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Compost topdressing, compost tea, and hollow tine cultivation are common 

cultural practices employed in organic lawn care programs. Restrictions on the 

amount of bagged fertilizer nitrogen and phosphorus applied to turf have raised 

questions about the need to place similar restrictions on compost turfgrass 

applications.  In a three-year study the effect of reduced and common practitioner use 

rates of compost topdressing, the use of compost tea and of hollow tine cultivation on 

soil physical and biological properties and turfgrass quality were evaluated. 

Cultivation, monthly compost tea application and compost topdressing applied at 

rates consistent with annual bagged fertilizer nitrogen restrictions had little effect on 

soil organic matter, microbial activity, bulk density and infiltration. The use of a 

synthetic fertilizer resulted in higher turf quality than the use of compost on most 

  



evaluation dates. Nutrient fertilizer restrictions if applied to compost will likely result 

in a decline in turf quality.   
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Chapter 1: Introduction 

The Chesapeake Bay is the largest estuary in the United States. Its watershed 

encompasses six states and District of Columbia. It is a region with an expanding 

population base which has resulted in, and will continue to undergo for the foreseeable 

future, the conversion of forest and farmland into residential land uses. Residential land 

uses are typically characterized by the extensive presence of turfgrass. In the counties 

surrounding Washington DC, for example, 39 to 46% of the landscape is comprised of 

turfgrass (Schueler, 2010). 

Residential construction activity frequently involves the removal and 

redistribution of topsoil and use of subsoil as fill material. These grading activities often 

result in compact infertile soil. Homeowners typically try to compensate for poor soil 

conditions by applying fertilizer to their lawns. Most fertilizers are applied as inorganic 

salts or as synthetic materials. However, there has been an emerging interest in the use of 

natural organic materials, such as compost, in place of salt and synthetic based fertilizers.  

The use of compost as a soil amendment has been shown to improve the physical 

and chemical properties of soil as well as to improve turfgrass quality (Hornick et al., 

1984；Angle, 1994; Landschoot and McNitt, 1994). Less is known about how these soil 

properties are altered when compost is used as fertilizer, particularly when applied to 

lawn turf. The slow nitrogen (N) release properties of compost have traditionally resulted 

in applications of compost at loading rates in excess of yearly turf N needs. The passage 

of turfgrass fertilizer laws in several states has resulted in restrictions on the amount of N 

and phosphorus that can applied to turf at any one time, and over the course of the year 

(Weinberg et al., 2011). Depending on the state, topdressing applications of compost may, 
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or may not be bound to the same restrictions as bagged fertilizers. Given that it is likely 

additional states will pass fertilizer laws that will restrict the amount of N that can be 

applied to turf, it is important to determine how compost topdressing applications, when 

held to same N annual load rate restriction as bagged fertilizers, will effect turf quality 

and the properties of the underlying soil . 

Stormwater is the primary source of nutrient impairment of surface waters in 

many urban areas (Weinberg et al., 2011). In a 2007 study on the health of Chesapeake 

Bay (Chesapeake Bay Program, 2008), stormwater in urban and suburban lands was 

listed as the only pollution source sector that was growing within the watershed. Core 

cultivation is sometimes cited as a best management practice to reduce runoff from 

turfgrass areas (Rice and Horgan, 2011). It is also a recommended practice for the 

incorporating materials such and sand and compost into existing lawns to improve the 

physical properties of the soil. Core cultivation of home lawns is a practice that is often 

limited to a single cultivation per year. The potential benefits to turf quality and soil 

properties at cultivation application frequencies that are typically followed by 

homeowners needs to be documented before promoting the use of such practices as a way 

to reduce runoff.  

In recent years, the use of the water extract from fermented compost (compost tea) 

has become popular. Its use has been promoted as way to provide nutrients and biological 

benefits to plants and soil. Most reported studies involving the use of compost tea have 

been performed on agricultural crops, such as corn, bean, lettuce, tomato and potato for 

disease suppression (Scheuerell and Mahaffee, 2002; and Litterick et al., 2004). 

Microorganisms are essential to organic matter decomposition, nutrient cycling and other 
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soil physical and chemical properties. They are very sensitive to small changes in 

management practices. The application of high quality compost materials is believed to 

increase the number of individuals and the species diversity of the microbial communities 

(Ingham, 2005).    

The objectives of this thesis are to: 1) compare the quality of lawns that are 

topdressed with compost with those that receive an enhanced efficiency fertilizer when 

both are applied at the same annual N loading rate and subject to varying levels hollow 

tine cultivation; 2) to compare the quality of unfertilized lawns with those receiving an 

enhanced efficiency fertilizer or compost, with the compost applied at the same N loading 

rate as the enhanced efficiency fertilizer or at a rate of 1 cm of compost per year; 3) to 

determine the effect of the treatments listed in 1 and 2 above on soil organic matter 

content, microbial activity, bulk density and infiltration rate; and 4) to evaluate the effect 

of the monthly application of compost tea made during growing season on soil microbial 

enzyme activity and select aspects of turfgrass quality. 
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Chapter 2: Literature Review 

Meeting the consumption demands of an ever increasing population has resulted 

in a commensurate increase in the production of agricultural, industrial and urban wastes. 

The production of municipal solid waste in the U.S., for example, tripled between 1960 

and 2005 (USEPA, 2014). The large quantities of plant, animal and solid wastes are 

ongoing concerns of regulatory agencies, and to a lesser extent, the general public.  

Agricultural animal production, the treatment of municipal sewage sludge, and the 

disposal yard debris generate substantial waste streams that need be managed in a way 

that does not harm air, land or water resources.  The use of waste management 

procedures such as incineration, land filling and ocean dumping are viewed as 

undesirable approaches to organic waste management because they fail to meet one or 

more of the criterion associated with sustainable natural resource management.  In order 

for a waste management practice to be sustainable it must be cost effective, energy 

saving, of acceptable environmental impact, and be beneficial to both current and future 

economic and social development (Lichtfouse et al., 2009; Diacono and Montemurro, 

2010).  

Composting is an aerobic biological process that accelerates and controls the 

natural process of organic matter decomposition by controlling mixtures of organic 

materials and the environment in which they are transformed. The end product of this 

process is a beneficial and stable product called compost. Composting is an efficient and 

economical way of utilizing waste and provides plants and soil with multiple benefits. 

The production and use of compost is considered a sustainable practice when applied to 

lands in amount that are not excessive. 
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Composting has been practiced for thousands of years in many forms. During the 

early civilization period, “compost” was somewhat like well-rotted manure or a mix of 

plant and animal wastes placed into plies or pits for an extended period of time (Diaz and 

de Bertoldi, 2007). Sir Albert Howard’s description of “Indore” method of composting is 

believed to be the first significant advance in the history of modern composting (Diaz and 

de Bertoldi, 2007). The Indore procedure provided some of the first criteria for making 

good quality compost, including the size of the pile, the type of material that should be in 

the pile, and listing some of the basic moisture, temperature and aeration properties 

required to produce a compost product. (Howard, 1943; Diaz and de Bertoldi, 2007).  

The composting industry as we know it today began in the 1970’s. Its growth was 

prompted by the passage of the Clean Water Act. As part of this act, financial support 

was provided to local governments to improve the treatment of municipal waste water 

and to reduce the disposal of high organic content materials (Goldstein, 2001; Diaz, 

2007). One of the most widely used composting methods at that time was Beltsville 

aerated pile method which was created and heavily promoted for use by the U.S. 

Department of Agriculture (USDA) (Willson et al., 1980; Goldstein, 2001). The 

composting industry expanded rapidly in 1980’s when technological advances in the 

treatment of waste water resulted in a dramatic increase in the production of high quality 

compost for agricultural and horticultural use (Hornick et al., 1984; Goldstein, 2001; 

Diaz, 2007).  
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2.1 Compost Type and Characterization 

2.1.1 Source Materials Used to Produce Compost  

The materials used to create compost generally fall into one of three categories. 

These categories are: 1) plant based materials, such as clippings, leaves, wheat straw, 

woody plant material, and food processing waste; 2) biosolids originating from municipal 

solid wastes such as domestic and industrial sewage sludge; and 3) manure based 

compost derived from animal and human feces or wastes. All three sources are high in 

organic matter content and contain measurable amounts of macro- and micro-nutrients. 

The fertilizer value of compost depends on the type of feedstock from which the compost 

organic matter originated and the process used to create the compost. Plant based 

compost typically are lower in nitrogen (N) than biosolids based compost. Compost made 

from biosolids generally contains higher N and phosphorus (P) contents than those made 

from animal manures and yard trimmings (Alexander, 2001). Barker (1997) pointed out 

the N content of yard trimmings compost on dry mass basis is generally less than 1%, 

while composts of farm manures, biosolids and food wastes are usually more than 1%. 

The P concentration of a biosolids compost is generally about 1 to 2 % while composts 

derived from plant material or farm manures generally contain 0.2 to 0.4% P (Barker, 

1997). The composts of animal manures and yard trimmings have a higher potassium (K) 

concentration than biosolids compost (Alexander, 2001; Cogger, 2005).  

The raw materials used to create compost sometimes need the addition of a 

supplemental material for the compost to meet its intended use. For N rich materials such 

as municipal solid waste, animal manure and grass chippings, carbonaceous materials and 

bulking agents such as wood chips, leaves, straw and sawdust are often added to the 
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composting pile to absorb moisture and to decrease the bulk density of the pile (Golueke 

and Diaz, 1978; Stratton et al., 1995).   

When composting municipal solids, the concern is often with removing 

undesirable physical contaminants, such as plastic, glass, rubber, leather, rocks and 

metals. When this is a concern, presorting prior to composting and screening after 

composting are often used to maintain the production of high quality composts.  

2.1.2 Compost Production Practices 

The composting process can be characterized as three successive stages of 

biological oxidation. The initial mesophilic stage involves rapid decomposition of the 

substrate accompanied by a commensurate increase in the microbial population and 

temperature of the material.  More resistant substrate is consumed in the second 

thermophillic phase of the process. During this time the temperature reaches 60 to 75 °C 

killing any weeds seeds and pathogenic organisms present in the material. During the 

third stage decomposition slows down and the temperature of now largely decomposed 

material drops. At this point most of the material is near or at the end point of the 

decomposition process.  During the third stage the material is said to be “curing”. This 

stage is characterized by a gradual rise in the portion of humic compounds present in the 

material. (Boulter et al., 2000a) 

The regulation of temperature, aeration, moisture, carbon to nitrogen ratio and 

other physical factors are required for successful compost production. Temperature 

controls the microorganism population in the composting process as microbial activities 

are temperature dependent. A preferred temperature range is 54 to 60 °C (Rynk et al., 

1992). Composting is an oxidation process. Adequate aeration and air flow are essential 
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to support aerobic microbial activity and to remove the built up of carbon dioxide that 

occurs early in composting process. An oxygen concentration that exceeds 5% is a 

desirable range for composting (Rynk et al., 1992). Water acts as an essential element 

and solvent for microbial activity. A moisture content of 40 to 60% is preferred during 

the compost process. Excessive moisture will led to anaerobic decomposition and odor 

formation (Hamoda et al., 1998). A proper C/N ratio is crucial to efficient composting. A 

high C/N ratio reduces the rate of decomposition (Finstein and Morris, 1974), while low 

ratio results in the loss of N as ammonia (Morisaki et al., 1989). Rynk et al. (1992) have 

pointed out that a C:N ratio of 25:1 to 30:1 is ideal for composting. Particle size has an 

effect on the moisture retention, porosity and the surface to volume ratio of the compost. 

The desired particle size depends on the specific materials in the compost, pile size and 

anticipated weather conditions (Rynk et al., 1992; Rynk and Richard, 2001; Day and 

Shaw, 2001). Monitoring some factors such as heavy metal and salts contents during the 

composting process is also required for optimum composting. 

Selection of a methodology to produce compost needs to consider the anticipated 

size of the composting operation, the availability of specialized equipment, and the needs 

that comply with regulations pertaining to the treatment of waste material. Compost 

production typically occurs in one of five ways (USEPA, 2015a): backyard or onsite 

composting is a method suitable for homeowners and involves producing small amounts 

of compost from yard trimmings and food residues. Backyard composting requires very 

little equipment but the process typically takes from 3 to 6 months with lots of manual 

turning necessary during this time. Backyard composting does not typically have a 

clearly defined high temperature thermophillic phase as a part of the composting process. 
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The aerated windrow composting method, also called turned pile composting, is practiced 

by placing organic waste into long rows with the rows being turned periodically. This 

practice allows for large scale production and is usually the approach used by local 

government and large food processing businesses to produce compost. It requires a large 

area, sturdy equipment and an intelligent workforce to monitor the production of the final 

product. A third approach that is used to produce compost is the aerated static pile 

method. In this method, air is pulled into pile or forced out through the pile using a 

blower system. It requires careful monitoring of temperature and moisture because no 

physical turning of the material takes place.  

Vermicomposting is the process of relying on earthworms to convert organic 

wastes into compost or an organic fertilizer material. It requires only worms, worm 

bedding and bins. Physical turning is not necessary during composing but holes and mesh 

bins are usually needed to introduce oxygen into the decaying mass. This method can be 

used on small or large scale. Vermicomposting is quite efficient as one pound of mature 

worms (approximately 800-1,000 worms) can eat up to half a pound of organic material 

per day. 

The fifth approach is In-Vessel Composting. With this approach organic wastes 

are placed within a silo or vessel-like container during which temperature, air and 

moisture conditions are tightly controlled by computer monitoring of the vessel. This 

method requires expensive equipment, but provides a relatively fast way of producing 

high quality compost. 
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2.1.3 Common Metrics Used to Assess Compost Quality  

Acceptance in the use of compost in agricultural and horticultural systems 

requires that standards are established and met for the finished product (Zucconi and De 

Bertoldi, 1987). The criteria used to assess compost quality are largely driven by the end 

use of the product. Nutrient content is an important factor to consider when compost is 

used as a soil amendment or fertilizer verses being used as a surface mulch. The pH and 

soluble salt content of compost are also important chemical properties especially when 

the compost will serve as a medium to support plant growth (Sullivan and Miller, 2001). 

Generally, there are minimal standards for the presence of desirable constituents such as 

organic matter and N content in compost and more rigid standards for undesirable 

constituents such as trace elements, toxic organic chemicals, pathogens and the presence 

of foreign or inert materials (He et al., 1992, Sullivan and Miller, 2001). Beyond these 

minimal standards, there are also additional tests associated with physical and chemical 

properties of compost required by most compost quality assurance programs (Sullivan 

and Miller, 2001). These additional properties include moisture content, water holding 

capacity, bulk density, particle size, and man-made inerts, cation exchange capacity 

(CEC), pH, total nitrogen, inorganic nitrogen, electrical conductivity (soluble salts), 

macronutrients, micronutrients and heavy metals. Methods for testing the physical and 

chemical properties of compost have been further discussed by Sullivan and Miller 

(2001). 

In addition to possessing specific physical and chemical properties, compost must 

be well-decomposed, stabilized and mature in order to be suitable for agricultural and 

horticultural uses (Bernal et al., 2009). The terms “Stability” and “Maturity” are 
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sometimes used interchangeably, but each has a specific meaning. Stability refers to the 

point in the composting process when the bioavailability of the material is extremely low. 

Extremely low bioavailability effectively results in the cessation of the composting 

process.  A stable compost product is desired because continuous microbial 

decomposition in compost can generate heat and flammable gases like methane, which 

can result in spontaneous combustion of stored compost. Gases generated by unfinished 

compost can also result in undesirable odors and may attract disease vectors (Mathur et 

al., 1993; Brinton, 2000).  

Compost maturity is related to the degree of humification of the material and is an 

indicator of the suitability of compost for plant use (Mathur et al., 1993; Cooperband et 

al., 2003). Immature composts applied to soil can be inhibitory to seed germination, and 

plant growth. Immature compost with a high C/N ratio results in N immobilization in soil 

which leads to N deficiency in plants. Immature compost with an extremely low C/N 

ratio may produce ammonia which is toxic to plants (Inbar, 1990). Immature compost can 

also possess intermediate by-products such as acetic acid, phenolic acids and other short 

chain fatty acids that are toxic to plant growth (He et al., 1992; Stratton, 1995). Lastly, 

immature composts have a potential to support the regrowth of pathogens which are 

harmful to plants and may pose a risk to surface and ground water (Brodie et al., 1994).   

Compost stability and maturity have become important parameters to evaluate 

compost quality in the United States (Brewer and Sullivan, 2001). There are three general 

approaches that are used to access compost stability and maturity. They can be 

categorized as: physical methods, chemical methods and biological methods.  
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Physical methods are based on the sensory evaluation of compost color, odor and 

temperature (He et al., 1992, Sullivan and Miller, 2001, Wichuk and McCartney, 2010). 

Physical methods are the simplest and most feasible to conduct, but are not a particularly 

sensitive way to identify compost stability and maturity. Composts that are stable and 

mature are dark in color and have an earthy smell. A standardized matric for evaluating 

compost color and odor is available from the US composting council (US composting 

Council, 2002). Monitoring the temperature of compost piles is another physical method 

that has been used to access stability and maturity (Strom, 1985, Tiquia and Tam, 2002, 

Boulter-Bitzer et al., 2006). However, many researches have reported that pile 

temperature can be a misleading indicator of compost stability and maturity as it is 

affected by ambient conditions, pile size, and other conditions that affect microbial 

activity within compost (Mathur et al., 1993, Lasaridi et al., 2000, Han et al., 2008, 

Wichuk and McCartney, 2010). Temperature is more often used as an indicator of how 

well composting process is proceeding.  

Common chemical indicators used to assess compost stability and maturity 

include organic matter, dissolved organic carbon, humification, carbon: nitrogen (C:N) 

ratio, ammonia and nitrate content, CEC, pH and electrical conductivity (EC) (He et al., 

1992; Bernal et al., 2009; Wichuk and McCartney, 2010). Composting is the biochemical 

transformation of organic matter, so analyses of the forms and amount of intermediates 

produced during the composting process are indicative of the stage of decomposition and 

the degree of stability and maturity of the compost. The rationales, methods, merits and 

faults of each method, and the standard for analyses of the chemical indicators have been 

elaborated in a literature review written by Wichuk and McCartney (2010).  
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Biological methods used to access compost stability and maturity rely on 

microbiological activity or the use of plant bioassays. Measurement of respiration, 

enzyme activity, ATP content, nitrogen mineralization/immobilization or microbial 

biomass, provide an evaluation of the biological activity in compost to estimate the 

degree of decomposition (Bernal et al., 2009, Wichuk and McCartney, 2010). Plant 

bioassays directly assess germination and/or plant growth. The basic premise of the plant 

bioassay is that if an adverse effect on seed germination or plant growth is not observed 

the compost is considered to be mature (Gilbert et al., 2001).   

There is no single widely accepted stand-alone test that is used to determine 

compost maturity and stability. Some reasons for this include: the starting point of a 

parameter (e.g. C/N ratio) varies with origin of compost; the standards are different for 

different intended uses (e.g. plant potting media vs. soil amendment) and the 

interpretation of the test data can differ with the testing method employed. Because of 

this the most widely used approach is to evaluate two or more parameters to assess 

compost maturity and stability. For example, the California Compost Quality Council’s 

(CCQC) maturity index requires that a finished compost sample meet a C/N ratio 

standard (i.e. C/N ratio ≤ 25) in addition to at least one parameter from Group A and B 

shown in Table 2.1 below. The thresholds values that would result in a compost being 

classified as being immature, mature or very mature for the tests specified in Table 2.1 

are discussed in CCQC compost maturity index document (CCQC, 2001).  
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Table 2.1. The maturity assessment list of group A and group B (according to CCQC, 
2001). 

 

It should be noted that even though “stability” and “maturity” are two aspects of 

compost that have been used to indicate compost quality, compost quality should not be 

confused with stability and maturity. Quality reflects stability and maturity, but it also 

dependent on the composition of the compost (Brodie et al., 1994). For example, a 

composted material may be mature but may also contain numerous contaminants such as 

glass, plastic and metal. Compost specifications for general landscape application, such 

as turf establishment or planting bed establishment, have been established by the EPA 

and are shown in Table 2.2. The table lists specific standards for a range of compost 

properties. For a compost to be acceptable for use it must meet the criterion specified in 

the table. 

 

 

 

 

 

 

 

 

Group A Group B 
CO2 evolution or respiration  NH4

- : NO3
-N Ratio 

Oxygen demand Total NH3-N concentration 
Dewar self-heating test  Volatile Organic Acids concentration 
 Plant bioassays 
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Table 2.2 EPA model compost specification for general landscape applications (USEPA, 
2015b). 
 

1. Recommended test methodologies are provided in Test Methods for the Examination of 
Composting and Compost (TMECC, The US Composting Council) 

2. It should be noted that the pH and soluble salt content of the amended soil mix is more 
relevant to the establishment and growth of a particular plant, than is the pH or soluble 
salt content of a specific compost (soil conditioner) used to amend the soil.  

3. Stability/Maturity rating is an area of compost science that is still evolving, and as such, 
other various test methods could be considered. Also, compost quality conclusions are 
not based on the result of a single stability/maturity test. 

4. US EPA Class A standard, 40 CFR § 503.13, Tables 1 and 3 levels = Arsenic 41ppm, 
Cadmium 39ppm, Copper 1,500ppm, Lead 300ppm, Mercury 17ppm, Molybdenum 
75ppm, Nickel 420ppm, Selenium 100ppm, Zinc 2,800ppm.  

5. US EPA Class A standard, 40 CFR § 503.32(a) levels = Salmonella <3 MPN/4grams of 
total solids or Fecal Coliform <1000 MPN/gram of total solids. 

6. Landscape architects and project (field) engineers may modify the allowable compost 
specification ranges based on specific field conditions and plant requirements. 

 

 
 

Parameters1,6 Reported as (units of measure) General Range 

pH2  pH units 5.0 - 8.5 

Soluble Salt Concentration2  
(electrical conductivity) 

dS/m (mmhos/cm)  Maximum 10 

Moisture Content  %, wet weight basis 30 – 60 

Organic Matter Content  %, dry weight basis 30 – 65 

Particle Size  % passing a selected mesh size, 
dry weight basis 

98% pass through 3/4” screen or 
smaller 

Stability3  
Carbon Dioxide Evolution Rate 

 
mg CO2-C per g OM per day 

 
< 8  

Maturity3 (Bioassay)  
Seed Emergence and 
Seedling Vigor 

 
%, relative to positive control 
%, relative to positive control 

 
Minimum 80% 
Minimum 80% 

Physical Contaminants (inerts) %, dry weight basis < 1  

Chemical Contaminants4 mg/kg (ppm) Meet or exceed US EPA Class 
A standard, 40 CFR § 503.13, 
Tables 1 and 3 levels 

Biological Contaminants5 
Select Pathogens 
Fecal Coliform Bacteria, or 
Salmonella 

 
 
MPN per gram per dry weight 
MPN per 4 grams per dry weight 

 
 
Meet or exceed US EPA Class 
A 
standard, 40 CFR § 503.32(a) 
levels 
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2.2 Effect of Compost Use on Soil and Turfgrass 

The use of organic approaches has long been utilized in turfgrass management to 

provide plant nutrients and to improve the chemical, physical and biological properties of 

soil (Piper and Oakley 1917). The development of Haber-Bosch process during World 

War I provided an inexpensive way to create ammonia-based fertilizers. By the 1930’s 

the relatively low cost of synthetic based fertilizers, and the ease with they could be 

transported, stored and applied lead to a steady decline in the use of organic materials as 

fertilizes on turfgrass (NRC, 1989; Garling and Boehm, 2001). A resurgence in the use of 

organic materials as soil amendments and fertilizers in turfgrass management began in 

early 1980’s as turfgrass was viewed as an ideal land use on which to spread the rapidly 

emerging production of biosolids and municipal waste based composts. Angle (1994) 

pointed out the benefits associated with the use of sewage sludge compost on turfgrass 

rather than agricultural land. Benefits included: 1) a potential reduction in transportation 

costs since agricultural lands are usually located in distant rural areas while lawn areas 

are generally located close to metropolitan compost treatment facilities; 2) a potential 

increase in nutrient uptake and reduction in nutrient runoff losses following the 

application of compost because of the presence of a perennial surface cover, and a dense 

root of system close to soil surface provided by turfgrass; 3) little concern about heavy 

metal and organic pollutants entering the food supply since turfgrass is not a food source 

for animal or human consumption. 

Typical uses of compost in turfgrass management include as a soil amendment in 

preparation phase of turfgrass establishment or as a fertilizer or liquid based extract 

applied to turf foliage. In the soil preparation phase of lawn establishment, compost is 
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often mixed with top few inches soil to improve the physical and chemical properties of 

the soil. A recommended ratio is to apply compost at a rate of 2.5 to 5 cm to the soil 

surface after which it is evenly incorporated to a depth of 10 to 15 cm (Landschoot, 1995). 

In established lawns, it is not practical to incorporate compost into the soil, so a thin layer 

of compost is often sprinkled over turfgrass as a fertilizer. This practice is referred as 

topdressing. A common recommend thickness when compost is applied this way is 3 to 

12 mm (Alexander, 2001). A heavy layer of compost may smother the grass. Successive 

application of a thicker layer of compost without soil incorporation will commonly result 

in the formation of organic matter layer at the soil surface that restrict rooting into the soil 

(Landschoot, 1995). The application of fermented extracts of compost, which is 

commonly referred to compost tea, is a relatively new turfgrass management practice 

with the desired goal being to broaden the diversity and activity of microorganisms in the 

soil and turfgrass sward (Ingham, 2000, 2003, 2005). Studies examining the various 

effects of composted materials on soil properties and turfgrass have been conducted since 

early 20th century. In general, these studies can be grouped into six categories. These are: 

1) the effects of compost on soil physical characteristics; 2) the fate of compost applied 

carbon, nitrogen, phosphorus, potassium and micronutrients in soils; 3) the effect of 

compost on turfgrass development; 4) the suppression of plant disease and weeds by 

compost; 5) the dynamics of soil microbes affected by compost application; and 6) the 

effect of compost on runoff loss and water quality.    

2.2.1 Soil Physical and Chemical Characteristics 

Repeated application of compost materials to agricultural lands have been 

recognized as a reliable way to improve the physical and chemical properties of most 
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soils, especially soils with poor structure, and low levels of soil organic matter (Bauduin 

et al., 1987; Stratton et al., 1995).  

Documented changes in physical properties include aggregate stability, porosity, 

bulk density and soil water holding capacity. The primary positive effects of compost use 

on soil physical properties were discussed in a recent review by Martinez-Blanco et al. 

(2013). They concluded compost use on land could potentially increase soil aggregate 

stability, water holding capacity and plant available water by as much as 29 to 63%, 50% 

and 34% respectively. Additionally, a decline in bulk density of 0.7 to 20% could be 

expected (Martinez-Blanco et al., 2013). The effect of compost application on soil 

hydraulic conductivity and infiltration vary with time, method and rate of application 

(Tittarelli et al., 2007). Results from some representative studies are shown in the Table 

2.3. These beneficial effects are interactive and are attributed in large to the nature of the 

compost materials applied into soil.  

The high organic matter content of compost and the increase in microorganism 

activity that results from the addition of organic matter to soil increases the stability of 

soil aggregates which improves soil structure (Chesters et al., 1957; Gallardo-Lara and 

Nogales, 1987; Capriel et al., 1990; Hue, 1995; Stratton et al., 1995). Also, high organic 

matter levels improve soil quality by promoting favorable changes in soil bulk density, 

porosity, water holding capacity, and by reducing erosive losses of soil (Young and 

Onstad, 1978; Soane, 1990; He et al., 1992; Stratton 1995; Ros et al., 2006). 

 

Table 2.3 Effect of compost materials on soil physical properties. 
 

Property Effect 
Compost 
feedstock 

Application 
method Soil Type Reference 
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Aggregation stabilized 
sludge and 
refuse incorporation 

sandy 
loam 

Pagliai et al 1981 

  mixed  incorporation loamy  Aggelides and Londra 
2000 

  mixed  incorporation clay Aggelides and Londra 
2000 

Porosity increased 
sludge and 
refuse incorporation 

sandy 
loam 

Pagliai et al 1981 

  urban waste  incorporation clay loam Giusquiani et al.1995; 

  mixed  incorporation loamy  Aggelides and Londra 
2000 

  mixed  incorporation clay Aggelides and Londra 
2000 

  sludge and 
refuse topdressing Silty clay Pagliai and Antisari 

1993 

  sludge and 
refuse topdressing Sandy 

loam 
Pagliai and Antisari 
1993 

Bulk density decreased municipal 
wastes topdressing silt loam Mays et al. 1973 

  
sewage 
sludge incorporation 

loamy 
sand 

Tester 1990 

  urban waste  incorporation clay loam Giusquiani et al.1995; 

  mixed  incorporation loamy  Aggelides and Londra 
2000 

  mixed  incorporation clay Aggelides and Londra 
2000 

  olive mill mixture sandy 
loam  Nektarios et al. 2011 

Water holding 
capacity 

increased 
municipal 
wastes topdressing silt loam Mays et al. 1973 

  sludge incorporation silt loam Epstein et al.1976 

  olive mill mixture sandy 
loam  Nektarios et al. 2011 

Water retention 
capacity 

increased sludge incorporation silt loam Epstein et al.1976 

  urban waste  incorporation clay loam Giusquiani et al.1995; 
Penetration 
resistance 

reduced 
sewage 
sludge incorporation 

loamy 
sand 

Tester 1990 

  mixed  incorporation loamy  Aggelides and Londra 
2000 

  mixed  incorporation clay Aggelides and Londra 
2000 

Unsaturated 
hydraulic 
conductivity 

reduced  mixed   
incorporation loamy  Aggelides and Londra 

2000 

  mixed  incorporation clay Aggelides and Londra 
2000 

Saturated 
hydraulic 
conductivity 

increased mixed  incorporation loamy  Aggelides and Londra 
2000 

  mixed  incorporation clay Aggelides and Londra 
2000 
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Compost application directly affects soil chemical properties. The addition of 

large amounts of compost will usually result in an increase in soil organic matter (He et 

al., 1992, Bevacqua and Mellano, 1993). The long term benefits associated with compost 

use are primarily associated with the change in soil organic matter content that occurs 

with compost use (Alexander, 2001; Soumare et al., 2003).  A noticeable positive effect 

on soil organic carbon (Corg) is often observed in plots treated with compost materials 

regardless of the feedstock from which compost originates (Giusquiani et al., 1988; 

Madejon et al., 2003; Zaman et al., 2004, Hartl and Erhart, 2005; Montemurro et al., 

2006; Ros et al., 2006).  

