it sends invalidation messages to the clients.

This approach may increase the server loads considerably, since the server needs to

keep track of all clients with a copy of every object. However, hierarchical caching

along with multicasting may increase efficiency of keeping strong consistency [72]. In

[72] the authors compared pure push and automated pull strategies for varying degrees

of staleness that is accepted by the users. It is shown that if the users can accept some

staleness, automated pull with hierarchical caching is the optimal solution in terms

of bandwidth usage and server load. However, if the users always require the most

up-to-date documents, then the server gets overloaded by many pull requests. In that

case, push scheme seems a better solution. The push scheme can be implemented with

much less state information kept at the server and the proxies.

1.1.4 Implementation of Proxies

The users of a web site with multiple proxies need a mechanism to locate the nearby

proxy caches. The basic method for end users to locate these proxies is to hand config-

ure their browser with the proxies’ URL, or with the URL of an auto-configuration file.

However, this method is not scalable and is prone to errors. It would be much easier

to manage, if the user browser automatically learns the configuration information for

its web proxy settings. This problem is typically referred to as resource discovery

problem [31].

The servers may use DNS redirection to inform the users, or they may have a URL

page with a proxy auto-discovery script that a user may download to determine the
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locations of the proxies. WPAD [31] is a protocol that is developed for the users to

find this proxy auto-configuration file. WPAD protocol describes the methods that

are used in a particular order to determine the auto-discovery URL. WPAD does not

try to discover the name of the proxy server. The configuration file has other settings

that allows other functionalities such as load balancing, request routing to an array of

servers or automated fail-over to backup proxy server.

In order to completely avoid user reconfiguration, transparent redirection has been

developed. Transparent redirection involves the interception and redirection of HTTP

traffic to one or more web caches by a router or switch without requiring any coor-

dination from the client. The non-HTTP traffic, and the traffic for the requests that

cannot be satisfied locally are routed to the WAN.

WCCP [20] is a protocol that is developed for transparent caches to communicate

among themselves. WCCP has two main functions: first, it allows a router enabled for

transparent redirection to discover, verify and advertise connectivity to one or more

caches; second, it also allows one of the caches (so called designated cache) to dictate

how the router distributes redirected traffic across the cache farm.

Transparent proxy caching

A web cache is said to be transparent if the clients can access the cache without the

need to configure their browsers, for example, without any need of either a proxy

auto-configuration URL or a manual proxy setting. Transparent caches appear as a

seamless part of the network architecture rather than a set of discrete proxy servers.

The clients do not have to be aware of the existence of the proxies. Most ISPs prefer

transparent caches, since these caches do not require an action from the clients.

A transparent caching system acts as a router and forwards to the WAN every-
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thing but TCP traffic for HTTP requests (requests with TCP port number 80). A

transparent cache accepts all TCP connections routed to it. When a client sends a

TCP connection request for a web site to the router, the router forwards this request

to the transparent cache rather than to the WAN. The transparent cache sends ACK

to the client for this TCP request, and thus disguises itself as the original server.

However, this architecture is not scalable and is prone to system failures due to

cache outages. To provide scalable and fail-safe operation, transparent caches are

implemented together with L4 (layer 4) switches. These switches are called L4 switches

because they base their switching decisions on the information in the TCP header,

and TCP is a transport layer (layer 4) protocol in ISO OSI 7 layer reference model.

L4 switches are connected to multiple caches for scalability. An incoming request’s

destination address in the TCP header is seeded into a hash function, which determines

the cache that the request is going to be served by. The goal of a good L4 switch is

to partition the URLs into non-overlapping clusters, so that each caching proxy serves

certain number of distinct URLs. In the event of a cache failure, the switch forwards

all requests that are destined to the failed cache to the WAN router.

DNS redirection

The clients need the IP addresses of the proxies in order to open a connection and

retrieve the object. This information can be delivered to the clients during the initial

DNS look-up. The original server may forward a list of proxy IP addresses to the client

and the client may access one of these proxies in a round-robin fashion. However, with

this method the clients are still unaware of the status of the proxies, and may find

that the retrieval of the objects from their choice of proxy result in unsatisfactory

performance.
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More intelligent method of DNS re-direction is performed by the CDNs. The

client looks up the IP address of the original server at the local DNS server. If the

information is not available in the local DNS server, the request is forwarded to the

authoritative name server of the original server. If the original server has subscribed

to the replication service, it returns the CDN’s central server’s IP address as the

authoritative DNS server to the local DNS server. The local DNS server then contacts

the CDN’s central server. The central server keeps statistics of performance of all of

its proxies and their links. Upon receiving a DNS request, the central server checks

the source IP address of the request to determine an optimal (in terms of physical

distance, link congestion and load balancing) proxy cache that should serve the web

request. The IP address of this proxy cache is returned as the DNS reply. Upon

discovering the IP address of the proxy cache, the user requests the object from the

proxy cache. The web page is downloaded from the local proxy server, if all parts of

the web page is available at the local server. If not, the local server pulls the web page

from the original web site on behalf of the user. Local server also decides dynamically

if the pulled document should be cached or not according to the user traffic logs.

Recently, Rodriguez et al. [71] suggested the parallel use of all proxies for a single

web page download to avoide the difficult problem of choosing the optimal proxy

cache. The authors considered two parallel access schemes. In the history-based TCP

access scheme, the client specifies a priori which part of the document should be

retrieved from each proxy. This decision is made according to the observed rate of the

servers that are calculated from the past accesses to the servers. In the dynamic TCP

access, the client partitions the document into small blocks, and initially requests each

block from different server. As a server finishes the delivery of a requested block, the

client requests a new block from this server. The authors showed that such a parallel
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retrieval results in near optimal delivery of the popular documents. However, this

study assumed that the documents are large and they are identically replicated at all

proxies.

DNS Overview

The principle task of DNS is to provide a mapping from the human readable domain

names to the numerical IP-addresses used to identify the hosts in the Internet. DNS

is implemented as a distributed database consisting of a hierarchy of name servers.

The name space is divided into zones, where each zone has two or more authoritative

name servers. A name server is authoritative for a host if it always has a DNS record

that translates the host’s hostname to that host’s IP address. When a client needs

to obtain an IP-address for a hostname, the client first sends the query to its local

name server. Typically the local name server is close to the client, since each ISP

usually implements a local name server. The local name server acts as the primary

name server for the zone where the client resides, and has all the information about

that zone as well as cached copies of the queries for hosts from other zones. Assuming

that this name server does not have the requested information, it queries one of the

root name servers. Currently there are 13 root name servers in the world that return

the IP address of an authoritative name server that has the mapping for the requested

host name. Then the local name server contacts the authoritative name server, and

receives the IP address of the host, and finally this information is returned to the

client’s authoritative name server to be relayed to the client. [70], [54].

To avoid misdirection of DNS requests (that is, misdirection due to the client

mistakes in entering the address or change of the IP address of the DNS server) web

switches are used. The level 2 or 3 web switches determine which of the user messages
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are DNS requests, and redirect these requests to a local or remote DNS server based

on the ISP policy [92].

The initial DNS lookup may take several inquiry/reply transactions, and if the

authoritative DNS servers are far from each other, this may lead to considerable delay

for the users. Ref. [42] suggests to take advantage of recent advances in disk storage

and multicast distribution to avoid this delay. In this approach, the geographically

distributed and the so called replicated servers store the entire DNS database. To keep

the replicated servers up-to-date, the new resource records are distributed by satellite

broadcast or by terrestrial multicast. The replicated servers can be located at the local

ISPs and at corporate and university networks. The DNS look-up procedure in this

system is very similar to the original DNS look-up except that the local name servers

send DNS inquiry to the closest replicated server instead of the root name server. The

consistency of information among the replicated servers is preserved by the multicast

delivery of new information as it becomes available.

1.1.5 Providing Content in the Internet

The publishers in the Internet (content providers) have several options in how they

plan to reach the users. Publishers require a web site as a main source for information

dissemination. Publishers’ first option is to build their own web server. For this option,

the content providers require a web server (a PC or workstation), an Internet router

and a leased-line connection to an ISP. Furthermore, they have to pay for the Internet

access to the ISP and they need to hire staff for maintaining the web server.

For scalability and security purposes, content providers may prefer to own their own

web servers. However, instead of maintaining the servers at their location, they may

co-locate them at an ISP’s Network Operations Center (NOC). Consequently, content
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providers still own dedicated servers for their web sites, but share the same (possibly

high-speed) Internet connection with other content providers at the co-location host.

These co-location centers are equipped with necessary security, backup equipment and

staff to keep the servers in a good running condition. Publishers are charged for the

amount of physical space their servers take up in the co-location site, as well as for

the amount of user traffic served.

Many Internet publishers neither have the sufficient resources to build nor maintain

their own web server. Consequently, web content hosting has become an increasingly

common practice. Web content hosts own large amounts of resources (such as band-

width, disks, processors, memory, etc.) and they offer to store and provide Web access

to the documents from institutions, companies and individuals who lack resources.

Publishers, who subscribe to this service do not actually own a web server, but their

user traffic is directed to and served by the servers of the web content host. The stor-

age and the bandwidth capacity of the servers of the web content host is shared among

all web sites subscribing to the service. Usually, publishers vary in their expectations

and requirements for the quality of the hosting service and the amount of money each

is willing to pay. Thus, it is important to have the ability to offer different qualities of

service to different customers. Most web servers today do not provide differentiated

quality of service. Almeida et al. [1] investigated the priority-based request scheduling

for providing differentiated QoS in web content hosts. The paper however, came short

of investigating the optimal pricing schemes for different classes of users with varying

requirements for resources (such as bandwidth, disk space, processing power, etc).
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Content Distribution Networks

Due to the reasons discussed in the previous sections, ISPs and content providers may

choose to disseminate the content to the caches throughout the network. While doing

that they have several options: ISPs or content providers may install their own caches

or out-source caching services to providers such as Akamai[93], Mirror Image[94] or

DigitalIsland [95]. Not many content provider has the needs (due to large user traffic)

or the resources to build or maintain its own global replication network. The high user

traffic and alluring opportunities of global commerce over the Internet has thus lead

to the development of the CDNs. CDNs have multiple caches with large storage and

bandwidth capacities located in diverse geographical locations. For example, Mirror

Image has built Content Access Points (CAP) where the caches are located. They also

maintain a central server which continuously monitors the condition of the network

links, and the proxy servers [94].

The vital component of a content distribution architecture is a method for redirect-

ing clients to the proxy caches. The clients are usually redirected by a central server,

which keeps (quasi-) real-time information on the conditions of the caches. There are

two different redirection schemes currently employed by CDNs. Akamai [93] uses a

selective redirection scheme, where the original server delivers the base HTML page

to the client. The other objects in the HTML page such as large pictures are then

delivered by the proxy caches. Mirror Image [94] uses complete redirection, where all

objects including the base HTML page is delivered by an appropriate proxy cache.

The advantage (and also the disadvantage) of the selective redirection is that the ori-

gin servers keep control of their web pages and dictate the objects to be replicated.

They can also keep the history and statistics of user accesses, since the initial request

is always served by the original servers. However, [43] argues that the selective redi-
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rection is suboptimal compared to the complete redirection. The main reson for the

suboptimality is that the user has to set up two different TCP connections: one to

the original server for the base HTML, and the other to the closer proxy cache for the

remaining objects. The second TCP connection to the proxy again suffers from the

slow start and thus increasing the latency in the complete retrieval of the web page.

None of the CDNs favor hierarchical caches. This is due to the fact that the

hierarchical caching not only may result in the use some other network’s cache, but also

may result in non-optimal routing and may cause multiple round-trip delays between

the caches while searching for the cache containing the requested document. Thus,

whenever a document cannot be found in the proxy server, the proxy server directly

requests this page from the original server.

The E-business of Content Delivery

There is a strong demand from content providers for distributed network services

that go beyond best-effort services. Current structure of Internet value-chain and the

caching and replication technologies limit the content providers’ control over their

content especially with respect to performance and QoS. Current value chain is such

that consumer picks up the content from the respective site through subscription to

at least one ISP for reaching the Internet. In order to receive the content in a good

quality, the user has to make QoS negotiations with the intermediary ISPs. In [59] a

new value-chain is discussed, where the client subscribes to a content provider (e.g. e-

newspaper) and to an ISP for a special service called subscriber line management. This

service allows the content provider to control the QoS of the delivery of the content.

Thus, the QoS negotiations are transparent to the user, because the content provider

purchases communications services with appropriate QoS on behalf of the user. The
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user only pays to the content provider and the content provider is responsible for the

charges of the ISP.

The delivery of QoS guarantees in network bandwidth resources has been investi-

gated extensively. However, especially for guaranteed web content delivery, the storage

requirements should also be considered along with network bandwidth reservations.

In [18] and [19] the stor-serv architecture is discussed for data storage services that

can be considered as the dual of intserv and diffserv classes in the data transmission

domain. Ref. [18] describes the stor-serv framework which consists of service specifi-

cation and provision (resource reservation, resource mapping), resource management

and discovery, security and economics. The content provider may specify the perfor-

mance requirements in terms of access latency, jitter, acceptable miss rate, cost and

bandwidth savings. These guarantees may be given either as deterministic or statis-

tical. Obviously, statistical guarantees lead to better resource utilization [19]. The

resource allocation problem is solved as facilities-location problem [19]. Combining the

storage service allocation with network bandwith reservation for QoS may reduce the

total cost of service provision for the content providers.

In fact Kelly and Reeves [52] considered a simple two-stage hierarchical caching

model and solved the problem of determining the optimal cache sizes, when there

is a tradeoff between the storage and bandwidth costs. However the authors did not

consider the issue of QoS. In their model, the requests first arrive at the child caches. If

the request cannot be satisfied there, then the request is forwarded to the parent cache.

However, the bandwidth over the link connecting the parent cache and the child cache

is not free. Thus each missed request incurs a cost for the content provider. Meanwhile,

the storage space on the caches is not free either. The unit bandwidth and the cache

prices are fixed and given as dollars per byte. Ref. [52] determines which documents
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should be cached at which level of the hierarchy so that the overall cost to the content

provider is minimized.

1.2 Current Pricing Structure in the Internet

Typical money flow in the Internet is from the end-users to the ISPs. The end-users

pay their local ISP for their Internet service, who in turn pays for the interconnection

to a regional ISP, who in turn pays for the interconnection to the national ISP. The

national ISP has to pay costs of connecting the system to a data exchange location to

communicate with other national ISPs. The cost structure of the services provided in

any layer is determined by the prices charged by the providers one layer below and by

the providers one layer above.

ISPs charge their customers according to two types of costs that they have incurred:

access and usage costs. One type of access cost incurred by the ISPs is the installation

cost. This cost refers to the set up of the ISP network including the investments in the

network infrastructure. Another type of access cost is the customer activation costs,

which refer to the costs associated with the connection of the customers to the ISP

via modems, wiring, ISP’s server disk space, IP address fee, etc [82].

ISP usage costs vary with customer. There are two types of usage costs: main-

tenance and network load costs. Currently, due to the flat interconnection fees the

network load cost to ISPs is zero regardless of network congestion. However, the

clients observe the network load cost as the delay when the network is congested. It is

apparent that no two users have the same expectations from an Internet connection.

Some users may download larger files, while some users may run applications requiring

real-time information delivery. The users with real-time communications usually cre-

ate more traffic and should be charged accordingly. Under a flat-fee scheme, low-usage
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customers are subsidizing the heavy-usage customers by paying the same fee.

Eventually the ISPs expand their capacity to ease the congestion experienced by

their customers. It is appropriate to expand capacity, if the marginal cost (cost of

accomodating one more packet) is less than the marginal benefit (the price charged

for the packet). The objective of the ISP is to cover this expansion cost through the

customer usage fees.

1.2.1 Congestion Pricing

The congestion of the Internet causes wide range of dissatisfaction among the users.

As discussed above, the network load has no cost for the ISPs, however; since the ISPs

attract customers by the quality of their service, their market share is directly affected

by their customers’ satisfaction. Thus, the service providers may be inclined toward

more sophisticated pricing schemes that can alleviate the network congestion.

Proper resource allocation plays a key role in improving the network performance.

The centralized approach to resource allocation seems futile considering the large scale

of the Internet, and the large variability of individual user’s valuation of their con-

nections. The pricing approach to resource allocation allows users to self-select the

quantity that they are willing to purchase at the effective prices.

The current method of charging a flat-fee allows users to demand as much usage

as they desire without any regard to the other users’ connections. When everyone acts

greedy, congestion may occur depending on the network capacity. Usage based pricing

schemes are proposed to alleviate the network congestion. The social objective of a

network is to maximize the total user satisfication. However, the current Internet com-

munity is very diverse, and many users will follow a non-cooperative self-maximizing

behaviour. In that case, every user will try to maximize its own satisfaction by com-
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peting with others for the limited resources. This problem can be described as a

non-cooperative game, which has a Pareto optimum solution. In a pareto optimal

solution, the exchange of the goods between the suppliers and the demanders is max-

imized by pricing the goods at their marginal cost. In other words, on the supply

side prices should compensate suppliers (ISPs) of scarce Internet resources. On the

demand side, prices should allocate resources efficiently by considering the value each

user places on the Internet connection. However, also note that if there were no con-

gestion, flat-fee pricing would optimally allocate current resources, since with the lines

and routers already in place, there is negligible marginal private cost of operation [38].

The basic idea in pricing of network traffic is to charge the incremental cost of

transporting the traffic over the network links. From the network’s perspective, the

incremental cost of transport of traffic through network is negligible. Thus, the in-

cremental cost only depends on the externality cost. An externality is an effect of

a participant on another that takes place outside the market [63]. In computer net-

works, the externalities include both congestion effects, where one user’s use imposes a

performance penalty on other users (congestion), and also connectivity effects, where

a user benefits from other users being connected to the network (multicast). Current

research has focused on externality or congestion pricing. Under this framework, a job

is priced according to what impact it has on the QoS of other jobs.

An optimal congestion pricing scheme should depend on the current network load,

the rate of transfer requested and the traffic volume of the session (amount of traffic

generated during the session).

There have been several proposals for usage-based pricing schemes. Ref. [21] is one

of the first papers that discusses the pricing issues in the computer networks. Ref.

[21] discusses a simple two-priority service discipline and several different applications
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running over the standard transport layer protocols. Thus, there is no specific QoS

guarantee given to the users. The server basically keeps two FIFO queues for two

service classes. Then, by simulation the authors compared the flat pricing with priority

pricing, where a higher per-byte price is charged for the high priority traffic. The

user satisfaction is measured in terms of the cost and the received QoS. The results

suggest that every application type is better off with priority pricing, and the users

when maximizing their utilities, also choose service levels that maximize the network

efficiency. However, for the efficient use of resources, the charges for different priority

classes should be updated as the load on the system changes. However, in the Internet

the demand fluctuates frequently and it is not clear how the charges should be changed

according to these fluctuations under this model.

Gupta et al. suggested a model that combines priority pricing schemes with the

current fixed connection fee [35], [36]. The users specify a priority class when requesting

a connection. The network services the requests of the higher priority classes first. A

user pays a congestion toll and suffers a delay cost when accessing the network. The

congestion toll depends on the marginal cost of the delay the user causes on other

users. Each user tries to minimize the total of congestion toll and the expected delay

cost. If the user valuation for the connection exceeds these costs, then it connects to

the network, otherwise it waits for a less congested time to re-connect. This method

distributes the load over time, and maximizes the social benefit. However, this proposal

cannot also take into account the instantaneous fluctuations in the network state and

thus cannot give optimal results for all users.

MacKie-Mason and Varian [64] proposed a “smart market” where each packet

carries a bid in the packet header. The packets are given service at each router if

their bids exceed some threshold, and each served packet is charged this threshold
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price regardless of their bids. This threshold is chosen to be equal to the market

clearing price. At market clearing price total demand equals to the supply. This

is the point where the network resources are fully utilized. The main advantage of

this proposal is that the users always bid their true valuation, since this only affects

whether they get the service or not, but not how much they pay [80]. However, apart

from the complexity, the proposal has the additional flaw of not achieving the true

optimality. When the packet is denied of service at a route at a specific time, the

packet is not lost. It is only delayed. This delay is unknown either to the user or to

the network. However, users value their packets according to the delay they encounter,

and thus for true bidding they need to know this delay in advance. Furthermore, the

abovementioned procedure is repeated at every router, however; the true valuation

for the user considers only end-to-end delay that a packet encounters. Extending the

“smart market” framework for end-to-end connections is computationally prohibitive.

