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Gyrotrons are well recognized sources of high-power coherent 

electromagnetic radiation. The power that gyrotrons can radiate in the millimeter- and 

submillimeter-wavelength regions exceeds the power of classical microwave tubes by 

many orders of magnitude. In this work, the author considers some problems related 

to the operation of gyro-devices and methods of their solution. In particular, the self-

excitation conditions for parasitic backward waves and effect of distributed losses on 

the small-signal gain of gyro-TWTs are analyzed. The corresponding small-signal 

theory describing two-stage gyro-traveling-wave tubes (gyro-TWTs) with the first 

stage having distributed losses is presented. The theory is illustrated by using it for 

the description of operation of a Ka-band gyro-TWT designed at the Naval Research 

Laboratory. Also, the results of nonlinear studies of this tube are presented and 

compared with the ones obtained by the use of MAGY, a multi-frequency, self-

consistent code developed at the University of Maryland. An attempt to build a large 

signal theory of gyro-TWTs with tapered geometry and magnetic field profile is made 

and first results are obtained for a 250 GHz gyro-TWT.  



A comparative small-signal analysis of conventional four-cavity and three-

stage clustered-cavity gyroklystrons is performed. The corresponding point-gap 

models for these devices are presented. The efficiency, gain, bandwidth and gain-

bandwidth product are analyzed for each scheme. Advantages of the clustered-cavity 

over the conventional design are discussed.    

The startup scenarios in high-power gyrotrons and the most important 

physical effects associated with them are considered. The work presents the results of 

startup simulations for a 140 GHz, MW-class gyrotron developed by 

Communications and Power Industries (CPI) for electron-cyclotron resonance heating 

(ECRH) and current drive experiments on the “Wendelstein 7-X” stellarator plasma. 

Also presented are the results for a 110 GHz, 1.5 MW gyrotron currently being 

developed at CPI. The simulations are carried out for six competing modes and with 

the effects of electron velocity spread and voltage depression taken into account.   

Also, the slow stage of the startup in long-pulse gyrotrons is analyzed and 

attention is paid to the effects of ion compensation of the beam space charge, 

frequency deviation due to the cavity wall heating and beam current decrease due to 

cathode cooling. These effects are modeled with a simple nonlinear theory and the 

code MAGY. 
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Introduction 

 

Gyrodevices or gyrotrons are known as high-power sources and amplifiers of 

millimeter and submillimeter waves. In gyrodevices, electrons gyrating in an external 

magnetic field interact with electromagnetic waves (EM-waves). The power radiated 

by gyrotrons at these wavelengths both in continuous-wave and pulsed regimes 

exceeds the power of classical microwave tubes (klystrons, magnetrons, traveling-

wave tubes, backward-wave oscillators, etc.) by many orders of magnitude. Such 

advantage of gyrodevices is based on the remarkable physics of their operation. In 

order to realize a coherent radiation of electrons, classical microwave tubes require 

microwave structures with elements smaller than the operation wavelength. For 

example, traveling-wave tubes and backward-wave oscillators are based on the 

principle of Cherenkov synchronism between electrons and slow waves, which are 

excited in periodic slow-wave structures and whose phase velocity is close to the 

electron velocity. The period of these structures should be smaller than the 

wavelength. The distance between electrons and walls of these structures should also 

be much smaller than the wavelength, because slow waves are localized near the 

structure walls due to their imaginary transverse wavenumbers. All these factors 

result in the miniaturization of the interaction space with the frequency growth. 

Correspondingly, the power that can be handled by such structures decreases very 

rapidly.    

Contrary to the classical devices, electrons in gyrodevices can resonantly 

interact with fast waves, which, in principle, can propagate even in free space. This 
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means that the interaction can take place in smooth-wall metal waveguides and does 

not require the periodic variation of the waveguide wall that is necessary for the 

support of slow waves. Fast waves have real transverse wavenumbers, which means 

that the waves are not localized near the walls of the microwave structure. 

Correspondingly, the interaction space can be extended in the transverse direction, 

which makes the use of fast waves especially advantageous for millimeter and 

submillimeter wave generation, since the use of large waveguide or cavity cross 

sections reduces wall losses and breakdown restrictions, as well as permits the 

passage of larger electron beams with higher power. 

A configuration of the simplest gyrotron is shown in Fig. I.1. In this figure, a 

magnetron-type electron gun is shown on the left. The voltage applied to the anode 

creates the electric field at the cathode. This field has both perpendicular and parallel  

 

 

 

 

 

 

Fig. I.1. Typical gyrotron configuration.  

components with respect to the lines of the magnetic field produced by solenoids. 

Thus, electrons emitted from the cathode acquire both orbital and axial velocity 

components. Then, the electrons move toward the cavity in the growing magnetic 

field, in which the electron flow undergoes the adiabatic compression and the orbital 
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momentum increases. In the region of the uniform magnetic field, the electrons 

interact with the eigen-mode of the resonator and transform part of their kinetic 

energy into the microwave energy. Then, the spent beam exits the cavity, undergoes 

decompression in the decreasing magnetic field and settles on the collector. The latter 

also functions as an oversized output waveguide, which directs the outgoing radiation 

toward the output window shown on the right.    

The coherent cyclotron radiation in gyrotrons is caused by the cyclotron maser 

instability. This instability was discovered in the late 1950s by several scientists 

working independently [1]-[4]. Then, in the 1960s, it was experimentally verified in a 

number of studies [5]-[8]. In the early 1970’s, electron cyclotron maser experiments 

driven by intense relativistic electron beams were reported [9]-[11]. However, a 

practical gyrotron oscillator configuration was invented and developed in the 

U.S.S.R. [12]. Some details of the Soviet gyrotron program of that period can be 

found in Refs. [13]-[17]. The first U.S. gyrotron oscillator was developed at the Naval 

Research Laboratory (NRL) [18]. Since then, gyrodevices have dominated the 

millimeter-wave region at the megawatt power level and successfully entered the 

submillimeter wavelengths. They can be used in numerous scientific, military and 

industrial applications such as plasma heating and diagnostics in controlled fusion 

reactors, material processing and radar systems. The growth of satellite-based digital 

communications technology also opens great opportunities for these devices. 

The development of gyro-devices has been supported by extensive theoretical 

research. The linear theory of the interaction between electromagnetic waves and 

electrons either rotating in an external homogeneous magnetic field or moving along 
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trochoidal trajectories in crossed external electric and magnetic fields was developed 

by Gaponov in 1961 [19]. The nonlinear theory of interaction at arbitrary cyclotron 

harmonics between electrons moving periodically with a constant axial velocity and 

an electromagnetic wave was published by Yulpatov in 1967 [20] (see also Ref. 8). 

Since these publications were almost unknown to the Western community, the theory 

of  gyro-travelling-wave tubes (gyro-TWTs) operating at the fundamental and higher 

cyclotron harmonics was renewed at the end of 1970’s by Chu et al [21],[22]. Later, a 

rather general approach to the nonlinear theory of gyro-TWTs was made by Ginzburg 

et al [23]. A generalization of this theory to the case of interaction of the electron 

beam with electromagnetic waves propagating in waveguides was given by Fliflet 

[24]. A single comprehensive monograph on gyrotrons addressed to a general 

audience was presented recently by Nusinovich [25]. Also, during the last decade, 

various numerical codes appeared, which are widely used for the analysis and design 

of gyro-devices. One of the most powerful tools of nowadays is the self-consistent, 

multifrequency code MAGY [26] developed at the University of Maryland and the 

Naval Research Laboratory (NRL). Advances in the code development are reviewed 

in [27].  

During the extensive experimental and theoretical studies, various types of 

gyrodevices emerged. They can be divided into two groups, oscillators and 

amplifiers, each consisting of several configurations. The key members of this large 

family and their classical linear beam counterparts are shown in Fig. I.2. The most 

well-known gyrotron oscillators are gyromonotrons and gyro-backward-wave 

oscillators (gyro-BWOs). Gyroklystrons (GKLs), gyro-traveling-wave tubes  (gyro-  
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Fig. I.2. Schematics of linear beam devices and corresponding gyrodevices. 

 

TWTs) and gyrotwystrons form the group of gyrotron amplifiers. More detailed 

layouts of the devices considered in this work will be shown in the corresponding 

sections of the manuscript.  

For a long period of time gyroklystrons were considered to be the major type 

of gyroamplifiers. They are capable of high-gain and high-efficiency operation, 

however they possess a rather narrow bandwidth, which can be a critical factor in 

communication systems and Doppler radars. High-gain gyro-TWTs can offer much 

larger bandwidth but their operation can be prone to parasitic self-excitation of 

various kinds. In particular, a parasitic excitation of backward waves can occur in 

gyro-TWTs with a long interaction region [28]-[30]. 

 There exist various means for solving these problems and improving the 

performance of the gyroamplifiers. The stability problem in gyro-TWTs can be 

solved in at least two ways. The first one is to introduce distributed losses in one or 

several stages of the device [29]-[31]. The presence of losses deteriorates the start 

oscillation conditions and, hence, the stable operation can be achieved. The second 

way is to use multi-stage devices, in which interaction sections are separated by drift 

regions where the wave propagation is impossible. The stability of such 
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configurations can be achieved by decreasing the length of each stage, i.e. making it 

shorter than is necessary for the backward wave excitation. 

The bandwidth of narrow-band GKLs can be significantly increased by 

detuning of cavities’ eigenfrequencies, which is referred in the literature as stagger 

tuning [32]-[34]. The use of so-called clustered cavities in GKLs allows for 

improving of both efficiency and bandwidth of these devices [35]-[37]. 

  High-power millimeter-wave gyrotrons are capable of continuous-wave (CW) 

operation at megawatt (MW) power levels [38], [39]. They are mainly used as 

sources for electron cyclotron resonance heating (ECRH), electron cyclotron current 

drive (ECCD), stability control and diagnostics of magnetically confined plasmas for 

energy generation in controlled fusion reactors. To handle ohmic losses of such 

power in cavity walls, these gyrotrons must operate at very high-order modes, which 

form a dense spectrum. To excite the desired mode and to drive it into the regime of 

MW-level operation with high efficiency requires careful consideration of startup 

scenario through which the operating parameters of the device are brought to their 

nominal values [40].  

 In this work, the author considers some of the described problems related to 

gyroamplifiers and the startup scenario problem for gyrotron oscillators. The 

manuscript is organized as follows. The next section contains a simple formalism 

necessary for understanding the basic principles of a gyrodevice operation. In Chapter 

1, the theory of two-stage gyro-TWTs with distributed losses in the first section is 

presented. The first two sections of this chapter introduce the reader to the basic 

device configurations and theoretical tools for their analysis. In particular, the method 
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of non-linear gyro-averaged equations and the corresponding linear theory are 

reproduced. The third section contains the linear analysis of the effect of distributed 

losses on the device bandwidth and efficiency and also on the conditions for the 

parasitic backward wave excitation. Also, in this section, the results of the studies by 

using the nonlinear theory are shown and compared with the ones obtained by the use 

of the accurate numerical code MAGY. For this purpose, a concrete Ka-band gyro-

TWT designed at NRL is considered. 

 In Section 4, an attempt to build a nonlinear theory of the gyro-TWT with 

tapered waveguide radius and external magnetic field is made by the author. The 

results of the gain and bandwidth analysis for a 250 GHz gyro-TWT with tapered 

parameters are presented.    

 Chapter 2 contains the results of a comparative analysis of two gyroklystron 

configurations. The first one is a regular four-cavity GKL, while the second one is a 

clustered-cavity GKL with the same number of resonators. In the first section of this 

chapter, both configurations are shown and principles of their operation are discussed. 

The second section of this chapter reproduces the point-gap model formalism, which 

was used for the analysis of both devices. Results of efficiency and gain studies of the 

schemes are presented in Section 3.  

In Chapter 3, the startup scenarios for two high-power millimeter-wave 

gyrotrons are considered. In particular, the 140-GHz MW-class gyrotron developed 

by Communications and Power Industries (CPI) for electron plasma heating and 

current drive experiments on the “Wendelstein 7-X” stellarator is analyzed. The 

second device under analysis is a 110 GHz 1.5 MW gyrotron presently being under 
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development at CPI. The calculations are done with the code MAGY for six 

competing modes and for short and long rise-times of the voltage pulse. Also, in the 

last section of this chapter, the slow stage of the startup scenario is considered, where 

attention is paid to the effects of ion compensation of the beam space charge and 

beam current decrease due to cathode cooling. These effects are modeled within a 

simple nonlinear theory.  

Finally, the manuscript ends with a Summary and references. 
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I.1: Principles of operation of gyro-devices. Choice of parameters 
 
 

As known, electrons can radiate when they exhibit some kind of an oscillatory 

motion in external magnetic or electric fields, which can be either constant or periodic 

(in the literature this type of radiation mechanism is referred to as bremsstrahlung). 

For efficient interaction, the Doppler-shifted frequency of the radiated wave should 

be close to the frequency of electron oscillations, Ω, or its harmonic: 

(I.1) z zk v sω Ω− ≈  

Here ω is the frequency and kz is the axial wavenumber of the EM-wave, whose 

electric field can be represented as E
G

{ }Re ( )exp( ( ))zE E r i t k zω= −
G G G . Also, in (I.1), vz 

is the axial velocity of electrons and s is the number of the harmonic of the electron 

oscillation frequency Ω. In gyro-devices, the oscillatory motion of electrons is 

induced by constant magnetic field produced by solenoids or magnets. In this case Ω 

is the electron cyclotron frequency:  

(I.2) 0eH c /Ω = E , 

where e is the electron charge, H0 is the magnitude of the magnetic field, c is the 

speed of light and  is the electron energy. To make the radiation process efficient, 

the electrons must be forced to radiate EM-waves in phase, i.e. coherently. Electrons 

can radiate in phase when they are gathered in compact bunches. Such bunches can 

be formed in the process of interaction between the RF field and electrons initially 

uniformly distributed in phase of gyration. The electron bunching in gyro-devices is 

caused by the relativistic effect – relativistic dependence of electron mass on energy. 

E

 9



 Now, let us consider the mechanism of the interaction in some more detail. As 

follows from (I.2), changes in the electron energy δE  bring to the changes in the 

cyclotron frequencyδΩ  and electron axial velocity zvδ . These changes have opposite 

signs and, in principle, can compensate for each other. To analyze the phase slippage 

during the interaction time T, one may introduce the transit angle of electron gyration 

with respect to the Doppler shifted wave frequency, 

(I.3) ( )z zk v s TΘ ω Ω= − −  

and represent this angle as the sum of the kinematic phase shift 

(I.4) 0 0( )kin z zk v s TΘ ω Ω= − − , 

which is proportional to the initial cyclotron resonance mismatch, and the dynamic 

shift 

(I.5) ( )dyn z zk v s TΘ δ δΩ= − − . 

The changes in the cyclotron frequency in accordance with (I.2) can be found as 

0 ( 0 )δΩ Ω δ= − E E �. To evaluate the changes in the axial velocity, one may use the 

fact that the radiation of one photon not only reduces the electron energy by 

δ ω= =E , but also changes the axial momentum, pz , by z zp kδ = = [41]. 

Correspondingly, the changes δE and zpδ are related by  

ph zv pδ δ=E , (I.6) 

where /ph zv kω=  is the phase velocity of the wave. This expression shows that in the 

case of electron deceleration by a forward wave ( ) the electron axial 

momentum decreases. Correspondingly, when electron is decelerated by a backward 

wave ( ), its axial momentum increases. 

0, 0z phk v> >

0, 0z phk v< <
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 Since the axial momentum is equal to zm vγ , where  

is the normalized energy or the Lorentz factor, the changes in it can be represented as 

2 2 2/ (1 / )mc v cγ −= = −E 1/ 2

)0 0(z z zp m v vδ γ δ δγ= + . Using (I.6), the change in the axial velocity can be given as 

2

0
0

z z
ph

cv v
v

δγδ
γ

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
. (I.7) 

Substituting this expression into the definition for dynΘ  (I.5) and using the cyclotron 

resonance condition (I.1), one may obtain the following expression for the dynamic 

phase shift: 

2

0 0

12
1dyn

z

hNs
h

δγΘ π
γ β

−
=

−
. (I.8) 

Here / /zh k c c vphω= =  is the normalized axial wavenumber and 02 N Tπ Ω= , where 

N is the umber of electron orbits in the interaction space. It can be noticed that for the 

particular choice of , i.e. when the phase velocity is equal to the speed of light, 

the dynamic shift is equal to zero for arbitrary energy changes. This is the case when 

the changes in the electron cyclotron frequency exactly compensate the ones in the 

axial velocity. So, if the cyclotron resonance condition is initially fulfilled in such a 

system, then it will be automatically fulfilled later for arbitrary large changes in the 

electron energy. This remarkable effect is known as the autoresonance [42], [43].  

