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Chapter 1

Introduction

Given a function f ∈ L2(R), the Fourier transform of f , denoted f̂ , is formally

defined by

f̂(γ) =

∫
f(t)e−2πitγdt,

where the integral is over R. If one views f as a signal which is a function of

time, then f̂ describes how f is built up from different frequency components.

The uncertainty principle (UP) in harmonic analysis is a class of theorems

which state that a nontrivial function, f , and its Fourier transform, f̂ , can not

both be simultaneously too well localized. One, of course, needs to be precise

about what “localization” means. Roughly speaking, a function is well localized

if it decays to zero quickly at ±∞, or if it is highly concentrated on a compact

set. We shall state some concrete definitions of localization later. Likewise, once

a measure of localization is specified, one needs to be precise about what it means

to be “too well” localized. Again, there is a great deal of flexibility, and theorems

range from giving highly technical and quantitative statements to more general

and qualitive interpretations.

Heisenberg’s uncertainty principle in quantum mechanics is the prototype

of all uncertainty principles. His uncertainty principle deals with the inability
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to precisely determine both position and momentum of a particle. While our

focus and motivation here will be purely mathematical, Heiseberg’s uncertainty

principle will nonetheless play an important role for us. Later on, we shall discuss

a relevant mathematical formulation of it as an L2(R) norm inequality. For some

historical background on the uncertainty principle and for more information on

its physical meaning, [20] and [16] both give a nice mathematical overview. The

masterpiece [27] is perhaps the most comprehensive mathematical text on the

subject, whereas [20] is possibly the most complete survey article on the topic.

Let us begin with an elementary, non-technical example of the uncertainty

principle. Given f ∈ L2(R) and λ > 0, define the dilation, fλ(t), by fλ(t) =

λf(λt). For fixed f, it is visually clear that fλ becomes increasingly more con-

centrated about the origin as λ → ∞. However, since f̂λ(γ) =
(

1
λ

)
f̂
(

γ
λ

)
, one

sees that f̂λ becomes increasingly more spread out as λ → ∞. This example

shows that when one dilates a function to make it more localized, the Fourier

transform becomes less localized. While simple, this illustrates the uncertainty

principle’s main theme, namely the incompatibility of having both f and f̂ too

sharply localized.

The limiting case (as λ → ∞) in the above example gives rise to the Dirac

delta measure, δ. Since the distributional support of δ is {0}, δ is about as well

localized as possible. On the other hand, the distributional Fourier transform of

δ is the constant function δ̂ ≡ 1, which is indeed very poorly localized. For this

reason, the statement δ̂ = 1 may be viewed as a manifestation of the uncertainty

principle, [5].
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1.1 Qualitative uncertainty principles

Given a function f, define the support of f to be the closure of the set {t ∈ R :

f(t) 6= 0}, namely,

supp(f) = {t ∈ R : f(t) 6= 0}.

In view of our intuitive definition of localization, the notion of support gives a

natural way to measure if a function is well localized. In particular, if a func-

tion has compact support then it fits our intuitive requirements for being well

localized.

Using support as our measure of localization, we observe the following ele-

mentary uncertainty principle. Suppose f ∈ L2(R), and that f and f̂ both have

compact support. Then the Paley-Wiener theorem, [33], states that f is the re-

striction to R of an entire function. Since an entire function can not vanish on

any interval, it follows that no nontrivial f ∈ L2(R) can have both supp(f) and

supp(f̂) compact.

Benedicks, [10], gave the following extension of this result.

Theorem 1.1 (Benedicks). If f ∈ L2(R) and the sets supp(f) and supp(f̂)

both have finite Lebesgue measure, then f ≡ 0.

While this is an appealing result which illustrates the uncertainty principle

nicely, its hypotheses are very strong and it does not give very precise insight

into matters. A more advanced result along these lines is given by Hardy, [25].

Although the result dates back to 1933, there has been a recent upsurge of interest

in it, see [24], [29].

Theorem 1.2 (Hardy). Let f ∈ L2(R) and suppose that

|f(t)| ≤ Ce−πat2 and |f̂(γ)| ≤ Ce−πbγ2

,
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for some constant C and constants a, b > 0. Then

ab > 1 =⇒ f(t) ≡ 0

and

ab = 1 =⇒ f(t) = ce−aπt2 ,

where c ∈ C is a constant.

Hardy’s proof relies critically on complex analysis and the Phragmen-Lindelöf

theorem. Motivated by Hardy’s theorem, Ingham, [31], proved the following

version for functions with compact support.

Theorem 1.3 (Ingham). Let ν(t) be a positive function which monotonically

approaches zero as t → ∞. Suppose f ∈ L2(R) and that f is zero outside of the

interval [−l, l]. Such an f can satisfy

f(t) = O(e−|t|ν(|t|)), |t| → ∞

if and only if ∫ ∞

1

ν(t)

t
dt

is convergent.

One direction of the proof of Ingham’s theorem depends on the theory of quasi-

analytic functions and the Carleman-Denjoy theorem, [30]. The other direction

employs standard constructive methods.

In the case where a = b, Hardy’s theorem deals with the symmetric weights

e−aπt2 and e−aπγ2
. Ingham’s result replaces the e−aπt2 decay condition on f by the

most extreme decay possible, namely that f is compactly supported, and replaces

the other decay condition by one weaker than the original. Morgan considers the
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problem for combinations of weights which lie “in between” those considered

by Hardy and Ingham. While Morgan actually proved several theorems in this

direction,[38], the following gives a typical flavor of his results.

Theorem 1.4 (Morgan). Suppose ε > 0, f ∈ L2(R) and that 1
p

+ 1
q

= 1, where

p > 2. If

f(t) = O(e−|t|p), |t| → ∞

and

f̂(γ) = O(e−|γ|q+ε

), |γ| → ∞,

then f ≡ 0.

Morgan’s result makes use of the Phragmen-Lindelhöf theorem and saddle

point methods.

The trio of theorems due to Hardy, Ingham and Morgan, respectively, shows

how the uncertainty principle can be meaningfully refined by using different pair-

ings of weights to measure localization. It is worth pointing out that although

the above results are similar in appearance, they have different methods of proof.

Understanding the role which different combinations of weights play in the un-

certainty principle will be an important theme for us. The weights t2 and γ2 are

especially important, and make their first appearance in the Heisenberg uncer-

tainty principle.

1.2 The Heisenberg uncertainty principle

The Heisenberg uncertainty principle alluded to earlier may be stated as follows.
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Theorem 1.5 (Heisenberg Uncertainty Principle). For every f ∈ L2(R)

and any a, b ∈ R

||(t− a)f ||L2(R)||(γ − b)f̂ ||L2(R) ≥
1

4π
||f ||2L2(R). (1.1)

Moreover, equality holds in (1.1) if and only if f(t) = Ce2πibte−c(t−a)2 for some

constants C ∈ C and c > 0.

Rewriting (1.1) we have:

(∫
|t− a|2|f(t)|2dt

) 1
2
(∫

|γ − b|2|f̂(γ)|2dγ
) 1

2

≥ 1

4π
||f ||2L2(R). (1.2)

In this form, we see that Heisenberg’s uncertainty principle measures localization

using the t2 and γ2 weights. If a function is well localized in the sense of decaying

quickly to zero at ±∞, then the integral

∫
|t|2|f(t)|2dt (1.3)

will be finite. The relevant type of decay here is not a pointwise decay, but is

instead an L2(R) decay. Moreover, the size of (1.3) tells us how spread out f is.

For example, the functions f1(t) = 1
20
χ[−10,10](t) and f2(t) = 1

2
χ[−1,1](t) have both

been normalized and it is visually clear that the first function is more spread out

than the second. This is reflected by the fact that the integral (1.3) is larger for

f1 than f2. Thus, the use of the t2 and γ2 weights to measure localization is both

intuitively attractive and also allows one to make more quantitative statements

about localization than in the previous section. The utility of the t2 weight in

measuring localization motivates the following definition.

Definition 1.6. Given f ∈ L2(R) satisfying ||f ||L2(R) = 1, we define the mean

of f by

µ(f) =

∫
t|f(t)|2dt (1.4)
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and the variance of f by

∆2(f) =

∫
|t− µ(f)|2|f(t)|2dt. (1.5)

We shall often find it convenient to work with the square root of the variance

∆(f) =

(∫
|t− µ(f)|2|f(t)|2dt

) 1
2

. (1.6)

This quantity is usually refered to as the standard deviation or dispersion of f

We collect some interesting facts on means and variances in the following

lemma.

Lemma 1.7. Let f ∈ L2(R) and suppose ||f ||L2(R) = 1. If

I(a) =

(∫
|t− a|2|f(t)|2dt

) 1
2

(1.7)

is finite for a single value a = a0 ∈ R, then it is finite for every a ∈ R. Moreover,

∆(f) = infa∈R

(∫
|t− a|2|f(t)|2dt

) 1
2

.

In other words, a = µ(f) minimizes I(a).

We may rewrite the Heisenberg uncertainty principle in terms of variances.

Theorem 1.8. If f ∈ L2(R) satisfies ||f ||L2(R) = 1 then

∆(f)∆(f̂) ≥ 1

4π
. (1.8)

There is an extensive literature on extensions and generalizations of Heisen-

berg’s inequality, for example see [20]. We shall mention one particularly inter-

esting example. In the next definition, we use the notation R̂ = R to denote the

dual group of R. We shall do this whenever we wish to emphasize that we are

dealing with the frequency domain. For example, if f ∈ L2(R) then f̂ ∈ L2(R̂).
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Definition 1.9. Let u and v be nonnegative Borel measurable functions on R̂

and R, respectively. If 1 < p, q <∞ and if there is a constant K > 0 such that

sup
s>0

(∫ 1/s

0

u(γ)dγ

)1/q (∫ s

0

v(t)−p′/pdt

)1/p′

= K

then we say (u, v) ∈ F (p, q).

Definition 1.10. Given a nonnegative Borel measurable function v, LP
v (R) is

the set of all Borel measurable functions f for which

‖f‖p,v ≡
(∫

|f(t)|pv(t)dt
)1/p

<∞.

The following weighted uncertainty principle [4] is an elegant example of how

the classical uncertainty principle can be generalized and strengthened.

Theorem 1.11 (Benedetto, Heinig). Let 1 < p ≤ q < ∞, and let u and v be

even weights on R̂ and R for which (u, v) ∈ F (p, q) with constant K (as above).

Assume 1/u and v are increasing on (0,∞). Then there is a constant C(K) such

that

‖f‖2
2 ≤ 4πC(K)‖tf(t)‖p,v‖γf̂(γ)‖q′,u−q′/q

for all f in the Schwartz class S(R).

This result once again illustrates the theme of how different pairings of weights

translate into uncertainty principles.

1.3 Preview

The results surveyed in the introduction are all uncertainty principles for a single

function. The main topic of this thesis is to examine how the uncertainty prin-

ciple behaves for whole collections of functions, such as orthonormal bases. In
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particular, we shall be interested in what sort of uniform localization the elements

of an orthonormal basis for L2(R) can have.

Chapter 2 briefly presents some necessary background on frame theory. Our

investigation of uncertainty principles for bases begins in chapter 3. There, we

discuss Gabor systems and the Balian-Low theorem. The Balian-Low theorem is

an uncertainty principle for Gabor orthonormal bases. We also discuss our proof

of the fact that the Balian-Low theorem is sharp. In chapter 4, we examine a

theorem of Bourgain which constructs orthonormal bases which are optimal, in a

certain sense, with respect to the uncertainty principle. We generalize Bourgain’s

theorem to different weighted measures of localization. We devote chapter 5 to

examining an orthonormalization calculation for the Gaussian coherent states.

This sheds some light on the proof of Bourgain’s theorem. In chapter 6 we

examine a question due to Shapiro on means and variances of orthonormal bases

and we answer some interesting cases of his question.
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Chapter 2

Frame theoretic background

We shall briefly collect some background on frame theory in this chapter. Al-

though frames will not be a main topic of investigation in this thesis, we shall

make use of frame theoretic terminology and definitions at various places.

Frames are a generalization of orthonormal bases. A frame is a sequence of

elements in a separable Hilbert space which can be used to give stable decompo-

sitions of all the elements in the Hilbert space. Unlike orthonormal bases, frames

need not be orthonormal and may contain some redundancy.

Definition 2.1 (Frame). Let H be a separable Hilbert space. A sequence of

elements {xn} ⊆ H is a frame for H if there exist constants 0 < A ≤ B < ∞

such that

∀x ∈ H, A||x||2H ≤
∑

n

|〈x, xn〉|2 ≤ B||x||2H . (2.1)

The constants A,B are called the frame constants of {xn}.

Definition 2.2 (Frame Operator). Let {xn} be a frame for the separable

Hilbert space H. The associated frame operator

S : H → H
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is defined by

Sx =
∑

n

〈x, xn〉xn.

Example 2.3. If {xn} is an orthonormal basis for a separable Hilbert space, H,

then {xn} is a frame for H with frame constants A = B = 1, and the associated

frame operator is the identity.

Theorem 2.4. Let H be a separable Hilbert space. If {xn} is a frame for H with

frame bounds 0 < A ≤ B <∞ then ||xn||2H ≤ B for all n.

Proof. Fix n. Using the frame inequality (2.1) we have

||xn||4H = |〈xn, xn〉|2 ≤
∑

j

|〈xn, xj〉|2 ≤ B||xn||2H .

Therefore, ||xn||2H ≤ B.

As mentioned above, frames are studied for their ability to give stable decom-

postions of separable Hilbert spaces. The following theorem, [22], [9], gives the

connection between definition 2.1 and the decomposition property of frames.

Theorem 2.5. Let H be a separable Hilbert space. If {xn} is a frame for H

with frame constants A and B, then the associated frame operator is a positive,

invertible operator satisfying

AI ≤ S ≤ BI.

Consequently, for every x ∈ H one has the decompositions

x = SS−1x =
∑

n

〈x, S−1xn〉xn, (2.2)

and

x = S−1Sx =
∑

n

〈x, xn〉S−1xn, (2.3)

where the convergence is in H.
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Thus, (2.2) and (2.3) give two different ways to decompose x ∈ H in terms of

the frame elements {xn}. Equivalently, one may refer to (2.2) and (2.3) as giving

frame expansions for x. The coefficients in the decomposition, (2.3), are {〈x, xn〉}.

So, definition 2.1 says that the l2 norm of these coefficients is equivalent to the H

norm of the function being decomposed. This norm equivalence means the frame

gives stable decompositions in the sense that a small change in coefficients gives

a small change in the element x being expanded, and vice versa.

Example 2.3 shows that an orthonormal basis for a separable Hilbert space

H is a frame for H. Orthonormal bases are minimal frames in the sense that

removing any element from an orthonormal basis leaves a system which is no

longer a frame for H. To see this, suppose X = {xn} is an orthonormal basis for

the separable Hilbert space H. Let XN = {xn}n6=N . By orthonormality,

∑

n6=N

|〈xN , xn〉|2 = 0

and

||xN ||H = 1.

Examining definition 2.1 shows that XN is not a frame. The fact that orthonor-

mal bases are not the only frames with this minimality property motivates the

following definition.

Definition 2.6 (Exact frame). Let {xn} be a frame for the separable Hilbert

space H. {xn} is an exact frame if it is no longer a frame upon the removal any

element xN .