Ref. [65] describes another method of decentralized congestion pricing of a limited

network resource with the objective of maximizing the efficiency of the network. The

network efficiency is defined as the total user benefit less the cost of the network.

The method internalizes the congestion by defining shadow price which is the total

marginal congestion cost an increase in one of the user’s share of the resource imposes

on other users. However unlike Gupta et al., the authors assumed that the user utility

functions are available to the network. MacKie-Mason et al. has also investigated

the pricing schemes in a competitive environment. The authors assumed that the

network implements two-part tariff for pricing: a fixed subscription/attachment fee,

and a usage fee that depends on the total load generated by the user. They consider

only linear pricing, where the network charges p dollars per byte user forwards. In

their model both users and the providers try to optimize their benefit. Users choose
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which provider to use and how much to use, while the provider chooses its capacity

and how much bandwidth to supply to users. It is shown that a competitive supplier

is forced to charge the socially optimal price for the quality of service that he offers.

It is shown that at equilibrium the congestion in a system with no usage fee is higher

than the one with usage pricing.

Pricing of the network resources (especially the bandwidth) has also been consid-

ered for improving the rate control algorithms used in the Internet (TCP) and the

ATM networks. Kelly [47] introduced the notion of proportional fairness, which is ba-

sically equivalent to distributing the network resources to the users according to their

valuations for these resources. The objective is to maximize the total social welfare of

the users accessing the network with limited capacity. It is shown that this problem

can be decentralized by individual user and network optimization problems that are

solved independently. The coupling between the two optimization problems is the unit

prices of the resources that the network advertises to their users. The unit prices of

the resources are determined as the optimal solutions to the network revenue maxi-

mization problem under the current user demands. According to these prices users

re-calculate the optimal demand that maximizes their net benefit. It is shown that

there exists equilibrium resource prices and user demands that lead to the optimal

solutions for the social welfare problem.

In [32] authors describe a method that can provide the end-users the necessary

incentives to improve the network efficiency by marking appropriate packets at over-

loaded resources and by charging a fixed small amount for each mark received. This

pricing method provides an alternative to the Differentiated Services architecture de-

signed by IETF. Informing the end-users of the current state of the network by marked

packets allows the end-users to design their own strategies in view of their personal
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needs. Thus, the users do not have to choose among a number of fixed QoS classes.

The user does not have to dynamically decide for their strategies as the network state

changes. The decision of when and how much data to send can be made transparent

to the user by implementing intelligent agents. Ref. [23] describes such an intelligent

agent for Available Bit Rate (ABR) type connections in ATM networks. This work

builds on the theory presented in [32]. Each user i declares his willingness to pay wi,

and is allocated a portion xi of the available capacity. This portion is proportional to

wi ie xi = wi∑
j

wj
C. Demand for bandwidth varies in time and the available capacity to

ABR also changes due to VBR and CBR connections. Thus, offering the same amount

of money does not lead to the optimal utility for money under different conditions.

The intelligent agent (IA) determines the best willingness to pay function for varying

conditions. The IA prior to the activation learns the user behavior by keeping record of

the price that user pays for some bandwidth. Assuming that initially the user has the

optimal amount of bandwidth with optimal willingness to pay (w0, x0), the network

state has changed. In that case the user allocation for the same willingness to pay has

changed to x1. IA estimates the new price of the bandwidth by p1 = w0
x1

, and from the

aforementioned price versus bandwidth function it determines the optimal willingness

to pay. IA continually updates its willingness to pay, until an equilibrium is reached.

Instead of implementing intelligent agents at each user, the network itself can

implement a network broker for the same purpose [29]. Fulp et al. proposes a network

model at which the network links form individual competitive markets, where the

link prices are updated according to the user demand by tatonnement process. In

a tatonnement process the new price is equal to the previous price plus a correction

function. The correction function increases the price when the total bandwidth used

is beyond a threshold. If the total bandwidth in use is lower than this threshold the

30



price is decreased. The network broker calculates the amount of bandwidth that a user

should request according to the effect that this bandwidth will have on the prices. If the

user can afford the bandwidth under these new prices then the user starts transmitting

at this rate. One simplifying assumption this study has made is that the portion of

the user budget for each link in the route is given and fixed. However, dynamically

proportioning of the user budget among the links should give better results.

1.2.2 Simplifying Congestion Pricing

Ref. [76] brings a new perspective to the optimal dynamic pricing schemes discussed

so far. In this article, the authors argue that optimal congestion pricing may not be

able to provide the necessary funds to cover the network costs, and in fact optimal

congestion pricing may not be at all implemented due to its high complexity. For

this reason, authors suggest approximate methods which may be suboptimal but can

provide the sufficient network efficiency by simple to implement algorithms. First, the

authors suggest to replace the cost of the actual path with the cost of the expected

path, where the charge depends only on the source and destination of the flow and not

on the particular route taken by the flow. This would help reduce the overwhelming

communications among routers for each flow. Second, the authors suggest to approxi-

mate the current congestion conditions by the expected congestion conditions. This is

essentially QoS-sensitive time-of-day pricing. Previous studies argued that time-of-day

pricing has the problem that it does not reflect any instantenous fluctuations in traffic

levels [67]. For example, packets that are sent during an idle network condition will

be charged the full price as if there was congestion. However, as the authors argue

users may overcome this problem by adjusting their service quality to the network

condition. During low utilization, users may access the network via lower service class
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but receive sufficient QoS and thus pay less.

Tsitsiklis and Paschalidis [79] discusses in detail the abovementioned issue of deter-

mining the right time scale over which prices should evolve. The authors investigated

a problem, where there are multiple classes of users each of which demanding certain

amount of network resources. The user requests arrive according to a stationary Pois-

son process. The users pay a fee depending on their class upon the acceptance of the

request. The user arrival rates decrease as the fee increases. The objective of the net-

work provider is to maximize either the revenue or the social welfare by determining a

tariff as a function of available network capacity. It is shown that this problem can be

solved as a dynamic programming problem. The authors also investigated the static

(or time-of-day) pricing policies. The static pricing policies are of interest because they

are simple to implement and provide users a predictable, fixed pricing structure. They

have shown that when there are many users each with infinitesimal resource demand

compared to the total capacity, the static pricing policy can achieve the optimum that

the dynamic pricing policy achieves.

By approximating prices according to time and route, the resulting prices can be

determined and charges assessed at the local access points. This local scheme is called

edge pricing in [76]. Edge pricing schemes are very appealing, because they allow

service providers offer many competitive and complex pricing schemes to the user

without the overburden of complicated account keeping and messaging.
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Chapter 2

Content Delivery Networks

The initial model for the World Wide Web was based on clients interacting with origin

servers to request and receive content or services. As the Web increased in scale, this

model proved unwiedly for several reasons and resulted in current industry efforts to

build and operate CDNs. The purpose of these CDNs is to create a scalable service

that can meet aggregate client demand while improving the performance and quality

of delivery.

Content Networks typically aim to solve the “content distribution” problem, where

the goal is to determine the best location between the original source and client for the

content to be delivered. The best location of content usually depends on the network

proximity and the load of the servers.

In the following, we first give a general formulation of the content distribution

problem. Then, we describe the CDN architecture as will be considered in the rest

of the thesis. According to this architecture, we develop a tractable version of the

content distribution problem, and identify the important issues in this context.
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2.1 Content Distribution Problem

Consider a network N = G(V,E), where V is the set of vertices (nodes) and E is

the set of edges (links) connecting the vertices. The vertices house the caching and

processing resources, while the edges are the links between the network nodes, which

have some fixed capacity bandwidth and buffer resources. There are M information

servers that can be located at any of the vertices. Server m is the origin of information

objects Mm = {µ1
m, µ2

m, . . .}. The objects of each server are replicated to other nodes

in the network. Let V = {OV
1 , OV

2 , . . . , OV
|V |} denote the sets of objects stored at each

node (a replication strategy). Let OV
v = {ov

1, o
v
2, . . .} denote the set of objects stored

in the node v under the replication strategy V. Let sov
k

be the size of the object ov
k

stored at node v. Then
∑

k∈OV
v

sk ≤ Cv, where Cv is the size of the cache at node v.

There are K users requesting objects from the servers. Assume that user i requests

object ji and it is delivered from node vi. Let Pi,vi be the set of paths between the

node user i resides and the node vi. A path pi ∈ Pi,vi is selected for the delivery of

the object. The path pi defines an ordered set of links l from node where user i resides

to the node vi, i.e. pi = {l1pi
, l2pi

, . . . , l
L(pi)
pi }, where L(pi) is the length of path pi. Let

rl
i be the bandwidth resource allocated to user i’s request over the link l ∈ pi. Define

Ri(pi) = {rl
i, l ∈ pi}. A resource allocation is feasible, if at no link the total resources

required by the connection is more than those available. Assume that total bandwith

resource available on link l is Bl.

User i receives a utility ui(ji, vi, pi, Ri(pi)) from object ji, when it receives the

object from node vi over the path pi where Ri(pi) bandwidth resources are allocated

over the links of the path. The social objective of any network is to maximize the

total user utility. The content distribution problem can be described as a joint object
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replication and resource allocation problem. Let η(l,p) = {i : l ∈ pi, i = 1, 2, . . . K}

be the set of users with their paths containing link l. Then the joint optimization

problem is given as follows:

max
V

max
{pi∈Pi,vi ,Ri(pi)}

K∑
i=1

ui(ji, vi, pi, Ri(pi)) (2.1)

subject to

∑
i∈η(l,p)

rl
i ≤ Bl, ∀l ∈ E

∑
o∈OV

v

so ≤ Cv, ∀v ∈ V

This is a combinatorial optimization problem with many state variables. It has

been shown in the literature that simpler versions of this problem are NP-hard. We

propose to develop distributed methods for finding a near-optimal solution to this

problem. We resort to microeconomic methods for finding the distributed solutions.

Two basic microeconomic approaches have been discussed in the literature for finding

efficient distributed resource allocation schemes in the networks: resource-directed

and price-directed [40]. In the resource-directed approach, each user calculates the

marginal values for its current resources and communicates it to the other users. The

allocation is then changed, so that the users with above average marginal utility receive

larger portion of the resource. On the other hand, the price-directed approach sets

an initial set of prices for the resources, which is then announced to the users. The

users determine their resource allocation requests according to these prices. Prices are

then iteratively changed to accomodate the demands for the resources, until the total

demand equals to the total resource available.

In this work we are going to use the price-directed approach, since it more closely
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models the real systems.

2.2 Content Delivery Network Architecture

We can conceptualize content networks as the interconnection of network elements at

the application layer of the OSI model. Whereas lower-layer network infrastructures

revolves around the routing, forwarding and switching of frames and packets, content

networks deal with the routing and forwarding of requests and responses for content.

The units of transported data in content networks are often very large and span

hundreds or thousands of packets.

Currently there is a considerable effort in developing an architecture to peer content

networks to improve the Internet performance [25], [34], [68], [2], [6] and [14]. In this

effort, the trend is moving from the speculative caching (proxy servers) to the service

level agreements (SLAs) between the publishers and the surrogates. The publisher is

the party that ultimately controls the content and its distribution. A surrogate is a

delivery server, other than the origin server. An origin server is the point at which

the content first enters the Internet. The origin server for any object is the server or

a set of servers that holds the authoritative copy for that object. The user requests

are routed to the surrogates, which deliver the corresponding content. Publishers have

more control over their content by using the surrogates. The desired level of quality of

service can be defined with respect to variety of different parameters such as average

delay experienced by the users and the web site’s server load or the amount of space

allocated to a web site on the surrogates and the extend of geographical distribution

of content, etc.

In the on-going work, [2], [34], [68] with respect to the peering of the CDNs, a

simple architecture has been developed. In this architecture a content network is
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modeled as composed of three seperate sub-systems:

1. Distribution System coordinates the activity of moving publisher’s (content provider’s)

content to one or more of the surrogates. Content dissemination can be publisher-

initiated (“push” of the documents according to anticipated user load) or CDN-

initiated (“pull” of the documents after receiving a client request) or both.

2. Request-Routing System (RRS) coordinates the activity of directing a client re-

quest to a suitable surrogate. RRS may direct the request to one of the surro-

gates of the CDN, to a peered CDN or the original server itself. The selection of

the most suitable server depends on the load, availability and user preference-

location, delay, etc. of the surrogate cache. As discussed in detail in the later

sections, we argue that these factors can be incorporated in a shadow price an-

nounced by the surrogate.

3. Accounting System determines the methods for measurement and pricing of the

distribution and delivery activities. Usually the CDN may charge for two re-

sources: storage and bandwidth. Storage charges may correspond to the activity

of distribution the publishers’ content. Meanwhile the bandwith cost relates to

the user requests that are serviced by the CDN.

Figure 2.1 illustrates the CDN architecture that we will consider in this thesis.

Operation of the system can be summarized as follows:

1. Publisher selects a desired QoS and negotiates a Service Level Agreement (SLA)

with the CDN. The selected level of QoS depends on the benefit received by the

publisher/clients and the cost of service with that level of QoS. The dissemination

of the content to the surrogates takes place according to the anticipated user

loads. The user load distribution can be estimated according to a prioiri request
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Figure 2.1: CDN Architecture

statics as well as other off-line market research. Either publisher or the CDN

determines which content has to be disseminated to where according to the user

statistics, the desired QoS (in terms of average user latency, server load, etc.),

the locations of the surrogates and the CDNs’ pricing methods.

2. Distribution sub-system coordinates the dissemination of the content to the sur-

rogates in lieu of a SLA, which is agreed upon by the publisher and CDN.

The distribution decision requires the information about the publisher utility

functions, user access statistics and the geographical locations and storage and

transmission resource capacities of the surrogates.

3. Client requests are directed to a unique network element responsible of request

routing. The RRS can be implemented in several forms:

(a) DNS re-routing: The client is informed about a suitable surrogate by DNS

resolution. Client IP address and full URI are not inspected to determine
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a suitable surrogate.

(b) Application-level routing: full URI as well as the client IP address are

inspected to determine the most suitable surrogate at the cost of increased

processing delay.

(c) The request routing function may be implied by an in-path network element

such as caching proxy, which is typical for a Access Content Network. In

this case, the request routing is optimized to a null function, since the

client is a priori mapped to a surrogate. If the object is locally stored, the

request is immediately served, otherwise the request is forwarded toward

the original server. There may be several in-path elements (hierarchical

caching) performing the same operations.

An important issue for DNS and application-level routing is their substantial

information needs for correct functioning. These methods require the up-to-date

content and availability (network and server) knowledge from all the surrogates

as well as the peered CDNs.

4. Distribution sub-system may re-examine the content of the surrogates according

to the current request arrival distribution. Either surrogates may request the

objects upon cache-miss similar to the way current proxy caches do, or these

statistics can be used by the publishers or the distribution system (as an agent

for publisher) to periodically re-arrange the content to satisfy the desired SLAs.

5. Request-routing system may forward the client request to a peer CDN in case

the requested object cannot be found in its own surrogates and/or it is more

efficient to do so. Peered CDNs appear as black-boxes to each other and can

only gather information about their distribution and request routing sub-systems
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according to the content and network advertisement that they send out period-

ically. In these advertisements CDNs announce the network state (including

geographical locations, capacity, load and the content stored in their surrogates)

and the summary of the available content of each surrogate. Real-time update of

these advertisements can be difficult due to the difficulty to dynamically measure

network-state and the size of the content information in the surrogates. However

several methods can provide approximate behavior, e.g. bloom-filters [26], delta

updates [73], periodical polling [28], etc.

6. The records for caching and transmission costs are kept for accounting purposes.

CDN charges the publishers for the amount of content stored in their network.

This charge may depend on the SLA. The storage charge may refer to the shadow

price for the limited storage space available in the surrogates. Furthermore, the

CDN may charge for the individual requests served by the network. This charge

can be validated by the limited processing capacity of the surrogates.

2.3 Content Delivery Problem

We have seen that the content distribution problem is a combinatorial optimization

problem, which is very difficult to solve optimally. In this section, we consider a

simplified version of this problem that also fits more closely to the current content

network architecture.

We consider a business model in which the primary customers of the CDNs are the

web servers (publishers). Notice that the benefit of each publisher can be given as the

total utility of the individual users accessing the publisher. According to the notation
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used in previous section, the utility of publisher m, Um, is given as

Um(v,p,R(p)) =
∑

i

∑
ji∈Mm

ui(ji, vi, pi, Ri(pi)), (2.2)

where v= {vi}K
i=1, p= {pi}K

i=1 and R(p)= {Ri(pi)}K
i=1 are the vectors of cache loca-

tions, paths and resources allocated on these paths used for the delivery of the users’

requested objects respectively.

The system objective is to maximize the total benefit of the publishers subject to

the limited caching and bandwidth resources. The joint system optimization problem

in eq. (2.1) can be re-written in terms of publisher utilities as

max
V

max
{pi∈Pi,vi ,Ri(pi)}

∑
m

Um(v,p,R(p)) (2.3)

subject to

∑
i∈η(l,p)

rl
i ≤ Bl, ∀l ∈ E

∑
o∈OV

v

so ≤ Cv, ∀v ∈ V.

In this work, we consider the optimization of abovementioned system optimization

problem as well as the optimization of the multi-criteria problem formed by the max-

imization of the individual publisher net benefits. Notice that in the Internet agents

(users, publisher, caches, etc) are selfish and non-cooperative and try to maximize

their own benefit regardless of other publishers. We will investigate the effects of such

behaviors as compared to the system solution.

We consider the average performance of the system. The system objective is to

maximize average aggregate publisher utilities. We assume that URL routing is used

to direct user requests to the appropriate surrogates. However, only the original server
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identifier is used in the routing decision and not the complete object identifier. We

believe this type of operation is more efficient due to the high processing and messag-

ing costs affiliated with the complete HTTP header routing. Notice that for complete

HTTP header routing, the complete and up-to-date cache content information is re-

quired. Although schemes such as delta update and summary cache [26] are suggested,

they are not very practical and easily implementable. Thus, when a user request is di-

rected to a surrogate, there is a probability that the requested object is not found in the

cache. In that case, the request is re-routed to the original server. We do not consider

hierarchical/cooperative caching in this architecture, since hierarchical/cooperative

caches result in increased processing and messaging overhead.

Users are clustered in LANs. They connect to the publisher web sites via their ISPs

and the WANs. Assume that a user from network n is interested in an object provided

by the publisher m. Also assume that the user request is routed to the surrogate s.

The probability of the user request served at this surrogate depends on the content

dissemination strategy of the publisher m, which can be in effect summarized by the

cache hit probability Prm
hit. The total retrieval delay is the sum of the propagation

and transmission delays. The average propagation delay that the user expects is

ds,prop
n,m = dprop

n,s + (1 − Prm
hit)d

prop
s,m , where dprop

k,l denotes the propagation delay between

the nodes k and l. The average transmission delay depends on the current load of the

servers and is given by ds,tran
n,m = Prm

hitd
tran
s + (1 − Prm

hit)d
tran
m , where the transmission

delay corresponding to the current load at node k is assumed to be known as dtran
k .

We assume that all objects are the same size. The network distance, i.e. the delay

between two nodes, can easily be determined by methods such as periodic probing

[28]. The total average delay expected by the user is,

ds,total
n,m = ds,prop

n,m + ds,tran
n,m . (2.4)
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A reasonable user utility function decreases with increasing latency ds,total
n,m . Thus, the

primary objective of the content delivery problem can be summarized as the mini-

mization of a function of the average user latency.

For our purposes we only consider the bandwidth and caching resources in the

CDN. We assume for fairness reasons that every user request is assigned the same

amount of bandwidth. Thus, each cache can serve a fixed number of user requests at

a time. The requested objects are delivered to the users from the selected cache over

the shortest path in order to maximize the user utilities.

According to the definition of content delivery problem as given in eq. (2.3), we

may divide the content delivery problem into two: distribution and request routing

sub-problems. The distribution sub-problem solves the optimization problem (2.3) for

the optimal distribution of objects given the rate of user requests arriving to each

cache. The routing sub-problem solves (2.3) for optimal user request arrival rates to

each cache given the object dissemination strategy. Although these two sub-problems

are jointly related, for the purpose of designing a practical algorithm we envision

an iterative scheme in which each sub-problem is solved separately. In this scheme,

the distribution sub-problem determines the dissemination strategy according to the

arrival rates as determined by the request-routing sub-problem. The request routing

sub-problem determines the routing strategy according to cache content as determined

by the distribution sub-problem. These sub-problems update their decisions iteratively

according to the output of the other. We expect that if the solutions to these two sub-

problems are (near-) optimal, then the solution to the overall content delivery problem

is also (near-) optimal.

