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The ability of the ear model and lateral inhibitory networks(LIN) to preserve
and enhance acoustic features of speech signal is examined by training neural net-
works to recognize phonemes by their LIN outputs. Using the back propagation
learning algorithm, networks that are specialized to recognize specific classes of
phonemes are trained and tested. Experiments are conducted both in single and
multi-speaker cases. By using single layer networks, we can show that the phonemes
are identified by their acoustic features that have been known to linguists and pho-
neticians. The networks generally yield satisfying results when tested in experi-
ments for a single speaker, where we focus on the performance against phoneme
variation induced by the context, and in multi-speaker experiments where errors
in rccognition are due to speaker variation. These results convince us that the

acoustic features picked by the networks are reliable cues for phoneme recognition.
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Chapter 1

Introduction

1.1 An Overview

Speech is the major method for human beings to communicate with each
other. Man is the only creature that has developed a sophisticated mecha-
nism to transmit information by his voice. In spite of our great achievements
in science and technology, we are still not able to build a machine that can
fully emulate our speech processing system. For years, people have been
trying to learn from Mother Nature how such a complicated system is de-
veloped and functioning. As a result, we have already had the vocal tract
model accounting for the speech generating process{14,15].

Up to the present, many ear models have been successfully created based
on biophysical experimental data[1,5,15]. We have been able to reproduce
the activity patterns of the sensory nerves coming out of the cochlea through

computer simulation. But how these signals are further processed in the



central auditory system so that the encoded information can be recognized
and understood is still unknown because the experimental data are difficult
to obtain at this level of processing. People have been trying to build artificial
neural networks to simulate what is really going on in the brain.

During the past decade, artificial neural networks have been reported to
attain great success in applications of various fields besides signal process-
ing. Among these examples, neural networks are proclaimed to achieve an
outstanding performance especially in the field of pattern recognition. It
is widely believed that employing massive parallelism like neural networks
is the only way to tackle the traditional bottleneck induced by sequential
processing. In addition to parallelism, people also believe that the potential
benefit of neural network models is their ability in learning or adaptation[16].
Most neural network models are not parametric and make weak assumption
of the underlying distribution of the input data. It is particularly useful when
the input data are generated by nonlinear or non-Gaussian processes. The
learning algorithms then become the key point for neural network models to
work properly and excellently.

Several network topologies together with their learning algorithms have
been proposed. The multi-layer feed-forward network yvith back propagation
learning algorithm is undoubtably the most famous one that has been widely
studied and used[6]. It basically implements a gradient descent algorithm
to find a minimum of a given function which in our application is a pre-
defined error function that characterizes the discrepancy between the real
outputs and the desired outputs. With this algorithm, we are able to not

only understand how sets of different patterns are properly classified but also
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see the generalization ability of the network after learning. We have taken
advantage of this ability to achieve a rather high recognition rate in our
experiments of single speaker phoneme recognition. Chapter 2 will describe
the basic idea of the learning algorithm.

Every language is constructed by a set of basic linguistic units which have
the property that if one replaces another in an utterance, the meaning of the
word or sentence is changed. In other words, the information transmitted
through speech can be represented by a concatenation of elements from a
finite set. Such elements are called phonemes. To be identified correctly,
each phoneme must have its own unique features. It has been suggested
that the speech processing system described in the next section is good at
preserving and even enhancing the features of the phonemes. To confirm this
hypothesis and to discover the nature of the acoustic features, we have built
and trained several artificial neural networks to identify the phonemes from
several speakers in our speech database. The results illustrate that all the
networks choose as a key to discriminate the patterns exactly the acoustic
features which have long been known to linguistists and phoneticians. By
using these features of phonemes, the networks are able to achieve a high
recognition rate on the untrained patterns. We will describe our experiments
on a single speaker in detail in the third chapter.

In the fourth chapter, we generalize the experiments from single speaker
to four speakers. In spite of the significant variation among the speakers, the
learning process is again able to detect the common features of phonemes with
which our networks still yield a satisfying performance. By inspecting the

resultant weights after learning, we can get a clear picture of the important
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features in the phonemes as well as how the learning process can possibly
figure them out.

After these experiments, we are convinced that the lateral inhibitory
networks(LINs)[4] suggested to process the cochlear model outputs do pre-
serve and enhance the speech features in some sense. The basic ideas of

the ear model and LINs used in our experiments are described in the next

section.

1.2 The Speech Processing Model

Through the analysis of speech signals along the vocal tract, we can explain
many aspects of the speech generating process. In an analogous manner,
we may follow the signals up through the auditory system to find out how
different acoustic features are extracted and recognized at different levels.
After years of study, we have been able to create a model that emulates the
performance of the ears of human beings and other mammals [1,3,5]. The
input to the model is an ordinary speech waveform and the outputs are the
average firing rates for bunches of auditory nerve fibers, each of which has
different activity patterns for stimuli of different frequencies. Fibers in each
bunch are taken from the vicinity of the same spot of the basilar membrane
and should therefore have similar frequency responses. We shall call each
bunch of fibers a ‘channel’ in the following text.

Figure 1.1 shows the outputs of the ear model when the input is an 800Hz
monotone signal. The figure is arranged in a way that channels near the

bottom of the figure are sensitive to high frequency signals and those on the
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Figure 1.3: The envelope of 800Hz signal

top are sensitive to low frequency signals, which are corresponding to the
beginning and the end of the cochlea respectively. It is known that every
single tone signal will resonate at a particular point on the basilar membrane
where the signal will generate highest firing rates on the nerve fibers around
that point and decay rapidly thereafter. A list of the audible frequencies
with their resonant channels is shown in table 1.1. Figure 1.3 shows the
amplitudes of the channels by taking the vertical cross-sections in figure 1.1.
It is interesting to note that channels before the resonant point basically act
like half-wave rectifiers. Therefore, their firing patterns are also periodic and
have the same frequency with the input signal. It can be seen clearly in
figure 1.1.

A clear phase reversal can be seen among the channel responses near the
resonant point, as shown in figure 1.2. The rapid decay in the response am-
plitude and the reversal in phase are the two most important characteristics
of the ear model[3] that reveal the information of harmonics in the input
signal. Occasionally the input signal consists of many components with dif-
ferent frequencies, it will be relatively hard to tell where the resonant points

are by just looking at the amplitude envelope. In such cases, the phase re-



Frequency Channel Frequency Channel Frequency Channel

400 99 500 92 600 87
700 83 : 800 79 900 76
1000 73 1100 71 1200 69
1300 67 1400 65 1500 63
1600 62 1700 60 1800 39
1900 58 2000 56 2100 53
2200 54 2300 53 2400 53
2500 52 2600 51 2700 50
2800 49 2900 48 3000 47
3100 47 3200 46 3300 45
3400 45 3500 44 3600 43
3700 43 3800 42 3900 42
4000 41 4100 40 4200 40
4300 39 4400 39

Table 1.1: Channel numbers with their resonant frequencies

versal becomes the only reliable cue to tell where in the cochlea the signal
resonates, i.e., what kinds of harmonics are there in the input.

Networks that are designed to extract the features described above have
been created and tested in many aspects[4]. The so-called Lateral Inhibitory
Networks consists of two stages of processing. The first one, called LIN I,
uses the edge detection algorithm to examine whether a clear phase reversal
and/or amplitude deterioration can be observed. The second stage LIN II

then further enhances the results of LIN I. Figure 1.4 shows the LIN II
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output of an 800Hz monotone signal whose ear model outputs are shown
in figure 1.1. Figures 1.5 and 1.6 show both the ear model and the LIN II
outputs for an input signal which is composed of 400 and 800 Hz monotones
and the duration of the 400 Hz signal is only half as long as that of 800 Hz.

Conceptually, LINs generate output peaks only at locations corresponding

e e
datafriie ¢ 800.1Ipix ) :

Ver, sec [Clr Hor, seo {Clr Quit

0.0 0.2 0.3 0.8 0.8 0.8 0.9 1.4 1.2 1.4 1.%
Tine (nsecs)

Figure 1.4: The LIN II output of 800Hz monotone signal

to the harmonics of the input signal since LINs are basically edge detection
processing and the ‘edge’ can be clearly seen only at the points where the
harmonics resonate and decay quickly.