Compost materials undergo “humification” during the composting process which 

results in the end product having an elevated CEC compared to the feedstock (Saharinen, 

1998). Cation exchange capacity is a result of dissociation of the H+ ion from weak acids 

in organic matter and is an index of soil nutrient holding capacity (Stratton et al., 1995). 

It plays an important role in retaining nutrients for plant uptake and in reducing nutrient 

leaching losses. A high CEC also buffers changes in soil acidity (Barker. 1997). The 

addition of a mature compost, whose pH value is generally neutral or slightly alkaline 

will usually increase the pH of an acidic soil (Eghball, 2002; Butler and Muir, 2006). 

Godden et al. (1987) noted a quick alkalinizing effect on an acidic loamy soil with 

addition of 30 Mg ha-1 cattle manure compost. The pH of a Windthorst sandy loam soil 

increased from 4.5 to 7.0 as a single application rate of manure compost increased from 0 

to 179.2 Mg ha-1 (Butler and Muir, 2006). Conversely, Nektarios et al. (2011) reported 

that incorporating an olive mill compost having a pH of 6.6 to soil at ratio of 12.5%, 25% 
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and 50% (V/V) decreased the pH of soil pH from 8.11 to 7.95, 7.78 and 7.15, 

respectively. Accordingly, compost use will raise or lower soil pH depending on the 

amount of compost used, the pH of compost and the pH of the native soil to which the 

compost is applied (US Composting Council, 2001). Hornick et al. (1984) also pointed 

out if compost was added to soils with pH below 4.5, additional lime would be required.  

Compost is characterized as a valuable slow release nutrient source of 

macronutrient and micronutrient to soil. Most end users apply composts based on plant 

required N or P rates, however many composts also serve as a source of K, sulfur (S), 

calcium (Ca) and magnesium (Mg) (Chaney et al., 2001).  

The N content in compost usually varies from 0.5% to 3% on a dry mass basis 

with 85 to 90% of N being present as organic N and the rest being immediately available 

to plant use (Barker, 1997; Tittarelli et al., 2007). Generally, 10 to 20% of the total N in 

compost is available in the first year with the remaining pool of N being mineralized at 

rate of 3 to 8% in subsequent years (Iglesias-Jimenez and Alvarez, 1993; Diacono and 

Montemurro, 2010).  

Although the amount of N applied varies with different compost materials and 

rate of application, a significant increase in soil total N is often observed in compost 

treated soil in the both short and long terms (Zaman et al., 2004; Hartl and Erhart, 2005; 

Habteselassie ,2006; Ros et al., 2006; Zhang et al., 2006). The increase in soil N is 

directly derived from the added compost and is a consequence of elevated soil organic 

matter levels that result with the addition of compost to soil (Ros et al., 2006). The 

recovery or uptake of compost N is often observed to be less effective than mineral N 

fertilizer, particularly shortly after application of the compost (Iglesias-Jimenez, and 
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Alvarez, 1993; Erhart et al., 2008; Hartl and Erhart, 2005). Tester et al., (1982) observed 

about 76% of total fertilizer N and only 8% of total compost N were utilized by tall 

fescue during the course of a 167 day greenhouse pot study. The reduced rate of N uptake 

by plants was likely the result of a slow N mineralization rate of the organic pool of N in 

the compost (Tester et al., 1982; Hartl and Erhart, 2005). The mineralization of N in soil 

is dependent on the time of application, the C/N ratio of the compost, soil physical and 

biochemical characteristics, soil cultivation practices, and soil-plant interaction, such as 

N uptake and climatic conditions (Hartl and Erhart, 2005). Thus, relatively high 

application rates of composted materials are required if the compost is to serve as sole 

source of nutrient for the turf, especially nitrogen. Hornick et al. (1984) pointed out for 

some high N and/or P plant requirements, it is most appropriate to apply compost at the 

lower of two nutrient needs and to supply the remaining amounts needed using a 

synthetic fertilizer .  

The P content in compost is normally 0.6% to 2.0% on a dry mass basis (Tittarelli 

et al., 2007) with up to 15% of P being available in first two years following 

incorporation (DeHaan, 1981 as cited by He et al., 1992; Soumare et al., 2003). Compost 

P uptake is usually 10 to 70% of the amount of mineral fertilizer P (i.e. superphosphate or 

triple superphosphate) taken up by plants (Mays et al., 1973; Sikora et al., 1982, Hornick 

et al., 1984). The availability of P in compost is affected by Fe, Al and Ca content in 

biosolids based composts (Hornick et al., 1984; Mccoy et al., 1986, Wen et al., 1997). 

These elements are introduced into the feedstock of this type of compost as part of 

sewage treatment process. For example, Mccoy et al. (1986) found that when the 

feedstock of biosolids based compost was treated with Fe and Al to precipitate P, or 
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alternatively with lime, the P present in the finished product was a poor source for plant 

growth. In contrast, some reports have shown that P in other types of feedstock, or 

treatment methods which is mostly in organic from, is readily available for plant uptake 

(Zhang et al., 2006). He et al. (2000) showed the percentage of total P extracted by 

NaHCO3 was higher in yard waste compost (3.7%) and a co-compost of biosolids and 

yard wastes (3.3%), than in a biosolids compost (0.2%) because biosolids P was primarily 

associated with Ca, Fe, or Al. He et al. (2001) also noted that P mineralization was 

greater in MSW compost and yard trimmings compost than biosolids compost when P 

availability was determined using Mehlich 3 as extractant. The use of MSW and yard 

trimmings composts has been observed to increase plant available P in the soil and to 

improve vegetable crop P use efficiency (Sikora et al., 1982; Buchanan and Gliessman, 

1990; He et al., 2001). When plant P needs are used to guide compost applications, 

supplemental application of N fertilizer is usually required to meet plant needs (Hornick 

et al., 1984; Eghball, 2002).      

The K concentration of compost is usually less than 1 %. This is substantially 

below the K concentration found in most agricultural soils and in healthy plant tissues 

(He et al., 1992; Angle, 1994; He et al., 2001; Tittarelli et al., 2007). Generally, when 

compost use is based on a plant’s N or P requirement, the K requirement for the crop will 

not be met (Hornick et al., 1984; Angle, 1994). However, compost K availability can be 

effective as mineral K fertilizer (DeHaan, 1981 as cited by He et al., 1992), because 

compost K remains in water soluble forms and does not need to be mineralized prior to 

plant uptake (Barker 1997). Increases in soil and plant K content have been observed 

with the utilization of MSW compost (Giusquiani et al., 1988; Zhang et al., 2006). 
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Soumare et al. (2003) have reported that about 50% of K present in compost is available 

for plant uptake shortly after application to soil.  

Elevated concentrations of S, Ca and Mg have been observed in some soils with 

the application of compost in some studies (Villar et al., 1993; Wong et al., 1999). As 

part of composting process the C to S ratio declines with S being released for plant 

uptake once the compost is mature (Barker, 1997). The Ca concentration in compost is 

usually about 1% to 4% on dry mass basis, but may be up to 10% when the composts is 

made from lime stabilized biosolids (Barker, 1997). Compost can be used to alleviate Ca 

deficiencies and to increase Ca availability for plant growth in sandy and acidic soils (He 

et al., 2001). The Mg concentrations in compost typically vary from 0.2% to 0.4%. This 

is large enough that an increase in soil Mg will likely be observed with the application of 

compost (Barker, 1997; He et al., 2001).  

While much of the N and P present in compost is not readily available for plant 

use, the application of compost can greatly enhance soil fertility. In a greenhouse pot 

study, soil amended with 4 to 6% sewage sludge compost provided nutrients to support 

tall fescue growth for over 100 days while nutrients provided by a NH4NO3 fertilizer 

were depleted after 100 days (Tester et al., 1982). The residual effect of compost on soil 

fertility due to the continuous release of nutrients has been reported in many long term 

studies. One time incorporation of 155Mg ha-1 food waste composts enhanced the uptake 

N of a forage type tall fescue from a total of 294 to 527 kg ha-1 over a 7 year period 

demonstrating the long lasting effect of amending a soil with compost (Sullivan et al., 

2003). Ginting et al. (2003) reported soil microbial biomass C and potentially 

mineralizable N increased by 20 to 40% and 43 to 74% respectively when repeated 
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compost and manure applications were made at rate of 151 kg N ha-1 yr-1 in a four year 

study.  

Compost can also supply micronutrients (e.g., Zn, Cu, Fe and Mn). The addition 

of MSW compost has been observed to lead to an increase in soil total and extractable B 

Cu, Fe, Mo, Mn, Zn as well as other trace elements (Giusquiani et al., 1988; Petruzzelli et 

al., 1989; Villar et al., 1993; Ozores-Hampton et al. 1997; Zheljazkov and Warman, 

2004a,b; Zhang et al., 2006). Increases in soil micronutrient levels do not always result in 

increasing plant uptake of micronutrients. The addition of compost either increases soil 

pH making heavy metals less available or the organic fraction of the compost tightly 

bonds the heavy metals making them less available for plant uptake (Wong and Lau, 

1985; Stilwell, 1993; Sterrett et al., 1996; Warmen et al., 2004; Zheljazkov and Warman, 

2004b).    

The presence of trace elements in composted materials was an early concern that 

arose when compost started to be used on agricultural and horticultural land. The 

accumulation of heavy metals in particular was a concern, because their effect on plant 

health and the potential to enter into the food chain of animal and humans (Stratton et al., 

1995; Diacono and Montemurro, 2010). The potential risks of accumulation of heavy 

metals from MSW compost to soil and water quality, public health and environment has 

been thoroughly reviewed by Chaney and Ryan (1993).  

Some studies such as, Woodbury (1992) showed that field application of MSW 

compost is only a concern to sensitive plant species that readily accumulate heavy metals 

or when this type of compost is applied to highly acidic soils. Metals in compost can 

accumulate in soil, but they are generally present in an immobile state or are bound to 
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organic matter/humic materials keeping them from leaching or being adsorbed by plants 

(Mays et al., 1973; Petruzzelli et al., 1989; Woodbury, 1992; Ozores-Hampton, 1997; He 

et al., 2001). The detrimental effects of trace elements are closely related to the mobility 

of the metals rather than their total concentration in soil. Risk management strategies and 

guidelines for limits on heavy metals in composts have been discussed by Stratton et al. 

(1995) and Chaney et al. (2001). Within this context, the use of compost may actually 

provide beneficial effects in reducing the availability of heavy metal in soils, particularly 

in soils with low organic matter content or pH (Woodbury, 1992; Stratton, 1995).  

Another concern with the use of compost is the presence of soluble salts which 

are closely tied to the compost feedstock and the processing procedures used at a 

composting facility (Fitzpatrick, 2001). Leaching compost and blending it with low 

soluble salt content substrates are two common methods used to manage compost 

products that are initially high in salts (Fitzpatrick, 2001).  Regular testing of compost 

prior to utilization is the best way to insure the compost is suitable for in use in managed 

plant systems                        

2.2.2 Soil Biological Properties 

Microbial activity and composition are essential determinants of soil quality. 

Unlike soil chemical and physical parameters, soil biological properties are sensitive to 

small changes in the soil system thus providing an immediate way to detect changes in 

the soil environment (Pascual el at. 2000). Despite the heterogeneous character of 

compost materials, it is generally assumed that microbial biomass and enzyme activity 

are stimulated when compost is added to the soil. In general, changes in soil 

microbiological properties that occur with the addition of compost to soil are of three 
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types. These are changes in 1) the total microorganism population, 2) microbial diversity 

and community structure, and 3) some specific microbiological activities such as 

nitrification (He et al., 1992).  

Basically, beneficial microorganisms are spontaneously present in well 

decomposed compost and will be introduced to soil during the use of compost (Jodice 

and Nappi, 1987). Intermediate products produced by these original microorganisms can 

be taken by nitrogen fixers in soil whose population then increases (Jodice and Nappi, 

1987). At the same time, these cellulolytic, pectinolytic, proteinolytic, nitrifier 

microorganisms in soil promote the soil nutrients cycling for the soil microbial 

community (Tittarelli et al., 2007). The organic matter in compost also serves as food for 

soil microorganisms. It is believed that addition of organic substance leads to an increase 

in heterotrophic microorganisms and soil enzyme activities as it provides carbon sources 

and basic materials for protoplasmic synthesis. Some studies reported composts can even 

sustain these increases for a long time as a result of continuous slow release of nutrients 

(Garcı́a-Gil et al., 2000, Ginting et al., 2003). Some physical characteristics of compost 

can also be beneficial to soil microorganisms. For example, Garcı́a-Gil et al. (2000) 

attributed the elevated catalase activity, an oxidoreductase associated with aerobic 

microbial activity, to the improved soil aeration in the compost amended soil.   

Rutili et al. (1987) observed significant increases in microbial counts of 

cellulolytic microorganisms and autotrophic nitrifying bacteria in compost amended soil 

compared with the use of mineral fertilizer or manure two years after amending the soil 

with compost. The highest populations were observed in late summer during plant growth. 

They observed that soil microbial populations were tied to precipitation patterns and 
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suggested that reduced oxygen in soil had been responsible for the decline in microbial 

populations. Positive correlations between organic substances present in composts and 

non-symbiotic nitrogen fixers, as well as between composts and vesicular arbuscular 

mycorrhizae were observed by Jodice and Nappi (1987). They highlighted the importance 

of compost composition on soil microbiological properties.  

The influence of composts on microbial enzymatic activities, soil microbial 

biomass and basal respiration has been examined in several studies. Godden et al. (1987) 

reported that cattle manure compost applied at rate of 30 Mg ha-1 stimulated soil 

microflora and phosphatase and urease activities in a loamy acidic soil. The content of 

biomass C, N, P and S as well as the activity of phosphatase, urease, protease, deaminase 

and arylsulphatase were all increased by the addition of composted municipal solid 

wastes. The increases lasted from one to three months with the exception of biomass P 

and phosphatase activity which remained at elevated levels for 5 months in clay loam soil 

under laboratory conditions (Perucci, 1990). In a follow up field study, Perucci (1992) 

observed increases in biomass C, the rate of fluorescein diacetate hydrolysis (FDA) and 

many other enzymes activities (i.e. amylase, arylsulphatase, phosphodiesterase, 

phosphomonoesterase, protease, and deaminase) in a soil amended with municipal refuse 

compost, with most of aforementioned activities reaching a maximal level after one 

month of treatments. Tian et al. (2008) reported a sand based turf putting green mix 

containing 10% (v/v) yard waste compost had increased soil microbial biomass in the top 

30 cm of soil when compared to a peat mix and the untreated control two and three years 

after first making the compost applications. Albiach et al. (2000) compared MSW 

compost, sewage sludge and ovine manure applied to a sandy silty loam soil at rate of 24 
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Mg ha-1 yr-1, and found that MSW compost resulted in the greatest increase of soil 

enzymatic activity. An increased organic C supply and stimulated microbial activities 

might explain the increased biomass C, N, P, S and enzymatic activities after compost 

application (Garcia-Gil et al., 2000; He et al., 2001; Zaman et al., 2004; Ros et al., 2006).  

The long term or residual effects of compost addition on microbial activities have 

also been examined. Garcia-Gil et al. (2000) observed inconsistent responses of different 

enzymes following the addition of compost to soil. Increases in oxidoreductase enzymes 

like dehydrogenase and catalase, and decreases of hydrolase enzymes like phosphatase 

and urease were observed over the course of their nine year field experiment (Garcia-Gil 

et al., 2000). Ros et al. (2006) reported increases of soil biomass C and basal respiration 

in soil treated with urban organic waste compost, green waste compost and sewage 

sludge compost when compared to the control and a mineral fertilizer treatment in a 12-

year field experiment. In a 23-year field study conducted on silt loam soil,  a soil surface 

compost application of 240 kg ha-1 yr-1 significantly increased microbial biomass C at the 

0 to 15 cm soil depth, microbial biomass N up to a depth of 40 cm, and elevated the 

activities of protease, deaminase and urease in surface and sub-surface soil (0 to 50 cm) 

when compared with mixed fertilizer NPK treatment (Zaman et al., 2004). 

Generally, the abundance of a microbial community and the activity of nutrient 

cycling microorganisms in soil are a function of the quantity and quality of organic 

materials added to the soil as well as the characteristics of soil itself (Jodice and Nappi, 

1987; Diacono and Montemurro, 2010). Elevated total microbial biomass and enzyme 

activity resulting from the application of compost improves soil fertility over time (He et 

al., 2001). Negative effects of soil microbial activity on soil fertility occur when 
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unstabilized and immature organic materials have an inappropriate C/N ratio, a high 

concentration of NH4-N or high levels of heavy metals (Jodice and Nappi, 1987; Rutili et 

al., 1987; Garcia-Gil et al., 2000). Additionally, Perucci (1992) has pointed out the 

decreases in soil microbial activities may also be ascribed to a normal decrease of 

exogenous microorganisms carried in composts or the depletion of quickly biodegradable 

organic matter.  

2.2.3 Turfgrass Growth 

The value of compost as fertilizer is well known and has been shown to increase 

the growth and yields of agricultural crops including the forage yields of tall fescue 

(Festuca arundinacea cv. ‘Marathon’) and ryegrass (Lolium multiflorum L.) (Bauduin et 

al., 1987; Bevacqua and Mellano, 1993). Turfgrass management is unlike crop 

production in which an increase in yield is not always a desirable response. Turfgrass 

growth beyond that required to sustain adequate turfgrass density is not desired.  

The application of compost has been shown to have positive effects on turfgrass 

seed germination, turfgrass establishment, root growth, and on turf color and density 

(Landschoot and McNitt, 1994; Loschinkohl and Boehm, 2001; Linde and Hepner, 2005; 

Mandal et al., 2013). Accordingly compost incorporation can be beneficially used in sod 

production as well as the establishment of turfgrass on disturbed urban soils (Hornick et 

al., 1984). For example, Loschinkohl and Boehm (2001) demonstrated amending 

disturbed urban soils with 130 m3 ha-1 biosolids compost to a depth of 10 to 15 cm 

significantly enhanced the establishment and growth of Kentucky bluegrass and perennial 

ryegrass compared to an unamended control.  The application of 99 to 298 Mg ha-1 (40% 

moisture) compost has been reported to result in optimal germination, establishment and 
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initial growth of turfgrass (Hornick et al., 1984). Hornick et al. (1984) have also pointed 

out that application of 29 to 38 Mg ⋅ha-1 compost, when applied as a mulch, was capable 

of enhancing the establishment of cool season grasses, especially in early spring and late 

fall seedings.  Another known beneficial effect of surface applications of compost is 

weed control. The physical presence of compost on the surface suppresses the 

germination of soil born weed seeds. 

In addition to the growth responses listed above, the addition of compost has been 

reported to increase nitrogen uptake and foliar nitrogen content of turfgrass (Tester et al., 

1982; Garling and Boehm, 2001), and to enhance the growth and quality of Kentucky 

bluegrass, perennial ryegrass, creeping bentgrass, tall fescue and bermudagrass (Sikora et 

al., 1980; Schumann et al., 1993; Garling and Boehm, 2001; Geisel et al., 2001; Johnson 

et al., 2006b). Improved turf green up (recovery from dormancy or disease) and a 

reduction in the formation of  thatch have also been reported (Boulter et al., 2000b; 

Dinelli, 2009).  

The aforementioned improvements in turf performance have been ascribed to the 

quantity of nutrients in compost, especially nitrogen (Stratton et al., 1995), but they are 

also associated with changes in soil physical and biological properties that occur with the 

incorporation compost into the soil. Compost induced changes to the soil can improve the 

drought resistance and water use efficiency of turfgrass (Alexander, 2001). Johnson et al. 

(2009) suggested compost topdressing after core cultivation of an established Kentucky 

bluegrass lawn could lower irrigation water requirements by increasing volumetric soil 

water content and reducing temperature of the turfgrass canopy. Recent studies have 

extended into molecular and cell biological aspects of the effect of compost application 
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on plant’s drought and salt tolerance. For example, Zhang et al. (2009) pointed out IAA 

and cytokinin content can be altered by the application of biosolids thereby improving the 

drought resistance of turfgrass.  

Most positive turfgrass responses are associated with large compost applications 

(i.e. Mg ha-1) or the use compost as a supplement to synthetic fertilizer. There are some 

results suggesting that compost materials when used alone are not effective as synthetic 

fertilizer for maintaining turf visual color and quality. (Landschoot and Waddinton, 1987; 

Barker, 1997; Gardner, 2004). Unlike conventional synthetic fertilizer, the nutrients in 

compost are stabilized during composting and thus are provided in slow release form.   

2.2.4 Diseases 

Composts are currently recognized as effective products for the control of crop 

and ornamental plants diseases caused by soilborne plant pathogens (Hoitink et al., 2001). 

Public concern with the use of synthetic pesticides to control plant diseases along with 

the cost associated with use of these products have heighten interest in using compost as 

a disease suppressing material (Boulter et al., 2000b; Noble, 2011). During the 1960s, 

suppression of phytophthora root rots was first noticed when composted tree bark was 

used in potting mix as a substitute for peat in the U.S. (Hoitink et al., 1975, 2001). One of 

the first well documented experiments on the use of plant disease suppressive compost 

was conducted by Hoitink et al. (1977) (as cited by VanElsas and Postma, 2007). They 

found the inhibitive effect of hardwood bark compost on sporangium and zoospores 

production of Phytophthora cainnamomi (Hoitink et al., 1977). This research was 

followed by a number of studies that examined the disease suppressing capability of 

compost derived from different types of organic waste (Noble and Coventry, 2005).   
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Disease occurrence in response to the application of compost materials to soil can 

be positive, negative, or neutral. In a review of the risks and benefits associated with the 

use of compost as a medium that affects pathogenic organisms, Noble (2011) reported 

when container media were amended with more than 20% compost by volume, enhanced 

suppression of soilborne diseases was noted in 59 out of 79 studies while an increase in 

disease incidence was seen in 6 of the studies. When compost was applied at rate of more 

than 15 Mg ha-1, disease suppression occurred in 45 of 59 field trials, while in one case 

promotion of the disease was seen. The effects of various compost materials on crop and 

ornamental plant diseases caused by different soil borne pathogens have been reviewed 

by several researchers (Hoitink & Fahy, 1986; Noble and Coventry, 2005; Noble, 2011).  

Compost amendment of soils has been shown to lower the severity of some foliar 

diseases such as powdery mildew and anthracnose, and can lower the population of some 

nematodes (Stratton et al., 1995; Hoitink et al., 2001).  

Reduced incidence of several turfgrass diseases have been reported when compost 

is used as top-dressing material. Suppression of foliar diseases such as brown patch 

(Rhizoctonia solani), dollar spot (Sclerotinia homoeocarpa), damping-off (Pythium 

graminicola), fusarium patch (Microdochium nivale), pythium blight (Pythium 

aphanidermatum), red thread (Laetisaria fuciformis), snow mould (Typhula 

ishikariensis ), Typhula blight (Typhula incarnata) and leaf rust (Puccinia sp.) have been 

reported as well as root infecting diseases such as necrotic ringspot (Leptosphaeria 

korrae), pythium root rot (Pythium graminicola) and summer patch (Magnaporthe poae) 

(Nelson and Craft. 1992; Nelson et al., 1994; Craft and Nelson, 1996; Nakasaki et al., 

1998; Boulter et al., 2000b, 2002a, 2002b; Loschinkohl and Boehm, 2001; Nelson and 

33 
 



 

Boehm, 2002; Dinelli, 2004; Paplomatas et al., 2004). Disease suppressions with various 

composts on different types of turfgrass have been discussed in several papers (Nelson et 

al., 1994; Boulter et al., 2000a; Noble and Coventry, 2005). 

The most widely accepted mechanisms for the disease suppressive properties of 

compost are: 1) the physical and chemical attributes of compost, which aid in improving 

soil properties that promote plant health (Litterick et al., 2004; VanElsas and Postma, 

2007); 2) the microbes, which are present in the compost or stimulated after the addition 

of compost in soil, suppress pathogens by the means of nutrient competition, antibiosis, 

hyperparasitism and the introduction of plant systemic acquired resistance (Hoitink et al., 

2001; VanElsas and Postma, 2007).  

Most reports on the inhibition of soil borne plant pathogens by compost are 

associated with biological control mechanisms (Serra-Wittling et al., 1996; Litterick et al., 

2004; Noble and Coventry, 2005; Noble, 2011). Microorganism suppression can be 

subdivided into “general” and “specific” suppression (Hoitink et al., 2001). General 

suppression is ascribed to the activity of many different microorganisms (Litterick et al., 

2004). These microorganisms function as biological control agents against pathogens 

whose propagules are sensitive to microbiostatic agents. General microbial activity and 

biomass in compost and soil also inhibit the growth of pathogens (Hoitink et al., 2001). 

The germination of Phytophthora and Pythium spp. spores are inhibited in this way (Chen 

et al., 1988; Boehm et al, 1993). Specific suppression takes place when a limited group of 

microorganisms acts on a specific pathogen (Hoitink et al., 2001).  The suppressions of 

Rhizoctonium solani, Sclerotium rolfsii and Sclerotinia sclerotiorum fall into this 

category (Jones and Watson, 1969; Nelson et al., 1983; Hadar and Gorodecki, 1991; 
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Litterick et al., 2004). Large propagules, known as sclerotia, produced by these pathogens 

are colonized by hyperparasites which results in lysis or death of these structures. 

Trichoderma spp, Penicillium spp and Contothyrium minitans are the main parasites that 

have been isolated from compost. They are known to target the sclerotia of Rhizoctonium 

solani, Sclerotium rolfsii and Sclerotinia sclerotiorum, respectively (Nelson et al., 1983; 

Hoitink and Fahy, 1986; Hadar and Gorodecki, 1991; Litterick et al., 2004). Other 

aspects of specific suppression include antibiosis produced among microorganisms and 

plant systemic resistance induced by microorganisms to specific pathogens (Stratton et al., 

1995; Litterick et al., 2004). 

The suppressive effects of compost in a field setting is more variable than 

container systems (Noble and Coventry, 2005). A factor that may contribute to the 

inconsistent results observed in field is that different types of compost may have been 

applied to the site (Hoitink and Fahy, 1986). Compost composition, particle size and 

degree of decomposition/maturity of the compost can affect the disease suppression 

ability of the compost (Litterick et al., 2004; VanElsas and Postma, 2007; Lozano et al., 

2009). Hoitink, el al. (1987) pointed out that high cellulose content (high C/N ratio) 

composts have an adverse effect on Rhizoctonia damping-off severity. The nutrient 

release properties of compost can also affect severity of many plant diseases since some 

diseases are caused by high level of fertility while others are as a result of a nutrient 

deficiency. The methods and rate of compost application as well as the cultural practices 

used following the application of compost will affect extent of disease control that is 

achieved with the use of compost (Litterick et al., 2004; Noble and Coventry, 2005). 
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Higher rates of compost application usually result in increased disease suppression 

(Noble and Coventry, 2005).  

Soil physical, chemical and biological characteristics and environmental 

conditions can have a substantial impact on the ability of compost to suppress diseases. 

The type and amount of beneficial and pathogenic organisms present in soil are diverse 

making difficult to obtain consistent results with the use of compost materials. The use of 

single compost can be suppressive to one pathogen but conducive to another (Hoitink, el 

al., 1987; Litterick et al., 2004).  

Both beneficial and plant pathogenic organisms are killed by the heat generated 

during composting process (Hoitink et al., 2001). Although most beneficial 

microorganisms may recolonize compost after the high temperature phase of composting 

is finished, inoculation of composts with beneficial agents is suggested as a means to 

ensure the suppressive effect of the final product (Stratton et al., 1995; Noble, 2011). 

2.2.5 Compost in Liquid Form 

Compost based sprays have been applied to soil and plants since at least the 1920s 

(Koepf 1992 cited by Scheuerell and Mahaffee, 2002). The terms compost tea (Ingham, 

2000), compost extracts (Weltzien, 1989), compost steepages (Hoitink et al., 1997) and 

compost slurries (Cronin et al., 1996) have been used to define compost applications 

made in liquid form. According to Scheuerell and Mahaffee (2002), and Litterick et al. 

(2004) the stated usage of the terms just mentioned is related to the oxygen status of the 

material. Currently the most common terms used to describe liquid compost are compost 

tea and compost extract. 

36 
 



 

Compost tea is a solution that contains microbes and nutrients obtained from 

compost that has been placed in water, while a compost extract is a solution that contains 

organisms and soluble nutrients that have been obtained by running water with significant 

pressure through compost (Ingham, 2005). Compost tea can be classified as aerated 

compost tea (ACT), not-aerated compost tea (NCT) and anaerobic tea (Scheuerell and 

Mahaffee, 2002; Ingham, 2005). Compost placed into water and subjected to aeration 

with or without the presence of additives that may spur microbial growth is called aerated 

compost tea. If a water and compost solution is not subjected to introduced oxygen 

during the period of time the compost is present in water the final product is referred to 

not-aerated compost tea. When microbial growth in a liquid compost solution is spurred 

by the addition of one or more additives, this leads to dramatic reduction in the oxygen in 

the solution.  The resulting solution is referred to as anaerobic tea (Ingham, 2005).  