In order to allocate limited resources as efficiently as possible, we implement price-

directed market-based algorithms. Thus, each surrogate charges a price for the amount
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of resources allocated to the publishers. In the following, we define the distribution

and routing sub-problems with the understanding that each publisher and surrogate

maximizes its own benefit regardless of the system optimization problem. Notice

that the benefit of a publisher is the total utility of its users with the given resource

allocations less the cost of these resource allocations. Meanwhile, the benefit of a

surrogate is the total revenue received by selling/renting the available resources. In

the later sections of the thesis, we show that the competitive behavior leads to solutions

that are close to the system optimum solution.

2.3.1 Distribution sub-problem

Let λn
m,s be the request arrival rate observed at surrogate s for the objects in the

publisher m that are received from the users in LAN n. Let λn
m =

∑
s λn

m,s be the

total request arrival rate for the objects in publisher m from the users in LAN n. Also

let λm,s =
∑

n λn
m,s, be the arrival rate to surrogate s for the objects in the publisher

m. For the purposes of the distribution sub-problem, we assume that λn
m,s is known.

The objective is to disseminate the publisher’s content to the surrogates so that the

net publisher utility is maximized. In the previous section, we mentioned that the

content dissemination strategy of the publisher can be summarized by the cache hit

probability. Assume that xm,s amount of caching space is allocated for the objects of

the publisher m in the surrogate s. In order to maximize the cache hit probability

the publisher disseminates the most popular objects to the surrogate. Let Prm
hit(xm,s)

denote the cache hit probability observed when xm,s caching space allocated to the

publisher.

Further assume that users have an identical utility function, u(v, pn,v, r), where v

is the surrogate delivering the object, pn,v is the shortest path between the surrogate
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and the user network and r is the fixed resource allocated for any user request. Thus,

the utility function for publisher m depends only on the sizes of the cache allocations

in each surrogate, xm,s and the user request arrival rates to each surrogate, λn
m,s, i.e.

U s
m(xm,s, λm,s) =

∑
n

[
λn

m,sPrm
hitu(s, pn,s, r) + λn

m,s(1 − Prm
hit)u(m, pm,s, r)

]
. (2.5)

In the distribution sub-problem, the only cost arises from the cost of usage of

caching resources. Let pcache
s denote the price charged by surrogate s for the unit cache

space. We assume that there is no collaboration among the publishers or publishers.

Each publisher and surrogate tries to maximize its own net benefit regardless of others.

The optimization problem solved by the publisher m can be given as:

(Distribution/Publishers) max
xm,s

∑
s

U s
m(xm,s, λm,s) −

∑
s

pcache
s xm,s, (2.6)

Meanwhile, surrogate s solves the following optimization problem:

(Distribution/Surrogates) max
pcache

s

∑
m

pcache
s xm,s (2.7)

s.t.
∑
m

xm,s ≤ Ccache
s ,

where Ccache
s is the total caching capacity of the surrogate.

This type of system is called a game. The publishers and surrogates are playing a

game in which each try to maximize its benefit by selecting an appropriate strategy.

However, the final benefit received depends on the strategies of other publishers and

surrogates. We analyze this system in Chapter 3. We determine the optimal strategies

of the publishers and the surrogates. We also show that this game has an equilibrium

strategy, where no player can change its strategy without reducing its benefit.
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2.3.2 Request-Routing Sub-problem

The objective of the request-routing sub-problem is to direct a user request to an

appropriate surrogate. We may conceptualize the RRS operation as depicted in Fig-

ure 2.2. The requests from the users are first intercepted by the RRS. The RRS is

basically a DNS server performing URL routing. The RRS checks the HTTP header

to determine the user network and the requested URL. The RRS also keeps real-time

information on the network distances between the user networks and the surrogates.

The RRS has the knowledge of which surrogates contain (at least with high probabil-

ity) the objects requested by the clients. Thus, for each object requested by the clients

we may have different set of surrogates S0, S1, . . . , SK . The RRS may route the user

request directly to the origin server, S0, if it is optimal to do so. Surrogates charge

ptran
s for each user request served. This price can be interpreted as the shadow price

for the load on the surrogates. Publisher i optimization problem can be given as:

(Routing/Publishers) max
λm,s

∑
s

U s
m(xm,s, λm,s) −

∑
s

ptran
s λm,s, (2.8)

where
∑

s ps λm,s is the cost of serving λm,s user requests at the surrogate s.

Meanwhile, surrogate s solves the following optimization problem:

(Routing/Surrogates) max
ptran

s

∑
m

ptran
s λm,s (2.9)

s.t.
∑
m

λm,s ≤ Ctran
s ,

where Ccache
s is the total caching capacity of the surrogate.

In Chapter 4, we determine the solution to the abovementioned game. The routing

game formed by above two optimization problems is shown to have an equilibrium as

well, from similar results given in Chapter 3. Since these two sub-problems have
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Figure 2.2: Request-routing sub-system

an equilibrium, and the equilibrium solutions are continuous, we establish that there

exists an equilibrium to the overall problem.

In Chapter 4, we also consider a different objective for the RRS. In many cases,

instead of requesting separate resource allocations from each surrogate, the publishers

may request from the CDN an average delay bound for their users’ requests to be

satisfied. In such a case, the objective of the RRS is to satisfy this delay bound

at the minimum total cost to the publishers. Such an objective makes sense in the

competitive business model of the Internet. In this model, the CDN optimization

problem is given as:

(RRS) min
λn

m,s

∑
m

∑
s

∑
n

ptran
s λn

m,s (2.10)

s.t.
∑
s

∑
n

λn
m,sd

s,total
n,m (xm,s) ≤ Dm, ∀m,

∑
m

∑
n

λn
m,s ≤ Ctran

s , ∀s,

where Ctran
s is the total transmission capacity of the surrogate. In Chapter 4, we
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determine the solution to this problem. We also show that the optimization problem

in (RRS) usually does not have an equilibrium, when the publishers update their

requested delay bounds according to the CDN prices.

2.3.3 Provision of diff-serv-like QoS in CDNs by Nonlinear Pricing

The distribution and request-routing sub-problems together establish a system, where

the publishers can adjust their QoS with infinite precision. We also explore the case,

where the CDN provides only limited number of options for QoS. In Chapter 5, we

explore the optimal pricing rules when the available resource is shared among the

users. The resource provider partitions its resource and charges a different price in

each partition. The users subscribe to a partition, and share the resource available in

the partition with those who also subscribed to the same partition. The user’s decision

to subscribe to a partition depends on the net benefit it receives. A similar type of

system was investigated by Odlyzko in [69]. Unlike [69], we investigate the optimal

nonlinear pricing scheme, when the user utility functions can be estimated. We further

investigate the optimal condition for partitioning the resources. We determine that

the optimality of resource partition depends on the user arrival rate, the capacity of

the resource and the net benefit received by subscribing to the resource.
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Chapter 3

Content Dissemination

In this chapter, we consider a realistic model for the relationship between the pub-

lishers and the content delivery networks. The publishers disseminate a part of their

content to the surrogates to improve the user latency. Meanwhile, surrogates charge

the publishers for the amount of caching space the publisher’s content allocate. How-

ever, there are multiple surrogates competing to serve the publishers. We investigate

the effect of this competition on the system. Specifically, we show that such a price

competition leads to an equilibrium, which under certain conditions, leads to the opti-

mal cache allocation strategy for the publishers. This approach provides a dynamical

and distributed algorithm for determining the cache content in the network, which has

a performance close to the optimum solution.

3.1 System Model

Figure 3.1 illustrates the network set-up that we are interested in this chapter. There

are several LANs where the users reside. Every user is interested in one or more of the

objects of a publisher. If the publishers have subscribed to a CDN, the user requests are

first intercepted by the request-routing sub-system of the CDN. The request-routing
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Figure 3.1: Content delivery system

subsystem then forwards the user request to an appropriate surrogate, perhaps the one

with the highest probability of delivering the requested object with minimum latency.

For the distribution sub-problem, we assume the routing decision is made and the user

request arrival rates to each surrogate is fixed. The surrogates are located between the

user networks and the origin servers. Thus, users are always at most two hops away

from the content. A user request is first checked at the corresponding surrogate. If

the requested object is available at the surrogate, the request is immediately served.

Otherwise, the request is forwarded to the origin server, where the object originally

resides.

The surrogates have limited cache size, and the cache is shared among the pub-

lishers. The surrogates charge the publishers for the portion of the cache their content

occupies. We assume that the surrogates of a CDN does not cooperate, probably

due to high messaging and processing overheads associated with cooperative caching.

Instead, they act non-cooperatively with the objective of maximizing their individual

revenues. The surrogates compete among each other to store the publishers content.

The publishers do not collaborate either, and try to purchase as much cache space as

possible with the objective of maximizing their net benefit.
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Assume that there are I different publishers (origin servers) and J different sur-

rogates present in the network. The user requests arrive from N different user LANs.

Let λj,n
i denote the total request arrival rate from LAN n at surrogate j for the con-

tent in the ith publisher. Let λj
i =

∑
n λj,n

i be the total arrival rate to the surrogate

j for the content in publisher i. The user interest in the objects of the publishers

is distributed according to Zipf distribution [88]. That is, given that a request has

arrived, the probability that the request is for object h is q(h) = c
hαi , where c is the

normalization constant, and 0 < αi < 1 is the distribution characteristic of publisher

i. The characterization of user request distribution as a Zipf distribution is discussed

in previous studies [13], [51] and is widely accepted as a good approximation to the

actual web traffic behavior.

Recent studies [89] have shown that as the latency increases, users stop browsing

the requested page (bail-out) with increasing probability (Figure 3.2). Since the Inter-

net became more and more commercially oriented, the bail-out rate started to have a

direct economic impact for the web sites. It is of interest for web sites to have a fast

object delivery rate in order not to lose customers. The web sites (publishers) can

be considered as content providers. They make their revenue either by selling some

information content (such as news, maps, etc.) or by selling tangible products. The
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necessary (but not sufficient) condition to keep the users browsing the web site is the

timely delivery of the content. However, one can easily see from Figure 3.2 that the

user bail-out rate have nonlinear relationship with the retrieval time. Thus, from the

content providers’ view the important metric is the minimization of the lost revenue

rather than the retrieval time. In this chapter, we consider a more generalized version

of the content delivery problem, where every publisher i receives varying benefit from

provision of a user request with a certain delay, which is reflected in the selection of

benefit function wi(d). We assume that wi(d) is concave.

We can identify two types of optimization problems in this model: publisher’s

revenue maximization and the surrogates revenue maximization. We first determine

the publisher’s optimal caching strategy under a certain surrogate pricing scheme.

3.2 Optimal Publisher Strategy

Let Bj
i be the investment of the ith publisher in the jth surrogate. Let Bi =

∑
j Bj

i

be the total investment of the ith publisher. It is assumed that the information stored

in the publishers is continuous and can be replicated continuously to a surrogate.

The total information available at the publisher i is χi. The publisher replicates its

most popular part of the content to the surrogates so that the cache hit probability is

maximized. Assuming that Ci units of cache space is allocated to the publisher, the

probability that an incoming user request is satisfied at the surrogate is given by,

Pr(hit|Ci) =
∫ Ci

o
q(x) dx =

∫ Ci

0

1 − αi

χ1−αi
i xαi

dx,

=
(

Ci

χi

)1−αi

.

Note that we assumed that q(0) = 0 in arriving this result.
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Let pj denote the price of the unit cache space in surrogate j. Let the pricing policy,

p = (p1, p2, . . . , pJ), denote the set of unit cache space prices of all the surrogates in

the network. Let dij denote the additional average delay a user request forwarded

from surrogate j to the origin server of publisher i will experience. Let xj
i be the cache

space allocated to publisher i in surrogate j. If i th publisher’s investment in the j

th surrogate is Bj
i , then the total cache space allocated to the content of publisher

i in surrogate j is xj
i = Bj

i
pj

. The average reduction in the user delay or equivalently

the average net benefit that publisher i generates by Bj
i investment in surrogate j is

λj
iwi(dij)

(
Bj

i
pjχi

)1−αi

. Define βj
i = λj

iwi(dij)/χ1−αi
i as the gain factor for publisher i

from surrogate j.

The utility function, i.e., the total additional average benefit, Ui(xi), of publisher i

is Ui(xi) =
∑J

j=1 βj
i

(
xj

i

)1−αi
. For a given pricing policy p the publisher optimization

problem (S) can be written as:

(S) max{xj
i}J

j=1
Ui(xi) (3.1)

subject to
J∑

j=1

xj
ipj ≤ Bi.

Since Ui(xi) is a concave function and the constraint set is compact, there exists a

unique solution to (S).

Lemma 1 xj
i

∗
=

(
β

j
i

pj

)1/αi

Bi

∑J

k=1
pk

(
βk

i
pk

)1/αi
is the unique optimal solution to the optimization

problem (S).

Proof See appendix A.
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This result has been analyzed for a two publishers, three surrogates system, where

the total investment of each publisher is 20 cost units, and the sizes of the caches

of each surrogate is the same at 10 storage units. Figure 3.3 depicts the investment

of the publisher in a surrogate when a surrogate’s unit cache space price is varied,

while the prices of the remaining two surrogates’ are kept the same. The arrival rates

to each surrogate and the gain factors of each publisher-surrogate pair are the same.

The analysis does not take into account the limited cache capacities of the surrogates.

The investment in the surrogate decreases with the increasing price. However, more

importantly the investment is quite dependent on the distribution of requests for the

publisher’s content. In fact α = 1 represents a special case, where the publisher’s

investment in a surrogate is the same regardless of the price of the surrogate.

In Figure 3.4, the variation of total revenue generated by a surrogate publisher for

varying surrogate prices is depicted. In this case, as the surrogate lowers its price, it

receives higher investment from the publishers. However, lowering the price more than

a certain price reduces the revenue, because the surrogate has a limited cache space

and the publishers requests for more space cannot be satisfied.

3.3 Optimal Surrogate Strategy

We now consider the optimal pricing strategies of the surrogates maximizing their

revenues. Let p−j = (p1, p2, . . . , pj−1, pj+1, . . . , pJ) be the set of unit cache space prices

of all the surrogates in the network except the jth one. We assume that there is no

collaboration among the surrogates, and each surrogate tries to maximize their revenue

non-cooperatively. The revenue of a surrogate j with price pj is rj(pj) =
∑

i x
j
i (pj)pj ,

and the objective of the surrogate is to maximize rj(pj) by determining the optimal

price pj .
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Lemma 2 Surrogate j’s best pricing strategy under a given fixed pricing policy p−j

is to set a price pj that satisfies
∑I

i=1 xj
i (pj) = Cj , i.e., when the surrogate cache is

completely allocated.

Proof See appendix A.

This lemma suggests that the function rj(pj) =
∑

i x
j
i (pj)pj achieves an interior

maximum because it tends to zero both as pj goes to zero and as pj goes to infinity.

Whether the function rj(pj) is maximized at the price that completely allocates sur-

rogate cache or at a higher price will depend on whether Cj is above or below this

maximum. However, in many practical cases the cache capacity is much lower than

the total information available in the network. Thus, the surrogate will be able to sell

all of its capacity without setting a price that approaches zero.

3.4 Publisher-Surrogate Distribution Game

Until now, we discussed the optimal strategies of the publishers and the surrogates

given that system is at a steady state. However, we have not discussed whether such

a steady state exists. Notice that when a surrogate re-evaluates its pricing policy

according to the pricing policies of the rival surrogates, the remaining surrogates will

do the same. At each different pricing policy the publishers’ optimal investments will

be different as well.

In order to understand the behavior of the surrogates, we model the two-stage

surrogate-publisher system as a non-cooperative game [41]. In this publisher-surrogate

distribution game, Γ(J, S, P ), the players, J , are the surrogates, the strategy set Sj for

a surrogate j is given by the surrogate’s unit cache space price and the payoff function

Pj(s) of each surrogate j is given by the profit of the jth surrogate. This system is
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similar to the Cournot oligopoly discussed in the economics literature. Assume that

each surrogate has a fixed cost for its cache, but has no control over the size of the

cache, i.e., the size of the cache is determined before the system implementation.

We first show that this game has a Nash equilibrium solution, where no surrogate

has incentive to change its strategy unilaterally, since each surrogate maximizes its

own individual payoff given the strategies of others.

Theorem 1 The non-cooperative publisher-surrogate distribution game Γ(J, S, P ) has

at least one Nash Equilibrium solution.

Proof We first show that the strategy sets are convex and compact. The profit for

surrogate j is rj(p)−cj , where cj is the cost of the surrogate j’s cache. We will assume

that there exists some price p̂j at which demand for the cache space of surrogate j is

zero regardless of the prices of other surrogates. Considering the revenue curve rj(p),

this is not a restricting assumption. Lemma 2 suggests that the optimal surrogate

price tends to zero when we deviate from the suggested optimal point. As an example,

consider Figure 3.4, in which the revenue of surrogate j increases until a certain price

p∗j beyond which it decreases again. Then, we may limit the strategy set Sj to the

interval [0, p̂j ], and still be able to cover the complete range of payoff function. Thus,

the strategy set Sj is convex and compact.

The profit of each surrogate is bounded from below by zero and since the total

investment of all publishers is limited, the profit can never exceed
∑

i Bi − cj . We

assume that surrogate takes its’ rivals actions as given, supposes they will remain

constant, and chooses its own best course of action accordingly. This assumption is

called Cournot behavioral assumption [41]. The payoff function under this assumption

is given by rj(p). In Lemma 2, we have shown that there is a unique best reply function,
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Rj(p) = argmaxpj
{rj(p)} for surrogate j, which is also continuous. Define a mapping

R(s) = (R1(s), . . . , RJ(s)). By Brouwer’s Theorem [41] R must have at least one fixed

point s∗ ∈ S, where s∗ = R(s∗). The definition of the best reply function Rj(s) and

Brouwer’s Theorem tell us that Pj(s∗) ≥ Pj(s∗/tj) for all tj ∈ Sj and j = 1, . . . , J ,

where s∗/tj is the strategy set when the jth surrogate’s strategy is changed to tj in

the complete strategy set s∗. This result is the definition of Nash equilibrium.

We have shown that there exists a set of equilibrium prices for such a system. The

question that remains to be addressed is what the physical interpretation of such an

equilibrium is.

Consider the publisher optimization problem (S) discussed in the previous section.

In our system, every publisher tries to maximize its own benefit regardless of others

subject to the availability of funds and caching space. The optimization problem of

each publisher is related to each other with the constraint
∑

i x
j
i ≤ Cj for all surrogates,

i.e. the publishers compete for the available cache resources. Thus, we can re-write

the optimization problem for individual publishers as:

(Si) max{xj
i}J

j=1
Ui(xi)

subject to (1)
J∑

j=1

xj
ipj ≤ Bi

(2)
∑

i

xj
i ≤ Cj, j = 1, . . . , J.

Theorem 2 When there is a unique equilibrium for the publisher-surrogate distribu-

tion game, Γ(J, S, P ), the equilibrium prices solve the optimization problem Si for all

publishers i = 1, . . . , I , that is, the solution is globally Pareto optimum.

Proof Assume that each surrogate uses the best reply function Rj(p) to update
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its price. The best price for surrogate j given the pricing policy p−j is calculated

from
∑

i x
j
i = Cj. At the equilibrium this condition is satisfied as well. Furthermore,

the publishers calculate xj
i as given by Lemma 1, which guarantees local optimality

of the solution and the feasibility of the first condition in Si. Uniqueness of the

equilibrium guarantees that the feasible locally optimum solution is also the global

optimum. Under these conditions, outcome of the publisher-surrogate game is the

solution of Si,∀i = 1, . . . , I.

Pareto optimality is the relevant criteria in a multi-objective problem setting such

as ours. At the pareto optimum solution, one can find no other feasible solution that

increases some objectives while not decreasing at least another objective. Theorem

2 states that if the equilibrium is unique, then the outcome of the non-cooperative

game is the optimal solution to the individual revenue maximization problems of the

publishers. If there are multiple equilibria, however; the resulting cache allocations,

x, are only locally optimum. Unfortunately, there are often multiple Nash equilibria

and depending on the initial prices as well as price update strategies the outcome

of the game may not always be the optimal solution. In the following, we discuss a

special case of the surrogate cache allocation problem, where the delay between each

publisher-surrogate pair is the same and user request arrival rates to each surrogate

and Zipf distributions for each publisher are identical. For this case, we determine the

condition for which unique equilibrium exists.