The amplitudes of LINs output, however, is not proportional to the rela-
tive intensity of the harmonics in the input signal because of the nonlinearity
of the ear model. In our model, the high frequency components are usu-
ally amplified due to some pre-emphasis effect. The signal intensity and the

output amplitudes are related in a rather complex way which is already far
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beyond our scope of discussion.
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Chapter 2

The Supervised Learning

Algorithm

2.1 Introduction

The back propagation algorithm has become very popular and achieved great
success in many applications[6]. It has been exclusively implemented on
multi-layer, feed-forward networks based on the perceptron model. Each
neuron in the network is assumed to have the same activation function which
should be continuously differentiable. The logistic function is the most pop-
ular choice because it can be divided into regions corresponding to shut-off,
quasi-linear and saturated states and thus behaves much more like that of a
real neuron.

In consideration of computation load, the algorithm is seldom imple-

mented as a real gradient descent as it should be. Besides, even if real
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Figure 2.1: A two-layer, feed-forward network

gradient descent is embodied into the learning process, there are still some
problems that should be carefully taken into account. In this chapter, we are
going to show that it can actually be implemented to guarantee convergence
if the problem is solvable. We will also argue that by properly choosing the
parameters, the algorithm can more likely achieve a global optimal answer
just like we have always got in our experiments described in the next two

chapters.

2.2 Simple Gradient Descent Algorithm

12



Consider a two-layer network as shown in figure 2.1. We thus have

y; = f(Z w;;z; — 0;) (2.1)

where
1

=1+e"°‘

is the activation function and w;; and 6; are the weight and threshold re-

fa) (2.2)

spectively. Let d; be the desired output of node j for a particular exemplar,

we can define the error function as

E = %z(yj —d;)? (2.3)

J
which is a function in terms of the weights and thresholds in the network. The
goal of the learning process is to adjust those parameters so as to minimize
the error. The most efficient way to minimize a function is to adjust its
variables along its gradient, i.e., we should let

Aw,-j = —)\awv

where A is a positive number which, for the reason shown below, is called
the learning rate of the process. The minus sign here indicates that we are
going along the direction to minimize the function rather than to maximize

it. However, since

0F, _ df Baj
aw,-j B (yJ B dj)daj 8w,-j
e~
= W) gy
= (y; - d;)(1 - yj)yjl'i (2.4)

13



therefore,

where é; = y;(1 — y;)(d; — y;). Similarly, we can obtain

OE;
J

The same technique can be used to adjust parameters in hidden layers.

From figure 2.1, we have

z; = f(8)
Bi = D wyz—b;
Ye = f(z w;z; — 6;) (2.7)
J
and
OF, _ 0B Oy Doy
3w,—,~ A Byk 80tk 8w,-]-
- ng_aﬂgéj_
A 6,6] 8'11),']'
= IL'J(]. - 271) Z 5kwjkz,-
2
therefore,

k

Similarly, we can obtain

AHJ = —/\.’I;J-(l - LL'J) Z 5kwjk (29)
k

14



Although these results are derived from a two layer network, they can be eas-
ily generalized for any multiple layer networks. To summarize, the adjusting

formulae are

Awil = Ai-lgl-t
27 2 t
AL = —\§i-
7 J
-t = gl(1-ah)) sl (2.10)
k

where we use the superscript to denote the layer, i.e., mg means the output
of the jth neuron at the /th layer.

From equation 2.10 we can see that the error of the network is carried from
the outer level toward the inner level by the term é in which way the weights
and thresholds of the network are adjusted. This is why the algorithm is

known as the “back propagation” algorithm.
g

2.3 Problems and Modifications

In this section, we are going to discuss several problems induced by the algo-

rithm described in the preceding section and exploit the possible solutions.

2.3.1 Convergence of the Algorithm

Equations 2.10 have been widely used for various problems although they are
derived for the single exemplar case. For multi-exemplar problems, what has
been usually done is, in each run of the training process, pick up an exemplar

from the training set randomly, adjust the weights and thresholds according

15



to the above formulae and then repeat the choosing and adjusting processes
until the error is reduced below an acceptable value.

Intuitively, it may work fine when all the error functions associated with
different exemplars share a common minimum. If this is not the case, the
adjustment made to decrease error for a particular exemplar may not decrease
the error for other exemplars. In the worst case, it may even increase the
total error. Furthermore, it has been shown that the algorithm is doomed to
fail if the error function of a particular exemplar possesses a very ‘attractive’
local minimum(8]. Under such cases, the total output error keeps going up
and down and the algorithm fails to converge.

Since the point of convergence is quite crucial in our application, we
choose to implement it as a ‘real’ gradient descent algorithm, i.e., by consid-

ering the overall error function

s:ZEi

and taking advantage of the linearity of differentiation, we may obtain that
the resultant adjustments of the parameters are simply the summation of
adjustments for each exemplar. When implemented on the digital computer,
we have to approximate the differential equations in the form of difference
equations and, therefore, even with this modification, we still can not con-
clude that the error sequence will always be less and less after each run by
the nature of gradient descent. The problem lies on the learning rate A.
Theoretically, when the learning rate is small, the system should go along
a path as shown in figure 2.2(a) and reach the minimum. Even if the rate is a

little larger, we may have a path like figure 2.2(b) which still gives the desired

16
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Figure 2.3: A simple two-layer network that can solve xor problem

result. However, if the learning rate is chosen too large, we might carry the
movement too far and have a path as shown in figure 2.2(c). Unfortunately,
the magnitude of the learning rate depends on the shape of the error function,
which in turn depends on the problem itself. Since there has been no heuristic
enlightening how we can choose the learning rate, it is usually chosen by trial
and error.

With carefully chosen learning rate, we can guarantee that the error se-
quence is strictly decreasing if the problem is learnable, i.e., there exists a
set of weights and thresholds that can yield the input-output relations re-
cursively defined by eqs. 2.7. Take the generalized exclusive-OR problem for
example. The two-dimensional plane is divided into eight parts instead of
four as in the exclusive-OR(XOR) problem and every four disjoint parts are
classified as the same group. The problem is considered hard to solve because

the back propagation algorithm has to form a continuous surface to divide

18



the ‘discontinuous’ space. Using a two-layer network like the one shown in
figure 2.3, we can obtain the result as shown in figure 2.4.

The parameters for running the back propagation algorithm is very cru-
cial in this example. The above result is solved with learning rate 0.2 and
momentum 0.6. If a larger learning rate is used, our program will diverge.

The effect of momentum is discussed in the following section.

Figure 2.4: The surface that solves generalized XOR problem

2.3.2 Local Minimum Problem and Speed of Conver-

gence

After carefully choosing the learning rate, we still have the problem that the
algorithm can get stuck at a local minimum point and never reach the point

that most minimizes the error. Furthermore, since the output of the neuron
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is between 0 and 1, the adjustments in equation 2.10 are therefore very small
and result in a slow convergence.
These two problems can be solved by adding a ‘momentum’ term, i.e., we

now let
Aw(t) = Az;(1 = z;) ) Swie(t — 1)z + mAwy(t — 1) (2.11)
k
and
AG;(t) = =dz;(1—2;) Y Swjp(t — 1) + mAg;(t — 1) (2.12)
k

where w;;(t) and 0,(t) represent the weight and threshold at run ¢ respectively
and m is called the momentum.

The idea is to add some ‘inertia’ to the system so that it has a tendency
to keep in the direction it has been moving. Therefore, when it is moving
toward the minimum, it can be accelerated and reach the goal more quickly.
On the other hand, if the vicinity of a local minimum is not so steep, the
momentum can help to drive the process uphill and get out of that valley. As
in the case of choosing a learning rate, there is still not a known systematic
method to decide the magnitude of the momentum because they both depend
on the problem itself very much. Typically the momentum gain m is chosen
to be less than 1 so that the influence of the past moves will decay in time.

In the applications described in the next two chapters, we always choose
a large momentum to get away from local minima. But a large momentum
also has a tendency to prevent the searching process to stop at a global
minimum if it does not reside in a deep valley. To avoid missing the global

minimum, we keep monitoring the overall learning error sequence and once

20



the error reaches zero, we claim that a global minimum is found and abort
the searching process. Luckily enough, we always get the global minimum in

our experiments.