Substances that are typically added to liquid compost solutions to increase the 

presence of beneficial organisms in the compost include kelp, rock dust, fish hydrolysates 

and humic acids. All of these have often been used to encourage the growth of fungi 

(Ingham, 2003). The production of compost can involve the use of 19 L (5 gallon) bucket 

for small amounts of tea or a much large container up to 1893 L (500 gallons) for 

commercial tea production. Various pump designs and aeration devices can be used to 

produce ACT. A typical production time for this type of tea is 24 to 48 hours (Ingham, 

2003). The production of NCT typically involves mixing compost with water in an open 

container for at least three days with (Brinton et al., 1996) or without periodical stirring 

(Weltzien, 1992). Currently there are no accepted standards for producing NCT (Ingham, 

2005). The properties of compost are influenced by aeration, compost feedstock and 
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quality, added food source, brewing time, water ratio, temperature and pH (Scheuerell 

and Mahaffee, 2002; Ingham, 2005). The final product can be variable, thus periodical 

testing of the oxygen concentration, or total and active bacteria and fungi are usually 

needed to ensure consistency of compost tea used (Scheuerell and Mahaffee, 2002; 

Ingham, 2005).    

Compost tea is usually used as a foliar spray or a soil drench (Ingham, 2000). 

Compost tea has two key characteristics that benefits soil and plants: it contains 

beneficial organisms and it provides soluble nutrients. The beneficial organisms 

cultivated in compost tea can inhibit the growth of disease causing organisms by 

competing for nutrients and infection sites or by outright consumption of the disease 

causing organisms (Scheuerell and Mahaffee, 2002). Beneficial organisms preserve 

nutrients in their biomass and have the ability to decompose plant-toxic materials. The 

nutrients in compost tea are available for plant uptake. Uptake of these nutrients can 

result in improved plant health which may reduce the need for supplemental chemicals 

products to sustain plant growth (Ingham, 2005). The suppression of disease through 

compost tea application has been extensive documented and summarized by Scheuerell 

and Mahaffee (2002), and Litterick et al. (2004). The use of compost teas for controlling 

foliar diseases and soil-borne diseases mostly has been reported on agricultural crops 

such as corn, wheat, bean, tomato, lettuce, potato, cucumber, strawberry and grape etc. 

(Weltzien, 1992; Yohalem et al., 1994; Zhang et al., 1998; Scheuerell and Mahaffee, 

2002; Al-Dahmani et al., 2003; Litterick et al., 2004; Koné et al., 2010). Ingham (2005) 

has outlined the appropriate strategies for the use of compost tea on horticultural plants 

such as turf, ornamental trees, and fruit crops. 
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2.2.6 Environmental Impact  

In the early days of the composting industry, the presence of pathogenic 

organisms, heavy metals and hazardous organic substances were common issues of 

concern (Epstein and Epstein, 1989, Rosseaux et al, 1989, He et al., 1992, Noble and 

Roberts, 2004). However, as improvements have been made in the design of composting 

facilities and management of waste, these problems have largely disappeared with 

production of high quality compost becoming available throughout the United States. 

Compost production is now viewed as a desirable way to manage much of the organic 

waste that is produced by municipalities (He et al., 1992).  

One of the agronomic benefits associated with the use of compost as a soil 

amendment is that it generally acts as slow-release fertilizer which results in reduced 

nitrate leaching and ammonia volatility when compared to a water soluble nitrogen 

fertilizers (e.g. urea) (Stratton et al., 1995; Barker. 1997). However when applied at rates 

in excess of plant uptake the use of compost is often no better than many types of N-

source fertilizer in limiting nutrient loss to ground and surface water (Li et al., 1997; 

Plaster, 2013). The fact that most nutrients from compost are not available unless 

microbial activity decomposes the compost leads to relatively high rate application of the 

compost, especially in the first year. Such practice may result in an excessive 

accumulation of some nutrients in the soil when the compost is applied to meet a specific 

nutrient need of the plant. In such a situation it is sometimes advantageous to blend a 

synthetic fertilizer into compost so that the application rate of compost can be lowered 

while nutritional needs of the plant are still met.  
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Compost is known to support organisms that can degrade hazardous organic 

compounds. For this reason, compost has been used to remediate contaminated sites 

(Stratton et al., 1995; Savage and Diaz, 2007). Listing of microorganisms that have been 

inoculated into compost to degrade specific hazardous wastes substrates is available in 

papers published by Savage et al. (1985) and Stratton et al. (1995).  

There is an emerging interest in use of compost as a biofiltration media for air and 

liquids (Stratton et al., 1995). Various composts have been used as biofilters to treat NO3
- 

contamination in agricultural runoff, acid and soluble salts present in mine drainage, and 

noxious odors and aromatic compounds in air (Blowes et al., 1994, Stark et al., 1994, Liu 

et al., 1994). The efficiency of some biofilters can be improved when a compost filter bed 

is included as part of filter and is inoculated with microorganism that metabolize the 

pollutant of interest (Stratton et al., 1995). 

2.3 Organic Lawn Care 

Organic lawn care is a frequently used phrase that lacks a precise definition. 

Unlike organic farming, there are no standards that have been defined and are 

subsequently regulated by a federal agency such as the USDA’s National Organic 

Program (NOP). This has allowed lawn care companies that specialize in providing 

organic lawn services to self-define what constitutes an organic lawn care program. 

Adding to the confusion is the frequent use of the terms natural lawn care and sustainable 

lawn care management which have many conceptual elements in common with organic 

lawn care, but also lack a formal working definition.  As a result, the three terms have 

been used interchangeably by some in the turf industry and those who purchase services 

from this industry. 
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 The USDA’s National Organic Program (NOP) restricts the use of the organic 

label on agricultural foodstuffs to those that have been produced using approved methods 

that integrate cultural, biological and mechanical practices that foster cycling of resources, 

promote ecologic balance and conserve biodiversity (USDA, 2015). The use of compost 

in place of synthetic fertilizers is one of the primary cultural practices used to meet these 

criteria. A further restriction placed on the certification of organic products by the NOP is 

that use of sewage sludge based composts materials is not permitted. The use of biosolids 

composts as a soil amendment in the establishment of turfgrass has been researched and 

promoted for at least 4 decades (Sikora et al., 1980; Hornick et al., 1984; Angle, 1994; 

Cheng et al., 2007), however certain segments of the general population are concerned 

with child ingestion of soil treated with biosolids which has limited the appeal and use of 

this type of compost in residential settings (Ritter, 2008; Snyder, 2008). 

 The National Sustainable Agriculture Information Services has summarized 

organic and least-toxic turf care practices as consisting of practices that do the following 

(Bellows, 2003): 1) establish and maintain a healthy soil environment, 2) keep a diversity 

of species in the lawn environment, 3) reduce stress on turf growth, 4) utilize biological 

pest control methods, and 5) reduce or eliminate the use of synthetic chemicals. 

Additionally this organization has stated that organic lawn care needs to include an 

understanding of the climatic and soil based limitations that are inherent with maintaining 

a lawn in a given area.   

 Natural Lawns of America, which is one of the first lawn care operations (LCO’s) 

to provide organic lawn care services to homeowners, distilled organic lawn care down to 

three simple steps (Catron, 1994). These steps are to: 1) use organic based fertilizers 
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derived from natural organic sources, 2) implement a strong IPM based system for lawn 

care but avoid a see and spray mentality, and 3) use biological control measures in place 

of synthetic compounds if weed or insect populations need to be controlled. A common 

practice followed by most organic LOC’s is to educate the client to accept the presence of 

some weeds and insects in the lawn and to emphasize that the development of a “healthy 

lawn” using organic lawn care practices is many year commitment (Catron,. 1994).   

Interest in providing an organic or natural lawn care option has grown over the 

past few decades. A survey conducted in Atlanta, GA in mid 1990’s reported that less 

than 25% of the LCO’s had an organic fertility option as part their service offerings. 

About one quarter of clients selected this option to fertilizer their lawn (Beverly et al., 

1997).  A more recent survey released in 2013 reported that 44% of lawn care companies 

that responded to the survey offered organic or natural lawn care programs (Jacobs, 2013). 

In this same survey it was reported that 57% of clients were willing to pay a premium for 

organic/nature lawn care services.  

The challenges of transitioning from a synthetic chemical lawn care option to an 

organic/natural one include the higher costs and a lower effectiveness in controlling 

pests. However, as public familiarly with concepts of sustainability grows it is likely that, 

the demand for organic lawn care will continue to increase in the future.  
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Chapter 3: Effects of Compost Topdressing, Compost Tea Application 

and Cultivation on Color, Quality, and Weed Encroachment  

The implementation of turfgrass fertilizer legislation in several mid-Atlantic states 

in recent years has placed restrictions on the timing and amount of nitrogen and 

phosphorus fertilizer that can be applied to lawns (Maryland’s Law Fertilizer Law, 2011; 

The Senate and General Assembly of the State of New Jersey. 2011; New York State 

Department of Environmental Conservation, 2012). In Maryland, both and homeowners 

and professional turfgrass managers have restrictions on fertilizer applications that 

include the amount of nitrogen that can be applied annually to a site, the amount of 

nitrogen that can be applied per application (dependent on the percentage water soluble 

nitrogen in a given nitrogen fertilizer product), and the time of year nitrogen and 

phosphorus containing fertilizers can be applied. 

Due to previous regulations on pesticide use to minimize pesticide exposure to 

humans and the environment (Connecticut General Assembly, 2009; New York State 

Department of Environmental Conservation, 2010; Maryland’s Pesticide Regulation 

Section) and the more recent turfgrass fertilizer regulations, there has been an increased 

interest in approaches to turfgrass management that have potentially reduced impacts on 

the environment and particularly water quality. One area of turfgrass management 

receiving increased attention due to these restrictions is the use of organic products and 

management techniques. Organic products that may be used for turfgrass maintenance 

include plant-based composts, biosolids composts, and compost tea (water extracts of 

fermented composts).  
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The use of compost products on turfgrass sites has several potential benefits. 

Composting has increasingly been recognized as promising method of waste management 

and use (He et al., 1992), and as a beneficial end use of a waste product on turfgrass 

versus agricultural land (Angle, 1994). In addition, composts used as soil amendments 

and nutrient sources generally act as a slow release fertilizer, which may result in reduced 

nitrate leaching and ammonia volatility when compared to water soluble nitrogen 

fertilizers (Stratton et al., 1995; Barker, 1997).   

The effects of compost applications on turfgrass performance have been evaluated 

in several studies. The value of using compost on established turfgrass include improving 

turfgrass quality and color (Sikora et al., 1980; Schumann et al., 1993; Boulter et al., 

2000b;  Garling and Boehm, 2001; Geisel et al., 2001; Johnson et al., 2006b), increasing 

nitrogen uptake, increasing foliar and root nitrogen content (Tester et al., 1982; Garling 

and Boehm, 2001), reducing weed encroachment (Geisel et al., 2001; Mandal et al., 

2013), suppressing root and foliar diseases (Nelson and Craft. 1992; Nelson et al., 1994; 

Craft and Nelson, 1996; Nakasaki et al., 1998; Boulter et al., 2000b, 2002a, 2002b;  

Nelson and Boehm, 2002; Dinelli, 2004; Paplomatas et al., 2004; Noble and Coventry, 

2005), and improving soil water holding capacity and thereby reducing irrigation water 

use (Johnson et al., 2009; Nektarios et al., 2011). However, most studies involved only 

the evaluation of organic materials (they were not compared to synthetic fertilizers), were 

performed on high maintenance turfgrass sites such as golf course turf where composts 

were used as supplemental nutrients sources to regular fertilizer, and/or were not 

performed in the unique environmental conditions of the turfgrass transition zone. Thus, 
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further studies are needed to compare compost products to conventional nitrogen sources 

on lawn-type turf in the transition zone.  

The addition of a thin layer of compost over the surface of turf may also make it 

possible to gradually improve soil physical and chemical properties without severely 

disturbing the soil or existing turf (Agresource, 2013). However, one potential drawback 

of the use of composts in this fashion for turfgrass maintenance is the possibility of 

creating an organic layer on top of existing soil from repeated surface applications of 

compost. Although generally employed as a way to increase soil aeration and reduce soil 

compaction, core cultivation is often used prior to or after compost topdressing to achieve 

penetration of compost into the soil and thus prevent a layering problem. However, little 

research exists studying the efficacy of this practice and the subsequent effects of 

turfgrass quality.   

In recent years, water extract from fermented compost (compost tea) has gained 

popularity as a liquid spray to provide nutrients, potential soil microbiological benefits, 

and reduction in disease incidence in agricultural and horticultural crops (Scheuerell and 

Mahaffee, 2002; Ingham, 2003; Litterick et al., 2004). However, little information in the 

literature is available on the use of compost tea and its effects on turfgrass. Rossi (2007) 

found that foliar compost tea (360 L ha-1) applied to a mix annual bluegrass (Poa annua 

L.) and creeping bentgrass (Agrostis stolonifera L.) sand based putting green was able to 

suppress dollar spot in one of three years when compared to untreated plots. Miller and 

Henderson (2012) found that compost tea, when applied at 408 L ha-1 on 3 week intervals 

over a period of 4 months, had no effect on the color, quality or cover of Kentucky 

bluegrass (Poa pratensis L.). Therefore, the effect of regular compost tea applications on 
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turf maintained under home lawn conditions in high disease pressure and environmental 

stress regions such as Maryland needs to be documented to determine if such practices 

should be promoted within the mid-Atlantic region of the United States. 

The objectives of this study were 1) to evaluate the effect of the surface 

application of two different compost materials compared to a synthetic slow release 

fertilizer on turf-type tall fescue quality, color, and potential pest problems, 2) to evaluate 

the effect of repeated compost tea applications on turf-type tall fescue quality, color, and 

potential pest problems and 3) to determine the extent to which cultivation procedures 

affect the performance of compost materials and an enhanced efficiency synthetic 

fertilizer applied to turf-type tall fescue.  

3.1 Materials and Methods  

3.1.1 Site Locations 

Turf color, quality and weed cover in response to hollow tine cultivation, compost 

tea application and compost topdressing were examined on established lawns at two sites 

in Maryland. The first site was a 4-year-old stand of ‘Titanium’ tall fescue (Festuca 

arundinacea Schreb.) and ‘Raven’ Kentucky bluegrass (Poa pratensis L.) located at the 

University of Maryland Paint Branch Turfgrass Research Facility (PBTRF) in College 

Park, MD. The soil at this site was a Russett (fine-loamy, mixed semiactive, mesic Aquic 

Hapludults) and Christiana (fine, kaolinitic, mesic Aquic Hapludults) complex. The top 

10 cm of soil consisted of 3.4% organic matter, 21% clay, 48% silt 31% sand, and had 

soil pH of 5.5. Mehlich III soil test levels for this soil were 87 mg P kg-1, 159 mg K kg-1, 

154 mg Mg kg-1, and 896 mg Ca kg-1. This site was seeded on 21 October 2007. Prior to 

initiation of the study, turf received 49 kg N ha-1 kg (1 pound per thousand square feet) as 
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urea on 9 Apr. and 24 Sept. 2009 and on 15 Apr. and 8 Sept. 2010. The turf was mowed 

at least twice a month during the growing season at a height of 6.2 cm (2.5 inch).  

Broadleaf weeds and patches of creeping bentgrass (Agrostis stolonifera L.) present in 

the test area in advance of the study were removed by spot treating the bentgrass with 

glyphosate [N-(phosphonomethyl)glycine, C3H8NO5P] and by applying a broadleaf 

herbicide containing 2,4-D (2,4-dichlorophenoxyacetic acid, C8H6Cl2O3), mecoprop [2-

(4-Chloro-2-methylphenoxy) propanoic acid, C10H11ClO3] and dicamba (3,6-dichloro-2-

methoxybenzoic acid, C8H6Cl2O3) in the summer of 2011. Glyphosate treated areas were 

seeded with ‘Titanium’ tall fescue once death of the bentgrass was apparent.  

The second site was located at the Glenstone art museum in Potomac, MD on a 

hillside having a 5.6 % slope. The soil at the site was mapped as Glenelg silt loam (fine-

loamy, mixed, mesic Typic Hapludults), however, substantial grading of the site took 

place prior to turf establishment. The grading activity severely altered the natural 

pedology of the native soil resulting in the creation of a disturbed type soil at the site. The 

soil within the study area contained 29% clay, 43% silt, 28% sand, 4.3% organic matter 

content and had a soil pH of 5.5. Mehlich III soil test levels for the upper 10 cm of soil 

were 21 mg P kg-1, 184 mg K kg-1, 195 mg Mg kg-1, and 1145 mg Ca kg-1. The site was 

seeded with ‘Confederate’ tall fescue in 2006 and was maintained at 10 cm (4 inch) in the 

year prior to the initiation of the study.  

3.1.2 Compost and Fertilizer Treatments 

Fertilizer treatments in the study included a sewage sludge based biosolids 

compost from Baltimore, MD, (Orgro, Veolia Water North America Baltimore City 

Composting Facility, Baltimore, MD), a plant based yard trimmings compost from 
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suburban MD (Leafgro, Maryland Environmental Services/Dickerson, Dickerson, MD), 

an enhanced efficiency synthetic nitrogen fertilizer (polymer coated urea ‘Signature’ 35-

0-10, Loveland Products, Inc. Greeley, CO) and an untreated control treatment. Each 

material was applied at the rate of 156 kg N ha-1 once per year in the fall. Two additional 

fertilizer treatments were also included in the study, consisting of a once a year 

application of 1 cm of a biosolids compost and yard trimmings compost. The latter two 

compost treatments are consistent with typical compost topdressing amounts applied to 

lawns by practitioners while the former compost and synthetic fertilizer treatment 

amounts are slightly above the annual nitrogen cap of 146 kg N ha-1 established for lawn 

turf fertilizer use in the State of Maryland (Turner, 2013). The chemical properties of the 

two composts (Table 3.1, 3.2, 3.3) were analyzed annually before application to ensure 

each material was broadcasted at the desired rate. Based on the results of the analyses of 

compost, a surface application of 1 cm of the biosolids and yard trimmings compost 

applied ,on average, 1108 and 584 kg N ha-1 yr-1, respectively. Compost topdressing 

applications were made in late September or October of each year for three years with the 

initial application made in 2011. At PBTRF site, treatments were applied on 5 and 6 Oct. 

2011, 5 Oct. 2012, 3 Oct. 2013. At Glenstone site, treatments were applied on 12 Oct. 

2011, 26 Sept. 2012. In 2013 the compost treatments at this site were applied on 9 Oct. 

2013, while the synthetic fertilizer treatment was applied on 16 Oct. 2013. 
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Table 3.1 Chemical properties of the biosolids compost Orgro and the yard trimmings 
compost Leafgro applied in 2011. All values are reported on a dry weight basis†. 
  
 Units Orgro Leafgro 
Moisture As Rcvd % 23.4 60.1 
Moist Bulk Density g cm-3 0.48 0.44 
pH - 5.8 7.3 
Soluble Salts (Elec. Cond.) S m-1 0.835 0.158 
Total Nitrogen % / (kg m-3) 2.92 / 10.7 1.8 / 3.1 
Nitrate-N mg kg-1 5 0 
Ammonium-N mg kg-1 4348 21 
Organic Matter  % 54.6 64.1 
Estimated Organic Carbon % 29.5 34.6 
C/N Ratio - 10.1 19.3 
Phosphorus (P) mg kg-1 314 528 
Potassium (K) mg kg-1 1526 4557 
Calcium (Ca) mg kg-1 3331 10648 
Magnesium (Mg) mg kg-1 1411 2681 
Extractable Micronutrients    
Boron (B) mg kg-1 12.9 11.8 
Manganese (Mn) mg kg-1 76.5 170.5 
Zinc (Zn) mg kg-1 18.9 6.5 
Copper (Cu) mg kg-1 4.5 2.1 
Iron (Fe) mg kg-1 43.5 6.7 
Extractable Heavy Metals    
Lead (Pb) mg kg-1 1.6 2.2 
Cadmium (Cd) mg kg-1 0.2 0.1 
Nickel (Ni) mg kg-1 0.4 0.2 
Chromium (Cr) mg kg-1 0.2 0.2 
† Analysis was conducted by the University of Massachusetts Soil Testing Laboratory. 
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Table 3.2 Chemical properties of the biosolids compost Orgro and the yard trimmings 
compost Leafgro applied in 2012. All values are reported on a dry weight basis†. 
 
 Units Orgro Leafgro 
Moisture As Rcvd % 19.0 35.5 
Moist Bulk Density g cm-3 0.43 0.56 
pH - 6.2 7.6 
Soluble Salts (Elec. Cond.) S m-1 0.495 0.170 
Total Nitrogen % / (kg m-3) 3.12 / 10.8 2.12 / 7.7 
Nitrate-N mg kg-1 93 219 
Ammonium-N mg kg-1 1562 6 
Organic Matter  % 51.0 58.3 
Estimated Organic Carbon % 27.5 31.5 
C/N Ratio - 8.8 14.9 
Phosphorus (P) mg kg-1 102 25 
Potassium (K) mg kg-1 1112 509 
Calcium (Ca) mg kg-1 2880 40192 
Magnesium (Mg) mg kg-1 926 351 
Extractable Micronutrients    
Boron (B) mg kg-1 10.8 6.7 
Zinc (Zn) mg kg-1 16.9 29.5 
Copper (Cu) mg kg-1 3.0 1.1 
Iron (Fe) mg kg-1 45.5 127.5 
† Analysis was conducted by the University of Massachusetts Soil Testing Laboratory. 
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Table 3.3 Chemical properties of the biosolids compost Orgro and the yard trimmings 
compost Leafgro applied in 2013. All values are reported on a dry weight basis†. 
 
 Units Orgro Leafgro 
Moisture As Rcvd % 11.8 28.1 
Moist Bulk Density g cm-3 0.50 0.47 
pH - 7.0 7.2 
Soluble Salts (Elec. Cond.) S m-1 0.920 0. 177 
Total Nitrogen % / (kg m-3) 2.91 / 12.8 2.14 / 7.3 
Nitrate-N mg kg-1 116 244 
Ammonium-N mg kg-1 4613 13 
Organic Matter  % 45.3 54.6 
Estimated Organic Carbon % 24.5 29.5 
C/N Ratio - 8.4 13.8 
Phosphorus (P) mg kg-1 243 659 
Potassium (K) mg kg-1 1068 6490 
Calcium (Ca) mg kg-1 4246 12699 
Magnesium (Mg) mg kg-1 1165 3106 
Extractable Micronutrients    
Boron (B) mg kg-1 14.7 11.7 
Zinc (Zn) mg kg-1 19.2 3.3 
Copper (Cu) mg kg-1 3.3 0.8 
Iron (Fe) mg kg-1 42.4 13.0 
† Analysis was conducted by the University of Massachusetts Soil Testing Laboratory. 

 

3.1.3 Cultivation Treatments 

Cultivation treatments consisted of 0, 1 or 2 passes of Ryan GA 30 aerator (Ryan, 

Div. of Schiller Grounds Care, Inc., Johnson Creek, WI). The aerator was equipped with 

1.9 cm by 12.7 cm tines that were spaced 6 cm apart from one another. The cultivation 

treatments were imposed once per year immediately prior to compost spreading. Plots 

receiving 156 kg N ha-1 yr-1 were subjected to one of the three cultivation treatments, 
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while plots receiving 1 cm of compost and the untreated control did not receive hollow 

tine cultivation. 

In 2011, the turf was mowed to 5 cm (2.0 inch) at PBTRF and to 5.7 cm (2.25 

inch) at Glenstone, with clippings the being collected prior to hollow tine cultivation. 

Plots that were aerated were verticut two ways to break cores before compost application. 

In 2012, the turf was mowed to 6.4 cm (2.5 inch) at both sites immediately before 

applying the treatments. No plots were verticut but all plots were lightly raked using a 

metal leaf rake to remove foliar debris after aeration. In 2013, the turf was mowed to 6.4 

cm (2.5 inch) at PBTRF and to 8 cm (3 inch) at Glenstone. All plots were lightly raked to 

remove foliar debris prior to applying the fertilizer and cultivation treatments.  

3.1.4 Compost Tea Treatments 

The effect of compost tea on turfgrass growth and soil biological properties was 

evaluated by splitting the study main plots in half and making monthly applications of 

compost tea to one half of each main plot during the growing season. Compost tea 

applications were made in August, September and October of 2012 and from March 

through October in, 2013, and 2014. The compost tea was created using a recipe 

recommended by and based on microbial analysis of the soil conducted by the Soil 

Foodweb, Inc. laboratory in Corvallis, OR. The brewing process consisted of mixing 18.9 

L water with 454g yard trimmings compost (Leafgro), 30 ml Bio-Brew fish hydrolysate 

(Nature’s Pro ®), 15 ml Bio-Brew Humic Acid (Nature’s Pro ®) and 14 g Kelp extract 

(Nature’s Pro ®). The mixture was aerated for at least 24 hours after which 4.7 L brewed 

product was mixed with 89 ml fish hydrolysate, 89 ml humic acid and 85 g kelp extract. 

After adding all materials the solution was diluted with 10.4 L water.  
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Compost tea applications in 2012 and 2013 were made using a bicycle sprayer 

having TeeJet 6510 nozzles located 0.3 m above the canopy. The sprayer was operated at 

a pressure of 372 K Pa (54 PSI) resulting in a compost tea application rate of 1630 L ha-1 

(4 gallons per 1000ft2). In 2014 a Gregson Clark spreader mateTM single nozzle style 

sprayer (Model SM-A, Gregson-Clark Spraying Equipment, Caledonia, NY) operating at 

a pressure of 248 K Pa (36 PSI) was used to deliverer the compost tea at the same 

application rate used in 2012 and 2013.  

 

3.1.5 General Turf Maintenance 

Field plots at both locations were maintained in manner similar to that of a home 

lawn. At PBTRF site, the turf was mowed at least twice a month during the growing 

season at 6.4 cm (2.5 inch) in 2011 and 2012, and at 7.6 cm (3 inch) in 2013 and 2014. 

The turf at Glenstone was mowed weekly at 10 cm (4 inch) throughout the growing 

season in all years of the study. The clippings were returned at both locations and the 

plots were irrigated only when needed to prevent the turf from entering water stress 

induced dormancy. No pesticides were utilized throughout the course of the study at 

either location.  

 

3.1.6 Data Collection 

With the exception of the July 2012 at the Glenstone site, monthly ratings of turf 

visual quality and color were collected from March to November in 2012, 2013 and 2014 

at both sites. Visual assessment of the percent cover of specific weeds was performed 

when the presence of weeds became apparent within several of the plots. Visual turf 
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quality was assessed as an evaluation of the integrated effect of turf density, uniformity 

and weed encroachment on the appearance of the turf. Quality was based on criteria 

established by the National Turfgrass Evaluation Program and was rated on a 1 to 9 scale 

with a rating of 6 being considered commercially acceptable turf density and uniformity. 

Visual assessment of color was evaluated by using a 1 to 9 rating scale with 1 

representing a 100% brown or dead turf and 9 equaling a very dark green colored turf. 

Weed cover (0 to 100%) was visually evaluated as the percentage surface area of an 

individual plot covered by annual grass and broadleaf weeds. 

3.1.7 Statistical Analysis 

Fertilizer and cultivation treatments were arranged as a randomized complete 

block design with each treatment being replicated three times within 3 m × 3 m whole 

plots. When compost tea was added as a third treatment in the second year of the study, 

the structure of the treatments was a randomized complete block spit plot design. 

Data analysis consisted of analysis of variance (ANOVA) of the factorial 

arrangement of treatments present within the experiment design, and mean contrasts that 

compared the control treatment with the five other treatments where no cultivation of 

whole plots occurred throughout the study. Data were analyzed using Proc Mixed (SAS 

9.3, SAS Institute, 2012) except in instances when the convergence criteria were not met 

(i.e. too many likelihood evaluations in SAS operation) . In these cases, data were 

analyzed using Proc Glimmix (SAS 9.3, SAS Institute, 2012). Treatments means were 

separated at P ≤ 0.05 level unless otherwise indicated. Mean separations were conducted 

using Tukey’s honestly significantly different test. 
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3.2 Results 

3.2.1 Turf Color 

3.2.1.1 Paint Branch Turfgrass Research Facility  

Figure 3.1 shows the simple effect of nitrogen source on tall fescue color over the 

three year evaluation period. The synthetic nitrogen fertilizer (Signature) promoted 

quicker early spring (i.e. March) green up and longer late fall (i.e. November) color 

retention when compared to the two compost sources except in the fall of 2014 (Table 

3.4). All individual date mean separations tests are shown in the thesis appendix. Plots 

receiving Signature also had a darker green color on two (2012, 2013) of the three 

October ratings at TBTRF when compared to the two compost sources. With exception of 

the July 2013 rating date when Signature had a higher color rating than the two compost 

sources, there was little difference in the turf color among the three N sources during the 

summer (June, July August) in all three years of the study.    

Cultivation in the fall resulted in quicker early spring green up in all three years of 

study at the TBTRC with interactions between nitrogen source and cultivation treatment 

occurring in 2013 and 2014 (Figure 3.2). In these two cases, increasing intensity of 

cultivation had a positive effect on tall fescue turf color in plots receiving either the 

synthetic nitrogen fertilizer or biosolids compost (Orgro). The effect of cultivation on 

color was limited to early spring with no consistent color response being seen with the 

use of this practice after the month of March in all three years of the study.  Compost tea 

applications initiated at the beginning of 2013 growing season had no effect on color at 

PBTRF in 2013. In 2014, color responses to compost tea were recorded in the months of 

June, August and September with the response dependent on the nitrogen source applied 
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the prior fall (Figure 3.3). Generally, cultivation had no significant effect on plots 

receiving synthetic nitrogen fertilizer and yard trimmings compost, whereas it had 

positive effect on plots treated with biosolids compost (Figure 3.3).   