Definition 1 A mapping T (p) is called contraction mapping, if |T (p)−T (q)| ≤ λ|p−q|

for λ < 1 or if the mapping is differentiable ∂T (p)/∂p < 1.

It is easy to see that if the best-reply mapping R(p) is a Contraction mapping,

then the equilibrium is unique [61].
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Lemma 3 When βj
i = β, ∀i, j and αi = α, ∀i, then the best reply function Rj(p) is

a contraction mapping if the price vector p is limited to the region given by

(1 − α)
∑

i Bi/Cjp
−1/α
l(∑

k �=j p
1−1/α
k

)1+α < 1,∀l.

Proof See appendix A.

Notice that the condition given in Lemma 3 is not a necessary but a sufficient

condition which is probably more restrictive than the necessary condition. Let Rj

be the region given by the above Lemma. Following Theorem gives the condition for

optimality of the outcome of the game for the identical case.

Theorem 3 If the range of the price vector, p, is in the region ∩J
j=1Rj, the publisher-

surrogate distribution game has a unique equilibrium.

Proof The result follows from Lemma 3 and Theorem 1.

In order to understand the consequences of this theorem, we consider a system

where there are only 3 surrogates. For demonstration purposes assume that α = 0.5.

Let Kj = (1 − α)
∑

i Bi/Cj . Figure 3.5 depicts the uniqueness property for different

values of Kj. The lines in the figure show the uniqueness condition satisfied with

equality. The region enclosed by these three price lines correspond to the region de-

scribed by Lemma 3, i.e. Rj . We have different regions for different surrogates. These

regions basically depend on Kj , which in turn depends on the publisher investments

and the size of the surrogate’s cache. We observe in Figure 3.5 that as K gets higher

Rj gets smaller. Theorem 3 states that if the prices are confined into the intersection

of these regions, we achieve a unique equilibrium. Notice that ∩J
j=1Rj = Rj0 for some

j0 = arg max1≤j≤J{Kj}.
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Figure 3.5: Rj for different surrogates.

We need to determine under what conditions the optimal surrogate prices lie in

this region. Figure 3.6 and 3.7 depicts the variation of optimal surrogate prices given

that the rest of the surrogates are required to select prices in the uniqueness region,

i.e. ∩J
j=1Rj. We varied the boundaries of the uniqueness region by changing K. Notice

that the number above each subplot corresponds to this K value. We noticed that for

low values of K, the optimal surrogate prices reside inside the uniqueness region, while

for high values of K the optimal prices tend to diverge from this region. Notice that low

K values mean the total investment is not much higher than individual surrogate’s

cache size. Thus, if the size of the surrogate caches are not very large and/or the

publishers are reluctant to invest high amounts in the surrogates, we expect the game

to converge to a unique price equilibrium.
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Figure 3.6: Variation of the optimal surrogate prices for different K.
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Figure 3.7: Variation of the optimal surrogate prices for different K.
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3.5 Selection of Publisher Investments

So far, we assumed that publisher investments are fixed and known. We now discuss

several possibilities for determining the investment amounts. Consider the following

optimization problem (P ). The objective of (P ) is to maximize the total publisher

utility given the limited cache sizes. We define the solution of (P ) as the system

optimum solution.

(P ) max
{xj

i }i,j

∑
i

Ui(xi)

subject to
∑

i

xj
i ≤ Cj , j = 1, 2, . . . , J.

Define the Lagrangian for (P ) as

L(x, p) =
∑

i

Ui(xi) −
∑
j

pj

(∑
i

xj
i − Cj

)

=
∑

i

(Ui(xi) −
∑
j

pjx
j
i ) +

∑
j

pjCj . (3.2)

Notice that the first term is separable in xi and hence maxx
∑

i(Ui(xi)−∑j pjx
j
i ) =

∑
i maxxi(Ui(xi) −∑

j pjx
j
i ). The objective function of the dual problem is

D(p) = max
x

L(x, p)

=
∑

i

max
xi

(Ui(xi) −
∑
j

pjx
j
i ) +

∑
j

pjCj. (3.3)

Thus, each publisher’s optimization problem is separate from the other given the

Lagrangian constant (shadow price) p. By using similar arguments as those given in

[62], one can easily show that the publishers can be induced to solve this optimization

65



problem in a distributed fashion by surrogate charging, and dual optimal prices p∗

exist and x(p∗) is primal dual as well. The dual problem D(p) can be solved by using

gradient projection method [9], where the resource prices are adjusted in opposite

direction to the gradient ∇D(p).

pl(t + 1) = max{0, pl(t) − η
∂D

∂pl
(p(t))}, (3.4)

where η is the step size and ∂D
∂pl

= Cj−∑i x
j
i (p). This way, in each iteration publishers

individually determine their optimal xj
i and communicate their results to the surro-

gates. Surrogates then update their prices pj according to Eq.(3.4) and communicate

the new prices to the publishers and the cycle repeats.

Now, consider a publisher-surrogate game where a publisher selects an investment

maximizing the “net” publisher benefit. That is, the difference of the additional aver-

age benefit generated from using surrogates and the cost of using them is maximized.

Let T be the duration of time a publisher can rent the caching space from a surrogate.

Then for a given set of surrogate prices p the publisher optimization problem can be

given as,

max
{xj

i },Bi

Ui(xi) −
∑

j xj
ipj

T
(3.5)

subject to
∑
j

xj
ipj ≤ Bi.

It is easy to see that the solution to this problem is obtained when the constraint

is active i.e. satisfied with an equality. The solution to the optimization problem

described in Eq. (3.5) is

xj
i =

(
βj

i (1 − αi)
pj/T

)1/αi

, (3.6)

66



Bi =
∑
j

(
βj

i (1 − αi)
pj/T

)1/αi

pj. (3.7)

Similar to the case where the publishers have fixed investments, let rj(pj) denote

the total revenue generated by the surrogate j when it sets a price pj. One can

easily show that since ∂rj

∂pj
=
∑

i (βj
i (1 − αi)T )1/αip

−1/αi

j < 0 when
∑

i x
j
i (pj) ≤ Cj, the

optimal surrogate pricing strategy is the one that results in full utilization of the cache

resources. Thus, Theorem 1 still applies and the solution of this surrogate-publisher

game has an equilibrium.

It is easy to see that the dual system optimization problem D(p) is the same as

our market interpretation. The two solution methods should give the same result as

long as the investment for each server Bi is sufficiently large. This is due to the fact

that the best reply function in the publisher-surrogate game requires the demand to

be equal to the supply. However, Bi is usually a decision variable. Notice that a

server may be individually better off by investing less than the amount dictated by

the system optimum solution. Thus, a system optimum solution can only be achieved

by the distributed publisher-surrogate game by enforcing the publishers to pay the

charges associated with the system optimum solution.

Without such enforcement, we encounter a different optimization problem where

the investment amount is also a design parameter. In the resulting non-cooperative

game, publishers select their investment amounts to maximize their profits. We devel-

oped a suboptimal investment strategy for the publishers by assuming that the change

in the equilibrium prices is small when the change in the investments is small. For a

given investment Bi, the optimal cache allocation is given by xij(Bi) =
β2

ij/p2
j∑

k
β2

ik
/pk

Bi.

Assume that {pj} are the set of prices at the equilibrium. As for the key assumption of
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our derivation, we assume that for a small change in investment amounts, the change

in the equilibrium prices is small. Specifically, in the vicinity of the set of investment

amounts Bi,
∑

k β2
ik/pk can be considered as constant. This assumption is verified

through numerical experiments. Assuming that this condition is satisfied, the optimal

investment amount maximizing the net benefit is calculated. Let γij =
β2

ij/p2
j∑

k
β2

ik
/pk

, and

Ui =
√

Bi. Then it turns out that the optimal publisher investment is the solution to

the following nonlinear equations:

1/T − 1/2Ui

∑
j

βijγ
3/2
ij + 1/2U3

i

∑
j

βijγij

Cj
= 0, (3.8)

and
∑

i γijBi = Cj ,∀j. Further details can be found in appendix B. The performance

of this method is evaluated numerically and the results are given in Section 3.7.

3.6 An Optimization-based Resource Pricing

Policy

The results given in the previous sections suggest that we may use a price-directed

market-based distributed algorithm for solving the two-stage publisher-surrogate cache

resource allocation problem. We consider the following algorithm for this purpose:

Resource Allocation Algorithm

1. Surrogates announce a set of initial prices p(0) = (p(0)
1 , p

(0)
2 , . . . , p

(0)
J ).

2. At iteration k, each publisher i calculates its optimal cache demand for surrogate

j, xj
i

(k)
as given in Lemma 1. Forward these demands to the surrogates.

3. At iteration k, each surrogate j updates its price according to the publisher

68



demands.

p
(k+1)
j = max{ε, p(k)

j + γ(xj(p(k)) − Cj)},

where xj =
∑

j xj
i and γ is the step size. Let ε > 0 be a sufficiently small constant

preventing prices to approach zero. Thus, if the total demand
∑

i x
j
i

(k)
is greater

than the cache capacity Cj , then the new price p
(k+1)
j is increased, otherwise it

is decreased.

Announce the new prices p(k) to the publishers.

In this model, the system operates as follows: an initial set of prices is announced

to the publishers. The publishers determine their resource (cache) demands according

to these prices as well as the request rates, and the observed delays from the surrogates.

The publishers request these resources from the surrogates. Prices are then iteratively

changed to accommodate the demands for resources until the total demand equals to

the total amount of resources available.

The idea of using the optimality conditions to develop algorithms that solve an

optimization problem is not new. For example Kelly et al. [48], Yaiche et al. [85]

and Low et al. [62] have used this approach as well. These papers considered the

optimal flow control in broadband networks. While Kelly proposed a continuous time

algorithm in [48], Yaiche et al. and Low suggested discrete time algorithms. In each

case the algorithms have different properties associated with the optimization problem

they are designed for.

We next show that our algorithm indeed converges to the Nash equilibrium solu-

tion. Let V be a real valued function defined on RJ as follows:

V (p) =
∑
j

(pj − p̂j)2/γ, (3.9)
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where p̂j is the set of equilibrium prices satisfying xj(p̂j) = Cj. We consider V as a

candidate Lyapunov function associated with the subsequence {p(k)}. Notice that V

is convex, bounded and differentiable.

Theorem 4 Let {p(k)} be a sequence generated by the above algorithm for an arbitrary

initial value p(0) ∈ RJ and 0 < γ < 1. Then {p(k)} converges to {αp̂}, α ∈ R.

Proof Define Ej(p(k)) = xj(p(k))− Cj. We know that ∂V
∂pj

= 2/γ(pj − p̂j). It easy to

see that ∇V is Lipschitz continuous, that is:

‖∇V (p) −∇V (q)‖ ≤ L‖p − q‖,

for L = 1. Thus, by the descent lemma [8, Appendix A.24], we have the following:

V (p(k+1)) ≤ V (p(k)) + γE(p(k))∇V (p(k)) + ‖γE(p)‖2

= V (p(k)) + 2
∑
j

(p(k)
j − p̂j)Ej(p(k)) + γ2

∑
j

E2
j (p(k))

= V (p(k)) +
∑
j

[
2(p(k)

j − p̂j) + γ2Ej(p(k))
]
Ej(p(k)) (3.10)

Notice that from the definition of the algorithm, the following is true:

p
(k+1)
j − p

(k)
j = γEj(p(k)), (3.11)

for p
(k+1)
j > ε. Consider the following two cases:

• p
(k)
j ≤ p̂j

For this case from Lemma 2 we know that Ej > 0. By definition of the algorithm

p
(k)
j ≤ p

(k+1)
j ≤ p̂j . Then from Eq.(3.11),

p
(k)
j − p̂j ≤ p

(k)
j − p

(k+1)
j

= −γEj(p(k)).
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Now, consider the second term on the right hand side of Eq.(3.10) and the above

result,

2(p(k)
j − p̂j) + γ2Ej(p(k)) ≤ (p(k)

j − p̂j) − γEj(p(k)) + γ2Ej(p(k))

= (p(k)
j − p̂j) − γ(1 − γ)Ej(p(k))

≤ p
(k)
j − p̂j,

where the last inequality follows from the assumption that 0 < γ < 1. Thus,

V (p(k+1)) ≤ V (p(k)) +
∑
j

(p(k)
j − p̂j)Ej(p(k)),

and since the second term on the right hand side of above inequality is negative,

V (p(k+1)) ≤ V (p(k)).

• p
(k)
j > p̂j

For this case from Lemma 2 we know that Ej > 0. By definition of the algorithm

p
(k)
j ≥ p

(k+1)
j ≥ p̂j . Then from Eq.(3.11),

p
(k)
j − p̂j ≥ p

(k+1)
j − p̂j

= −γEj(p(k)).

Similar to the previous case, consider the second term on the right hand side of

Eq.(3.10) and the above result,

2(p(k)
j − p̂j) + γ2Ej(p(k)) ≥ (p(k)

j − p̂j) − (1 − γ)(p(k)
j − p̂j)

≥ p
(k)
j − p̂j ,
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where the last inequality follows from the assumption that 0 < γ < 1. Thus,

V (p(k+1)) ≤ V (p(k)) +
∑
j

(p(k)
j − p̂j)Ej(p(k)),

since Ej(p(k)) < 0. The second term on the right hand side is negative, which

leads to V (p(k+1)) ≤ V (p(k)).

Given that V (p(k+1)) ≤ V (p(k)) for all k, the level set {p ∈ RJ |V (p) ≤ V (p0)}

is compact. Therefore {p(k)} is bounded, and it has at least one limit point. The

subsequence {p(k)} converges to the stationary point of V (i.e. ∇V (p) = 0) since

∇V is continuous and limk→∞∇V (p(k)) = 0. However, notice that there are multi-

ple stationary points, since xj
i (p) is a homogeneous function of first degree and thus

Ej(αp) = 0, j = 1, 2, . . . , J for α ∈ R.

3.7 Numerical Analysis

We compare the outcome of our algorithm with current caching systems that store

the most popular data in their cache. We model the current system for our purposes

as follows: surrogate j allocates

λ
j
i∑

k
λk

i∑
k

λ
j
k∑
l

λl
k

portion of the caching space to publisher

i. Notice that, in fact this algorithm is better than the current implementation, since

it considers the importance of a particular surrogate for a publisher. That is, if the

requests of publisher i are arriving mainly from the network serviced by the surrogate

j, surrogate j gives more caching space to publisher i than the rest of publishers.

We compare the performance of the game-theoretical and conventional caching
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algorithms according to the total publisher revenues. We again consider the two-

publisher and three-surrogate system as illustrated in Figure 3.1. We compare the

performances of two methods when the skewness of the system is increased. Specifi-

cally, we consider the case when one of the publishers receives more benefit from one of

the surrogates while the other publisher receives more benefit from another surrogate.

We expect each of the methods to find the appropriate allocation that maximizes the

publisher benefits.

Unlike the previous studies, which were interested in the cache hit/miss ratio,

we consider the total publisher benefit as the relevant comparison criterion. Notice

that when the required quality of service is not satisfied, users stop browsing the web

page, which leads to lower revenues for the publishers. In this work, we assumed that

different publishers have different contents with varying levels of QoS and their benefit

of delivering a content to a user is also different, and the objective of each publisher

is to maximize its revenue.

In this analysis we assume that the total investment of each publisher and the cache

sizes of all surrogates are the same. Let ζj
i = wi(dij)/χ1−αi

i . Notice that βj
i = λj

i ζ
j
i .

Figure 3.8 depicts the improvement of game-theoretic algorithm over the conventional

caching solution. In this figure we compare the two algorithms for varying request

arrival rates. When the request arrival rates are equal to 1, then the solution given by

the game-theoretical algorithm and the conventional algorithm is the same. However,

as the arrival rates become smaller or greater than 1, we observe that game-theoretical

algorithm gives better performance.

In Figures 3.9 and 3.10 we consider the performance improvement when the arrival

rates are fixed, but ζ is varied. From the definition of ζj
i and assuming that wi(·) is

the same for all publishers, one can note that by varying ζj
i , basically we change the
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delay between surrogate j and publisher i. As illustrated in Figure 3.9, as the skewness

of the system increases the performance of the game-theoretic algorithm gets better

compared to the conventional algorithm. However, this improvement is larger for low

values of ζj
i . This means that the surrogate does not have to be very close to the users.

We may place surrogates at locations at somewhat greater distance and thus service

more users for better efficiency.

Figure 3.10 depicts the performance when the publisher request characteristic is

varied, i.e. when αi parameter in the Zipf distribution of publisher i is varied. We

observe that for larger values of αi the improvement of the game-theoretic algorithm

is smaller. This is reasonable considering that when αi = 1, the investment of a

publisher is independent of the prices. In that case, the game-theoretic algorithm’s

solution reduces to the conventional algorithm’s solution.

In Figure 3.11, we compare the performance of outcome of the game discussed

in section 3.5. In Figure 3.11, Alg.1 refers to the fixed investment method, where

B1 = B2 = 10, and Alg.2 refers to the optimal selection of the publisher investments

leading to the maximum total system revenue according to the discussions in section

3.5. As discussed in the previous section, we expect that the total utility achieved

by this game to be higher than the case when the investments are a priorly assigned.

Indeed, Figure 3.11 verifies this intuition. It is interesting to note however that,

while the system optimum investment amounts maximize the total system utility, they

lead to lower utilities for some of the publishers compared to their utilities under the

current caching methods. Furthermore, the investment amounts leading to the system

optimum are usually very high, reducing any benefit received from the use of the

caches in the first place. A short-sighted objective of maximizing total system utility

thus seems non-implementable, when the system is formed by selfish non-cooperative
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Figure 3.11: The illustration of system optimum solution does not increase all of the

publishers benefits. α1 = 0.1, α2 = 0.4. ζ1
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agents. We need to determine publisher investments that maximize the total system

utility as much as possible, while keeping individual publisher benefits (or profits)

higher than those under current solutions.

Thus we next consider the optimal investment strategies that maximize the pub-

lisher profits. Unfortunately, since the system is complex, we had to resort to an

approximation. In this approximation, we assume that the change in the equilibrium

prices is small when the change in the investments is small as well. We have verified

this assumption through numerical studies. Given this assumption, we determined a

sub-optimum investment strategy. The details and the derivation of our sub-optimal
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Figure 3.12: The improvements suggested by near-optimum investment strategy as

compared with fixed investments B1 = B2 = 10. α1 = α2 = 0.5. ζ1
1 = ζ3

2 = ζ.
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publisher investment strategy can be found in appendix B. Figure 3.12 depicts the

improvement in the publisher profits compared to the a priori fixed investment case,

where the fixed investment is 10. The system setup is similar to the previous numer-

ical examples, and the improvement is considered for varying gain factors. We also

depicted the reduction in the total publisher utility as compared to the optimal system

utility. The cache rental period is 100 time units.

In Figure 3.13 we plot the change in improvement if the fixed investment was

higher. In this case both publishers invest 15 units. In Figure 3.14 we show the change
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in improvement if the skewness is increased further. We assumed that the gain factor

of publisher 2 for the cache of surrogate 2 is also varied. In both of these figures, we

observe that the improvement in the publisher profits is significant when the publishers

are allowed to optimally vary their investments. Furthermore, it is interesting to note

that the aggregate publisher utilities suggested by the non-cooperative method is very

close to the system optimum. Notice that the system optimum required very high

investments, which may diminish any benefit of using a caching system. Thus, we

can say that the non-cooperative system can achieve high system efficiency without

requiring any outside intervention.

We also noticed that the improvement in the profits reduce as the gain factors

increase. The reason for this observation is that the profits of the publisher either

with the fixed investments or with the optimal investments increase as the gain factors

increase. However, for a given gain factor, the increase in the profit due to using the

optimal investment is much lower than this increase. Thus, the rate of improvement

decreases with the increase in the gain factor.

3.8 Conclusions

In this chapter, we analyzed a two-stage publisher-surrogate market-based resource

allocation system. The objective was to deliver the contents to the users as rapidly

as possible, so that users do not stop browsing the web sites. We assumed that

the publisher contents are different and require varying levels of quality of service.

When the required quality of service (e.g. latency) is not satisfied, the users start

bailing-out according to some probability distribution. In this analysis, we showed

that the publisher-surrogate game that models the system leads to an equilibrium.