1h =

 One of the major concerns for practically all sources of coherent radiation is 

their efficiency. The real efficiency of any source should be evaluated by calculating 

the efficiency of one electron and averaging it over all initial distributions of electrons 

in the coordinate and momentum space. Let us briefly consider the results of the 

analysis of the single-particle efficiency. Expression (I.6) can be rewritten in the form 
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0
0z z

ph

p p
v
−

− =
E E , (I.9) 

which allows determining the optimum phase velocity necessary for the complete 

stoppage of electron axial motion and extraction of its kinetic energy, i.e. making 

 and . One may easily find from these conditions , 0z finalp = 2
final mc=E

, 0
,

0 0

1ph opt
ph opt

z

v
c

γβ
γ β

−
= = . (I.10) 

The electron orbital momentum, p⊥ , which can be represented as  

2 2 2 2 2 2 2 2
0 0 0 0(1 )( ) 2 ( )(1 )zp p m c h m c h 0γ γ γ γ γ⊥ ⊥= + − − − − − β

)

 (I.11) 

by the use of the general relation  and (I.9), also becomes 

equal to zero for h

2 2 4 2 2 2( zm c c p p⊥= + +E

,1/ ph optβ= . So, the condition (I.10) is the condition for the 

complete electron deceleration, which is the case of single-particle efficiency equal to 

100%. In practice, the electron beam parameters are often given in terms of the beam 

voltage Vb, which is related to 0γ  as V , and the orbital-to-axial 

velocity ratio, 

2
0( 1)( /b )mc eγ= −

00 / zv vα ⊥= . So, (I.10) can be rewritten as [44] 

1
2 2

0
,

0

( 1)(1 )
1ph opt

γ αβ
γ

⎡ ⎤− +
= ⎢ ⎥+⎣ ⎦

. (I.12) 

As mentioned, gyro-devices belong to the class of fast-wave devices, in which 

1phβ > . Therefore, the interaction with fast waves is optimal (in the sense of single-

particle efficiency) when the velocity ratios are large enough: 

2

0

2
1

α
γ

>
−

. (I.13) 
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In order to estimate the magnitude of the external magnetic field, the 

kinematic phase shift given by (I.4) should be considered. It should provide the 

displacement of an electron bunch into the decelerating phase, i.e. kinΘ π∼ . This 

yields the following estimate for the initial cyclotron frequency: 

0 0
1(1 ) 1

2zh
s N
ωΩ β ⎛ ⎞− −⎜ ⎟

⎝ ⎠
∼

s
. (I.14) 

The term 1/2Ns in this expression characterizes the mismatch of the cyclotron 

resonance with respect to the Doppler-shifted wave frequency. This mismatch is 

inversely proportional to the cyclotron harmonic number, s, and the number of 

electron orbits, N. The number of electron orbits is proportional to the interaction 

length and can be chosen in accordance with (I.8). As follows from this expression, 

the changes in the electron energy are of the order of  

0
2

0

11
1

zh
sN h

βδγ
γ

−
−

∼  (I.15) 

when the dynamic phase shift is of the order of 2π . The number of orbits in this 

expression can be large when the operation is close to autoresonance (in this case the 

terms sN and 1-h2 compensate each other). For the energy changes of the order of the 

initial kinetic energy, E , this means 2
0 mc−

2 0
1

0

1|1 |
1

zhh β
γ −

−
− <<

−
. (I.16) 

It follows from applying of (I.15) to (I.11) in the case of N >> 1 that the term 

2 2 2 2
0(1 )( )m c h γ γ− −  in (I.11) is small, and, therefore, the orbital momentum is 

approximately equal to 
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1/ 2

0 02
0 0

21 (1 ) 1zp p h γβ
β γ⊥ ⊥
⊥

⎧ ⎫⎛ ⎞⎪ ⎪≈ − − −⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

. (I.17) 

When ,ph ph optβ β> , the decelerating electron loses its orbital momentum prior to 

stopping its axial motion. In this case, the single-particle efficiency, which is defined 

as , can be found for the final value of 2
0| | /(sp mcη δ= −E E ) 0p⊥ = : 

2
0

1
0 02(1 )(1 )sp

zh
βη
β γ

⊥
−=

− −
. (I.18) 

The wave electric field can be evaluated by using the general equation for the 

electron energy, 

( )d e v E
dt

= − ⋅
GGE , (I.19) 

which gives estimates for the changes in electron energy during the interaction time 

T: | | ev ETδ ⊥∼E . The synchronous electric field Es has a structure of a rotating 

multipole in the case of resonance at an arbitrary cyclotron harmonic, s [45]. It can be 

represented as 1( / )s
sE a λ −∼ E , where 0/a v Ω⊥=  is the Larmor radius. The total 

length of the electron trajectory in the interaction space can be estimated as 2 aNπ if 

the orbital-to-axial velocity ratio is large. Therefore, 

(I.20) 1| | ( / ) 2se a E aNδ λ π−∼E . 

By substituting this expression into (I.15) and using the cyclotron resonance condition 

(I.1), one may get [46] 

1 2
0

0 2 2
0

(1 )1
2 ( ) 1

s
zheE a

mc sN h
ββ

ωγ λ π

−

⊥

−⎛ ⎞
⎜ ⎟ −⎝ ⎠

∼ . (I.21) 
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This expression shows that the wave amplitude required for electron deceleration is 

inversely proportional to N2. Also, the ratio /a λ  in the left-hand side of (I.21) can be 

written as 0 0/ / 2 (1 za s h )λ β π β⊥≈ − , so the wave amplitude is inversely proportional 

to 0
sβ⊥ . 

 So far, the electron deceleration by a wave of given amplitude has been 

analyzed in this section. The EM field is excited (or amplified) by an electron beam 

when real devices are considered. Correspondingly, the field amplitude depends on 

the beam parameters. This dependence can be determined by a balance equation for 

the simplest case of oscillations in a single cavity. The power balance equation is 

valid for stationary regimes.  In such regimes, the microwave power withdrawn from 

the beam is equal to the power of the microwave losses (ohmic and diffractive) in a 

cavity having a finite quality factor Q:   

(I.22) ( / ) .bP Q Wη ω=  

Here Pb = VbIb is the beam power, η  is the device interaction efficiency , and W is the 

microwave energy stored in the cavity. The energy is determined as 2| | / 8V E π , 

where V is the cavity volume, which depends on the operating wavelength and mode, 

and the angular brackets designate the averaging of the intensity of the field over the 

cavity volume. 
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Chapter 1: Two-Stage Gyro-TWTs 

 1.1: Basic device configurations 

 

A typical configuration of a gyro-TWT is shown in Fig. 1.1. It consists of a 

magnetron injection gun (MIG), the interaction region, input and output windows, 

collector and one or more solenoids. The MIG is responsible for producing an e-beam 

and launching it into the interaction space, where electrons exchange their energy 

with an EM-wave. The signal EM-wave is fed into the tube through the input 

window. Having interacted with the beam and amplified it leaves the device through 

the output window. The exhausted electrons are accumulated at the collector. The  

 

 

 

 

 

 

 

 
Fig. 1.1. Typical gyro-TWT configuration. 

solenoid produces a strong magnetic field to support the cyclotron motion of the 

beam electrons. The axial motion of electrons is provided by a potential difference 

between the MIG emitter and the interaction region. Fig. 1.2 schematically shows the 

geometry of a two-stage gyro-TWT with distributed losses in the first section. In 

practice, losses in such devices can be realized by the use of a layer of lossy material 
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spread on the waveguide walls in the interaction region [29]. The use of diffraction 

losses in gyro-TWTs is also possible [30]. 

 

 

 

 

 

 

 Fig. 1.2. Configuration of a two-stage gyro-TWT 

with distributed losses in the first section.  

 Fig. 1.3 demonstrates the scheme of a severed two-stage gyro-TWT. This 

device allows operation at different cyclotron harmonics in each section. In particular, 

it might prove advantageous to operate in frequency multiplication regimes. Also, by 

a proper choice of each section length one may solve the stability problem for such 

configuration. 

 

 

 

 

 

 

 

Fig. 1.3. Configuration of a two-stage severed gyro-TWT.   
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 1.2: General formalism 

 1.2.1: Self-consistent set of equations for the gyro-TWT 

 

The operation of a gyro-TWT can be described by a self-consistent set of 

nonlinear equations. This set consists of equations of electron motion through the 

waveguide field and the equation to describe wave excitation by an electron beam. 

The method used for deriving these equations is based on presenting the EM-field 

acting upon a gyrating electron as a superposition of angular harmonics of the waves 

that rotate around an electron guiding center. The cyclotron resonance condition 

allows selecting just one resonant harmonic from all the harmonic components 

representing the field. All others will vanish after the equation of motion has been 

averaged over fast gyrations. The averaged equations have a compact and general 

form, which greatly simplifies their analysis. This method was initially suggested by 

Gaponov in the linear theory of cyclotron resonance masers [19] and later used by 

V.K. Yulpatov for developing the nonlinear theory [20]. The detailed derivation of 

these equations for the gyro-TWTs can be found in Ref. 25. Here the author just 

reproduces the self-consistent set used for obtaining the results presented in this work: 

/ 2

1
2

2 / 2

0 0
0

(1 )2 Re( )
1

1 { (1 ) Im( )
1

1 (1 )
2 1

s
i

s
i

s
i

dw w Fe
d bw
d w s w Fe
d bw

dF wi F I e d
d b

ϑ

ϑ

π
ϑ

ζ

ϑ
ζ

}

w
ϑ

ζ π

−

− −

−
= −

−

= + −
−

−
− ∆ = −

−∫

 

(1.1) 

(1.2) 

(1.3) 

In these equations, 2
0 0 0(1 )( ) /zw h 0β γ γ β γ⊥= − −  is the normalized electron energy, 

where /zh k c ω=  is the normalized axial wavenumber, 0 0 /z zv cβ = and 0 0 /v cβ⊥ ⊥=  
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are, respectively, the initial electron axial and orbital velocity components normalized 

to the speed of light, γ  is the electron energy normalized to the rest energy, and 0γ  is 

its initial value determined by the beam voltage, Vb: . In (1.1)-(1.3) 2
0 1 /beV mcγ = +

ϑ  is a slowly-variable gyrophase of the resonant cyclotron harmonic s with respect to 

the phase of the forward TEm,p wave: 

0 0 0
0

( ) ( ) (z z zs t k v v d s
τ

)mϑ θ τ ω τ ′= −Ω − + − −∫ ∓ ψ . 

Here  is the electron cyclotron frequency, 0Ω ψ  is the azimuthal coordinate of the 

electron guiding center and m is the azimuthal index of the wave. At the entrance, this 

phase has an initial value 0 0(0) ( )s t s mϑ θ ω ψ= − − ∓ , which is uniformly distributed 

in all beamlets from 0 to 2π for an unmodulated electron beam. Also, in (1.1)-(1.3), 

0/ zz cζ µω β=  is the normalized axial coordinate, where 

parameter 2 2
0 (1 ) / 2(1 )zh h 0µ β⊥= − − β

0z

 characterizes the effect of the changes in 

electron energy on the cyclotron resonance conditions. The parameter 

2
0 0/ 2 (1 )zb h hβ β β⊥= −  characterizes the changes in the electron axial velocity with 

the change in electron energy and ∆ is the normalized cyclotron resonance mismatch 

between the Doppler-shifted wave frequency z zk vω − and the resonant harmonic of 

the electron cyclotron frequency sΩ0: 

(1.4) 0 0( )z zk v s /∆ ω Ω ωµ= − − . 

The normalized beam current parameter, I0, present in the last equation is equal to 

25 22( 2) 1
0

0 3 2(3 )
0 0

(1 )16
( 1)!2

ss s
b z

cpls s

eI h sI G
mc h s

βκ
γ β

−− −

−
⊥

⎡ ⎤−
= ⎢ ⎥−⎣ ⎦

 (1.5) 
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where  and parameter 2 1 hκ = − 2 2 )2 2 2
0( ) /( ) (cpl m s mG J k R m Jν ν⊥= −∓  describes the 

coupling of a beam having the radius of electron guiding centers R0 to the field of a 

TE-wave in a cylindrical waveguide. The initial value of the normalized amplitude, F0 

is determined by the input power, Pin as 

1/ 22 1 4
0 0

0 2 5
0

( ) (1 )| | 4 2
( 1)!2

3s s s
cplin z

s

Ge P s hF
m c h s

κ β β
γ κ

− − −
⊥⎡ ⎤ −

= ⎢ ⎥ −⎣ ⎦
. (1.6) 

The ratio m2c5/e2 in square brackets is a product of the fundamental constants mc3/e = 

17.04 kA and mc2/e = 511 kV and is equal to 8. 6687 10⋅  kW. The set (1.1)-(1.3) can 

be supplemented by the expression for the orbital efficiency of interaction 

2

0
0

1
2

wd
π

η ϑ
π⊥ = ∫ , (1.7)

which characterizes the changes in the electron orbital momentum in the process of 

interaction. The total electron efficiency is related to η⊥  as 

2
0

1
0 02(1 )(1 )sp

zh
βη η η η

γ β
⊥

⊥ ⊥−= =
− −

, (1.8) 

where spη is the single-particle efficiency discussed in the Introduction. The system of 

equations (1.1)-(1.3) has the following integral 

2 2
0 0| | | |F F I η⊥− = , (1.9) 

which represents the energy conservation law for the beam-wave system.  

Typical processes of the electron energy modulation, phase bunching and 

wave amplification are shown in Fig. 1.4. These results are obtained by integrating 

Eqs (1.1)-(1.3) with the following set of parameters: s = 1, b = 0.1, , I0 = 0.1 

and F0 = 0.01. Initially, the changes in the electron energy and phase are linear and  

0.5∆ =

 20



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.4. Typical processes of (a) electron energy modulation, 

(b) phase bunching and (c) wave amplification. 
21



the wave amplitude grows exponentially, which is the linear stage of interaction. 

Then the saturation effects become pronounced, when the changes in the electron 

energy and phase are significant, and the wave amplitude reaches its maximum. As 

follows from the comparison of Fig. 1.4(b) with Fig 1.4(c), the maximum of the wave 

amplitude corresponds to the shift of an electron bunch in phase on the order of π . 

Since for realizing the wave amplification the bunch should be formed in the 

decelerating phase, this shift indicates that electrons move from the decelerating 

phase into the accelerating one. In the latter phase, the electrons start to withdraw the 

EM wave energy back, thus decreasing the wave amplitude. 

Equations (1.1)-(1.3) are given for an ideal electron beam with no velocity 

spread. In order to take into account the effect of the spread, it is expedient to 

normalize all dimensionless parameters to the mean values of velocity components 

β⊥  and zβ  [47], i.e. 2 2(1 ) / 2(1 )zh hµ β β⊥= − − ,  2 / 2 (1 )z zb h hβ β β⊥= − , 

0(1 / ) /z zh s∆ β Ω ω= − − µ  and introduce the following coefficients describing the 

effect of the spread on these parameters: 

2

0

0 0

2

0

0 0

0

1
1

1
1

,

z z
b

z z

s

z z
F

z z

z

z

hk k
h

hk
h

k

µ

∆

ββ β
β β β

ββ β
β β β

β
β

⊥

⊥

−

⊥

⊥

⎛ ⎞−
≡ = ⎜ ⎟− ⎝ ⎠

⎛ ⎞−
= ⎜ ⎟−⎝ ⎠

=

 

where kb = kF = k∆ = 1 in the absence of the spread.  Also, an additional averaging of 

the source term in the right-hand side of the wave excitation equation (1.3) over the 
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velocity distribution is necessary. Then one can rewrite equations (1.1)-(1.3) for the 

case with the electron velocity spread as 

/ 2

1
2

2 2

0 0 0 0
0

(1 )2 Re( )
1

1 (1 ) ( 1) (1 ) Im( )
1

1 (1 )( ) .
2 1

s
i

F
b

s
i

b F
b

s

iF b

b

dw w k Fe
d k bw

d hk w k k bw k s w k Fe
d k bw

k kdF wi F I W e d d
d k k bw

ϑ

ϑ
µ ∆ ∆

π
ϑ

∆

ζ

ϑ ∆
ζ µ

∆ β ϑ β
ζ π

−

− −

⊥ ⊥

−
= −

−

⎧ ⎫
= + − − − − + −⎨ ⎬− ⎩ ⎭

⎧ ⎫
−⎪ ⎪− = − ⎨ ⎬−⎪ ⎪⎩ ⎭

∫ ∫

 

(1.10) 

(1.11) 

(1.12) 

The velocity distribution function 0(W )β⊥  in (1.12) obeys the normalization 

condition . The expression (1.7) for the orbital efficiency takes the 

following form in this case: 

0 0( )W dβ β⊥ ⊥ =∫ 1

2

0 0
0

1( )
2

bkW wd
k

π

∆
0dη β ϑ

π⊥ ⊥

⎧ ⎫
= ⎨ ⎬

⎩ ⎭
∫ ∫ β⊥

z′′

id

. (1.13) 

If distributed losses are present in the circuit, the axial wavenumber becomes 

complex:  and so does the normalized detuning parameter: 

, where 

z zk k k′= +

i∆ ∆ ∆ ∆′ ′′ ′= + = + d ∆′′≡  is the attenuation parameter. In this case, the 

energy conservation law (1.9) can be written as 

2 2 2
0 0

0

| | | | 2 | |F F I F d
ζ

η ∆ ζ⊥ ′′ ′− = − ∫ . (1.14) 

It shows that the changes in the wave intensity are determined by the power extracted 

from the beam and wave attenuation in the circuit. 
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1.2.2: Linear theory of the gyro-TWT 

 

In the small-signal regime, the EM-wave can produce only small perturbations in 

electron energy and phase, hence in Eqs. (1.1)-(1.3) (1)w w= , (0) (1)ϑ ϑ ϑ= + , where 

(1) (0)ϑ ϑ<< , the subscripts (0) and (1) denote zero- and first-order terms, respectively, 

and (0) (0)ϑ ϑ= . Therefore, by linearizing Eqs. (1.1)-(1.3) with respect to these 

perturbations and introducing 

0

0

2

(1) 0
0 0

2

(1) 0
0 0

0

1 1
2

1 1
2

i

i

w w e
F

e d
F
FF
F

π
ϑ

π
ϑ

dϑ
π

ϑ ϑ ϑ
π

=

=

=

∫

∫

�

�

�

 

one can bring these equations to the form 

0

(1 )
2

( )
2

dw F
d
d sb w i F
d
dF si F I i b w
d

ζ

ϑ ∆
ζ

∆ ϑ
ζ

= −

= − −

⎧ ⎫− = − + −⎨ ⎬
⎩ ⎭

� �

� ��

� �� �

 

(1.15) 

(1.16) 

(1.17) 

Assuming an exp( )iΓζ  dependence for ,w ϑ��  and (where Γ is the propagation 

constant in the presence of the electron beam), i.e. 

F�

3 3 3

1 1 1

exp( ), exp( ), exp( )l l l l l l
l l l

w A i B i F C iΓ ζ ϑ Γ ζ Γ ζ
= = =

= = =∑ ∑ ∑� ��  (1.18) 

Here the coefficients Al and Bl can be expressed with the use of (1.15)-(1.17) via Cl as 
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l
l

l

CA i
Γ

=  and 2(1 )
2

l l
l

l l

C CsB b∆
Γ Γ

= − − . 

With the use of (1.18), the following dispersion equation can be obtained from (1.15)-

(1.17) [24], [46], [48], [49]: 

(1.19) 2
0 0( )( ) (1 )I b I sΓ ∆ Γ Γ 0− + ± − = , 

where the “+” sign before the second term corresponds to the equation for the forward 

wave and the “–” sign corresponds to the one for the backward wave.   

 Let us establish a relationship between our propagation constant, Γ, which is 

determined by (1.19), and the axial wavenumber in the presence of the beam, kz,b. 