2.3.3 Capability and Redundancy Effect

In a simple feed-forward network, we can associate with each training ex-
emplar an equation in terms of the weights and thresholds of the network.
For example, we can have the equations below for the network shown in

figure 2.3:

o = flwynzy + wypzy — ;)
;= fwinis + Witk — 011)
Iy, = f(w112ik1 + Wigglky — 912)

where the training exemplars in this example are specified as (z,%,,0). The
learning process is then to find proper values for the nine parameters: 6
weights and 3 thresholds. It is then very clear that there would be no solu-
tion if the number of exemplars exceeds nine, we will have more than nine
equations to be solved while there are only nine variables. Remember that
the number of equations should always be less or equal to the number of
unknown variables. Therefore, a single layer network with 2 input and 1
output node can never learn the exclusive-OR(XOR) problem since there are
only three variables but four restrictions to be satisfied. It turns out that the
XOR problem should be solved by a network as shown in figure 2.3.

However, we have found that the number of nodes can neither be infinitely
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increased. In the XOR network, an additional node in the hidden layer
will generate 4 more variables. Somehow when the number of nodes in the
hidden layer is increased up to 5, the error sequence can no longer go directly
downward as before and sometimes it even diverges. This is a typical problem
when we use a discrete time algorithm to solve a continuous time differential
equation. Therefore, in addition to lowering the computation load, it is also

important to avoid having too many redundant nodes in the network.

2.3.4 Performance of the Algorithm

It is known[7] that a 2-2-1 network as shown in figure 2.3 can learn exclu-
sive OR problem by back propagation algorithm, i.e., a set of weights and
thresholds can be found for a network with 2 inputs, 1 output and 2 hidden
nodes. Both the simplified and real-gradient-search algorithms are coded
and executed on an HP-835 under UNIX system. The real-gradient-search
algorithm does not take much more time as expected. Actually, the former
algorithm was wandering in the beginning and wastes some time.

For a single layer network, like those used for phoneme discrimination
described in the next chapter, we have tried to solve for the weights and
thresholds directly by applying matrix algebra. Since what we deal with is a
network with 128 input nodes, the dimension of the the matrices is so large
that it takes no less time than the gradient descent algorithm. Actually,
when dealing with so large a matrix, many additional procedures have to
be employed to reduce truncation error. This makes the learning algorithm

more attractive even when a single layer network is concerned.
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Chapter 3

Phoneme Recognition for

Single Speaker

3.1 Introduction

Recently, many successful experiments in speech recognition by neural net-
work models have been reported(See for example,[10,11,13]). Most of them
are done by training 2 or 3 layer feed forward networks to recognize a certain
class of phoneme. After training, most achieve recognition rates over 95%
for consonants and 65% for vowels. Nevertheless, people have not paid much
attention to interpretate what the weights of neural networks really stand
for.

However, in our experiments in which single layer, feed forward neural
networks are trained to recognize LIN II outputs of the steady state bursts of

phonemes, we find surprisingly that not only a single layer network is good
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enough to achieve satisfying performance but that the weights of the net-
works serve like a mask that extracts unique features of phonemes. Since our
learning process only stops at the the global minimum of the error function,
the significance of the results is that the best way to discriminate phonemes
is to examine their characteristics in the frequency domain and label them
with their unique features.

A phoneme is characterized by its voicing, manner and place of articula-
tion. Sounds produced with excitement of the vocal chords are called voiced
sounds. Reflected in the waveform, voiced sounds have larger energy than
unvoiced sounds. The manner of érticulation is related to the vocal tract dy-
namics in the sound producing process. While there are sounds that have to
be produced with fixed shape of the vocal tract, there are others that strongly
depend on the change in shape during their production. The temporal infor-
mation in LIN spectra reveals their manner of articulation. In terms of these
two characteristics, we can divide the phonemes in English into six classes:
nasals, voiced/unvoiced stops, voiced/unvoiced fricatives, vowels and vowel-
like sounds. Their characteristics will be described in detail in the following
sections. Phonemes in each group then can be further discriminated by their
spectral characteristic that is related to their place of articulation.

What we have done is basically to discriminate phonemes within the same
group, that is, only the frequency information in the spectra is used. Specif-
ically, we are trying to figure out whether there are important stationary
features that can be used to identify uniquely each phoneme. We have built
for each class of phonemes a specialized network and trained it to discrimi-

nate the phonemes with back propagation algorithm. In order to focus on the
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frequency information, the training and test data are taken explicitly from
the steady state of the spectra. By steady state we mean the nasal murmurs
for the nasals. For stops, it is the noise burst following the release from the
closure. The diphthongs are not included because we believe they can be
further divided and recognized as two concatenated vowels.

In the following text, we shall refer to three kinds of data patterns that
are used as training or testing data. An instantaneous pattern refers to the
channel response at a particular instant of time. Therefore, it is simply a
vertical cross-section in the LIN II spectrum. A short-time-average pattern
is the average response of the channel over the steady-state duration of a
single phoneme. It is actually the average of the instantaneous patterns
within that duration. Although we have tried to exclude all the transitions,
the short-time-average patterns may still neglect the phoneme context. We
further take the average of the short-time-average patterns of each phoneme
extracted from different words of the same speaker and use it as the exemplar
in our training process. This pattern is called the time-average pattern in the
following text.

All our speech data are taken from the Ice-cream database which contains
speech waveforms from both male and female speakers, each of whom spoke
ten sentences in an ordinary way. The sentences were chosen in considera-
tion of the balance of the phonemes. In this chapter, we are going to present
the results of the experiments on single speaker’s data. All the results in
this chapters except fricatives are taken from the first male speaker in the
database. The results of fricatives are from the data of the third speaker

because there is no /zh/ in the first speaker’s data. All the experiments
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have been repeated for 3 other male speakers and have yielded similar re-
sults although the phonemes are from different sentences and hence different

context. The sentences and occurrence of phonemes are shown in table 3.1

and 3.2..

1 | The birch canoe slid on the smooth planks.

2 | A large size in stockings is hard to sell.

3 | Glue the sheet to the dark blue background.
4 | It’s easy to tell the depth of a well.

5 | These days a chicken leg is a rare dish.

6 | Rice is often served in round bowls.

7 | The juice of lemons makes fine punch.

8 | The box was thrown beside the parked truck.
9 | The hogs were fed chopped corn and garbage.
10 | Four hours of steady work faced us.

Table 3.1: The sentences from which our phonemes are extracted

3.2 Performance Measurements

All of our networks are specialized to recognize a particular class of phonemes.
An output node is assigned to turn on for a particular phoneme and all the
rest output nodes are instructed to shut off. Ideally, when a test pattern is
presented, only one output node will exhibit a high output. We then say
that the test pattern is recognized as the phoneme that is trained to turn on

this output node.
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Symbol | Samples || Symbol | Samples || Symbol | Samples
aa 10 ae 2 ah 9
ao 7 ax 13 b 6
d 9 dh 8 er 4
ey 12 f 5 g 4
ix 11 iy 9 k 11
1 11 m 3 n 13
p 3 r 14 s 17
sh 2 t 8 th 3
uw 3 ux 2 v 4
VA 12

Table 3.2: Phonemes used in the single speaker experiments

For a rough measurement of our networks performance, we use hard de-
cision rule for recognition, i.e., we always say that the input is recognized as
the phoneme whose corresponding output node has the largest output value
no matter how small it may be. The recognition rate is thus the percentage
that the network makes the right choice on the testing or untrained patterns.
The idea of this decision rule is directly from the ideal case in which only
one node has a high output. If a decision has to be made in this level of pro-
cessing without any other information, the hard decision rule is quite logical.
Note that there is no not-recognized case under this decision rule.

To understand how errors are made, we also construct a confusion matrix

for each network based on the recognition of the instantaneous patterns. The
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entity in the :** row, j%* column of the matrix(for ¢ # j) is the percentage
that the j** neuron has the largest output value when the testing patterns
are supposed to turn on the :** neuron. We can see from the confusion matrix
how phonemes are mistaken for each other.

In most cases, however, there is noise in the input which boosts other
output nodes. The noise may even come from the context interference. For
example, figure 3.1 shows the nasal murmur of /n/ in the word ‘snow’. It

SSPRGR FA IE JOE : datafile.: snou.ll. - - R Lo

L N PN R

Ver. sec |Clr Hor, sec |Clr Quit

T
9.9 LX) 0.8 1.2 6 2.0 2.4 2.8 3.2 3.6 4.0

1,
Time (nsecs)

Figure 3.1: The LIN II outputs of the word ‘snow’

can be clearly seen that the burst of /n/ is deeply buried in the end of /s/
and the initial of /o/, both of which have higher responses and make the
burst of /n/ very obscure. As a result, the hard decision rule will yield con-
fusing recognition under such a condition. Furthermore, there are phonemes
that are quite similar to each other in many aspects so that even a human

being cannot always distinguish them very well without temporal or context
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information. This may corrupt the hard decision performance.