Independent of frame theory, it turns out that exact frames are well known

objects and have long been studied under the equivalent guise of Riesz bases.
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Definition 2.7 (Riesz basis). Let H be a separable Hilbert space. A sequence

{xn} ⊂ H is a Riesz basis for H if {xn} is a frame for H and there exist constants

A,B > 0 such that

A||c||l2 ≤ ||
∑

cnxn||H ≤ B||c||l2 (2.4)

holds for all finite sequences c = {cn}.

We say that a sequence {xn} ∈ H is a Riesz basis for its span if (2.4) holds. In

this case, we do not require {xn} to be complete. For example, any orthonormal

sequence is a Riesz basis for its span.

The following result shows that Riesz bases and exact frames are actually the

same.

Theorem 2.8. Let H be a separable Hilbert space. {xn} ⊆ H is an exact frame

for H if and only if it is a Riesz basis for H.

A portion of the proof is illustrated by the following result.

Theorem 2.9. Suppose {xn}∞n=0 ⊂ L2(R) is a Riesz basis for its span. One can

not have

xN ∈ span {xj : j 6= N}

for any N .

Proof. Without loss of generality suppose N = 0, and that

x0 ∈ span {xj : j 6= 0}.

Let 0 < A ≤ B <∞ be the constants in (2.4). By our assumption there exists a

sequence {cj}∞j=1 such that
∣∣∣∣∣

∣∣∣∣∣x0 −
∞∑

j=1

cjxj

∣∣∣∣∣

∣∣∣∣∣
L2(R)

<
A

2
.
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Combining this with (2.4) and the fact that {xj} is a Riesz basis for its span

gives

A ≤ A

(
1 +

∞∑

j=1

|cj|2
) 1

2

≤
∣∣∣∣∣

∣∣∣∣∣x0 −
∞∑

j=1

cjxj

∣∣∣∣∣

∣∣∣∣∣
L2(R)

<
A

2
.

This is a contradiction, since A > 0.

A well known alternative definition of Riesz bases in terms of Grammian

matrices appears in [22].

Theorem 2.10. Suppose X = {xn}n∈Z is a frame for the separable Hilbert space

H. X is a Riesz basis for H if and only if the Grammian matrix Gj,k = 〈xj, xk〉

defines a positive invertible operator on l2(Z).

In finite dimensions, Riesz basis are particularly simple.

Theorem 2.11. If X = {xn}N
n=1 is a finite, linearly independent subset of a

Hilbert space, H, then X is a Riesz basis for its span.

Proof. Since X is finite dimensional and linearly independent, it is easily verified

that (2.4) holds.
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Chapter 3

Gabor systems

We gave several examples of uncertainty principles in the introduction. The types

of results we surveyed all dealt with uncertainty for an individual function and its

Fourier transform. For example, the qualitative uncertainty principle, theorem

1.1, implies that a nontrivial function f ∈ L2(R) and its Fourier transform, f̂ ,

can not both have compact support.

One of our goals is to understand how the uncertainty principle applies to

certain collections of functions, as opposed to how it applies to individual func-

tions. For us, the collection of functions under consideration will usually be an

orthonormal basis. We want to know what sort of uniform localization, in time

and frequency, the elements of an orthonormal basis can have. This chapter will

focus on this question for Gabor orthonormal bases, but will also briefly address

wavelet orthonormal bases.

Gabor systems and wavelet systems are both examples of coherent systems.

A system of functions is coherent if it generated by a single function under the

action of a group. For example, let f ∈ L2(R), and define fn(t) = f(t − n). It

is clear that {fn} is a coherent system of functions, generated by the action of

Z on f . It is well known, e.g., [12], that this particular system of functions can
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not form an orthonormal basis, or even a frame, for L2(R). Gabor systems and

wavelets are the simplest coherent systems for which one can obtain orthormal

bases for L2(R). Although it will be not play a direct role in our work, let us

mention that the respective groups associated with Gabor systems and wavelets

are the Heisenberg group and affine group.

3.1 Gabor systems

Definition 3.1. Given a function f ∈ L2(R) and constants a, b > 0, the Gabor

system, G(f, a, b) = {fm,n}m,n∈Z is defined by

fm,n(t) = e−2πibmtf(t− an).

Thus, a Gabor system consists of translates and modulates of a fixed function.

Gabor systems have been widely studied because they can be used to give effective

decompositions of functions. One of the main questions in Gabor analysis is to

determine for which functions f and constants a, b the Gabor system, G(f, a, b),

is an orthonormal basis, Riesz basis, or frame.

The following example is often called the trivial Gabor basis.

Example 3.2. Let f(t) = χ[0,1](t). Using standard results on Fourier series it is

easy to see that G(f, 1, 1) is an orthonormal basis for L2(R).

The following result shows that the localization of a Gabor system is inher-

ently uniform with respect to variances.

Theorem 3.3. Suppose that f ∈ L2(R) and that the variances ∆(f) and ∆(f̂)

are both finite. Let {fm,n} = G(f, a, b) for some a, b > 0. A direct calculation,

[4], shows that

∀m,n ∈ Z, ∆(fm,n) = ∆(f)
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and

∀m,n ∈ Z, ∆(f̂m,n) = ∆(f̂).

This shows that the elements of a Gabor system have uniform localization

with respect to time and frequency variances. The following example shows a

Gabor frame which has excellent localization in time and frequency.

Example 3.4. If g(t) = e−πt2 and ab < 1, then G(g, a, b) is a frame for L2(R).

See [22] for further details. Moreover, a direct calculation combined with theorem

3.3 shows that

∀m,n ∈ Z, ∆(gm,n) = ∆(g) =
1

2
√
π

and

∀m,n ∈ Z, ∆(ĝm,n) = ∆(ĝ) =
1

2
√
π
.

The problem with theorem 3.3 is that the uniform localization need not be a

“good” localization when the Gabor system under consideration is an orthonor-

mal basis. This is illustrated by example 3.2, where f(t) = χ[0,1](t) generates

an orthonormal basis. Note that ∆(f̂) = ∞, so that all elements of the trivial

Gabor basis have uniformly poor localization in frequency. We shall see that this

behavior is typical for Gabor orthonormal bases.

3.2 Density and duality

The difference between examples 3.2 and 3.4 is actually quite illuminating. In

example 3.2, one has a poorly localized orthonormal basis with a = b = 1. In

example 3.4, one has a well localized frame but one is required to take a “denser”

set of translates and modulates (i.e., ab < 1).
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The next theorem is a first step towards explaining the relationship between

the value of (a, b) and localization and basis/frame properties of Gabor systems.

Theorem 3.5. If G(g, a, b) is a frame for L2(R) then ab ≤ 1. If G(g, a, b) is a

Riesz basis for L2(R) then ab = 1.

The following closely related result gives further insight.

Theorem 3.6 (Ron-Shen Duality). Let g ∈ L2(R) and a, b > 0. G(g, a, b) is

a frame for L2(R) if and only if G(g, 1
b
, 1

a
) is a Riesz basis for its closed linear

span.

3.3 Linear independence

An interesting and useful result on Gabor systems is that any finite subset of a

Gabor system is linearly independent. The case a = b = 1 was proven in [28] by

Heil, Ramanathan, and Topiwala and the general case was shown by Linnell in

[36].

Theorem 3.7. Let f ∈ L2(R) be nontrivial, and a, b > 0. Any finite subset of

G(f, a, b) is linearly independent.

Heil, Ramanathan, and Topiwala conjectured, in [28], that this result still

holds for irregular Gabor systems (i.e., those not defined on a lattice). While

they have shown that this conjecture is true for certain interesting cases, the

general case is still open.
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3.4 The Zak transform

Definition 3.8. The Zak transform, Zf , of a function f ∈ L2(R) is formally

defined to be

Zf(t, γ) =
∑

n∈Z

f(t− n)e2πinγ .

Note that the Zak transform is quasiperiodic, [22]. In other words, it satisfies

the two equations

Zf(t+ 1, γ) = e2πiγZf(t, γ), (3.1)

and

Zf(t, γ + 1) = Zf(t, γ). (3.2)

For this reason, Zf is fully determined by its values on Q = [0, 1)2. The next

result gives a precise statement on the range and domain of the Zak transform.

Theorem 3.9. The Zak transform is a unitary operator from L2(R) to L2(Q).

The following result, [9], shows why the Zak transform is especially useful for

studying Gabor systems on the Z × Z lattice.

Theorem 3.10. Let g ∈ L2(R).

1. If Zg 6= 0 a.e. in Q then G(g, 1, 1) is complete in L2(R).

2. If 1/Zg is in L2(Q) then G(g, 1, 1) is complete and minimal in L2(R). A

sequence, {xn}, is minimal if ∀j, xj /∈ span{xn : n 6= j}.

3. If there exist 0 < A ≤ B < ∞ such that A ≤ |Zg| ≤ B a.e. in Q then

G(g, 1, 1) is a Riesz basis for L2(R).

4. If |Zg| = 1 a.e. in Q then G(g, 1, 1) is an orthonormal basis for L2(R).
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3.5 The Balian-Low theorem

The Balian-Low theorem is the classical uncertainty principle for Gabor systems.

It shows that the localization behavior of the trivial Gabor orthonormal basis is

typical of all Gabor orthonormal bases. The Balian-Low theorem traces its origins

back to [1], [37], but there have been numerous corrections and simplifications of

the original proof, e.g., [8], [2].

Theorem 3.11 (Balian-Low). Let g ∈ L2(R). If the Gabor system G(g, 1, 1) is

an orthonormal basis for L2(R) then either

∫
|t|2|g(t)|2dt = ∞

or ∫
|γ|2|ĝ(γ)|2dγ = ∞.

This is the simplest version of the Balian-Low theorem. It is actually true in

much greater generality. For example, [8], the result still holds if “orthonormal

basis” is replaced by “Riesz basis”. The theorem above applies to Gabor systems

on the lattice Z × Z and holds in one dimension. Gröchenig, Han, Heil, and

Kutyniok have given extensions to symplectic lattices in higher dimensions, [23].

Benedetto, Czaja, and Maltsev have investigated the Balian-Low theorem for the

symplectic form in higher dimensions, [7].

Rewriting the Balian-Low theorem in terms of variances gives

Theorem 3.12. Let g ∈ L2(R). If G(g, 1, 1) is an orthonormal basis for L2(R)

then either

∆2(g) = ∞ or ∆2(ĝ) = ∞.
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3.5.1 Sharpness in the Balian-Low theorem

The Balian-Low theorem says there are no Gabor orthonormal bases localized

with respect to both the t2 and γ2 weights. It is natural to ask to what extent

this result is sharp. Namely, by how much can one weaken the t2 and γ2 weights

so that the Balian-Low theorem no longer holds? We have proven the following

result, [6], which shows that the Balian-Low theorem is essentially sharp.

Theorem 3.13 (Benedetto, Czaja, Gadziński, Powell). Let d > 2. There

exists a function g ∈ L2(R) such that G(g, 1, 1) is an orthonormal basis for L2(R)

and ∫
1 + |t|2

logd(|t| + 2)
|g(t)|2dt <∞,

and ∫
1 + |γ|2

logd(|γ| + 2)
|ĝ(γ)|2dγ <∞.

In particular, if one weakens the t2 and γ2 by the logarithmic terms in the

theorem, then the Balian-Low theorem no longer holds.

3.6 A (p, q) Balian-Low theorem

While the t2 and γ2 weights associated with the Balian-Low theorem are natural

and useful, it is also interesting to see what happens for other combinations

of weights. A result in this direction follows from the work of Feichtinger and

Gröchenig.

Theorem 3.14 (Feichtinger, Gröchenig). Suppose ε > 0 and that 1
p

+ 1
q

= 1.

If g ∈ L2(R) and G(g, 1, 1) is an orthonormal basis for L2(R) then either

∫
|t|p+ε|g(t)|2dt = ∞
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or ∫
|γ|q+ε|ĝ(γ)|2dγ = ∞.

The proof of this makes use of the following results on Gabor systems and

modulation space embeddings.

Definition 3.15. Given f, g ∈ L2(R) the short time Fourier transform of f with

respect to g is formally defined by

Sg[f ](t, γ) =

∫
f(t)g(x− t)e−2πixγdx.

Definition 3.16. Let g be a fixed Schwartz class function. The modulation space

M1,1 is defined to be the set of all measurable functions for which

||f ||1,1 =

∫ ∫
|Sgf(x, y)|dxdy <∞.

M1,1 is independent of the choice of g ∈ S(R) in the sense that different choices

yield equivalent norms, [22].

The following result appears in [18]. It may be viewed as a Balian-Low theo-

rem for modulation spaces.

Theorem 3.17. If f ∈M1,1, then G(f, 1, 1) is not an orthormal basis for L2(R).

The following modulation space embedding appears in [21].

Theorem 3.18. Fix ε > 0 and assume 1
p

+ 1
q

= 1 with 1 < p, q < ∞. There

exists a constant C such that

‖f‖1,1 ≤ C

((∫
|t|p+ε|f(t)|2dt

) 1
2

+

(∫
|γ|q+ε |̂(γ)|2dγ

) 1
2

)

holds for all f ∈M1,1.
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Thus,we see that theorem 3.14 follows from theorems 3.17 and 3.18. As with

the standard Balian-Low theorem, we have the following “sharpness” result.

Theorem 3.19 (Benedetto, Czaja, Gadziński, Powell). Let d > 2 and

1
p

+ 1
q

= 1 with 1 < p, q < ∞. There exists a function g ∈ L2(R) such that

G(g, 1, 1) is an orthonormal basis for L2(R), and

∫
1 + |t|p

logd(|t| + 2)
|g(t)|2dt <∞

and ∫
1 + |γ|q

logd(|γ| + 2)
|ĝ(γ)|2dγ <∞.

3.7 Wavelets

The past several sections dealt with Gabor systems, which are coherent systems

associated to the Heisenberg group. Another popular class of coherent systems

are the wavelet systems. Wavelets systems are generated by the action of the

affine group.

Definition 3.20. Given ψ ∈ L2(R), the associated wavelet system, W(ψ) =

{ψm,n}m,n∈Z, is defined by

ψm,n(t) = 2m/2ψ(2mt− n).

As with Gabor systems, a fundamental question is to find ψ ∈ L2(R) for which

the wavelet system, W(ψ), is an orthonormal basis for L2(R). In the following

example, ψ is called the Haar wavelet.
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Example 3.21 (Haar wavelet). Let

ψ(t) =





1, if t ∈ [0, 1/2),

−1, if t ∈ [1/2, 1),

0, otherwise.

(3.3)

It is well known, e.g., see [13], that {ψm,n} is an orthonormal basis for L2(R).

This example is similar to the trivial Gabor basis (example 3.2 ), in that it

has jump discontinuities and a poorly localized Fourier transform. The following

example, due to Meyer, shows that one can do better than the Haar wavelet.

Example 3.22 (Meyer wavelet). There exists ψ ∈ L2(R) such that ψ ∈ S(R),

supp ψ̂ is compact, and {ψm,n} is an othonormal basis for L2(R).

This example shows that there are wavelet orthonormal bases whose generator

is well localized in both time and frequency. By the Balian-Low theorem, this

stands in contrast to the situation for Gabor bases. However, the following result

shows that wavelet systems do not have the uniform localization found in Gabor

systems by theorem 3.3.

Theorem 3.23. Let ψ ∈ L2(R) and suppose that ∆(ψ) and ∆(ψ̂) are both finite.