Mean contrasts comparing the effect of all non-cultivated treatments receiving N 

with the control treatment (i.e., no N, no tea, no cultivation) on color are shown in Table 

3.5.  Improved color compared to the control treatment was most frequently seen with the 

application of 1 cm of the biosolids compost. Color responses seen with this treatment 

were most dramatic in the early spring. The 1 cm of the biosolids compost treatment was 

the only non-cultivated treatment that had acceptable (i.e., color > 6, data shown in thesis 

appendix) early spring color in all three years of the study. Less dramatic but clearly 

noticeable improvements in turf color were seen in early spring and late fall with the 

application of synthetic nitrogen fertilizer and 1 cm of yard trimmings compost, except in 

the late fall of 2014. When compared to the control treatment, sporadic improvements in 

turf color were seen in 2012 with the use two compost materials applied at rate of the 156 

kg N ha-1 yr-1. After April of 2013 turf receiving the two compost treatments had color 

that was similar to that of the untreated control. 
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Figure 3.1. The effect of nitrogen source on tall fescue color at (A) the Paint Branch Turfgrass Research Facility and (B) Glenstone.  
Turf color on a scale of 1-9: 1 = brown turf, 9 = dark green turf. Values are averaged across cultivation treatments. † No data was 
collected in this month. 
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Table 3.4. Analysis of variance for the effect of nitrogen source, cultivation and compost 
tea on tall fescue color at the Paint Branch Turfgrass Research Facility (PBTRF) and 
Glenstone. 

Paint Branch Research Turfgrass Facility 
  Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. 
Treatment df P 
  2012 
N source (N) 2 <.0001 0.0236 0.0366 0.1470 0.1393 0.1393 0.4736 <.0001 <.0001 

Cultivation (C) 2 0.0056 0.0722 0.7773 0.3365 0.2467 0.4566 0.0461 0.2296 0.5432 

N×C 4 0.5723 0.9768 0.6416 0.7942 0.7566 0.9743 0.9531 0.4748 0.6943 

  2013 
N 2 <.0001 0.5921 0.0388 0.2259 0.0001 0.2012 0.0004 <.0001 <.0001 

C 2 0.0002 0.1985 0.5396 0.0762 0.4650 0.7035 0.7159 0.5491 0.0033 

N×C 4 0.0187 0.3885 0.8052 0.0486 0.5406 0.3106 0.1637 0.1178 0.8515 

Tea (T) 1 1.0000 0.1744 1.0000 1.0000 1.0000 0.5709 1.0000 1.0000 1.0000 

N×T 2 1.0000 0.6147 1.0000 1.0000 1.0000 0.7209 1.0000 1.0000 1.0000 

C×T 2 1.0000 0.6147 1.0000 1.0000 1.0000 0.2884 1.0000 1.0000 1.0000 

N×C×T 4 1.0000 0.3256 1.0000 1.0000 1.0000 0.2958 1.0000 1.0000 1.0000 

  2014 
N 2 <.0001 0.0060 0.6887 0.0116 0.2914 0.2034 0.8280 0.1164 0.0124 

C 2 0.0002 0.9774 0.8505 0.5659 0.6703 0.0505 0.0502 0.6439 0.0766 

N×C 4 0.0234 0.3534 0.9244 0.4130 0.2252 0.5652 0.4584 0.4257 0.2660 

T 1 1.0000 0.3306 0.1964 0.4595 1.0000 0.3942 1.0000 0.6677 0.6601 

N×T 2 1.0000 0.3874 0.5594 0.0093 0.1256 0.0431 0.0217 0.0807 0.2393 

C×T 2 1.0000 0.3874 0.1938 0.1848 0.2884 0.1122 0.2875 0.0807 0.7094 

N×C×T 4 1.0000 0.4332 0.6674 0.4332 0.3583 0.5636 0.1229 0.1112 0.3256 

Glenstone  
  Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. 
Treatment df P 
  2012 
N source (N) 2 <.0001 0.0029 <.0001 NA 0.3897 0.9719 0.2908 <.0001 0.1031 
Cultivation (C) 2 0.0028 0.7992 0.0502 NA 0.4349 0.9719 0.9086 0.9352 0.5319 
N×C 4 0.4273 0.9191 0.2588 NA 0.7081 0.7461 0.1816 0.8267 0.9696 
  2013 
N 2 0.0072 0.0313 0.2503 0.2340 0.0811 0.1567 0.1425 0.0228 <.0001 

C 2 0.0023 0.1291 0.8247 0.2340 0.2346 0.7279 0.3102 0.0089 0.1670 

N×C 4 0.2140 0.0427 0.5541 0.7431 0.6897 0.2303 0.0080 0.2199 0.3707 

T 1 0.2633 1.0000 0.7427 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

N×T 2 0.7209 1.0000 0.8954 1.0000 1.0000 0.4866 1.0000 1.0000 1.0000 

C×T 2 0.1256 1.0000 0.6480 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

N×C×T 4 0.0552 1.0000 0.7750 1.0000 1.0000 0.1587 1.0000 1.0000 1.0000 

  2014 
N 2 0.1291 0.0003 <.0001 0.1148 0.9717 0.5138 0.1470 0.2016 0.1513 

C 2 0.0168 0.3145 0.4760 0.4282 0.8922 0.8955 0.3365 0.0932 0.5792 

N×C 4 0.0705 0.4929 0.7748 0.7040 0.2960 0.8880 0.3003 0.8810 0.9120 

T 1 1.0000 1.0000  0.3306 0.5917 0.8970 1.0000 0.7099 0.3306 0.0750 

N×T 2 1.0000 0.6925 0.3874 0.9059 0.8014 0.6147 0.8679 0.3874 0.1848 

C×T 2 1.0000 0.6925 0.3874 0.9059 0.3531 0.1643 0.8679 0.3874 0.8679 

N×C×T 4 1.0000 0.1587 0.4332 0.6367 0.7122 0.4332 0.9639 0.4332 0.8357 
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Figure 3.2. Effect of nitrogen source and cultivation treatment on tall fescue color at the 
Paint Branch Turfgrass Research Facility in (A) March 2013 and (B) March 2014.  
Turf color on a scale of 1-9: 1 = brown turf, 9 = dark green turf.  
F, synthetic fertilizer Signature; B, biosolids compost Orgro; P, yard trimmings compost 
Leafgro. 0, no cultivation; 1, one pass of cultivation; 2, two passes of cultivation. 
Within a month rating, means labeled with the different letters are significantly different 
according to Tukey’s honestly significantly different test (P ≤ 0.05). 
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Figure 3.3. Effect of nitrogen source and compost tea treatment on tall fescue color at the 
Paint Branch Turfgrass Research Facility in (A) Jun., (B) Aug., and (C) Sep. 2014.  
Turf color on a scale of 1-9: 1 = brown turf, 9 = dark green turf. F, synthetic fertilizer 
Signature; B, biosolids compost Orgro; P, yard trimmings compost Leafgro.  
Within a month rating, means labeled with the different letters are significantly different 
according to Tukey’s honestly significantly different test (P ≤ 0.05). 
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Table 3.5. Comparison of non-cultivated nitrogen source with control on tall fescue color 
at the Paint Branch Turfgrass Research Facility (PBTRF) and Glenstone. 

Paint Branch Turfgrass Research Facility 
  Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. 
Contrast df P 
  2012 
C† VS F 10 <.0001 0.0436 0.5439 0.1139 0.5765 0.0779 0.4543 <.0001 <.0001 

C VS B 10 0.0961 0.0436 1.0000 0.1139 0.5765 0.0257 0.7053 0.0005 0.0045 

C VS P 10 0.5540 0.2751 0.2375 0.4068 0.2751 0.2197 0.7053 0.0303 0.1757 

C VS BE 10 <.0001 0.0436 0.0888 0.0015 0.1139 0.0084 0.1505 <.0001 <.0001 

C VS PE 10 0.0120 0.1139 0.2375 0.4068 1.0000 1.0000 0.7053 0.0128 0.0045 

  2013 
C VS F 10 <.0001 0.3362 1.0000 0.2009 0.0997 0.6867 0.7476 0.1801 <.0001 

C VS B 10 0.0645 0.2184 0.5275 0.5091 0.5587 0.8714 0.3443 0.3593 0.0599 

C VS P 10 0.0266 0.1607 0.2197 0.5091 0.5587 1.0000 0.5231 0.6413 0.4956 

C VS BE 10 <.0001 1.0000 0.5275 0.0065 0.0361 0.0157 0.0244 0.6413 <.0001 

C VS PE 10 0.0005 0.3362 0.2197 0.5091 0.2542 0.6867 0.3443 0.3593 0.0179 

  2014 
C VS F 10 0.0180 0.0082 1.0000 0.0505 0.2605 0.7414 0.1988 0.4280 0.1045 

C VS B 10 0.5846 0.5959 0.2903 0.2496 0.3140 0.2624 0.6171 0.4280 0.7891 

C VS P 10 1.0000 0.2990 0.2903 0.5907 0.7963 0.5127 0.7380 0.3802 0.6890 

C VS BE 10 <.0001 0.0082 0.2903 0.6662 0.0600 0.3326 0.0152 0.0326 0.1303 

C VS PE 10 0.1210 0.2990 0.5012 0.8286 0.7963 0.6218 0.4099 0.5349 0.3590 

Glenstone  
  Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. 
Contrast df P 
  2012 
C VS F 10 0.0003 0.0836 0.0089 NA 0.0244 1.0000 0.2784 0.0002 0.1086 

C VS B  10 0.1339 0.5362 0.1809 NA 0.0244 0.1011 0.0619 0.0179 0.3991 

C VS P 10 0.4338 0.8352 0.4885 NA 0.0244 0.4866 0.7104 0.1877 0.5701 

C VS BE 10 0.0009 0.1659 0.0563 NA 0.0079 0.7255 0.5792 0.0002 0.3991 

C VS PE 10 0.3024 0.2291 0.4885 NA 0.7476 0.4866 0.8523 0.0179 0.2674 

  2013 
C VS F 10 1.0000 0.0961 0.4135 0.4118 0.2009 0.5277 0.3250 0.1524 0.0133 

C VS B  10 0.6730 1.0000 0.4135 0.6776 0.0021 0.0403 0.3250 0.4565 0.3409 

C VS P 10 0.3214 0.5540 0.6198 1.0000 0.2009 0.7029 1.0000 0.4565 0.3409 

C VS BE 10 0.0029 0.5540 0.1187 0.8674 0.0021 0.1198 0.0653 0.4565 0.0133 

C VS PE 10 0.2215 0.2487 0.4135 0.6776 1.0000 1.0000 1.0000 0.4565 0.3409 

  2014 
C VS F 10 0.0017 0.1297 0.0221 0.2563 0.2299 0.4512 1.0000 1.0000 1.0000 

C VS B  10 0.1877 0.6310 0.5141 0.1988 0.1312 0.0405 0.8646 0.3750 0.1751 

C VS P 10 0.4956 0.6310 0.5141 0.1162 0.2988 0.2981 0.1107 0.7181 0.3217 

C VS BE 10 0.0002 0.0757 0.6616 0.7380 0.3529 0.3689 1.0000 0.3750 0.3217 

C VS PE 10 0.0017 0.2159 0.6616 1.0000 0.1190 0.0893 0.7337 0.3750 1.0000 

† C, control; F, synthetic fertilizer Signature; B, biosolids compost Orgro; P, yard trimmings 
compost Leafgro; BE, 1 cm biosolids compost Orgro; PE, 1 cm yard trimmings compost Leafgro.   
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3.2.1.2 Glenstone  

Similar to observations at the PBTRF, turf receiving Signature at the Glenstone 

site had quicker spring green up than either of two compost treatments in 2012 and 2013 

(Figure 3.1). Conversely, improved late fall color retention in the plots receiving 

Signature was only observed in one (2013) of the three years at Glenstone.  As was 

observed at PBTRF, N source had no effect on turf color during summer in all three years 

of the study. Fall cultivation improved early spring green up in all three years, but unlike 

what was observed at PBTRF, the response to cultivation was independent of N source 

(Figure 3.4). The application of compost tea had no effect on turf color at Glenstone. 

Comparison of the non-cultivated turf receiving N with the control treatment at 

Glenstone revealed that improved turf color, as indicated by a higher color rating, was 

most frequently associated with the use of Signature and to a lesser extent the use of 

either of the two biosolids compost treatments. Turfgrass receiving 1 cm biosolids 

compost was the only non-cultivated treatment to exhibit improved early spring color in 

all three years of study when compared to the untreated control. With the exception of 

two rating dates in 2012 and one date in 2014, when color was improved, the use of 

either rate of yard trimmings compost had little effect on turf color. 
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Figure 3.4. Effect of cultivation treatments on tall fescue color at Glenstone in Mar. 2012, 
Mar. 2013 and Mar. 2014.  
Turf color on a scale of 1-9: 1 = brown turf, 9 = dark green turf.  
0, no cultivation; 1, one pass of cultivation; 2, two passes of cultivation. 
Within a month rating, means labeled with the same letter are not significantly different 
according to Tukey’s honestly significantly different test (P ≤ 0.05). 
 

3.2.2 Turf Quality  

3.2.2.1 Paint Branch Turfgrass Research Facility  

Nitrogen source affected turfgrass quality in all three years of the study at the 

PBTRF (Table 3.6). With the exception of the months of May and June in 2012, the use 

of Signature consistently resulted in higher turfgrass quality than the use of the yard 

trimmings compost (Figure 3.5). Similarly, plots receiving biosolids compost had lower 

turf quality than turf receiving Signature on most rating dates. Throughout the 3 year 

evaluation period turf receiving Signature had better late summer and fall (i.e., Aug. to 

Nov.) quality than turf receiving either compost material.  Use of the biosolids compost 

resulted better turfgrass quality than use of the yard trimmings compost on 20 of 27 dates 

quality was evaluated. When compared to the yard trimmings compost, the use of 

biosolids compost improved quality in the early spring and late fall of 2012, but a similar 
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response was not observed in the latter two years of the study. In contrast to color 

responses seen at this site hollow tine cultivation employed in the fall of 2011 caused turf 

quality to decline in spring 2012 (Figure 3.6). For the remainder of the study, cultivation 

had little to no effect on turf quality. Improved turfgrass quality with the use of compost 

tea at this site was detected on one of 18 evaluation dates. An increase in turf quality 

from 6.4 to 6.5 with the compost tea observed in May of 2013 (data shown in appendix) 

while statistically significant was not large enough to be considered meaningful.  

When comparing the control treatment with the five non-cultivated N source 

treatments, only the biosolids compost, when applied to a depth of 1 cm, had turf quality 

that was higher on all rating dates than the control treatment. In contrast, little difference 

in turf quality was seen between turf receiving either of two rates of yard trimmings 

compost and control treatment on most evaluation dates. The use of Signature in non-

cultivated plots resulted in higher turf quality than that seen control plots on all but three 

evaluation dates. Application of biosolids compost treatment at the 156 kg N ha-1 yr-1 rate 

resulted in improved turf quality compared to control treatment on 9 of 27 evaluation 

dates with a noticeable decline in the performance of this treatment relative to the control 

being observed in the third year of the study. 

 

 

 

 

 

 

 64 
 



 

Table 3.6. Analysis of variance for the effect of nitrogen source, cultivation and compost 
tea on tall fescue quality at the Paint Branch Turfgrass Research Facility (PBTRF) and 
Glenstone. 

Paint Branch Turfgrass Research Facility 
  Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. 
Treatment df P 
  2012 
N source (N) 2 <.0001 <.0001 0.0963 0.1194 0.0065 0.0029 0.0036 <.0001 <.0001 

Cultivation (C) 2 0.0012 <.0001 0.2217 0.8310 0.0240 0.0034 0.3032 0.6839 0.6768 

N×C 4 0.1383 0.0214 0.9737 0.8945 0.8444 0.3371 0.2814 0.3982 0.9054 

  2013 
N 2 <.0001 <.0001 <.0001 <.0001 <.0001 0.0254 <.0001 <.0001 <.0001 

C 2 0.9176 0.3498 0.1118 0.1801 0.8321 0.8739 0.6597 0.3360 0.4621 

N×C 4 0.9719 0.5310 0.8462 0.7755 0.9165 0.7881 0.8337 0.7609 0.3456 

T 1 0.5540 0.1004 0.0271 0.2457 0.3306 0.5995 0.3306 0.1440 0.3239 

N×T 2 0.5407 0.0751 0.1742 0.2373 0.0096 0.9313 0.7815 0.5495 0.9182 

C×T 2 0.2060 1.0000 0.2497 0.2373 0.9204 0.6147 0.7815 0.5495 0.7761 

N×C×T 4 0.8313 1.0000 0.0822 0.3695 0.3583 0.4693 0.1830 0.8028 0.9858 

  2014 
N 2 <.0001 <.0001 <.0001 0.0352 <.0001 <.0001 <.0001 0.0002 0.0051 

C 2 0.5456 0.9704 0.2805 0.4639 0.4035 0.8165 0.2853 0.9041 0.4743 

N×C 4 0.7693 0.5186 0.7010 0.9251 0.7950 0.7477 0.9155 0.1802 0.7488 

T 1 1.0000 0.3306 0.8372 0.4331 0.1004 0.8595 0.1553 0.5891 0.3942 

N×T 2 1.0000 0.3874 0.8418 0.8091 0.0751 0.5527 0.3514 0.5978 0.2884 

C×T 2 1.0000 0.3874 0.9576 0.1742 0.7209 0.6637 0.4276 0.4726 0.7209 

N×C×T 4 1.0000 0.4332 0.4549 0.7113 0.8519 0.7926 0.9300 0.4872 0.2310 

Glenstone  
  Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. 
Treatment df P 
  2012 
N source (N) 2 0.2186 0.0002 <.0001 NA 0.1748 0.0755 0.2259 <.0001 0.0005 
Cultivation (C) 2 0.0283 0.0142 0.0620 NA 0.1860 0.3609 0.6202 0.1418 0.0472 
N×C 4 0.6269 0.5215 0.0545 NA 0.5456 0.4970 0.0676 0.4511 0.2608 
  2013 
N 2 0.0010 0.0019 0.0106 0.0252 0.3653 0.3288 0.3771 0.6316 0.4067 

C 2 0.7547 0.3602 0.6044 0.6837 0.0837 0.3538 0.2533 0.7142 0.7771 

N×C 4 0.4041 0.2910 0.4758 0.4685 0.7469 0.2710 0.1698 0.6325 0.7418 

T 1 0.6879 0.1129 0.2547 0.3583 0.4746 0.7392 0.5709 0.0480 0.6430 

N×T 2 0.9593 0.4743 0.4614 0.4284 0.4507 0.0893 0.2884 0.0260 0.2068 

C×T 2 0.1952 0.2619 0.1170 0.0927 0.4115 0.6402 0.1256 0.2497 0.9461 

N×C×T 4 0.5837 0.3471 0.5364 0.4469 0.1185 0.5408 0.8519 0.2440 0.3054 

  2014 
N 2 0.3009 0.4993 0.2992 0.7441 0.4756 0.4084 0.1815 0.6254 0.1396 

C 2 0.0733 0.4911 0.7194 0.9758 0.9738 0.6098 0.8053 0.5274 0.7928 

N×C 4 0.0313 0.4277 0.3517 0.5726 0.3630 0.3964 0.4698 0.5794 0.4029 

T 1 1.0000 0.8657 0.6879 0.5778 0.3709 0.2963 0.8970 1.0000 0.6231 

N×T 2 1.0000 0.0440 0.6834 0.4866 0.1036 0.8802 0.6248 0.5785 0.5682 

C×T 2 1.0000 0.0440 0.2497 0.3007 0.8121 0.5824 0.3698 0.4638 0.1535 

N×C×T 4 1.0000 0.1574 0.6415 0.2762 0.4332 0.8308 0.6252 0.3871 0.8795 
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Figure 3.5. The effect of nitrogen source on turf type tall fescue quality at (A) the Paint Branch Turfgrass Research Facility and (B) 
Glenstone.  Values are averaged across cultivation treatments. † No data was collected in this month. Turf quality on a scale of 1-9: 6 
= a commercial acceptance.
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Figure 3.6. Effect of cultivation treatments on tall fescue quality at the Paint Branch 
Turfgrass Research Facility in spring 2012.  
Turf quality on a scale of 1-9: 6 = a commercial acceptance. 
0, no cultivation; 1, one pass of cultivation; 2, two passes of cultivation.  
Within a month rating, means labeled with the same letter are not significantly different 
according to Tukey’s honestly significantly different test (P ≤ 0.05). 

 

3.2.2.2 Glenstone  

Turf quality was less influenced by nitrogen source at Glenstone that at PBTRF 

(Figure 3.5). Differences in turf quality with the use of different N sources were observed 

in the first half of the 3 year evaluation period but not in the second (Table 3.6). In the 

first year of the study plots receiving Signature had higher late spring (i.e. May, June) and 

fall (i.e. Oct., Nov) quality than did plots that received either of the two compost 

materials. A similar response was seen in the spring (March, April, May) of the second 

year with the exception that plots receiving the biosolids compost had late spring quality 

that was closer in appearance to that receiving Signature.  After the spring of 2013 there 

were no differences in turf quality among the three N-sources for the remainder of the 

study.  As was seen at the PBTRF, hollow tine cultivation performed in the fall of 2011 

resulted in lower early spring (March) quality the following year. The effect of 

a 
a 

ab 
b 

b 
c 

1

2

3

4

5

6

7

8

9

Mar.12 Apr. 12

T
ur

f Q
ua

lit
y 

Cultivation 

0

1

2

 67 
 



 

cultivation on early spring turf quality was limited to the first year of the study as neither 

of the single or double pass cultivation treatment affected turf quality in the second or 

third years of the study.  The use of compost tea effected turf quality on one date in 2013 

and 2014. On the one date in 2013, the use of compost tea slightly improved the quality 

of turf that received the yard trimmings compost, but had no effect on the quality of turf 

that received Signature or the biosolids compost (Figure 3.7). 

Comparison of the turf quality in non-cultivated turf receiving one of the five N 

source treatment with the control treatment at the Glenstone resulted in treatment 

response trends similar to those observed at the PBTRF (Table 3.7). With the exception 

of two evaluation dates, plots receiving the yard trimmings compost were of no better 

quality than turf that received no fertilizer at all.  Applying 1 cm of biosolids compost 

resulted in higher spring quality in all three years of the study when compared plots not 

receiving fertilizer. Non-cultivated plots receiving Signature generally had higher turf 

quality than the non-cultivated control treatment however no consistent seasonal trends 

were apparent with use of this N source.  Plots receiving 156 kg N ha-1 yr-1 of the 

biosolids compost had improved quality when compared to the control treatment on 5 of 

27 evaluation dates. Similar to that seen in plots receiving Signature there was no 

consistent seasonal trend seen with use of this biosolids compost treatment over the three 

year period data was collected.   
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Figure 3.7.  Effect of nitrogen source (F, synthetic fertilizer Signature; B, biosolids 
compost Orgro; P, yard trimmings compost Leafgro) and compost tea treatment on tall 
fescue quality at Glenstone in (A) Oct. 2013 and (B) April 2014. 
Turf quality on a scale of 1-9: 6 = a commercial acceptance. 
F, synthetic fertilizer Signature; B, biosolids compost Orgro; P, yard trimmings compost 
Leafgro. 
Within a month rating, means labeled with the different letters are significantly different 
according to Tukey’s honestly significantly different test (P ≤ 0.05). 
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Table 3.7. Comparison of non-cultivated fertilizer source with control on tall fescue 
quality at the Paint Branch Turfgrass Research Facility (PBTRF) and Glenstone. 

Paint Branch Turfgrass Research Facility 
  Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. 
Contrast df P 
  2012 
C†  VS F 10 0.0002 <.0001 0.0111 0.0128 0.0180 0.0359 0.0653 <.0001 <.0001 

C VS B 10 0.0372 0.0011 0.0271 0.0881 0.2849 0.1374 0.8401 0.0009 0.0009 

C VS P 10 0.6413 0.6279 0.1516 0.4671 0.5846 0.1374 0.1287 0.0305 0.0829 

C VS BE 10 <.0001 <.0001 0.0047 0.0068 0.0027 0.0007 0.0055 <.0001 <.0001 

C VS PE 10 1.0000 1.0000 0.3250 0.2833 0.2849 0.4381 0.5485 0.0165 0.0060 

  2013 
C VS F 10 0.0007 <.0001 0.0005 0.0017 0.0203 0.0024 0.0005 0.0006 <.0001 

C VS B 10 0.0514 0.0009 0.0175 0.1023 0.3684 0.5570 0.0846 0.0854 0.0405 

C VS P 10 0.4054 0.0225 0.6985 0.9154 0.9437 0.3467 0.6861 0.9220 0.5573 

C VS BE 10 <.0001 <.0001 0.0003 0.0017 0.0039 0.0003 <.0001 0.0011 <.0001 

C VS PE 10 0.0671 0.0225 0.0628 0.1220 0.2594 0.3467 0.1269 0.3388 0.0312 

  2014 
C VS F 10 0.0001 0.0008 0.0002 0.0918 0.0067 0.0056 0.0185 0.0046 0.7743 

C VS B 10 0.1430 0.0871 0.0391 0.2779 0.7078 0.3603 0.8393 0.3919 0.2951 

C VS P 10 0.6995 0.6335 0.0120 0.5788 0.4956 0.5883 0.5797 0.4730 0.3268 

C VS BE 10 <.0001 <.0001 <.0001 0.0039 <.0001 0.0003 0.0045 0.0003 0.0402 

C VS PE 10 0.4452 0.1533 0.0301 0.4897 0.2741 0.0564 0.1378 0.0322 0.4367 

Glenstone  
  Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. 
Contrast df P 
  2012 
C VS F 10 0.0277 0.1486 0.0070 NA 0.1063 0.5306 0.7196 0.0004 0.0055 

C VS B 10 1.0000 0.8276 0.1218 NA 0.1063 0.2231 0.8105 0.0008 0.0170 

C VS P 10 0.3573 0.8276 0.1893 NA 0.1063 0.6742 0.7196 0.1685 0.0361 

C VS BE 10 0.0481 0.2897 0.0182 NA 0.0175 0.0799 0.4772 0.0001 0.0170 

C VS PE 10 1.0000 0.0719 0.4178 NA 0.4939 0.6742 0.9045 0.0501 0.1546 

  2013 
C VS F 10 0.0958 0.0604 0.0393 0.2841 0.0503 0.3060 0.3008 0.9279 0.1036 

C VS B  10 0.3955 0.1837 0.0514 0.1088 0.5663 0.0305 0.0779 0.6106 0.1036 

C VS P 10 0.8049 0.3149 0.2174 0.8382 0.1690 0.1809 0.0373 0.6527 0.1189 

C VS BE 10 0.0111 0.0505 0.0065 0.0214 0.0207 0.0305 0.0373 0.2232 0.0246 

C VS PE 10 0.3342 0.2715 0.1129 0.4923 0.1190 0.1809 0.5275 0.9519 0.1457 

  2014 
C VS F 10 0.5345 0.6733 0.3044 0.2346 0.4545 0.4534 0.2166 0.6855 0.1988 

C VS B  10 0.0277 0.5074 0.4412 0.0225 0.0123 0.2183 0.3100 0.4910 0.4282 

C VS P 10 0.2272 0.3187 0.1013 0.1418 0.5313 0.1813 0.3418 0.3925 0.4282 

C VS BE 10 0.3573 0.3516 0.0322 0.0170 0.1667 0.1597 0.0935 0.1918 0.1610 

C VS PE 10 1.0000 0.9157 0.2878 0.1089 0.1360 0.9044 0.3938 0.5646 0.3162 

† C, control; F, synthetic fertilizer Signature; B, biosolids compost Orgro; P, yard trimmings 
compost Leafgro; BE, 1 cm biosolids compost Orgro; PE, 1 cm yard trimmings compost Leafgro.   
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3.2.3 Weed Encroachment 

Visual assessment of weed cover (0 to 100%) was performed when annual grass 

or broadleaf weeds became apparent within the plots.  The monthly ANOVA results for 

the effect of three nitrogen sources when applied at yearly rate of 156 kg N ha-1 yr-1, 

cultivation and compost tea on weed encroachment is shown in Tables 3.8. Weed cover 

as function N source for these same data is presented in Figure 3.8.  

At Glenstone in 2012, and in all three years at the PBTRF plots receiving 

Signature consistently had lower levels of weed encroachment that did at least one, but in 

most cases the use of either compost material when applied at 156 kg N ha-1 yr-1. Weed 

pressure was much greater at the PBTRF that at Glenstone with no effect of cultivation or 

the use of compost tea, being observed at the latter site (Figure 3.8). Hollow tine 

cultivation performed in the fall of 2011 at the PBTRF resulted in a slight reduction in 

weed encroachment the following summer, however for the remainder of study 

cultivation had no impact on weed encroachment. The use of compost tea at the PBTRF 

reduced weed encroachment from 6.6 to 4.2% at the end of 2013 growing season (i.e., 

Nov, data not shown) and from 42.6 to 37.0% in September of 2014. On two additional 

dates (June and October, 2014) the effect of compost tea on weed encroachment at 

PBTRF was dependent on the N-source supplied to the turf (Figure 3.9). The slight 

beneficial effects of compost tea were only observed in plots receiving yard trimmings 

compost.  

Mean contrasts comparing weed encroachment in the control plots verses the five 

N-source treatments in the absence of cultivation is shown in Table 3.9. On all evaluation 

dates at both sites the lowest level of weed encroachment was seen in plots that received 
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1 cm of the biosolids compost (data not shown).  At PBTRF where weed encroachment 

pressure was high, the 1 cm biosolids treatment had significantly lower weed 

encroachment than the control treatment on 10 of the 11 evaluation dates. In contrast, at 

Glenstone where weed pressure was much lower, turf receiving 1 cm of the biosolids 

compost had significantly less weed encroachment than control on only 1 of the 11 

evaluation dates. No other treatment at Glenstone had significantly less weed 

encroachment than the control treatment on any of the 11 evaluation dates. At PBTRF the 

overall effectiveness of the various N source treatments in suppressing weed 

encroachment was 1 cm biosolids compost > Signature > 1 cm yard trimmings compost >  

either  the yard trimmings or biosolids compost  when applied at 156 kg N ha-1 yr-1.  
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Table 3.8. Effect of nitrogen source, cultivation and compost tea on weed encroachment at the Paint Branch Turfgrass Research 
Facility (PBTRF) and Glenstone.  