It is reasonable to assume that all phoneme recognition does not have to
be made at a low but rather at a high level which takes both the spectral and
temporal information into account. In such case, our networks may report
the pattern of output node activation and let the higher level processing
decide which one should be really chosen. However, to make the scheme
work properly, the probability that each node is incorrectly turned on/off
should be as low as possible.

For each node, two types of errors can be defined. . A type 1 error, a
miss, occurs if the node exhibits a low output when it is supposed to be
high. Similarly, type 2 error, a false alarm, occurs when the node has a high
output but should actually be a low one. By testing the networks on all the
instantaneous patterns, we obtain the empirical distributions, f,n and for7s,
of the output value for each neuron under the cases that it is supposed to

turn on or off respectively. Then the empirical probabilities of error are

g
Pr(miss) = /0 fon(z)dz
Pr(falsealarm) = /: fors(z)dz

where 0 is the threshold for on and off for the neuron. It is clear that the
threshold plays a key role here. If the threshold is too high, we may suffer
a huge amount of miss and if it is too low, then we may have too many
false alarms. The probabilities of these two types of error must match the
requirement set by the higher level processing unit. What is usually done is

we define a cost, or penalty function in terms of the probabilities of error,

29



le.,

C(0) = aPr(miss)+ BPr(falsealarm)
Y 1
= o [ fonl@)da + B [ fors(a)ds
(3.1)

where a, 3 are the penalty coefficients for miss and false alarm respectively.
The threshold 4 is then chosen such that the cost C{6) is minimized.

In the following text, we are also going to examine our network perfor-
mance assuming the penalty coefficients are given generally according to the
number of the output nodes. For éxa.mple, if a network has 6 output nodes,
we will assume that the penalty of miss is five times as large as the penalty of
false alarm for every node in the network. We made this assumption just for
demonstrative purpose. We shall refer to this kind of performance measure-
ment as deferred decision performance and the previous one as hard decision
performance in the following text.

In the rest of this chapter, we are going to discuss the performance of the
networks that are trained to recognize different classes of phonemes in the
order of nasals, stops, fricatives and vowels. Nasals are first discussed inde-
pendently because their radiation is totally different from any other phonemes
but, since we cannot easily tell them from vowels simply by the voicing or
the temporal information in the spectrum, we also add nasals to the vowels

network and train them together.
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3.3 Nasal Consonants

The nasal consonants are normally excited by the vocal cords and hence are
voiced. Among all the phonemes, nasals are the only sounds that are radi-
ated at the nostrils. The mouth cavity, on the other hand, is usually closed
and serves like a zero which suppresses all spectral energy at its resonant

frequency. Nasals used in English are summarized in the table 3.3. Due

Place Symbol Example
Labial m ma’am
Alveolar n none

Palatal/velar ng sing

(no initial form)

Table 3.3: Nasal consonants in English

to this special way of radiation, in the spectrum nasals typically don’t have
significant outputs within the region where vowels have. This is because the
all-pole model cannot be applied to nasals and zeros must be added to the
vocal tract model due to the resonance in the mouth cavity. In the LIN II
outputs, nasals have significant outputs in the higher frequency region cor-
responding to the upper(higher frequency) ‘edge’ of zero. Figure 3.2 shows
the LIN II output of the word ‘amnesia’ in which typical LIN II patterns of
nasals can be clearly seen. This may be the most important clue to distin-
guish nasals from the vowels by their LIN II outputs.

An important difference between nasals spectral patterns arises fromthe

size of resonant space in the mouth cavity. For example, the resonant cavity
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Figure 3.2: The LIN II output of the word ‘amnesia’

of /m/ is longer than that of /n/ so that the resonant frequency of /m/ is
lower. It should be reflected in the spectrum that /m/ has an edge of zero in
the lower frequency than /n/ does. This difference between the nasals, which
often is invisible in spectrograms is quite evident in the LIN II output. As an
example, figure 3.2 shows the LIN II output for the word ‘amnesia’ in which
the nasals are right next to each other and we can easily see the difference.
The time-average LIN II outputs of nasals are shown in figures 3.3.

We created a network with only 2 output neurons, each of which is trained
to turn on for one of the nasals. The weighted inputs and the weights after
learning are shown in figure 3.4 and 3.5. It can be clearly seen that the
network detects the difference in frequency of the edge of zero and use it as the
key to discriminate these two phonemes. When we test the network with the

short-time-average patterns, the recognition rate is 100%. The recognition
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Figure 3.3: Time-average LIN II outputs for /m/ and /n/. The major peak
of /m/ and /n/ are locateed at the frequency of 2100 Hz and 2200 Hz re-

spectively

Figure 3.4: The weighted inputs for nasal /m/ and /n/
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Figure 3.5: The sets of weights for discriminating nasals. The upper is the

set of weights associated with /m/ neuron, the other is with /n/ neuron

_here is based on hard decision rule described in the previous section. When
the test patterns are chosen from instantaneous time slices, the recognition
rate is still as high as 95%. This indicates the network does pick a reliable
key to discriminate the nasals. We also have trained the nasals together with
all the vowels in the vowel network in which the acoustic features of nasals

can be seen more clearly. We shall describe this in the section 3.6.

3.4 Stop Consonants

Stop consonants, or stops, are a class of phonemes that depend heavily on the
vocal tract dynamics for their creation. To produce these sounds, a complete
closure has to be formed in the vocal tract. A pressure is then set up behind
that point and suddenly released by an abrupt motion of the articulators. It
is the explosion and the aspiration that characterize the stops. The stops can

be produced with or without the vibration of vocal cords. Therefore, there
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exist both voiced and unvoiced stops. Consonants that can be grouped into
voiced and unvoiced complementary pairs are called cognates.

The stop consonants used in English are listed in the table 3.4.

Place of Voiced Unvoiced

articulation =~ Symbol Examples Symbol Examples

Labial b be,crab p pop,pipe
Alveolar d day,good t tote,tit
Palatal/velar g go,dog k kick,cook

Table 3.4: Stop consonants in English

Since a complete closure should be formed before this class of phonemes
can be produced, there exists a silent period immediately preceding the burst
of each stop consonant. This temporal cue makes the stop consonants dis-
tinguishable from any other classes of phonemes. As an example, the LIN II
output of the word ‘maintain’ is shown in figure 3.6.

The time-average patterns of the bursts of stop consonants are shown in
figures 3.7 and 3.8. It can be clearly seen that the outputs of stops spread over
different regions in the LIN II spectrum and therefore can be distinguished
accordingly. As shown, labial stops like /b/ and /p/ have outputs in the
lowest frequency and alveolar stops like /t/ and /d/ have outputs in the
highest frequency. /g/ and /k/ have outputs in between. The spectra of
/t,d/ and /k,g/ reflect the resonant effect of the frontal cavity which we will
describe in more detail in the next section. It is interesting to see that the
time-average patterns of voiced stops look quite similar to those of unvoiced

stops and also have little response in the low frequency region. It results from
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Figure 3.6: LIN II output of ‘maintain’ spoken by a male speaker
FASNO : }/\M — .

Figure 3.7: Time-average LIN II outputs for the bursts of /t/,/k/ and /p/,
where the peaks are located at about 4000, 2000, and 780 Hz respectively.
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Figure 3.8: Time-average LIN II outputs for the bursts of /d/,/g/ and /b/,
where the peaks are located at about 4700, 2200, and 880 Hz respectively.

the pre-emphasis in the cochlear model that suppresses the low frequency
components. Nonetheless, the voicing information can be easily obtained
even before the speech waveform is sent to the ear model. For example, the
energy in the waveform can be used for this purpose. In our database, the
energy of voiced phonemes can be higher by 3 dB to 20 dB than unvoiced
phonemes and a threshold can be simply set up to detect voicing with more
than 98% accuracy.