A direct calculation, [4], shows that

∀m,n ∈ Z, ∆(ψm,n) = 2−m∆(ψ)

and

∀m,n ∈ Z, ∆(ψ̂m,n) = 2m∆(ψ̂).

In particular this shows that

supm,n∆(ψm,n) = ∞ and supm,n∆(ψ̂m,n) = ∞.

Thus, the elements of a wavelet system do not have uniform localization.
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3.8 Battle’s theorem

In the previous section we saw that wavelet systems lack the uniform localiza-

tion of Gabor systems (compare theorem 3.3 with theorem 3.23). However, the

generator of a wavelet orthonormal basis can have much better time-frequency

localization than the generator of a Gabor orthonormal basis (compare the Meyer

wavelet with the Balian-Low theorem). In this section, we present results which

show how well localized the generator of a wavelet orthonormal basis can be.

The following result, [3], may be viewed as a version of the Balian-Low theo-

rem for wavelet bases.

Theorem 3.24 (Battle). Let ψ ∈ L2(R). If

|ψ(t)| ≤ Ce−|t| and |ψ̂(γ)| ≤ Ce−|γ|

then the wavelet system {ψm,n} can not be an orthonormal basis for L2(R).

As with the Balian-Low theorem, it is natural to ask if Battle’s theorem is

sharp. The following result, [17], shows that the hypotheses of Battle’s theorem

can not be significantly weakened.

Theorem 3.25 (Dziubański, Hernández). For every 0 < ε < 1 there exists

ψ ∈ L2(R) such that the wavelet system {ψm,n} is an orthonormal basis for L2(R)

satisfying

|ψ̂(γ)| ≤ Cεe
−|t|1−ε

and supp(ψ) is compact,

where Cε is a constant.
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Chapter 4

Bourgain’s Theorem

In the previous chapter we saw how the Balian-Low theorem, theorem 3.11, im-

poses localization restrictions on Gabor orthonormal bases. It states that there

are no functions g ∈ L2(R) which generate a Gabor orthonormal basis and satisfy

both ∫
|t|2|g(t)|2dt <∞

and ∫
|γ|2|ĝ(γ)|2dγ <∞.

The weights t2 and γ2 play a crucial role here. In contrast to the Balian-Low

theorem, our sharpness result, theorem 3.13, states that if slightly weaker weights

are used, then one can have Gabor orthonormal bases. Specifically, there are

functions g ∈ L2(R) which generate Gabor orthonormal bases and satisfy

∫
1 + |t|2

logd(|t| + 2)
|g(t)|2dt <∞

and ∫
1 + |γ|2

logd(|γ| + 2)
|ĝ(γ)|2dγ <∞,

where d > 2. In view of these two results, it is natural to ask what happens

for general (i.e., non-Gabor) orthonormal bases, namely, what sort of “uniform
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localization” can a general orthonormal basis for L2(R) have with respect to the

weights t2 and γ2. This question was posed by Balian, [1], and answered by

Bourgain, [11].

Theorem 4.1 (Bourgain). Let ε > 0. There exists an orthonormal basis, {bn},

for L2(R) such that

∆(bn) ≤ 1

2
√
π

+ ε, ∀n

and

∆(b̂n) ≤ 1

2
√
π

+ ε, ∀n.

This result uses variances (see definition 1.5) to measure localization; the

uniform boundedness of the variances reflects a type of uniform localization of

the basis with respect to the t2 and γ2 weights.

To put this in perspective, note that there are ψ ∈ S(R) which gener-

ate wavelet orthonormal bases, {ψm,n}m,n∈Z, for L2(R). Since ψ ∈ S(R), each

∆(ψm,n) and ∆(ψ̂m,n) is finite. However we have already seen (fact 3.23) that for

any wavelet system these variances are not uniformly bounded, [4].

Theorems 3.11, 3.13, and 4.1 form a trio of results which give insight into

the boundaries of uncertainty for the t2 and γ2 weights. In this chapter we shall

consider the situation for the weights tp and tq, where 1
p
+ 1

q
= 1. This investigation

is motivated by the (p, q) Balian-Low theorem of Feichtinger and Gröchenig,

theorem 3.14, which says that if g ∈ L2(R) generates a Gabor orthonormal basis

then one can not have both

∫
|t|p+ε|g(t)|2dt <∞

and ∫
|γ|q+ε|g(γ)|2dγ <∞.
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As in the case (p, q) = (2, 2), we proved a sharpness result, theorem 3.19, which

says that Gabor bases are possible if the weights are weakened slightly. In par-

ticular, there are g ∈ L2(R) which generate Gabor orthonormal bases and satisfy
∫

1 + |t|p
logd(|t| + 2)

|g(t)|2dt <∞

and ∫
1 + |γ|q

logd(|γ| + 2)
|ĝ(γ)|2dγ <∞,

where d > 2.

We shall consider what sort of localization a general orthonormal basis can

have with respect to the tp and γq weights. Our main result will generalize theo-

rem 4.1. We use the following “generalized variances” to measure localization.

Definition 4.2. Given f ∈ L2(R) and λ > 0 we define the generalized variance

of f by

∆2
λ(f) = infa∈R

∫
|t− a|λ|f(t)|2dt.

As with the standard definition of variance, it will often be convenient to work

with the square root of the generalized variance

∆λ(f) = infa∈R

(∫
|t− a|λ|f(t)|2dt

) 1
2

.

We refer to this as the generalized standard deviation or dispersion of f .

In terms of this definition, our main result is

Theorem 4.3. Let 1 < p, q <∞ satisfy 1
p
+ 1

q
= 1. Assume q ∈ 2N. There exists

an orthonormal basis, {bn}n∈N, for L2(R), and a constant C = C(p, q) such that

∆p(bn) ≤ C, ∀n

and

∆q(b̂n) ≤ C, ∀n.
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While we do not give an explicit value for the constant C, as Bourgain did,

we can estimate possible values of C. However, we shall not comment any more

on this here. Theorems 3.14, 3.19, and 4.3 comprise a trio of results which

give insight into the role of the weights tp and γq in uncertainty principles for

orthonormal bases, and which extend the original (p, q) = (2, 2) results.

4.1 Preliminary lemmas

In this section we shall state several lemmas which will be needed to prove theo-

rem 4.3.

4.1.1 Decay rates of inverses of matrices

The following results relate the off-diagonal decay of an invertible matrix to

the off-diagonal decay of its inverse. The results are due to Jaffard, [32], and

have been further studied and simplified by Strohmer in [43]. We also note that

Bourgain made use of similar results in [11] a few years prior to Jaffard’s work.

For example, see the transition between equations (2.11) and (2.12) in [11].

The following definition appears in [43].

Definition 4.4. Let A = (Am,n)m,n∈I be a matrix, where the index set is I =

Z,N, or {0, · · · , N − 1}. Given s > 1, we say A belongs to Qs if the coefficients

Am,n satisfy

|Am,n| <
C

(1 + |m− n|)s

for some constant C > 0. We say that A belongs to Es if

|Am,n| < Ce−s|m−n|.
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The next result says that if A is in one of the two decay classes defined above,

then A−1 has a similar kind of decay.

Theorem 4.5 (Jaffard). Let A : l2(I) → l2(I) be an invertible matrix, where

I = Z,N, or {0, · · · , N − 1}. Then

A ∈ Qs =⇒ A−1 ∈ Qs

and

A ∈ Es =⇒ A−1 ∈ Es′ ,

for some 0 < s′ ≤ s.

The case I = {0, 1, 2, · · · , N − 1} should be interpreted as follows. We quote

from [43]: “View the n × n matrix An as a finite section of an infinite dimen-

sional matrix A. If we increase the dimension of An (and thus consequently the

dimension of (An)−1) we can find uniform constants independent of n such that

the corresponding decay properties hold.”

Let us next comment on the constants which arise in Jaffard’s theorem. We

restrict ourselves to the case I = {0, 1, · · · , N−1}. Suppose that AN are sections

of the infinite matrix A and that

|AN(j, k)| ≤ C

1 + |j − k|s , ∀ j, k ∈ I

holds for all N . Suppose for simplicity that there is a fixed 0 < r < 1 such that

AN = IN −BN with ||BN || ≤ r < 1

holds for each N . Jaffard’s theorem then says there exists C ′ such that

|A−1
N (j, k)| ≤ C ′

1 + |j − k|s , ∀ j, k ∈ I

holds for each N . The constant C ′ depends only on r, s, and C. One may see

this by examining Jaffard’s proofs, [32].
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4.1.2 Bilinear form estimates

Next, we state some estimates on bilinear forms. Since the results are simple we

include the proofs. Other results of this type appear in [26].

Lemma 4.6. Given λ > 1, there exists a constant Cλ such that for every {an} ∈

l2(N), N ∈ N
N∑

j=0

N∑

k=0

|an||am|
1 + |j − k|λ ≤ Cλ

N∑

j=0

|aj|2.

Proof. The idea is to sum along the positively sloped diagonals of the finite grid

{(j, k) ∈ Z2 : 0 ≤ j, k ≤ N}.

Following this idea and applying Hölder’s inequality at the appropriate place

yields

N∑

j=0

N∑

k=0

|aj||ak|
1 + |j − k|λ =

N∑

j=0

|aj|2 + 2
N∑

d=1

N−d∑

j=0

|ad+j||aj|
1 + dλ

=
N∑

j=0

|aj|2 + 2
N∑

d=1

1

1 + dλ

N−d∑

j=0

|ad+j||aj|

≤
N∑

j=0

|aj|2 + 2

(
N∑

k=0

|ak|2
)

N∑

d=1

1

1 + dλ

≤ Cλ

N∑

j=0

|aj|2.

Lemma 4.7. Let λ > 2. There exists Cλ such that for every {am,n} ∈ l2(N2)

N∑

m,n=0

N∑

j,k=0

|am,n||aj,k|
1 + |m− j|λ + |n− k|λ ≤ Cλ

(
N∑

m,n=0

|am,n|2
)
.
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Proof.

N∑

m,n=0

N∑

j,k=0

|am,n||aj,k|
1 + |m− j|λ + |n− k|λ ≤ 2

N∑

c=0

N∑

d=0

N−c∑

m=0

N−d∑

n=0

|am,n||am+c,n+d|
1 + |c|λ + |d|λ

≤
∑

c∈Z

∑

d∈Z

(
N∑

m,n=0

|am,n|2
)

1

1 + |c|λ + |d|λ ≤ Cλ

(
N∑

m,n=0

|am,n|2
)
.

Consequently, one also has

Lemma 4.8. Given λ > 1, there exists a constant Cλ such that for every {am,k} ∈

l2(N2) and N ∈ N

N∑

k=0

N∑

m=0

N∑

j=0

|am,k||aj,k|
1 + |j −m|λ ≤ Cλ

N∑

j,k=0

|aj,k|2.

4.1.3 Phase space localization

We begin by recalling the following definition.

Definition 4.9. Given f, g ∈ L2(R) the short time Fourier transform of f with

respect to g is formally defined by

Sg[f ](t, γ) =

∫
f(t)g(x− t)e−2πixγdx.

The following lemma is theorem 11.2.5 in [22].

Lemma 4.10. If f, g ∈ S(R) then Sg[f ] ∈ S(R2).

Lemma 4.11. Suppose ϕ ∈ L2(R) and define ϕj(t) = e−2πijtϕ(t). If

|ϕ̂(γ)| ≤ C

1 + |γ|N ,

for some constant C > 0, then

|〈ϕj, ϕk〉| ≤
C1

1 + |j − k|N , (4.1)

where C1 is a constant which may depend on N .
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Proof. Without loss of generality assume n > 0 and note that

|〈ϕ0, ϕn〉| ≤
∫

|ϕ̂(γ)||ϕ̂(γ − n)|dγ = I1 + I2,

where

I1 =

∫

γ≤(n/2)

|ϕ̂(γ)||ϕ̂(γ − n)|dγ

≤
∫

γ≤(n/2)

C2

(1 + |γ|N)(1 + |γ − n|N)
dγ

≤ 1

1 + |(n/2)|N
∫

γ≤(n/2)

C2

1 + |γ|N dγ

≤ C1

1 + |n|N

and

I2 =

∫

γ>(n/2)

|ϕ̂(γ)||ϕ̂(γ − n)|dγ

≤
∫

γ>(n/2)

C2

(1 + |γ|N)(1 + |γ − n|N)
dγ

≤ 1

1 + |(n/2)|N
∫

γ>n/2

C2

1 + |γ − n|N dγ

≤ C1

1 + |n|N .

Combining the estimates for I1 and I2, (4.1) follows.

4.2 Finite, orthonormal, well localized systems

Lemma 4.12. Assume 1
p

+ 1
q

= 1 and q ∈ N. There exists a constant C =

C(p, q) and a constant K0 > 0 so that for each T ∈ N and each integer K > K0

there exists a finite orthonormal set S0 = S0(T,K) = {sn}T−1
n=0 of cardinality T

satisfying

supp sn ⊆ [−1, 1] (4.2)
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and (∫
|t|p|sn(t)|2dt

) 1
2

≤ C (4.3)

and (∫
|γ − nK|q|ŝn(γ)|2dγ

) 1
2

≤ C, (4.4)

for n = 0, 1, · · · , T − 1.

Proof. Throughout the proof, C will denote various constants which are inde-

pendent of T and K. C may depend on (p, q), ϕ, and N , all of which are fixed

throughout the proof.

I. Let ϕ ∈ S(R) be a function of L2(R) norm one satisfying

supp ϕ ⊆ [−1, 1] (4.5)

and

|ϕ̂(γ)| ≤ C

|γ|N + 1
, (4.6)

where N > 4q,N ∈ N. Now define

ϕj(t) = e2πijKtϕ(t), j = 0, 1, · · · , T − 1,

where K > K0 are integers and K0 will be defined later. Next, define

h0(t) = ϕ0(t) (4.7)

and

hn(t) = ϕn(t) −
n−1∑

j=0

an,jϕj(t), 1 ≤ n ≤ T − 1 (4.8)

where the an,j are chosen to make hn orthogonal to {ϕj}n−1
j=0 . This choice of an,j

implies that for all 0 ≤ l ≤ n− 1

〈ϕn, ϕl〉 =
n−1∑

j=0

an,j〈ϕj, ϕl〉.
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Rewriting this in matrix form, we have

Ga = g,

where G =




〈ϕn−1, ϕn−1〉 〈ϕn−2, ϕn−1〉 · · · 〈ϕ0, ϕn−1〉

〈ϕn−1, ϕn−2〉 〈ϕn−2, ϕn−2〉 · · · 〈ϕ0, ϕn−2〉

· · · · · · · · · · · ·

〈ϕn−1, ϕ0〉 〈ϕn−2, ϕ0〉 · · · 〈ϕ0, ϕ0〉




a =




an,n−1

an,n−2

· · ·

an,0




and g =




〈ϕn, ϕn−1〉

〈ϕn, ϕn−2〉

· · ·

〈ϕn, ϕ0〉



.

Note that these matrices all depend on n, but we shall usually suppress this for

economy of notation. When we wish to emphasize the dependence on n, we shall

write G = Gn for example.

II. First of all, observe that G is an invertible matrix. To see this, note that

the {ϕj}n−1
j=0 are linearly independent by theorem 3.7. Hence, by theorem 2.11

{ϕj}n−1
j=0 is a Riesz basis for its span. Thus, by theorem 2.10, G = Gn is invertible

for each n (recall that G depends on n). In particular, the {an
j }n−1

j=0 are unique.