When the beam current is negligibly small (I0 → 0), equation (1.19) yields one 

solution Γ ∆=  and another degenerate solution 0Γ = . The former describes the 

wave propagation in a ‘cold’ waveguide, while the latter describes the cyclotron 

waves in the beam. Since the detuning ∆  contains the axial wavenumber in a ‘cold’ 

system, while the variable Γ contains kz,b, the solution Γ ∆=  simply indicates that in 

the absence of the beam kz,b = kz. In the presence of a beam, as follows from these 

definitions, . (Here we assumed that the operating 

voltage and the axial wavenumber are not too large and, therefore, 

2
, 0 ( ) / 2z b z zk k vβ ω Γ ∆⊥= − − 0

∆  can be 

expressed as ). Thus, the growth-rate of the wave can 

be expressed via the imaginary part of Γ as | I

2
0 0 0(2 / )(1 / )zh s∆ β β Ω⊥≈ − − ω

0m | | Im | /z b zk 2
, 0Γ β π λβ⊥= , where λ  is 

the wavelength in free space. 

The coefficients Cl in (1.18) are to be determined from the boundary 

conditions. Taking into account the absence of modulation of electron energies and 
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phases at the entrance, as well as the existence of an input signal wave, one may 

obtain: 

3 3 3

2
1 1 1

1, 0, 1 0
2

l l
l l

l l ll l

C CsC b∆ Γ
Γ Γ= = =

⎛ ⎞= = − −⎜ ⎟
⎝ ⎠

∑ ∑ ∑ = . (1.20) 

Note that in our notations the wave amplitude is normalized to its initial value. These 

equations can be solved for Cl and then expressions (1.18) should be used to find the 

electron energy and phase and the wave amplitude at the end of the interaction region. 

For the case of a multi-stage gyro-TWT, the boundary conditions at the n-th stage can 

be written as 
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 (1.21) 

where ( )n
inζ  is the normalized distance at which the n-th waveguide section begins. 

Equations (1.21) form a set of linear inhomogeneous algebraic equations, which can 

be easily solved. The coefficients of these equations depend on ( )nΓ , which are the 

roots of Eq. (1.19) for the n-th stage. The amplitude at the output, 

3
( ) ( ) ( ) ( )

1
exp( ( ))N N N

out l l out in
l

F C iΓ ζ ζ
=

= −∑� N , (1.22) 

where N is the number of the final stage, determines the gain of the device: 

{ }20log .outG F= �  (1.23) 
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1.3: Two-stage gyro-TWTs with distributed losses 

 

As mentioned in the introduction, in tubes with a long interaction region a 

parasitic excitation of backward waves may occur. The use of distributed wall losses 

or diffraction losses for the suppression of such spurious oscillations was successfully 

demonstrated in Refs. [29] and [30]. A simple linear theory of a gyro-TWT, in which 

part of the waveguide has finite losses is presented in the following sections.    

 

 1.3.1: Results of the linear theory. Gain and bandwidth studies 

 

Before the analysis of the parasitic BW suppression our study was focused on 

the effect of distributed losses on the gain and bandwidth of the two-stage gyro-TWT. 

The author was obtaining the solutions of Eq. (1.19) as functions of the real part of 

the normalized detuning, , for finite values of the loss parameter d. In Fig. 1.5, the 

corresponding imaginary parts of the complex roots 

∆′

Γ  are shown. Here Figs. 1.5 (a) 

and 1.5 (b) correspond to two respective magnitudes of the normalized beam current 

parameter, namely 0.03 and 0.3. It follows from these results that losses decrease the 

maximum growth rate of the wave but, at the same time, increase the range of 

resonance detunings, at which the wave amplification is possible. To check the 

validity of the linear model, we applied it to the Ka-band gyro-TWT designed at NRL 

[30]. This tube is driven by a 70 kV, 6 A electron beam with the orbital-to-axial 

velocity ratio of about 0.71. The interaction circuit is a circular waveguide of 2.72 

mm radius and of the 27 cm total length. The first 22 cm of this waveguide are 
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characterized by cold circuit losses of 3.45 dB/cm, which correspond to the loss 

parameter at the central frequency of 35 GHz. The last 5 cm of the 

waveguide are lossless. The operating mode is TE11. The circuit geometry and 

magnetic field profiles for this tube are shown in Fig. 1.6. The resulting gain of the 

0.55d ≈

Fig. 1.5. Imaginary parts of propagation constants as 

functions of the normalized detuning for several values 

of the loss parameter d and two values of the 

normalized beam current parameter I0. 
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tube calculated in accordance with Eq. (1.23) is shown in Fig. 1.7. As can be seen, the 

bandwidth at the -3 dB level is about 8% and the maximum gain is about 50 dB. For  
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Fig. 1.6. Circuit geometry (solid) and magnetic field

(dotted) profiles of the gyro-TWT designed at NRL. 
mparison, also shown are the calculated design data (dashed line), 

nd to the input power value 0.9inP = W, being the case closest to the 

peration. The data were obtained by the use of self-consistent, time-

e, MAGY [26], which has been known to provide accurate results that 

ses, in a close agreement with the measurements. As can be seen, there 

ment between the gains calculated by the two methods. The gain found 

 little smaller, possibly, first due to the effect of 4% electron velocity 

ond, because at 0.9inP = W one may already observe in Fig. 11 of this 

uration effects. The fact that the calculated bandwidth in Ref. 30 is  
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Fig. 1.7. Gain as a function of frequency for the NRL gyro-

TWT. The results of Ref. [30] are shown by the dashed line. 

 

 

slightly larger (about 10%) than the one obtained in our calculations can be attributed 

to the changes of the external magnetic field in the lossless section of the waveguide, 

which we ignored in our model. 

 30



1.3.2: Analysis of backward wave excitation 

 

As already mentioned, parasitic excitation of backward waves is one of the most 

critical issues in the development of high-gain gyro-TWTs. Since it is preferable to 

have an amplifier capable of stable operation even in the absence of the signal (so-

called ‘zero-drive’ stability), the conditions for onset of oscillations in a two-stage 

gyro-TWT in the absence of forward waves will be considered below. In general, the 

similarity of the dispersion equation for gyro-backward wave oscillators (gyro-

BWO’s) to that for linear BWO’s allows one to study the starting conditions in gyro-

BWO’s by the methods that are known for conventional BWO’s [50]. Such a method 

was used for analyzing the starting conditions in a single-stage gyro-BWO [51], [52]. 

We applied the same method for studying a two-stage gyro-BWO whose first 

section included distributed losses. As described in section 1.2.2, the values of 

electron energy and phase and the wave amplitude at the end of the first stage were 

used as initial conditions for the corresponding variables in the second stage. We 

were interested solely in such solutions of the dispersion equation that would render 

the total wave amplitude  equal to zero at a distance F� stζ  from the beginning of the 

interaction region. In other words, we expected the excitation of the BW to start from 

a zero-amplitude. With given values of the normalized current I0, loss parameter d 

and the length of the first section ( )I
outζ  one may find a pair ( , )st st∆ ζ′  that would satisfy 

this condition. Fig. 1.8 shows an example of such a search in the lossless case (dotted 

lines) and in the case with distributed losses in the first section of the tube (solid 

lines). The normalized length of the lossy section is equal to 10 and the corresponding  
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Fig. 1.8. Excitation of backward waves in the lossy (solid) 

and lossless (dotted) cases. The amplitude of a BW starts 

growing from the zero amplitude, which can be obtained by 

varying the detuning parameter ∆′ .  

 

 

 

loss parameter d is equal to 0.5. One may see that in the lossless case the amplitude of 

the backward wave starts growing when the interaction distance exceeds 6.9stζ ≈  

whereas in the presence of losses 14.9stζ ≈ . The corresponding detuning parameters 

are given in the figure for both cases. The curves for 0.4∆′ = and indicate no 

growth of the BW and are shown as an example. For the detuning parameters 

corresponding to the BW solutions, one may obtain the frequency at which the 

oscillations occur once the magnitude of the external magnetic field and waveguide 

parameters are given.  

0.5∆′ =

The results of a more detailed analysis are presented in Fig. 1.9 as the 

dependences of the length of the second stage at which the self-excitation starts, on 

the loss parameter d for several values of the normalized current parameter I0 and 

several lengths of the first stage. Solid, dashed and dotted lines correspond to the  
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Fig. 1.9. BW self-excitation conditions: the starting length of the 

second section is shown as the function of the loss parameter d 

for several values of the normalized beam current and different 

lengths of the first section 1ζ , which are indicated in the figure.  

 

 

 

normalized length of the first stage equal to 5, 10 and 15, respectively. As can be seen 

from this figure, the starting length of the second stage strongly depends on the length 

of the first stage when the losses are quite small. However, starting from the loss 

parameter values 0.5, the length of the first stage does not play any significant 

role. This shows that the first stage becomes so lossy that the oscillations can appear 

only in the second, lossless stage. 

d �

The results illustrating the effect of losses on the self-excitation of the first section 

alone are shown in Fig. 1.10. Here the starting length of a single-stage gyro-BWO is 

shown as a function of the loss parameter for several values of the normalized 

current. As can be seen, for any value of the current there is a critical value of losses, 

above which the self-excitation is impossible at any length. This is the case when the  
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Fig. 1.10. The starting length of a lossy waveguide as the 

function of the loss parameter d for several values of the 

normalized beam current. 

 

 

 

 

 

 

 

 

 

 

 

attenuation rate caused by losses is higher than the beam-induced growth rate of the 

wave.  

At the next stage of our studies we applied our method to the analysis of the 

BW excitation in the NRL gyro-TWT. The dispersion curves for the operation TE11 

mode and two parasitic waves are shown in Fig. 1.11, also showing the cyclotron 

beam lines for resonances at the first three cyclotron harmonics (s = 1, 2 and 3). The 

case of grazing for the operating wave at the fundamental resonance corresponds to 

the external magnetic field B0 = 12.08 kG. As can be seen from this figure, the TE21 

mode can be excited at the second harmonic closer to cut-off than other modes in the 

region of the backward wave interaction (kz < 0). Therefore, it can be expected to be 

the most troublesome parasite. Indeed, the analysis of BW self-excitation conditions 
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showed that for this mode the normalized beam current parameter I0 is equal to 

0.0137 and the normalized lengths of the first and second waveguide sections are  

 

 

 

 

 

 

 

 

 

Fig. 1.11. Dispersion diagram for the operating TE11-mode and 

spurious TE21 and TE01-modes for the NRL gyro-TWT design. 
 

 

equal to 26 and 5.92, respectively. At the same time the starting length of the second, 

lossless section is equal to 7.3, i.e. it exceeds the real length by about 20% only. 

For the backward TE11 wave at the second cyclotron harmonic the normalized 

lengths of two sections are equal to 14.0 and 3.2 and the normalized beam current 

parameter is 0.0029 only. Accordingly, the starting length of the second section is 

about 14.0, so there are huge safety margins. 
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1.3.3. Results of the nonlinear analysis 

 

The self-consistent set of non-linear equations (1.1)-(1.3) was studied 

numerically. Results of the gyro-TWT efficiency analysis are shown in Figs. 1.12 and 

1.13, which correspond to the case without losses and the one with distributed losses 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1.12. Orbital efficiency of interaction (a) maximized over the 

length of the interaction space (b) for a lossless gyro-TWT. 
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in the first section of the tube, respectively. The length of the first section in the lossy 

case equals to 8.0 and the loss parameter d is equal to 0.4. These figures show the 

orbital efficiency of interaction η⊥  maximized over the length of interaction space 

outζ  (Figs. 1.12 (a) and 1.13 (a)) on the plane of normalized current parameter, I0, and 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.13. Orbital efficiency of interaction (a) maximized over the 

length of the interaction space (b) for the two-stage gyro-TWT 

with distributed losses in the first section. The loss parameter d is 

equal to 0.4. 
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detuning, . The corresponding optimal values of ∆′ outζ  on the same parameter plane 

are shown in Figs. 1.12 (b) and 1.13 (b). As one may see, the maximum efficiency 

achieved is slightly lower in the presence of losses than in the lossless case, however 

the region of efficient operation is larger. This corresponds to the results obtained 

from the linear analysis, i.e. losses result in the increased effective bandwidth of the 

device (see Fig. 1.5).  

The regions of maximum efficiency, however, do not coincide with the regions of 

maximum gain. This can be seen from Fig 1.14. showing the gain of a lossless two-

stage gyro-TWT calculated for the parameters quoted above. The gain of the device 

grows with the increase of the normalized current, whereas the zones of maximum 

efficiency correspond to rather small values of the parameter. As discussed in the 

previous sections, stability problems may become critical at large values of I0 and, 

therefore, care should be taken when selecting the parameters to provide the optimum  

Fig. 1.14. Gain of the gyro-TWT maximized over the 

interaction length. Losses are not included. 
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operation. Moreover, the values of outζ  shown in Figs. 1.12 (b) and 1.13 (b) were 

obtained without the analysis of BW self-excitation conditions, and hence the 

question of their choice remains open. 

To analyze the effect of electron velocity spread on the device operation, one 

should consider a concrete device design since the number of parameters in the model 

increases and their choice cannot be arbitrary any more. Let us use the parameters of 

the NRL gyro-TWT described above. The effect of velocity spread on the amplifier 

bandwidth and output power is illustrated in Fig. 1.15. In this figure the output power 

is shown in dependence on the operating frequency for several values of the spread in 

orbital components of electron velocities. The driving power is constant for all the 

cases, being equal to 1.8 W. The ‘triangular’ velocity distribution function has been 

used in the computations, with RMS values of the spread indicated in the figure. As 

can be seen, there is a considerable degradation of power, gain and bandwidth as the   

 

 

 

 

 

 

 

 

 

Fig. 1.15. Effect of orbital velocity spread for the NRL gyro-TWT. 

The RMS values of the spread are indicated in the figure. The 

driving power is equal to 1.8 W in all the cases. 
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amount of the spread is increased. It can also be noticed that the effect is relatively 

small at low frequencies, which are close to cutoff, while being better pronounced at 

the high frequency edge where the inhomogeneous Doppler broadening of the 

cyclotron resonance band (owing the axial velocity scatter) is much stronger. 

We compared the results of our calculations with those obtained by MAGY as we 

did before in the linear analysis. First, only the uniform interaction region was 

considered with the input and output tapered sections ignored. Besides, the interaction 

with the operating TE11-mode alone was analyzed. Fig 1.16 illustrates axial wave 

power profiles calculated by these two methods for three operating frequencies. 

Dependence of the output power upon the operating frequency is shown in Fig. 1.17. 

The two figures demonstrate a very good agreement between the results of the two 

approaches.  

However, when the input taper (where the operating wave is partially converted 

into other modes) is included in MAGY simulations, a considerable difference 

between the results of the two approaches appears. As can be seen in Fig. 1.18, a 

good agreement exists between the axial power profiles at low frequencies (see Fig. 

1.18 (a)) but the results diverge at high frequencies (Fig. 1.18 (b)). The agreement at 

low frequencies is observed in spite of the fact that MAGY predicts two minima in 

the axial dependence close to the input, whereas the theory predicts only one. At the 

same time, both methods yield only one minimum at high frequencies.  

If, in the framework of our theory, we model the input downtaper by a waveguide 

section with a variable axial wavenumber, the theory also predicts two minima, as 
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Fig. 1.16. Axial wave power profiles calculated for three 

operation frequencies by the use of nonlinear theory 

(solid) and MAGY (dotted). Only the uniform section of 

interaction space is analyzed. The driving power is equal 

to 1.8 W for all the cases.  
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Fig. 1.17. Output power versus frequency obtained by 

nonlinear theory (solid) and MAGY (dotted). The uniform 

section of the interaction region is considered. The value of 

input power is equal to 1.8 W. 

 

 

 

 

 

 

 

 

 

 

 

shown in Fig. 1.19 (a). However, MAGY yields a much higher power at low 

frequencies. As shown in Fig. 1.19 (b), the final gains are now in agreement at high 

frequencies only. The reason for the discrepancy at low frequencies can be attributed 

to the effects of interaction with backward waves that is ignored in our theory. In 

general, it is known that in the case of near cutoff operation wave excitation should be 

described by the second-order equation following from the wave equation, instead of 

the first-order equation (1.12) [49], [53]. In our case, the presence of the input 

downtaper where the input wave is partially reflected into a backward wave, makes 

this effect even more pronounced. A certain role can also belong to mode conversion 

in tapers, which effects have been ignored in the simple theory. As can be seen from   
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Fig. 1.18. Axial wave power profiles obtained at high and low 

frequencies. The input downtaper is included in MAGY 

simulations. The driving power is equal to 1.8 W. Fig. (a) 

shows that MAGY predicts two minima near the input. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.20, the level of the parasitic TE12 mode in the input and output taper regions is 

substantially higher than in the regular part of the structure. In order to reduce the 

effect of reflection, we considered the input taper with the angle of tapering 

. (Accordingly, the initial radius of the waveguide was reduced from 3.248  0.51δ = D
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Fig. 1.19. (a) Axial wave power profiles for the central operation 

frequency. Nonuniform input section is taken into consideration 

both in the theory and in MAGY calculations. (b) Gain versus 

frequency calculated by the two methods. The curve corresponding 

to the case without input section in the theoretical calculations is 

shown for comparison. The input power is equal to 1.8 W.   
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Fig. 1.20. Axial wave power profiles obtained by 

MAGY for dominant TE11 and parasitic TE12 modes. 

Larger magnitudes of the TE12 mode in the input and 

output tapered sections can be observed.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.21. Gain versus frequency for the case of 

reduced taper angle in the input section. MAGY 

predicts a considerable oversaturation at low 

frequencies in comparison with the theoretical results. 

The driving power is equal to 1.8 W. 
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Fig. 1.22. Gain versus frequency for the case of 

reduced taper angle in the input section. Lower input 

power decreases the effect of oversaturation observed 

in MAGY results. 

 

 

 

 

 

 

 

 

 

 

 

mm to 2.9 mm.) The results shown in Fig. 1.21 indicate this measure to have reduced 

the disagreement between the results of the two approaches. In particular, at high 

frequencies the agreement is very good. However, the MAGY prediction for low 

frequencies is a considerable oversaturation, possibly because the beam interacts 

strongly with both the forward and backward waves in the input taper of a smaller 

radius. To eliminate this additional effect, the input power was cut down from 1.8 W 

to 0.9 W. As shown in Fig. 1.22, the result is a reasonable agreement between the two 

approaches. 
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1.4: Theory of the gyro-TWT with tapered parameters 

 

As mentioned in the previous sections, the theory of gyro-TWTs and gyro-BWOs 

with constant parameters has been developed a long time ago. The nonlinear theory of 

gyro-BWO with tapered waveguide radius and external magnetic field was presented 

in Ref. 54. In that paper, it was shown that for the case of linear tapering the 

maximum orbital efficiency of the gyro-BWO could be almost three times higher than 

that of the tube without tapering. However, so far, the nonlinear theory of the gyro-

TWT with tapered parameters has not been developed in a similar form. In the 

present work, the author makes an attempt to start developing such a theory. 