Two networks were trained to recognize this class of phonemes, one for
voiced and one for unvoiced stops. After training, the weighted inputs of
the stops are shown in figure 3.9 and 3.10 and the corresponding weights
are shown in figures 3.11 and 3.12. It is not surprising that the weights
for each phoneme are larger in the region corresponding to their major peak

locations. The features that differentiate phonemes in this group can be even
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Figure 3.11: Weights for discriminating unvoiced stops /t,k,p/ respectively

more clear by looking at the weighted inputs as shown in figure 3.9 and 3.10.
It can be seen, for example, although /d/ and /t/ have responses over a wide
range of the LIN II spectrum, it is the the highest frequency output that
differentiates them from other phonemes in this group. Actually, the lower
frequency peak of /t/ or /d/ is negatively weighted in order to avoid confusion
with /k/ or /g/, as can be seen in figure 3.9 or 3.10. When tested with short-
time-average patterns, both the voiced and unvoiced networks yield perfect
recognition. When tested with the instantaneous patterns, we can still have
an average recognition rate of 76%. Table 3.5 summarizes the percentage of
the mis-classification with respect to the input patterns. Significant amount
of errors are made in recognizing /d/. This occurs because of the absence of
high frequency outputs in many /d/ patterns, leaving their maximum peaks
in the middle of the spectrum. Unfortunately that location overlaps the

portion occupied by the major peak of /g/ and those patterns are therefore
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Figure 3.12: Weights for discriminating voiced stops /d,g,b/ respectively

t k p  Samples d g b  Samples
t 0.00 0.09 0.00 90 d 0.00 0.47 0.03 58
k 0.14 0.00 0.19 57 g 0.11 0.00 0.18 62
p 004 0.04 0.00 24 b 0.09 0.05 0.00 22

Table 3.5: The confusion matrix of stop consonants recognition

identified as /g/.

Table 3.6 shows the deferred decision performance with the penalty of
miss is twice as much as that of false alarm. All the offsets are reasonably
chosen around 0.5. Except for the probability of miss of /k/ is a little too
high, the performance is in general acceptable. This suggests that the fre-
quency information 'of the burst alone is suitable to discriminate the stop

consonants from one another.
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Output | threshold Prob. of miss Prob. of False Alarm
d 0.52 0.00 0.05
g 0.46 - 0.10 0.20
b 0.45 0.05 0.11
0.51 0.08 0.06
k 0.50 0.32 0.07
p 0.47 0.00 0.17

Table 3.6: The deferred decision performance of stop networks
3.5 Fricative Consonants

Fricatives are produced from an incoherent noise excitation of the vocal tract.
The noise is generated by the turbulent air flow in a constriction in the vocal
tract. Radiation of fricatives usually occurs at the mouth. There are both
voiced and unvoiced fricatives just like there are both voiced and unvoiced
stops. Both stop and fricatives consonants are cognates.

Fricatives used in English are listed in table 3.7. Their time-average
patterns are shown in figures 3.13 and 3.14. It can be clearly seen that
all the dominant outputs of fricatives are located in the high frequency and
almost nothing in the low frequency. This is an important clue to distinguish
fricatives from other classes of phonemes. Although the stops may have
similar spectral shapes, they can still be distinguished from the fricatives by
the longer burst duration of the fricatives.

Again, the LIN II output for voiced and unvoiced fricatives are quite sim-

ilar to each other as in the case of stops. After training, the weighted inputs
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Figure 3.13: Time-average LIN II outputs of [s/,/t],/th/,/sh/
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Figure 3.14: Time-average LIN II outputs of /z/,/v/,/dh/,/zh/
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Place of Voiced Unvoiced

articulation =~ Symbol Examples Symbol Examples
Labio-dental v very,survive f for,beef
Dental dh then,clothe th thin,fifth
Alveolar VA zero,analyze s see,less

Palatal/velar zh usual,mirage sh she,fish
Glottal h he

(no final form)

Table 3.7: Fricative consonants in English

of the fricatives are shown in figure 3.15 and 3.16. The V;leights of the two
networks are also shown in figures 3.17 and 3.18. With the weights shown
above, we can achieve 80% recognition rate for unvoiced and 85% for voiced
fricatives on short-time-average patterns. Errors can be seen exclusively on
recognition /f/ versus /th/ and /v/ versus /dh/. It is rather understandable
because these two fricatives have little difference in their LIN II outputs. It
is even more clear by examining their weighted inputs as shown in figure 3.15
and 3.16. It is interesting to note that in the weighted input patterns of the
fricatives, the peak location strongly reflects the point of constriction during
its production. As the constriction point moves backwards toward the glottis,
the peak location moves downward to the low frequency. This phenomenon
is a result of lengthening in the frontal cavity of resonance which largely de-
termines the dominant energy in the spectrum and its overall shape[2]. The
peak locations of the weighted inputs for /f/ and /th/ are only three channels

away from each other with about only 400 Hz difference in frequency. This
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Figure 3.15: Weighted inputs of unvoiced fricatives /s,f,th,sh/
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Figure 3.16: Weighted inputs of voiced fricatives /z,v,dh,zh/
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Figure 3.17: The weights for discriminating unvoiced fricatives /s, f, th,sh/
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is no surprising at all because the of the place of articulation is rather close
for these two phonemes. The hard decision performance for instantaneous

patterns is shown in table 3.8.

] f th sh Samples z v dh zh Samples
s .00 .08 .14 .01 537 z .00 .04 .00 .00 54
f .03 .00 .30 .02 281 v .01 .00 .16 .10 69
th .01 .29 .00 .06 70 dh .08 .42 .00 .03 191
sh .06 .12 .17 .00 224 zh .04 .11 .02 .00 46

Table 3.8: The confusion matrix of fricatives

Output | threshold Prob. of miss Prob. of false alarm
s 0.51 0.04 0.22
f 0.50 0.19 0.27
th 0.51 0.26 0.28
sh 0.49 0.09 0.22
z 0.50 0.03 0.16
v 0.52 0.25 0.15
dh 0.42 0.13 0.26
zh 0.54 0.24 0.04

Table 3.9: The deferred decision performance of fricatives

Table 3.9 summarizes the deferred decision performance with the penalty
of miss is three times as much as that of false alarm. We believe that such

an error rate is acceptable and correctable in a higher level processing. This
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suggests that the frequency information of fricatives is also suitable for their
discrimination.

However, when analyzing data from other speakers, we notice that some-
times the highest peaks of /f/-/th/ and /v/-/dh/ do overlap a lot and the
weighted input patterns look somewhat different in /f/ and /v/. We shall
discuss this issue in the next chapter.

It is quite interesting to note that the weighted inputs of /s,z/ and /t,d/
match at high frequency. This goes with the knowledge that /t,d/ and /s,z/
are only different in manners of articulation. We also observe the similarity

between /sh,zh/ and /k,g/.

3.6 Vowels and Semivowels

Vowels are produced exclusively by voiced excitation of the vocal tract. In
comparison with the voiced fricatives, vowels have their dominant LIN II
peaks exclusively within low frequency region and hence can be easily iden-
tified.

Vowels are usually classified by the shape of the vocal tract and the
degree of constriction during their producing process. Table 3.10 lists the
vowels labeled in our speech database.

In English, there are still two groups of sounds that resemble vowels very
much. The first group contains /r,l/ that are called semivowels. Semivowel
/1/ can form a syllable like vowels can, for example, consider /1/’s in the
words like ‘apple’,‘double’,castle’. The other group contains /w,y/ which are

called glides. They are both produced with more constriction in the vocal
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Degree of Tongue hump position

constriction front central back

High /iy/ eat [er/ bird Juw/ food
/ix/ kid Jux/ good

Medium /ey/ bed Jah/ bus Jao/ all

/ax/ ago(unstressed)

Low /ae/ bad : Jaa/ lock

Table 3.10: Vowels labeled in our database

tract and the tongue is not down. They are also characterized by voiced
excitation, no nasal coupling, and sound radiation from the mouth ~ exactly
the same characteristics as the vowels have. In our experiments, we trained
the semivowel /1/ and nasals together with the vowels. The vowel /ax/ is not
included because it is always unstressed and we usually cannot get a clear
segmentation of it. Similarly, glides often do not have a stationary part in
their bursts and therefore are not included in our experiments. However, for
the reasons we have mentioned before, we include the nasals in the vowel
network because the way to distinguish them is their spectral characteristics
rather than the voicing or temporal information in the LIN II outputs.