To apply Jaffard’s lemma, we also need to know that the spectrum of G = Gn

stays uniformly bounded away from 0 independent of n. Note that the matrix G

is a Toeplitz matrix, and by (4.6) has polynomial decay of order N off the main

diagonal, in fact,

|G(j, k)| ≤ C

1 +KN |j − k|N ≤ C

1 + |j − k|N . (4.9)

For K large enough, the first inequality of (4.9) implies G = Gn is diagonally
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dominant and has spectrum uniformly bounded away from 0. By our choice of

K > K0, this will be the case.

III. By the result of Jaffard, G−1 has the same type of decay off its main diagonal

as G, namely,

|G−1(j, k)| ≤ C

1 + |j − k|N .

Also, note that the comments after the statement of Jaffard’s theorem ensure

that C is independent of K.

Therefore, noting that an,n−j is the j-th element of the vector a,

|an,n−j| ≤
n−1∑

l=0

|G−1(j, l)||gl| =
n−1∑

l=0

|G−1(j, l)||〈ϕn, ϕn−l−1〉|

≤
n−1∑

l=0

(
C

1 + |j − l|N
)(

C

1 +KN |l + 1|N
)

≤
n−1∑

l=0

C

1 + |j − l|N
(

C

KN(l + 1)N

)

≤ C

KN

n−1∑

l=0

1

(1 + |j − l|N)

1

|l + 1|N

≤ C

KN

∞∑

l=1

1

(1 + |(j + 1) − l|N)

1

|l|N

≤
(

1

KN

)
C

|j + 1|N .

To see the last step, note that

∑

1≤l≤ j+1
2

1

|l|N(1 + |j + 1 − l|N)
≤ 1

(1 + | j+1
2
|N)

∞∑

l=1

1

lN

combined with a similar estimate for the remaining range of summation gives the

desired inequality.

By the above, we have

|an,j| = |an,n−(n−j)| ≤
C

KN |n− j + 1|N . (4.10)
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IV. Note that

n−1∑

j=0

|an,j|2 ≤
C2

K2N

n−1∑

j=0

1

|n− j + 1|2N
≤ C2

K2N

n+1∑

j=2

1

j2N

≤ C

K2N
≤ C.

Using (4.5), we can estimate the localization of the hn(t).

∫
|t|p|hn(t)|2dt ≤ ||hn||2L2(R)

= |〈ϕn −
n−1∑

j=0

an,jϕj, ϕn −
n−1∑

j=0

an,jϕj〉|

≤ 1 + 2
n−1∑

j=0

|an,j||〈ϕn, ϕj〉| +
n−1∑

j,k=0

|an,j||an,k||〈ϕj, ϕk〉|

≤ 1 + 2

(
n−1∑

j=0

|an,j|2
) 1

2
(

n−1∑

j=0

|〈ϕj, ϕn〉|2
) 1

2

+
n−1∑

j,k=0

|an,j||an,k|
C

1 +KN |j − k|N

≤ 1 + 2

(
n−1∑

j=0

|an,j|2
) 1

2
(

n−1∑

j=0

C2

(1 +KN |j − n|N)2

) 1
2

+ C
n−1∑

j=0

|an,j|2

≤ C,

where the penultimate inequality used lemma 4.8. Thus,

∫
|t|p|hn(t)|2dt ≤ C, (4.11)

where C is independent of n, T,K.
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V. We now estimate the localization of the ĥn(t). Using (4.10) we have

(∫
|γ − nK|q|ĥn(γ)|2dγ

) 1
2

≤
(∫

|γ − nK|q|ϕ̂(γ − nK)|2dγ
) 1

2

+

(∫
|γ − nK|q|

n−1∑

j=0

an,jϕ̂(γ − jK)|2dγ
) 1

2

≤
(∫

|γ|q|ϕ̂(γ)|2dγ
) 1

2

+
n−1∑

j=0

|an,j|
(∫

|γ −K(n− j)|q|ϕ̂(γ)|2dγ
) 1

2

≤
(∫

|γ|q|ϕ̂(γ)|2dγ
) 1

2

+ C
n−1∑

j=0

|an,j|
(

q∑

l=0

|K(n− j)|(q−l)

∫
|γ|l|ϕ̂(γ)|2dγ

) 1
2

≤
(∫

|γ|q|ϕ̂(γ)|2dγ
) 1

2

+ C
n−1∑

j=0

|an,j||n− j|q/2

(
Kqsup0≤l≤q

∫
|γ|l|ϕ̂(γ)|2dγ

) 1
2

≤
(∫

|γ|q|ϕ̂(γ)|2dγ
) 1

2

+ CKq/2

n−1∑

j=0

|an,j||n− j|q/2

≤
(∫

|γ|q|ϕ̂(γ)|2dγ
) 1

2

+ CKq/2

n−1∑

j=0

|an,j||n− j + 1|q/2

≤
(∫

|γ|q|ϕ̂(γ)|2dγ
) 1

2

+ C
Kq/2

KN

n−1∑

j=0

|n− j + 1|−N |n− j + 1|q/2

≤
(∫

|γ|q|ϕ̂(γ)|2dγ
) 1

2

+
C

KN−(q/2)

≤ C.

Thus, (∫
|γ − nK|q|ĥn(γ)|2dγ

) 1
2

≤ C, (4.12)

where C is independent of n, T,K.

VI. It remains to normalize the hn. First note that the norms of the hn are

bounded away from 0, since by (4.8) and (4.10)
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1 = ||ϕn||L2(R) ≤ ||hn||L2(R) + ||ϕn − hn||L2(R)

≤ ||hn||L2(R) +
n−1∑

j=0

|an,j|

≤ ||hn||L2(R) +
1

KN

n−1∑

j=0

C

|n− j + 1|N

≤ ||hn||L2(R) +
C

KN

∞∑

j=2

1

jN

≤ ||hn||L2(R) +
C

KN
.

Take K large enough so that C
KN < 1

2
. From this it follows that

1

2
≤ ||hn||L2(R). (4.13)

In view of this and the discussion following (4.9), it is clear how to define the

constant K0 in the statement of the theorem.

Finally, let sn(t) = hn(t)/||hn||L2(R). By (4.11), (4.12), and (4.13) we see that

(4.3) and (4.4) hold. Also, it is clear that (4.5) implies (4.2).

Lemma 4.13. Assume 1
p

+ 1
q

= 1 and q ∈ N. There exists a constant C and a

constant K0 such that for every K > K0 and T ∈ N satisfying

T 2/p ∈ N and T 2/q ∈ N,

there exists a finite orthonormal set, S = S(T,K) = {sm,n}, (0 ≤ m < T 2/q and

0 ≤ n < T 2/p) of cardinality T 2, satisfying

supp sm,n ⊆
[
1

2
T 2/p, 2T 2/pK

]
, (4.14)

(∫
|t−Kn− T (2/p)K|p|sm,n(t)|2dt

) 1
2

≤ C, (4.15)
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and (∫
|γ −Km|q|ŝm,n(γ)|2dγ

) 1
2

≤ C. (4.16)

Proof. I. Regarding the hypotheses of the lemma, note that there exist infinitely

many T ∈ N for which

T 2/p ∈ N and T 2/q ∈ N.

To see this, note that q ∈ N implies a
b

= p ∈ Q with a, b ∈ N. Now, for

every N ∈ N, we can define TN = Naq ∈ N, so that T
2/p
N = N2bq ∈ N and

T
2/q
N = N2a ∈ N.

II. Let S0(T
q/2, K) = {sm(t)}T 2/q−1

m=0 be the system from the previous lemma.

Define

sm,n(t) = sm(t− nK − T (2/p)K) for 0 ≤ m < T 2/q and 0 ≤ n < T 2/p.

Now, (4.15) and (4.16) hold by the previous lemma. Also, note that by (4.2)

supp sm,n ⊆
[
nK + T 2/pK − 1, nK + T 2/pK + 1

]
,

so that all the sm,n are supported in

[
T 2/pK − 1, (T 2/p − 1)K + T 2/pK + 1

]
⊆
[
1

2
T 2/p, 2KT 2/p

]
.

Lemma 4.14. Let {ϕm} be as in the proof of lemma 4.12 and let

ϕm,n(t) = ϕm(t− nK −KT 2/p).

Then ∣∣∣∣
∫
γlϕ̂m,n(γ)ϕ̂j,k(γ)dγ

∣∣∣∣ ≤
C|K(m+ j)|l

|K(j −m)|N + |K(k − n)|N ,

for all j,m ≥ 0 satisfying (j,m) 6= (0, 0).

40



Proof. Throughout the proof, C will denote a constant independent of T,K.

Recall that K ∈ N. So,

∣∣∣∣
∫
γlϕ̂m,n(γ)ϕ̂j,k(γ)dγ

∣∣∣∣

=

∣∣∣∣
∫
γle−2πi(nK+T 2/pK)γϕ̂(γ −mK)e2πi(kK+T 2/pK)γϕ̂(γ − jK)dγ

∣∣∣∣

=

∣∣∣∣
∫
γle−2πi(n−k)Kγϕ̂(γ −mK)ϕ̂(γ − jK)dγ

∣∣∣∣

=

∣∣∣∣
∫

(γ +mK)le−2πi(n−k)K(γ+mK)ϕ̂(γ)ϕ̂(γ − (j −m)K)dγ

∣∣∣∣

=

∣∣∣∣
∫

(γ +mK)le−2πi(n−k)Kγϕ̂(γ)ϕ̂(γ − (j −m)K)dγ

∣∣∣∣

≤
l∑

d=0

|Cd||mK|l−d

∣∣∣∣
∫
γdϕ̂(γ)ϕ̂(γ − (j −m)K)e−2πi(n−k)Kγdγ

∣∣∣∣

=
l∑

d=0

|Cd||mK|l−d
∣∣Sbϕ[γdϕ̂]((j −m)K, (n− k)K)

∣∣

≤ C|(m+ j + 1)K|l
l∑

d=0

∣∣Sbϕ[γdϕ̂]((j −m)K, (n− k)K)
∣∣

≤ C|(m+ j + 1)K|l
1 + |j −m|NKN + |n− k|NKN

,

where we used lemma 4.11 and the fact that ϕ ∈ S(R) in the last inequality.

Lemma 4.15. Let S = S(K,T ) be the system from lemma 4.13. Also, assume

q ∈ N. For every f ∈ span S one has

∣∣∣∣
∫
γl|f̂(γ)|2dγ

∣∣∣∣ ≤ CK lT (2l)/q||f ||2L2(R) for l = 0, 1, · · · , q. (4.17)

Proof. Throughout the proof, C will denote various constants which are indepen-

dent of T,K. Assume f ∈ span S. Since the ϕm,n are linearly independent and

span S(T,K), we have

f(t) =

(T (2/q)−1)∑

m=0

(T (2/p)−1)∑

n=0

dm,nϕm,n(t),
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for some finite sequence of constants {dm,n}. The disjointness of the supports of

ϕm,n and ϕj,k for n 6= k implies

||f ||2L2(R) =

∣∣∣∣∣∣∣

T
2
q −1∑

m=0

T
2
p −1∑

n=0

T
2
q −1∑

j=0

T
2
p −1∑

k=0

dm,ndj,k〈ϕm,n, ϕj,k〉

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣

T
2
q −1∑

m=0

T
2
p −1∑

n=0

T
2
q −1∑

j=0

dm,ndj,n〈ϕm,n, ϕj,n〉

∣∣∣∣∣∣∣

=

∣∣∣∣∣
∑

m,n

|dm,n|2 +
∑

m6=j

∑

n

dm,ndj,n〈ϕm,n, ϕj,n〉
∣∣∣∣∣

≤
∑

m,n

|dm,n|2 +
∑

m6=j

∑

n

|dm,n||dj,n||〈ϕm,n, ϕj,n〉|.

That is,

||f ||2L2(R) ≤
∑

m,n

|dm,n|2 +
∑

m6=j

∑

n

|dm,n||dj,n||〈ϕm,n, ϕj,n〉|. (4.18)

I. Using lemma 4.8

∑

m6=j

∑

n

|dm,n||dj,n||〈ϕm,n, ϕj,n〉| ≤
∑

k

∑

m6=j

|dm,k||dj,k|
C

1 +KN |j −m|N

≤
∑

m6=j

∑

n

|dm,n||dj,n|
C

KN |m− j|N

≤ C

KN

∑

m,n

|dm,n|2.

Therefore, applying the triangle inequality to (4.18) gives:

∑

j,k

|dj,k|2 ≤ ||f ||2L2(R) +
∑

m6=j

∑

n

|dm,k||dj,k||〈ϕm,k, ϕj,k〉|

≤ ||f ||2L2(R) +
C

KN

∑

m,n

|dm,n|2.

Take K large enough so that C
KN < 1

2
. Thus

∑

m,n

|dm,n|2 ≤ 2||f ||2L2(R). (4.19)
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II. Using lemma 4.14 and (4.19) we have
∣∣∣∣
∫
γl|f̂(γ)|2dγ

∣∣∣∣ =

∣∣∣∣∣
∑

m,n

∑

j,k

dm,ndj,k

∫
γlϕ̂m,n(γ)ϕ̂j,k(γ)dγ

∣∣∣∣∣

≤
T 2/q−1∑

j=0

T 2/q−1∑

m=0

T 2/p−1∑

k=0

T 2/p−1∑

n=0

|dm,n||dj,k|
∣∣∣∣
∫
γlϕ̂m,k(γ)ϕ̂j,k(γ)dγ

∣∣∣∣

≤ C
T 2/q−1∑

j=0

T 2/q−1∑

m=0

T 2/p−1∑

k=0

T 2/p−1∑

n=0

|dm,k||dj,k|
|K(j +m+ 1)|l

1 + |K(k − n)|N + |K(j −m)|N

≤ C(2K)lT (2l)/q
∑

n

∑

j

∑

m

∑

k

|dm,n||dj,k|
1 + |k − n|N + |j −m|N

≤ CK lT (2l)/q

(∑

m,n

|dm,n|2
)

≤ CK lT (2l)/q||f ||2L2(R).

4.3 A (p, q) version of Bourgain’s theorem

We are now ready to prove our main result, theorem 4.3. The proof follows that

of Bourgain, [11] which, in turn, is based on an idea of W. Rudin, [40], for con-

structing bounded bases for the Hardy space H2(Cn).

Proof of Theorem 4.3. Throughout the proof C will denote various constants

which are independent of n, Tn, K, and any indices.

Let {fn}n∈N ⊂ C∞
c (R) be sequence which is dense in the unit sphere of L2(R).

Fix K > max{2,K0}, where K0 is the same as in lemma 4.13. The orthonormal

basis we construct will be of the form
⋃∞

n=1Bn where Bn is a finite orthonormal

set of C∞ compactly supported functions. We shall construct the Bn inductively.
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I. Suppose B1, . . . , Bn−1 are already defined such that Bj is a finite orthonormal

set of C∞ compactly supported functions and the elements of Bj and Bk are

mutually orthonormal. Define Fn = fn − P[B1,...,Bn−1]fn, where P[B1,...,Bn−1] is the

orthonormal projection onto

[B1, . . . , Bn−1] ≡ span
n−1⋃

l=1

Bn−1.

For the base case of the induction we simply let F1 = f1. Using Fn, we now

prepare the way to construct Bn.

i. Note that

||Fn||2L2(R) ≤ 1. (4.20)

To see this, we shall first show Fn ⊥ P[B1,··· ,Bn−1]fn.