 Paint Branch Turfgrass Research Facility 
  2012 2013 2014 
  Jul. Sep. Oct. May Oct. Nov. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. 
Treatments df P 
N source (N) 2 0.0113 N/A N/A N/A <.0001 0.1900 0.0805 0.0028 0.0021 0.0003 <.0001 0.0007 0.0024 0.0237 

Cultivation (C) 2 0.0265 N/A N/A N/A 0.8706 0.6312 0.8695 0.1913 0.7791 0.4981 0.9122 0.5908 0.5114 0.7224 

N×C 4 0.6998 N/A N/A N/A 0.7628 0.5097 0.9502 0.2285 0.6510 0.7840 0.8842 0.9170 0.7427 0.5880 

Tea (T) 1   N/A† N/A N/A N/A 0.9211 0.0348 0.6601 0.2762 0.3743 0.0624 0.4389 0.0441 0.0698 0.0865 

N×T 2 N/A N/A N/A N/A 0.1424 0.0995 0.2722 0.0546 0.0148 0.1773 0.5465 0.1074 0.0231 0.2202 

C×T 2 N/A N/A N/A N/A 0.5173 0.5674 0.2722 0.5759 0.8434 0.9725 0.8197 0.1581 0.1758 0.5667 

N×C×T 4 N/A N/A N/A N/A 0.9431 0.8996 0.5409 0.9565 0.9902 0.7793 0.8694 0.4104 0.3586 0.6247 

 Glenstone  
  2012 2013 2014 
  Jul. Sep. Oct. May Oct. Nov. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. 
Treatments df P 
N 2 N/A 0.3329 0.0073 0.0830 0.1547 0.3170 0.5941 0.2919 0.3037 0.2636 0.3847 0.3901 0.6879 0.2929 

C 2 N/A 0.6378 0.4328 0.6235 0.8722 0.8600 0.2459 0.6661 0.5425 0.6377 0.5555 0.4801 0.8741 0.5643 

N×C 4 N/A 0.2817 0.3581 0.4470 0.1672 0.5318 0.5822 0.3319 0.3420 0.4011 0.3766 0.4063 0.4697 0.6492 

T 1 N/A N/A N/A N/A 1.0000 0.2275 0.4625 0.8855 0.7206 0.1961 0.1673 0.5499 0.2104 0.2108 

N×T 2 N/A N/A N/A N/A 1.0000 0.5005 0.4985 0.5498 0.6311 0.5398 0.5136 0.4245 0.7413 0.9504 

C×T 2 N/A N/A N/A N/A 1.0000 0.5890 0.4954 0.2807 0.7501 0.5192 0.2217 0.4201 0.6558 0.1700 

N×C×T 4 N/A N/A N/A N/A 1.0000 0.3342 0.6482 0.9803 0.9488 0.5388 0.8924 0.8567 0.9362 0.8385 

† N/A, not applicable 
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Table 3.9. Comparison of non-cultivated nitrogen source with control on weed encroachment at the Paint Branch Turfgrass Research 
Facility (PBTRF) and Glenstone. 

 Contrast 
 df P 
  2012 2013 2014 
Contrast  Jul. Sep. Oct. May Oct. Nov. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. 
  Paint Branch Turfgrass Research Facility 

C† VS F       10 0.0132   N/A‡ N/A N/A 0.0068 0.0207 0.1299 0.0005 0.0018 <.0001 0.0117 0.0340 0.0006 0.0735 

C VS B       10 0.2769 N/A N/A N/A 0.0827 0.0281 0.4286 0.0015 0.0106 0.0123 0.4165 0.6391 0.0212 0.9601 

C VS P      10 1.0000 N/A N/A N/A 0.8231 0.0482 0.4749 0.0022 0.0081 0.0089 0.5098 0.5212 0.0088 0.5282 

C VS BE      10 0.0062 N/A N/A N/A 0.0034 0.0170 0.0191 0.0003 0.0016 <.0001 0.0042 0.0100 0.0002 0.0751 

C VS PE      10 0.2769 N/A N/A N/A 0.0117 0.4493 0.7889 0.0060 0.0640 0.0071 0.0512 0.1337 0.0008 0.2062 

  Glenstone  
C VS F       10 N/A 0.3572 0.0530 0.2029 0.9189 0.2091 0.4347 0.8502 0.5464 0.4447 1.0000 0.3356 0.6363 0.2121 

C VS B       10 N/A 0.4110 0.0653 0.2951 0.7604 0.4754 0.7169 0.9397 0.5075 0.7181 0.6679 0.3542 0.4803 0.3667 

C VS P      10 N/A 0.1641 0.1462 0.2522 0.5125 0.1798 0.6926 0.3199 0.2062 0.6433 0.2981 0.1421 0.2258 0.2596 

C VS BE      10 N/A 0.0824 0.0184 0.0661 0.2385 0.1011 0.6452 0.3032 0.1424 0.5725 0.3283 0.1062 0.1632 0.1276 

C VS PE      10 N/A 1.0000 0.4073 0.4783 0.5125 0.1542 0.8429 0.5992 0.4736 0.6074 0.9971 0.4068 0.3053 0.2163 

† C, control; F, synthetic fertilizer Signature; B, biosolids compost Orgro; P, yard trimmings compost Leafgro; BE, 1 cm biosolids 
compost Orgro; PE, 1 cm yard trimmings compost Leafgro.   
‡N/A, not applicable 
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Figure 3.8. Plot weed cover (0-100%) in response to synthetic fertilizer (Signature), 
biosolids compost (Orgro) and yard trimmings compost (Leafgro) at rate of 156 kg N ha-1 
yr-1 at (A) the Paint Branch Turfgrass Research Facility and (B) Glenstone.  
Visual assessment of weed cover was made when grass or broadleaf weeds become 
apparent within the plots. 
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Figure 3.9. Effect of nitrogen source (F, synthetic fertilizer Signature; B, biosolids 
compost Orgro; P, yard trimmings compost Leafgro) and compost tea treatment on weed 
cover (0-100%) at the Paint Branch Turfgrass Research Facility in (A) Jun. 2014 and (B) 
Oct. 2014.  
F, synthetic fertilizer Signature; B, biosolids compost Orgro; P, yard trimmings compost 
Leafgro. 
Within a month rating, means labeled with the different letters are significantly different 
according to Tukey’s honestly significantly different test (P ≤ 0.05). 
 

3.3 Discussion 

Plots treated with synthetic nitrogen fertilizer (Signature) had faster green up in 

the spring and longer color duration in the fall at both sites, with the exceptions of Nov. 

2012 and Mar. 2014 ratings at Glenstone, and the fall 2014 color ratings at both locations. 

Darker color reflects greater nitrogen use efficiency. The more ready available nitrogen 

present in the synthetic fertilizer probably accounts for the faster color response seen with 
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this fertilizer. Slow initial N release from the two compost sources is a result of their 

greater reliance on microbial breakdown and the need for favorable soil conditions for the 

production of plant available nitrogen. These two factors may also explain the lack of 

differences in the turf color among the three N sources seen during the summer in this 

study. Increased biological activity and soil temperature in summer may have led to more 

efficient N mineralization. The observations seen in this study agree with Miller and 

Henderson (2012), who observed faster color response and darker mid- and late- fall 

color in plots treated with synthetic fertilizers than with organic treatments. The lack of 

color differences seen in the fall of 2014 was because no fertilizer and compost 

topdressing were applied in the fall of this year.  

Based on our observations, high tall fescue quality was primarily the result of two 

factors: dense turf and less weed encroachment. The most desirable tall fescue quality 

responses were usually associated with the use of the synthetic nitrogen fertilizer at both 

sites (Figure 3.5). Although all nitrogen sources were applied at 156 kg N ha-1 yr-1, the 

recovery or uptake of nitrogen (as surmised from color data) from biosolids compost and 

yard trimmings compost was less efficient than from the synthetic fertilizer Signature, 

especially shortly after the applications of the three N sources. This effect was likely due 

to the slow rate of N uptake by the turfgrass plants caused by the slow rate of N 

mineralization from the compost sources (Tester et al., 1982; Hartl and Erhart, 2005). 

The release rate of nitrogen from composts was not rapid enough to support sufficient 

turfgrass density, which led to greater weed encroachment. This is in agreement with 

results published by Geisel et al. (2001), who reported a single topdressing of a green and 

biosolids mixed compost at 0.3, 0.6 and 1.3 cm (1/8, 1/4 and 1/2 inch, respectively) were 
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not sufficient to keep turf performance at a high standard.  Landschoot and Waddington 

(1987) compared turfgrass color and growth responses of 25 nitrogen sources and 

concluded sludge compost at rate of 196 kg N ha-1 year-1 was ineffective in meeting the 

fertility needs of turfgrass. Numerous studies have demonstrated that only 10 to 20% of 

the total N in compost is available in the first year and the remaining part of N is 

mineralized at rate of 3 to 8% in subsequent years (Iglesias-Jimenez and Alvarez, 1993; 

Diacono and Montemurro, 2010). Tester et al. (1982) observed about 76% of total 

fertilizer N and only 8% of total compost N were utilized by fescue during 167 days of 

growth in a greenhouse pot study. However, equivalent effects of compost topdressing 

and conventional fertilizer on turf quality have been found when the amount of compost 

was added based on the projected amount of actual nitrogen release (Geisel et al., 2001).  

Geisel et al. (2001) reported higher turfgrass quality and less weed coverage in plots 

receiving synthetic fertilizer at the rate of 195 kg actual N ha-1 yr-1 than when 0.6 cm (1/4 

inch) compost topdressing (390 kg actual N ha-1 yr-1) was applied quarterly.  

Turf quality was influenced less by nitrogen source at Glenstone than at PBTRF. 

Tall fescue at Glenstone was generally of higher quality than that at PBTRF, except in 

July of 2014 when turf appearance was negatively affected by drought stress at 

Glenstone. The higher quality ratings seen at Glenstone can most likely be explained by 

differences in soil organic matter content and turfgrass mowing height. The soil at 

PBTRF originally had a soil organic matter content of 3.4%, while Glenstone had a soil 

organic content of 4.3%. The higher organic matter content at Glenstone may have 

resulted in the soil retaining higher amounts of soil moisture as well as supporting higher 

nitrogen mineralization rates, thus producing a higher quality turf.  The turf at PBTRF 
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was mowed at 6.4 to 7.6 cm (2.5 to 3 inch) while the turf at Glenstone was mowed at 10 

cm (4 inch). Higher mowed turf can result in more extensive root systems and better 

turfgrass surface coverage than low mowed turf (Madison and Hagan, 1962; Salaiz et al., 

1995). The presence of more verdure at Glenstone compared to PBTRF was likely 

responsible for the lower level of weed encroachment seen at Glenstone during the three-

year study (Figure 3.8).  

For the three years of this study, the sewage sludge based biosolids composts 

Orgro frequently showed darker green and better turf responses than plant based compost 

Leafgro. The differences between these two composts may due to the differences in C/N 

ratio (Table 3.1, Table 3.2 and Table 3.3). Orgro had a lower C/N ratio. Materials with 

lower C/N ratio, compared to higher C/N ratio materials, would be mineralized more 

quickly by microorganisms and thus more nitrogen would be available for turfgrass 

uptake. These results were comparable to that reported by other researchers. Stratton and 

Rechcigl (1998) observed ryegrass in MSW compost treatment had better vigor and 

coverage than that in yard trimmings compost treatment with higher C/N ratios.  

Under the condition of no cultivation, increasing the amount of compost 

topdressing generally increased turf quality and color, with plots receiving 1 cm biosolids 

compost exhibiting darker color and better quality compared to the control on more rating 

dates than other treatments.  The improvements brought about by the higher rates of each 

compost were largely due to higher amounts of organic matter and nutrients supplied to 

the soil with 1 cm treatments. Differences in tall fescue responses caused by 1 cm 

biosolids and yard trimmings compost materials most likely can be explained by 

differences in total nitrogen content of the compost. Biosolids compost Orgro contained a 
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higher proportion of total nitrogen than yard trimmings compost Leafgro (Table 3.1, 

Table 3.2 and Table 3.3), thus supported more growth and darker turf. The biosolids 

compost generally contained more iron (Fe) as well, which typically darkens the color of 

turf (Yust et al., 1984).  

Core cultivation had the potential to improve turf color responses, particularly in 

the spring. Core cultivation had little to slightly adverse effects on tall fescue quality. The 

adverse effect observed in a few months in 2012 could be due to the damage and stress 

posed by the verticutting that took place with treatment in the fall of 2011. Similar 

behavior to what was observed in 2013 and 2014 has been reported by some researchers. 

Garling and Boehm (2001) found core cultivation did not have significant effects on 

turfgrass color, growth and foliar N on low-cut fairway turfgrass with combination of 

fertilizer and compost treatment.  

Compost tea generally had little effect on turf color, quality and weed control 

although some slight improvements in color, quality and weed control were seen with 

compost tea application in combination with certain nitrogen source at both sites. These 

differences were statistically significant, but they were not very meaningful, because our 

level of resolution in rating plots was only 0.5. The differences caused by compost tea 

application were substantially less than 0.5. Similar results have been reported by Miller 

and Henderson. (2012). They found compost tea applied at a rate of 408 L ha–1 provided 

no enhancement of Kentucky bluegrass color, quality and cover over the course of their 

two-year study (Miller and Henderson, 2012).  
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3.4 Conclusions 

Organic compost materials have beneficial effects on turfgrass growth and are 

believed to be of agronomic and economic value. However, the results of this study 

suggest that compost topdressing at rate of 156kg N ha-1 yr-1 will not be as effective as an 

enhanced efficiency synthetic fertilizer in maintaining turf quality in the first few years of 

making this rate of N application in low organic matter-containing soils. In contrast, 

annual topdressing of 1 cm sewage sludge based biosolids compost can be used as an 

alternative N source to an enhanced efficiency synthetic fertilizer to maintain turf quality. 

However, the amount of nitrogen and phosphorus applied greatly exceeds current 

Maryland regulations for turfgrass fertilization when 1 cm of the two composts is applied 

as a topdressing material.  Our results indicate if use restrictions similar to those in effect 

for bagged fertilizer products are placed on compost materials, a likely result will be a 

decline to turfgrass quality when compost is used as the sole nitrogen source to fertilizer 

tall fescue lawn.  

Differences in the duration of color and turf quality brought about by different 

nitrogen sources and rates used in the present study can be largely explained by different 

amounts of nitrogen released from synthetic fertilizer, composts or soil. However, 

contributions from other plant nutrients, improved soil physical properties and 

microbiological process induced by treatments are also possible. Additional research 

involving such information is reported in subsequent chapters of this thesis.  Also, longer 

term use of compost topdressing (past the 3 years of this study) beyond that examined 

here may eventually result in more beneficial results than those observed in this study. 
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Chapter 4: Effects of Cultivation, Compost Topdressing and Compost 

Tea on Lawn Soil Organic Matter Content and Soil Microbial Activity 

Residential construction activity frequently involves the removal and 

redistribution of topsoil and the use of subsoil as fill material. These grading activities 

often result in compact infertile soils, which have the potential of accentuating the use of 

fertilizers on home lawns. Lawn fertilization typically results in the use of mineral and 

synthetic based fertilizers, however the use of composted organic materials often serve as 

a fertilizer source for organic lawn care programs. The passage of turfgrass fertilizer laws 

in several states has resulted in restrictions in amount of nitrogen (N) and phosphorus (P) 

that can be applied to turf as well as the form in which these nutrients can be applied 

(Maryland’s Law Fertilizer Law, 2011; Weinberg et al., 2011). In the states of Maryland 

and New Jersey for example, no more than 34 kg ha-1 of a quickly available nitrogen 

source can be applied at one time. Higher single application N rates are permissible when 

slowly available sources of N are used, with Maryland permitting a single application up 

to 122 kg N ha-1 when an enhanced efficiency fertilizer is used to fertilize turf. An 

enhanced efficiency fertilizer is a slow release fertilizer that releases nitrogen at a rate of 

less than 34 kg ha-1 (0.7 lb 1000 ft-2) monthly.  

Frequent hollow tine cultivation alleviates soil compaction and aids in the 

incorporation of material into soil (Agresource, 2013). The use of hollow tine cultivation 

to incorporate compost is a desired practice as repeated application of compost can result 

in the formation of an organic matter layer that is harmful to the turfgrass root system 

(Landschoot, 1995). Hollow tine cultivation when performed without the incorporation of 
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organic matter into the top soil has little effect on soil microbial activity (Mu and Carroll, 

2013).  

In recent years the use of a water extract from fermented compost (i.e., compost 

tea) on turf has become popular. Its use as a liquid spray has been promoted as a way to 

provide nutrient and biological benefits to plants and soil including the suppression of 

diseases (Ingham, 2005). The use of compost teas for controlling foliar diseases and soil-

borne diseases mostly has been reported on agricultural crops such as corn, wheat, bean, 

tomato, lettuce, potato, cucumber, strawberry and grape etc. (Weltzien, 1992; Yohalem et 

al., 1994; Zhang et al., 1998; Scheuerell and Mahaffee, 2002; Al-Dahmani et al., 2003; 

Litterick et al., 2004; Koné et al., 2010). The suppression of disease through compost tea 

application has been extensive documented and summarized by Scheuerell and Mahaffee 

(2002), and Litterick et al. (2004). However, only a few studies involving the use of 

compost tea on turfgrass appear to exist in the literature. Rossi (2007) found that foliar 

compost tea (360 L ha-1) applied to a mix annual bluegrass (Poa annua L.) and creeping 

bentgrass (Agrostis stolonifera L.) sand based putting green was able to suppress dollar 

spot in one of three years when compared to untreated plots. Miller and Henderson (2012) 

found that compost tea, when applied at 408 L ha-1 on 3 week intervals over a period of 4 

months, had no effect on the color, quality or cover of Kentucky bluegrass (Poa pratensis 

L.).    

In addition to increased levels of plant nutrients, the application compost 

materials has been shown to improve soil quality (Stratton et al., 1995, Ingham, 2005). 

The incorporation of compost into soil has been reported to increase soil organic matter, 

organic C content, and soil microbial activity (Godden et al., 1987; Jodice and Nappi, 
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1987; Rutili et al., 1987; Garcı́a-Gil et al., 2000; Ros et al., 2006; Tian et al., 2008; 

Agresource, Inc. 2013). Less is known about the effect of compost topdressing on soil 

physical properties. Johnson et al. (2006a), added composted manure at surface 

application rates of 3.3, 6.6 and 9.9 mm three times over a year and found that 

topdressing with this material had no effect on the soil organic matter (SOM) content in 

the top 10 cm of soil. Interesting though, at the two highest rates of topdressing, SOM 

increased at the 10 to 20 cm depth when compare the no compost topdressing control 

treatment. Soil organic matter is an important parameter for maintaining healthy turf. The 

benefits associated with increased SOM with the use of compost usually include 

improved soil structure, water and nutrient holding capacity, and overall soil quality 

(Young and Onstad, 1978; Soane, 1990; He et al., 1992; Stratton 1995; Ros et al., 2006).  

Microbiological and biochemical soil properties are very sensitive to changes in 

management. Microorganism plays a key role in nutrient cycling, residue degradation, 

organic matter formation and turnover, which makes the knowledge of soil 

microorganisms essential for determining soil quality. The methods for assessing soil 

microbiological presence can be classified into four groups: soil microbial number and 

biomass; soil microbial metabolic or enzymatic activity; soil microbial diversity and 

community structure; and plant-microbe interactions (Benedetti and Dilly, 2006).  

Soil enzyme activity is one of the essential properties for assessing soil health and 

is commonly used for evaluating the effects of the application of different sources and 

amount of organic matter materials on soil (Giusquiani et al., 1995; Davis and Dernoeden, 

2002). It is a crucial factor in the decomposition and cycling of plant nutrients, and is 

correlated with microbial biomass C (Perucci, 1992). In order to assess microbial activity 
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the activity of several type of enzymes needs to be measured simultaneously. The 

fluorescein diacetate [3’,6’-diacetylfluorescein (FDA)] hydrolysis assay is a rapid, 

sensitive, colorimetric method used for the measurement of total microbial activity 

without the isolation of specific microorganisms (Schnurer and Rosswall, 1982; Adam 

and Duncan, 2001; Green et al., 2006). This method allows for accurate assessment of 

microbial activity in a wide range of soil conditions at relatively low cost. Fluorescein 

diacetate is reactive to a number of free or membrane bound enzyme classes including 

proteases, lipases and esterases. Reactions with these enzymes result in the hydrolytic 

cleavage of FDA (colorless) into fluorescein (yellow-green), which can be quantified by 

spectrophotometry at 490 nm (Schnurer and Rosswall, 1982; Adam and Duncan, 2001; 

Green et al., 2006).  

Most positive responses in soil microbial activity are associated with large 

compost applications (i.e. Mg ha-1) or the use of compost as a soil amendment. For 

example, Perucci (1992) observed increases in soil biomass C and FDA hydrolysis 

activity when 30 and 90 Mg ha-1 yr-1 municipal refuse compost was incorporated to a 

depth of 10 to 15 cm in a loamy soil. However, little is known about the effect of a 

relatively small compost topdressing application on soil microbial activity. Davis and 

Dernoeden (2002), made four 50 kg N ha-1 applications per year of a composted biosolids 

compost to creeping bentgrass growing in a sandy loam soil and examined microbial 

activity three and four years after initiating the topdressing treatment. They observed 

similar responses in the two years soil microbial activity was measured. In the third year 

of making the topdressing applications there was no effect of topdressing on soil 

microbial activity on three of five dates when activity was measured. In the fourth year 
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after initiating the topdressing treatment, soil microbial activity was higher in the 

compost topdressed plots than in untreated control plots on 2 of 4 dates soil microbial 

activity was measured.  

Given that limitations may be placed on the application of compost to turf, there 

is a need to further examine potential changes in soil properties that may occur with light 

compost topdressings made to turf. Particularly when compost topdressing occurs only 

once per year which is a frequent practice in the management of lawn turf. Accordingly, 

the objectives of this research were to: 1) to compare the effect of  biosolids and yard 

trimmings compost with the use of an enhanced efficiency fertilizer on the organic matter 

content and microbial activity of soil when all three materials are applied at equivalent 

nitrogen rates; 2) to compare soil organic matter and soil microbial activity of untreated 

control with those receiving an enhanced efficiency fertilizer or compost, with the 

compost applied at the same N loading rate as the enhanced efficiency or at a rate of 1 cm 

of compost per year; 3) to determine if hollow time cultivation affects the organic matter 

content and microbial activity of soil when performed in conjunction with the application 

of compost topdressing or the use of enhanced efficiency fertilizer; 4) to determine the 

effect of  monthly applications of compost tea on soil microbial activity. 

4.1 Materials and Methods 

4.1.1 Site Location 

Two field sites in Maryland were used to examine the effect of different nitrogen 

containing material, cultivation and compost tea on soil organic matter and microbial 

activity. The first site was a 4-year old stand of ‘Titanium’ tall fescue (Festuca 

arundinacea Schreb.) and ‘Raven’ Kentucky bluegrass located at the University of 
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Maryland Paint Branch Turfgrass Research Facility (PBTRF) in College Park, MD. The 

second site was 5-year old stand of ‘Confederate’ tall fescue seeded in 2006 and located 

at the Glenstone Art Museum in Potomac, MD.  

The taxonomic classification of soil at the PBTRF site was a Russett (fine-loamy, 

mixed semiactive, mesic Aquic Hapludults) and Christiana (fine, kaolinitic, mesic Aquic 

Hapludults) complex soil, while that at the Glenstone site was a fine-loamy, mixed, mesic 

Typic Hapludults. The soil at the Glenstone site had been subjected to extensive grading 

activity prior to turfgrass establishment. The grading altered the natural pedology of soil 

profile at this site. The test site at Glenstone was located on a hillside having a 5.6 % 

slope while that at PBTRC was on land having a slope less than 1%.    

The study took place over 3 years with the initial once a year fertilizer treatment 

being applied in October of 2011. The turf was mowed at least twice a month during the 

growing season PBTRF site with the clippings being returned. At Glenstone the turf was 

mowed weekly throughout the growing season with the clippings returned. At both sites 

the turf was irrigated only when needed to prevent the turf from entering water stress 

induced dormancy and no pest control measures were utilized throughout the course of 

the study at either location. 

4.1.2 Treatments 

Fertilizer treatments consisted of no fertilizer, a sewage sludge based biosolids 

compost (Orgro, Veolia Water North America Baltimore City Composting Facility, 

Baltimore, MD), a yard trimmings compost (Leafgro, Maryland Environmental 

Services/Dickerson, Dickerson, MD ), and the application of an enhanced efficiency 

synthetic nitrogen fertilizer (Signature 35-0-10, Loveland Products, Inc. Greeley, CO). 
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Each material was applied by hand at the rate of 156 kg N ha-1yr-1 in late September or 

October. Two additional fertilizer treatments were also included in the study and 

consisted of a once a year application of 1 cm of the biosolids and yard trimmings 

compost. These compost applications were made on the same day as the previously 

described fertilizer treatments. The amount of compost that was applied for the 156 kg N 

ha-1yr-1 treatment was based on analysis of the two composts conducted in advance of 

each yearly application. Based on the results of the analyses, a surface application of 1 

cm of the biosolids and yard trimmings compost applied ,on average, 1108 and 584 kg N 

ha-1 yr-1, respectively. Cultivation treatments consisted of 0, 1 or 2 passes of a Ryan GA 

30 aerator (Ryan, Div. of Schiller Grounds Care, Inc., Johnson Creek, WI) equipped with 

1.9 cm by 12.7 cm tines. The tines penetrated to a depth of 10 cm. and the cultivation was 

imposed once per year immediately prior to spreading the compost or fertilizer. Plots 

receiving 156 kg N ha-1 yr-1 were subjected to one of the three cultivation treatments 

while plots receiving 1 cm of compost and the untreated control were not subjected to 

cultivation.  

Compost tea was applied in the second and third year by splitting the main plots 

in half and making a monthly application of compost tea at rate of 1630 L ha-1 (4 gallons 

per 1000ft2) to one of two sides during the growing season. Additional details on 

preparation of the compost tea, the soils at the two sites, and study treatments can be 

found in Chapter 3 of this thesis. 

4.1.3 Soil Microbial Enzymatic Activities Analysis 

Microbial activity within all subplots at both locations was assessed twice in 2013 

and 2014 using the fluorescein diacetate (FDA) hydrolysis assay method. With the 
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exception of one sampling period, sampling took place over three successive days each 

time microbial activity was evaluated at a site. Samples were collected from all plots 

within a given treatment block (one replication) on each day. The only exception to this 

was on 1 July 2013 when two replications were collected on a single day at PBTRF.  

Sample collection and analysis took place on 20, 21, 22 June, 6, 7, 8 September 2013, 

and on 6, 7, 8 June, and 25, 26, 27 August 2014 at the PBTRF. At the Glenstone site soil 

microbial activity was assessed on 1, 2 July, 13, 14, 15 September 2013 and on 17, 18, 19 

June, and 20, 21, 22 August 2014. 

Soil samples that were collected in June and July of 2013 were extracted from a 

depth of 2 to 6 cm using a 2-cm-diameter soil probe. Samples collected on all other dates 

consisted of extracting cores from a depth 1 to 5 cm using the same type of soil probe.  

On all dates three soil cores were collected from each subplot, the collected samples were 

placed in poly bags, mixed, and the bags (RD Plastics, Nashville, Tennessee) sealed until 

arrival at the laboratory. The samples were placed into a container that excluded light,  

after which they were transported to laboratory. Soil cores were always collected in the 

early morning with the collection being complete with 1 hour of arriving at the site.   

Fluorescein diacetate hydrolysis assay of microbial activity closely followed the 

procedure described by Adam and Duncan (2001) and Green et al. (2006). Standard 

curves were constructed for each collection period that microbial activity was measured 

(i.e., a single standard curve was created and utilized for the 3 day period samples were 

collected from a site). Standard curves were produced from 0, 2.5, 5, 7.5, 10, 12.5 µg ml-1 

fluorescein standards that were prepared from mixture of a 2 mg/ml fluorescein solution, 

and 30 ml of a buffer solution that contained acetone (1:1 V/V). Absorbance as function 
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of fluorescein concentration was measured at 490 nm using a spectrophotometer 

(BioMate 3, Thermo Spectronic, Thermo Fisher Scientific Inc., Waltham, Massachusetts) 

and a regression fit was generated automatically for future reference.  A 60mM sodium 

phosphate buffer solution (pH=7.6) was made by dissolving Sodium phosphate tribasic 

(Na3PO4⋅12H2O, Fisher Chemical, Thermo Fisher Scientific Inc., Waltham, 

Massachusetts) in deionized water. The pH of the resulting solution was adjusted to 7.6 

using 1 M hydrochloric acid (HCl). The FDA substrate solution was prepared by 

dissolving FDA (C24H16O7, Alfa Aesar, Ward Hill, Massachusetts) in certified ACS 

reagent grade acetone (C3H6O, Fisher Chemical, Thermo Fisher Scientific Inc., Waltham, 

Massachusetts) for a final concentration of 0.3 mg ml-1.  

Two gram hand ground soil samples were placed into a 125 ml Erlenmeyer flask 

to react with FDA or to serve as an absorbance blank. Fifteen milliliter of 60mM sodium 

phosphate buffer solution was added to each flask, after which 0.1 ml of 3 mg ml-1 FDA 

was added to make the final FDA concentration 20 μg ml-1 at the start of the reaction.  In 

the case of the paired absorbance blank, the addition of 0.1 ml FDA was replaced with 

0.1 ml acetone. All flasks were placed on an orbit shaker (model 3590, Labline 

Instruments, India) operated at 90 rpm for 60 min. After shaking, 15 ml of acetone was 

added to each flask with the flasks being shaken by hand to terminate FDA hydrolysis. 