The time-average patterns for this class of phonemes are shown in fig-
ure 3.19. It can be seen that, for vowels, only the first few formants domi-
nate the LIN II outputs. As pointed out in [2], the information of the degree
of constriction and tongue hump position as summarized in table 3.10 is
strongly encoded in the LIN II outputs not only in the locations of peaks but
also in their relative amplitudes. Generally speaking, the higher degree of
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constriction yields higher ratio of peak amplitudes and as the tongue hump
moving backward to the glottis, the dominating peak moves from high to
low frequency. Therefore the amplitude ratios of ‘close’ vowels like /iy/ and
Juw/ are larger than ‘open’ vowels like /ae/ and faa/. Also, the dominant
peak of /iy/ appears at rather high frequency(channel 57, around 1950 Hz)
and the peak of /uw/ is at low frequency(channel 106, below 400 Hz) with
the peak of /er/ at about 1200 Hz. The only exception is /ux/ has the
high frequency component larger than its low frequency ones. We suspect
that results from its short duration and hence more sensitive to the con-
text so that what we’ve got is a polluted spectrum. Anyway, the features
of vowels can be seen more clearly in the weighted input patterns as shown
in figure 3.20. From this figure, we can see that the low frequency peaks
of close front vowels like /iy/ and /ix/ are ignored and same for the high
frequency peak of /uw / . For the open vowels, since their peaks are almost of
the same magnitude and therefore equally important, the back propagation
learning algorithm then conducts the give-and-take rule over the spectrum.
For example, /ey/ has to take the low frequency one because its other peak
is inhibited by the front vowels. /aa/, /ae/ and /ao/ then take their largest
peaks and release the portion occupied by their other peaks. Since /ah/ has
a rather flat spectrum, it can easily take the rest without conflicts. Such a
give-and-take rule is rather fragile because the weighting heavily depends on
the training set. For example, since /1/ is trained with all the vowels, its
first formant( around 480 Hz ) is totally ignored and its second formant( at
900 Hz ) is boosted. In the next chapter, we’ll see that experiments on other

speakers yield somewhat different results. Nonetheless, the features of nasals
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aa a ah a0 er uw ux ey ix iy | m 1n Data

aa .00 00 .09 .12 .21 .00 .00 .06 .00 .00 .00 .00 .00 208
aec .00 .00 .00 .09 ..18 .00 .00 .00 .02 .18 .02 .00 .02 55
ah .07 .05 .00 .01 .06 .03 .00 .12 .06 .16 .01 .02 .05 179
ao .21 .01 .09 .00 .00 .00 .00 .01 .00 .00 .05 .00 .00 96
ec .05 .00 .05 .00 .00 .23 .00 .00 .01 .19 .01 .00 .00 135
uw .00 .00 .03 .01 .00 .00 .00 .00 .00 .05 .00 .06 .06 108
ux .00 .00 .01 .00 .00 .04 .00 .01 .17 .01 .00 .00 .01 78
ey .04 .01 .04 .03 .01 .00 .04 .00 .03 .13 .00 .03 .01 211
ix .01 .00 .00 .00 .02 .00 .11 .02 .00 .08 .00 .06 .12 166
iy .00 .00 .02 .00 .00 .01 .01 .00 .15 .00 .00 .32 .07 238
1 .10 .03 .11 .00 .09 .02 .00 .07 .00 .03 .00 .04 .04 182
m .00 .00 .00 .00 .00 .01 .00 .00 .00 .00 .00 .00 .13 68
n .00 .00 .02 .00 .00 .04 .00 .00 .00 .02 .00 .23 .00 248

Table 3.11: Confusion matrix for vowels

and most vowels are not influenced at all.

The network can achieve 82% recognition rate on short-time-average pat-
terns by using hard decision rule. Most errors come from mistaking /iy/
for /ix/ and /m/. Few errors are made in recognizing open from back close
vowels. The hard decision performance on instantaneous patterns is shown
in table 3.11. From this table, we see that basically the performance of this
network is reasonable in that it makes mistakes among the vowels in the same
group. Only a few open vowels will be mistaken for close vowels and front

vowels are seldom mistaken for back vowels. The great amount of errors in
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confusing /ao/ as /aa/ is also not surprising after looking at their LIN II
outputs. By using the time-average patterns as the exemplars and the short-
time average patterns as the test patterns, the performance of our single
layer vowels network is comparable to the performance of many multi-layer
networks like [10].

In terms of deferred decision performance, we also achieve an acceptable
results. Table 3.12 shows the thresholds and the probabilities of two types
of errors with the penalty of miss is twelve times as much as that of false
alarm for each output neuron. Again, the good performance suggests that

the acoustic features of vowels are reliable cues to their identification.

3.7 Summary and Remarks

In this chapter, we have presented the ability of single layer networks in
single speaker phoneme discrimination. We have found that the acoustic fea-
tures of the phonemes are learned by the networks and used to discriminate
phonemes. According to our experimental results, the acoustic features are
generally a reliable key for phoneme identification even in a context free en-
vironment. We come to this assertion after noticing the high recognition rate
in short-time-average patterns while the training exemplars are the overall
average of them. Had phonefnes not had stationary characteristics in the fre-
quency domain that are invariant to the context, we could not have achieved
such a good performance.

By confining our recognition network to a single layer, we can deduce the

the acoustic features of each phoneme easily. All our results agree with the
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Output | threshold Prob. of miss Prob. of false alarm
aa 0.40 0.22 0.25
ae 0.46 .0.13 0.12
ah 0.39 0.09 0.29
ao 0.53 0.04 0.10
er 0.40 0.08 0.24
uw 0.59 0.21 0.10
ux 0.44 0.00 0.10
ey 0.47 0.06 0.16
ix 0.45 0.30 0.13
iy 0.38 0.08 0.33
1 0.43 0.09 0.12
m 0.47 0.07 0.16
n 0.43 0.12 0.22

Table 3.12: The deferred decision performance of vowels network

current knowledge in phonetics.

We have constructed the a confusion matrix for each class of phonemes
which tells the network performance based on hard decision rule. Although
we have achieved satisfying recognition rate, we have to note that it is very
harsh a decision rule. For example, the results of recognizing the instanta-
neous patterns of the word of ‘lemon’(Labeled as /l-ey-m-ax-n/) in sentence
7 are shown at the end of this chapter. The LIN II output of the word is
shown in figure 3.21. We note that /n/ is not always correctly identified

because there is a strong voicing in the low frequency which drives the /uw/
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Figure 3.21: The LIN II output of the word ‘lemon’
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Figure 3.22: A speech recognition system based on our single speaker exper-

iments

neuron to a higher output than /n/. Nevertheless, the ‘correct’ choice — /n/
neuron has always been exhibiting competitively high outputs which would
be discarded by hard decision rule but may be coming out if the system is
coupled with higher level processing.

In addition to inspecting the recognition rate based on hard decision
rule, we also evaluate the networks’ feasibility to be coupled with higher
level processing. We have done so by calculating empirical probabilities of
two types of error obtained from optimizing certain cost function which is
hopefully given by higher processing units. With reasonable low probabilities
of error, we are confident that the combined system should achieve very good

performance.

In short, we can depict our system profile as shown in figure 3.22.
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Figure 3.23: The recognition of the word ‘lemon’
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Figure 3.24: The recognition of the word ‘lemon’(Cont’d)
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Figure 3.25: The recognition of the word ‘lemon’(Cont’d)
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Chapter 4

Multi-speaker Phoneme

Recognition

4.1 Introduction

In this chapter, we are going to show the results of the same experiments
repeated for 3 other male speakers. We have found the acoustic features dis-
cussed in the previous chapter can be still seen, i.e., the overall shapes of the
LIN II spectra for different speakers are similar to each other except the peak
locations shift along the spectrum, which means the corresponding formant
frequencies vary from speaker to speaker. Even so, our networks trained
on the average of the time-average patterns of these speakers still achieve
satisfying recognition rate in recognizing their short-time-average patterns.
We have found that by taking time average, we can enhance the crucial fea-

tures and lower down the confusion induced by speaker variation. Although
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Symbol | Samples || Symbol | Samples || Symbol | Samples
aa 24 ae 21 ah 26
ao 27 ax 93 b 26
d 32 dh 59 er 20
ey 50 f 29 g 15
ix 30 1y 72 k 43
1 57 m 21 n 62
P 20 r 56 s 70
sh 11 t 54 th 9
uw 15 ux 11 v 20
z 35 zh 1

Table 4.1: Phonemes occurred in the four speakers’ speech data

the recognition in each individual’s instantaneous patterns may have a large
amount of errors, we are still convinced that there are certain important
features that can be used reliably to identify phonemes by observing their
weighted inputs.