〈Fn,P[B1,··· ,Bn−1]fn〉 = 〈fn − P[B1,··· ,Bn−1]fn, P[B1,··· ,Bn−1]fn〉

= 〈fn − P[B1,··· ,Bn−1]fn, P[B1,··· ,Bn−1](P[B1,··· ,Bn−1]fn)〉

= 〈P[B1,··· ,Bn−1]fn − P[B1,··· ,Bn−1](P[B1,··· ,Bn−1]fn), P[B1,··· ,Bn−1]fn〉

= 〈0, P[B1,··· ,Bn]fn〉 = 0.

Since ||fn||2L2(R) = 1 it follows from the definition of Fn and the orthogonality

proven above that

1 = ||Fn||2L2(R) + ||P[B1,...,Bn−1]fn||2L2(R).

Thus ||Fn||L2(R) ≤ 1.

ii. Since fn and all elements of the Bj are C∞ and compactly supported it follows

that Fn is also C∞ and compactly supported.

Choose Tn > 2 large enough so that

supp Fn ⊆
[
−1

2
T 2/p

n ,
1

2
T 2/p

n

]
, (4.21)
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supp b ⊆ [−1

2
T 2/p

n ,
1

2
T 2/p

n ] for all b ∈
n−1⋃

j=1

Bj, (4.22)

and ∫
|γ|l|F̂n(γ)|2dγ ≤ T 2l/q

n , for l = 0, 1, . . . , q. (4.23)

Note that we have no difficulties with the case l = 0 in (4.23), since ||F̂n||L2(R) ≤ 1

by Parseval’s theorem and (4.20).

II. Let

S = S(Tn, K) = {sn
j,k : 0 ≤ j < T (2/p)

n and 0 ≤ k < T (2/q)
n }

be the system from lemma 4.13. We will switch from the double indexing to

single indexing and enumerate the elements of the system as {sn,l}T 2
n

l=1. If l1, l2 are

the indices for which sn,l = sn
l1,l2

, let

x(sn,l) = Kl1 + T (2/p)
n K and y(sn,l) = Kl2,

so that by lemma 4.13

(∫
|t− x(sn,j)|p|sn,j(t)|2dt

) 1
2

≤ C (4.24)

and (∫
|γ − y(sn,j)|q|ŝn,j(γ)|2dγ

) 1
2

≤ C. (4.25)

Note that

T (2/p)
n K ≤ x(sn,j) ≤ 2KT 2/p

n and 0 ≤ y(sn,j) ≤ KT 2/q
n . (4.26)

Let 0 < Θ < 1
4

be fixed throughout the proof. Choosing Θ carefully (small

enough) will allow one to estimate precise values of the constant C in theorem

4.3. We shall not consider this issue during the proof, and shall content ourselves

with finding some, possibly large, constant C that works. Define
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bn,1(t) = Θ
Tn
Fn(t) + αn,1s1,n(t)

bn,2(t) = Θ
Tn
Fn(t) + σn,1sn,1(t) + αn,2sn,2(t)

...
...

bn,T 2
n
(t) = Θ

Tn
Fn(t) + σn,1sn,1(t) + · · · + σk,T 2

n−1sn,T 2
n−1(t) + αn,T 2

n
sn,T 2

n
(t),

where the σn,j and αn,j are chosen to ensure that {bn,j}T 2
n

j=1 is orthonormal.

i. The choice of σn,j and αn,j implies that

|1 − αn,j| ≤
Θ

Tn

for j = 1, 2, · · · , T 2
n , (4.27)

and

|σn,j| ≤
Θ

T 2
n

for j = 1, 2, · · · , T 2
n − 1. (4.28)

To see this, first note that {Fn}
⋃
S(Tn, K) is an orthogonal set. Therefore, the

assumption that {Bn,j}T 2
n

j=1 is orthonormal implies that for l = 1, 2, · · · , T 2
n we

have

0 =
Θ2

T 2
n

||Fn||2L2(R) + σ2
n,1 + · · · + σ2

n,l−1 + σn,lαn,l (4.29)

and for l = 1, 2, · · · , T 2
n − 1

α2
n,l = 1 − Θ2

T 2
n

||Fn||2L2(R) − σ2
n,1 − · · · − σ2

n,l−1. (4.30)

ii. Using (4.29) and (4.30) we shall now prove (4.27) and (4.28) by induction.

The case j = 1 of (4.27) holds since (4.30) implies,

1 =
Θ2

T 2
n

||Fn||2L2(R) + α2
n,1.

Since 2 < Tn and Θ < 1
4
, we may choose 0 < αn,1 ≤ 1. So,

|1 − αn,1| ≤ |1 − α2
n,1| ≤

Θ2

T 2
n

≤ Θ

Tn

.

Using this, the case j = 1 of (4.28) now follows since by (4.29)

0 =
Θ2

T 2
n

||Fn||2L2(R) + αn,1σn,1
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which implies

|σn,1| ≤
Θ2

T 2
n

1

|αn,1|
≤ Θ2

T 2
n

1

(1 − Θ/Tn)
≤ Θ

T 2
n

.

The last inequality holds because Θ < 1
4

and Tn > 2.

iii. Next, assume |σn,j| ≤ Θ
T 2

n
holds for j < l. We may once again choose

0 < αn,l ≤ 1. Since the cardinality of S(Tn, K) is T 2
n ,

|1 − αn,l| ≤ |1 − α2
n,l| ≤

Θ2

T 2
n

+
l−1∑

j=1

σ2
n,j ≤

Θ2

T 2
n

+ T 2
n

Θ2

T 4
n

≤ 2
Θ2

T 2
n

≤ Θ

Tn

,

and (4.27) follows by induction. For (4.28), assume that |σn,j| ≤ Θ
T 2

n
for j < l and

|1 − αn,l| ≤ Θ
Tn

. Thus,

|σn,l| ≤
1

|αn,l|

(
Θ2

T 2
n

||Fn||2L2(R) +
l−1∑

j=1

σ2
n,j

)
≤ 1

(1 − Θ/Tn)

(
2
Θ2

T 2
n

)
≤ Θ

T 2
n

,

and (4.28) holds by induction.

III. By (4.27) and (4.28), we know that σn,j is close to zero and αn,j is close to

one. Thus, we expect to have bn,j close to sn,j. In fact,

||bn,j − sn,j||L2(R) ≤ 3
Θ

Tn

. (4.31)

To see this, note that by (4.27) and (4.28)

||bn,j − sn,j||L2(R) ≤ ||bn,j − αn,jsn,j||L2(R) + |1 − αn,j|

≤ ||bn,j − αn,jsn,j||L2(R) +
Θ

Tn

=

(
Θ2

T 2
n

||Fn||2L2(R) +

j−1∑

k=1

|σn,k|2
) 1

2

+
Θ

Tn

≤
(

Θ2

T 2
n

+

(
T 2

n

Θ2

T 4
n

)) 1
2

+
Θ

Tn

≤ 3
Θ

Tn

.

IV. Let us now prove that

∆p(bn,j) ≤
(∫

|t− x(sn,j)|p|sn,j(t)|2dt
) 1

2

+ CKp/2Θ. (4.32)
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Using (4.26),(4.31) and the fact that the bn,j are supported in [− 1
2
T

2/p
n , 2T

2/p
n K]

(since Fn and sn,j are), we have

(∫
|t− x(sn

j )|p|bn,j(t)|2dt
) 1

2

≤
(∫

|t− x(sn
j )|p|bn,j − sn,j(t)|2dt

) 1
2

+

(∫
|t− x(sn

j )|p|sn,j(t)|2dt
) 1

2

≤ |2T 2/p
n K + 2KT 2/p

n |p/2||bn,j − sn
j ||L2(R) +

(∫
|t− x(sn

j )|p|sn,j(t)|2dt
) 1

2

≤ CKp/2Tn||bn,j − sn,j||L2(R) +

(∫
|t− x(sn

j )|p|sn,j(t)|2dt
) 1

2

≤ CKp/2Θ +

(∫
|t− x(sn

j )|p|sn,j(t)|2dt
) 1

2

.

Thus, by (4.15) and the definition of x(sn
j ) we have

∆p(bn,j) ≤ C + CK(p/2)Θ. (4.33)

V. Here we show that

∆q(b̂n,j) ≤
(∫

|γ − y(ŝn,j)|q|ŝn,j(γ)|2dγ
) 1

2

+ CΘK(q/2).

i. First we show that

(∫
|γ − y(ŝn,j)|q|

Θ

Tn

F̂n(γ)|2dγ
) 1

2

≤ CΘK(q/2). (4.34)
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This follows from (4.23) and (4.26) since

∫
|γ − y(ŝn,j)|q|F̂n(γ)|2dγ ≤

∫ q∑

k=0

ck|γ|k|y(ŝn,j)|q−k|F̂n(γ)|2dγ

≤ C

q∑

k=0

|y(ŝn,j)|q−k

∫
|γ|k|F̂n(γ)|2dγ

≤ C

q∑

k=0

|y(ŝn,j)|q−kKkT (2k)/q
n

≤ C

q∑

k=0

|3KT 2/q
n |q−kKkT (2k)/q

n

≤ C(3K)q

q∑

k=0

T (2−(2k)/q)
n T (2k)/q

n

= CKqT 2
n .

ii. Next, we show that

(∫
|γ − y(ŝn,j)|q|b̂n,j(γ) − ŝn,j(γ) −

Θ

Tn

F̂n(γ)|2dγ
) 1

2

≤ CΘK(q/2).

Let Ψ(γ) = b̂n,j(γ) − ŝn,j(γ) − Θ
Tn
F̂n(γ). Note that Ψ is in the span of S(Tn, K).

Thus, using (4.26), lemma 4.15,(4.28) and that q ∈ 2N
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∫
|γ − y(ŝn,j)|q|Ψ(γ)|2dγ =

∫
(γ − y(ŝn,j))

q|Ψ(γ)|2dγ

=

∣∣∣∣∣

q∑

k=0

ck(y(ŝn,j))
q−k

∫
γk|Ψ(γ)|2dγ

∣∣∣∣∣

≤ C3q

q∑

k=0

Kq−kT (2−2k/q)
n

∣∣∣∣
∫
γk|Ψ(γ)|2dγ

∣∣∣∣

≤ C

q∑

k=0

Kq−kT (2−2k/q)
n KkT 2k/q

n ||Ψ||2L2(R)

≤ CKq||Ψ||2L2(R)T
2
n

≤ CKq

(∑

l

|σn,l|2
)
T 2

n

≤ CKqT 2
n

(
T 2

n

Θ2

T 4
n

)

≤ CKqΘ2,

and the desired estimate follows. Note that this is the only step where we have

made use of q ∈ 2N (as opposed to q ∈ N).

iii. Combining the estimates from i. and ii. we have
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∆q(b̂n,j) ≤
(∫

|γ − y(ŝn,j)|q|bn,j(γ)|2dγ
) 1

2

≤
(∫

|γ − y(ŝn,j)|q|ŝn,j(γ)|2dγ
) 1

2

+

(∫
|γ − y(ŝn,j)|q|b̂n,j(γ) − ŝn,j(γ)|2dγ

) 1
2

≤
(∫

|γ − y(ŝn,j)|q|ŝn,j(γ)|2dγ
) 1

2

+

(∫
|γ − y(ŝn,j)|q|

Θ

Tn

F̂n(γ)|2γ
) 1

2

+

(∫
|γ − y(ŝn,j)|q|b̂n,j(γ) − ŝn,j(γ) −

Θ

Tn

F̂n(γ)|2dγ
) 1

2

≤
(∫

|γ − y(ŝn,j)|q|ŝn,j(γ)|2dγ
) 1

2

+ ΘCK(q/2) + ΘCK(q/2)

=

(∫
|γ − y(ŝn,j)|q|ŝn,j(γ)|2dγ

) 1
2

+ CΘK(q/2).

Thus,

∆q(b̂n,j) ≤ C + CK(q/2)Θ. (4.35)

VI. Having shown that all the elements of B =
⋃∞

j=1 bn,j have the desired local-

ization, it only remains to show that B is complete. To see this, note that
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||P[B1,··· ,Bk]fk||2L2(R) = ||P[B1,··· ,Bk−1]fk||2L2(R) + ||P[Bk]fk||2L2(R)

= ||P[B1,··· ,Bk−1]fk||2L2(R) + ||P[Bk](Fk + P[B1,··· ,Bk−1]fk)||2L2(R)

= 1 − ||Fk||2L2(R) + ||P[Bk]Fk||2L2(R)

= 1 − ||Fk||2L2(R) +

(Tk)2∑

j=1

|〈Fk, bk,j〉|2

= 1 − ||Fk||2L2(R) + (Tk)
2

(
Θ

Tk

||Fk||2L2(R)

)2

= 1 − ||Fk||2L2(R) + Θ2||Fk||4L2(R)

≥ Θ2,

To see the final inequality, let h(t) = 1 − t2 + a2t4 be defined on [0, 1], where

0 < a < 1
4

is fixed. It is easy to see that h(t) ≥ a2. Since ||Fn||L2(R) ≤ 1 and

Θ < 1
4
, the last step follows.

Now, suppose y ∈ L2(R) satisfies 〈y, b〉 = 0 for all b ∈ B. If y is not identically

zero, then ỹ = y/||y||L2(R) is in the unit sphere of L2(R) and there exists fnk
such

that fnk
→ ỹ in L2(R) as k → ∞. Thus,

0 < Θ ≤ ||P[B1,··· ,Bnk
]fnk

||L2(R) ≤ ||P[B]fnk
||L2(R) → ||P[B]ỹ||L2(R) = 0,

where the limit is as k → ∞. This contradiction shows that B is complete and

hence is an orthonormal basis.
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Chapter 5

Orthonormalizing Coherent States

The proofs of Bourgain’s theorem and our (p, q) generalization are both rather

technical. Both proofs start by constructing finite, orthonormal, well-localized

systems of functions in L2(R). Since these systems are not complete, one needs

to carefully take linear combinations of these finite systems with a dense set of

functions to obtain an orthonormal basis.

Question 5.1. Why are the proofs of Bourgain’s theorem and our (p, q) general-

ization necessarily so complicated?

To answer this, let’s begin by taking another look at Bourgain’s theorem. A

naive alternate idea for constructing a basis of the type in Bourgain’s theorem is

to start with a complete set of functions which already have the desired uniform

localization and to orthonormalize them to obtain a basis.

For example, it follows from fact 3.3 that if g(t) = 21/4e−πt2 , then the elements

of the Gabor system G(g, 1, 1) all satisfy

∆(gm,n) =
1

2
√
π

and ∆(ĝm,n) =
1

2
√
π
. (5.1)

Moreover, G(g, 1, 1) is complete, but is not a Riesz basis for L2(R), or even a

frame for L2(R). This follows (e.g., see [19], [22], [9]) from
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Theorem 5.2. Let g(t) = 21/4e−πt2 .

1. G(g, a, b) is a frame for L2(R), if ab < 1.

2. G(g, a, b) is incomplete in L2(R), if ab > 1.

3. G(g, a, b) complete in L2(R), but not a frame, if ab = 1. Moreover, G(g, a, b)

remains complete if any element is removed, but is no longer complete if

two elements are removed.