Under certain conditions we showed that this equilibrium is the optimal solution for
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the non-cooperative resource allocation problem. The importance of our model is that

it closely resembles the real-world situation, where the servers and users does not

collaborate to achieve the system optimal solution. Instead every agent in the system

tries to maximize their benefits without consideration of others. We also showed that

the competition among surrogates leads to a solution that is better than the solution

provided by conventional caching methods. Furthermore, we obtained the surrogate

pricing strategies that maximize the total publisher benefit, which we consider as

the system optimum. We noticed that the non-cooperative publisher-surrogate game,

where the publishers also vary their investment to maximize their profits, leads to an

equilibrium solution which is not far from system optimum and improves the publisher

profits significantly. This result strongly suggests that the non-cooperative structure

of the Internet is sufficient for efficient use of the network resources.
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Chapter 4

User Request Routing

In this chapter, we focus on request-routing sub-system. We assume that the publish-

ers disseminate their content to appropriate surrogates in one or more CDNs with the

coordination of distribution sub-systems. CDNs peer with each other so that a client

request may be diverted to the surrogate of another CDN, whenever it is optimal to

do so. Peered CDNs keep information about the content and the network state of

their own and each others’ surrogates. We assume that the RRS has the informa-

tion on the content and the network state of every surrogate in-house or peered (by

bloom-filters, delta updates, periodical polling, etc). According to this information,

the client requests are directed to the most appropriate surrogate. CDNs offer the

publishers a SLA, which specifies the average delay observed by the clients accessing

publishers content. The propagation and processing delay between the surrogate and

client network is known by the RRS. Surrogates charge a fee for each client request

served. This price can be considered as the shadow-price reflecting the current load

on the servers. The objective of the RRS is to keep the average delay experienced by

the clients of a publisher below a negotiated value while minimizing the total service

cost.

Previous work in this field include the work-in-progress specifying the architecture
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and issues in Content Distribution Inter-networking by the Internet Working Groups

and the Content Alliance [25], [34], [68], [2], [6] and [14]. Recently Biliris et al. [11]

considered the issues in request routing in peered CDNs. In their work, the authors

considered methods for forwarding the client requests to the CDNs/surrogates. They

suggested a DNS re-routing based scheme that they call Intelligent DNS (IDNS).

IDNS dynamically updates the routing table for DNS engine in real-time according

to the observed network state. The routing decision tries to balance the load in the

surrogates. However, the authors did not specify an optimal load balancing method.

Our work focuses on this routing decision and we develop a dynamical algorithm that

is both scalable and robust and that minimizes a measure of service cost.

We also discuss the surrogate-publisher routing game. In the previous chapter, we

assumed that the routing decisions are given and the publishers determine their dis-

semination strategy depending on the surrogate caching space prices. In this chapter,

we first investigate the game where the publishers (or, on their behalf, the CDNs)

determine the routing of the user requests to the surrogates given the publisher dis-

semination strategy. We show that such a game has an equilibrium, but the existence

of this equilibrium depends on the structure of the game. Specifically, we show that an

equilibrium exists, if the publishers auction for the bandwidth resources (i.e. routing)

instead of requesting a maximum delay bound. Later, we combine the dissemination

and routing games and show that this combined game has an equilibrium.

The chapter is organized as follows: in the next section we develop the model for the

request-routing sub-system and define the minimum cost delay-constrained application

level routing problem. This approach differs from the previous section, where the

publishers determine their SLA and optimize their resource allocations according to

the cost of the service. We note that a different perspective to the problem appears,
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when the users request a SLA and the CDN tries to deliver this SLA at a minimum

cost to the publishers. They may deliver the SLA at a minimum cost to the publisher

to prevent the competing CDNs taking away the business of the publishers. In section

4.2, we give a method to determine a tight lower bound to the problem, and define

a near-optimal routing algorithm. In section 4.3, we evaluate the performance of this

algorithm as compared to the lower bound. Section 4.4 gives a definition of the routing

game in the same line of the previous chapter. This section discusses the existence of

equilibrium of the routing game, while the following section investigates the existence

of equilibrium for the combined dissemination and routing game.

4.1 System Model and Problem Formulation

A publisher and CDN makes a Service Level Agreement (SLA), which specifies the

maximum average delay observed by the users accessing the publisher’s content. The

objective of the RRS is to minimize the total service cost (and thus to maximize the

profit), while satisfying all the publishers’ SLAs.

This is a very practical problem that has to be solved by the CDNs in order

to maximize their profits, while honoring their contracts to the publishers. We may

identify several cases, where the service costs appear: it may be the case that the CDN

has no surrogates of its own and only acts as an intermediary between the publishers

and the ISPs with caching space to rent. Then, the surrogate service fee refers to

a real monetary cost for the CDN. Even though the CDN has it own surrogates, it

may charge a fee to those user requests re-directed from the peer CDNs. Moreover,

the number of user requests that a surrogate can serve simultaneously is limited and

the surrogates may employ nonlinear pricing schemes to avoid congestion. Nonlinear

pricing schemes have attracted much attention recently especially in the network flow
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control for their implicit property of admission control [65], [79], [77]. Nonlinear pricing

relies on the fact that the admission of a new user would reduce the available resources

for the users that are already being serviced. This reduction in available resources per

user then relates to an increase in the average service delay. The cost of the total

increased service delay is reflected by the shadow price that a new user has to pay to

get service given the current server load. Not all users value the resources the same.

Thus, the users that does not want to pay the higher costs associated with the use

of resources leave and the congestion is relieved. In our work, we minimize the total

service cost given a source of surrogate fees. Such an objective is required by the

CDNs to maximize their profits.

Figure 4.1 summarizes the operation of the system. We may consider the RRS as

an enhanced version of a DNS server for our purposes. Users are located at mutually

exclusive networks, which may correspond to the networks of the different local ISP.

User requests are first directed to the corresponding CDN’s request-routing subsystem

via DNS resolution. Each CDN may serve one or more of the user networks. Usually

different CDNs do not serve the same user network, unless they are peer CDNs. The

RRS determines a suitable surrogate to serve the user request and informs the user

of the location of this surrogate. For our purposes, we may envision in-house and

peered surrogates as equivalent, as long as the RRS have sufficient information on

peered surrogates such as their service price and distance to the client networks. The

user having received the identification of the surrogate, requests the object from that

surrogate.

We assume that the SLA is specified as the average delay experienced by the

clients accessing a publisher. Let Dj denote the average delay bound requested by the

publisher j. The content of the publisher consists of I units, which are distributed
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Figure 4.1: RRS Architecture.

among the set of Sij = {s0, s1, . . .} surrogate servers. Let s0 be the origin server for

the requested object and contains all of the content. Notice that the number of objects

in the Internet is quite high and it is not usually feasible to store the information of

all the surrogates that store each of the objects. Instead, the RRS stores a summary

of the surrogate cache content as suggested by such previous works as [26] and [73].

Thus, there is a possibility that some of the requested objects cannot be found in the

surrogates. In that case, the surrogate requests the object from the origin server on

behalf of the user. We consider the propagation and transmission delays together.

When a user request from network n is routed to the surrogate s, the average retrieval

delay experienced by the user is dn
s , which includes both average propagation and

transmission delays, including the delay required to fetch the object from the origin

server when the object is not found in the surrogate cache. Assume that each content

unit is of equal size. The request arrival rate for content i in publisher j from client
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network n is given by λn
ij .The unit service price of surrogate s is ps. Let xn

ij(s) = 0 or 1

be the decision variable denoting the surrogate server serving the client requests from

network n for the object i in publisher j.

The objective of the CDN is to minimize the total cost of service of all user requests,

while satisfying the individual average delay bounds for the publishers. The following

optimization problem (P ) describes this objective:

(P ) min
x

∑
i

∑
j

∑
s∈Sij

∑
n

psλ
n
ijx

n
ij(s) (4.1)

s.t.
∑

i

∑
s∈Sij

∑
n

λn
ijd

n
s xn

ij(s) ≤ Dj, ∀j

∑
s∈Sij

xn
ij(s) = 1, ∀n, i, j.

This problem has close affinity to the delay-constrained routing problem investi-

gated in the context of ATM networks, e.g. [87] and [74]. In the delay-constrained

routing problem, clients are connected with each other over a multi-hop path. Each

hop traversed in the network creates a delay and it is required that each connec-

tion’s end-to-end delay is lower than a negotiated value. In our work, we consider

application-level routing, so the client and the destination is always at single “hop1”

distance. Contrary to the delay-constrained routing in ATM networks, the user con-

nections are coupled in the sense that overall average delay experienced by the clients

of a publisher should be lower than a negotiated delay. (P ) is an integer program-

ming problem and it was shown that the similar delay-constrained routing problem is

NP-complete [17].

1Notice that user packets may traverse multiple network elements/links to reach the server.
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4.2 Lower Bound and a Near-Optimal Routing Algorithm

We determine a tight lower bound to (P ) by solving the dual problem. We dualize

the problem (P ) with respect to the first constraint. Let αj ≥ 0 be the Lagrangian

constant.

(D) ZD(αj) = min
xn

ij



∑

i

∑
j

∑
s∈Sij

∑
n

psλ
n
ijx

n
ij(s)

+
∑
j

αj

∑
i

∑
s∈Sij

∑
n

λn
ijd

n
s xn

ij(s) − αjDj


 (4.2)

s.t.
∑

s∈S−ij

xn
ij(s) = 1, ∀n, i, j.

It is easy to see that the routing decision given by the solution to ZD(αj) is,

xn
ij(s) =




1 if s = arg mins∈Sij{ps + αjd
n
s },

0 otherwise.
(4.3)

By weak duality we can determine a lower bound for (P ) as the solution of maxαj ZD(αj),

since ZD(αj) is non-differentiable, we have to resort to one of the approximation meth-

ods available in the literature. We consider the sub-gradient method (see e.g. [8] for de-

tails) to solve this optimization problem. The sub-gradient is gk
j =

∑
i

∑
n

∑
s∈Sij

λn
ijd

n
s xn,k

ij (s)−

Dj . The iterations are αk+1
j = αk

j + skgk
j , where αk

j ≥ 0 and sk is the step size. The

new iterate may not improve the dual cost for all values of the step size; however, if

the step size is small enough, the distance of the current iterate to the optimal solution

set is reduced.

We can determine a simple feasible solution to (P ) as follows: Let dj
min = Dj∑

i

∑
n

λn
ij

.

If xn
ij(s

′) = 1 for s′ such that dn
s′ ≤ dj

min, then the delay constraint is satisfied. Let
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S′(i, j, n) = {s ∈ Sij : dn
s ≤ dj

min} denote the set of surrogates satisfying this property

for the corresponding object for the users in network n. Furthermore, if we choose s′′

as s′′ = arg min{ps : s ∈ S′(i, j, n)}, that is for each client network and object such

that ps′′ corresponds to the minimum price offered by the surrogates satisfying the

delay constraint, then we get an upper bound for problem (P ).

Notice that due to the strictness of the constraint dn
s′ ≤ dj

min, the gap between

the delay bound and the total average delay under this scheme is quite large. Our

near-optimal algorithm relies on reducing this gap intelligently, while reducing the

total cost as much as possible. We first give our algorithm in detail:

• For each publisher j,

– Determine

S′(i, j, n) = {s ∈ Sij : d(s, n) ≤ dj
min}

s(i, j, n) = arg min{ps : s ∈ S′(i, j, n)}

S(i, n) = {s(i, j, n) : ∀i, n}

– Determine wn(k, l) = pl−pk
dn

k
−dn

l
, ∀n and ∀k, l ∈ ∪i,jSij.

– While
∑

i

∑
n λn

ijd
n
s(i,j,n) ≤ Dj update the routing decisions as (i∗, n∗, l∗) =

arg maxl∈Sij ,i,n{wn(s, l) : s ∈ S(i, n), ps − pl > 0}, s(i∗, j, n∗) = l∗.

In this algorithm, initially starting from the routing scheme resulting in the upper

bound, we reduce the total cost iteratively by reducing the slack in the delay con-

straint. While increasing the total average delay to the delay bound, we choose the

new surrogates that reduce the cost the most with minimum increase in the associated

delay. This is performed by calculating for each user network the “benefit coefficient,”

wn(k, l), which corresponds to the reduction in total cost per unit increase in delay
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by switching from the current surrogate assignment to a new one. In a greedy fashion

we re-assign the user networks maximizing this coefficient while still maintaining the

delay bound.

4.3 Numerical Analysis

Our objective in these numerical studies is to evaluate the performance of the proposed

routing algorithms compared to the lower bound for different network conditions.

First, we determine the lower bound by the sub-gradient method. The maximum

number of iterations for the sub-gradient solution to the dual problem is 1000. The

step size is sk = δ
Zup−ZD(αk

j )

||gk||2 , where Zup is the total cost corresponding to the upper

bound and δ is a constant. We initialize δ to be 2, but it is halved of its value when

the objective value of the dual problem does not improve for 30 iterations.

The set-up corresponding to Figure 4.2 assumes that there are 10 publishers with

10 distinct objects. There are 10 client networks and 10 different surrogates. All

surrogates contain all the objects published. The distance between a surrogate and a

client network is given by dn
s = |s − n| + 1, where s, n = 1, 2, . . . , 10 are the indices of

the corresponding surrogate and network respectively. The cost of service is given by

ps = |5− s|+ 1. This choice of distance matrix and service costs ensure heterogeneity

in the network. The client requests for individual objects in the publishers content

is distributed according to Zipf distribution with skewness parameter β = 0.52. As

shown in recent studies, Zipf distribution closely approximates the Web traffic [13].

The arrival rate for client requests to each publisher is assumed to be 1 request per

second. The delay bound for each publisher is assumed to be the same. From Figure

2Probability that ith object is requested is, Pr(i) = c/iβ , where c is the normalization constant.
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Figure 4.2: Total cost for uniform delay bound.
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Figure 4.3: Total cost for non-uniform delay bound.

4.2 we observe that our algorithm can perform near-optimally compared to the lower

bound. Furthermore, we observe that as we increase the number of objects published,

the performance gets even better.

In Figure 4.3, we plot the effect of non-uniform delay bounds. We assume that

users accessing the content of the publisher j should experience total average delay

less than (1+j/2)∗d, where d is varied in the simulation. We observe that our routing

algorithm still provides performance close to the lower bound. We notice that when

d > 22, our lower bound is no longer tight. From this point onwards the lower bound

begins to correspond to un-realizable routing schemes. Another lower bound can be

determined by routing all requests to the surrogate with the least price. In most cases

this lower bound is not tight, but we may consider it when the lower bound given by
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Figure 4.4: Total cost for non-uniform delay bound and non-uniform arrival rates.

the dual problem is no longer realizable.

In Figure 4.4, we show the effects of non-uniform arrival rates. While everything

else is kept the same as in the previous analysis, we assume that the arrival rates are

given as λn
i,j = (j + n)Pr(i). Our proposed algorithm has a performance close to the

lower bound.

4.4 Publisher-Surrogate Routing Game

While the RRS determines the best routing strategy minimizing the total cost, each

surrogate updates its price ps according to the prices of the other surrogates and the

routing decision of the RRS. An important question is whether such a system has an

equilibrium or not.
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First we observe that when each publisher has a high number of objects, we may

consider the total request arrival rate from network n to surrogate s for those objects

in publisher j λn
j (s) =

∑
i λn

i,jx
n
i,j(s) as a continuous function, since λn

i,j << λn
j (s)

for most of the objects. As I → ∞, there always exists a routing strategy xn
i,j(s)

that gives the desired λn
j (s). Thus, as I → ∞, the optimization problem (P ) can be

approximated by the following linear programming problem (P ′).

(P ′) min
λn

j (s)

∑
j

∑
s∈∪iSij

∑
n

psλ
n
j (s) (4.4)

s.t.
∑

s∈∪iSij

∑
n

λn
j (s)dtot

sn (j) ≤ Dj , ∀j

∑
s∈∪iSij

λn
j (s) =

∑
i

λn
i,j, ∀n, j.

Let dtot
sn (j) denote the average delay experienced by the user requests from network n

for the objects in the publisher j, when those requests are routed to surrogate s. Notice

that dtot
sn (j) =

∑
i d

n
s xn

i,j(s). dtot
sn (j) involves the average propagation delay between the

surrogate and the network, the transmission delay associated with the surrogate and

when the requested object is not found in the surrogate the average propagation delay

to the publisher.

As discussed in the previous chapter for the allocation of caching resources, the

surrogates still have the objective of maximizing their revenues, but this time by

selling/renting their transmission resources. Notice that the surrogate optimization

problem for the allocation of transmission resources is almost the same as the one

for caching resources, and thus the surrogate revenue is similarly given as rs(ps) =

min{Ctran
s ,

∑
i

∑
j

∑
n λn

j (s)}ps, where λn
j (s) is the solution to (P ′). If rs(ps) is con-

tinuous and concave, then it is known from Lemma 1 that the equilibrium exists.
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In order for rs(ps) to be continuous, λn
j (s) must be continuous with respect to

ps. In the literature, the conditions for the continuity of the solution of a linear

program, when the objective and the constraint set is changing linearly with respect

to a parameter are rarely considered. Most recently, Korilis and Lazar [53] considered

the continuity of the solution to a linear program in the context of network flow control.

In this work, the users determine their rate by adjusting their window size according to

the decisions of the users in the system. The users are assumed to be non-cooperative.

The authors investigate the conditions under which an equilibrium exists. They show

that the best-reply function is the solution to a linear program which depends on

the window size of other users. As discussed in the previous chapter, an equilibrium

exists when the best-reply function is continuous. In a more general context, sufficient

conditions for the continuity of the set of solutions to a parameterized maximization

problem are given by the “maximum theorem,” due to Berge [7], which is one of the

fundamental theorems employed in mathematical economics.

Theorem 5 Berge’s maximum theorem [7]

Let X,Y be the subsets of two finite dimensional Euclidean spaces. Let C : X → Y

be a compact-valued correspondence and f : X × Y → R be a continuous function.

Γ : X → Y , Γ(x) = arg maxy∈C(x) f(x, y) is the solution to the optimization problem.

Also, define F : X → R, F (x) = maxy∈C(x) f(x, y). Then, if C is continuous at x ∈ X,

then Γ is closed and upper semi-continuous at x, and F is continuous at x.

From Berge’s maximum theorem, it is easy to see that the total cost to (P ′) is

continuous and λn
j (s) is upper semi-continuous. However, careful consideration of (P ′)

hints that λn
j (s) is not usually lower semi-continuous. Thus, rs(ps) is not continuous

either. In such a case, the equilibrium does not exist. Korilis and Lazar has developed
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another condition for the continuity of the linear programs.

Theorem 6 Korilis-Lazar Continuity Principle [53]

Consider the following linear program continuously parameterized by x ∈ X: maxy{c(x)y |A(x)y =

b(x), y ≥ 0}. If there exists a compact set of solutions, W ⊂ Rk, that is common for all

dual programs with parameter x, then the solution to the linear program is continuous.

The dual program of (P ′) is

(D′) max
πj ,µjn

∑
j

πjDj +
∑
j

∑
n

µjn

∑
i

λn
i,j (4.5)

s.t. dtot
sn (j)πj + µjn ≤ ps,∀j, n, s.

A straightforward observation of the dual program suggests that the set of solutions

to dual program does not have a common subset for all ps ∈ R+, since the optimal

solution to the dual program increases with increasing ps. The abovementioned two

theorems suggest that the linear program (P ′) is usually not continuous, so there is

no equilibrium for the routing game.

Thus, we see that if the game is a solution to the linear program minimizing the

total cost subject to a delay constraint, an equilibrium usually does not exit. However,

an equilibrium exists when the publishers and surrogates play a game in which each

try to maximize its own benefit similar to the distribution sub-problem discussed in

the previous chapter. Consider (P ′′
j ) as follows:

(P ′′
j ) min

λ

∑
n

∑
s

(λn
j (s))1−αdtot

sn (j) (4.6)

s.t.
∑
n

∑
s

psλ
n
j (s) ≤ Br

j ,

where Br
j is the publisher j’s total investment in the routing services (i.e. bandwidth

allocation on the surrogates) and α → 0 is present to make (P ′′
j ) similar to the dis-
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tribution sub-problem and it allows us to use the already proven results. Notice that

as α → 0, the solution of (P ′′
j ) will not be affected by this factor. (P ′′

j ) minimizes the

total average delay for each publisher j, given that the total cost of service does not

exceed the publisher’s willingness to pay. (P ′) and (P ′′
j ) are analogous problems. In

the first case, the publisher (or, on behalf, of the publisher the RRS) minimizes the

cost subject to the condition that the average delay does not exceed the delay bound,

while in the second case, the publisher minimizes its delay bound subject to the cost

of service does not exceed its investment. Furthermore, in the first case, the publisher

determines its delay bound so that its net benefit is maximized, and in the second

case, the publisher selects its investment amount with the same objective in mind.