The occurrence of all the phonemes in these four speakers’ speech data is
shown in table 4.1. In the following text, we shall refer to the averages of all
the speakers’ time-average patterns as overall-average patterns.

As before, we evaluate our networks in both hard decision and deferred
decision performance in recognizing the instantaneous patterns. However,
in this chapter, we use the short-time-average patterns instead as our test

samples in this chapter. The reason is that in the single speaker’s case, we
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were focusing on how our networks perform on the variant data induced by
context change. By testing the instantaneous patterns, we can tell how well
the features learned by the networks work. Here in the multi-speaker case,
we are concerned more with the data variation caused by different speakers.
In other words, we are examining whether there are cross-speaker acoustic
features that are reliable enough for phoneme recognition. Henceforth, all
our performance measures in this chapter are based on the short-time-average

patterns except where explicitly stated.

4.2 Stop Consonants

The time-average patterns of these four male speakers are shown in figure 4.1
and 4.2. In contrast, figure 4.3 and 4.4 show their averages. As expected, the
features seen for single speaker can be seen consistently in general. Among
those, the unvoiced patterns are much more consistent across the speakers
than their voiced counterparts because the production of unvoiced sounds
does not excite the vocal cords and therefore less variant to speakers. It
is thus not surprising that the weighted inputs of unvoiced stops from the
network trained on the overall-average patterns almost overlap the average
of weighted inputs trained on each speaker’s tirne-averé,ge patterns, as shown
in figure 4.5 and 4.6 respectively.

For voiced stops, we notice that except there is one strange high frequency
peak in /b/, the general shapes of the overall-average patterns still reveal the
frequency information of these three phonemes and bear much similarity to

the patterns of single speaker and unvoiced stops. The upper peak in /b/
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Figure 4.2: The time-average patterns of /d/,/g/,/b/ of four male speakers
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Figure 4.4: The overall-average patterns of /d/,/g/,/b/ of four male speakers
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Figure 4.6: The average of four speakers’ weighted inputs for unvoiced stops
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Input ¢t k p |Input d g b

t 0.00 0.09 0.09 |d 0.00 0.10 0.00
k 0.11 0.00 0.06 | g 0.15 0.00 0.00
p 0.00 0.10 0.00|b 0.00 0.09 0.00

Table 4.2: The confusion matrix on recognizing short-time-average stop pat-

terns

results from the coincident overlapping of the small high frequency peaks in
figure 4.2 and occupies the same region as the major /g/ peak. Although
the overall-average patterns are therefore quite misleading in this case, the
learning process has detected this phenomenon and made the right correction.
In figure 4.7, we can see that in spite of the large amplitude of the spoiling
peak, the network imposes insignificant weights over that region on the /b/
neuron and correctly extracts the features of each phoneme. The average on
the four weighted inputs is more ragged as can be seen in figure 4.8. Since
we are more interested in how and what acoustic features are enhanced, we’ll
focus on figure 4.7 in which we can get a more clear picture.

The hard performance on the short-time-average patterns is summarized
in table 4.2. Again, we see that /g/ and /k/ are more difficult to recognize
because their peak locations lie in between those of /b,p/ or /d,t/. On the
other hand, the deferred decision performance is summarized in table 4.3
with penalty of miss is twice as much as that of false alarm. The good
performance convinces us that the features picked by the networks that reveal
the frequency domain information of the stop consonants are quite reliable

cues for their identification even in the multi-speaker case.
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Output | threshold Prob. of miss Prob. of False Alarm
d 0.49 0.00 0.16
g 0.51 0.15 0.10
b 0.48 0.00 0.00
t 0.48 0.13 0.08
k 0.50 0.11 0.14
p 0.50 0.00 0.05

Table 4.3: The deferred decision performance on stops from four speakers
4.3 Fricative Consonants

The time-average patterns of fricatives from the four speakers are shown in
figure 4.9 and 4.10. The corresponding overall-average patterns are shown
in figure 4.11 and 4.12. As in the case of stops, we see that the unvoiced
patterns are more consistent than their voiced counterparts.

Although the overall-average patterns look quite similar to the ones of sin-
gle speaker’s as shown in figure 3.13 and 3.14, the weighted inputs(figure 4.13
and 4.14) are different. Due to the average operation in generating the
overall-average patterns, the minor difference in frequency in the the highest
peak of /f,v/ and /th,dh/ can be no longer explicit. The learning algorithm
then again conducts the give-and-take rule which forces the /f,v/ give up their
high frequency peaks and let their second large peaks dominate. The second
large peaks reside in the location between the peaks of /s,z/ and /sh,zh/. A
few phoneticians have asserted that the key peak of /f,v/ should lie between
those of /s,z/ and /sh,zh/[2], which goes against the assumption of the reso-
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Figure 4.10: The time-average patterns for /z,v,dh,zh/ from four speakers
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Figure 4.11: The overall-average patterns for /s,f,th,sh/
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Figure 4.12: The overall-average patterns for /z,v,dh,zh/
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Figure 4.13: The weighted inputs of unvoiced fricatives
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Figure 4.14: The weighted inputs of voiced fricatives
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Input s f th  sh |Input =z v dh  zh
s 0.00 0.00 0.06 0.00 |z 0.00 0.10 0.10 0.00
f 0.05 0.00 0.47 0.00 |v 0.10 0.00 0.40 0.20
th 0.00 0.29 0.00 0.00 | dh 0.04 0.12 0.00 0.04
sh 0.00 0.05 0.00 0.00 | zh 0.00 0.00 0.00 0.00

Table 4.4: The confusion matrix of multi-speaker fricatives networks

nance in the frontal cavity but matches our results here. As a matter of fact,
this can be observed even in single speaker’s experiments as we pointed out
before because we also perform average operation in that case. This is shown
in the average on the four speakers’ weighted inputs in figure 4.15 and 4.16.
Actually, for speakers other than the one we presented, all their second large
peaks in /v,f/ dominate, which leads the average of their average weighted
inputs looks more like the results of multi-speaker rather than those in fig-
ure 3.15 and 3.16. Interesting enough, since their time-average patterns of
the fricatives have small deviation, their weighted inputs match the aver-
age of their individual weighted inputs very well. Figure 4.16 is nearly no
different from figure 4.14.

The hard decision performance for multi-speaker fricative networks is
summarized in table 4.4. Here again we see a lot of confusion made in
distinguishing /f,v/ from /th,dh/ as in the case for single speaker recognition.
It is important to note that the fricatives /f,th/ have very low energy in their
waveforms and even the energy of /v/ is generally lower than other voiced
sounds. This may be a major reason why we didn’t get a very good result

for these phonemes because their features are not quite clear in the speactra.
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Figure 4.15: The average of four speakers’ weighted inputs of /s,f,th,sh/
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Figure 4.16: The average of four speakers’ weighted inputs of /z/,/v/,/dh/
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Output | threshold Prob. of miss Prob. of False Alarm
s 0.48 0.03 0.00
f 0.43 -0.00 0.36
th 0.6 0.43 0.02
sh 0.50 0.00 0.03
z 0.48 0.00 0.07
v 0.46 0.10 0.12
dh 0.58 0.23 0.10
zh 0.63 0.00 0.02

Table 4.5: The deferred decision performance of multi-speaker fricatives net-

works

Except that, the recognition rate is still reasonable. The deferred decision
performance is shown in table 4.5 with the penalty of miss is twice as much
as that of false alarm. We are now suffering the high miss rate of /th/ and

false alarm rate of /f/. Nonetheless, the overall performance is acceptable.

4.4 Nasals, Vowels and /1/

Generally speaking, to recognize this group of phonemes from several speak-
ers is most challenging because their productions are most sensitive to the
excitation of vocal cords and the shapes of vocal tract which are quite speaker
dependent. In spite of the highly speaker dependent nature, we can still gen-
erally observe their acoustic features discussed in the preceding chapter in

their time-average patterns(figure 4.17). For example, we can still see the

7



Figure 4.17: Time-average patterns of vowel /aa/, /ae/, /ah/, [ao/, [er/,

[uw/, [ux/, [ey/, [ix/, [iy/, /1], /m/, /n/ from four speakers(from top to
bottom)

78



amplitude ratio varies according to their degree of constriction. The domi-
nant peak also appears in the place according to their tongue hump position.
For the nasals, the /n/ peak is usually higher in frequency than /m/, as we
have seen in single speakef’s case. Therefore, their overall-average patterns
in figure 4.18 are quite understandable.