Thus, if one orthonormalizes G(g, 1, 1) with respect to some indexing of Z×Z

then one obtains a new system, O(g, 1, 1), which is an orthonormal basis for

L2(R). Since all the elements of G(g, 1, 1) satisfy (5.1) it is plausible that the

elements of the orthonormalized system also have uniformly bounded time and

frequency variances. However, it is difficult to estimate the variances here because

G(g, 1, 1) is not a Riesz basis. The difficulties arise specifically because it is

difficult to estimate the spectra of the Grammian matrices which arise in the

Gram-Schmidt orthogonalization process. Theorem 2.10 sheds light on this.

On the other hand, if one chooses ab > 1 then it follows from the Ron-Shen

duality theorem that G(g, a, b) is a Riesz basis for its span. By theorem 5.2,

G(g, a, b) is incomplete. Thus, if one orthonormalizes G(g, a, b), the resulting

system O(g, a, b) is not complete. However, since G(g, a, b) is a Riesz basis for its

span, we show it is possible to estimate the variances of the elements of O(g, a, b).

In summary,

• O(g, 1, 1) is an orthonormal basis for L2(R), but it is difficult to estimate

the time and frequency variances of the elements in O(g, 1, 1).

• If ab > 1 then O(g, a, b) is not complete in L2(R), but one can derive

variance estimates.
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This explains why the proof of Bourgain’s theorem proceeds as it does. Since

the idea outlined in the first bullet is difficult to carry out, Bourgain’s proof

essentially uses the second idea and adds in completeness by cleverly taking linear

combinations with a dense sequence.

Note that in Bourgain’s theorem, one doesn’t work with the Gaussian, but

instead with a compactly supported function. The compact support makes the

orthonormalization easier. In this chapter we shall focus on orthonormalizing

G(g, 2, 2), where g is the Gaussian.

5.1 Orthonormalizing coherent states

Consider the indexing of 2Z × 2Z which begins

(0, 0), (2, 2), (0, 2), (−2, 2), (−2, 0), (−2,−2), (0,−2), (2,−2), (2, 0),

(4, 4), (0, 4), (−4, 4), (−4, 0), (−4,−4), (0,−4), · · ·

and continues to spiral outwards in this manner. Let O(g, 2, 2) be the system

which results when G(g, 2, 2) is orthonormalized in the above order. We examine

the time and frequency localization of the elements in O(g, 2, 2). To simplify the

exposition, we shall only derive estimates for those elements whose index is of

the form (n, n), n ∈ N.

Let ϕn,n be the function obtained when gn,n is orthogonalized with respect to

the previous elements of G(g, 2, 2), indexed as above, namely,

ϕn,n(t) = gn,n(t) −
n−1∑

j=−(n−1)

n−1∑

k=−(n−1)

an
j,kgj,k(t), (5.2)

where the an
j,k are chosen to ensure that

ϕn,n is orthogonal to {gj,k : −(n− 1) ≤ j, k ≤ (n− 1)}. (5.3)
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We shall frequently suppress the dependence of an
j,k on n and simply write aj,k.

Note that by theorems 3.7 and 2.11, the aj,k are unique. To normalize the ϕn,n,

let

ψn,n(t) = ϕn,n(t)/||ϕn,n||L2(R).

Thus, ψn,n is the element of O(g, 2, 2) with index (n, n). We shall show

Theorem 5.3. For every p > 0 there exists a constant Cp such that

∆p(ψn,n) ≤ Cp and ∆p(ψ̂n,n) ≤ Cp

holds for all n ∈ N.

The main part of the proof is devoted to estimating the {an
j,k} in (5.2). This

is the content of the next section.

5.2 Estimating the {anj,k}

To estimate the {an
j,k}, we begin by using (5.3) to take inner products in (5.2).

This yields

〈gn,n, gp,q〉 =
n−1∑

j=1−n

n−1∑

k=1−n

an
j,k〈gj,k, gp,q〉, (5.4)

for all (p, q) satisfying −(n−1) ≤ p, q ≤ n−1. The following lemma gives explicit

values for the inner products in (5.4).

Lemma 5.4. Let h(t) = 21/4e−πt2 . Fix a, b > 0 and let G(h, a, b) = {hm,n}m,n∈Z.

Then

ĥ = h and ||h||L2(R) = 1 (5.5)

and

〈hm,n, hk,l〉 = e−
π
2

b2(n−l)2e−
π
2
a2(m−k)2e−πiab(n+l)(m−k). (5.6)
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Proof. A standard calculation gives (5.5). To see (5.6) we calculate as follows:

〈hm,n, hk,l〉 =

∫
h(t− nb)h(t− lb)e−2πiat(m−k)dt

=
√

2

∫
e−π(t−nb)2e−π(t−lb)2e−2πiat(m−k)dt

=
√

2

∫
e−π(t2−2nbt+n2b2+t2−2lbt+l2b2)e−2πiat(m−k)dt

=
√

2e−πb2(n2+l2)

∫
e−2π(t2−b(n+l)t)e−2πiat(m−k)dt

=
√

2e−πb2(n2+l2)e2π( b
2
(n+l))2

∫
e−2π(t2−b(n+l)t+ b2

4
(n+l)2)e−2πiat(m−k)dt

=
√

2e−πb2(n2+l2− 1
2
(n+l)2)

∫
e−2π(t− b

2
(n+l))2)e−2πiat(m−k)dt

= e−
π
2

b2(n−l)2e−πiab(n+l)(m−k)F
[
e−2πt2

]
(a(m− k))

=
√

2e−
π
2
b2(n−l)2e−πiab(n+l)(m−k) 1√

2
e−

π
2
a2(m−k)2

= e−
π
2

b2(n−l)2e
π
2
a2(m−k)2e−πiab(n+l)(m−k),

where F denotes the Fourier transform.

Corollary 5.5. Let g(t) = 21/4e−πt2 and let G(g, 2, 2) = {gm,n}m,n∈Z. Then

〈gm,n, gk,l〉 = e−2π(n−l)2e−2π(m−k)2 . (5.7)

Using this corollary, we see that (5.4) is equivalent to

Ga = g, (5.8)

where

g =




e−2π(1)2v

e−2π(2)2v

· · ·

e−2π(2n−1)2v




with v =




e−2π(1)2

e−2π(2)2

· · ·

e−2π(2n−1)2



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and

a =




yn−1

yn−2

· · ·

y1−n




with yj =




aj,n−1

aj,n−2

· · ·

aj,1−n




and

G =




B0 B1 B2 · · · B2n−2

B1 B0 B1 · · · B2n−3

· · · · · · · · · · · · · · ·

B2n−2 · · · B2 B1 B0




where

Bj = e−2πj2

C

and

C ≡




1 e−2π(1)2 e−2π(3)2 · · · e−2π(2n−2)2

e−2π(1)2 1 e−2π(1)2 · · · e−2π(2n−3)2

· · · · · · · · · · · · · · ·

e−2π(2n−2)2 e−2π(2n−3)2 e−2π(2n−4)2 · · · 1



.

Once again, we have suppressed the fact that all these matrices depend on

n. We may use the following result to estimate the spectrum of G. It appears,

among other places, in [39].

Theorem 5.6 (Gershgorin Theorem). Let A = (ai,j) be a d× d matrix with

complex entries. The spectrum of A satisfies

σ(A) ⊆
d⋃

i=1

Ri, Ri = {z ∈ C : |z − ai,i| ≤
d∑

j=1,j 6=i

|ai,j|}.

We now apply the Gershgorin theorem to our matrix G. Note that

supi

2n−1∑

j=1,j 6=i

|Gi,j| =

(
n∑

j=−n

e−2πj2

)2

− 1 ≤
(∑

j∈Z

e−2πj2

)2

− 1 ≡ r.
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One may verify that 0 < r < 1, and, in fact, numerically one has that r ≈ .0075.

Thus, σ(G) ⊆ [1 − r, 1 + r] is bounded away from 0. Note that while G depends

on n, this spectrum bound is independent of n. Likewise, if we let R = I − G,

then we have σ(R) ⊆ [−r, r]. This allows us to derive the following block-version

of Jaffard’s lemma for our matrix G. Although the proof is essentially the same

as Jaffard’s,[32], we nonetheless include it for the sake of completeness.

Lemma 5.7. There exist C, δ > 0 independent of n, such that

|G−1
j,k | ≤ Ce−δ|j′−k′|e−δ|J−K|,

where j = Jn + j ′, k = Kn + k′, and 0 ≤ J,K, j ′, k′ < n. Recall G is an

(2n− 1)2 × (2n− 1)2 matrix.

Proof. Throughout the proof C will denote various constants independent of n.

Let R = I −G. We have σ(R) ⊆ [−r, r], where 0 < r < 1 is as above.

Therefore,

|Rm(j, k)| ≤




(2n−1)2∑

l=1

|Rm(j, l)|2



1
2

= ||Rmej||2 ≤ ||Rm|| ≤ rm. (5.9)

Here, ‖ · ‖2 denotes the l2 norm of a vector and ‖ · ‖ denotes the corresponding

matrix norm it induces. Also, {ej} is the canonical basis for l2. By the definitions

of G and R we have

|R(j, k)| ≤ ce−|J−K|e−|j′−k′|.

In particular,

∀ 0 < δ < 1, |R(j, k)| ≤ ce−δ|J−K|e−δ|j′−k′|,
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so that

|Rl(j, k)| ≤
(2n−1)2∑

m1=1

· · ·
(2n−1)2∑

ml−1=1

(2n−1)2∑

ml=1

|R(j,m1)| · · · |R(ml−1,ml)||R(ml, k)|

≤
2n−1∑

M1=1

2n−1∑

m′

1=1

· · ·
2n−1∑

Ml−1=1

2n−1∑

m′

l−1=1

2n−1∑

Ml=1

2n−1∑

m′

l=1

cle−|J−M1|e−|j′−m′

1| · · · e−|Ml−1−Ml|e−|m′

l−1−m′

l|e−δ|K−Ml|e−δ|k′−m′

l|

≤
2n−1∑

M1=1

2n−1∑

m′

1=1

· · ·
2n−1∑

Ml−1=1

2n−1∑

m′

l−1=1

c̃cle−|J−M1|e−|j′−m′

1| · · · e−|Ml−1−Ml|e−|m′

l−1−m′

l|e−δ|K−Ml−1|e−δ|k′−m′

l−1|

...

≤ C le−δ|J−K|e−δ|j′−k′|.

Combining this with (5.9) gives that for all m ∈ N

|Rm(j, k)| ≤ min{rm, Cme−δ|J−K|e−δ|j′−k′|}. (5.10)

Take M large enough so that ρ ≡ CrM−1 < 1. By (5.10)

|Rm(j, k)| ≤
(
(rm)M−1Cme−δ|J−K|e−δ|j′−k′|

) 1
M

=
(
ρme−δ|J−K|e−δ|j′−k′|

) 1
M
.

Using G−1 =
∑∞

m=0R
m and (5.10), we have

|G−1(j, j)| ≤
∞∑

m=0

rm =
1

1 − r

and

|G−1(j, k)| ≤ δj,k +
∞∑

n=1

(ρ
1
M )ne−

δ
M

|j′−k′|e−
δ

M
|J−K|

≤
(

ρ1/M

1 − ρ1/M

)
e−

δ
M

|j′−k′|e−
δ

M
|J−K|.

This completes the proof.
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We shall use lemma 5.7 together with (5.8) and the definition of g to estimate

the {an
j,k}. The following lemma will be useful.

Lemma 5.8. There exist constants C and α, independent of n, such that

2n−1∑

l=1

e−δ|n−j−l|e−2πl2 ≤ Ce−α|n−j|

holds for all n ∈ N and −(n− 1) ≤ j ≤ n− 1.

Proof.

2n−1∑

l=1

e−δ|n−j−l|e−2πl2 ≤
∑

1≤l≤ 1
2
|n−j|

e−δ|n−j−l|e−2πl2 +
∑

l> 1
2
|n−j|

e−δ|n−j−l|e−2πl2

≤ e−
1
2
δ|n−j|

∑

1≤l≤ 1
2
|n−j|

e−2πl2 + e−
1
2
π(n−j)2

∑

l> 1
2
|n−j|

e−δ|n−j−l|

≤ e−
1
2
δ|n−j|

∑

l∈Z

e−2πl2 + e−
1
2
π(n−j)2

∑

l∈Z

e−δ|n−j−l|

≤ Ce−α|n−j|.

The second inequality holds because

1 ≤ l ≤ 1

2
|n− j| =⇒ |n− j − l| > 1

2
|n− j|.

Using lemmas 5.7 and 5.8 we may now estimate the coefficants {an
j,k}.

Lemma 5.9. There exist constants C, α > 0 such that the coefficants {an
j,k}

satisfy

|an
j,k| ≤ Ce−α|n−j|e−α|n−k|.

Recall that {an
j,k} depends on n. The above constants are independent of n.
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Proof. Using (5.8), we have

a = G−1g.

Using lemma 5.7 and the definitions of g and a, we have

|an−j,n−k| ≤

∣∣∣∣∣∣

(2n−1)2∑

l=1

G−1(jn+ k, l)gl

∣∣∣∣∣∣

=

∣∣∣∣∣
2n−1∑

l′=1

2n−1∑

L=1

G−1(jn+ k, l′n+ L)e−2π(l′)2e−2πL2

∣∣∣∣∣

≤
2n−1∑

l′=1

2n−1∑

L=1

e−δ|j−l′|e−δ|k−L|e−δ|l′|e−δ|L|

≤ Ce−α|j|e−α|k|

for each −(n− 1) ≤ j, k ≤ n− 1. Thus,

|an
j,k| ≤ Ce−α|n−j|e−α|n−k|.

5.3 Localization estimates

First, note that by theorem 5.2 the L2(R) norms of the {ϕn,n}n∈N stay uniformly

bounded away from 0.

Lemma 5.10. There exists ∆ > 0 such that

||ϕn,n||2L2(R) > ∆

holds for all n ∈ N.

Proof. We proceed by contradiction. Suppose there exists a subsequence of

{ϕn,n}∞n=0 satisfying

lim
m→∞

||ϕnm,nm ||2L2(R) = 0.
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By (5.2),

gnm,nm −
nm−1∑

j=1−nm

nm−1∑

k=1−nm

aj,kgj,k → 0, in L2(R).

We may use the translation and modulation invariance of Gabor systems to con-

vert this from a statement about the gnm,nm to a statement about g0,0. In partic-

ular, we have that for every ε > 0 there exists {cj,k} ⊂ C such that
∣∣∣∣∣

∣∣∣∣∣g0,0 −
∑

j<0

∑

k<0

cj,kgj,k

∣∣∣∣∣

∣∣∣∣∣
L2(R)

< ε.

This implies that

g0,0 ∈ span {gj,k : j, k < 0}. (5.11)

Recall that G(g, 2, 2) is a Riesz basis for its span by theorem 5.2 and the Ron-Shen

duality theorem. Therefore, (5.11) is a contradiction by theorem 2.9.

We need one final lemma before we can prove theorem 5.3.

Lemma 5.11. For every M ∈ N there exists C = CM > 0 such that

∣∣∣∣
∫

|t− n|Mgj,k(t)gl,m(t)dt

∣∣∣∣ ≤ Ce−
π
2
(j−l)2

∣∣∣∣n− j + l

2

∣∣∣∣
M

holds for all n ∈ N and all j, k, l,m ∈ Z.

Proof. Since gj,0(t)gl,0(t) =
√

2e−
π
2
(j−k)2e−2π[t−( l+k

2
)]2 , it suffices to examine

∫
|t− n|p|gm,0(t)|2dt.