Filtrate was generated by passing the suspension through Whatman No. 2 filter paper and 

then transferring 3 ml of the filtrate to a 3 ml cuvette (BrandTech™ UV-Cuvets, 

BrandTech Scientific, Essex, Connecticut). The absorbance of the solution was then 

determined using the spectrophotometer set at 490 nm. The fluorescein concentration was 

calculated by the spectrophotometer using a standard curve generated at the beginning of 
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sampling period. Because final microbial activity was expressed on a dry soil basis, the 

moisture content of individual sample was determined at taking a 5 gram subsample of 

the soil sample that was placed into a flask and drying it at 105 °C overnight. The 

moisture content of the sample was calculated as the weight of moisture lost divided by 

soil dry weight.  The microbial enzymatic activity was expressed in units of μg 

fluorescein released g-1 dry soil min-1. 

4.1.4 Soil Organic Content Analysis 

Soil organic content was measured at the end of third year of the study by the 

weight loss on ignition method (Storer, 1984; Schulte et al., 1991; Schulte, 1995). A 2-

cm-diameter soil probe was inserted to a depth slightly in excess of 10 cm. The extracted 

core was trimmed to remove all plant material above the soil surface as well as any soil 

present beyond a depth of 10 cm below the soil surface. After trimming the core it was 

placed in a sealable plastic bag along with two other soil cores collected from same plot 

in an identical manner. In the laboratory, the cores were air-dried, ground and then passed 

a 2 mm mesh sieve. A sub sample of the resulting material was weighted after placing it 

in beaker having a known weight. The sample was heated at 125 °C for 1 hour and then 

combusted at 360 °C for 2 hours (Blue M mechanical convection oven, model CFD-10E-

7, Blue Island, Illinois.). Soil organic matter content was determined as: 

% 𝑆𝑆𝑆𝑆𝑆𝑆 = % 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑜𝑜𝑜𝑜 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =
(W1 − W2)

W1
 × 100 

where SOM is soil organic matter content, W1 is weight of the soil after being dried at 

125 °C for 1 hour, W2 is final weight of soil after 2 hours at 360 °C. W1 and W2 were 
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determined by subtracting the weight of the glass beaker in which sample combustion 

took place. 

4.1.5 Statistical Analysis 

Nitrogen source and cultivation treatments were replicated 3 times and arranged 

in randomized complete block design, with compost tea being an additional spilt plot 

factor within the design.  Analysis of variance (ANOVA) procedures were used to 

evaluate factorial treatment effects that constituted a 3 (nitrogen type) × 3 (cultivation) × 

2 (compost tea) randomized complete block split plot design for microbial activity, and  a 

3 × 3 randomized complete block design for soil organic matter content. Planned 

contrasts that compared the untreated control with all other non-cultivated N source 

treatments were also performed. The analysis was conducted by evaluating each site 

location and sampling time as independent events. Data were analyzed using SAS Proc 

Mixed statistical software version 9.3 (SAS Institute, 2012). All reported differences 

were significant at P ≤ 0.05 unless otherwise indicated and mean separations were 

conducted using Tukey’s honestly significantly different test where appropriate. 

4.2 Results  

4.2.1 Soil Organic Matter Content  

The effects of cultivation and the use of three different N source treatments, when 

applied at the rate of 156 kg N ha-1 yr-1 for 3 successive years, on soil organic matter 

content (SOM) are shown in Table 4.1. Cultivation had no effect on SOM while fertilizer 

N source only affected on SOM at PBTRF. At this site the use of yard clippings compost 

increased SOM by 17% when compared to synthetic fertilizer and by 11% when 

compared to the use of biosolids compost.  
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Table 4.1. Effect of nitrogen source and cultivation on soil organic matter content at the 
Paint Branch Turfgrass Research Facility (PBTRF) and Glenstone. 
 Organic matter content  
  PBTRF Glenstone 
N source (N) †  -----------------%---------------- 
Synthetic fertilizer      3.5a‡ 4.2 
Biosolids compost   3.7a 4.6 
Yard trimmings compost   4.1b 4.7 
    
Cultivation (C) §    
0  3.8 4.6 
1  3.9 4.5 
2  3.7 4.4 
 ANOVA 
Source of variation df P 
N 2 0.0002 0.0765 
C 2 0.2128 0.6936 
N×C 4 0.7729 0.5605 
† Nitrogen sources were applied once per year at rate of 156 kg N ha-1. 
‡Within columns, means followed by the different letters are significantly different according to 
Tukey’s honestly significantly different test (P ≤ 0.05). 
§ Number of hollow tine cultivation passes made over the plot in advance of applying the 
nitrogen source treatment. 

 

Contrasts comparing the effect of all non-cultivated treatments receiving N (data 

averaged across compost tea treatment) with the control treatment (i.e., no N, no tea, no 

cultivation) on SOM content are shown in Table 4.2.  Plots receiving 1 cm of biosolids 

compost or yard trimmings compost had significantly higher SOM contents than 

untreated control at both sites. At PBTRF, topdressing of yard trimmings compost at rate 

of 156 kg N ha-1 yr-1 without cultivation also increased the SOM when compared to the 

control treatment. 
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Table 4.2. Comparison of non-cultivated nitrogen source with control on soil organic 
matter content at Paint Branch Turfgrass Research Facility (PBTRF) and Glenstone. 
 Organic matter content  
  PBTRF Glenstone 
N Treatment  -------------------%----------------- 
Control (C)  3.0 4.5 
Synthetic fertilizer  (F)  3.6 4.5 
Biosolids compost (B)  3.7 4.8 
Yard trimmings compost (P)  4.2 4.5 
1 cm Biosolids compost (BE)  4.6 6.2 
1cm Yard trimmings compost (PE)  5.1 5.8 
 ANOVA 
Contrast df P 
C VS F  10 0.0986 0.8698  
C VS B 10 0.0658 0.5360 
C VS P 10 0.0038 0.9938 
C VS BE 10 0.0005 0.0023 
C VS PE 10     <0.0001 0.0146 
 

4.2.2 Soil Overall Enzyme Activity 

Fertilizer N source and cultivation and had no influence on soil microbial activity 

when the fertilizers were applied at the rate of 156 kg N ha-1 yr-1  (Table 4.3). A 

significant positive effect on soil microbial enzyme activity was seen with the use of 

compost tea but only during one evaluation interval. The use of compost tea increased 

microbial activity from 3.9 to 4.2 μg fluorescein g-1 dry soil min-1 when microbial activity 

measurements were collected in June of 2014 at the Glenstone site. 

When the non-cultivated, non-fertilized control treatment was compared with the 

five non-cultivated N source treatments, only the 1 cm depth yard trimmings compost 

treatment had higher soil microbial enzyme activity than the control treatment (Table 4.4). 

This positive response was limited to a single evaluation period (June 2014) at the 

Glenstone site only.  
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Table 4.3. Effect of nitrogen source, compost tea and cultivation on soil microbial 
enzyme activity at the Paint Branch Turfgrass Research Facility (PBTRF) and Glenstone. 
  FDA† 
  PBTRF Glenstone 
  2013 2014 2013 2014 
N source (N)‡  Jun. Sep. Jun. Aug. Jul. Sep. Jun. Aug. 
Synthetic fertilizer   2.8 3.5 3.8 3.2 2.9 3.3 3.9 3.5 
Biosolids compost  2.8 3.3 3.7 3.2 2.8 3.6 4.0 3.6 
Yard trim compost  2.9 3.3 3.9 3.3 3.0 3.4 4.2 3.5 
          
Cultivation (C) §          
0  3.0 3.4 3.7 3.3 2.8 3.6 4.1 3.5 
1  2.8 3.3 3.8 3.3 3.0 3.4 4.0 3.5 
2  2.7 3.3 3.9 3.2 2.9 3.4 4.1 3.6 
          
Compost tea (T)          
Yes  2.9 3.4 3.8 3.3 2.9 3.5   4.2a¶ 3.5 
No  2.8 3.3 3.9 3.2 3.0 3.4 3.9b 3.5 
 ANOVA 
Source of variation df P 
N 2 0.3723 0.3478 0.1722 0.3971 0.3283 0.2209 0.2033 0.2530 
C 2 0.0757 0.5504 0.5496 0.7083 0.3726 0.5293 0.4936 0.1251 
N×C 4 0.9803 0.4975 0.9776 0.8538 0.1421 0.4226 0.0564 0.5959 
T 1 0.1648 0.7871 0.1111 0.2366 0.2921 0.2096 0.0045 0.9906 
N×T 2 0.9442 0.5997 0.2440 0.4530 0.3461 0.5045 0.9445 0.9692 
C×T 2 0.2620 0.8124 0.5441 0.3034 0.4270 0.6285 0.5044 0.8698 
N×C×T 4 0.4636 0.4522 0.1196 0.3931 0.6575 0.2132 0.1826 0.3728 
† Fluorescein diacetate hydrolysis activity (μg fluorescein g-1 dry soil min-1) .  
‡ Nitrogen sources were applied once per year at rate of 156 kg N ha-1. 
§ Number of hollow tine cultivation passes made over the plot in advance of applying the 
nitrogen source treatment. 
¶ Within columns, means followed by the different letters are significantly different according to 
Tukey’s honestly significantly different test (P ≤ 0.05). 
 

 

 

 

 

 

 

 

 

 95 
 



 

Table 4.4. Comparison of non-cultivated nitrogen source with control on soil microbial 
enzyme activity at the Paint Branch Turfgrass Research Facility (PBTRF) and Glenstone. 
 
  FDA† 
  PBTRF Glenstone 
  2013 2014 2013 2014 
N Treatment  Jun. Sep. Jun. Aug. Jul. Sep. Jun. Aug. 
Control (C)  2.9 3.4 3.7 3.1 2.8 3.3 3.7 3.3 
Synthetic fertilizer  
(F) 

 2.9 3.7 3.7 3.2 2.8 3.4 3.9 3.4 

Biosolids compost 
(B) 

 2.9 3.4 3.5 3.3 2.7 4.0 4.2 3.6 

Yard trimmings 
compost (P) 

 3.1 3.2 3.9 3.3 3.0 3.3 4.2 3.5 

1 cm Biosolids 
compost (BE) 

 2.7 3.3 4.2 3.1 3.1 3.7 4.3 3.5 

1cmYardtrimmings 
compost (PE) 

 3.1 3.5 4.2 3.4 3.2 3.7 4.5 3.4 

 ANOVA 
Contrast df P 
C VS F  10 0.8494 0.2567 0.9855 0.4703  0.8611 0.7355 0.5051 0.6701 
C VS B 10 0.8177 0.9296 0.6019 0.2951 0.8044 0.0658 0.1386 0.1174 
C VS P 10 0.4231 0.4341 0.6588 0.2395 0.3983 0.8730 0.1214 0.3115 
C VS BE 10 0.4459 0.5734 0.2078 0.8232 0.1858 0.2283 0.0530 0.1687 
C VS PE 10 0.5106 0.8109 0.1911 0.1182 0.0933 0.2187 0.0216 0.4936 
† Fluorescein diacetate hydrolysis activity (μg fluorescein g-1 dry soil min-1) 
 

4.4 Discussion 

The increase in SOM content seen in the compost treatments was most likely the 

result of the contribution of organic matter to the soil from the compost itself rather than 

organic matter that may have been produced by enhanced turf growth turf in response to 

addition of compost to the soil. Compared to biosolids compost, yard trimmings compost 

contains more organic matter per unit mass of applied N (Table 3.1, Table 3.2 and Table 

3.3). As an illustrated point of comparison, if all of the organic matter present in the two 

composts had been incorporated in the top 10 cm of soil without any subsequent 

decomposition, the SOM would increase by 0.8% for the biosolids compost and 2.1% for 

the yard trimmings compost (i.e. 8 g kg-1 and 21 g kg-1) when the two composts are 

applied to the PBTRF site at the 156 kg N ha-1 yr-1 rate. This illustration assumes the bulk 
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densities reported in Chapter 4 for the soil at this site would remain unchanged with the 

addition of the organic matter. Using the same assumption, the incorporation 1 cm of 

each compost to the same site for three successive years would raise the SOM by 5.7 and 

6.9% for the biosolids and yard trimmings compost, respectively. The results presented in 

Table 4.2 indicate that the addition of either compost source at topdressing rate of 1.0 cm 

yr-1 will raise SOM in the top 10 cm of most mineral soils. The increase in SOM, 

however, will likely be small relative to the amount of organic matter that is initially 

incorporated to the soil.    

The decomposition of compost in soil releases essential nutrients which simulates 

microbial growth and enzymes activity (Martens et al., 1992; Garcia-Gil et al., 2000; He 

et al., 2001; Zaman et al., 2004; Ingham, 2005; Ros et al., 2006). This effect is usually 

transitory and depends on soil conditions, compost maturity and the amount of compost 

applied (He et al., 1992). The two compost materials examined in this study had little 

effect on soil microbial enzymatic activity even though 1 cm of biosolids compost or yard 

trimmings compost treated plots had higher SOM content than the untreated control. 

Some researchers have reported that the presence of trace elements and heavy metals in 

fresh or composted organic wastes can be inhibitory to microbial activity (Jodice and 

Nappi, 1987; Rutili et al., 1987; Garcia-Gil et al., 2000). Alternatively, failure to see an 

increase in soil enzyme activity in the treatments having higher SOM in this current study 

is consistent with the promotion and suppression balancing mechanism hypothesized by 

Martens et al. (1992). Martens et al. (1992) observed an increase in the activity of 10 

enzymes involved in cycling of carbon, nitrogen, phosphorus and sulfur when four 25 Mg 

ha-1  applications of  either poultry manure, sewage sludge, barley straw or fresh alfalfa 
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were made to coarse-loamy soil over 3 years. They found out the addition of all four 

organic amendments greatly enhanced the enzyme activity during the first year; but 

subsequent additions of the same amendments in the second and third year failed to 

maintain the high levels of enzyme activities seen in the first year of the study. They 

suggested that a trigger molecule or a promoter released with the initial addition of the 

organic amendment stimulated high levels of enzyme activities, but when the energy 

sources were sufficient due to constant or regular organic material additions, a feedback 

mechanism in soil existed to terminate enzyme production. This feedback mechanism 

may have been responsible for the lack of response seen in the second and third years of 

their study, and potentially in this study as well. The results presented in this current 

study are also supported by the findings of Debosz’s et al. (2002).  Debosz (et al., 2002) 

observed that FDA hydrolysis activity in a sandy loam soil increased immediately with 

the additions of 17 Mg (dry matter) ha-1 year-1 of a sewage sludge or household compost 

under both laboratory and field conditions. Within two months however, FDA hydrolysis 

activity dropped to the level seen in the unamended soil (Debosz et al., 2002). Microbial 

activity in our study was measured at least 8 months after the addition of compost with 

the rate of compost application being much lower than Debosz’s compost treatments. A 

significant effect of compost topdressing on microbial enzyme activity might have been 

observed if microbial activity had been determined immediately after the addition of 

compost, or perhaps at a higher compost topdressing rate. 

The nutrients and beneficial organisms provided by correctly made and applied 

compost tea can improve plant health and soil quality (Ingham, 2005). Monthly foliar 

application of compost tea at a rate of 1630 L ha-1 (4 gallons per 1000ft2) had a 
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significantly positive effect on soil microbial enzyme activity on one of four FDA 

evaluation periods over two summers. This one time increase may have been a result of a 

healthy turfgrass and root system existing under favorable climatic conditions.  

4.5 Conclusions 

Biosolids and yard trimmings compost when topdressed at a nitrogen rate 

comparable to annual application of synthetic enhanced efficiency fertilizer (156 kg N  

ha-1 yr-1) had little effect on SOM content and microbial enzyme activities over a three-

year period. Similarly neither response variable was influenced by the once a year hollow 

tine cultivation that was performed at the time fertilizer and compost topdressing 

applications were made. Additional applications of three nitrogen source materials over a 

period of several more years may be needed to observe a noticeable increase in SOM 

and/or microbial activity when compost is applied at annual nitrogen rates that are 

commensurate with those recommended for mineral and synthetic based fertilizers. When 

compost topdressing is applied in amounts used by practitioners (e.g. 1 cm of compost), 

our data suggest that an increase soil organic content, but not microbial activity will 

occur in soils initially having SOM content of less than 4.5%. Monthly foliar application 

of compost tea at rate of 1630 L ha-1 (4 gallons per 1000ft2) had the potential to simulate 

higher FDA hydrolysis activity in soil, but certain favorable climatic and soil conditions 

appear to be necessary to observe such a response. In this study the alignment of 

favorable conditions that would induce an elevated level of soil microbial activity with 

the foliar application of compost tea was both an infrequent and non-reproducible 

occurrence. Additional examination of soil microbial activities immediately after 

compost topdressing and tea applications, and assessment of the biology in the compost 

 99 
 



 

tea is needed to gain a greater understanding of the effect of the two practices on soil 

microbial properties.   
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Chapter 5: The Effect of Compost Materials and Cultivation on Soil 

Bulk Density and Infiltration 

In response to the USEPA’s directive placing total daily maximum nutrient and 

sediment load limits on watersheds throughout the country, several states have recently 

passed legislation restricting the amount nitrogen and phosphorus that can applied to 

turfgrass (Weinberg et al., 2011). The limits are based in part on turfgrass needs for N 

obtained from mineral and synthetic fertilizer sources. Compost is often used in place of 

synthetic and inorganic fertilizer to provide all, or a portion of the supplemental N needs 

of turfgrass. When incorporated into the soil, compost can improve soil aggregate 

stability, decrease soil bulk density, and increase soil porosity, soil water holding 

capacity and soil hydraulic conductivity (Mays et al., 1973; Epstein et al., 1976; Pagliai et 

al, 1981; Tester 1990; Pagliai and Antisari 1993; Giusquiani et al., 1995; Aggelides and 

Londra 2000; Cheng et al., 2007; Nektarios et al., 2011). Improvements in the physical 

properties of soil with the addition of compost are most dramatic in soils with poor 

physical structure and a low level of soil organic matter such as soils reclaimed from 

mining and disturbed urban soil (Hortenstein and Rothwell, 1972; Scanlon et al., 1973; 

Landschoot and McNitt, 1994; Loschinkohl and Boehm, 2001; Cogger, 2005; Mandal et 

al., 2013). The growth and quality of turfgrass have also been improved with the addition 

of compost to soils possessing good physical properties and moderate amounts of organic 

matter (Hornick et al., 1984; Geisel et al., 2001; Linde and Hepner, 2005; Johnson et al., 

2006b). 

Stormwater runoff containing excessive concentrations of harmful pollutants is a 

contributor to nutrient impairment of surface waters in many urban areas (USEPA, 2006). 
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In a 2007 study on the health of Chesapeake Bay (Chesapeake Bay Program, 2008), 

stormwater was listed as the only pollution source sector that was growing within the 

watershed. Core cultivation is often cited as a management practice to reduce runoff from 

turfgrass areas (Rice and Horgan, 2011). It is also a recommended practice for the 

incorporating materials such and sand and compost into existing lawns to improve the 

physical properties of the soil. Johnson et al. (2006a) made three topdressing applications 

of composted manure at surface applications of 0, 0.33, 0.66 and 0.99 cm over a one year 

period, with core aeration taking place the day before each compost application. An 

incremental increase in soil water retention was seen with each rate of compost addition, 

however the amount of available soil water remained unchanged. Incremental declines in 

bulk density were also seen with the addition of compost, however only the 0.99 cm 

application rate had a bulk density that was significantly lower than soil not receiving 

compost. There was a trend suggesting that the saturated conductivity of the soil 

increased with the compost topdressing, however the trend was not statistically 

significant.  

Compost topdressing and hollow tine cultivation are practices that are often 

performed once a year on home lawns. The potential benefits of these two practice to soil 

properties needs to be documented further before promoting the use of these two 

practices as way to reduce runoff from home lawns. Accordingly, the objective of this 

study is to determine the effect of once a year hollow tine cultivation, and of compost 

topdressing, on soil bulk density and soil infiltration. Compost applications consistent 

with recent restrictions placed on the use of compost as topdressing material are 
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examined along with rates of application that have traditional been used by turfgrass 

practitioners.   

 

5.1 Materials and Methods  

5.1.1 Site Locations 

Two field sites in Maryland were used to examine the effect of different nitrogen 

containing fertilizer materials and cultivation on soil bulk density. One of the two sites 

was also used to evaluate the effect of the various treatments on soil infiltration.  The first 

site was a 4-year old stand of ‘Titanium’ tall fescue (Festuca arundinacea Schreb.) and 

‘Raven’ Kentucky bluegrass (Poa pratensis L.) located at the University of Maryland 

Paint Branch Turfgrass Research Facility (PBTRF) in College Park, MD. The second site 

was 5-year old stand of ‘Confederate’ tall fescue located at the Glenstone Art Museum in 

Potomac, MD.  

The taxonomic classification of soil at the PBTRF site was a Russett (fine-loamy, 

mixed semiactive, mesic Aquic Hapludults) and Christiana (fine, kaolinitic, mesic Aquic 

Hapludults) complex soil, while that at the Glenstone site was a fine-loamy, mixed, mesic 

Typic Hapludults. The soil at the Glenstone site had been subjected to extensive grading 

activity prior to turfgrass establishment. The grading altered the natural pedology of soil 

profile at this site. The test site at Glenstone was located on a hillside having a 5.6 % 

slope while that at the PBTRC was on land having a slope of less than 1% .    

The study took place over three years, with the initial once a year fertilizer 

treatment being applied in October of 2011. The turf was mowed at least twice a month 
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during the growing season at the PBTRF site with the clippings being returned. At 

Glenstone, the turf was mowed weekly throughout the growing season with the clippings 

returned. At both sites the turf was irrigated only when needed to prevent the turf from 

entering water stress induced dormancy and no pest control measures were utilized 

throughout the course of the study at either location. 

5.1.2 Treatments 

Fertilizer treatments consisted of no fertilizer, a sewage sludge based biosolids 

compost (Orgro, Veolia Water North America Baltimore City Composting Facility, 

Baltimore, MD), a yard trimmings compost (Leafgro, Maryland Environmental 

Services/Dickerson, Dickerson, MD ), and the application of an enhanced efficiency 

synthetic nitrogen fertilizer (Signature 35-0-10, Loveland Products, Inc. Greeley, CO). 

Each material was applied by hand at the rate of 156 kg N ha-1 year-1 in either late 

September or in October. Two additional fertilizer treatments were also included in the 

study and consisted of a once a year application of 1 cm of the biosolids and yard 

trimmings compost. These compost applications were made on the same day as the 

previously described fertilizer treatments. The amount of compost that was applied for 

the 156 kg N ha-1 year-1 treatment was based on the analyses of the two composts 

conducted in advance of each yearly application. The results of the analyses revealed a 

surface application of 1 cm of the biosolids and yard trimmings compost applied, on 

average, 1108 and 584 kg N ha-1 yr-1, respectively. Cultivation treatments consisted of 0, 

1 or 2 passes of a Ryan GA 30 aerator (Ryan, Div. of Schiller Grounds Care, Inc., 

Johnson Creek, WI) equipped with 1.9 cm by 12.7 cm tines. The tines penetrated to a 

depth of 10 cm. The cultivation was imposed once per year immediately prior to 
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spreading the compost or fertilizer. Plots receiving 156 kg N ha-1 yr-1 were subjected to 

one of the three cultivation treatments while plots receiving 1 cm of compost and the 

untreated control were not subjected to cultivation. Additional details on the soils at the 

two sites, and the study treatments can be found in Chapter 3 of this thesis. 

5.1.3 Soil Bulk Density Measurement 

Soil bulk density was measured at the end of third year of the study at both 

locations. Cores were extracted from the PBTRC site on 12, 14 and 15 Nov. 2014 and 

from Glenstone on 20 and 22 Nov. 2014. The cores were extracted from a depth of 0 to 6 

cm after removing the top 1 cm of soil using a sod cutter. It was necessary to remove the 

sod prior to extracting the core because attempting to do this using a shovel caused the 

underlying root system of the turf to adversely affect the integrity of most of the cores 

that were extracted using this approach.  In preliminary trials the bulk density of the cores 

extracted by removing the sod using a sod cutter were no different than the limited 

number of cores that were extracted without altering the surface of the core using a 

shovel. Brass cylinders 6.0 cm long and 5.4 cm in diameter were used to extract soil from 

beneath the cut sod. The cores were driven into the soil using a soil core sampler 

containing a cylindrical driving hammer (Model# 0200, Soilmoisture Corp. Santa 

Barbara, CA 93130). The cores were trimmed upon extraction to conform to the 

dimensions of brass core after which the base of the sample was covered with cheese 

cloth to prevent slippage of core simple within the brass core. After all samples had been 

extracted they were transported to lab and placed into an oven maintained at 105 °C for 

24 hours. After drying the sample, the weight of the brass cylinder with dried soil inside 

(Wt) and the weight of clean brass cylinder (Wb) were recorded. The mass of dried soil 
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sample was determined by subtracting Wb from Wt.  Soil bulk density was calculated as 

the dry mass of soil in the core divided by volume of core. 

5.1.4 Soil Infiltration  

Assessment of the effect of compost and cultivation on soil infiltration was 

limited to the PBTRC site because the plot area at the Glenstone site has a 5.6 % slope.  

Preliminary infiltration measurements from select plots were collected in the fall of 2012 

and measurements from all of plots at the PBTRC site were obtained in the summer of 

2013 and 2014. Soil infiltration within the main plots at PBTRC was assessed by the 

constant head double ring method. This method is a proven and practical way to obtain 

representative infiltration rates for soils that have infiltration rates ranging from 22 to 225 

mm h-1 (Gregory et al., 2005). Three measurements were collected from each plot using 

152 mm diameter inner and 305 mm diameter outer rings (Turf-Tec, Tallahassee, 

Florida). Marriotte tubes attached to the inner and outer rings were used to maintain a 

constant head within each ring. Prior to initiating the collection of the infiltration data, 

each of the double rings was carefully filled with water and refilled as needed to maintain 

a ponded state for about 1.5 to 2 hours. This was done to reduce the time needed for 

infiltration within the ring to achieve steady state once data collection for the ring was 

initiated. Water entry into the soil was recorded at 30 minute intervals unless a shorter 

time interval was required due to the rapid entry of water into the soil. Water entry 

amounts were recorded until three consecutive readings had the same values. At that 

point in time it was assumed that steady state infiltration had been achieved.  The 

infiltration rate was calculated using the following equation as recommended by Turf-Tec 

International:  
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Infiltration Rate = ΔV1R
(ΔA1R × Δ t)

 

where ΔV1R is volume of water used to maintain constant head in the inner ring during 

time interval, cm3, ΔA1R is internal area of inner ring, cm2, Δ t is time interval between 

successive readings, h. 

Most infiltration measurements required several hours to reach steady state. As a 

result, soil infiltration was usually characterized at a rate of two plots per day. Infiltration 

rates were determined for all plots within one specific block of the experimental design 

before moving on to collect data from the next block within the experimental design. In 

2013 and 2014 a total of 37 and 32 days elapsed between the time the first and last 

infiltration measurements were collected, respectively.   

5.1.5 Statistical Analysis 

Analysis of variance (ANOVA) procedures were used to evaluate the factorial 

arrangement of treatments within the randomized complete block design. Planned 

contrasts that compared the untreated control with all other non-cultivated nitrogen 

source treatments were also performed.  The analysis was conducted by evaluating each 

site location and year of sampling as independent events. Data were analyzed using SAS 

Proc Mixed statistical software version 9.3 (SAS Institute, 2012). Treatment means for 

sources effects found to be different were separated at the P ≤ 0.05 level using Tukey’s 

honestly significantly different test. All infiltration data were log transformed to meet the 

assumption of normality of variance prior to conducting the ANOVA.   
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5.2 Results  

5.2.1 Soil Bulk Density 

Table 5.1 presents the soil bulk density within the plots at the end of third year. 

Plots topdressed with 156 kg N ha-1 yr-1 of the yard trimmings compost had a slightly 

lower bulk density at the PBTRF than the other two N source treatments, however there 

was no difference in the bulk density of the three 156 kg N ha-1 yr-1 N treatments at 

Glenstone. Cultivation performed once a year in the fall had no effect on soil bulk density 

at either site.  

When the five non-cultivated treatments were compared with the control 

treatment, similar results were obtained at both sites with the application of 1 cm of the 

yard trimmings compost (Table 5.2). The use of this compost at the 1 cm rate, when 

compared to the control treatment, reduced the bulk density from 1.25 to 1.17 and from 

1.37 to 1.21 at the PBTRF and Glenstone sites, respectively. The application of 1 cm of 

the biosolids compost significantly lowered soil bulk density compared with the control 

treatment, at Glenstone but not at PBTRF (Figure 5.1). None of three uncultivated 156 kg 

N ha-1 yr-1   N treatments had bulk densities that differed from the control treatment at 

either location. 
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Table 5.1. Effect of nitrogen fertilizer source and cultivation on soil bulk density at the 
Paint Branch Turfgrass Research Facility (PBTRF) and Glenstone. 
 Bulk density(g/cm3) 
  PBTRF Glenstone 
N source (N) †    
Synthetic fertilizer      1.28a‡ 1.36 
Biosolids compost   1.26a 1.32 
Yard trimmings compost   1.22b 1.30 
    
Cultivation (C)§    
0  1.25 1.32 
1  1.25 1.33 
2  1.26 1.32 
 ANOVA 
Source of variation df P 
N 2 0.0020 0.0935 
C 2 0.7788 0.9057 
N×C 4 0.2340 0.4043 
† Nitrogen sources were applied once per year at rate of 156 kg N ha-1. 
‡ Within columns, means followed by the different letters are significantly different according to 
Tukey’s honestly significantly different test (P ≤ 0.05). 
§ Number of hollow tine cultivation passes made over the plot in advance of applying the 
nitrogen source treatment. 
 