 

1.4.1: General formalism  

 

Let us restrict our consideration to the case of a small tapering of the waveguide 

radius and/or external magnetic field. In this case, the effects of tapering can be taken 

into account in the cyclotron resonance mismatch ∆ and the beam current parameter 

I0 only. For the simplest case of linear tapering of the waveguide radius  

0( ) (1 )w w R
out

zR z R
z

δ= +  (1.24) 

the corresponding changes of the normalized wavenumbers have the form: 

2
0

0 0 2
0

( ) (1 ), ( ) (1 )R R
out out

z zz h z h
z h z

κκ κ δ δ− +� � , (1.25) 
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where  and h0 are, respectively, the transverse and axial wavenumbers at the 

waveguide entrance, 

0κ

Rδ  is the waveguide taper parameter ( 1Rδ � ) and zout  is the 

waveguide length. These expressions are valid under the assumption that the device 

operates far enough from the cutoff. Correspondingly, the cyclotron mismatch given 

by (1.4) can be represented as 

0
0

( ) R

out

zz
b z
δ∆ ∆ −� , (1.26) 

where 2
0 0 0 0 0 0/ 2 (1 )zb h h zβ β β⊥= −  is the recoil parameter at the entrance. This 

parameter is small when the operating voltages are relatively low and the operation is 

not too far from the cutoff ( 0/ out z /z k cπ ω� � ) [48]. Therefore, when Rδ  and  

are of the same order of magnitude, the changes in the cyclotron mismatch can be 

large and comparable with its initial value. In other words, even small tapering of the 

waveguide radius may bring to significant changes in the device performance due to 

variation in the cyclotron resonance conditions.  

0b

The normalized current parameter in the similar manner can be expanded as 

0 0,( ) (1 )in I
out

zI z I
z

δ= − , (1.27) 

where I0,in is the current parameter at the entrance and 

2 2
0 0 0
2
0 0 0 0

3 4
(1 )

z
I R

zh h h
κ β κδ δ

β
⎛ ⎞

= + −⎜ −⎝ ⎠
.⎟  (1.28) 

 (This expression has been obtained for the case of operation at the fundamental 

harmonic, s = 1).  

 48



 The tapering of the external magnetic field brings to the changes in the 

cyclotron frequency,  and, therefore, in the detuning parameter only. For 

the case of parabolic tapering,

0 /eBcΩ = E

2 2
0( ) (1 / )B outB z B z zδ= − , which describes the axial 

dependence of the real field rather accurately, the cyclotron mismatch takes the form 

2
0,

0 2
0

( ) in
B

out

zz s
z

Ω
∆ ∆ δ

ωµ
= + , (1.29) 

where is the cyclotron frequency at the entrance, 0,inΩ 2 2
0 0 0 0(1 ) / 2(1 )zh h 0µ β β⊥= − −  

and Bδ  is the magnetic field taper parameter. The expression (1.29) is written in the 

exact form and therefore Bδ  is not necessarily a small parameter. It can be noticed 

that when both waveguide and magnetic field tapers are used, the corresponding 

changes in the detuning parameter can to some degree compensate for each other due 

to their opposite signs.  

Since ,0b Iδ  0µ  and 0,inΩ  depend upon specific device parameters, viz. , 

, 

0h

0κ 0zβ ,  R0 and B0, and, therefore, there exists a relationship between them, it is 

quite problematic to carry out the analysis of the tapering effects in a general way. 

Instead, design parameters of a concrete device should be considered, which will be 

done in the next section. 
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1.4.2: Results of the numerical analysis 

 

The author analyzed a gyro-TWT operating at about 250 GHz. To obtain its 

parameters, the design of the Ka-band gyro-TWT described in section 1.3.1, typical 

gun parameters for this frequency and the scaling properties of the equations (1.1)-

(1.3) were used. The set of parameters obtained is the following: 

Operation frequency…………………………………………..250 GHz 

Operation mode……………………………………………………TE01 

Beam voltage…………………………………………………….20 kV 

Beam current……………………………………………………….1 A 

Radius of electron guiding centers…………………………...0.037 cm 

External magnetic field value…………………………………....87 kG  

Initial waveguide radius……………...……………………….0.076 cm 

Waveguide length…………………………………………….6.725 cm 

Length of the lossy section in the waveguide…………….……..5.5 cm  

 

The dependences of the cyclotron detuning and normalized current parameters upon 

the axial coordinate for the four frequency values and fixed waveguide taper 

parameter 0.01Rδ = are shown in Fig. 1.23. The expressions (1.4) and (1.5) were used 

in these calculations. Also, for the purpose of comparison, shown are the curves 

calculated by the use of expressions (1.26) and (1.27) (dashed lines). As one may see, 

the changes in the detuning parameter can be described quite well by the expression 

(1.26) even close to cutoff (fcut = 240.6 GHz), whereas the normalized current at these    
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Fig. 1.23. Axial dependences of (a) the cyclotron detuning 

and (b) the normalized current current parameters for several 

frequency values. The waveguide taper parameter is equal to 

0.01 in all the cases. Solid and dashed lines correspond to the 

results obtained by the use of expressions (1.4), (1.5) and 

(1.26), (1.27), respectively. 
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frequencies demonstrates strongly nonlinear behavior and the expression (1.27) 

proves to be inaccurate. Second-order small terms should be used in the expansion of 

I0. It can be seen in Fig. 1.23 (a) that the absolute values of the detuning parameter at 

the exit of the device are at least three times larger than those at the input even for the 

central frequency of operation. The normalized current parameter in Fig. 1.23 (b) 

experiences significant changes only near the cutoff. 

After these preliminary calculations, the contours of gain, bandwidth and 

gain-bandwidth products were obtained on the plane of taper parameters Rδ  and Bδ  

for several values of input power, pitch-angle and initial magnetic field. The 

maximum gain values were found in the operational frequency range and bandwidths 

were estimated for these optimized values. The contours shown in Fig. 1.24 are 

obtained for the following set of parameters: Pin = 100 mW, 0.8α = , B0 = 87.5 kG. 

Figure 1.24 (a) shows gain in dB, Fig. 1.24 (b) shows bandwidth per cent and Fig. 

1.24 (c) demonstrates the gain-bandwidth product in dB·GHz for the values of taper 

parameters specified on the figure axes. As can be seen, the maximum gain achieved 

is about 47 dB, which corresponds to the largest tapering of the magnetic field, 

0.04Bδ = . The waveguide taper parameter for this point is equal to 0.026.  However 

Fig. 1.24 (b) shows that the corresponding bandwidth value is about 2% only. 

Contrary to the gain, the largest bandwidth (about 6.5%) is obtained for the case of 

constant magnetic field ( 0Bδ = ) and for the waveguide taper parameter 0.035Rδ ≈ . 

Although such a discrepancy exists, the main factor that determines the gain-

bandwidth product on the parameter plane is the bandwidth behavior. This can be 

seen in Fig. 1.24 (c), which shows that the gain-bandwidth product reaches its 
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Fig. 1.24. (a) Optimized gain, (b) bandwidth and (c) gain-bandwidth 

product on the plane of taper parameters. The figures are obtained for the 

following set: Pin = 100 mW, 0.8α = , B0 = 87.5 kG. The optimum point 

for gain-bandwidth product corresponds to 0Bδ = and 0.032Rδ ≈ . 
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 Fig. 1.24. (cont.) 

maximum near the optimum bandwidth point and is about 540 dB·GHz. One may 

conclude from these results that it is possible to significantly increase the bandwidth 

and gain-bandwidth product of the device by tapering the waveguide radius only. 

It is expedient to consider the dependences of gain and bandwidth upon the 

magnetic field near the optimum point. These are shown in Figs. 1.25 and 1.26, 

respectively, for two values of input power. Also, in Fig. 1.25, shown are the 

frequencies that correspond to the optimum gains (dashed lines). As on may see, 

higher gain and larger bandwidth can be achieved at lower driving powers since the 

saturation effects for those are less pronounced. The sharp drops on the curves near 

B0 = 88 kG in Fig. 1.26 are caused by the presence of a valley on the corresponding 

frequency dependences. The valley near this magnetic field value becomes deeper 

than 3 dB, which brings to bandwidth collapse. This can be clearly seen in Fig. 1.27, 
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Fig. 1.25. Optimized gain (solid) and corresponding 

frequency values (dash) as functions of the magnetic field. 

The results are shown for two input power  values indicated 

in the figure. The waveguide taper parameter is equal to 

0.03 in all the cases.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.26. Bandwidths estimated for the optimum gain as 

functions of the magnetic field. The results are shown for 

two values of input power indicated in the figure. The 

waveguide taper parameter is equal to 0.03. 
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Fig. 1.27. Gain versus frequency for several values of 

the magnetic field. The waveguide taper parameter is 

equal to 0.03, the input power is indicated in the figure. 

 

 

 

 

 

 

 

 

 

 

which shows frequency characteristics for the four values of B0. The input power 

equals to 50 mW in all the cases. Also, one may notice in this figure that the 

maximum gain value shifts from lower frequencies to higher ones with the increase of 

B0. This shift causes a jump on the curve of optimum frequencies for the case of Pin = 

50 mW (see Fig. 1.25).  

The author has also analyzed the dependence of gain-bandwidth product upon 

the electron orbital-to-axial velocity ratio, α . The results are shown in Fig. 1.28 for 

the same input power and B0 = 87.8 kG. One may see, that by going from 0.7α = to 

0.8α =  the gain-bandwidth product (solid line) changes its value from approximately 

45 to 610 dB·GHz, i.e. it gets increased by almost 13.6 times. Also, in this figure, the 

gain-bandwidth product for the tube without tapering is shown (dashed line) for the 

sake comparison. All other device parameters are the same as for the device with  
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Fig. 1.28. Gain-bandwidth product for the tapered (solid) 

and untapered (dash) gyro-TWT as functions of the orbital-

to-axial electron velocity ratio. The input power and 

magnetic field values are indicated in the figure. 

 

 

 

 

 

 

 

 

 

 

 

tapering in this example. It can be seen that the corresponding increase in the gain-

bandwidth product is 4 times only (from approximately 150 to 422 dB·GHz) for this 

case. Also, smaller gain-bandwidth product in the narrower range can be obtained for 

the untapered device for the same values of α  considered. So, although the tapering 

allows one to increase the maximum gain-bandwidth by ~50%, this effect exists in a 

relatively narrow range of α ’s: from 0.77α � to 0.88α � .  

 Here, the author has studied the effect of simple linear tapering of the 

waveguide wall radius and parabolic tapering of the magnetic field on the gyro-TWT 

performance. It has been shown that tapering of the waveguide radius alone may 

significantly increase the gain-bandwidth product of the device, which is a figure of 

merit for most of the gyroamplifiers nowadays. Obviously, other, optimized nonlinear 
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types of tapering can make better showing but their analysis is beyond the scope of 

this work.      
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Chapter 2: Theory of Multi-Stage Gyroklystrons 

2.1: Basic device configurations 

 

The schematic of a simple two-cavity gyroklystron is shown in Fig. 2.1. Very 

often, to improve the characteristics of a GKL, a larger number of cavities is 

employed. The interaction between the electron beam and the EM-wave occurs in the 

cavities separated by drift regions in which wave propagation is impossible. The input 

cavity is excited by an input signal. The EM-field in this cavity modulates the energy   

 

 

 

 

 

 

 
Fig. 2.1. Typical configuration of a two-cavity gyroklystron. 

 

of electrons that, in accordance with (I.2), leads to their gyration with slightly 

different cyclotron frequencies and results in the electron phase orbital bunching, 

which proceeds when electrons move along the device axis in the drift sections. These 

modulation and bunching processes cause an appearance of high-frequency 

components at the signal frequency and its harmonics in the electron current density. 

One of these high-frequency components excites oscillations in the subsequent 

cavities that improve the quality of electron bunches and increase the gain and 
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efficiency. The microwave power is extracted from the output cavity. When the 

output cavity is excited by one of harmonics of the signal frequency, the device 

operates in the frequency multiplication regime. 

The configuration of a clustered-cavity GKL is shown in Fig. 2.2. This is a 

four-cavity three-stage device, in which the first and last stages are represented by  

 

 

 

 

 

 

 Fig. 2.2. Schematic of a three-stage clustered-cavity 
gyroklystron.  

 

single cavities, while the intermediate stage is a cluster consisting of two cavities. The 

concept of clustered cavities was originally suggested by R. Symons for conventional 

linear beam klystrons for improving their bandwidth characteristics [56], [57].  

It should be mentioned that there is no limitation for the number of cavities in 

the cluster, and the use of multiplets is also possible. The location of clusters is not 

limited by the intermediate sections, the input and output stages may also contain 

clustered cavities [35]. In this work the author considers the scheme shown in Fig. 2.2 

with two cavities in the cluster located in the intermediate section of the device and 

compares this scheme with a standard 4-cavity GKL.  
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2.2: General formalism 

 
2.2.1: Gyro-averaged equations of electron motion and the balance equation 

 

We will ignore space charge effects and velocity spread in the electron beam 

and ignore the effect of the beam on the axial structure of the cavity field (cold-cavity 

approximation, cf. [55]). Also, negligible cross-talk between the cavities in each 

cluster is assumed when the clustered-cavity configuration is considered. Therefore, 

the electron motion in each cavity can be described by two equations, one for 

normalized magnitude of the orbital momentum p and another for the slowly varying 

gyrophase of gyrating electron relative to the rf field, ϑ [8], [34]: 

{ }1 Re exp( )s
l l

dp p F f is
d

ϑ
ζ

−=  (2.1) 

{ }2 21 Re exp( )s
l l

d p p iF f is
d
ϑ ∆ ϑ
ζ

−− + − =  (2.2) 

Hereζ is the normalized axial coordinate, 2
0 0(2 / )(1 / )s∆ β Ω⊥= − ω  is the 

normalized mismatch between the signal frequency or its harmonic and the resonant 

harmonic of the electron cyclotron frequency, s is the cyclotron harmonic number,  

is the normalized amplitude of the l-th cavity field and the function 

lF

( )lf ζ  describes 

the axial structure of this field. Let us designate each cavity by two indices among 

which the first one, k, indicates the cluster number and the second one, l, refers to the 

number of a cavity in a given cluster. However, when single cavities are considered, 

we will be ignoring the second index in such notation. The susceptibility of the 
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electron beam with respect to the resonator field can be obtained by integrating Eqs. 

(2.1) and (2.2) with corresponding boundary conditions: 

( )
, ,

,

, ,

*
, ,

,

k l out
k l

k l in

2
si

k l k l 0
k l 0

2i 1f pe d d
F 2

ζ π
ϑ

ζ

χ ϑ ζ
π

−⎧ ⎫⎪ ⎪= − ⎨ ⎬
⎪ ⎪⎩ ⎭

∫ ∫  (2.3) 

Here , ,k l inζ  and , ,k l outζ  correspond to the input and the output of a given cavity, 

respectively, and 0ϑ  is the initial gyrophase homogeneously distributed at the 

entrance to the first cavity between 0 and 2π . The functions , ( )k lf ζ  in Eqs. (2.1)-

(2.3) are normalized in such a way that , ,

, ,
, 1k l out

k l in
k lf d

ζ

ζ
ζ =∫ . The susceptibility of the 

electron beam, χ , its conductivity,σ , and the dielectric constant, ε , are related as [8] 

01 4 1 4 /I iε π χ πσ ω= + = −  

(I0 is the normalized current parameter specified below). 

In the stationary regime, the amplitude and phase of a resonator field 

, , ,| | exp( )k l k l k lF F iψ=  can be found from balance equations. For the first cluster (or 

single cavity) they can be written as 

{ }, , 0( , ) ,1 0k l k l k l k l lF iI Aδ χ+ + + = . (2.4) 

Here Al  is the complex amplitude of the field excited in the l-th cavity by the driver, 

I0 is the normalized current parameter, which is proportional to the beam current and 

to the Q factor of a given cavity 

2 2
2( 3) 2 0

0 3 2 2 2 2
0

( )
4

( 1)! ( ) ( ) | |

s
s s m s

m

J k ReI sI Q
mc s m J f dz

β
γ ν ν

− − ⊥
⊥

⎛ ⎞
= ⎜ ⎟− ′−⎝ ⎠ ∫

∓ , (2.5) 
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where /z z cω′ =  and ν  is the eigenvalue, which for a TEm,p mode of a cylindrical 

cavity is the p-th root of the equation ( ) .mJ 0ν′ =  

As there is no input power for other cavities, the balance equations for them 

are: 

0( , ) , 0( , ) , ,1,k l k l k l k l k lI Iχ χ δ′′ ′′= = −  (2.6) 

In Eqs. (2.4) and (2.6) the detuning parameter ,k lδ  is the mismatch between the signal 

frequency or its corresponding harmonic and the cold-cavity frequency ,k lω  

normalized to the width of the resonance curve of this cavity: 

,
,

, ,/ 2
k l

k l
k l k lQ
ω ω

δ
ω

−
= . (2.7) 

The expression for the gain describing the signal amplification in the l-th cavity of the 

k-the cluster can be given as 

2
,2

1

110log | |
kL

k l
l

G F
A =

⎧ ⎫
= ⎨ ⎬

⎩ ⎭
∑ , (2.8) 

where 2
l

l

2A A=∑ is the total intensity of the field excited in the input cluster or 

single cavity by the driver. This intensity for the case of single input cavity relates to 

the power of the driver, Pdr, as 

2 01 1

0

4 dr

cpl

I P QA
P Q⊥

= . 