Looking at the weighted inputs in figure 4.19 of the overall-average pat-
terns, we can reach almost the same conclusions as we did in the chapter 3.
The close vowels’ dominant peaks are enhanced although, for example, [ix/
and /iy/ both have significant outputs in the low frequency. The amplitude
ratio of close vowel /er/ is now larger, which is the way it should be. The
high frequency component of front vowel /ey/ is also more visible although
the low frequency peak is still dominating. However, this dominating peak
has moved to some higher frequency and in addition to the vanishing of /er/’s
low frequency peak, the largest peak of /1/ is thus released. The open vowels
are still playing the give-and-take rule. In comparison with figure 3.20, we
see that for this time, /aa/ takes the higher frequency peak and gives up its
largest one. [ae,ao/ take their largest peaks as before except the location of
/ao/’s peak now shifts a little to the low frequency. As always, the nasals
are differentiated from each other by their edges of zeroes.

It’s intersting to note that the dominant peak of /uw/ now shifts to a
higher frequency region but does not kill the /1/ peak. Furthermore, there are
also many phonemes having significant response in the low frequency region
but none of them have successfully prevented this /1/ peak from coming out,
which is quite different from the case shown in the previous chapter. This

can be explained first by examining the overall-average patterns(figure 4.18)
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Figure 4.18: Overall-average patterns of vowel /aa/, /ae/, /ah/, /ao/, /er/,
[aw/, [ux/, Jey/, [ix/, [iy/, /1/, /m/, /n/ from four speakers(from top to

bottom)
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and the time-average patterns of the single speaker in figure 3.19. We can
see that in the latter figure, /1/ is the only one that has outputs over the
region where its third peak resides. The learning process detects this unique
feature of /1/ and puts strong weights on /1/ over this region. According to
give-and-take rule, /1/ dominates this region and surrenders elsewhere. But
in the multi-speaker case, this band is no longer occupied by /1/ only because
now /ao/ also has outputs in this region. Therefore, the /1/ neuron has to
find some other way to distinguish /l/ from other phonemes in this group.
The learning process finds out that every one that shares the low frequency
region with /1/ has almost nothing in the high frequency with the exception
that /ao/ also has some large outputs in the high frequency. Therefore,
high weights are assigned to the /l/ neuron’s high frequency region while
inhibiting the same region of /ao/. For better understanding, the weights
of the network trained on overall-average patterns are shown in figure 4.20.
The above observation reveals how the learning algorithm works and how
the features are weighted and extracted.

Figure 4.21 shows the average of weighted inputs patterns from the four
individuals. In comparison with figure 4.19 and 3.20, it reveals the deviation
of the ways that each network chosen to recognize the phonemes. For exam-
ple, we can see that the dominant features of /aa/ are now equally distributed
between its two peaks. The features of /1/ now look like the hybrid of the
two discussed above. What remains the same between the single speaker’s
and multi-speaker’s case, like /ae,m,n/, is still the same in this one. Also
important is the overall shapes and even the peak locations do not change

significantly. This suggests that even for this very speaker-dependent group

82



! i < i s LN e } !
T ¥ T ¥ v A gl § T
! - b ] LSS l/\ { i {
T T o e 't oo }

' 1 T s ST N 1 N N
A T —c A \/’\/ 1A vara T =T
e o St A A AP

N NS
1 . 1 . el NN 2 ;
T 1 e, Lol ! LI N v NI
3 L L 1 A A LA A LN
T T el w\/— V\\y W) NS
e g — O e b P
" L P T N

4

e L oA W AN T
, ; f;\f\‘[,, f\\}‘\/ '\’QA\"\/A\}V/\‘J‘ i
$ o AN l/\ I uaN Pron SN ‘ i 1
T T T \y T A Ao ooy
4 e TN 3 3 TN ;N P somon o
1 T e T vw <=t LA s~ T
It L L [ i i 1 2 "

Figure 4.20: The weights of multi-speaker vowels recognition network. They

are shown in the same order as in figure 4.18.
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Figure 4.21: The average of four speakers’ weighted inputs. They are shown

in the same order as in figure 4.18.
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aa a ah a0 er uw ux ey ix iy | m n
aa .00 .13 .00 .00 .00 .07 .00 .07 .00 .00 .00 .00 .00
ae .08 .00 .00 .00 .08 .00 .00 .00 .31 .00 .00 .00 .00
ah .00 .00 .00 .00 .07 .00 .00 .21 .14 .07 .00 .00 .07
ao .09 .09 .18 .00 .00 .18 .00 .00 .00 .00 .00 .00 .00
ec .13 .00 .13 .00 .00 .07 .00 .00 .13 .07 .00 .00 .00
uww .12 .12 .12 .00 .00 .00 .00 .25 .12 .00 .00 .00 .00
ux .00 .00 .10 .00 .00 .00 .00 .00 .30 .00 .00 .00 .00
ey .00 .05 .00 .00 .00 .14 .05 .00 .05 .10 .05 .00 .00
ix .00 .00 .00 .00 .06 .06 .12 .12 .00 .06 .00 .06 .00
iy .00 .00 .00 .00 .04 .04 .09 .13 .13 .00 .00 .22 .09
1 .09 .09 .04 .17 .04 .04 .00 .09 .00 .00 .00 .00 .04
m .00 .00 .00 .00 .00 .20 .00 .10 .10 .10 .00 .00 .00
n .07 .04 .00 .04 .00 .04 .07 .00 .00 .04 .07 .22 .00

Table 4.6: The confusion matrix for multi-speaker vowels recognition network

of phonemes, we can still anticipate that there are features in the frequency
domain for the phonemes that can be well associated with them and used as
reliable cues to identify them.

For our vowel recognition network, we also summarize the hard decision
performance in table 4.6 and the deferred decision performance in table 4.7
with the penalty of miss is ten times as much as that of false alarm. Again,
our performance is no worse than that by multi-layer networks like the one
in [10]. This convinces us that the acoustic features can be used as a good

cue to identify vowels.
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Output | threshold Prob. of miss Prob. of false alarm
aa 0.70 0.27 0.04
ae 0.59 0.23 0.14
ah 0.62 0.36 0.18
ao 0.49 0.18 0.18
er 0.76 0.33 0.07
uw 0.43 0.12 0.25
ux 0.69 0.30 0.06
| ey 0.61 0.33 0.17
| ix 0.69 0.44 0.14
iy 0.43 0.22 0.27
i1 0.54 0.26 0.15
m 0.33 0.10 0.14
n 0.51 0.33 0.18

Table 4.7: The deferred decision performance of multi-speaker vowels recog-

nition network

4.5 Summary and Remarks

In this chapter, we have discussed how our single layer networks recognize
phonemes. We have shown how the back propagation algorithm conducts
a give-and-take rule to pick up features from the LIN II spectra. We have
also shown that with these features, the networks can achieve acceptable
performance.

In comparison with the similar experiments done in [10] in which ear
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model and back propagation algorithm are also used, we have found that our
networks achieve better performance. The only difference is we use the time
average in both exemplars and test patterns while they used the instanta-
neous patterns. As we pointed out in the previous chapter, sometimes the
acoustic features of the phoneme can be covered or polluted by their context
and therefore can not be as clear as it should be. By taking the average, we
think the features should be able to outgrow from the noise and the experi-
mental results suggest our guess is not wrong. The same idea also holds for
cross-speaker variation.

Traditionally, people working on speech recognition usually focus on the
formant frequencies and seldom pay much attention to the relative ampli-
tudes of the formants. As seeing the difference in the LIN II outputs of open
and close vowels, we feel that it is important to consider this piece of infor-
mation in the frequency domain as it reflects the overall spectral shape. Our
neural networks model changes the point of interests and achieve satisfying
results.

Our model is also ready to be incorporated with higher level of process-
ing such as word recognition. We do believe that a great portion of sounds
are recognized and many errors are corrected by the higher level processing
unit. We believe so by observing how human processes speech signals. Many
differences in speech processing have been noticed among adults and chil-
dren(especially infants) and experiments have been designed to figure out
where these differences come from. Examples can be found in [20] and [21].
It is also known that even mother language can influence human’s ability in

phoneme reccgnition. For example, Japanese people usually have trouble in
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distinguishing /r/ and /1/ because there is no /r/ in their language. All these
facts make us believe that a powerful system that combining information of
context and semantics may be more urgent and crucial than achieving perfect

results in phoneme recognition.
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