 
Table 5.2. Comparison soil bulk density in the five non-cultivated nitrogen source 
treatments with that of non-cultivated control treatment at the Paint Branch Turfgrass 
Research Facility (PBTRF) and Glenstone. 
 Bulk density(g/cm3) 
  PBTRF Glenstone 
N Treatment    
Control (C)  1.25 1.37 
Synthetic fertilizer  (F)  1.27 1.35 
Biosolids compost (B)  1.26 1.30 
Yard trimmings compost (P)  1.23 1.31 
1 cm Biosolids compost (BE)  1.23 1.18 
1cm Yard trimmings compost (PE)  1.17 1.21 
 ANOVA 
Contrast df P 
C VS F  10 0.4577 0.7657 
C VS B 10 0.9001 0.2716 
C VS P 10 0.3887 0.3503 
C VS BE 10 0.3887 0.0071 
C VS PE 10 0.0074 0.0183 
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Figure 5.1. Comparison of non-cultivated nitrogen source treatments with the control 
treatment on soil bulk density at (A) the Paint Branch Turfgrass Research Facility and (B) 
Glenstone. Values are averaged across compost tea treatment.  
C, control; F, synthetic fertilizer Signature; B, biosolids compost Orgro; P, yard 
trimmings compost Leafgro; BE, 1 cm biosolids compost Orgro; PE, 1 cm yard 
trimmings compost Leafgro.  
*   Significant at the 0.05 probability level. 
** Significant at the 0.01 probability level. 
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5.2.2 Soil Infiltration at PBTRF 

Application of 156 kg N ha-1 yr-1 of any of the three N sources had no statistically 

significant effect on soil infiltration rate in 2013 (Table 5.3). In 2014, soil infiltration was 

affected by nitrogen source with the effect being dependent on the number of hollow tine 

cultivation passes made over the plots (Figure 5.2). There were no differences among 156 

kg N ha-1 yr-1 nitrogen source treatments without cultivation. Biosolids compost treated 

plots that received one pass of cultivation had a higher (P ≤ 0.05) infiltration rate than 

one pass cultivated plots treated with yard trimmings compost. Similarly, the 156 kg N 

ha-1 yr-1 biosolids compost treated plots that received two passes of cultivation had a 

significantly higher soil infiltration rate than plots that were cultivated twice and received 

the synthetic fertilizer. 

Table 5.3. Effect of nitrogen source and cultivation on soil infiltration at the Paint Branch 
Turfgrass Research Facility (PBTRF). 
 Infiltration rate† 
  -----------cm/h----------- 
N source (N) ‡  2013 2014 
Synthetic fertilizer   9.04 6.42 
Biosolids compost  14.52 22.91 
Yard trim compost  19.58 10.60 
    
Cultivation (C)§    
0  10.34 8.28 
1  15.95 16.59 
2  16.85 15.07 
 ANOVA 
Source of variation df P¶ 
N 2 0.2453 0.0152 
C 2 0.6569 0.2043 
N×C 4 0.1385 0.0041 
† Data shown are non-transformed treatment means. 
‡ Nitrogen sources were applied once per year at rate of 156 kg N ha-1. 
§ Number of hollow tine cultivation passes made over the plot in advance of applying the 
nitrogen source treatment. 
¶ P value after log10 transformation of soil infiltration data. 
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Comparisons of the soil infiltration in the non-cultivated control plots with non-

cultivated plots of the five N source treatment are shown in Table 5.4. While there was a 

strong trend suggesting the application of 1 cm of compost improved soil infiltration, the 

only treatment found to be significantly different that non-cultivated control treatment 

was the application 156 kg N ha-1 yr-1 of yard trimmings compost in 2013.  

 
Figure 5.2 Effect of nitrogen source and cultivation treatments on soil infiltration at the 
Paint Branch Turfgrass Research Facility in summer, 2014.  
Nitrogen source treatment designation are as follows: F, synthetic fertilizer Signature; B, 
biosolids compost Orgro; P, yard trimmings compost Leafgro. 0, no cultivation; 1, one 
pass of cultivation; 2, two passes of cultivation. 
Histograms possessing different letter labels are significantly different from one another 
using Tukey’s honestly significantly different test (P ≤ 0.05). 
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Table 5.4. Comparison of non-cultivated nitrogen source treatments with control 
treatment for soil infiltration for plots located at the Paint Branch Turfgrass Research 
Facility (PBTRF). 
 Infiltration rate† 
  ----------------cm/h--------------- 
N Treatment‡  2013 2014 
Control (C)  1.29 4.81 
Synthetic fertilizer  (F)  7.77 4.14 
Biosolids compost (B)  4.09 6.58 
Yard trim compost (P)  19.17 14.11 
1 cm Biosolids compost (BE)  10.45 13.10 
1cm Yard trimmings compost (PE)  20.05 12.13 
 ANOVA 
Contrast df P§ 
C VS F  10 0.1488 0.9757  
C VS B 10 0.3891 0.9288 
C VS P 10 0.0379 0.1110 
C VS BE 10 0.1108 0.4950 
C VS PE 10 0.1257 0.2709 
† Data shown are non-transformed treatment means. 
‡ Nitrogen sources were applied once per year at rate of 156 kg N ha-1. 
§ P value after log10 transformation of soil infiltration data. 
 

5.3 Discussion  

Hollow tine cultivation is often performed when topdressing turfgrass with 

compost to aid in incorporating the compost into the soil (Agresource, 2013). A reduction 

in soil bulk density occurs when the volume of void space (i.e., porosity) increases and/or  

the mineral fraction of soil is diluted by the presence of organic matter (Hill and James, 

1995; Cogger, 2005). Cultivation typically alters soil bulk density by increasing soil void 

space while the addition of organic matter lowers bulk density by reducing the portion of 

mineral particles present in the soil. An additional consequence of adding organic matter 

to soil is that it usually also increases the proportion void spaces present within the soil 

(Pagliai et al., 1981; Giusquiani et al., 1995). In general, the results presented in this 

study indicate that plots receiving higher amounts of organic matter had lower soil bulk 
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densities. In the process of removing the dried cores from the brass cylinders, it was 

noticed that in the cores of both the cultivated and non-cultivated compost treated plots 

that there were channels present in the cores as well as evidence of compost derived 

organic matter throughout the cores. This suggests that earthworms and perhaps smaller 

macrofauna are of equal or perhaps greater importance than once a year cultivation in 

lowering the bulk density of soils receiving topdressing applications of compost. 

Additional support in this line of thinking can be found in Chapter 4 of this thesis where 

it was reported that cultivation had no effect on the amount of organic matter present in 

the top 10 cm of soil. 

When organic matter additions alter soil properties that favorably effect soil bulk 

density, such as soil aggregation and porosity, the infiltration properties of the soil should 

be improved as well (Hill and James, 1995). There were some significant increases in soil 

infiltration rate caused by the compost treatments in this study, however the increases, 

with the exception of yard trimmings compost treatment, were inconsistent by treatment 

and year of measurement. The trend of increasing soil infiltration with the amount of 

compost topdressing material added to the turf observed in this study is similar to the 

results reported by Koadivko and Nelson (1979). In their study all compost treatments 

and cultivation regimes increased soil infiltration compared with untreated control, even 

though the differences were not statistically significant. Koadivko and Nelson (1979) 

applied digested sewage sludge to two silt loam soils at rates of 0, 22.4, 56 and 89.6 Mg 

ha-1 with or without incorporation by rototilling or disking, and found an increasing trend 

in infiltration rate as a result of sludge applications, but no statistical significance of 

infiltration data were seen 2 and 12 months after the application of compost. Their results 
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were attributed to the inherent spatial heterogeneity that exists when measuring soil 

infiltration. But they pointed out the increasing trend in infiltration would be a result of a 

protection against soil surface sealing provided by sludge treatment and channels opened 

by earthworms in the soil. The effect of compost topdressing on soil infiltration rate may 

not be apparent over a short time period as many relevant effects like possible soil 

stabilization of aggregates, nutrient and organic matter enrichment change slowly.  It 

should be noted that data analyses were performed by using logarithmic transformation 

via log10 (raw data) due to the lack normality of the non-transformed data. Plots 

topdressed with yard trimmings compost at 1 cm thickness had a higher average value of 

infiltration rate over three replications than a rate of 156 kg N ha-1 yr-1, but logarithmic 

transformation gave one negative value for one replication of 1 cm yard trimmings 

compost (i.e. Log10(0.82) = -0.086), which resulted in an insignificant result. 

5.4 Conclusions 

Hollow tine cultivation is believed to be capable of reducing bulk density and 

enhancing hydraulic conductivity, but in this study cultivation performed once a year at 

the time of compost topdressing had no effect on soil bulk density and on soil infiltration, 

when measurements for the latter were collected from 9 to 10 months after incorporating 

compost into the soil. 

The amount of compost required to favorably and consistently alter soil bulk 

density and soil infiltration rate, is more than a topdressing application of 156 kg N ha-1 

yr-1. Thus, when compost topdressing applications need to conform to the same annual N 

load restrictions as bagged fertilizers, the annual amount of compost applied to turf will 

be insufficient to increase the infiltration properties of the underlying soil. Conversely, 
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the data presented herein suggest that applying 1 cm of compost to turf per year for three 

successive years will likely improve the infiltration properties of a soil not subjected to 

hollow tine cultivation. Use of enhanced efficiency nitrogenous fertilizer had no effect on 

soil infiltration or bulk density.  

To better understand the implications of placing restrictions on the use of compost 

in turfgrass, longer term compost topdressing studies are needed. Given the need to 

identify best management practices that reduce stormwater losses from turf, future 

investigations should focus on evaluating soil properties that affect runoff as well as 

directly measuring runoff from turf area that have received compost topdressing 

applications for a number of years. 
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Appendix A  
 
Table 1. Effect of nitrogen source, cultivation on tall fescue color at the Paint Branch 
Turfgrass Research Facility in 2012. 
 
 Color (1-9) 
  Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. 
N source (N)           
Synthetic fertilizer   7.1a† 7.2a 7.1 7.1 5.7 5.8 5.9 8.0a 7.6a 
Biosolids compost   5.4b 7.2a 7.1 7.0 5.5 5.9 5.9 7.5b 5.9b 
Yard trim compost   4.8c 6.8b 7.5 6.8 5.4 5.6 5.8 6.5c 4.6c 
           
Cultivation (C)           
0  5.4a 6.9 7.2 6.9 5.4 5.7 5.7 7.3 6.0 
1  5.9b 7.1 7.3 6.9 5.6 5.8 5.9 7.2 5.9 
2  6.1b 7.2 7.2 7.1    5.6 5.8 6.0 7.5 6.2 
 ANOVA 
Source of variation df P 
N 2 *** * * NS NS NS NS *** *** 
C 2 ** NS NS NS NS NS * NS NS 
N×C 4 NS‡ NS NS NS NS NS NS NS NS 
*  Significant at the 0.05 probability level. 
** Significant at the 0.01 probability level. 
*** Significant at the 0.001 probability level. 
† Within columns, means followed by the same letter are not significantly different 
according to Tukey’s honestly significantly different test (P ≤ 0.05). 
‡ NS, nonsignificant. 
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Table 2. Effect of nitrogen source, cultivation and compost tea on tall fescue color at the 
Paint Branch Turfgrass Research Facility in 2013. 
 
  Color (1-9) 
  Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. 
N source (N)           
Synthetic fertilizer   5.3a 7.6 6.4 6.2 6.3a† 6.4 5.9a 7.4a 8.3a 
Biosolids compost   3.8b 7.8 6.7 6.0 6.0b 6.4 5.8a 6.8b 7.3b 
Yard trim compost   3.4c 7.7 6.7 6.1 5.8b 6.2 5.3b 6.6b 6.9c 
           
Cultivation (C)           
0  3.9a 7.8 6.7 6.2 6.1 6.3 5.6 7.0 7.4a 
1  4.2a 7.6 6.7 6.1 6.0 6.4 5.7 6.9 7.4a 
2  4.5b 7.8 6.6 6.0 6.1 6.4 5.7 6.9 7.7b 
           
Compost tea           
No  4.2 7.7 6.6 6.1 6.1 6.3 5.7 6.9 7.5 
Yes  4.2 7.7 6.6 6.1 6.1 6.3 5.7 6.9 7.5 
 ANOVA 
Source of variation df P 
N 2 *** NS * NS *** NS *** *** *** 
C 2  *** NS NS NS NS NS NS NS ** 
N×C 4 *§ NS NS *¶ NS NS NS NS NS 
T 1  NS‡ NS NS NS NS NS NS NS NS 
N×T 2 NS NS NS NS NS NS NS NS NS 
C×T 2 NS NS NS NS NS NS NS NS NS 
N×C×T 4 NS NS NS NS NS NS NS NS NS 
*  Significant at the 0.05 probability level. 
** Significant at the 0.01 probability level. 
*** Significant at the 0.001 probability level. 
† Within columns, means followed by the same letter are not significantly different 
according to Tukey’s honestly significantly different test (P ≤ 0.05). 
‡ NS, nonsignificant. 
§ Nitrogen source by cultivation interaction is shown in Figure 3.2. 
¶ Nitrogen source by cultivation interaction is shown in Figure 1. (Appendix B). 
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Table 3. Effect of nitrogen source, cultivation and compost tea on tall fescue color at the 
Paint Branch Turfgrass Research Facility in 2014. 
 
  Color (1-9) 
  Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. 
N source (N)           
Synthetic fertilizer   5.6a† 7.5a 6.8 6.0a 7.1 6.6 7.3 6.7 4.3a 
Biosolids compost   4.2b 7.1b 6.9 6.3ab 7.2 6.4 7.3 6.5 4.7b 
Yard trim compost   4.2b 7.0b 6.9 6.6b 7.1 6.5 7.3 6.3 4.8b 
           
Cultivation (C)           
0  4.4a 7.2 6.8 6.2 7.1 6.3 7.2 6.4 4.5 
1  4.6a 7.2 6.8 6.3 7.1 6.6 7.2 6.4 4.5 
2  4.9b 7.2 6.9 6.4 7.2 6.4 7.4 6.6 4.8 
           
Compost tea           
No  4.6 7.2 6.8 6.3 7.1 6.5 7.3 6.5 4.6 
Yes  4.6 7.2 6.9 6.3 7.1 6.4 7.3 6.5 4.6 
 ANOVA 
Source of variation df P 
N 2 *** ** NS * NS NS NS  NS * 
C 2 *** NS NS NS NS NS NS NS NS 
N×C 4   *§ NS NS NS NS NS NS NS NS 
T 1  NS‡ NS NS NS NS NS NS NS NS 
N×T 2 NS NS NS **¶ NS *¶ *¶ NS NS 
C×T 2 NS NS NS NS NS NS NS NS NS 
N×C×T 4 NS NS NS NS NS NS NS NS NS 
*  Significant at the 0.05 probability level. 
** Significant at the 0.01 probability level. 
*** Significant at the 0.001 probability level. 
† Within columns, means followed by the same letter are not significantly different 
according to Tukey’s honestly significantly different test (P ≤ 0.05). 
‡ NS, nonsignificant. 
§ Nitrogen source by cultivation interaction is shown in Figure 3.2. 
¶ Nitrogen source by compost tea interactions for various dates are shown in Figure 3.3. 
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Table 4. Comparison of non-cultivated nitrogen source treatments with control on tall 
fescue color at the Paint Branch Turfgrass Research Facility in 2012. 
 
 Color (1-9) 
  Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. 
N Treatment           
Control (C)  4.3 6.3 7.0 6.7 5.5 5.2 5.6 5.7 4.0 
Synthetic fertilizer (F)  6.8 7.0 7.2 7.0 5.7 5.7 5.8 8.0 7.7 
Biosolids compost (B)  4.8 7.0 7.0 7.0 5.3 5.8 5.7 7.3 5.7 
Yard trim compost (P)  4.5 6.7 7.3 6.8 5.2 5.5 5.7 6.5 4.7 
1 cm Biosolids compost 
(BE) 

 
8.3 7.0 7.5 7.5 6.0 6.0 5.9 8.0 8.0 

1cm Yard trim compost 
(PE) 

 
5.2 6.8 7.3 6.8 5.5 5.2 5.7 6.7 5.7 

 Contrast 
Contrast df P 
C VS F  10 *** * NS NS NS NS NS *** *** 
C VS B 10 NS† * NS NS NS * NS *** ** 
C VS P 10 NS NS NS NS NS NS NS * NS 
C VS BE 10 *** * NS ** NS ** NS *** *** 
C VS PE 10 * NS NS NS NS NS NS * ** 
*  Significant at the 0.05 probability level. 
** Significant at the 0.01 probability level. 
*** Significant at the 0.001 probability level. 
† NS, nonsignificant. 
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Table 5. Comparison of non-cultivated nitrogen source treatments with control on tall 
fescue color at the Paint Branch Turfgrass Research Facility in 2013. 
 
 Color (1-9) 
  Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. 
N Treatment           
Control (C)  2.7 7.3 6.5 6.0 5.8 6.3 5.5 7.0 6.7 
Synthetic fertilizer (F)  4.8 7.7 6.5 6.3 6.3 6.2 5.7 7.5 8.2 
Biosolids compost (B)  3.3 7.8 6.7 6.2 6.0 6.3 6.0 6.7 7.2 
Yard trim compost (P)  3.5 7.8 6.8 6.2 6.0 6.3 5.2 6.8 6.8 
1 cm Biosolids compost 
(BE) 

 
6.9 7.3 6.3 6.8 6.5 7.5 6.8 7.2 8.3 

1cm Yard trim compost 
(PE) 

 
4.3 7.7 6.8 6.2 6.2 6.5 6.0 6.7 7.3 

 Contrast 
Contrast df P 
C VS F  10 *** NS NS NS NS NS NS NS *** 
C VS B 10 NS† NS NS NS NS NS NS NS NS 
C VS P 10 * NS NS NS NS NS NS NS NS 
C VS BE 10 *** NS NS ** * * * NS *** 
C VS PE 10 *** NS NS NS NS NS NS NS * 
*  Significant at the 0.05 probability level. 
** Significant at the 0.01 probability level. 
*** Significant at the 0.001 probability level. 
† NS, nonsignificant. 
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Table 6. Comparison of non-cultivated nitrogen source treatments with control on tall 
fescue color at the Paint Branch Turfgrass Research Facility in 2014. 
 
 Color (1-9) 
  Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. 
N Treatment           
Control (C)  4.2 6.7 6.7 6.5 7.2 6.5 7.3 6.3 4.7 
Synthetic fertilizer (F)  5.0 7.7 6.7 5.8 6.8 6.4 7.1 6.7 4.3 
Biosolids compost (B)  4.0 6.8 6.9 6.1 7.4 6.3 7.3 6.7 4.8 
Yard trim compost (P)  4.2 7.0 6.9 6.7 7.1 6.3 7.3 6.0 4.6 
1 cm Biosolids compost 
(BE) 

 
6.8 7.7 6.9 6.6 7.7 6.7 7.9 7.3 5.1 

1cm Yard trim compost 
(PE) 

 
4.7 7.0 6.8 6.4 7.1 6.6 7.5 6.6 4.9 

 Contrast 
Contrast df P 
C VS F  10 * ** NS NS NS NS NS NS NS 
C VS B 10 NS† NS NS NS NS NS NS NS NS 
C VS P 10 NS NS NS NS NS NS NS NS NS 
C VS BE 10 *** ** NS NS NS NS * * NS 
C VS PE 10 NS NS NS NS NS NS NS NS NS 
*  Significant at the 0.05 probability level. 
** Significant at the 0.01 probability level. 
*** Significant at the 0.001 probability level. 
† NS, nonsignificant. 
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Table 7. Effect of nitrogen source, cultivation on tall fescue color at Glenstone in 2012. 
 
 Color (1-9) 
  Mar. Apr. May. Jul. Aug. Sep. Oct. Nov. 
N source (N)          
Synthetic fertilizer   7.6a† 7.2a 7.3a 5.2 5.5 6.1 8.0a 7.3 
Biosolids compost   5.4b 6.2b 6.6b 5.6 5.6 6.5 6.7b 6.9 
Yard trim compost   5.2b 5.6b 6.1b 5.6 5.4 6.0 5.9b 6.7 
          
Cultivation (C)          
0  5.6a 6.4 6.3 5.7 5.6 6.3 6.9 6.8 
1  6.2b 6.2 6.8 5.3 5.4 6.1 6.9 7.1 
2  6.4b 6.4 6.8 5.3 5.5 6.2 6.8 7.0 
 ANOVA 
Source of variation df P 
N 2 *** ** *** NS NS NS *** NS 
C 2 ** NS NS NS NS NS NS NS 
N×C 4 NS‡ NS NS NS NS NS NS NS 
*   Significant at the 0.05 probability level. 
** Significant at the 0.01 probability level. 
*** Significant at the 0.001 probability level. 
† Within columns, means followed by the same letter are not significantly different 
according to Tukey’s honestly significantly different test (P ≤ 0.05). 
‡ NS, nonsignificant. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 123 
 



 

Table 8. Effect of nitrogen source, cultivation and compost tea on tall fescue color at 
Glenstone in 2013. 
 
  Color (1-9) 
  Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. 
N source (N)           
Synthetic fertilizer   5.1a 7.4a 7.6 6.3 6.1 7.3 7.6 7.7a† 7.7a 
Biosolids compost   4.4b 7.2ab 7.4 6.5 6.3 7.4 7.6 7.6b 7.2b 
Yard trim compost   4.5b 7.1b 7.5 6.6 6.2 7.1 7.4 7.6b 7.2b 
           
Cultivation (C)           
0  4.1a 7.4 7.5 6.3 6.3 7.3 7.5 7.7a 7.3 
1  4.8b 7.2 7.5 6.5 6.2 7.3 7.6 7.5b 7.4 
2  5.1b 7.1 7.5 6.6 6.1 7.2 7.5 7.6ab 7.4 
           
Compost tea           
No  4.7 7.2 7.5 6.5 6.2 7.2 7.5 7.6 7.4 
Yes  4.6 7.2 7.5 6.5 6.2 7.2 7.5 7.6 7.4 
 ANOVA 
Source of variation df P 
N 2 ** * NS NS NS NS NS * *** 
C 2  ** NS NS NS NS NS NS ** NS 
N×C 4   NS‡ *§ NS NS NS NS **§ NS NS 
T 1 NS NS NS NS NS NS NS NS NS 
N×T 2 NS NS NS NS NS NS NS NS NS 
C×T 2 NS NS NS NS NS NS NS NS NS 
N×C×T 4 NS NS NS NS NS NS NS NS NS 
*  Significant at the 0.05 probability level. 
** Significant at the 0.01 probability level. 
*** Significant at the 0.001 probability level. 
† Within columns, means followed by the same letter are not significantly different 
according to Tukey’s honestly significantly different test (P ≤ 0.05). 
‡ NS, nonsignificant. 
§ Nitrogen source by cultivation interactions for various dates are shown in Figure 2.and 
Figure 3. (Appendix B). 
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Table 9. Effect of nitrogen source, cultivation and compost tea on tall fescue color at 
Glenstone in 2014. 
 
  Color (1-9) 
  Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. 
N source (N)           
Synthetic fertilizer   6.4 7.8a 7.4a 5.2 3.2 7.5 7.4 7.8 8.0 
Biosolids compost   6.2 7.4b 7.0b 5.4 3.2 7.7 7.3 7.6 7.8 
Yard trim compost   6.1 7.3b 7.0b 5.5 3.3 7.5 7.2 7.8  7.9 
           
Cultivation (C)           
0  6.0a 7.4 7.2 5.4 3.1 7.6 7.2 7.6 7.9 
1  6.2ab 7.6 7.1 5.3 3.3 7.6 7.3 7.8 7.9 
2  6.4b 7.5 7.1 5.4 3.3 7.6 7.4 7.8 7.8 
           
Compost tea           
No  6.2 7.5 7.1 5.4 3.2 7.6 7.3 7.7 7.8 
Yes  6.2 7.5 7.1 5.3 3.2 7.6 7.3 7.7 7.9 
 ANOVA 
Source of variation df P 
N 2  NS‡ *** *** NS NS NS NS NS NS 
C 2 *   NS NS NS NS NS NS NS NS 
N×C 4 NS NS NS NS NS NS NS NS NS 
T 1 NS NS NS NS NS NS NS NS NS 
N×T 2 NS NS NS NS NS NS NS NS NS 
C×T 2 NS NS NS NS NS NS NS NS NS 
N×C×T 4 NS NS NS NS NS NS NS NS NS 
*  Significant at the 0.05 probability level. 
** Significant at the 0.01 probability level. 
*** Significant at the 0.001 probability level. 
† Within columns, means followed by the same letter are not significantly different 
according to Tukey’s honestly significantly different test (P ≤ 0.05). 
‡ NS, nonsignificant. 
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Table 10. Comparison of non-cultivated nitrogen source treatments with control on tall 
fescue color at Glenstone in 2012. 
 
 Color (1-9) 
  Mar. Apr. May. Jul. Aug. Sep. Oct. Nov. 
N Treatment          
Control (C)  4.0 5.7 5.5 4.3 5.2 6.1 5.3 6.2 
Synthetic fertilizer (F)  7.3 7.2 7.0 5.7 5.2 5.6 8.0 7.2 
Biosolids compost (B)  5.0 6.2 6.2 5.7 6.0 7.0 6.7 6.7 
Yard trim compost (P)  4.5 5.8 5.8 5.7 5.5 6.3 6.0 6.5 
1 cm Biosolids compost 
(BE) 

 
6.8 6.8 6.5 6.0 5.0 6.3 8.0 6.7 

1cm Yard trim compost 
(PE) 

 
4.7 4.7 5.2 4.5 5.5 6.0 6.7 6.8 

 Contrast 
Contrast df P 
C VS F  10 *** NS ** * NS NS *** NS 
C VS B 10   NS† NS NS * NS NS * NS 
C VS P 10 NS NS NS * NS NS NS NS 
C VS BE 10 *** NS NS ** NS NS *** NS 
C VS PE 10 NS NS NS NS NS NS * NS 
*  Significant at the 0.05 probability level. 
** Significant at the 0.01 probability level. 
*** Significant at the 0.001 probability level. 
† NS, nonsignificant. 
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Table 11. Comparison of non-cultivated nitrogen source treatments with control on tall 
fescue color at Glenstone in 2013. 
 
 Color (1-9) 
  Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. 
N Treatment           
Control (C)  4.3 7.2 7.3 6.5 6.0 7.0 7.5 7.5 7.0 
Synthetic fertilizer (F)  4.3 7.7 7.5 6.2 6.2 7.2 7.3 7.8 7.5 
Biosolids compost (B)  4.2 7.2 7.5 6.3 6.5 7.6 7.7 7.7 7.2 
Yard trim compost (P)  3.9 7.3 7.4 6.5 6.2 7.1 7.5 7.7 7.2 
1 cm Biosolids compost 
(BE) 

 
5.8 7.0 7.7 6.4 6.5 7.4 7.8 7.7 7.5 

1cm Yard trim compost 
(PE) 

 
4.8 6.8 7.5 6.3 6.0 7.0 7.5 7.7 7.2 

 Contrast 
Contrast df P 
C VS F  10   NS† NS NS NS NS NS NS NS * 
C VS B 10 NS NS NS NS ** * NS NS NS 
C VS P 10 NS NS NS NS NS NS NS NS NS 
C VS BE 10 ** NS NS NS ** NS NS NS * 
C VS PE 10 NS NS NS NS NS NS NS NS NS 
*  Significant at the 0.05 probability level. 
** Significant at the 0.01 probability level. 
*** Significant at the 0.001 probability level. 
†NS, nonsignificant. 
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Table 12. Comparison of non-cultivated nitrogen source treatments with control on tall 
fescue color at Glenstone in 2014. 
 
 Color (1-9) 
  Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. 
N Treatment           
Control (C)  5.5 7.3 7.1 5.2 2.4 7.3 7.3 7.7 8.0 
Synthetic fertilizer (F)  6.5 7.6 7.5 5.4 3.1 7.4 7.3 7.7 8.0 
Biosolids compost (B)  5.8 7.3 7.0 5.4 3.3 7.8 7.3 7.5 7.8 
Yard trim compost (P)  5.7 7.3 7.0 5.5 3.0 7.5 7.0 7.6 7.8 
1 cm Biosolids compost 
(BE) 

 
6.8 7.7 7.2 5.3 2.9 7.4 7.3 7.8 7.8 

1cm Yard trim compost 
(PE) 

 
6.5 7.5 7.2 5.2 3.3 7.7 7.3 7.8 8.0 

 Contrast 
Contrast df P 
C VS F  10 ** NS * NS NS NS NS NS NS 
C VS B 10 NS† NS NS NS NS * NS NS NS 
C VS P 10 NS NS NS NS NS NS NS NS NS 
C VS BE 10 *** NS NS NS NS NS NS NS NS 
C VS PE 10 ** NS NS NS NS NS NS NS NS 
*  Significant at the 0.05 probability level. 
** Significant at the 0.01 probability level. 
*** Significant at the 0.001 probability level. 
† NS, nonsignificant. 
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Table 13. Effect of nitrogen source, cultivation on tall fescue quality at the Paint Branch 
Turfgrass Research Facility in 2012. 
 
 Quality (1-9) 
  Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. 
N source (N)           
Synthetic fertilizer   6.6a† 7.4 7.4 7.2 5.9a 5.2a 5.4a 7.1a 7.4a 
Biosolids compost   5.0b 5.6 7.1 6.9 5.5ab 4.8b 4.6b 6.0b 5.8b 
Yard trim compost   4.1c 4.4 6.7 6.6 5.3b 4.7b 4.6b 4.6c 4.3c 
           
Cultivation (C)           
0  5.7a 6.4 7.3 7.0 5.3a 4.6a 4.7 5.8 5.7 
1  5.3ab 5.8 6.9 6.9 5.8b 5.1b 5.1 6.1 5.9 
2  4.8b 5.2 6.9 6.8 5.6ab 5.1b 4.9 5.8 5.8 
 ANOVA 
Source of variation df P 
N 2 *** *** NS NS ** ** ** *** *** 
C 2 ** *** NS NS * ** NS NS NS 
N×C 4 NS‡ *§ NS NS NS NS NS NS NS 
*  Significant at the 0.05 probability level. 
** Significant at the 0.01 probability level. 
*** Significant at the 0.001 probability level. 
† Within columns, means followed by the same letter are not significantly different 
according to Tukey’s honestly significantly different test (P ≤ 0.05). 
‡ NS, nonsignificant. 
§ Nitrogen source by cultivation interaction is shown in Figure 4. (Appendix B). 
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Table 14.  Effect of nitrogen source, cultivation and compost tea on tall fescue quality at 
the Paint Branch Turfgrass Research Facility in 2013. 
 