Here Q1 is the loaded Q factor of this cavity, Qcpl is the coupling or external Q factor 

of the drive cavity, 2 1
0 [ / 2(1 )]0sp b b b bP V I Vη β γ −
⊥ ⊥= = − I  is the beam power associated 

with the electron gyration and Vb and Ib are the beam voltage and current, 

respectively.  
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2.2.2: Point-gap model 

 

As known, in gyroklystrons as well as in conventional klystrons the drift regions 

are much longer than the cavities. The ‘point-gap’ model is the limiting case of very 

short cavities. We will assume that the total length of each cluster consisting of a 

number of closely located short cavities is also very small. Therefore, the electron 

phase at the entrance to an arbitrary (k,l) cavity can be determined as [35] 

{ }2
, 0 , , ,( 0) 1 ( ) Re exp( )k l k k dr k k l dr k

k k l l
p iFϑ ζ ϑ ∆ µ µ ϑ′ ′ ′ ′ −

′ ′< <

⎡ ⎤= = + − + +⎣ ⎦∑ ∑ 1i

)

 (2.9) 

Here (k kp µ′ ′  is the electron momentum at the exit from the k ′ -th cluster and ,dr kµ ′ is 

the normalized length of the drift-section following the one. The term ,dr k
k
∆µ ′

′
∑  in 

the first sum of this expression describes the transit effect for electrons passing 

through all previous drift sections and the term ,[ ( )]2
k k dr k

k
1 p µ µ′ ′ ′

′

−∑  describes the 

cumulative ballistic bunching due to modulation of electron momentum in each 

cavity. The last sum in Eq. (2.9) describes the effect of previous cavities in a given 

cluster on the electron phase ( ,dr k 1ϑ −  is the electron phase after passing k-1 clusters). 

The electron momentum at the entrance to the same cavity can be determined as 

 

{ }, ,
,

( 0) 1 Re exp( )
k

k l k l dr k
k k l l

p Fζ ϑ′ ′ ′−
′ ′≤ <

= = + , 1i∑ . (2.10) 

By integrating the equations for electron motion (2.1) and (2.2) one may calculate the 

susceptibility given by Eq. (2.3) [34]: 
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, ,
, ,

2 2 exp( )k l k l dr k
l lk l k l

i ii F i
F F

χ ϑ′ −
′<

= − − − −∑ , 1 . (2.11) 

Here the first term on the RHS describes the beam loading effect, the second term 

describes the effect of preceding cavities in a given cluster. Notice that this term is 

absent in conventional gyroklystrons where l=1. The last term describes the effect of 

ballistic bunching (angular brackets denote averaging over 0ϑ ). Equation (2.11) being 

combined with the balance equation (2.4) or with Eqs. (2.6) determines the 

amplitudes and phases of fields in all cavities. This yields for the input cluster or 

cavity:  

2
1,2

1, 2 2
0(1, ) 1,

1, 1, 0(1, ) 1,
1,

0(1, ) 1, 1, 1,

| |
| | ,

(1 )

(1 )
tan( ) ,

(1 )

l
l

l l

l l l l
s l

l l l l

F
I

I
I

δ

δ
φ ψ

δ

=
+ +

′ ′′− +
− =

′ ′′+ +

F

F F
F F

 
(2.12) 

(2.13) 

where  and  are, respectively, the real and imaginary parts of the function 1,l′F 1,l′′F

1, 0(1, ) 1, 1,| | 2 | |exp( )l l l l l sgn
l l

A I F i iψ φ′ ′
′<

= + −∑F , (2.14) 

and sgnφ is the phase of the signal | | exp( )l l sgnA A iφ≡ . The field intensities and phases 

for other clusters are equal to 

2
0( , )2 2

, ,2 2
0( , ) ,

, , 0( , ) ,
,

0( , ) , , ,

4
| | | |

(1 )

(1 )
tan( ) ,

(1 )

k l
k l k l

k l k l

k l k l k l k l
sgn k l

k l k l k l k l

I
F

I

I
I

δ

δ
φ ψ

δ

=
+ +

′ ′′− +
− =

′ ′′+ +

F

F F
F F

 
(2.15) 

(2.16) 

where 

, , 1 ,exp( ) exp( )k l dr k k l sgn
l l

i F iϑ φ′−
′<

⎛ ⎞
= − + −⎜ ⎟
⎝ ⎠

∑F  (2.17) 
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2.3: Comparison of two concepts: Conventional multi-cavity 

versus clustered-cavity gyroklystrons 
 

The results of the analysis of clustered-cavity gyroklystrons were presented in 

Ref. 35. In that work, a two-cluster GKL with two cavities in each cluster was 

analyzed. The results were compared with the ones obtained for a conventional two-

cavity GKL. It was shown that by using the clustered-cavity gyro-concept, the 

bandwidth of gyroklystrons could be significantly enlarged, the efficiency of the 

device could be the same as of conventional GKLs or even higher; also the gain in the 

device of a given drift section length could be increased. However, a question arises 

whether such comparison between the clustered-cavity and the conventional scheme 

is valid. As mentioned, one resonator of the conventional tube was replaced by a 

couple or triplet in the clustered-cavity device. This means that the total number of 

cavities in the clustered-cavity GKL was larger than that in the conventional GKL of 

comparison and, therefore, the comparative analysis was not quite balanced. The 

present section is aimed at a “one-to-one” comparison of the conventional and 

clustered-cavity GKLs, in which the total number of cavities is the same for both 

schemes. The author considers two schemes of four-cavity GKLs: conventional 

scheme, in which all cavities are separated, and the clustered-cavity scheme shown in 

Fig. 2.2. 
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2.3.1: Point-gap model for the three-stage clustered-cavity gyroklystron 

 

In this subsection the author will show the most important steps in the derivations 

for the clustered-cavity GKL under analysis. The derivations are based on the 

formalism described in the previous section. 

The following representation for the field in the cluster can be used [35]: 

2,1 2,1 2,2 2,2| | exp( ) | | exp( )ccF F i F iψ ψ= + , (2.18) 

where 2,1 2,1| | exp(F i )ψ  and | |2,2 2,2exp( )F iψ are the complex fields in the first and 

second cavities of the cluster, respectively. The susceptibility of the beam with 

respect to the field in the first cavity of the cluster can be given as 

2,1 ,1 2,1
2,1

2 exp( ) exp( )
| | dr

ii i
F

χ θ= − − − −iψ , (2.19) 

which allows one to determine the complex field in the first cavity of the cluster from 

the balance equation (2.6): 

1 1 0(2,1)
2,1 2,1 2

0(2,1) 2,1

( )
| | exp( ) 2

( 1)
J q I

F i i
I i

ψ φ
δ

− = −
+ +

. (2.20) 

Here 1 1 12 | | drq F ,µ=  is the so-called bunching parameter of the input cavity where 

1,drµ  is the normalized length of the first drift-section. In the same manner, the beam 

susceptibility with respect to the field in the second cavity of the cluster is 

2,1 1 1
2,2 2,1 2,2 2 2,2

2,2 2,2

| | ( )2 exp( ) 2 exp( )
| | | |
F J qi i i i i i i
F F

χ ψ ψ= − − − − −φ ψ , (2.21) 

which gives 
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0(2,2) 0(2,1) 2,1
2,2 2,2 2 1 1

0(2,1) 2,1 0(2,2) 2,2

(1 )
| | exp( ) 2 ( )

(1 )(1 )
I I i

F i i J q
I i I i

δ
ψ φ

δ δ
− +

− = −
+ + + +

. (2.22) 

So, the expression for the complex field in the cluster can be given as: 

0(2,1) 0(2,2)
1 1 2

0(2,1) 2,1 0(2,2) 2,2

0(2,1) 0(2,2)

0(2,1) 2,1 0(2,2) 2,2

2 ( )exp( )
1 1

2
(1 )(1 )

cc

I I
F J q i

I i I i

I I
I i I i

φ
δ δ

δ δ

⎛
= − + −⎜⎜ + + + +⎝

⎞
− ⎟⎟+ + + + ⎠

 

(2.23) 

For the case of small beam loading, small input cavity prebunching and with the 

assumption 0(2,1) 0(2,2) 02I I =� I  the expression for the field intensity in the cluster 

takes the following form 

2
2,1 2,22 2

1 02 2 2
2,1 2,2

1 [( ) / 2]
| | (2 )

(1 )(1 )ccF q I
δ δ
δ δ

+ +
=

+ +
. (2.24) 

The field intensity in the output cavity is given as 

2 2
2 03 3

3 2 2
03 3

4 | || |
(1 )

IF
I δ

=
+ +

F , (2.25) 

where 3 3 1 2 2exp( )( exp( )) / 2i q iq iφ φ= − −F . Assuming  (small signal case), one 

may easily get 

2q � 1q

2 2 2 2
3 2 2,| | / 4 | |cc drq F µ= =F , where 2,drµ is the normalized length of the 

second drift-section. From the expressions just obtained and the expression for the 

field intensity in the input cavity, sA , the following expression for the gain of the 

three-stage clustered-cavity GKL can be obtained: 

, 03 02 1, 2,

2 2 2 2
1 2,1 2,2 3

2
2,1 2,2

20 log(8 )

(1 )(1 )(1 )(1 )
10log .

1 [( ) / 2]

SS clust dr drG I I µ µ

δ δ δ δ
δ δ

= −

⎧ ⎫+ + + +⎪ ⎪− ⎨ ⎬
+ +⎪ ⎪⎩ ⎭

 
(2.26) 
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2.3.2: Efficiency studies 

 

We start our comparative analysis with the efficiency studies of both schemes. 

First, we will consider the conventional four-cavity GKL. The bunching efficiency of 

the device can be given by 

22

0
0

1 exp( )
2b enti d

π

rη ϑ ϑ
π

= ∫ , (2.27) 

where entrϑ  is the slowly variable gyrophase at the entrance to the output cavity. The 

bunching efficiency is equal to the orbital efficiency of interaction at the first 

harmonic within the point-gap model. The slowly variable gyrophase entrϑ  has the 

following form (see Eq. (2.9)): 

0 1 0 2 1 0

1 1 1 0 3 2 0 2

1 2 0 2 1 0 1 1 1 0

sin sin(
sin ) sin(

sin sin[ sin ]).

entr q q
r q r q r

q r q r r q r

Σ

Σ Σ

Σ

ϑ ϑ ∆µ ϑ ∆ψ ϑ
∆ µ ϑ ∆ψ ϑ ∆ µ

ϑ ∆ψ ϑ ∆ µ

= + − − + +
+ − − + + −

− − + + − ϑ
 (2.28) 

 
Here Σµ  is the normalized length of the circuit preceding the output cavity, q1, q2 and 

q3 are the bunching parameters describing the ballistic bunching due to the first, 

second and third cavity field, respectively. The parameter 1 1, /drr L LΣ=  characterizes 

the location of the second cavity, 2 2, /drr L LΣ=  characterizes the location of the third 

cavity and . Also, in Eq. (2.28), 2, 1, 1,( ) /(dr dr drr L L L LΣ= − − ) 1∆ψ  and  are the 

phase differences between the complex fields in the first and second and the first and 

third resonators, respectively. For simplicity, we fixed in our consideration the 

bunching parameter of the first cavity, q1=1.84, which corresponds to the maximum 

of the first harmonic in electron current density in the case of one-cavity prebunching. 

2∆ψ
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Also, for the sake of simplicity, the case of exact cyclotron resonance was considered. 

Efficiency has been calculated as the function of the second ( ) and third ( ) 

bunching parameters for various locations of the second and third resonators and 

different values of the phase differences 

2q 3q

1∆ψ  and 2∆ψ . Some results of these 

calculations are shown in Fig. 2.3. In this figure, cases (a) and (b) correspond to the 

relative location of the second cavity 1 0.1r =  and positions of the third cavity 

 and , respectively. In other words, the third cavity is, first, close to 

the second one and both are close to the input cavity (a), and then the third cavity is 

shifted to the output one (b). As one can see, such shift allowed for increasing the 

maximum orbital efficiency from about 42% to almost 75%. Figures (c) and (d) 

correspond to the relative locations 

2 0.15r = 2 0.95r =

1 20.3, 0.35r r= =  and , 

respectively. The efficiency values in case (c) are higher than in case (a) and again, 

by moving the third cavity to the output one, the maximum efficiency for this cavity 

arrangement is achieved. Results for relative locations 

1 20.3, 0.95r r= =

1 20.6, 0.65r r= =  and 

 are shown in figures (e) and (f). The maximum efficiency 

corresponds to the case (f) and is about 80%. The phase shifts are and 

 in all the cases. Notice that the location of the maximum efficiency point on 

the -plane, which corresponds to the negative values of , in cases (b), (d) and 

(f) is actually the result of a shift of the parameter 

1 20.8, 0.95r r= =

1 / 2∆ψ π=

2∆ψ π=

2 3q q 3q

2∆ψ  by π . In other words, by 

adding π±  to , one may keep the values of  and  always positive, which 

has more sense since the bunching parameter is positive by definition. However, for  

2∆ψ 2q 3q
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Fig. 2.3. Contour plots of bunching efficiency describing the effect of prebunching in a four-

cavity gyroklystron on the plane of bunching parameters: (a) the second and third cavities

are located near the input one: r1= 0.1 and r2 = 0.15; (b) the third cavity is shifted to the

output resonator, r1 = 0.1 and r2 = 0.95; (c) the resonator locations are r1 = 0.3 and r2 = 0.35;

(d) r1 = 0.3, r2 = 0.95; (e) r1 = 0.6, r2 = 0.65; (f) both intermediate cavities are located close to

the output one: r1 = 0.8 and r2 = 0.95. 
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simplicity of calculations and similarity of the plots, values of  were kept 

unchanged. The results summarizing the ones shown in Fig. 2.3 are demonstrated in 

Fig. 2.4. In this figure, the dependences of the maximum efficiency values upon the 

relative location of the third resonator are shown for several locations of the second  

2∆ψ

 

Fig. 2.4. Maximum values of bunching efficiency of a 

four-cavity gyroklystron. These are shown as functions of 

the relative position of the third cavity for several 

locations of the second one. 

 

 

 

 

 

 

 

 

 

 

 

cavity. One may notice the initial maximum on the curves, which corresponds to 

positive values of the parameter q3. The sharp bends on the curves are related to the 

shift of the parameter  just discussed. Notice, that when the relative position of 

the second cavity reaches the values about 0.6, the first maximum on the curves 

disappears, which means that the maximum efficiency is obtained only for negative 

values of q3.  

2∆ψ
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Similar calculations were also done for the clustered-cavity GKL. For the 

clustered-cavity GKL 2, 1,dr drL L→ , which gives . The expression for the 

gyrophase at the entrance to the 4-th cavity for the case of exact synchronism now 

takes the form  

2r → 1r

0 1 0 2 1 0 1 1 0

3 2 0 1 1 0

sin sin( sin )
sin( sin )

entr q q q r
q q r

θ θ θ ∆ψ θ θ
∆ψ θ θ

= − − + − −
− + −

 
(2.29) 

The results of the calculations are shown in Fig. 2.5. Here the figures a), b), c) and d) 

correspond to the relative position of the cluster 1 0.1, 0.3, 0.7r = and , 

respectively. 

0.95

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 2.5. Contour plots of orbital efficiency describing the effect of prebunching in the 

three-stage clustered-cavity gyroklystron on the plane of bunching parameters. (a) the 

cluster is close to the input resonator, r1 = 0.1; (b) r1 = 0.3; (c) r1 = 0.7; (d) the cluster is 

close to the output cavity, r1 = 0.95. 
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Figure  2.6 demonstrates the results similar to the ones shown in Fig. 2.4. In 

this figure the dependences of the maximum efficiency versus the relative cluster 

location are shown. The maximum efficiency is about 70% for 1 0.95r =  that is a little  

 

Fig. 2.6. Maximum bunching efficiency values of the 

clustered-cavity gyroklystron as a function of the relative 

position of the cluster.  

 

 

 

 

 

 

 

 

 

 

smaller than in the previous case. This result is similar to the one obtained for the 

conventional GKL where the maximum efficiency is obtained when the second and 

third cavities are located near the output one. Therefore, a conclusion can be made 

that both conventional and clustered-cavity GKLs reach the highest efficiency values 

when their intermediate cavities are located close the output. 
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2.3.3: Gain studies 

 

In a small-signal regime, the expression for the gain for both the conventional 

GKL and the clustered-cavity GKL can be represented as a superposition of two 

terms [34]:  

(var) ( )const
SS SS SS signG G G ω= + . 

In the case of negligibly small beam loading, corresponding expressions for the 

clustered-cavity GKL gain can be written as (See Eq. (2.26)): 

( ) 2
, 02 03 120 log{8 (1 )}const

SS clustG I I rΣµ= − 1r

3

 (2.30) 

(var) 2 2 2 2
, 1 2,1 2,2

2
2,1 2,2

10 log{(1 )(1 )(1 )(1 )}

10log{1 [( ) / 2] }
SS clustG δ δ δ δ

δ δ

= − + + + + +

+ + +
 

(2.31) 

In these expressions, Σµ  is the total normalized length of the device. Similar 

expressions for the conventional GKL can be written as [34]: 

( ) 3
, 02 03 04 1 2 120log{8 ( )(1 )}const

SS convG I I I r r rΣµ= − 2r−

4

 (2.32) 

(2.33) (var) 2 2 2 2
, 1 2 310 log{(1 )(1 )(1 )(1 )}SS convG δ δ δ δ= − + + + +  

One may notice that when the cavities in the cluster are symmetrically detuned, i.e. 

when in Eq. (2) 2,1 2,2δ δ= − , the variable parts of the gains are the same for both 

schemes.  

It can easily be shown that the constant parts of the gain, which depend upon the 

location of the cavities, reach their maximum values when 1 1/ 3r =  and  for 

the conventional GKL and when 

2 2 / 3r =

1 1/ 2r =  for the clustered-cavity GKL. This means 

that the cavities must be equally spaced in the conventional device and the cluster 
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must be in the middle of the device in the clustered-cavity GKL. Obviously, these 

results are not consistent with the ones obtained in the efficiency analysis, where the 

maximum efficiency is achieved when the intermediate cavities are close to the 

output in both schemes. Therefore, the choice of resonator location should be 

determined as a result of a trade-off between the gain and efficiency. 

Now, let us compare the constant parts of the gains for both schemes with the 

assumption that the lengths of the devices are equal, the resonators are located to 

yield the maximum gain and 0i 0I I= . Then, for the conventional GKL one may get: 

, and for the clustered-cavity GKL: ( )
, 060 log(2 / 3)const

SS convG I Σµ=

( )
, 20 log 2 40logconst

SS clustG 0I Σµ= + . Figure 2.7 demonstrates both gains plotted as 

functions of 0I Σµ . One may conclude from this figure that the clustered-cavity 

scheme is preferable when there are limitations on the length of the device and/or the 

beam current. 