We have shown in the previous chapter that the game defined by (P ′′) and the

surrogate revenue maximization problem has an equilibrium due to Theorem 1. The

optimal surrogate pricing strategy is the one that completely allocates the available

bandwidth capacity among the users.

The main reason (P ) does not lead to an equilibrium, but (P ′′
j ) does, is that in (P ′′

j )

the surrogates have the information about the publishers’ willingness to pay. Thus,

they cannot increase the prices unboundedly. By stating their investment amount,

the publishers’ are essentially participating in an auction. The surrogates set prices

according to the outcome of this auction. Without the publisher investment amounts

or as in an auction bids, the surrogates are unaware how willing the publishers are for

achieving their requested average delay bound. Without such knowledge it is optimal

for surrogates to charge arbitrarily large prices knowing that publishers’ must purchase

services to satisfy their delay requirements. Then, with such high prices the publishers

cannot afford to get service from the surrogates and the demand goes to zero. When

the demand goes to zero, the surrogates reduce their prices to arbitrarily small values
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to compete with the origin server, and this process repeats itself. Obviously, such a

system does not lead to an equilibrium.

However, the results that we derived in the previous sections are still relevant,

since as we will discuss in the coming section, it is usually the case that there is a

general equilibrium. At the general equilibrium the participants individually have

negligible effect on the outcome of the system, since there are many publishers and

surrogates. When there is a general equilibrium, auctions are not needed to allocate

the resources. The CDN has the sufficient knowledge of the network state to offer

a tariff to the publishers with respect to several parameters including the requested

delay bound, arrival rates, etc. Thus, the publishers can select a maximum delay

bound maximizing their benefit, and the CDN can route the user requests accordingly

with the objective of minimizing the total cost.

4.5 Combined Dissemination-Routing Game

In this section, we discuss the existence of the equilibrium for the combined dissemination-

routing game. First, we consider the case where each agent (publisher or surrogate)

can affect the outcome of the game. This corresponds to the partial equilibrium in

microeconomics. Later, we discuss the existence of the general equilibrium, when there

are many agents with infinitesimal effects.

4.5.1 Partial Equilibrium

In this chapter we showed that the surrogate-routing game has an equilibrium. We

also showed in the previous chapter that the publisher-surrogate dissemination game

has an equilibrium. These two games are inter-related. The optimal cache allocations

depend on the arrival rates to the surrogates. Meanwhile, the optimal arrival rates
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to the surrogates depend on the delay associated with each surrogate, which in turn

depends on the cache hit probability and thus the cache allocation. We now determine

some equilibrium results for this combined game.

Notice that the combined caching and routing multi-criteria optimization problem

is given as,

max
{xj ,λj}

Uj(xj, λj) (4.7)

∑
j

xs
j ≤ Ccache

s , ∀s

∑
j

λs
j ≤ CBW

s , ∀s,

where xs
j and λs

j are the caching and transmission resources allocated to publisher j

at the surrogate s respectively and Ccache
s and CBW

s are the caching and bandwidth

capacities of surrogate s. This optimization problem is equivalent to

max
{xj}j


max

{λj}j


Uj(xj, λj) |

∑
j

λs
j ≤ CBW

s


 |∑

j

xs
j ≤ Ccache

s


 . (4.8)

In the non-cooperative game each server solves the following optimization problem,

max
Bcache

j ,BBW
j

{
max

xj

{
max

λj

[
Uj(xj , λj) −

∑
s

λs
jp

BW
s |

∑
s

λs
jp

BW
s ≤ BBW

j

]

−
∑
s

λs
jp

cache
s |

∑
s

λs
jp

cache
s ≤ Bcache

j

}}
. (4.9)

Notice that apart from the selection of the investment amounts in the caching and

transmission resources, Bcache
j and BBW

j respectively, the optimization problem in

Eq. (4.9) is the dual optimization problem of Eq. (4.8), where pcache
s and pBW

s can
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be considered as the Lagrangian constants (or shadow prices) corresponding to the

constraints in Eq. (4.7). Thus, similar to the discussion in Chapter 3 if the investments

are sufficiently large and if the corresponding game has an unique equilibrium, then

the game theoretical solution is equal to the system optimum.

We now show that this combined game has an equilibrium for a given set of invest-

ments by showing that the corresponding best reply function is continuous. Notice

that the output of the routing game is βs
j while the output of the distribution game is

xs
j . From the previous chapter we know the best cache dissemination strategy given

the gain factor βs
j and the set of prices pcache is,

xs
j =

(
βs

j

pcache
s

)1/αj

Bcache
j

∑S
k=1 pcache

k

(
βk

j

pcache
k

)1/αj
,

where βs
j = λs

jwj(d
upper
js )/χ1−αj

j , Bcache
j is the total investment of the publisher j

in caching and dupper
js is the average delay observed between the publisher and the

surrogate (notice that links among the publishers and the surrogates form the upper

layer in this hierarchy.) For our purposes wj(·) is a concave function referring to the

benefit received from reducing the average delay by the corresponding amount. For

simplicity, we assume for the following discussion that wj(d
upper
js ) = κjd

upper
js .

The routing sub-problem solves the optimization problem (P ′′
j ) as discussed in the

previous sections. The solution for (P ′′
j ) is

λn
j (s) =

(
dtot

sn (j)
pBW

s

)1/α BBW
j

∑
k pBW

k

(
dtot

kn
(j)

pBW
k

)1/α
. (4.10)

The delay dtot
sn (j) is the total average delay observed by the users from network n and
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routed to the surrogate s when they are interested in the objects from the publisher

j, i.e.

dtot
sn (j) = dupper

js (1 − Pr(hit)) + dlower
sn . (4.11)

Let dlower
sn correspond to the sum of transmission and propagation delays associated

with the user request originating in network n and routed to the surrogate s (notice

that the user networks and the surrogates form the lower layer in this hierarchy.)

Notice that although the transmission delay is a function of the load of the surrogate,

due to the optimality of operating at the full load we may assume that the transmission

delay equals to the full load transmission delay and is a constant. When an object from

the publisher j is requested the hit probability at surrogate s is Pr(hit)=
(

xs
j

χj

)1−αj

.

Thus, given xs
j the routing sub-problem determines a new gain factor

βs
j
′ =

∑
n

λn
j (s)dupper

js /χ
1−αj

j (4.12)

to be used by the distribution sub-problem. In fact, these two sub-problems can be

considered as a single onto function, since given a β ∈ B a new β′ ∈ B is determined.

If this function is continuous, then from the Brouwer’s Theorem it has a fixed point.

Such a fixed point constitutes the equilibrium point of the combined game. In fact it is

easy to see that βs
j
′ as given by Eqs.(4.10) and (4.12) is continuous in dtot

sn (j) for all set

of prices pBW and dtot
sn (j) is continuous for in βs

j for all pcache. Thus βs
j
′ is continuous

in βs
j and a fixed point exists. We thus proved the following theorem.

Theorem 7 The combined distribution and routing games have an equilibrium for a

given set of publisher investments Bcache and BBW .

We have performed numerical experiments to investigate the performance of this

combined game theoretical algorithm as compared to the current caching systems.
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Figure 4.5: Example network for investigating the performance of the game theoretical

allocation strategy.

We considered a simple network architecture, where there are two origin web servers

and a CDN with three surrogates. There are two local area networks from where

the user requests are generated. The duration of simulation even for such a simple

network architecture is considerable, so we did not pursue more complicated network

architectures. However, this network still gives a good idea about the improvements

in the user delays by using game theoretical allocation strategies. The network delays

among the publishers and the surrogates as well as the surrogates and the user networks

are given in the Figure 4.5.

The game theoretical algorithm works as described in this section and Section

3.7. We model the current caching systems for our purposes as follows. The user

requests are intercepted by the closest proxy (surrogate) to the user network. The

proxies allocate caching space to the server contents with respect to the popularity

of the objects and the server investments. Specifically, we assume that each proxy

cache performs Least Frequently Used (LFU) cache management algorithm, which is

weighted by the caching investments of the origin servers. If the requested object is

found in the proxy and if the proxy is not overloaded (i.e. number of user requests are
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Figure 4.6: Comparison of average delays that user requests observe when they are

served by a caching system. Publisher investments are the same.

not more than the available transmission/processing capacity of the proxy), then the

request is immediately served. Otherwise, the user request is forwarded to the origin

server. Total number of objects available in each origin server is 100, while only 10

objects can be stored in each surrogate. Each surrogate can serve at most 10 user

requests at the same time. We assume that each network on average generates much

more than 10 user requests at a time.

Following results depict the performance gains associated with the game theoretical

algorithms for different scenarios. From Figures 4.6 and 4.7 we observe the average

delay experienced by the user requests that are served by the caching infrastructure.

In these examples we assume that the investment amounts of the publishers are equal.

We observe the average latency experienced by the users for each publisher for varying

investments. We noticed that as the investment amounts change, since the caching
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Figure 4.7: Improvement in the average latency that user requests observe when a game

theoretical cache allocation strategy is used. Publisher investments are the same.

space is kept constant the total improvement remains the same.

There is considerable improvement by game theoretical CDN architecture as com-

pared to the transparent proxy based caching system. This difference stems from

several factors. First, in the current caching systems, the user request is intercepted

by the proxy. This proxy may not always be the best proxy to serve this request be-

cause of its current load. Thus, if the proxy is overloaded many of the user requests has

to be diverted to the origin servers increasing the latency. Second, the current caching

systems allocate caching space according to such simple popularity based schemes as

LRU or LFU. These algorithms do not consider the network distances of the users

and the origin servers. Although there are other cache management schemes which

attempt to alleviate this problem, still the proposed schemes are heuristics which are

usually far from optimal.
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Figure 4.8: Comparison of average delays that user requests observe when they are

served by a caching system. Publisher 1’s investment is twice the investment of pub-

lisher 2.

Figures 4.8 and 4.9 depict the performance improvements, when publisher 1 always

invests twice the amount that publisher 2 invests. Again, since the caching space is

limited, we observe that the improvement among the two schemes does not change as

the investments increase.

In Figure 4.10, we investigate the effect of the varying sizes of caching capacities

on the average delay on both the game theoretical solution and the current caching

solution. In the scenario as depicted in Figure 4.10 we assume that the size of the cache

of the second surrogate is half that of the sizes of the other two surrogates. We observe

that, as expected, the average delay decreases as the size of the cache increases, but

the improvement of game theoretical solution remains approximately constant.
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Figure 4.9: Improvement in the average latency that user requests observe when a

game theoretical cache allocation strategy is used. Publisher 1’s investment is twice

the investment of publisher 2.
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varied.

4.5.2 General Equilibrium

In the general equilibrium theory in economics, it is usually assumed that each individ-

ual agent in the system has infinitesimal effect on the overall outcome of the system.

We may use a similar assumption when considering the content delivery problem, since

in the Internet there are many publishers and surrogates and an individual publisher

or surrogate cannot usually change the current network state.

Let zcache
s (pcache) =

∑
j xs

j−Ccache
s be the excess demand function for the surrogate

s’s caching resources and let zBW
s (pBW ) =

∑
j λs

j−CBW
s be the excess demand function

for the surrogate s’s bandwidth resources.

Theorem 8 Existence of Walrasian Equilibrium [41]

A system is said to be in Walrasian equilibrium, if there exists a set of prices pcache
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and pBW such that zcache
s (pcache) ≤ 0 and zBW

s (pBW ) ≤ 0 for all s. A Walrasian

equilibrium exists if zcache( pcache) and zBW (pBW ) are continuous and satisfies pcache ·

zcache(pcache) = 0 and pBW · zBW (pBW ) = 0.

The existence condition is satisfied, when the utility functions of the publishers are

strictly increasing. Thus, by definition the combined dissemination-routing game has

a Walrasian general equilibrium.

Then, given an equilibrium state, which is determined from the previous discus-

sions, the CDN can determine a static pricing schedule and announce it to the publish-

ers. The publishers can choose their level of service quality according to their utility

and the pricing schedule. The pricing schedule consists of two parts: the dissemina-

tion cost and the bandwidth cost. The pricing function should depend on at least two

parameters: the total arrival rate and the delay bound.

The requests incoming from different networks are usually non-uniform. We inves-

tigated the effect of this non-uniformity in user request distribution on the total cost.

In the simulation leading to Figure 4.11, we assume that the current system load is

the same as the load used in the last simulation leading to Figure 4.4. The request

arrival rates for a publisher is given by the Zipf distribution with parameter β. That is,

the total arrival rate to the publisher is coming from a user network with probability

given by the Zipf probability considering the index of that network. As β increases

the non-uniformity of the arrival rates increases as well. From Figure 4.11, we see that

the total cost of servicing this publisher is relatively constant. Even if a user network

contributes higher than the other user networks in the total incoming requests, the

cost of service is comparable to the case when all user networks contribute equally in

the incoming requests. We believe that β = 1 corresponds to sufficient skewness as

observed in the Internet.
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Figure 4.11: The effect of non-uniformity of user distribution in total cost.
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Figure 4.12: The pricing schedule.

From this observation, we can design the CDN tariff with respect to the total

arrival rate expected and the delay bound required by the publisher. A sample tariff

is depicted in Figure 4.12. This tariff is determined according to the total cost of

service as given by the partial equilibrium reached by the network, which includes

100 publishers accessing the CDN with 10 surrogates serving 10 user networks. The

request arrival patterns from the user networks are Zipf distributed with β = 0.5.

4.6 Conclusions and Future Work

In this chapter, we considered the routing of the user requests to the most appropriate

surrogates. We developed an algorithm that minimizes the total cost of service, while

satisfying the SLA agreed upon with the publishers. We see that with this formulation,

112



the system may not achieve an equilibrium. We further showed that when the sur-

rogate charge the users with the objective of maximizing their revenue, the resulting

game has an equilibrium. We also showed that the overall combined content dissem-

ination/routing game also has an equilibrium. We analyzed the performance of this

game and observed that the improvements suggested by this method are significant.
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Chapter 5

Optimal Nonlinear Pricing for Multi-class

Surrogates

In the previous chapters, we discussed the allocation of the caching and the band-

width resources to the publishers with the objective of maximizing the publishers’ net

utilities. We used market-based methods, where the surrogates charge a fee for unit

resource allocated to a publisher. The publishers can acquire as much resource as

needed to maximize their own benefit in the current market state. The surrogates

update their prices according to the prices of their competitors. Although we have

seen that such a system can lead to an efficient resource allocation, the implementa-

tion complexity may be quite high considering the vast size of the Internet and its

large user population. In this chapter, we pursue the analysis of a system, where the

publishers cannot acquire the exact amount of resources that they would like. The

surrogate offers only a limited number of service classes and the publisher can only

select its service class. Within each service class, the amount of resource allocated to

a publisher varies with the number of publishers subscribed to that class and the total

size of the resource.

We can think of the model used in the previous sections as the Integrated Services
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(IntServ) and the model used in this section as the Differentiated Services (diffserv)

architectures. IntServ and diffserv architectures are developed in the IETF commu-

nity for the provision of QoS in the networks. These architectures are developed for

using priorities in forwarding of the packets through the network to ensure the user

connections conform to specific QoS requirements. IntServ offers more strict service

guarantees by allocating specific bandwidth, buffer, etc. resources at each node. Such

an implementation involves high processing and implementation costs. Meanwhile

diffserv offers less strict statistical service guarantees, where the user’s service may fall

below certain quality level with some probability. Current research efforts in network

QoS has identified the provision of statistical service guarantees as a more practical

approach. diffserv is an architecture developed from this observation. The diffserv

architecture offers limited service guarantees in the form of service classes [12]. The

Olympic service model was proposed as an example of diffserv architecture [39], [5].

In this model bronze, silver and gold service classes are offered to the users. The pack-

ets assigned to the gold service class usually experience lighter load than the packets

assigned to the silver class. However, there are no guarantees for the service quality.

Thus, the load for each service class may be high at certain times resulting in an un-

acceptable performance for an application even with the gold class and at other times

the load may be so low that the same application can satisfactorily run over bronze

class.

In the following, we will explore the same kind of paradigm for the CDNs. We

assume that each surrogate offers a limited number of service classes to the publishers.

The publishers have different smooth and concave willingness-to-pay functions, which

is known a priori by the CDN. For simplicity the CDN assigns each publisher into one

of the few available classes. The surrogates reserve fixed amount of resources for each
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service class. The publishers that subscribe to the same class share the same resource.

Thus, each publisher is assigned a caching space depending on the service class and

the number of publishers subscribed to that class.

This architecture can be easily implemented with the current Internet state-of-the

art. The so-called transparent web caching architecture can be used for this purpose. A

transparent caching system acts as a router, which forwards to the Internet everything

but TCP traffic for HTTP requests (requests with TCP port number 80). The TCP

traffic for HTTP requests are forwarded to one or more caches. Usually, multiple

caching servers are connected to the router for scalability and robustness. Thus, we

may consider the surrogate as a collection of caches. A Layer-4 (L4) switch (or a

router) is placed in front of these caches for routing of user requests to the appropriate

cache. A Layer 4 switch routes packets according to the information available in the

TCP header (and TCP is a transport layer (layer 4) protocol in ISO OSI 7 layer

reference model). Each origin web site is associated with a service class by a priori

subscription agreements. Meanwhile, several caches in a surrogate are assigned to

serve the user requests for the web sites subscribed to a service class. The router

builds two tables for request routing purposes. In the first table, the router keeps the

addresses of the web sites and their associated service classes and in the second table

the association of the caches with these service classes. Upon arrival of a user HTTP

request, the transparent proxy checks the TCP header for the destination address (the

identification for the web site). Then, it determines the service class associated with

the origin server and forwards the user request to one of the caches serving that service

class.

The idea of allocating fixed resources to each service class was previously discussed

in the literature. In RFC 2597, the authors proposed the Assured Forwarding frame-
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work for diffserv, where at each diffserv node a certain amount of forwarding resources

is allocated to every class [39]. However, it is argued in [5] that this method (in the

paper the so called Class-Based Allocation, CBA) leads to desired level of differentia-

tion when the load is uniform among the classes. When the load in the higher priority

classes is larger, this method cannot differentiate the traffic to allow the higher prior-

ity class to receive better service. We also acknowledge that this type of architecture

cannot guarantee a service quality for a service class, since the QoS depends on the

arriving load in that class. However, note that the demand for caching resources is not

as bursty as the traffic in the Internet. Thus, this approach should be acceptable when

the load is relatively stable in the short and long term. In the Internet there are many

web sites which receive a stable stream of user traffic (e.g. CNN, Yahoo, etc.). Our

method can be applied to these web sites for their day-to-day traffic. Rarely, the web

sites receive flash crowds, when the users populate the web site to receive a particular

information. For such cases, we direct the readers to the methods suggested by [46].

In the following, we first describe the system model in detail. Then, we describe the

optimal pricing strategy maximizing the revenue of the CDN. We further investigate

the issues in optimal pricing strategy under competition. Finally we determine a rule

for specifying how many service classes to offer.

5.1 System Model

Assume that each server has an utility function (or equivalently willingness-to-pay

function) P (x) which represents quantitatively the benefit received by the server when

x units of cache space is allocated to the server. It has been shown that users are

most interested in a small portion of the content in the web server [10], [13], [51].

These studies have shown that the web user traffic can be realistically modeled by
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Zipf distribution [88]. From this understanding, we may model the server’s utility

for the caching space as a concave monotonically increasing function. Intuitively, the

server’s utility increases rapidly for the low values of caching space, while the rate

of increase in utility is lower when the portion of the caching space allocated to the

server is high. There are infinitely many server utility functions depending on the

server content, popularity, overall network state and server financial state. In order to

reduce the complexity of estimating individual server utility functions, the surrogate

maps all of the servers into finite number of classes. In general we may assume that

there are K classes of servers with corresponding utility functions Pk, k = 1, 2, . . . ,K

that constitute the population of our economy. The mapping and distinction between

classes can be done based on usage profiles, quality requirements, popularity, etc. The

selection of optimal number of classes is discussed in section 5.4.