Using

|t− n|M ≤ KM

M∑

k=0

|t|knM−k

we have

∫
|t− n|pe−2πt2dt ≤ KM

M∑

l=0

nM−l

∫
|t|le−2πt2dt ≤ CMn

M .
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We are now in position to estimate the localization of the {ψn,n}.

Theorem 5.12. Fix p ∈ N. There exists a constant Cp such that

∫
|t− n|p|ψn,n(t)|2dt ≤ Cp

and ∫
|γ − n|p|ψ̂n,n(γ)|2dγ ≤ Cp

hold for all n ∈ N.

Proof.

∫
|t− n|p|ψn,n(t)|2dt =

1

||ϕn,n||2L2(R)

∫
|t− n|p|ϕn,n(t)|2dt

=
1

||ϕn,n||2L2(R)



∫

|t− n|p
∣∣∣∣∣∣
gn,n(t) −

n−1∑

j=−(n−1)

n−1∑

k=−(n−1)

aj,kgj,k(t)

∣∣∣∣∣∣

2

dt




≤ 1

∆
(S1 + S2 + S3) ,

where

S1 =

∫
|t− n|p|gn,n(t)|2dt =

∫
|t|p|g(t)|2dt,

S2 =
n−1∑

j=−(n−1)

n−1∑

k=−(n−1)

aj,k

∫
|t− n|pgj,k(t)gn,n(t)dt

+
n−1∑

j=−(n−1)

n−1∑

k=−(n−1)

aj,k

∫
|t− n|pgj,k(t)gn,n(t)dt,

S3 =
n−1∑

j=−(n−1)

n−1∑

k=−(n−1)

n−1∑

l=−(n−1)

n−1∑

m=−(n−1)

aj,kal,m

∫
|t− n|pgj,k(t)gl,m(t)dt.

It is clear that S1 is uniformly bounded in n. To see that S2 is bounded indepen-
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dantly of n we use lemmas 5.9 and 5.11

|S2| ≤ 2C
n−1∑

j=1−n

n−1∑

k=1−n

(
e−α|n−j|e−α|n−k|)

(
e−

π
2
(j−n)2

∣∣∣∣n− (n+ j)

2

∣∣∣∣
p)

= 2C

(
n−1∑

j=1−n

e−α|n−k|

)(
n−1∑

k=1−n

e−α|n−j|e−
π
2
(n−j)2

∣∣∣∣
n− j

2

∣∣∣∣
p
)

≤ 2C

(
n−1∑

k=1−n

e−α|n−k|

)(
n−1∑

j=1−n

e−α′|n−j|

)

≤ 2C

( ∞∑

k=1

e−α|k|

)( ∞∑

j=1

e−α′|j|

)
.

Likewise, for S3 we have

|S3| ≤ C

n−1∑

j,k=1−n

n−1∑

l,m=1−n

e−α|j−n|e−α|k−n|e−α|l−n|e−α|m−n|e−
π
2
(j−l)2

∣∣∣∣n− (j + l)

2

∣∣∣∣

= C

2n−1∑

j,k=1

2n−1∑

l,m=1

e−α|j|e−α|k|e−α|l|e−α|m|e−
π
2
(j−l)2

∣∣∣∣
j + l

2

∣∣∣∣

≤ C

( ∞∑

j,l=1

e−α|j|e−α|l||j + l|
)( ∞∑

k,m=1

e−α|k|e−α|m|

)
.

Thus, we see that for any p > 0 there is Cp, independent of n, such that

∫
|t− n|p|ψn,n(t)|2dt < Cp, ∀n ∈ N.

For the other inequality, note that

ĝm,n(γ) = e−2πinb(γ+am)ĝ(γ + am) = (ĝ)n,−m = gn,−m.

Therefore, the same calculations as above yield the uniform boundedness of

∫
|γ − n|p|ψ̂n,n(γ)|2dγ.

We conclude the section with the following question.
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Question 5.13. Let g(t) = 21/4e−πt2. If one orthonormalizes G(g, 1, 1) does

there exist a constant C such that the resulting system O(g, 1, 1) = {om,n} is an

orthonormal basis for L2(R) which satisfies

∆(om,n) ≤ C and ∆(ôm,n) ≤ C

for all m,n ∈ Z?
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Chapter 6

Shapiro’s Question

We have already seen how means and variances convey information about where

a function is “located” in the time-frequency plane. The Balian-Low theorem and

Bourgain’s theorem both address the question of whether or not the sequences

of time and frequency variances of an orthonormal basis can be bounded. Re-

call that Bourgain’s theorem constructs an orthonormal basis, {bn}, for L2(R)

whose variance sequences, {∆2(bn)} and {∆2(b̂n)}, are both bounded. On the

other hand, the Balian-Low theorem shows that no Gabor orthonormal basis can

have both of these variance sequences bounded. A better understanding of how

orthonormal bases “cover” the time-frequency plane requires one also examine

the mean sequences.

In 1991 H. Shapiro posed the following question, [41]

Question 6.1 (Shapiro). Given four sequences of real numbers,

{an}, {bn}, {cn}, {dn},

does there exist an orthonormal basis {ϕn} for L2(R) such that

µ(ϕn) = an, µ(ϕ̂n) = bn, ∆2(ϕn) = cn, ∆2(ϕ̂n) = dn
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holds for all n?

The following theorem will serve as a starting point for our investigation.

Theorem 6.2. There does not exist an infinite orthonormal sequence {fn} ∈

L2(R) such that all four of the mean and variance sequences are bounded.

Shapiro, [41], gives an elegant elementary proof of theorem 6.2 which relies

on a compactness result of Kolmogorov. The result also follows from the theory

of prolate spheroidal wavefunctions, [35]. We shall discuss prolate spheroidal

wavefunctions later.

Motivated by theorem 6.2, we consider the following question.

Question 6.3. If {ϕn} is an orthonormal basis for L2(R), how many of the

sequences {µ(ϕn)}, {µ(ϕ̂n)}, {∆2(ϕn)}, {∆2(ϕ̂n)} can be bounded? Which combi-

nations of these sequences can be bounded?

6.1 Examples

Let us consider some examples.

Example 6.4 (Wavelet Basis). Let ψ ∈ L2(R) be such that the wavelet system

W(ψ) = {ψm,n} is an orthonormal basis for L2(R). A direct calculation, [4],

shows that for wavelet systems the three sequences

{µ(ψm,n)}, {∆2(ψm,n)}, {∆2(ψ̂m,n)}

are unbounded.

Example 6.5 (Gabor basis). Let g be any function such that the corresponding

Gabor system G(g, 1, 1) = {gm,n} is an orthonormal basis for L2(R). A direct
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computation shows that both {µ(gm,n)} and {µ(ĝm,n)} are unbounded sequences.

Moreover, by the Balian-Low theorem, at least one of the two variance sequences,

{∆2(gm,n)} and {∆2(ĝm,n)} must be unbounded (in fact constantly equal to ∞).

Example 6.6 (Hermite basis). Let {hn} be the Hermite functions defined by

hk(t) =
21/4

√
k!

( −1

2
√
π

)k

eπt2 d
k

dtk
(e−2πt2).

We follow the notation of [20]. The Hermite functions are eigenfunctions of the

Fourier transform, form an orthonormal basis for L2(R), and satisfy

2
√
π thk(t) =

√
k + 1hk+1(t) +

√
khk−1(t). (6.1)

By taking the inner product of (6.1) with hk and using the orthonormality of

the Hermite functions, it follows that µ(hk) = 0 for all k. Since each hn is an

eigenfunction of the Fourier transform, we also have µ(ĥk) = 0. In particular,

both mean sequences are bounded. Using (6.1) again, one can show that ∆(hk) =

∆(ĥk) =
√

2k+1
2
√

π
, so that both variance sequences are unbounded.

Example 6.7 (Bourgain basis). Let ε > 0. In [11], Bourgain constructs an

orthonormal basis, {fn} for L2(R) satisfying ∆2(fn) ≤
(

1
2π

+ ε
)2

and ∆2(f̂n) ≤
(

1
2π

+ ε
)2

for all n. However, the mean sequences are both unbounded.

Example 6.8 (Wilson Basis). Let g ∈ L2(R) and define the associated Wilson

system, {ψl,k}l≤0,k∈Z, by

ψ0,k(t) = g(t− k), k = 0

ψl,k(t) =
√

2g(t− k/2)cos(2πlt), l 6= 0, k + l even,

ψl,k(t) =
√

2g(t− k/2)sin(2πlt), l 6= 0, k + l odd.
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See [22] for background on Wilson bases. For any g one can verify that

{µ(ψl,m)} and {∆2(ψ̂l,k)} are unbounded sequences.

For examples of Wilson bases with exponential localization in time and frequency

see, [15], [14].

We shall prove two theorems which answer question 6.3. The first shows that

theorem 6.2 holds for orthonormal bases even if the hypotheses are weakened to

allow one of the mean sequences to be unbounded. Namely, there does not exist

an orthonormal basis {fn} for L2(R) with {µ(f̂n)}, {∆2(fn)} and {∆2(f̂n)} being

bounded sequences.

Theorem 6.9. There does not exist an orthonormal basis {fn} for L2(R) such

that {∆2(fn)}, {∆2(f̂n)} and {µ(f̂n)} are all bounded sequences.

The second result shows that theorem 6.2 does not hold for orthonormal

bases if the hypotheses are weakened to allow one of the variance sequences to

be unbounded. Namely, there are orthonormal bases {fn} for L2(R) such that

{∆2(fn)}, {µ(fn)} and {µ(f̂n)} are bounded sequences.

Theorem 6.10. There exists a constant C > 0 such that for any ε > 0 there

exists an othonormal basis, {fn}, for L2(R) satisfying |µ(fn)| ≤ ε, |µ(f̂n)| ≤ ε

and ∆2(fn) ≤ C for all n.

6.2 Two variances and one mean

In this section we shall prove theorem 6.9. We shall first need some background

on the prolate spheroidal wavefunctions.
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6.2.1 Prolate spheroidal wavefunctions

Our brief discussion of prolate spheroidal wavefunctions will follow that of [42],

[34], [35]. These papers, written by combinations of Landau, Slepian, and Pollak,

are the original and authoritative references on prolate spheroidal wavefunctions.

Definition 6.11. Given Ω > 0, the Paley Wiener space, PWΩ is defined by

PWΩ = {f ∈ L2(R) : supp( f̂ ) ⊆ [−Ω,Ω]}.

Theorem 6.12 (Slepian, Pollak). Given any T > 0 and Ω > 0, there exists

a sequence {ψn}∞n=0 ⊂ L2(R), called the prolate spheroidal wave functions, and a

monotone decreasing sequence of positive numbers, {λn}, such that:

1. The ψn are complete and orthonormal in PWΩ,

2. The ψn are complete and orthogonal in L2([−T
2
, T

2
]) with

∫ T
2

−T
2

ψn(t)ψm(t)dt = λnδ(m,n),

3.

λnψn(t) =

∫ T
2

−T
2

sin(Ω(t− s))

π(t− s)
ψn(s)ds.

Definition 6.13. Given constants ε, η,Ω > 0, we define

S = ST,Ω,ε,η = {f ∈ L2(R) :

∫

|t|≥T

|f(t)|2dt ≤ ε2 and

∫

|γ|≥Ω

|f̂(γ)|2dγ ≤ η2}.

Landau and Pollak showed that

Theorem 6.14 (Landau, Pollak). If f ∈ ST,Ω,ε,η with ‖f‖L2(R) = 1 then

‖f −
[2TΩ]∑

n=0

anψn‖2
L2(R) ≤ 12(ε+ η)2 + η2,
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where the coefficants, an = an(f) are defined by

Pf =
∞∑

n=0

anψn

and P is the projection onto PWΩ.

The next result follows directly from Landau and Pollak’s result. It is well

known, but we include a proof for the sake of completeness.

Theorem 6.15. Let S = ST,Ω,ε,η. Suppose ε and η are small enough. There

exists N ∈ N such that S contains no orthonormal subset containing more than

N elements.

Proof. Suppose {fl}N
l=1 ⊆ S is orthonormal, where N is some fixed integer. Let

{ψn}∞n=0 be the prolate spheroidal wavefunctions for [−T, T ] × [Ω,Ω] ⊂ R × R̂.

So, by Landau and Pollak’s theorem, for each l = 1, . . . , N there exists

{an,l}∞n=0 such that if fl = Pfl + hl, where P is the projection onto PWΩ, then

Pfl =
∞∑

n=0

an,lψn,

‖hl‖2
L2(R) = ‖fl − Pfl‖2

L2(R) = η2,

and

‖fl −
[2TΩ]∑

n=0

an,lψn‖2
L2(R) ≤ 12(ε+ η)2 + η2.

First, note that

‖
∞∑

n=[2TΩ]+1

an,lψn‖L2(R) = ‖fl − hl −
[2TΩ]∑

n=0

an,lψn‖L2(R)

≤ ‖fl −
[2TΩ]∑

n=0

an,lψn‖L2(R) + ‖hl‖L2(R)

≤
√

12(ε+ η)2 + η2 + η.
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Since hl ⊥ Pfj for all j and l, it follows from orthonormality that 0 = 〈fl, fj〉 =

〈hl, hj〉 +
∑∞

n=0 an,lan,j for j 6= l. Thus,

∣∣∣∣∣∣

[2TΩ]∑

n=0

an,lan,j

∣∣∣∣∣∣
≤ |〈hl, hj〉| +




∞∑

n=[2TΩ]+1

|an,l|2



1
2



∞∑

n=[2TΩ]+1

|an,j|2



1
2

≤ η2 + (
√

12(ε+ η)2 + η2 + η)2 for j 6= l.

Next, note that we also have




[2TΩ]∑

n=0

|an,l|2



1
2

= ‖
[2TΩ]∑

n=0

an,lψn‖L2(R) ≥ ‖fl‖L2(R) − ‖fl −
[2TΩ]∑

n=0

an,lψn‖L2(R)

≥ 1 −
√

12(ε+ η)2 + η2.

Thus, defining vl = (a0,l, a1,l, . . . , a[2TΩ],l) ∈ R[2TΩ]+1 for l = 1, 2, . . . , N , we have

1 ≥ |vl| ≥ 1 −
√

12(ε+ η)2 + η2 (6.2)

and

|〈vl, vj〉| ≤ η2 +
(√

12(ε+ η)2 + η2 + η
)2

for l 6= j. (6.3)

If N is too large, (6.2) and (6.3) yield a contradiction. Recall ε and η are assumed

to be sufficiently small.

6.2.2 Preliminary lemmas

Lemma 6.16. Suppose g ∈ L2(R), ||g||L2(R) = 1, satisfies

|µ(gn)| < A, |µ(ĝn)| < B ,∆(gn) < J ,∆(ĝn) < K.

Fix ε > 0. For any R > max{J2

ε2
, K2

ε2
} we have

g ∈ SA+R,B+R,ε,ε.
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Proof. Since R > J2

ε2
,

∫

|t|≥A+R

|g(t)|2dt ≤
∫

|t|≥|µ(g)|+R

|g(t)|2dt ≤
∫

|t−µ(g)|≥R

|g(t)|2dt

≤ 1

R

∫

R

|t− µ(g)|2|g(t)|2dt ≤ J2

R
< ε2.