 

Fig. 2.7. Constant parts of the gains for the conventional four-cavity 

GKL (dashed) and the three-stage clustered-cavity GKL (solid) as 

functions of the normalized current - device length product. 
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2.3.4: Bandwidth studies 

 

For the sake of simplicity, let us consider the case when eigenfrequencies of the 

cavities’ modes form an equidistant spectrum, i.e. 

1 ( 1,2,3n n const n )ω ω ∆ω+ − = = = . 

The dependences of G  and G  upon frequency detuning given by (2.31) and 

(2.33) for several values of the stagger-tuning parameter, 

(var)
,SS conv

(var)
,SS clust

ξ  (ξ ∆ω∼ ), are shown in 

Fig. 2.8. It can be seen that the use of clustered cavities allows one to achieve much  

 

Fig. 2.8. Variable parts of the small-signal gains for the 

four-cavity conventional GKL (dashed) and the three-stage 

clustered-cavity GKL (solid) as functions of frequency 

detuning for several values of the stagger-tuning parameter. 

 

 

 

 

 

 

 

 

 

 

 

larger bandwidths in comparison with the conventional scheme. Bandwidths in terms 

of δ as functions of the stagger-tuning parameter are shown in Fig. 2.9. One may see 

that the bandwidth of the clustered-cavity GKL is almost twice larger than that for the  
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Fig. 2.9. Bandwidths in terms of δ as functions of the stagger-

tuning parameter for the four-cavity conventional GKL (dashed) 

and the three-stage clustered-cavity GKL (solid).

 

 

conventional device when ξ  is about 1.8. The sharp drop on the curve for the 

clustered-cavity GKL is due to the fact that the valley at the center of its bandwidth 

characteristic (see Fig. 2.8) becomes deeper than 3dB and the bandwidth collapses. 

However, such bandwidth degradation must not be a problem since it occurs at large 

values of ξ  where device operation is not practical because of substantial gain loss 

caused by stagger tuning. 

The plots of gain-bandwidth products and gain degradation as functions of stagger-

tuning parameter are shown in Fig. 2.10. Case (a) corresponds to the constant part of 

the gain  dB and case (b) corresponds to dB for both 

schemes. Such choice of corresponds to 

( ) 35const
SSG = ( ) 45const

SSG =

(
( )

const
SSG )

0 5.2I Σµ �  and 0 8.5I Σµ � , 

respectively (see Fig. 2.7). This, for example, may stand for shorter and longer tubes 

to be analyzed keeping 0I  fixed. Again, it can be seen that the clustered-cavity GKL 
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possesses an advantage over the conventional GKL in both cases (even in the absence 

of stagger tuning). 

 

 

 

 

 

 

 

 

 

 Fig. 2.10. Normalized gain-bandwidth product and gain 

degradation for the four-cavity conventional GKL (dashed) and 

the three-stage clustered-cavity GKL (solid) as functions of the 

stagger-tuning parameter. The constant parts of the gain are (a) 

35 dB and (b) 45 dB for both schemes. 
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Chapter 3: Startup Scenarios in High-Power Gyrotrons 
 

3.1: Preliminary remarks 

 

As a rule, any microwave oscillator passes through a time-dependent variation 

of operating conditions before it reaches its steady-state operating point. This startup 

scenario should first fulfill the conditions for self-excitation, and then move to the 

stable operating point in a way that ensures that the desired mode is excited with 

maximum efficiency at the desired power level, while the neighboring modes are 

suppressed.  

For microwave sources driven by electron beams, the self-excitation 

conditions are usually characterized by the starting current Ist, which is a function of 

various operating parameters (such as the beam voltage, beam position, etc.) So, 

when beam current Ib exceeds Ist the self-excitation conditions are fulfilled, and this 

gives rise to oscillations. If the operating parameters are reasonably chosen, the 

oscillations reach the steady-state regime in a certain transit time. The parameter 

region, where b stI I≥ , is known as the region of soft self-excitation. The oscillations 

in this region can start growing from the noise level, which is usually determined by 

the presence of the beam. In addition to the region of soft self-excitation, there is also 

a region of hard self-excitation, which exists in many oscillators. The self-excitation 

conditions starting from low noise level are not fulfilled in this region (i.e. b stI I< ), 

however the oscillations can be sustained, once their initial amplitude exceeds a 

certain threshold level. This classification was first introduced by Appleton and van 
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der Pol for radio oscillators [58] and then used in consideration of various sources of 

coherent electromagnetic radiation. In the region of hard self-excitation, devices 

exhibit hysteresis. That is, depending on the history of parameter variation, one can 

observe for a given final set of parameters either the presence or the absence of 

oscillations. Very often, the maximum efficiency can be obtained only in the region 

of hard self-excitation. In such cases, the device parameters should, first, pass through 

the region of soft self-excitation before reaching the point of the most efficient 

operation in the hard self-excitation region. Of course, the oscillations should remain 

stable in the process of this transition.  

If a device is designed to operate at a high-order mode, the startup problem 

becomes even more complicated, because the mode spectrum is very dense and, 

therefore, the self-excitation conditions can simultaneously be fulfilled for several 

modes. It is desirable to excite the operating mode prior to the others in this case and 

then maintain the conditions under which this mode will suppress all competitors. 

Suppression occurs due to nonlinear competition between the modes [59]. The mode 

competition results in the fact that effectively the starting current of a parasitic mode 

is increased by the presence of the desired operating mode. Therefore, relying upon 

the effect of mode competition, it becomes possible to drive the desired mode to the 

point of the most efficient operation even in the presence of many competing modes 

[60]. It is necessary to emphasize that such a scenario should be realized on a 

timescale that greatly exceeds the cavity fill time, /Q ω , since all changes made on a 

shorter timescale can be considered as an instant turn-on. For typical frequencies in 

the range of 100 GHz and Q-factors of the order of 103, this means the variation of 
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parameters with the timescale exceeding 10 ns. (In reality, the beam voltage and 

current rise times are usually much longer than microseconds in devices designed for 

a long-pulse operation). 

Now, the question arises “Which parameters in the scenario should be varied 

to fulfill all the conditions described?” It is known that the minimum start current in 

gyrotrons corresponds to smaller mismatches of the resonance than the high-

efficiency regime, because the EM-field of large amplitude can trap electrons even in 

the case of large initial mismatches [61], [62]. Since the cyclotron resonance 

mismatch in gyrotrons is proportional to 0sω Ω− , it can be concluded that the 

relativistic cyclotron frequency in the initial excitation phase should be larger than in 

the final one of the efficient operation. So, the startup scenario should imply either the 

decrease of the external magnetic field or the increase of the beam voltage. In the case 

of continuous wave operation, both of them can be varied. However, the possibilities 

of varying the magnetic field are severely limited in the case of pulsed operation, 

especially when the superconducting solenoids are used. Therefore, the studies of 

start-up scenarios are usually focused on the voltage variation [63], [64]. It should be 

emphasized that the beam voltage rise alone, which is typically slow enough, 

automatically changes the cyclotron resonance mismatch in the desired way.   

Now, let us briefly discuss different types of mode interaction in gyrotrons. 

The simplest case of interaction is the one between two modes only. When their 

frequencies are well separated, 2 1| | Q/ω ω ω− � , or the modes are azimuthally 

orthogonal, , the phase relations can be eliminated from the equations for 

mode intensities, i.e. the changes in mode amplitudes become independent of their 

2m m≠ 1
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phases. This is the same situation that occurs in radio oscillators with two degrees of 

freedom [59], as well as in other microwave oscillators [65], where the mode 

frequency separation is much larger than the mode resonance width. This kind of 

interaction is often called the nonsynchronous one [60]. Two kinds of coupling 

between modes in this case, “strong” and “weak”, were analyzed by Lamb for lasers 

[66]. In the first case, both modes interact with the same electrons, and hence strongly 

compete. In the second case, the modes predominantly interact with different 

electrons and, therefore, are weakly coupled. 

The case when the evolution of mode amplitudes depends on the phase 

relations is known as the synchronous or parametric interaction. When all modes are 

in resonance with electrons at the same cyclotron harmonic, the synchronous or 

parametric interaction may occur between three modes, whose frequencies and 

azimuthal indices obey the following conditions [60]: 

1 3 2 1 32 , 2m m m2ω ω ω+ ≈ + = . 

Here index “2” designates the central mode, while indices “1” and “3” designate the 

low-frequency and high-frequency satellites, respectively. The first condition in (3.1) 

is an approximate one because the modes have a finite width of resonance curves. So, 

it is possible to have the mode frequencies slightly detuned from an exactly 

equidistant spectrum. The corresponding condition can be written more precisely as 

2 1 3| 2 |
Q
ωω ω ω− − ≤ . 

Neighboring whispering gallery modes ( ) with the same radial index generally 

satisfy the conditions given by (3.1) and (3.2). So, the parametric interaction between 

such modes can take place. Obviously, this interaction becomes significant only when 

m� p

(3.2) 

(3.1) 
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the mode frequency separation is smaller than the cyclotron resonance band, i.e., 

when each of the modes can interact with electrons resonantly. 

 Instability of the central mode with respect to such symmetric satellites is 

often called the automodulation or sideband instability. The first study of this 

instability was carried out by Zapevalov and Nusinovich in 1985 [67]. In this work, 

the authors showed that the regime with maximum efficiency can be stable with 

respect to the satellites when the resonator length is reasonably short. It was also 

found that the most dangerous satellites are not the modes located very close to the 

operating one, but those that have a certain frequency separation. This conclusion was 

later confirmed by other authors [68], [69]. There are two conditions of the stability 

of the central mode oscillations. The authors in Refs. [68] and [69] characterized 

corresponding instabilities as the phase instability and the overbunch instability. The 

result of the phase instability is the jumping from one mode to another, while the 

result of overbunch instability can be a multimode equilibrium.   
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3.2: Excitation of the gyromonotron 

 

In this section, the formalism describing the excitation of resonators at one 

mode is described briefly. Obviously, it cannot give the idea of mode excitation in the 

presence of other modes, however it can be used for some simple estimates that will 

be shown below. 

The non-stationary interaction process in the gyrotron cavity can be described 

by the gyro-averaged equations of electron motion and the equation, which describes 

the excitation of the resonator field by an electron beam. The equations of electron 

motion can be given as 

{ }/ 22 Im ( ) exp( )sdw Ff w i
d

ζ ϑ
ζ
= −  (3.3) 

{ }( / 2) 11 Re ( ) exp( )sd w s Ff w i
d
ϑ ∆ ζ ϑ
ζ

−+ + − = − − . (3.4) 

These are essentially equations (2.1) and (2.2) rewritten in new variables, viz. 

, 2 2 2 2
0 0 0 0/ 1 2( ) /w p p p β⊥ ⊥ ⊥′= = = − −E E E sζ ζ ′= , /F F s′=  and ( /s 2)ϑ ϑ π′= − +  

(here primes denote the “old” variables used in Chapter 2). The excitation equation 

has the following general form [70]: 

*1( )
2s s

s V

dB i B j E
dt N ωω ω+ − = − ⋅∫ dv

GG
, (3.5) 

where the integration in the RHS is performed over the resonator volume V. In this 

equation, B is the complex amplitude of the magnetic field represented 

as { }Re ( ) exp( )sH BH r i tω=
G G G , where the function ( )sH r

G G  describes the spatial 
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structure of this field (correspondingly, ( )sE r
G G  describes the spatial structure of the 

electric field), (1 / 2 )s s i Qsω ω′= +  is the cold-cavity frequency, jω
G

 is related to the 

electron current density  as j
G

Re{ exp( )}j j iω tω=
G G

 and Ns is the norm of the operating 

mode given by  

2 21 1| | | |
4 4s s s

V V

N E dv H
π π

= =∫ ∫ dv
G G

. (3.6) 

The real part of the cold-cavity frequency, sω , determines the mode eigenfrequency, 

whereas its imaginary part describes some losses. Typically, two sorts of losses – 

ohmic and diffraction – can be important when gyrotron open resonators are 

considered. Thus, Qs can be determined as 

1 1 1

s dif ohmQ Q Q
= + . (3.7) 

 The excitation equation (3.5) can be rewritten in the gyrotron form for the 

normalized amplitude F: 

1
2

s
s

dF F I i
d Q

ω ωΦ
τ ω

′⎧ ⎫−
= − −⎨ ⎬

⎩ ⎭
, (3.8) 

where tτ ω= is the normalized time, Is is the normalized current parameter and Φ  is 

the complex gain function  

2
* / 2

0
0

1 ( ) exp( )
2

out

in

sii f w i
F

ζπ

ζ

Φ Φ Φ d dζ ϑ ζ ϑ
π

⎧ ⎫⎪ ⎪′ ′′= + = − ⎨ ⎬
⎪ ⎪⎩ ⎭
∫ ∫ . (3.9) 

This function can be expressed via the susceptibility of an electron beam with respect 

to the resonator field, χ̂ [71]: 

ˆ
2

i χΦ = − . (3.10) 
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In the regime of stationary oscillations at frequency ω the real part of Eq. (3.8) 

represents the balance of active powers  

(3.11) 2 1sI QΦ′ = . 

This is essentially the balance equation (I.22) given in the Introduction. The 

imaginary part of Eq. (3.8) in the same regime demonstrates the so-called frequency 

pulling effect, i.e. the shift of the oscillation frequency ω with respect to the 

oscillation frequency: 

s
sI ω ωΦ

ω
′−′′ = . (3.12) 

By integrating Eq. (3.3) and averaging it over the initial phases, one may represent 

the real part of the gain function as 2/ 2 | |FΦ η⊥′ = , where 
0

1 ( )outw
ϑ

η ζ⊥ = −  is the 

orbital efficiency of interaction introduced before. Correspondingly, the balance 

equation (3.11) can be rewritten as 

(3.13) 2
0| |F I η⊥= , 

where a new normalized current parameter, 0 sI I Q= , has been introduced. It can be 

noticed that this equation is similar to the energy conservation law for the gyro-TWT 

given by Eq. (1.9) of Chapter 1.   

Equation (3.11) defines the starting value of the normalized beam current 

through the corresponding value of the real part of the gain function. It is possible to 

calculate  in the framework of the small-signal theory in the following way. 

Assuming that the normalized amplitude F is small, one may find the zero-order 

solutions for w and 

Φ

ϑ :  

(3.14) (0) (0) 01,w ϑ ϑ ∆ζ= = − . 
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The first-order approach results in 

(1) (0)
0

2 Im ( )exp( )w F f i d
ζ

ζ ϑ ζ
⎧ ⎫⎪ ⎪′ ′= −⎨ ⎬
⎪ ⎪⎩ ⎭
∫  (3.15) 

(1) (1) (0)
0 0

( ) Re ( )exp( )w d s F f i d
ζ ζ

ϑ ζ ζ ζ ϑ ζ
⎧ ⎫⎪ ⎪′ ′ ′= − − − ′⎨ ⎬
⎪ ⎪⎩ ⎭

∫ ∫ . (3.16) 

Substituting these solutions into the expression for the linearized gain-function, 

2
*

(1) (1) (0) 0
0

1 ( ) exp( )
2 2

out

in

lin
i sf w i i d d
F

ζπ

ζ

Φ ζ ϑ ϑ
π

⎧ ⎫⎪ ⎪⎛ ⎞= − +⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∫ ∫ ζ ϑ , (3.17) 

and introducing ( ) ( )exp( )f f iζ ζ ∆ζ′ = , one may obtain 

*

0 0 0

( ) ( ) ( )
out

in

lin f i d f d s f d d
ζ ζ ζ ζ

ζ

Φ ζ ζ ζ ζ ζ ζ ζ
′⎧ ⎫⎪ ⎪′ ′ ′ ′′ ′′ ′ ′ ′= −⎨ ⎬

⎪ ⎪⎩ ⎭
∫ ∫ ∫ ∫ , (3.18) 

which does not contain the normalized amplitude F and depends only on the axial 

structure of the field and the detuning parameter. This expression can be simplified by 

the use of the relations 

2

* *

0 0

( ) ( ) ( ) ( ) ( )
out out out

in in in

f d f f d d f f d
ζ ζ ζζ ζ

ζ ζ ζ

dζ ζ ζ ζ ζ ζ ζ ζ ζ ζ
⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪′ ′ ′ ′ ′ ′ ′ ′= + ⎪′⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪⎩ ⎭ ⎩

∫ ∫ ∫ ∫ ∫
⎪⎭

 

and /df d i f∆ ζ′ = ′ . Thus, the imaginary part of the susceptibility χ̂  introduced in 

Eq. (3.10) can be given as 

2

ˆ 2 (
out

in

ds f
d

ζ

ζ

)dχ Φ ζ ζ
∆

⎛ ⎞′′ ′ ′= = − +⎜ ⎟
⎝ ⎠ ∫ . (3.19) 

It follows from the Eqs. (3.10)-(3.11) that χ̂ ′′  is related to the starting current I0 as 

0
1
ˆ

I
χ

=
′′

, (3.20) 
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which represents the self-excitation condition for a given mode in gyrotron. 

Oscillations start to grow in the region where 0 ˆ1/I χ′′> . 