The surrogate has its own pricing policy based on which a user is charged a price

C(x) per time unit for an amount of cache space x. A server determines what kind of

QoS (x) it would like based on its own utility function and the pricing policy without

violating the condition P (x) ≥ C(x). That is, the server never pays more than the

benefit it receives from a certain amount of cache space. It is usually the case that

users do not have exact knowledge about their utility for a specific QoS. Rather they

have a budget (or willingness-to-pay) for the service (or product). As long as they do

not exceed their budget, users are willing to receive the highest QoS that is offered.

Thus, a reasonable model is that the user requests the maximum cache space that it

can pay for.

The surrogate assigns a certain portion of the total cache to each service class. Let

bk be the cache space assigned to the k th class of servers. Note that 0 ≤ bk ≤ B, where

B is the total surrogate storage capacity. Each server from the same class receives equal
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caching space. The surrogate has prior knowledge on the server willingness-to-pay

functions and the server access statistics. Let Nk be the random variable representing

the total number of kth class servers accessing the surrogate at an arbitrary instant.

Nk varies in time. When a new web server subscribes to the CDN’s services, the

address of this web site as well as the desired service class is disseminated to the

surrogates. The surrogates partition their caching space among the publishers’ that

are in the same service class. In each partition, LFU, LRU or any other desired cache

replacement policy is used to determine which objects are stored. Thus, bk/Nk is

the random variable representing the amount of cache space available to a kth class

server. The objective of the surrogate is to maximize its expected revenue by selecting

an appropriate pricing policy. In order to ensure fairness among different classes of

servers, we assume that the surrogate charges all users the same amount as long as

their share of cache space is the same. In this chapter, we restrict ourselves with static

pricing policies, where a pricing policy is said to be static, if it does not change with

respect to time or network state. The static pricing policies are usually preferred by

the users due to the predictability of the costs.

5.2 Optimal Strategy for Monopolistic

Surrogate

The stochastic optimization problem that surrogate solves is given as follows:

(P) max
C(·),{bk}K

k=1

K∑
k=1

ENk

{
NkC

(
bk

Nk

)}
(5.1)

subject to (1) C

(
bk

Nk

)
≤ P

(
bk

Nk

)
k = 1, . . . ,K
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(2)
K∑

k=1

bk ≤ B.

The objective function is the total average revenue generated from all classes of

servers given the server access statistics Nk. The surrogate server determines the

pricing policy C(·) and the partition of the overall surrogate capacity among the classes

of servers, {bk}K
k=1. The first constraint guarantees that the cache space allocated to a

server never costs more than the utility it provides to the server. The second constraint

guarantees that the total cache space allocated to each class does not exceed the

available surrogate server capacity B.

5.2.1 Properties of Optimal Pricing Strategy

If random variable Nk takes values in the range [nL
k , nH

K ], the first constraint in (P)

suggests that C(xk) ≤ Pk(xk) for bk

nH
k

≤ xk ≤ bk

nL
k

. For easy demonstration purposes

let nH
k → ∞. Then, C(xk) ≤ Pk(xk) for 0 ≤ xk ≤ bk

nL
k

.

Notice that bk

nL
k

is an upper bound on xk, until when C(xk) should be less than or

equal to Pk(xk). Let U =
{

b1
nL

1
, b2

nL
2
, . . . , bK

nL
K

}
be the set of these upper bounds, and

u(m) be the index of the mth smallest element in the set U . That is, . . . ≤ b
u(m−1)

nL

u(m−1)

≤

b
u(m)

nL

u(m)

≤ b
u(m+1)

nL

u(m+1)

≤ . . ..

Theorem 9 Let P = {P1, P2, . . . , PK} be the collection of utility functions of all

classes. Then, for a given cache space partition {bk}K
k=1, the pricing policy C(x) that

maximizes the objective function in (P) is
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C(x) =




min{Pk(x) : Pk ∈ P},
if 0 < x ≤ b

u(1)

nL

u(1)

min{Pk(x) : Pk ∈ P − {Pu(1)}},
if

b
u(1)

nL

u(1)

< x ≤ b
u(2)

nL

u(2)

...

min{Pk(x) : Pk ∈ P − {Pu(1) , . . . , Pu(j−1)}},
if

b
u(j−1)

nL

u(j−1)

< x ≤ b
u(j)

nL

u(j)

...

min{Pk(x) : Pk ∈ P − {Pu(1) , . . . , Pu(K−1)}},
if

b
u(K−1)

nL

u(K−1)

< x ≤ b
u(K)

nL

u(K)

(5.2)

Proof From the first constraint in (P),

C(x) ≤ min{Pk(x) : Pk ∈ P − {Pu(1) , . . . , Pu(j−1)}}, (5.3)

for
b
u(j−1)

nL

u(j−1)

< x ≤ b
u(j)

nL

u(j)

and for all k = 1, . . . ,K. Then, C(x) that maximizes the

objective function in (P) is the one that satisfies the above inequality with an equality.

Theorem 9 states that the optimal pricing policy is discontinuous with jumps from

one utility function to another and is monotonically increasing. The pricing function

C(x) has the structure as depicted in Figure 5.1. Theorem 9 suggests that the problem

in hand can be reduced to calculate the optimal sizes of the resource partitions so that

(P ) is maximized. This simplified problem can further be solved if we assume that

the Nk k = 1, . . . ,K are independent identically distributed and the publisher utility
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Figure 5.1: Sample pricing function.

functions are non-crossing, i.e. Pk+1(x) > Pk(x),∀x and k = 1, . . . ,K. In economics

literature the non-crossing assumption for consumer demand functions is considered

as the conventional approach in calculating the nonlinear tariffs [67]. In the cache

allocation framework this assumption may impose some restrictions on the publisher

request distributions. However, if the publisher utilities are the weighted versions

of their hit probabilities, then this assumption is naturally satisfied. In many cases,

the utility of a publisher is related to the cache hit probability, since for large cache

hit probabilities the number of user requests served at the cache increases, and thus

the user requests do not have to be forwarded to the origin server. This usually

tranlates into lower average delays experienced by the users. Notice that the cache hit

probability for a publisher with Zipf distribution parameter γi and M total objects is

given as
∫ x
0 Pr(u) du =

∫ x
0

(1−γi)/M1−γi

uγi
du =

(
x
M

)1−γi . Thus, the cache hit probability

curves of two publishers with similar number of available objects do not intersect each

other as long as γi 
= γj , for i 
= j.

Theorem 10 Let Pk+1(x) > Pk(x), ∀x and k = 1, . . . ,K. Assume that random vari-
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able Nk takes values in the range [1,∞) and Nk’s are i.i.d. Then the optimal cache

space partition of surrogate capacity among different classes of servers {b∗k} satisfies

b∗1 < b∗2 < . . . < b∗K .

Proof Assume that b1 < b2 < . . . < bi−1 < bj < bi+1 < . . . < bj−1 < bi < bj+1 <

. . . < bK is an optimal cache space partition, where j > i. Let C(x) be the optimal

pricing policy (determined from the previous Theorem) corresponding to this cache

space partition.

C(x) =




P1(x) 0 < x ≤ b1

...

Pi−1(x) bi−2 < x ≤ bi−1

Pi(x) bi−1 < x ≤ bj−1

Pi(x) bj−1 < x ≤ bi

Pj+1(x) bi < x ≤ bj+1

...

. (5.4)

Consider an alternative cache space allocation for the same set of utility functions

{b∗k} where b∗k = bk for ∀k 
= j, i. b∗i = bj , and b∗j = bi. Notice that b∗1 < b∗2 < . . . < b∗K .

The optimal pricing policy with this cache space partition is

C∗(x) =




P1(x) 0 < x ≤ b∗1
...

Pk(x) b∗k−1 < x ≤ b∗k
...

PK(x) b∗K−1 < x ≤ b∗K

. (5.5)

Compare the objective function in (P) for mth class of servers for both of these

partitions. For m < i, E
{
NmC

(
bm
Nm

)}
= E

{
NmC∗

(
b∗m
Nm

)}
. Let m ≥ i. Let qm(n)
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be the probability distribution function for Nm.

E

{
NmC

(
bm

Nm

)}
=

∑
n< bm

bm−1

nPi

(
bm

n

)
qm(n)

+
∑

bm
bm−1

≤n<
bi

bi−1

nPi

(
bm

n

)
qm(n)

+ . . .

+
∑

bi
bi−1

≤n<
bi−1
bi−2

nPi−1

(
bm

n

)
qm(n)

+ . . . (5.6)

E

{
NmC∗

(
bm

Nm

)}
=

∑
n< bm

bm−1

nPm

(
bm

n

)
qm(n)

+
∑

bm
bm−1

≤n<
bm−1
bm−2

nPm−1

(
bm

n

)
qm(n)

+ . . .

+
∑

bi+1
bi

≤n<
bi

bi−1

nPi

(
bm

n

)
qm(n)

+
∑

bi
bi−1

≤n<
bi−1
bi−2

nPi−1

(
bm

n

)
qm(n)

+ . . . (5.7)

For {bk} to be optimal (as compared to {b∗k}), Pi(x) ≥ Pl(x) for m ≥ l > i, i.e.

each term in equation (5.6) should be higher than each term in equation (5.7). This

contradicts with the hypothesis that Pi(x) < Pj(x) for i < j.

This theorem states that regardless of server access distributions, the higher paying
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class of servers should receive a larger portion of the surrogate capacity. Theorems 9

and 10 together define the pricing function C(x) except for {bk}K
k=1. Note that given

the utility functions Pk(x), k = 1, 2 . . . ,K are concave and continuous, the resulting

objective function in optimization problem (P) is also continuous in bk. We can use

Lagrangian methods to determine the optimal cache partition {bk}K
k=1.

We determined the solution of (P) for logarithmic utility functions where Pk(x) =

αk log(x+1). We assumed, without loss of generality, that αk < αk+1. After straight-

forward but tedious calculations, one arrives at the following set of nonlinear equations

described by (5.8) and (5.9). We assume for simplicity and compactness, the server ac-

cess distributions Nk, k = 1, . . . ,K are continuous. Let µ be the Lagrangian constant,

and f(·) be the identical probability density function of the server access distributions

Nk, k = 1, . . . ,K.

αj

bj

∫ bj/bj−1

0
nf(n) dn +

αj−1

bj

∫ bj/bj−2

bj/bj−1

nf(n) dn

+ · · ·

+
α2

bj

∫ bj/b1

bj/b2
nf(n) dn +

α1

bj

∫ ∞

bj/b1
nf(n) dn

+
j−1∑
k=1

bj

b2
k

f

(
bj

bk

)
[αk+1 − αk] log(bk + 1)

+
K∑

k=j+1

b2
k

b3
j

f

(
bk

bj

)
[αj − αj+1] log(bj + 1)

= µ, j = 1, . . . ,K. (5.8)

K∑
k=1

bk = B. (5.9)
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Figure 5.2: Change of average surrogate revenue with respect to surrogate partition

for varying β.

5.2.2 Numerical Results

We have investigated the solution of this Lagrangian optimization problem numeri-

cally. It is reasonable to assume that the number of servers accessing the surrogate

at a particular time is Poisson distributed. In our analysis, we assume that server

distribution is continuous and can be represented by Rayleigh distribution, which can

be considered as the continuous interpolation of Poisson distribution. We determine

the optimal cache partition by simultaneously solving the set of nonlinear equations

described by (5.8) and (5.9).

In Figure 5.2, we observe the effect of increasing number of servers requesting

service on the optimal partition of a surrogate with 2 service classes. The server utility
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functions are P1(x) = 1 · log(x + 1), and P2(x) = 2 · log(x + 1). β is the parameter

for Rayleigh distribution that roughly corresponds to the mean number of servers

requesting service at the current slot. In Figure 5.2, we notice that as β increases, the

optimal partition tends to give a larger portion of the surrogate server space to the

service class with higher utility. In fact, beyond some certain β, the optimal policy

for a surrogate is to serve only the service class with higher willingness-to-pay. This is

reasonable considering that when the average number of servers requesting service is

high, the probability of receiving no server request is low. If we can assure that there

is always going to be a higher paying class of servers in the system, then it is optimal

to serve only higher paying class of servers. This type of behavior may result in a

system where less popular servers are unable to get any caching service. Fortunately,

in real world the number of users belonging to each service class is not identically

distributed. Servers with higher willingness-to-pay or that are highly popular are

always much fewer.

Table 5.1 depicts the optimal cache partition and the revenue corresponding to

this partition for a monopolistic surrogate with capacity 100 units. There are 2 service

classes with willingness-to-pay functions P1(x) and P2(x).

2 classes b1 b2 revenue

β = 1 33.8678 66.1322 10.6477

β = 3 10.3475 89.6525 28.2833

β = 5 6.9070 93.0929 37.6394

β = 10 4.0336 95.9665 52.2785

Table 5.1: Optimal cache partition for a monopolistic surrogate when there are 2

service classes.

In Table 5.2 we investigate the optimal cache partition when there are 3 service
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classes. Servers from each class request service with respect to Rayleigh distribution

with parameter β. The capacity of the surrogate is still 100 units.The willingness-to-

pay function for each service class is P1(x) = 1 · log(x + 1), P2(x) = 2 · log(x + 1) and

P3(x) = 3 · log(x + 1). It is interesting to note that when there are more than two

service classes, the classes other than the highest paying service class receive roughly

the same amount of cache space as β increases. Thus, it may be better to serve the

lower paying service classes in a single service class. For this model, we may conjecture

that implementing a two service class system is sufficient to achieve a near-optimal

result.

3 classes b1 b2 b3 revenue

β = 2 10.2091 13.1847 76.6062 28.0497

β = 3 8.9656 9.3079 81.7265 41.6741

β = 5 6.3136 6.3557 87.3312 57.1166

Table 5.2: Optimal cache partition for a monopolistic surrogate when there are 3

service classes.

5.2.3 Discussion of the System

Even though it may occur very rarely, this scheme may result in low utilization of the

surrogate capacity. Notice that our results depend on the fact that there is always at

least one publisher per class. If this is not true, then the cache space allocated to a

service class remains unused. This leads to under-utilization of the surrogate capacity.

For a very popular surrogate server this may not cause any problem. One method

to circumvent this problem is to reduce the number of different classes, and thus to

reduce the probability that there is no publishers for a class. It is true that higher the
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number of classes, lower the surrogate utilization is. However at the same time, lower

the number of classes, lower the surrogate revenue is, since we have to represent all

publishers with very few number of willingness-to-pay (utility) functions. Hence, the

partitioning of the publishers into multiple surrogate classes is an additional design

constraint in the maximization of surrogate revenue. We offer a possible solution to

this problem in the last section. However, notice that these cases occur rarely in a

caching framework, where the demand for the resources is much more stable than

the actual Internet traffic as considered in the flow control problem. Furthermore, in

the caching framework the contracts are usually much longer term, which ensures the

stability.

5.3 Optimal Surrogate Partition Under Competition

In this section we consider the optimal pricing strategies of two competing surrogates.

Let C1(x) and C2(x) denote the pricing functions of the two competing surrogates.

Each surrogate offers in total B units of cache space to their servers. N1
1 and N1

2

denote the number of servers from each class accessing the surrogate 1, while N2
1 and

N2
2 denote the number of servers from each class accessing the surrogate 2. Notice

that N1
1 + N2

1 = N1 and N1
2 + N2

2 = N2, where N1 and N2 are the random variables

corresponding to the number of servers accessing the surrogates at a particular time

from each class. b1
1 and b1

2 denote the cache space reserved for each service class on

the surrogate 1, and b2
1 and b2

2 denote the cache space reserved for each service class

on the surrogate 2.

The strategy for a server is to subscribe to a surrogate and to select a class that

maximizes its share of the cache space. When many servers access a particular sur-

rogate, the surrogate will get congested and the share of cache space for each server
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will become less. In that case at later time slots some of the servers will switch to the

competing surrogate. An equilibrium, when the number of servers switching from one

surrogate to another is the same exists, when the same class of servers receive equal

share of cache space in each surrogate. That is, when b11
N1

1
= b21

N2
1
, and b12

N1
2

= b22
N2

2
. Notice

that at equilibrium N2
1 = N1

1+
b1
1

b2
1

and N2
2 = N2

1+
b1
2

b2
2

. At equilibrium the optimal pricing

strategy for provider i = 1, 2, given the pricing strategy of the competing provider

j 
= i is determined by solving the following optimization problem.

max
bi
1,bi

2

{
bi
1

bi
1 + bj

1

E

[
N1Ci

(
bi
1 + bj

1

N1

)]

+
bi
2

bi
2 + bj

2

E

[
N2Ci

(
bi
2 + bj

2

N2

)]
| bi

1 + bi
2 = B

}
. (5.10)

Assume that surrogate 2 is the new entrant to the market. Initially, surrogate

2 determines a pricing strategy by solving the above equation when the surrogate 1

has implemented optimal monopolistic pricing strategy. However, provider 1 will take

action as provider 2 announces its pricing strategy. Both surrogates will iteratively

re-calculate their strategy given the strategy of its competing counterpart. An im-

portant question is then, whether a pair of pricing strategies exits when neither of

the two providers are willing to change their strategy unilaterally. In game theory

such a situation is called Nash equilibrium. In the following theorem, we show that

abovementioned ‘pricing war’ leads to a Nash equilibrium.

Theorem 11 Let b∗1 and b∗2 be the optimal solution to

max
b1,b2

{
E

[
N1C

(
b1

N1

)]
+ E

[
N2C

(
b2

N2

)]
| b1 + b2 = 2B

}
, (5.11)
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then b∗1
2 = b1

1 = b2
1 and b∗2

2 = b1
2 = b2

2 is a cache partition that is also a Nash equilibrium,

if

∂f

∂b
(b∗1) +

∂f

∂b
(2B − b∗1) < 0, (5.12)

where f(b) = E [NC(b/N)].

Proof Assume that b∗1
2 = b1

1 = b2
1 and b∗2

2 = b1
2 = b2

2 is a surrogate partition that is

not a Nash equilibrium. Then, without loss of generality surrogate 1 can increase its

revenue by choosing a surrogate partition b∗1
2 + ∆. The revenue of provider 1 with this

surrogate partition is

b∗1/2 + ∆
b∗1 + ∆

f(b∗1 + ∆) +
B − b∗1/2 − ∆
2B − b∗1 − ∆

f(2B − b∗1 − ∆). (5.13)

The net increase in the revenue of provider 1 is

b∗1/2 + ∆
b∗1 + ∆

f(b∗1 + ∆) − 1
2
f(b∗1)

+
B − b∗1/2 − ∆
2B − b∗1 − ∆

f(2B − b∗1 − ∆) − 1
2
f(2B − b∗1). (5.14)

Multiplying equation (5.14) by 1
∆ and taking the limit as ∆ → 0, we get

1
2

∂f

∂b
(b∗1) +

1
2

∂f

∂b
(2B − b∗1). (5.15)

It is clear that if b∗1
2 is a Nash equilibrium, then the expression in equation (5.15) is

less than zero.

This theorem suggests that at equilibrium servers receive a share of surrogate server

space as if there is a single surrogate offering a larger surrogate capacity. Servers’ share

of cache space increase, since a competing surrogate introduces additional surrogate
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server space. The surrogates’ revenues increase, since there are fewer servers subscrib-

ing to each surrogate at any particular time resulting in increased charges per server

received due to higher per server cache share. Thus, the result of the competition of

different surrogates is the same as peering.

We tested this result for log-utility functions through numerical analysis. There

are 2 classes of servers with willingness-to-pay functions P1(x) = 1· log(x) and P2(x) =

2 · log(x). There are two classes of service, and servers of each class request access

to the surrogate with respect to Rayleigh distribution with parameter β = 3. The

optimal surrogate partition, when there is a single surrogate offering in total 200 units

of cache space to the servers is b1 = 22.43 and b2 = 177.57. We observed that in

12 iterations we approached the Nash equilibrium solution suggested by the previous

theorem.

5.4 Optimal Number of Partitions

Previous sections discussed the optimal size of the partitions and the pricing strategy

when the number of user classes are given. In this section, we investigate the optimal

number of resource partitions maximizing the revenue. In order to maintain tractabil-

ity, we assume a log-utility function U(θ) = θ log(k(q) + 1), where k is the dis-benefit

of observing congestion q at the resource, θ is the preference of the user for the lack

of congestion. q can also be interpreted as the number of users sharing the resource.