Likewise, ∫

|t|≥B+R

|ĝ(γ)|2dγ ≤ K2

R
< ε2.

Lemma 6.17. Suppose f, g ∈ L2(R), ||f ||L2(R) = ||g||L2(R) = 1, and that the

means and variances

µ(f), µ(f̂), µ(g), µ(ĝ),∆2(f),∆2(f̂),∆2(g),∆2(ĝ)

are all finite. Then,

|〈f, g〉| ≤ 2
∆(f) + ∆(f̂) + ∆(g) + ∆(ĝ)

|µ(f) − µ(g)| + |µ(f̂) − µ(ĝ)|
.

Proof. Let

S1 = {t : |t− µ(f)| ≥ 1

2
|µ(f) − µ(g)|}

and

S2 = {t : |t− µ(g)| ≥ 1

2
|µ(f) − µ(g)|}.

So,
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|〈f, g〉| ≤
∫

|f(t)||g(t)|dt ≤
∫

S1

|f(t)||g(t)|dt+

∫

S2

|f(t)||g(t)|dt

≤ 2

|µ(f) − µ(g)|

∫
|t− µ(f)||f(t)||g(t)|dt

+
2

|µ(f) − µ(g)|

∫
|t− µ(g)||f(t)||g(t)|dt

≤ 2∆(f)

|µ(f) − µ(g)| +
2∆(g)

|µ(f) − µ(g)|

=
2 (∆(f) + ∆(g))

|µ(f) − µ(g)| .

Likewise,

|〈f, g〉| = |〈f̂ , ĝ〉| ≤ 2
∆(f̂) + ∆(ĝ)

|µ(f̂) − µ(ĝ)|
.

Now, combining the previous two inequalities gives

|〈f, g〉| ≤ 2
∆(f) + ∆(f̂) + ∆(g) + ∆(ĝ)

|µ(f) − µ(g)| + |µ(f̂) − µ(ĝ)|
,

as desired.

6.2.3 Two variances and one mean: the proof

We can now prove theorem 6.9. We restate the theorem here.

Theorem 6.18. There does not exist an orthonormal basis {gn} for L2(R) such

that {∆2(gn)}, {∆2(ĝn)} and {µ(ĝn)} are all bounded sequences.

Proof. We proceed by contradiction. Suppose such a basis, {gn}n∈Z, exists and

that

|µ(ĝn)| < B, ∆(gn) ≤ K, ∆(ĝn) ≤ K
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holds for each n ∈ Z. Let In ⊂ R × R̂ be the rectangle [n, n + 1] × [−B,B].

So, {(µ(gn), µ(ĝn))}n∈Z is contained in the disjoint union
⋃

n∈Z
In. By lemma 6.16

and theorem 6.15

∃N such that ∀n, card
(
In
⋂

{(µ(gj), µ(ĝj))}j

)
≤ N. (6.4)

Let f(t) = e−2πitµ(ĝ0)g0(t+µ(g0)) and fM(t) = e2πiMtf(t). So, ‖fM‖L2(R) = 1 and

µ(fM) = 0, µ(f̂M) = M, ∆(fM) < K, ∆(f̂M) < K.

Let Sn = {j : (µ(gj), µ(ĝj)) ∈ In}. Thus, by Parseval’s theorem, lemma 6.17, and

(6.4) we have

1 =
∑

n

|〈fM , gn〉|2 ≤
∑

n

∣∣∣∣
2(4K)

|0 − µ(gn)| + |M − µ(ĝn)|

∣∣∣∣
2

= 64K2
∑

n

1

(|µ(gn)| + |M − µ(ĝn)|)2

= 64K2
∑

n

∑

k∈Sn

1

(|µ(gk)| + |M − µ(ĝk)|)2

≤ 128NK2

∞∑

n=0

1

(|n| + |M −B|)2
.

Since the right hand side of this inequality approaches 0 as M → ∞, we have

a contradiction.

6.3 Two means and one variance

We prove theorem 6.10 in this section. Let us restate the theorem here.

Theorem 6.19. There exists a constant C > 0 such that for any ε > 0 there

exists an orthonormal basis, {fn}, for L2(R) satisfying

|µ(bj)| ≤ ε, |µ(b̂j)| ≤ ε, and ∆2(bj) ≤ C

for all j.
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Proof. We begin by defining a system of functions G(T,N), which we shall need

for the proof.

I. Let g ∈ S(R) be a function satisfying

• ||g||L2(R) = 1 and ĝ ∈ C∞
c (R)

• supp ĝ ⊆ [−1/2, 1/2]

• g is real and even

• µ(g) = µ(ĝ) = 0 and ∆(g) ≡ δ <∞.

Regarding the third and fourth bullets, note that g is real and even if and only

if ĝ is real and even. Also, the mean of an even function is 0. Now define

gn(t) =
√

2 cos(2πnt)g(t). The functions {gn}∞n=1 have the following properties

which are easily verified:

• ĝn(γ) =
√

2
2

(ĝ(t− n) + ĝ(t+ n))

• 〈gn, gm〉 = δn,m.

• µ(gn) = 0 = µ(ĝn)

• ∆(gn) ≤ (
√

2)δ

• supp ĝn ⊆ [−n− 1
2
,−n+ 1

2
]
⋃

[n− 1
2
, n+ 1

2
]

Given T,N ∈ N, we define the orthonormal system G(T,N) = {gn}N+T
n=N .

II. Let {ϕn}∞n=1 ⊆ S(R) be dense in the unit sphere of L2(R) and satisfy

||ϕn||L2(R) = 1 and ϕ̂n ∈ C∞
c (R).
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The basis shall be of the form
⋃∞

j=1Bj, where each Bj is a finite set of C∞

functions whose Fourier transforms are compactly supported. We shall construct

the Bj inductively.

Suppose we have already constructed B1, . . . , Bn−1. Let

Φn = ϕn − P[B1,...,Bn−1]ϕn,

where [B] is the notation in [11] which denotes the span of the set of functions B.

For the base case of the induction let Φ1 = ϕ1. Observe that ||Φn||L2(R) ≤ 1 and

Φn is orthogonal to the elements of Bj for each j < n. Note that Φ̂n ∈ C∞
c (R)

since ϕn and the elements of
⋃n−1

j=1 Bj also satisfy this property.

Take Nn large enough so that [−Nn + 1, Nn − 1] contains the support of Φ̂n

and the supports of the Fourier transforms of the functions in
⋃n−1

j=1 Bj. Take Tn

large enough so that: ∫
|t|2|Φn(t)|2dt ≤ T 2

n (6.5)

and ∣∣∣∣
∫
t|Φn(t)|2dt

∣∣∣∣ ≤ εT 2
n and

∣∣∣∣
∫
γ|Φ̂n(γ)|2dγ

∣∣∣∣ ≤ εT 2
n . (6.6)

Enumerate the elements of G(Tn, Nn) as {gj,n}T 2
n

j=0. The support properties of

G(Tn, Nn) ensure that the elements of G(Tn, Nn) are orthogonal to Φn and the

elements of
⋃n−1

j=1 Bj. We now define the elements of Bn as

b1,n(t) =
Θ

Tn

Φn(t) + α1,ng1,n(t)

b2,n(t) =
Θ

Tn

Φn(t) + β1,ng1,n(t) + α2,ng2,n(t)

...

bT 2
n ,n(t) =

Θ

Tn

Φn(t) + β1,ng1,n(t) + · · · + βT 2
n−1,ngT 2

n−1,n(t) + α1,T 2
n
g1,T 2

n
(t)

78



where 0 < Θ < 1
4

is a fixed constant and the αj,n and βj,n are choosen to ensure

the bj,n are orthonormal. As in Bourgain’s theorem, we have

|βj,n| ≤
Θ

T 2
n

≤ 1

T 2
n

(6.7)

and

|1 − αj,n| ≤
Θ

Tn

≤ 1

Tn

. (6.8)

III. Let us now prove estimates for µ(bj,n). Using the fact that Φ̂n and the ĝj,n

all have disjoint support we have

µ(bj,n) =

∫
t|bj,n(t)|2dt = 〈(b̂j,n)′, b̂j,n〉

=
Θ2

T 2
n

〈(Φ̂n)′, Φ̂n〉 +

j−1∑

k=1

|βk,n|2〈(ĝk,n)′, ĝk,n〉 + |αj,n|2〈(ĝj,n)′, ĝj,n〉

=
Θ2

T 2
n

∫
t|Φn(t)|2dt+

j−1∑

k=1

|βk,n|2µ(gk,n) + |αj,n|2µ(gj,n)

=
Θ2

T 2
n

∫
t|Φn(t)|2dt.

Thus,

|µ(bj,n)| ≤ 1

T 2
n

∣∣∣∣
∫
t|Φn(t)|2dt

∣∣∣∣ ≤ ε.

IV. Next we estimate |µ(b̂j,n)|. Using the support properties of the functions, we

have

µ(b̂j,n) =

∫
γ|b̂j,n(γ)|2dγ

=
Θ2

T 2
n

∫
γ|Φ̂n(γ)|2dγ +

j−1∑

k=1

|βk,n|2µ(ĝk,n) + |αj,n|2µ(ĝj,n)

=
Θ2

T 2
n

∫
γ|Φ̂n(γ)|2dγ.

Thus,

|µ(b̂j,n)| ≤ 1

T 2
n

∣∣∣∣
∫
γ|Φ̂n(γ)|2dγ

∣∣∣∣ ≤ ε.
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V. Now we estimate ∆2(bj,n). Once again, using the disjointness of supports and

proceeding as in part III, we have

∆2(bj,n) ≤
∫

|t|2|bj,n(t)|2dt

=

∫
|t|2| 1

Tn

Φn(t)|2dt+

j−1∑

k=1

∫
|t|2|βj,ngj,n(t)|2

+

∫
|t|2|αj,ngj,n(t)|2dt

=
1

T 2
n

∫
|t|2|Φn(t)|2dt+

j−1∑

k=1

|βk,n|2∆2(gk,n) + |αj,n|2∆2(gj,n)

≤ 1

T 2
n

∫
|t|2|Φn(t)|2dt+

j−1∑

k=1

1

T 4
n

2δ2 + |αj,n|22δ2

≤ 1

T 2
n

∫
|t|2|Φn(t)|2dt+ T 2

n

(
2δ2

T 4
n

)
+ (1)2δ2

≤ 1

T 2
n

∫
|t|2|Φn(t)|2dt+ 4δ2 ≤ 1 + 4δ2.

The second step above follows by proceeding as in part III.

VI. It only remains to show that
⋃∞

j=1Bj is complete. The verification is identical

to that in [11] and our chapter 4, but we repeat the details here for the sake of
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completeness.

||P[B1,··· ,Bk]ϕk||2L2(R) = ||P[B1,··· ,Bk−1]ϕk||2L2(R) + ||P[Bk]ϕk||2L2(R)

= ||P[B1,··· ,Bk−1]ϕk||2L2(R) + ||P[Bk](Φk + P[B1,··· ,Bk−1]ϕk)||2L2(R)

= 1 − ||Φk||2L2(R) + ||P[Bk]Φk||2L2(R)

= 1 − ||Φk||2L2(R) +

(Tk)2∑

j=1

|〈Φk, bk,j〉|2

= 1 − ||Φk||2L2(R) + (Tk)
2

(
Θ

Tk

||Φk||2L2(R)

)2

= 1 − ||Φk||2L2(R) + Θ2||Φk||4L2(R)

≥ Θ2.

To see the final inequality, let h(t) = 1 − t2 + a2t4 be defined on [0, 1], where

0 < a < 1
4

is fixed. It is easy to see that h(t) ≥ a2. Since ||Φk||L2(R) ≤ 1 and

Θ < 1
4
, the last step follows.

Now, suppose y ∈ L2(R) satisfies 〈y, b〉 = 0 for all b ∈ B. If y is not identically

zero, then ỹ = y/||y||L2(R) is in the unit sphere of L2(R) and there exists ϕnk
such

that ϕnk
→ ỹ in L2(R) as k → ∞. Thus,

0 < Θ ≤ ||P[B1,··· ,Bnk
]ϕnk

||L2(R) ≤ ||P[B]ϕnk
||L2(R) → ||P[B]ỹ||L2(R) = 0,

where the limit is as k → ∞. This contradiction shows that B is complete and

hence is an orthonormal basis.

6.4 Means of Bourgain bases

Theorem 6.9 shows that an orthonormal basis, {bn}, for which

{∆(bn)} and {∆(b̂n)} are bounded sequences (6.9)
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can not have either of its mean sequences bounded. If an orthonormal basis for

L2(R) satisfies (6.9) we shall refer to it as a Bourgain basis, in view of theorem

4.1. In this section we reexamine theorem 6.9 and look for more precise contraints

on the time and frequency mean sequences.

We begin with the following proposition.

Proposition 6.20. Let {bn} be the basis in Bourgain’s theorem, theorem 4.1.

The sequence {(µ(bn), µ(b̂n))}n lies in a quarter-plane of the form

Wa,b = {(x, y) ∈ R2 : a ≤ x and b ≤ y}.

This proposition follows by examining the proof of Bourgain’s theorem. The

following result says a bit more about the mean sequences of a Bourgain basis.

Theorem 6.21. Suppose {bn} is an orthonormal basis for L2(R) with

∆(bn) ≤ K and ∆(b̂n) ≤ K ∀n.

If

{(µ(bn), µ(b̂n))}n ⊂ W ≡ {(x, y) ∈ R2 : x ≤ 0 or y ≤ 0} (6.10)

then
∑

n

1

(1 + |µ(bn)| + |µ(b̂n)|)2
= ∞. (6.11)

Proof. The proof is essentially the same as that of theorem 6.9. We proceed by

contradiction and begin by assuming such a basis exists and satisfies

∑

n

1

(1 + |µ(bn)| + |µ(b̂n)|)2
<∞. (6.12)

Let f = b0 and assume without loss of generality that µ(f) = µ(f̂) = 0. Let

fN(t) = e2πiNtf(t−N), so that µ(fN) = µ(f̂N) = N . As in the proof of theorem
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6.9 we have

1 ≤
∑

j

CK2

(1 + |µ(bj) −N | + |µ(b̂j) −N |)2
(6.13)

for some constant C. If we let

S1 = {j : µ(b̂j) ≤ 0} and S2 = {j : µ(bj) ≤ 0}

then we can overestimate the above sum by two sums, one over S1 and one over

S2. If j ∈ S1 then for N > 0

|µ(bj)| + |µ(b̂j)| +N ≤ |µ(bj) −N | + |µ(b̂j) −N | + 3N

≤ |µ(bj) −N | + 4|µ(b̂j) −N |

≤ 4|µ(bj) −N | + 4|µ(b̂j) −N |.

Therefore,

∑

j∈S1

CK2

(1 + |µ(bj) −N | + |µ(b̂j) −N |)2
≤
∑

j∈S1

C0K
2

(1 + |µ(bj)| + |µ(b̂j)| +N)2

for some constant C0. By (6.12), the left side of this inequality goes to 0 as

N → ∞. Combining this with a similar estimate for the sum over S2 shows that

the right side of (6.13) goes to 0 as N → ∞. Thus, we have a contradiction.
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[17] Jacek Dziubański and Eugenio Hernández, Band-limited wavelets with subex-

ponential decay, Canad. Math. Bull. 41 (1998), no. 4, 398–403. MR

2000a:42052

[18] Hans G. Feichtinger and Karlheinz Gröchenig, Gabor frames and time-
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