The axial structure of the field in open resonators is often approximated by the 

Gaussian function , for which [62] 2( ) exp{ (2 / 1) }f ζ ζ µ= − −

2 2
2 ( )ˆ exp

4 4 8
sπ ∆µ ∆µχ µ

⎛ ⎞ ⎧
′′ = − −

⎫
⎨ ⎬⎜ ⎟

⎝ ⎠ ⎩ ⎭
 (3.21) 

with µ being the normalized length of the resonator. 
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3.3: Analysis and simulations 

3.3.1: Starting current and the growth rate of oscillations 

 

The beam current and the starting current vary during the voltage rise. The 

evolution of the beam current and the electron orbital-to-axial velocity ratio with the 

voltage can be determined with the use of either the adiabatic theory of magnetron-

type electron guns [72]-[74], or numerical codes (such as the widely used E-gun code 

[75]). The starting current determination is somewhat more complicated. As shown in 

the previous section, it is possible to derive an expression for the starting current in 

the framework of the small-signal theory. However, these results are valid only in the 

case of cold-cavity approximation and when there is no interaction between the 

electrons and the RF field after the resonator output cross section. The cold-cavity 

approximation works well when the diffractive Q-factor for a resonator of length L, 

/dif grQ L vω� , is much larger than its minimal value, which can be estimated as 

2
,min 4 ( / )difQ Lπ λ≈  [53]. The designs presently used in MW-class CW gyrotrons 

often have a smooth transition between the cylindrical section, which plays the role of 

the resonator, and the output uptaper (see Fig. 3.1). The diffractive Q-factor for such 

resonators is close to its minimum value. Even more important is the fact that the 

interaction between the electron beam and the outgoing radiation continues in the 

output uptaper. Indeed, the angle of tapering is rather small (it typically ranges from 

2º to 5º), and the external magnetic field remains close to its maximum value even 

after the cylindrical cavity region. Therefore, the interaction can continue in this 

uptaper and it is very difficult (if not impossible) to precisely determine the cross 
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section where this process stops. The analysis in Ref. 76 has shown that, depending 

on the output cross section, i.e. the axial position at which we assume the interaction 

stops, the starting current can vary significantly. Moreover, the starting currents of the 

operating and parasitic modes may vary in such a way that the starting current of the 

operating mode can be either higher or lower than the one of the parasitic mode 

depending upon the choice of interaction length. Obviously, the linearized starting 

current calculations are insufficient for determining which of the two neighboring 

modes will be excited first during the voltage rise.  

 The growing rate of oscillations can be estimated from the field excitation 

equation. Since the initial stage of the oscillation growth is considered, the nonlinear 

terms in the equation (3.8) can be neglected. Then, it can be found that the field 

intensity grows in time as  

exp( ) exp 1b

st

I t
Q I
ωστ
⎧ ⎫⎛ ⎞⎪ ⎪= −⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

. (3.22) 

So, in addition to the estimate ( /Q ω ) one gets a factor that characterizes the excess 

of the beam current over the starting current. Now, the time necessary for the mode to 

grow from the noise level to the large-signal level should be estimated. The field 

amplitude at this level becomes large enough to affect the starting current of the 

second mode. The noise level is the level of spontaneous radiation providing the 

white noise. As shown in Ref. 69, the amplitude of this noise is proportional to 1/ 2N∗ , 

where  is the number of electrons passing the resonator during the cavity decay 

time. This number can be estimated as 

N∗
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9( ) 10
( )

b b
b z

I I A QQ QN nS v
e f GHzω ω∗

⋅
= = = . (3.23) 

For typical operating parameters such as 50bI ≤ A, , 310Q ≈ f ≥100 GHz, this 

number is of the order of 1012 and, therefore, the initial noise-level amplitude is of the 

order of 10-6. At the same time, numerous simulations show that large-signal effects 

start to occur when the amplitude reaches the level of 0.1-1. Correspondingly, the 

time necessary to reach saturation can be estimated to be 

(11.5 14) st
sat

b st

IQt
I Iω

−
−

∼ . (3.24) 

The cases of the instant turn-on and adiabatically slow voltage rise considered in the 

Section 3.1 can now be redefined more accurately. Lets us assume that there are two 

competing modes and that the self-excitation conditions are fulfilled for these modes 

at the voltages (1)
stV  and (2)

stV , respectively. The time interval between these voltages 

for the case of a linear voltage rise, V t( ) tξ= , can be estimated as 

. Correspondingly, the “instant turn-on” will be the case when 

the intensity of the first mode grows insignificantly during this time interval, i.e. 

(2) (1)
1 2( ) ( ) /st stt V V∆ − = − ξ

1 2( ) satt t∆ − � . (3.25) 

In this case, the self-excitation conditions for the second mode will not be affected by 

the first one, which has a small amplitude. In the opposite case 

(3.26) 1 2( ) satt t∆ − �  

the first mode has sufficient time to grow large enough to suppress the excitation of 

the second mode.  The coefficient ξ , which characterizes the voltage rise time, in 

short pulses can be very different from that in long pulses, depending on the 
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characteristics of the power supply employed. For example, it takes about 1 µs to 

reach the nominal voltage of about 80 kV in short-pulse gyrotron experiments at MIT 

[77], whereas this time is larger than 100 µs in long-pulse tests at CPI. 

 

3.3.2: Simulation results for the 140 GHz, 1 MW CPI gyrotron 

 

First, our simulations were performed for the 140 GHz gyrotron developed at 

CPI for electron-cyclotron resonance heating and current drive in the German 

stellarator “Wendelstein 7-X” [78]. The circuit geometry and magnetic field profile  

 

Fig. 3.1. Circuit geometry (solid) and magnetic field profile 

(dash) for the 140 GHz, 1 MW gyrotron developed at CPI. 

 

 

 

 

 

 

 

 

 

 

for this tube are shown in Fig. 3.1. The operating mode in this tube is TE28,7 and the 

operation is at the fundamental cyclotron resonance. The nominal accelerating 
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voltage is 80 kV and the corresponding orbital-to-axial velocity ratio is about 1.4. The 

beam current for this voltage is 40 A.  

The preliminary analysis shows that the most important competing modes for 

a given beam radius are TE27,7 and TE29,7. The operating mode and these two 

competitors form a triplet of modes corotating with gyrating electrons, which can 

interact parametrically. Indeed, the eigenvalues of these modes are the following: 

27,7 55.3046ν = , 28,7 56.5182ν =  and 29,7 57.7281ν =  and the corresponding 

nonequidistance of cutoff frequencies is 

5
28,7 27,7 29,7 28,7| 2 | / 6.55 10ν ν ν ν −− − ≈ ⋅ . 

The cold-cavity Q-factor for this gyrotron is about 1.2·103, therefore, the conditions 

(3.1)-(3.2) for synchronous interaction between these modes are fulfilled. However, 

the frequency separation of these modes is about 2.2%, while the cyclotron resonant 

band typically does not exceed 1%. Therefore, when one of such modes is excited by 

the beam, its low- and high-frequency satellites can be present due to the parametric 

interaction, but the amplitudes of these satellites should be small, because they do not 

interact resonantly with the beam. 

 Also important is the triplet of counterrotating modes, having the radial index 

p = 8: TE-24,8, TE-25,8 and TE-26,8. The radial profile of the coupling impedance,  

2
, 0

2 2 2
, ,

( /
( ) (

m s m p w

m p m m p

J R R
G

m J
ν

ν ν
±=
−

)
)

, (3.27) 

for the six modes under consideration in the vicinity of the beam position is shown in 

Fig. 3.2. The “minus” and “plus” sign in the expression (3.27) stand for the corotating 

and counterrotating modes, respectively. In Fig. 3.2, the corotating modes are shown  
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Fig. 3.2. Coupling impedances of the corotating (red) and 

counterrotating (green) modes in the vicinity of the beam position as 

functions of the electron guiding center radius. The beam position is 

indicated by the dashed line. 
, while the counterrotating ones are shown in green. The beam position is 

y the vertical dotted line and it corresponds to the beam radius employed 

tron. The position is intentionally made a little larger than the optimum 

the operating mode, which strongly reduces the coupling to the 

ting parasites. 

 3.3 demonstrates the imaginary part of the susceptibility, χ̂ ′′  as a 

 the operating frequency and accelerating voltage for the parameters of the 

ified. Assuming that the axial field structure in the resonator is close to the 

ne, the expression (3.21) was used in these calculations. One may see that 

ith higher frequencies are excited first, whereas the low-frequency modes 
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are excited at high voltage values at the end of the voltage rise. This is consistent with 

the changes of the detuning parameter during such rise discussed in Section 3.1. So, a 

 

 

 

 

 

 

 

 

 

 

Fig. 3.3. Imaginary part of the beam susceptibility as a function 

of the operating frequency for several values of the accelerating 

voltage. The mode cutoff frequencies of the corotating and 

counterrotating triplets are shown by the red and green vertical 

lines, respectively.  

 

 

 

 

possible scenario will be the following. The TE29,7 and TE-26,8 modes are excited first 

in the regime of soft self-excitation and start growing competing between each other. 

Then, as the voltage continues to grow, the mode, which wins the competition and 

suppresses its rival, moves to the region of hard self-excitation, while the modes 

TE28,7 and TE-25,8 become excited in the regime of soft self-excitation. At this point a 

competition may occur between the operating mode and the counterrotating TE-25,8. 

Also, the operating mode may compete with the remaining high-frequency mode. 
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Eventually, with further voltage increase, the TE29,7 or TE-25,8 should get outside the 

resonance band and stop interacting efficiently, while the TE28,7 or TE-25,8 get into the 

region of hard self-excitation. The operating mode should stay in this region to 

achieve the maximum efficiency point. At the end of the voltage rise, the low-

frequency modes (TE-24,8 and TE27,7) may enter the game and bring to a competition, 

but at that time the operating mode should be strong enough to suppress them. 

To verify these simple arguments, simulations were carried out for the six 

considered modes by the use of the self-consistent, multifrequency code MAGY [26]. 

Our experience with this code has shown that in order to achieve accurate results, the 

time step should not exceed 0.1 ns, a small fraction of the cavity fill time 

( / 8.57Q ω ≈  ns). Thus, the time step chosen in the simulations was 0.05 ns. Then we 

determined that it takes about 4 h of real-time to simulate 100 ns of mode evolution 

when six modes are considered. Obviously, it is impossible to simulate the complete 

100 µs of the voltage rise in long-pulse gyrotrons. Instead, we had to employ two 

time-saving techniques. First, we began our simulations at about 50 kV (rather than 

zero), choosing the initial voltage to be slightly below the voltage at which the 

modes’ growth rates become positive. Second, we divided the voltage rise into 2 kV 

steps, simulating the mode evolution at each voltage value for 100 ns (a time long 

enough for these modes to reach steady-state in most cases), and using the final 

values of the mode amplitudes and phases from the previous run as input data for the 

subsequent run. This choice of voltage steps and duration of each run corresponds to 

the voltage rise time coefficient ξ equal to 20 kV/µs. This coefficient is, for 

comparison, approximately 80- and 0.8 kV/µs for MIT short-pulse experiments and 
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CPI long-pulse experiments, respectively. Thus, our choice of steps and lengths of 

runs should be adequate for modeling slower startup scenarios in comparison with the 

MIT experiments. Although our simulations employ a series of instantaneous voltage 

steps, such an approach is acceptable if these steps are small enough. The choice of 2 

kV step allows accurate description of the mode excitation and competition during the 

voltage rise; calculations with smaller steps yield the same results. 

 Results of the simulations are shown in Fig. 3.4.  The figure shows the 

radiated power in all six modes at the output cross section, where the simulations 

were ended. This cross section is about 3 cm downstream from the end of the straight 

section forming the resonator (z = 8.5 cm, see Fig. 3.1). As expected, the high 

frequency TE29,7 and TE-26,8 modes are excited first at low voltages with the 

counterrotating mode winning their subsequent competition. This mode remains 

dominant up to voltages of about 64 kV, however its power level is on the order of a 

few milliwatts only. Then, the central modes of both triplets are excited at 64 kV and 

the operating mode starts to suppress the counterrotating rival when the voltage 

reaches 70 kV. However, the oscillations of the low-frequency parasitic TE27,7 begin 

to grow at this voltage level. The three corotating modes coexist at comparable power 

levels in the range of voltages between 72 and 76 kV. The counterrotating triplet is 

not completely suppressed here, but the power of its modes is at least two orders of 

magnitude lower than the power in the corotating triplet. Finally, the desired 

operating mode starts to suppress all others at about 78 kV reaching the power level 

of 1 MW at the final voltage. The power of each of the remaining five parasites does 

not exceed 1 W at this point.   
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 Fig. 3.4. Startup scenario for the 140 GHz, CPI gyrotron. The 

beam voltage varies in 2 kV steps. For each voltage value, the 

simulations are conducted for 100 ns time intervals. The 

voltage values are indicated in the figures. 
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Although the operation of the desired mode at the final operating parameters 

has been predicted, it should be noticed that the mode amplitudes did not reach the 

steady state before the subsequent step at some voltage values. In addition, since 

some steps demonstrate oscillations in multiple modes, there is a concern that these 

simulations might indicate that the gyrotron will not reach the desirable steady state if 

operated at lower voltages. Therefore, we checked some stages of our simulation 

using longer computational runs. First, we checked the results for 60 kV, where the 

steady state was not reached in 100 ns. The dominant TE-26,8 mode (as well as other 

modes) reached the steady-state during the run of 400 ns instead of 100 ns. Then we 

conducted a longer simulation at 64 kV, where the 100-ns interval was clearly not 

long enough for reaching the steady state. Results of a 700 ns run for this voltage are 

shown in Fig. 3.5 (a). Its is interesting to notice that during the first 300 ns of this run, 

when the power of two competing modes (TE28,7 and TE-25,8) increases, other modes 

exhibit steady-state operation at lower power levels. However, when the operating 

mode starts to suppress its rival, the damping of the parasitic TE-25,8 mode brings to 

the appearance of automodulation oscillations in all modes, including the operating 

one. A further voltage increase causes only the growth of the operating mode power 

up to 1 MW level, a shown in Fig. 3.5 (b), while the power of all parasites does not 

exceed 1 mW. It should be noted that the highest power of the most dangerous 

parasitic TE-25,8-mode did not exceed 1 W in the long runs, while some parasitic 

modes reached the 100 kW level in the short ones (see Fig. 3.4 (b)). These effects 

demonstrate that the predicted behavior is quite sensitive to the details of the startup 

scenario if the voltage changes fast relative to the rise times of the modes considered.          
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Fig. 3.5. Evolution of modes at the final stage of startup scenario 

allowing additional time for the modes to reach steady state. (a) Results 

of the long run at 64 kV. (b) Increase in the power of the desired mode 

with the further increase in voltage up to the nominal level.  
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3.3.3: Simulation results for the 110 GHz, 1.5 MW CPI gyrotron 

 

In an effort to produce a gyrotron design that is both more reliable and cost 

effective for large fusion installation such as U.S. tokamak “Doublet-IIID” [79], a 

new 110 GHz design has been developed at CPI that has a power-handling capability 

of 1.5 MW. The circuit geometry and magnetic field profile for this gyrotron are 

shown in Fig. 3.6. The operating mode is TE22,6, the operation is at the first cyclotron 

harmonic. The accelerating voltage is 96 kV, the corresponding beam current is 40 A 

and the orbital-to-axial velocity ratio is about 1.4.     

   

 

 

 

 

 

 

 

 

Fig. 3.6. Circuit geometry (solid) and magnetic field profile (dash) 

for the 110 GHz, 1.5 MW gyrotron developed at CPI. 

 

 

The most important competing modes are TE21,6 and TE23,6, which form a triplet with 

the operating mode. The eigenvalues of these modes can be found to be 
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21,6 44.403ν = , 22,6 45.6243ν =  and 23,6 46.8407ν = , and the corresponding 

nonequidistance of cutoff frequencies is 

4
22,6 21,6 23,6 22,6| 2 | / 1.1 10ν ν ν ν −⋅ − − ≈ ⋅ , 

which satisfies the conditions (3.1) and (3.2) for the Q-factor being equal to 103. The 

counterrotating triplet is formed by the modes with radial index p = 7: TE-18,7, TE-19,7 

and TE-20,7. The radial profile of the coupling impedance for the six modes is shown 

in Fig. 3.7. As before, red and green colors in the figure correspond to corotating and 

counterrotating modes, respectively. We were considering two beam positions in our  

 

 

 

 

 

 

 

 

 

 

Fig. 3.7. Coupling impedances of the corotating (red) and 

counterrotating (green) modes in the vicinity of the beam positions 

(dashed) as functions of the electron guiding center radius.  

 

 

 

analysis, which are shown by dashed lines with the corresponding indices. The first 

position was initially used by the CPI during the test simulations for this tube. As we 
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will see, this position results in the excitation of the parasitic TE-19,7-mode instead of 

the desired TE22,6-mode. 

 The imaginary part of the susceptibility versus frequency is shown in Fig. 3.8. 

It can be seen in this figure that the high-frequency TE23,6 and TE-20,7 modes should be 

excited at about 56 kV during the voltage rise. Then, the central modes of both 

triplets, TE22,6 and TE-19,7, should start growing near 74 kV and, finally, the low-

frequency TE21,6 and TE-18,7 will enter the game when the voltage reaches 88-90 kV.  

 

 

 

 

 

 

 

 

 

 

   Fig. 3.8. Preliminary calculations for the CPI 110 GHz gyrotron. 

Imaginary part of the beam susceptibility as a function of the 

operating frequency for several values of the accelerating voltage. 

The mode cutoff frequencies of the corotating and counterrotating 

triplets are shown by the red and green vertical lines, respectively.  

 

 

 

Corresponding MAGY simulations for the first beam location are shown in 

Fig. 3.9. As before, the length of each run corresponding to a fixed voltage value was 
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100 ns and the voltage was increasing in 2 kV steps. The cross section, at which the 

results were obtained, was located at z = 9.82 cm, i.e. at the end of the output section 

(see Fig. 3.6). One may see that instead of only high-frequency modes, all three 

modes of the corotating triplet exist above the noise level at initial voltages. Then, 

when the voltage is about 54 kV, the high-frequency TE23,6 mode starts suppressing 

the operating TE22,6 mode slightly. At the same time, at 56-58 kV, the central mode of 

the counterrotating triplet, TE-19,7, begins to grow replacing the operating one. It is 

interesting to notice that magnitudes of the operating and the high-frequency 

counterrotating TE-20,7 modes oscillate with the same frequency of about 40 MHz 

when the voltages are between 58 and 62 kV. At 64 kV, the TE-19,7 and TE22,6 start 

growing very rapidly, however they differ in power by almost two orders. The growth 

of these modes provokes a similar growth of the low-frequency TE21,6 mode. The 

growth of the central modes stops at 70 kV where they experience a small drop, while 

the TE21,6 continues to grow and drops only at 72 kV. At this voltage, the TE-19,7 and 

TE-20,7 start rising again competing between each other. The counterrotating mode 

wins this competition, while the operating mode gets suppressed and starts dropping 

at 78 kV. All other modes also become suppressed and drop to the noise level. The 

parasitic TE-19,7  reaches the point of its maximum efficiency at the final voltage.  

 As can be seen in the Fig. 3.9, the modes did not reach the steady state at most 

of the voltage values. Therefore, the results obtained were checked in longer runs. 