Let p log(k +1) be the subscription price for the resource. In order to reflect the range

of preferences in the simplest manner, we assume that there is a continuum of users

whose θ parameters form a population with distribution f(θ). Notice that according

to our utility function, users with inelastic preferences will have high values of θ. The

users, whose θ parameters form a population distribution which is distributed on the
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iteration provider 1 provider 2

0 [10.3475 89.6525] -

1 [10.3475 89.6525] [12.4239 87.5761]

2 [10.7223 89.2777] [12.4239 87.5761]

3 [10.7223 89.2777] [12.1263 87.8737]

4 [10.9582 89.0418] [12.1263 87.8737]

5 [10.9582 89.0418] [11.9388 88.0612]

6 [11.1270 88.8230] [11.9388 88.0612]

7 [11.1270 88.8230] [11.7974 88.2026]

8 [11.2429 88.7571] [11.7974 88.2026]

9 [11.2429 88.7571] [11.7014 88.2986]

10 [11.3206 88.6794] [11.7014 88.2986]

11 [11.3206 88.6794] [11.4938 88.5062]

12 [11.4853 88.5147] [11.4938 88.5062]

Table 5.3: The optimal cache space partition of competing surrogates. At each itera-

tion one of the surrogate updates its cache space partition.

interval [0, 1] according to distribution f(θ).

The congestion k is a function of total number of users in the system. Let, with-

out loss of generality, p1 < p2 denote the prices of two equal size, C, partitions of

the resource. Notice that users with preference θ < θ1, where θ1 log(k(
∫ θ2
θ1

) + 1) −

p1 log(k(
∫ θ2
θ1

f(θ) dθ) + 1) = 0 do not subscribe to the resource since the net benefit is

negative. Notice that this relationship requires that p1 = θ1. Similarly, the users with

preference θ1 < θ < θ2, where θ2 log(k(
∫ θ2
θ1

f(θ) dθ) + 1) − p1 log(k(
∫ θ2
θ1

f(θ) dθ) + 1) =

θ2 log(k(
∫ θ2
θ1

f(θ) dθ) + 1) − p2 log(k(
∫ 1
θ2

f(θ) dθ) + 1), subscribe to the lower priced
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partition. The profit for the partitioned resource is given as

π2 =
∫ θ2

θ1

f(θ) dθ p1 log(k(
∫ θ2

θ1

f(θ) dθ) + 1) +

∫ 1

θ2

f(θ) dθ p2 log(k(
∫ 1

θ2

f(θ) dθ) + 1).

We search for the conditions for which the profit by offering two classes of service

is higher than offering a single class of service. Consider the case when p1 = p2.

Notice that this case corresponds to offering a single class of service. If we can find

another solution with higher profit, then we show that it is optimal to offer multiple

service classes. We show that by considering the change in profit for a given p1 = θ1 =

constant is positive when p2 is increased, i.e. dπ > 0, when dp2 > 0.

For p1 = p2,

dπ

dp2
= −f(θ1)

dθ1

dp2
θ1 log(k(

∫ 1

θ2

f(θ) dθ) + 1) +

(
∫ 1

θ2

f(θ) dθ)θ1

k′(
∫ 1
θ2

f(θ) dθ)

k(
∫ 1
θ2

f(θ) dθ) + 1
(−f(θ1)

dθ1

dp2
) +

(
∫ 1

θ2

f(θ) dθ) log(k(
∫ 1

θ2

f(θ) dθ) + 1),

and assuming that θ1 is constant

dπ = (
∫ 1

θ2

f(θ) dθ) log(k(
∫ 1

θ2

f(θ) dθ) + 1) dp2. (5.16)

Thus, we see that for dp2 > 0 dπ > 0, if k(
∫ 1
θ2

f(θ) dθ) > 0. A good choice for the

congestion function k is k(q) = C
q , where q is the number of users subscribed to the

resource, and C is the limited resource capacity.
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We should also note that such congestion function k(q) = C
q may result in the

provision of a single service class if the users have a more conventional utility function

U(θ) = θ · C
q and charged a fixed price p. This result is due to the following lemma,

which also identifies a case where the result of Chander and Leruth [16] does not hold.

Lemma 4 Let U(θ) = θ ·k(q)−p. The congestion function k(q) can be any real valued

function satisfying:

1. k is at least twice differentiable;

2. k(q) > 0 and dk(q)dq < 0 for all q > 0;

3. k(0) < ∞.

If k′(q)q = −k(q), then it is not optimal to sell the same product with different qualities.

Proof Assume that there are two products priced at p1 and p2, and without loss of

generality p1 > p2. The users with preference factor θ2 are indifferent of subscribing

to product 2 or not subscribing to any of the products. Notice that the users with

preference θ > θ2 do not subscribe to any of the products. That is,

U(θ2) = θ2k(q2) − p2 = 0. (5.17)

On the other hand users with preference θ1 are indifferent of subscribing to either

product 1 or product 2. That is,

U(θ1) = θ1k(q2) − p2 = θ1k(q1) − p1. (5.18)

From equations (5.17) and (5.18) we can determine p1 and p2 as,

p1 − p2 = θ1(k(q2) − k(q1)), (5.19)

p2 = θ2k(q2). (5.20)
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Our objective is to determine the set of prices p1, p2 that maximize the total profit

π = p1q1 + p2q2. Noticing that p1 and p2 are functions of the market partitions θ1 and

θ2, we consider our optimization over θ1 and θ2. Let f(θ) be the number of users with

θ preference. Then q1 =
∫ 1
θ1

f(θ) dθ and q2 =
∫ θ1
θ2

f(θ) dθ. Profit is

π = θ2k(q2)q2 + θ1(k(q2) − k(q1))q1 + θ2k(q2)q1

= θ2k(q2)(q1 + q2) + θ1(k(q2) − k(q1))q1. (5.21)

Denote the differentiation of arbitrary function g(θ1) with respect to θ1 as g′ = ∂g(θ1)
∂θ1

.

Taking the derivative of π with respect to θ1, and equating to zero, π′ = 0,

π′ = θ2k
′(q2)q′2(q1 + q2) + θ2k(q2)(q′1 + q′2)

+(k(q2) − k(q1))q1 + θ1(k(q2) − k(q1))q′1

+θ1(k′(q2)q′2 − k′(q1)q′1)q1 = 0. (5.22)

π′ = (θ2(q1 + q2) + θ1q1)k′(q2)q′2 − θ1k
′(q1)q′1q1

+θ2k(q2)(q′1 + q′2) + (k(q2) − k(q1))q1

+θ1(k(q2) − k(q1))q′1 = 0. (5.23)

Since k′(q)q′ < 0 from assumptions, we see that the first term in (5.23) is negative while

the second one is positive. The third term is equal to zero, since q′2 = −q′1 = f(θ1).

The fourth term is negative since p1 > p2 and thus k(q1) > k(q2). The last term in

(5.23) is positive, since q′1 is negative. As it stands we may find q1, q2 solving (5.23)

such that q1 
= q2.

If k′(q1)q1 = −k(q1), then second term cancels with the last term, resulting in

π′ = (θ2(q1 + q2) + θ1q1)k′(q2)q′2

+(k(q2) − k(q1))q1 + θ1k(q2)q′1 = 0. (5.24)
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All terms in (5.24) are negative, which suggests that no interior point solution exists.

For k(q) = C
q , we see that it is always optimal to offer two service classes, since

(
∫ 1
θ2

f(θ) dθ) log(k(
∫ 1
θ2

f(θ) dθ)+1) dp2 > 0, for all dp2 > 0. This result can be extended

to more than two classes by using a recursive argument. For example, assume that

there are 3 classes and and show that dπ > 0, when p1 = p2 = p3 and θ1 and θ2 are

kept constant.

This result is a special case as discussed by Chander and Leruth in [16]. The au-

thors have shown in [16] that a profit maximizing monopolist will charge the maximum

number of different prices, and hence offer the maximum number of sub-networks with

different qualities. However, in [16] the authors used a simple pricing policy where the

users of each class are charged a constant price regardless of their quality of service.

In our work we considered a nonlinear pricing policy within each service class.

We have shown that given an available resource capacity, it is a revenue maximizing

strategy to offer as many service classes as possible. However, as discussed previously,

another consideration for a resource provider is the utilization of the resources. Note

that a low resource utilization means waste of investment for the unused portion.

Thus, a resource provider would like to maximize its utilization as well. In Figure

5.3 we show the change in the resource utilization for increasing number of service

classes. In this experiment, we assume that user requests arrive according to Poisson

distribution with rate λ. Note that in this experiment λ is the aggregate arrival rate

for all types of publishers. The probability of a publisher subscribing to a service class

is the same probability for all classes. The capacity of each service class is assumed

to be the same. We notice that as the number of offered service classes increase,

the utilization decreases exponentially. However, as the arrival rate increases the

137



2 3 4 5 6 7 8 9 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

U
til

iz
at

io
n

number of classes

λ=2
λ=4
λ=6
λ=8

Figure 5.3: Utilization of resource for increasing number of service classes.

utilization increases as well. Thus, more number of classes can be offered efficiently

when more users subscribe to the system.

A reasonable objective for the surrogate is to maximize its profit, which is the

revenue gained by providing differentiated services less the investment required to

provide the necessary resources. By multiplying the ordinate of Figure 5.3 by an

appropriate weighting factor, which may depend on the unit costs of resources, the

surrogate can estimate its investment. Then, by using the optimal pricing strategy

discussed in the previous section, the surrogate can choose an optimal number of

service classes maximizing its profit.

5.5 Conclusions and Future Work

In this chapter we analyzed a pricing scheme for the extension of diffserv architecture

in the CDNs. In this architecture, the publishers (web sites) subscribe to one of the
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few service classes offered by the surrogate. Within each service class, the amount

of resource allocated to a publisher depends on the number of publishers subscribed

to that class as well as the amount of resource the surrogate allocates to that service

class. We determined the optimal nonlinear tariff for the surrogate maximizing its

revenue. The optimal tariff follows the willingness-to-pay functions of the publishers,

but has jumps at the points denoting the size of resource allocated to each class. At

each jump the price function increases to the willingness-to-pay function of the higher

service class. Thus, the problem reduces to determining the optimal partition of the

resource among service classes. We also analyzed the system under competition and

observed that under competition the individual resource allocations converge to the

optimal allocation set by a monopoly with an aggregate resource size of two competing

surrogates. Furthermore, we described a method for determining the appropriate

number of service classes depending on the received revenue and network efficiency.

It should be clear to the reader that these results are applicable not only to the

pricing and allocation of caching resources in surrogates but also to any other con-

gestible resource allocation problems such as the sharing of bandwidth at the edges

(ISPs) and in general for pricing of commodities whose quality varies with demand.

An immediate extension of this work can be thought of by considering different user

objectives such as the maximization of net benefit instead of the maximization of the

share of the resource. In case the users are aware of their utility functions such an

objective makes sense.
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Chapter 6

Conclusions and Future Work

In this dissertation, we investigated the dynamics of resource allocation in content

delivery networks. Our motivation for this study was to analyze the effects of high-

level user decisions on the lower level network performance. Notice that the Internet

has evolved from a research-oriented academic network into an infotainment-oriented

commercial network. Academic, business and personal users form the large population

of the Internet. Not all users value the Internet services the same, because of the

importance of the applications that use these services. For example, a user accessing

from home may use the Internet for leisure and thus is not always willing to pay for high

quality Internet experience. Meanwhile, a company may use the Internet to connect

its LANs at several geographically distant locations, and require high quality service

for effective continuation of its business. In this framework the user performance is

usually better measured with respect to a utility function.

In this work, we considered the CDNs because they are inherently working at the

application layer, and thus are directly effected with the user decisions. Meanwhile,

the CDNs are basically network caches and thus they reduce the network congestions

and user delays. In this sense, we can measure the effects of high-level user decisions

with low level network metrics such as user latency.
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In the development of our results we divided the content delivery problem into

distribution and routing sub-problems and investigated them separately but jointly.

We showed that each sub-problem has an equilibrium given the solution of the other,

and this solution is optimal if the equilibrium is unique. The distribution and routing

problems appear to be similar expect that caching space is allocated in the distribution

and bandwidth is allocated in the routing sub-problem. We determined the optimal

strategies of the publishers and the surrogates, where each agent non-cooperatively

and selfishly tries to maximize its benefit. By relying on these strategies we showed

that the resulting game has an equilibrium. We further determined the uniqueness

condition for the equilibrium, which appeared to be dependent on the total amount of

publisher investments and the size of the resources. We noticed that if the available

resource size is not large and if the publisher investments are not high, we achieve a

unique equilibrium.

We also determined the system optimum solution, where the objective is to maxi-

mize the total system utility (or minimize total average user delay). We observed that

the non-cooperative game representation is applicable for the distributed solution of

the system optimization problem as long as the publishers are willing to pay the pos-

sibly very high investment amounts associated with this solution. Upon observing the

very high prices associated with the system optimum solution, which may diminish

any benefit received by using the caching architecture, we determined a sub-optimal

solution where publishers select their investments to maximize their net profit. The

publisher profit is given as the total utility received (which may be interpreted as the

weighted sum of the average user delays) reduced by the total investment amount.

We noticed that our sub-optimal investment strategy can increase the net benefit

significantly without reducing the total system utility more than 5%.
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We later discussed the joint distribution and routing game and showed that this

game has an equilibrium as well. We studied the performance of the combined game

as compared to current transparent proxy caching implementations numerically and

observed that the improvements are more 50%.

The framework for distribution and routing is similar to an auction and allow the

publishers request any range of quality of service. Meanwhile, such a quality of service

may not be needed for most and only several classes of service is sufficient in many

cases. We explore this possibility in the last chapter, and showed the optimal pricing

schedule for this case. We also determined the condition under which the service

provider chooses to offer different quality of service classes.

There remains much work to be done in this infant subject. The questions remain

to be answered range fromthe design of different pricing schemes to solving imple-

mentation issues. An interesting question that can be answered in this framework is

determining the optimal locations for the surrogates. Although in real networks the

choices for placing a surrogate are quite limited, it is clear that a surrogate placed at

a wrong location will not improve the system-wide performance any good. Our model

can “move” the surrogates to the optimal locations, where their revenue is maximized.
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Appendix A

Proofs of Lemmas in Chapter 3

Proof of Lemma 1

Consider the Lagrangian function L(x),

L(x) =
J∑

j=1

βj
i

(
xj

i

)1−αi − γ


 J∑

j=1

xj
ipj


 ,

where γ is the Lagrangian constant. From Karush-Kuhn-Tucker Theorem we know

that the optimal solution is given by ∂L(x)/∂xj
i = 0 for γ ≥ 0.

∂L(x)/∂xj
i = βj

i (1 − αi)
(
xj

i

)−αi − γpj = 0,

xj
i =

(
βj

i (1 − αi)
γpj

)1/αi

.

Using this result in the constraint equation, we can determine γ as

γ−1/αi =
Bi∑J

k=1 pk

(
βk

i (1−αi)
pk

)1/αi
.

Now, optimal xj
i can easily be determined.
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Proof of Lemma 2

As illustrated in Figure 3.4, the surrogate’s revenue decreases when the price is ei-

ther increased or decreased beyond a certain price. Let rj(pj) denote the revenue of

surrogate j.

rj(pj) =




∑
i x

j
i (pj)pj for

∑
i x

j
i (pj) ≤ Cj

Cjpj for
∑

i x
j
i (pj) > Cj

.

The optimal point lies either at the boundaries or at the irregularity. If
∑

i xj
i (pj) ≤ Cj ,

∂rj/∂pj = Bi

(βj
i )

1/αi(−1/αi)p
−1−1/αi

j

∑
k p

1−1/αi

k (βk
i )1/αi(∑

k p
1−1/αi

k (βk
i )1/αi

)2

−Bi

(βj
i )

1/αip
−1/αi

j (1 − 1/αi)(β
j
i )

1/αip
−1/αi

j(∑
k p

1−1/αi

k (βk
i )1/αi

)2

= Bi

−(βj
i )

2/αip
−2/αi

j − 1/αi(β
j
i )

1/αip
−1−1/αi

j

∑
k �=j p

1−1/αi

k (βk
i )1/αi(∑

k p
1−1/αi

k (βk
i )1/αi

)2

< 0.

Thus, rj(pj) is monotonically decreasing for pj such that
∑

i x
j
i (pj) ≤ Cj.

If
∑

i xj
i (pj) > Cj , then it is clear that rj(pj) is maximized at the boundary when

∑
i x

j
i (pj) = Cj. This concludes the proof.

Proof of Lemma 3

∑
i

pj
−1/α∑

k p
1−1/α
k

Bi = Cj

pj
−1/α

(
1 − Cj∑

i Bi
pj

)
=

Cj∑
i Bi

∑
k �=j

p
1−1/α
k (A.1)
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Let γj =
∑

i Bi/Cj . Taking the derivative of eq. (A.1) with respect to pl, we determine

∂pj/∂pl.

− 1
αpj

p
−1/α
j

∂pj

∂pl
(1 − pj/γj) − 1

γj
p
−1/α
j

∂pj

∂pl
=

1
γj

(1 − 1/α)p−1/α
l

∂pj

∂pl
=

p
−1/α
l

p
−1/α
j

(
γj

(1−α)pj
− 1

) =
(1 − α)pj

γj
p
−1/α
l

p
−1/α
j

(
1 − (1 − α)pj

γj

) (A.2)

Notice that the denominator in eq. (A.2) is similar to the left hand side of eq. (A.1).

Remember that 0 < α < 1. Hence, p
−1/α
j

(
1 − (1 − α)pj

γj

)
> p

−1/α
j

(
1 − pj

γj

)
. Then,

∂pj

∂pl
<

(1 − α)pj

γj
p
−1/α
l

p
−1/α
j

(
1 − (1 − α)pj

γj

)

=
(1 − α)pjp

−1/α
l∑

k �=j p
1−1/α
k

Also notice that pj < γj . Then 0 < 1 − pj/γj < 1. From eq. (A.1)

p
1/α
j =

1 − pj/γj

1
γj

∑
k �=j p

1−1/α
k

<
1

1
γj

∑
k �=j p

1−1/α
k

pj <
γα

j(∑
k �=j p

1−1/α
k

)α

Thus, the best response function Rj(p) is a contraction mapping if

∂pj

∂pl
<

(1 − α)γα
j p

−1/α
l(∑

k �=j p
1−1/α
k

)1+α < 1
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Appendix B

Near-optimal publisher investment strategy

In this appendix, we show the derivation of the near-optimal investment strategy. For

the sake of simplicity we determine our results for αi = 0.5,∀i.

For a given investment Bi, the optimal cache allocation is given by

xij(Bi) =
β2

ij/p
2
j∑

k β2
ik/pk

Bi.

Assume that pj are the set of prices at the equilibrium. As for the key assumption of

our derivation, we assume that for a small change in investment amounts, the change

in the equilibrium prices is small as well. Specifically, in the vicinity of the set of

investment amounts Bi,
∑

k β2
ik/pk can be considered as constant. This assumption is

verified through numerical studies.

Let
∑

k β2
ik/pk = hi. Thus, at the equilibrium the surrogate prices are,

pj =
√

1/Cj

∑
i

β2
ij/hiBi,

and the cache allocation is

β2
ijBi

hip2
j

.
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We are interested in the optimal investments maximizing the net profit, i.e.
∑

j x0.5
ij βij−

Bi/T . Then,

∑
j

1/2x−1/2
ij (Bi)

∂xij

∂Bi
βij − 1/T = 0,

where

∂xij

∂Bi
=

β2
ij

hi

(
1
p2

j

− 2Bi

p3
j

∂pj

∂Bi

)
,

and

∂pj

∂Bi
= 1/2

(
1/Cj

∑
i

β2
ij/hiBi

)−1/2

1/Cjβ
2
ij/hi

= 1/2

β2
ij√

Cj

∑
k

β2
ik

/pk√∑
l

β2
lj

Bl∑
k

β2
lk

/pk

Then, the optimal investment can be calculated by the simultaneous solution of

the following set of nonlinear equations.

∑
j

1/2βij

√
Bi

(
β2

ij/p
2
j∑

k β2
ik/pk

)3/2 [
1 − Biβ

2
ij/p

2
j

Cj
∑

k β2
ik/pk

]
= 1/T,

and

∑
i

β2
ij/p

2
j∑

k β2
ik/pk

Bi = Cj,∀j.

Let γij =
β2

ij/p2
j∑

k
β2

ik
/pk

, and Ui =
√

Bi, then the optimal solution is the solution to

the following much simpler nonlinear equation:

1/T − 1/2Ui

∑
j

βijγ
3/2
ij + 1/2U3

i

∑
j

βijγij

Cj
= 0, (B.1)
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and
∑

i γijBi = Cj,∀j.

A simple near-optimal investment strategy determines the investment amount Bi

from Eq.(B.1) for the equilibrium prices.
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