 Quality (1-9) 
  Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. 
N source (N)           
Synthetic fertilizer  4.8a† 7.3a 7.6a 6.8a 5.8 4.1a 3.8a 5.6a 5.6a 
Biosolids compost  3.7b 4.5b 6.1b 5.2b 4.0 3.2b 2.5b 3.6b 3.3b 
Yard trim compost  3.3b 3.6c 4.5c 4.6b 3.5 3.3ab 2.2b 2.9b 2.7b 
           
Cultivation (C)           
0  3.9 5.3 5.9 5.7 4.4 3.5 3.0 4.3 4.1 
1  4.0 5.2 6.4 5.8 4.6 3.6 2.8 4.2 3.8 
2  3.9 4.9 5.8 5.1 4.3 3.5 2.8 3.7 3.6 
           
Compost tea           
No  3.9 5.1 6.0a 5.5 4.4 3.5 2.8 4.0 3.8 
Yes  3.9 5.2 6.1b 5.6 4.5 3.6 2.9 4.1 3.9 
 ANOVA 
Source of variation df P 
N 2 *** *** *** *** *** * *** *** *** 
C 2   NS‡ NS NS NS NS NS NS NS NS 
N×C 4 NS NS NS NS NS NS NS NS NS 
T 1 NS NS * NS NS NS NS NS NS 
N×T 2 NS NS NS NS **§ NS NS NS NS 
C×T 2 NS NS NS NS NS NS NS NS NS 
N×C×T 4 NS NS NS NS NS NS NS NS NS 
*  Significant at the 0.05 probability level. 
** Significant at the 0.01 probability level. 
*** Significant at the 0.001 probability level. 
† Within columns, means followed by the same letter are not significantly different 
according to Tukey’s honestly significantly different test (P ≤ 0.05). 
‡ NS, nonsignificant. 
§ Nitrogen source by compost tea interaction is shown in Figure 5. (Appendix B). 
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Table 15.  Effect of nitrogen source, cultivation and compost tea on tall fescue quality at 
the Paint Branch Turfgrass Research Facility in 2014. 
 
  Quality (1-9) 
  Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. 
N source (N)           
Synthetic fertilizer  4.9a† 4.6a 4.6a 2.8a 4.3a 3.8a 4.1a 4.7a 3.3a 
Biosolids compost  3.2b 2.8b 3.2b 2.6ab 2.7b 2.3b 2.3b 3.0b 2.8b 
Yard trim compost  2.8b 2.7b 3.4b 2.3b 2.7b 2.3b 2.8b 3.4b 2.7b 
           
Cultivation (C)           
0  3.8 3.4 3.9 2.5 3.3 2.8 3.2 3.8 2.8 
1  3.6 3.3 3.8 2.7 3.4 2.8 3.2 3.8 2.9 
2  3.6 3.4 3.5 2.6 3.1 2.7 2.8 3.6 3.0 
           
Compost tea           
No  3.6 3.4 3.7 2.6 3.2 2.8 2.9 3.7 2.9 
Yes  3.6 3.4 3.7 2.6 3.3 2.8 3.1 3.8 2.9 
 ANOVA 
Source of variation df P 
N 2 *** *** *** * *** *** *** *** ** 
C 2  NS‡ NS NS NS NS NS NS NS NS 
N×C 4 NS NS NS NS NS NS NS NS NS 
T 1 NS NS NS NS NS NS NS NS NS 
N×T 2 NS NS NS NS NS NS NS NS NS 
C×T 2 NS NS NS NS NS NS NS NS NS 
N×C×T 4 NS NS NS NS NS NS NS NS NS 
*  Significant at the 0.05 probability level. 
** Significant at the 0.01 probability level. 
*** Significant at the 0.001 probability level. 
† Within columns, means followed by the same letter are not significantly different 
according to Tukey’s honestly significantly different test (P ≤ 0.05). 
‡ NS, nonsignificant. 
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Table 16. Comparison of non-cultivated nitrogen source treatments with control on tall 
fescue quality at the Paint Branch Turfgrass Research Facility in 2012. 
 
 Quality (1-9) 
  Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. 
N Treatment           
Control (C)  4.7 5.0 6.5 6.2 4.8 4.2 4.2 3.5 3.5 
Synthetic fertilizer (F)  6.7 7.7 7.5 7.5 5.7 4.7 5.0 7.2 7.3 
Biosolids compost (B)  5.5 6.5 7.3 7.0 5.2 4.5 4.3 5.7 5.5 
Yard trim compost (P)  4.8 5.2 7.0 6.5 5.0 4.5 4.8 4.7 4.3 
1 cm Biosolids compost 
(BE) 

 
7.0 7.2 7.7 7.7 6.0 5.2 5.6 6.8 7.2 

1cm Yard trim compost 
(PE) 

 
4.7 5.0 6.8 6.7 5.2 4.3 4.4 4.8 5.0 

 Contrast 
Contrast df P 
C VS F  10 *** *** * * * * NS *** *** 
C VS B 10 * ** * NS NS NS NS *** *** 
C VS P 10 NS† NS NS NS NS NS NS * NS 
C VS BE 10 *** *** ** ** ** *** ** *** *** 
C VS PE 10 NS NS NS NS NS NS NS * ** 
*  Significant at the 0.05 probability level. 
** Significant at the 0.01 probability level. 
*** Significant at the 0.001 probability level. 
† NS, nonsignificant. 
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Table 17. Comparison of non-cultivated nitrogen source treatments with control on tall 
fescue quality at the Paint Branch Turfgrass Research Facility in 2013. 
 
 Quality (1-9) 
  Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. 
N Treatment           
Control (C)  2.8 3.0 4.1 4.5 3.3 2.7 2.0 2.8 2.3 
Synthetic fertilizer (F)  4.8 7.7 7.5 7.1 5.8 4.4 4.0 6.1 6.3 
Biosolids compost (B)  3.8 4.4 6.0 5.6 4.2 2.9 2.8 4.1 3.3 
Yard trim compost (P)  3.2 3.8 4.3 4.4 3.3 3.1 2.2 2.8 2.6 
1 cm Biosolids compost 
(BE) 

 
6.2 7.3 7.7 7.1 6.8 5.0 5.4 5.8 6.2 

1cm Yard trim compost 
(PE) 

 
3.7 3.8 5.5 5.5 4.4 3.1 2.7 3.5 3.4 

 Contrast 
Contrast df P 
C VS F  10 *** *** *** ** * ** *** *** *** 
C VS B 10   NS† *** * NS NS NS NS NS * 
C VS P 10 NS * NS NS NS NS NS NS NS 
C VS BE 10 *** *** *** ** ** *** *** ** *** 
C VS PE 10 NS * NS NS NS NS NS NS * 
*  Significant at the 0.05 probability level. 
** Significant at the 0.01 probability level. 
*** Significant at the 0.001 probability level. 
† NS, nonsignificant. 
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Table 18. Comparison of non-cultivated nitrogen source treatments with control on tall 
fescue quality at the Paint Branch Turfgrass Research Facility in 2014. 
 
 Quality (1-9) 
  Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. 
N Treatment           
Control (C)  2.7 2.3 2.3 2.3 2.6 2.1 2.5 2.6 3.1 
Synthetic fertilizer (F)  5.2 4.5 4.8 2.8 4.3 3.6 4.3 5.0 3.3 
Biosolids compost (B)  3.3 3.2 3.3 2.6 2.8 2.5 2.6 3.2 2.6 
Yard trim compost (P)  2.8 2.5 3.7 2.2 2.9 2.3 2.8 3.1 2.7 
1 cm Biosolids compost 
(BE) 

 
5.8 5.6 5.8 3.2 5.8 4.4 4.8 6.2 4.2 

1cm Yard trim compost 
(PE) 

 
3.0 3.0 3.4 2.5 3.2 3.0 3.5 4.3 3.5 

 Contrast 
Contrast df P 
C VS F  10 *** *** *** NS ** ** * ** NS 
C VS B 10   NS† NS * NS NS NS NS NS NS 
C VS P 10 NS NS * NS NS NS NS NS NS 
C VS BE 10 *** *** *** ** *** *** ** *** * 
C VS PE 10 NS NS * NS NS NS NS * NS 
*  Significant at the 0.05 probability level. 
** Significant at the 0.01 probability level. 
*** Significant at the 0.001 probability level. 
† NS, nonsignificant. 
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Table 19. Effect of nitrogen source, cultivation on tall fescue quality at Glenstone in 
2012. 
 
 Quality (1-9) 
  Mar. Apr. May. Jul. Aug. Sep. Oct. Nov. 
N source (N)          
Synthetic fertilizer   5.5 6.8a 7.1a 5.6 5.6 5.6 7.6a 6.9a 
Biosolids compost   4.9 5.3b 5.4b 5.4 5.6 5.1 6.3b 5.9b 
Yard trim compost   4.8 5.0b 5.1b 5.1 4.6 5.1 4.3c 5.1b 
          
Cultivation (C)          
0  5.8a† 6.4a 6.3 5.7 5.6 5.4 6.6 6.6a 
1  4.8ab 5.4b 5.7 5.2 5.0 5.3 6.0 5.8ab 
2  4.6b 5.3b 5.7 5.2 5.1 5.1 5.6 5.6b 
 ANOVA 
Source of variation df P 
N 2  NS‡ *** *** NS NS NS *** *** 
C 2 * * NS NS NS NS NS * 
N×C 4 NS NS NS NS NS NS NS NS 
*  Significant at the 0.05 probability level. 
** Significant at the 0.01 probability level. 
*** Significant at the 0.001 probability level. 
† Within columns, means followed by the same letter are not significantly different 
according to Tukey’s honestly significantly different test (P ≤ 0.05). 
‡ NS, nonsignificant. 
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Table 20. Effect of nitrogen source, cultivation and compost tea on tall fescue quality at 
Glenstone in 2013. 
 
  Quality (1-9) 
  Mar. Apr. May. Jun. Jul. Aug

. 
Sep. Oct. Nov. 

N source (N)           
Synthetic fertilizer   4.9a† 7.2a 6.9a 4.7a 5.4 5.1 6.4 6.8 6.9 
Biosolids compost   4.0b 6.5ab 6.1ab 4.1ab 4.9 4.6 5.7 6.5 6.3 
Yard trim compost   3.7bc 5.7b 5.2b 3.2b 4.9 4.3 5.6 6.1 6.0 
           
Cultivation (C)           
0  4.3 6.7 6.3 4.3 5.6 5.1 6.4 6.6 6.6 
1  4.1 6.2 6.0 3.9 4.7 4.7 5.9 6.7 6.4 
2  4.3 6.4 5.9 3.9 4.9 4.3 5.3 6.1 6.1 
           
Compost tea           
No  4.2 6.5 6.1 4.0 5.0 4.7 5.9 6.4a 6.4 
Yes  4.2 6.4 6.0 4.0 5.1 4.7 5.9 6.5b 6.4 
 ANOVA 
Source of variation df P 
N 2 *** ** * * NS NS NS NS NS 
C 2   NS‡ NS NS NS NS NS NS NS NS 
N×C 4 NS NS NS NS NS NS NS NS NS 
T 1 NS NS NS NS NS NS NS * NS 
N×T 2 NS NS NS NS NS NS NS   *§ NS 
C×T 2 NS NS NS NS NS NS NS NS NS 
N×C×T 4 NS NS NS NS NS NS NS NS NS 
*  Significant at the 0.05 probability level. 
** Significant at the 0.01 probability level. 
*** Significant at the 0.001 probability level. 
† Within columns, means followed by the same letter are not significantly different 
according to Tukey’s honestly significantly different test (P ≤ 0.05). 
‡ NS, nonsignificant. 
§ Nitrogen source by compost tea interaction is shown in Figure 3.7. 
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Table 21. Effect of nitrogen source, cultivation and compost tea on tall fescue quality at 
Glenstone in 2014. 
 
  Quality (1-9) 
  Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. 
N source (N)           
Synthetic fertilizer   5.3 6.6 6.4 3.9 2.8 6.6 6.0 6.7 7.3 
Biosolids compost   5.4 6.1 5.5 3.8 2.9 5.9 5.1 6.1 6.9 
Yard trim compost   5.1 5.7 5.4 3.5 2.3 5.6 4.8 6.2 6.6 
           
Cultivation (C)           
0  5.6 6.5 6.1 3.8 2.6 6.3 5.5 6.6 6.9 
1  5.2 6.2 5.8 3.7 2.7 6.2 5.3 6.5 7.1 
2  5.0 5.7 5.6 3.8 2.7 5.6 5.1 5.9 6.8 
           
Compost tea           
No  5.3 6.1 5.8 3.8 2.6 6.1 5.3 6.3 6.9 
Yes  5.3 6.1 5.8 3.7 2.7 5.9 5.3 6.3 6.9 
 ANOVA 
Source of variation df P 
N 2   NS‡ NS NS NS NS NS NS NS NS 
C 2 NS NS NS NS NS NS NS NS NS 
N×C 4  *§ NS NS NS NS NS NS NS NS 
T 1 NS NS NS NS NS NS NS NS NS 
N×T 2 NS *¶ NS NS NS NS NS NS NS 
C×T 2 NS *# NS NS NS NS NS NS NS 
N×C×T 4 NS NS NS NS NS NS NS NS NS 
*  Significant at the 0.05 probability level. 
** Significant at the 0.01 probability level. 
*** Significant at the 0.001 probability level. 
† Within columns, means followed by the same letter are not significantly different 
according to Tukey’s honestly significantly different test (P ≤ 0.05). 
‡ NS, nonsignificant. 
§ Nitrogen source by cultivation interaction is shown in Figure 6. (Appendix B). 
¶ Nitrogen source by compost tea interaction is shown in Figure 3.7. 
# Cultivation by compost tea interaction is shown in Figure 7. (Appendix B). 
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Table 22. Comparison of non-cultivated nitrogen source treatments with control on tall 
fescue quality at Glenstone in 2012. 
 
 Quality (1-9) 
  Mar. Apr. May. Jul. Aug. Sep. Oct. Nov. 
N Treatment          
Control (C)  5.2 6.0 5.0 4.8 5.0 5.4 4.0 4.3 
Synthetic fertilizer (F)  6.5 7.2 7.0 5.7 5.5 5.2 7.5 7.0 
Biosolids compost (B)  5.2 6.2 6.0 5.7 6.0 5.3 7.2 6.5 
Yard trim compost (P)  5.7 5.8 5.8 5.7 5.3 5.7 5.0 6.2 
1 cm Biosolids compost 
(BE) 

 
6.3 6.8 6.7 6.2 6.5 5.9 8.0 6.5 

1cm Yard trim compost 
(PE) 

 
5.2 4.5 5.5 5.2 5.3 5.3 5.5 5.5 

 Contrast 
Contrast df P 
C VS F  10 * NS ** NS NS NS *** ** 
C VS B 10   NS† NS NS NS NS NS *** * 
C VS P 10 NS NS NS NS NS NS NS * 
C VS BE 10 * NS * * NS NS *** * 
C VS PE 10 NS NS NS NS NS NS NS NS 
*  Significant at the 0.05 probability level. 
** Significant at the 0.01 probability level. 
*** Significant at the 0.001 probability level. 
† NS, nonsignificant. 
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Table 23. Comparison of non-cultivated nitrogen source treatments with control on tall 
fescue quality at Glenstone in 2013. 
 
 Quality (1-9) 
  Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. 
N Treatment           
Control (C)  3.8 5.8 5.1 3.4 4.9 4.3 5.0 6.3 5.3 
Synthetic fertilizer (F)  4.8 7.1 6.6 4.3 5.9 4.8 5.8 6.2 6.7 
Biosolids compost (B)  4.3 6.7 6.5 4.8 5.2 5.5 6.5 6.8 6.7 
Yard trim compost (P)  3.9 6.4 5.9 3.6 5.6 5.0 6.8 6.8 6.6 
1 cm Biosolids compost 
(BE) 

 
5.4 7.2 7.3 5.6 6.2 5.5 6.8 7.7 7.3 

1cm Yard trim compost 
(PE) 

 
4.3 6.5 6.2 4.0 5.7 5.0 5.5 6.3 6.5 

 Contrast 
Contrast df P 
C VS F  10   NS† NS * NS NS NS NS NS NS 
C VS B 10 NS NS NS NS NS * NS NS NS 
C VS P 10 NS NS NS NS NS NS * NS NS 
C VS BE 10 * NS ** * * * * NS * 
C VS PE 10 NS NS NS NS NS NS NS NS NS 
*  Significant at the 0.05 probability level. 
** Significant at the 0.01 probability level. 
*** Significant at the 0.001 probability level. 
† NS, nonsignificant. 
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Table 24. Comparison of non-cultivated nitrogen source treatments with control on tall 
fescue quality at Glenstone in 2014. 
 
 Quality (1-9) 
  Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. 
N Treatment           
Control (C)  4.8 5.8 5.1 2.7 1.8 5.3 4.4 5.8 6.2 
Synthetic fertilizer (F)  5.2 6.3 6.0 3.4 2.3 6.0 5.7 6.3 7.2 
Biosolids compost (B)  6.2 6.5 5.8 4.3 3.4 6.4 5.4 6.7 6.8 
Yard trim compost (P)  5.5 6.8 6.6 3.7 2.2 6.5 5.3 6.8 6.8 
1 cm Biosolids compost 
(BE) 

 
5.3 6.8 7.2 4.4 2.6 6.6 6.2 7.4 7.3 

1cm Yard trim compost 
(PE) 

 
4.8 5.8 6.0 3.8 2.7 5.3 5.3 6.5 6.9 

 Contrast 
Contrast df P 
C VS F  10   NS† NS NS NS NS NS NS NS NS 
C VS B 10 * NS NS * * NS NS NS NS 
C VS P 10 NS NS NS NS NS NS NS NS NS 
C VS BE 10 NS NS * * NS NS NS NS NS 
C VS PE 10 NS NS NS NS NS NS NS NS NS 
*  Significant at the 0.05 probability level. 
** Significant at the 0.01 probability level. 
*** Significant at the 0.001 probability level. 
† NS, nonsignificant. 
 

 

 140 
 



 

Table 25. Effect of nitrogen source, cultivation and compost tea on weed encroachment at the Paint Branch Turfgrass Research 
Facility. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 Weed Encroachment (0-100%) 
  2012 2013 2014 
  Jul. Oct. Nov. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. 
N source (N)             
Synthetic fertilizer   1.7a† 4.6a 2.8 19.6 2.8a 3.2 6.9a 14.1a 22.7a 7.7 1.9a 
Biosolids compost   3.5ab 18.2b 5.2 34.4 13.6b 13.3 26.4b 47.9b 53.3b 23.6 6.9b 
Yard trim compost   5.4b 28.0c 8.3 30.9 18.6b 17.4 26.9b 46.4b 43.3b 19.9 5.5ab 
             
Cultivation (C)             
0  5.4a 16.7 3.8 28.7 7.4 10.1 17.3 35.4 35.9 14.4 4.6 
1  2.6b 16.2 5.9 26.4 13.8 11.3 20.4 35.4 41.2 18.8 4.2 
2  2.6b 17.9 6.5 29.8 13.8 12.6 22.5 37.5 42.2 18.0 5.5 
             
Compost tea             
No  N/A§ 16.8 6.6a 28.5 13.0 12.2 22.4 37.2 42.6a 20.1 5.8 
Yes  N/A 17.0 4.2b 28.1 10.3 10.4 17.7 35.0 37.0b 14.0 3.8 
 ANOVA 
Source of variation df   P 
N 2 * *** NS NS ** ** *** *** *** ** * 
C 2 * NS NS NS NS NS NS NS NS NS NS 
N×C 4 NS‡ NS NS NS NS NS NS NS NS NS NS 
T 1 N/A NS * NS NS NS NS NS * NS NS 
N×T 2 N/A NS NS NS NS *¶ NS NS NS *¶ NS 
C×T 2 N/A NS NS NS NS NS NS NS NS NS NS 
N×C×T 4 N/A NS NS NS NS NS NS NS NS NS NS 
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*  Significant at the 0.05 probability level. 
** Significant at the 0.01 probability level. 
*** Significant at the 0.001 probability level. 
† Within columns, means followed by the same letter are not significantly different according to Tukey’s honestly significantly 
different test (P ≤ 0.05). 
‡ NS, nonsignificant. 
§ N/A, not applicable 
¶ Nitrogen source by compost tea interactions for various dates are shown in Figure 3.9. 
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Table 26. Effect of nitrogen source, cultivation and compost tea on weed encroachment at Glenstone. 
 

*   Significant at the 0.05 probability level. 
** Significant at the 0.01 probability level. 

 Weed Encroachment (0-100%) 
  2012 2013 2014 
  Sep. Oct. May. Oct. Nov. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. 
N source (N)               
Synthetic fertilizer  3.2 6.0a† 28.0 3.0 1.8 3.3 2.3 1.7 1.5 2.2 1.9 2.6 0.4 
Biosolids compost  4.4 15.6ab 13.0 6.0 5.6 7.2 6.2 5.5 2.7 7.2 7.0 4.7 2.1 
Yard trim compost  6.2     25.0b 6.3 11.7 9.7 10.2 10.0 9.4 9.1 9.8 8.3 4.5 2.1 
               
Cultivation (C)               
0  3.6      11.7 10.6 5.7 4.2 4.8 4.0 2.4 1.8 3.2 2.9 3.4 1.3 
1  5.0 18.2 18.1 7.9 6.9 2.4 6.1 7.2 5.8 7.0 5.6 3.8 1.0 
2  5.3     16.7 18.7 7.1 6.1 13.6 8.3 7.0 5.8 9.1 8.8 4.7 2.2 
               
Compost tea               
No  N/A§ N/A N/A 6.9 5.3 6.2 6.0 5.3 4.0 5.5 5.4 3.2 1.2 
Yes  N/A N/A N/A 6.9 6.1 7.6 6.2 5.7 4.9 7.3 6.1 4.7 1.8 
 ANOVA 
Source of variation df P 
N 2   NS‡ ** NS NS NS NS NS NS NS NS NS NS NS 
C 2 NS NS NS NS NS NS NS NS NS NS NS NS NS 
N×C 4 NS NS NS NS NS NS NS NS NS NS NS NS NS 
T 1 N/A N/A NS NS NS NS NS NS NS NS NS NS NS 
N×T 2 N/A N/A NS NS NS NS NS NS NS NS NS NS NS 
C×T 2 N/A N/A NS NS NS NS NS NS NS NS NS NS NS 
N×C×T 4 N/A N/A NS NS NS NS NS NS NS NS NS NS NS 
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† Within columns, means followed by the same letter are not significantly different according to Tukey’s honestly significantly 
different test (P ≤ 0.05). 
‡ NS, nonsignificant. 
§ N/A, not applicable 
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Table 27. Comparison of non-cultivated nitrogen source treatments with control on weed encroachment at the Paint Branch Turfgrass 
Research Facility.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

*  Significant at the 0.05 probability level. 
** Significant at the 0.01 probability level. 
*** Significant at the 0.001 probability level. 
† NS, nonsignificant. 
 
 
 

 Weed Encroachment (0-100%) 
  2012 2013 2014 
  Jul. Oct. Nov. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. 
N Treatment             
Control (C)  8.0 29.0 22.5 41.7 36.7 43.3 39.2 54.2 52.5 35.8 6.9 
Synthetic fertilizer (F)  2.3 4.3 2.2 21.7 3.5 3.9 6.2 16.7 18.7 6.7 1.7 
Biosolids compost (B)  5.8 15.0 3.5 31.7 8.5 14.0 23.3 43.8 45.8 19.8 7.0 
Yard trim compost (P)  8.0 30.7 5.8 32.7 10.2 12.5 22.3 45.8 43.3 16.8 5.2 
1 cm Biosolids compost 
(BE) 

 
1.5 1.3 1.3 7.8 1.3 3.2 2.7 9.2 8.8 2.7 1.7 

1cm Yard trim compost 
(PE) 

 
5.8 6.7 16.7 38.3 14.2 23.8 21.7 27.2 30.0 8.3 3.4 

             
 Contrast 
Contrast df   P 
C VS F  10 * ** * NS *** ** *** * * *** NS 
C VS B 10  NS† NS * NS ** * * NS NS * NS 
C VS P 10 NS NS * NS ** ** ** NS NS ** NS 
C VS BE 10 ** ** * * *** ** *** ** * *** NS 
  10 NS * NS NS ** NS ** NS NS *** NS 
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Table 28. Comparison of non-cultivated nitrogen source treatments with control on weed encroachment at Glenstone.  
 

* Significant at the 0.05 probability level.  
† NS, nonsignificant. 

 Weed Encroachment (0-100%) 
  2012 2013 2014 
  Sep. Oct. May. Oct. Nov. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. 
N source (N)               
Control (C)  7.0 32.7 21.7 8.0 10.0 3.5 5.7 5.0 1.8 5.5 8.3 7.3 4.2 
Synthetic fertilizer (F)  4.0 9.0 9.3 7.3 3.3 7.5 4.8 3.2 4.3 5.5 3.7 5.0 0.9 
Biosolids compost (B)  4.3 10.3 11.7 6.0 6.3 5.3 6.0 3.0 0.7 3.5 3.9 3.9 1.8 
Yard trim compost (P)  2.3 15.7 10.7 3.7 2.8 1.5 1.2 1.1 0.3 0.5 1.0 1.2 1.2 
1 cm Biosolids compost 
(BE) 

 
1.0 2.3 3.0 0.0 1.0 1.2 1.0 0.4 0.0 0.9 0.2 0.2 0.0 

1cm Yard trim compost 
(PE) 

 
7.0 23.3 

 
15.0 3.7 2.3 2.5 3.3 2.8 3.5 5.5 4.4 2.2 0.9 

               
 Contrast 
Contrast df P 
C VS F  10   NS† NS NS NS NS NS NS NS NS NS NS NS NS 
C VS B 10 NS NS NS NS NS NS NS NS NS NS NS NS NS 
C VS P 10 NS NS NS NS NS NS NS NS NS NS NS NS NS 
C VS BE 10 NS * NS NS NS NS NS NS NS NS NS NS NS 
C VS PE 10 NS NS NS NS NS NS NS NS NS NS NS NS NS 
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Appendix B  
 

 
Figure 1. Effect of nitrogen source and cultivation treatment on tall fescue color at the 
Paint Branch Turfgrass Research Facility in Jun. 2013. 
Turf color on a scale of 1-9: 1 = brown turf, 9 = dark green turf.  
F, synthetic fertilizer Signature; B, biosolids compost Orgro; P, yard trimmings compost 
Leafgro. 0, no cultivation; 1, one pass of cultivation; 2, two passes of cultivation. 
Means labeled with the different letters are significantly different according to Tukey’s 
honestly significantly different test (P ≤ 0.05). 
 

 
Figure 2. Effect of nitrogen source and cultivation treatment on tall fescue color at 
Glenstone in Apr.2013. 
Turf color on a scale of 1-9: 1 = brown turf, 9 = dark green turf.  
F, synthetic fertilizer Signature; B, biosolids compost Orgro; P, yard trimmings compost 
Leafgro. 0, no cultivation; 1, one pass of cultivation; 2, two passes of cultivation. 
Means labeled with the different letters are significantly different according to Tukey’s 
honestly significantly different test (P ≤ 0.05). 
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Figure 3. Effect of nitrogen source and cultivation treatment on tall fescue color at 
Glenstone in Sep. 2013. 
Turf color on a scale of 1-9: 1 = brown turf, 9 = dark green turf.  
F, synthetic fertilizer Signature; B, biosolids compost Orgro; P, yard trimmings compost 
Leafgro. 0, no cultivation; 1, one pass of cultivation; 2, two passes of cultivation. 
Means labeled with the different letters are significantly different according to Tukey’s 
honestly significantly different test (P ≤ 0.05). 
 

 
Figure 4. Effect of nitrogen source and cultivation treatment on tall fescue quality at the 
Paint Branch Turfgrass Research Facility in Apr. 2012. 
Turf quality on a scale of 1-9: 6 = a commercial acceptance. 
F, synthetic fertilizer Signature; B, biosolids compost Orgro; P, yard trimmings compost 
Leafgro. 0, no cultivation; 1, one pass of cultivation; 2, two passes of cultivation.  
Means labeled with the different letters are significantly different according to Tukey’s 
honestly significantly different test (P ≤ 0.05). 
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Figure 5. Effect of nitrogen source and compost tea treatment on tall fescue quality at 
Paint Branch Turfgrass Research Facility in Jul. 2013. 
Turf quality on a scale of 1-9: 6 = a commercial acceptance. 
F, synthetic fertilizer Signature; B, biosolids compost Orgro; P, yard trimmings compost 
Leafgro.  
Means labeled with the different letters are significantly different according to Tukey’s 
honestly significantly different test (P ≤ 0.05). 
 

 
Figure 6. Effect of nitrogen source and cultivation treatment on tall fescue quality at 
Glenstone in Mar. 2014. 
Turf quality on a scale of 1-9: 6 = a commercial acceptance. 
F, synthetic fertilizer Signature; B, biosolids compost Orgro; P, yard trimmings compost 
Leafgro. 0, no cultivation; 1, one pass of cultivation; 2, two passes of cultivation.  
Means labeled with the different letters are significantly different according to Tukey’s 
honestly significantly different test (P ≤ 0.05). 
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Figure 7. Effect of cultivation and compost tea treatment on tall fescue quality at 
Glenstone in April 2014. 
Turf quality on a scale of 1-9: 6 = a commercial acceptance. 
0, no cultivation; 1, one pass of cultivation; 2, two passes of cultivation.   
Means labeled with the different letters are significantly different according to Tukey’s 
honestly significantly different test (P ≤ 0.05). 
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