These are shown in Fig. 3.10. It can be noticed immediately that there is a significant 

difference in mode behavior in both figures. At first, the results for initial voltage 

values in Fig. 3.10 (a) are comparable with those in Fig 3.9 (a). Indeed, one may see   
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Fig. 3.9. Startup scenario for the 110 GHz, CPI gyrotron. The 

results are obtained for the first beam position shown in Fig. 3.7. 

The beam voltage varies in 2 kV steps. For each voltage value, the 

simulations are conducted for 100 ns. The voltage values are 

indicated in the figures. 
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that the TE23,6 and TE21,6  modes are growing slowly suppressing the operating TE22,6, 

while the TE-20,7 mode is oscillating with the frequency about 35-40 MHz. Such 

oscillations can be noticed in both Fig. 3.9 (a) and Fig. 3.10 (a). However, starting 

from the value of 58 kV, an absolutely different behavior can be seen in Fig. 3.10 (a). 

The high-frequency TE-20,7 and TE23,6 modes in this figure start growing relatively fast 

and eventually reach significant power levels. One may notice that although the 

cutoff frequency of the TE-20,7-mode is lower than the one for the TE23,6-mode, it is 

excited first possibly because the value of its coupling impedance is larger for the 

given beam radius (see Fig. 3.7). Both TE-20,7 and TE23,6 are growing slowly at 58 kV 

(Fig. 3.10 (b)) and reach saturation in about 4.5 µs. As can be seen from Fig. 3.9 (a), 

this growth was not predicted in the short runs. Also, it is interesting to notice that the 

modes with lower frequencies in Figs. 3.10 (a) and 3.10 (b) do not interact and remain 

stable during this rise. The two high-frequency modes start falling at 60 kV (Fig. 3.10 

(b)), while the central TE-19,7-mode experiences a small rise. As can be seen in Figs. 

3.10 (b), 3.10 (c) and 3.10 (d), the TE-20,7 and TE23,6 modes fall to the level of other 

modes in about 9 µs. Then, at 62 kV, the TE-19,7-mode continues to rise while the 

operating mode starts oscillating with a slowly increasing amplitude. It can be noticed 

that for these central modes, the TE-19,7 is excited prior to the TE22,6-mode although it 

couples to the beam slightly weaker. One may see in Figs. 3.10 (e) and (f) that the 

-mode reaches the saturation at this voltage value in about 7 µs. The 

oscillations of the operating mode die away at the end of this time interval. At 

subsequent voltage steps, the parasitic TE-19,7-mode continues to grow suppressing all 

other modes and reaches its highest efficiency at 96 kV (Fig. 3.10 (g)). These results  

19,7TE−
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 Fig. 3.10. Startup scenario for the 110 GHz, 1.5 MW CPI gyrotron.  

The results are obtained for the first beam position shown in Fig. 

3.7. The length of the runs at each beam voltage value allows the 

modes to reach steady state. The voltage varies in 2 kV steps, which 

are indicated in the figure.  
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Fig. 3.10. (cont.)  
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Fig. 3.10. (cont.) 
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Fig. 3.10. (cont.) 

 

are also in contradiction with the ones obtained by short runs, although the operation 

of the TE-19,7-mode at the final stage has been predicted for both simulations. A keen 

mode competition can be observed between 68 kV and 78 kV in Fig. 3.9, which is 

absent in Fig. 3.10. Also, the operating TE22,6-mode reaches almost 10 kW level at 78 

kV in Fig. 3.9 (b), whereas it barely gets to 1 µW in Figs. 3.10 (f) and 3.10 (g). As in 

the case of the 140 GHz gyrotron, we may conclude that the predicted mode behavior 

is quite sensitive to the rate of the voltage rise. 

Since the operation of the desired TE22,6-mode was not achieved, we changed 

the beam radius from 0.996 cm to 1.01 cm (see Fig. 3.7). Correspondingly, the ratio 

of the coupling impedance of the operating mode to the one of the most dangerous 

TE-19,7-mode changed from 1.066 to 1.211. The results of short runs for the second  
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Fig. 3.11. Startup scenario for the 110 GHz, CPI gyrotron. The results 

are obtained for the second beam position shown in Fig. 3.7. The 

beam voltage varies in 2 kV steps. For each voltage value, the 

simulations are conducted for 100 ns. The voltage values are 

indicated in the figures. 
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beam radius are shown in Fig. 3.11. In this figure, one may observe a severe mode 

competition in the range of beam voltages from 66 kV to 78 kV, which is similar to 

the one shown in Fig. 3.9. However, the operating TE22,6-mode wins in this case and 

successfully reaches its maximum efficiency at 96 kV. It is interesting to notice that 

the parasitic TE-19,7-mode starts growing before the operating one and has a higher 

power at 64-68 kV but still loses its advantage at 70 kV. (It should be mentioned that 

a smaller beam radius than the one shown in Fig. 3.2 was initially employed for the 

140 GHz gyrotron.  But it was found in a series of simulations [80] and experiments 

that the parasitic TE-25,8-mode was suppressing the desired TE28,7-mode under those 

conditions). 

 As in the results for the first beam radius, the modes did not reach steady state 

in the majority of runs and, therefore, the results should be verified in long 

simulations. These simulations are currently in progress. 

 A few important conclusions can be made based on the results of our 

simulations. First of all, they show that it is necessary to consider the time scale of the 

voltage rise when attempting to predict the outcome of a startup scenario, because the 

sequence of modes that can be excited, and their final power levels can be quite 

different depending on whether the voltage rises slowly or rapidly relative to the rise 

times of the modes themselves. This means, in particular, that the results of short-

pulse tests of gyrotrons operating in high-order modes may not be reproducible in 

long-pulse tests of the same tubes. Second, these results show that to predict the final 

power levels of various modes, it is necessary to track the behavior of the oscillator 

starting from a voltage, at which the first mode can be excited from the noise level, up 
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to the nominal voltage. Third, in the case of exciting many modes, it is often 

necessary to consider the temporal mode evolution during the intervals much longer 

than the saturation time, which was estimated above for a single-mode excitation. Our 

results also show that a simultaneous treatment of two triplets was absolutely 

necessary for determining details of mode excitation and interaction. Finally, it 

should be emphasized that the results of our simulations agree qualitatively with 

experiments conducted at CPI. 
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3.4: Slow stage of startup scenarios 

 

3.4.1: Slow processes in CW and long-pulse gyrotrons 

 

Recently, attention has been paid [81]-[83] to the fact that in CW and long-

pulse gyrotrons some slow processes may take place, whose typical time is much 

larger than the voltage rise time and whose presence can be important for stability of 

gyrotron operation.  In this section, we will discuss the following three effects:  

1) ion neutralization of DC space charge fields; 

2) frequency deviation caused by the temperature rise of cavity walls due to 

the ohmic heating; 

3) the decrease of the beam current due to cathode cooling. 

Ion neutralization. Initially, an electron beam is injected into the interaction 

space, which contains a small amount of the residual gas. There is a certain clearance 

between the cavity wall and the electron beam, which is immersed at the position 

close to the caustic radius, ,/cR m m pν=  of the high-order TEm,p-mode. This clearance 

determines the depression of the beam potential with respect to the wall potential due 

to the DC beam space charge forces. In gyrotrons, which operate in the range of 

voltages between 80 kV and 100 kV, this voltage depression, Vδ , is typically of the 

order of several kV. Collision of beam electrons with the molecules of residual gas 

creates ions and electrons, with the latter ones quickly escaping to the cavity walls 

because of the beam space charge force. Then, the ions compensate the DC space 

charge of an electron beam and the beam potential reaches its nominal value 
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determined by the applied voltage. Certainly, the time of this process depends on the 

initial gas pressure, but typically it is on the order of hundred milliseconds [84] or 

even seconds [82], [85].  

Frequency deviation. The ohmic losses of microwave power in the cavity wall 

cause a certain thermal expansion of the walls, which in its turn decreases the 

frequency of radiation. Typically, the shift of the operating frequency due to this 

effect is of the order of several hundred MHz and it usually occurs during the interval 

of hundreds of milliseconds. This interval depends on the cavity wall thickness and 

the cooling conditions. The frequency change is reversible if the operation is under 

normal cooling conditions. In this case, the cavity shape remains unchanged after 

long-pulse operation. The cavity geometry changes [86] in the case of excessive wall 

loading (ohmic losses of the order of several kW/cm2 or more) and this affects not 

only the mode frequency, but also its quality factor Q [84]. 

Cathode cooling. In some tubes, the effect known as cathode cooling was 

observed in the long-pulse operation. This effect means a slow decrease of the 

electron current. For example, in the 170 GHz ITER gyrotron studied at JAERI [83], 

the beam current decreased from 35 A at the beginning of the pulse to 25 A at the 

end.  

As mentioned in Section 3.1, the most efficient gyrotron operation is often 

possible only in the regime of hard self-excitation, where the optimum beam current 

is smaller than the starting current. As discussed elsewhere [87], another 

characteristic current for such regime is the minimum current, at which the 

oscillations can be stable. This current is smaller than the optimum one, but if the 
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beam current experiences a large decrease and at some point becomes smaller than 

this minimum current, then the oscillations of a given mode will loose the stability. In 

this case, the oscillator operating at a high-order mode exhibits a hopping to a lower 

frequency mode, which can be excited in the soft self-excitation regime in this case. 

This mode hopping was observed in Ref. 83. 

 

3.4.2: Analysis of the effects 

 

 Let us analyze the processes just discussed by the use of a simple general 

theory based on the use of gyro-averaged equations of electron motion and cold-

cavity approximation for the resonator field presented in Section 3.2. 

 The effects of ion compensation and frequency shift affect, first of all, the 

cyclotron detuning , because the ion compensation changes 

the electron energy, , and, hence, the cyclotron frequency , while 

the frequency deviation changes the operating frequency ω. Corresponding changes 

in the cyclotron resonance detuning can be given as 

2
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. (3.28) 

Here Vb,depr and Vb,comp are the beam potentials before and after the ion compensation 

of the voltage depression, respectively. As follows from this equation, the frequency 

deviation, which is typically of the order of 0.1-0.2%, in the gyrotron driven by a 96 

kV electron beam with the orbital-to-axial velocity ratio of 1.4 causes the reduction of 

the detuning parameter by about 0.01-0.02. Also, the voltage drop in such beam, as 
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show simulations for the 1.5 MW, 110 GHz CPI gyrotron, is about 4.6 kV. Then, Eq. 

(3.28) predicts that the ion compensation of this voltage depression should increase 

the detuning by 0.0785.  

 To illustrate the importance of these changes, the dependence of the orbital 

efficiency upon the cyclotron detuning ∆ is shown in Fig. 3.12 for several values of 

the normalized interaction length µ for a gyrotron with a Gaussian axial distribution 

of the RF field. As follows from this figure, the increase in ∆ by about 0.08 from its 

optimal value does not lead to the loss of oscillation stability when the normalized 

length µ does not exceed 14 – corresponding maximum value of the orbital efficiency 

 

 

 

 

 

 

 

 

 

 

Fig. 3.12. Orbital efficiency as a function of the normalized 

detuning parameter for several normalized interaction lengths. 

 

 

is close to 65 %. However, in the regimes providing the maximum orbital efficiency – 

over 80% for µ = 18 – such shift in ∆ is too large for sustaining stable oscillations. 
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This conclusion about necessity to have the normalized length not exceeding 14 

agrees with a similar conclusion (µ < 13) made on the basis of the analysis of the 

stability of single-mode oscillations in multimode gyrotrons [69]. 

 In Fig. 3.13 the dependence of the orbital efficiency on the normalized beam 

current parameter is given for several values of the normalized length µ; the cyclotron 

resonance detuning is chosen to maximize the efficiency at the peak point of  0( )Iη⊥   

 

Fig. 3.13. Orbital efficiency of interaction versus the normalized 

current parameter for several values of the interaction length. The 

cyclotron resonance detuning is chosen to maximize the 

efficiency at the peak point. The optimum and break currents are 

indicated in the figure for µ = 12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

for each µ. (This plot is similar to those shown in Ref. 60.) This dependence again 

shows that when the operating parameters approach their optimal values the 

requirements for their deviation become more stringent. Indeed, considering the 
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difference Iδ  between the current corresponding to maximum efficiency, I0,opt, and 

the break current, I0,br (see Fig. 3.13),  below which the oscillations become unstable, 

one may see that for the case of 18µ = , the cathode cooling should not reduce the 

beam current by more than 5%. However, in the case of 12µ =  the allowed cathode 

cooling is close to 17% of the nominal beam current. 

 Fig. 3.14 summarizes the results presented in Fig. 3.13. It shows the 

dependence of the ratio 0, 0, 0, 0,/ ( ) /opt opt br optI I I I Iδ = −  on the normalized length µ. It 

can be seen that in order to provide stable operation, the interaction length should be 

equal to or less than 14. This conclusion agrees with the one based on the results 

shown in Fig. 3.13.  

 

 

 

 

 

 

 

 

 

 

 Fig. 3.14. The difference between the optimum and break 

currents related to the optimum current as a function of 

the normalized interaction length. 
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For the sake of comparison, we have modeled the effect of cathode cooling 

with MAGY for the 110 GHz, CPI gyrotron. The results are shown in Fig. 3.15. We 

started the simulations from the optimum operating point corresponding to Vb = 96 

kV and Ib = 40 A (see Fig. 3.11). Then, by gradually reducing the beam current, the  

 

Fig. 3.15. The cathode cooling effect simulated by using MAGY 

for the 110 GHz, CPI gyrotron. 

 

 

 

 

 

 

 

 

 

 

 

point where the operating TE22,6-mode loses its stability was reached. As one may 

see, it occurs at A (i.e. the current decrease is about 34%), where the 

operating mode is replaced by the low-frequency TE21,6-mode. Similar results were 

obtained for the 170 GHz long-pulse gyrotron developed at JAERI [83]. The beam 

current decreased from 35 A to 25 A (i.e. the decrease was about 29%) for that tube 

and the operating TE31,8-mode was replaced by the TE30,8-mode. Since the normalized 

length µ is usually chosen to be about 13-14 for most gyrotrons, one may see that the 

26.5bI ≈
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permissible current decrease predicted by MAGY is much larger than the one shown 

in Fig. 3.14 for the same interaction length. Such discrepancy may be attributed to the 

fact that the axial field distribution in real tubes can differ from the Gaussian one 

significantly, whereas we used the Gaussian profile in our simple theory.  
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Summary 

 

Gyro-TWTs. The results of both linear and nonlinear analyses of two-stage 

gyro-TWTs with distributed losses have been presented. The effect of distributed 

losses on the gain and bandwidth of the devices has been studied and the analysis of 

starting conditions for excitation of the backward waves has been carried out. It has 

been shown that the presence of losses in the interaction region of a gyro-TWT allows 

eliminating of the parasitic BW oscillations in the device. Examples have been 

considered which show that predictions of both linear and nonlinear theories may 

agree well with the results of a thorough numerical analysis based on the use of 

accurate codes.  

The nonlinear theory of gyro-TWT with tapered parameters has been 

developed. A particular configuration of a gyro-TWT has been analyzed within the 

theory. The results of this analysis demonstrated that the bandwidth and gain-

bandwidth product of the device can be significantly enlarged by the use of 

waveguide wall tapering only.  

Gyroklystrons. Conventional and clustered-cavity GKLs with the same 

number of cavities in both schemes have been compared. The gain studies showed 

that for the case of limitations on the length of the device and the beam current, the 

clustered-cavity scheme is preferable. Studies of the bandwidth properties showed 

that the use of clustered cavity approach allows one to achieve much larger 

bandwidths in comparison with the conventional scheme. 
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 Startup scenarios in high-power gyrotrons. The startup scenarios of two MW-

class gyrotrons developed at CPI have been simulated. The operation at the desired 

mode and power level has been demonstrated for both devices. It has been shown that 

it is necessary to consider the time scale of the voltage rise when attempting to predict 

the outcome of the startup scenario. Also, we have demonstrated that a simultaneous 

treatment of two triplets is absolutely necessary for determining details of mode 

excitation and interaction. The results agree well with the experiments conducted at 

CPI. 

 Some slow processes in CW and long-pulse gyrotrons have been considered. 

The effects of frequency deviation caused by cavity temperature expansion and 

decrease of beam current due to cathode cooling have been analyzed by the use of a 

simple nonlinear theory. It has been shown that these effects can be critical in the 

devices with a long interaction region. 

 A detailed description of some results presented in this work can be found in 

the following publications: 

1) G.S. Nusinovich, O.V. Sinitsyn and A. Kesar, “Linear theory of gyro-traveling-
wave tubes with distributed losses,” Phys. Plasmas, vol. 8, pp. 3427-3433, 2001. 

 
2) O.V. Sinitsyn, G.S. Nusinovich, K.T. Nguen, and V.L. Granatstein, “Nonlinear 

theory of the gyro-TWT: Comparison of analytical method and numerical code 
data for the NRL gyro-TWT,” IEEE Trans. Plasma. Sci., vol. 30, pp. 915-921, 
2002. 

 
3) O.V. Sinitsyn, G.S. Nusinovich and V.L. Granatstein, “Comparison of two 

concepts: Multi-cavity versus clustered-cavity gyroklystrons,” Proc. 6th Workshop 
on High Energy Density and High Power RF., Berkeley Springs, WV, 2003, AIP 
Conf. Proc. 691, pp. 378-385, 2003. 

 
4) G. S. Nusinovich, O. V. Sinitsyn, M. Yeddulla, L. Velikovich, T. M. Antonsen, Jr., 

A. N. Vlasov, S. Cauffman, and K. Felch, “Effect of the radial thickness of 
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electron beams on mode coupling and stability in gyrotrons,” Phys. Plasmas, vol. 
10, pp. 3335-3343, 2003. 

 
5) G.S. Nusinovich, O.V. Sinitsyn, J. Rodgers, T. M. Antonsen, Jr., V.L. Granatstein, 

and N.C. Luhmann, Jr., “Comparison of multistage gyroamplifiers operating in the 
frequency-multiplication regime with gyroamplifiers operating at a given 
cyclotron harmonic,” IEEE Trans. Plasma. Sci., vol. 32, pp. 957-969, 2004. 

 
6) G.S. Nusinovich, O.V. Sinitsyn, L. Velikovich, M. Yeddulla, T.M. Antonsen, Jr., 

A.N. Vlasov, S.R. Cauffman, and K. Felch, “Startup scenarios in high-power 
gyrotrons,” IEEE Trans. Plasma. Sci., vol. 32, pp. 841-852, 2004. 
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