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Gyrotrons are well recognized sources of high-power coherent
electromagnetic radiation. The power that gyrotrons can radiate in the millimeter- and
submillimeter-wavelength regions exceeds the power of classical microwave tubes by
many orders of magnitude. In this work, the author considers some problems related
to the operation of gyro-devices and methods of their solution. In particular, the self-
excitation conditions for parasitic backward waves and effect of distributed losses on
the small-signal gain of gyro-TWTs are analyzed. The corresponding small-signal
theory describing two-stage gyro-traveling-wave tubes (gyro-TWTs) with the first
stage having distributed losses is presented. The theory is illustrated by using it for
the description of operation of a Ka-band gyro-TWT designed at the Naval Research
Laboratory. Also, the results of nonlinear studies of this tube are presented and
compared with the ones obtained by the use of MAGY, a multi-frequency, self-
consistent code developed at the University of Maryland. An attempt to build a large
signal theory of gyro-TWTs with tapered geometry and magnetic field profile is made

and first results are obtained for a 250 GHz gyro-TWT.



A comparative small-signal analysis of conventional four-cavity and three-
stage clustered-cavity gyroklystrons is performed. The corresponding point-gap
models for these devices are presented. The efficiency, gain, bandwidth and gain-
bandwidth product are analyzed for each scheme. Advantages of the clustered-cavity
over the conventional design are discussed.

The startup scenarios in high-power gyrotrons and the most important
physical effects associated with them are considered. The work presents the results of
startup simulations for a 140 GHz, MW-class gyrotron developed by
Communications and Power Industries (CPI) for electron-cyclotron resonance heating
(ECRH) and current drive experiments on the “Wendelstein 7-X” stellarator plasma.
Also presented are the results for a 110 GHz, 1.5 MW gyrotron currently being
developed at CPI. The simulations are carried out for six competing modes and with
the effects of electron velocity spread and voltage depression taken into account.

Also, the slow stage of the startup in long-pulse gyrotrons is analyzed and
attention is paid to the effects of ion compensation of the beam space charge,
frequency deviation due to the cavity wall heating and beam current decrease due to
cathode cooling. These effects are modeled with a simple nonlinear theory and the

code MAGY.
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Introduction

Gyrodevices or gyrotrons are known as high-power sources and amplifiers of
millimeter and submillimeter waves. In gyrodevices, electrons gyrating in an external
magnetic field interact with electromagnetic waves (EM-waves). The power radiated
by gyrotrons at these wavelengths both in continuous-wave and pulsed regimes
exceeds the power of classical microwave tubes (klystrons, magnetrons, traveling-
wave tubes, backward-wave oscillators, etc.) by many orders of magnitude. Such
advantage of gyrodevices is based on the remarkable physics of their operation. In
order to realize a coherent radiation of electrons, classical microwave tubes require
microwave structures with elements smaller than the operation wavelength. For
example, traveling-wave tubes and backward-wave oscillators are based on the
principle of Cherenkov synchronism between electrons and slow waves, which are
excited in periodic slow-wave structures and whose phase velocity is close to the
electron velocity. The period of these structures should be smaller than the
wavelength. The distance between electrons and walls of these structures should also
be much smaller than the wavelength, because slow waves are localized near the
structure walls due to their imaginary transverse wavenumbers. All these factors
result in the miniaturization of the interaction space with the frequency growth.
Correspondingly, the power that can be handled by such structures decreases very
rapidly.

Contrary to the classical devices, electrons in gyrodevices can resonantly

interact with fast waves, which, in principle, can propagate even in free space. This



means that the interaction can take place in smooth-wall metal waveguides and does
not require the periodic variation of the waveguide wall that is necessary for the
support of slow waves. Fast waves have real transverse wavenumbers, which means
that the waves are not localized near the walls of the microwave structure.
Correspondingly, the interaction space can be extended in the transverse direction,
which makes the use of fast waves especially advantageous for millimeter and
submillimeter wave generation, since the use of large waveguide or cavity cross
sections reduces wall losses and breakdown restrictions, as well as permits the
passage of larger electron beams with higher power.

A configuration of the simplest gyrotron is shown in Fig. 1.1. In this figure, a
magnetron-type electron gun is shown on the left. The voltage applied to the anode
creates the electric field at the cathode. This field has both perpendicular and parallel

Solcnoid\

Collector

Output
window

Cathode

Cavity
Fig. 1.1. Typical gyrotron configuration.
components with respect to the lines of the magnetic field produced by solenoids.
Thus, electrons emitted from the cathode acquire both orbital and axial velocity
components. Then, the electrons move toward the cavity in the growing magnetic

field, in which the electron flow undergoes the adiabatic compression and the orbital



momentum increases. In the region of the uniform magnetic field, the electrons
interact with the eigen-mode of the resonator and transform part of their Kkinetic
energy into the microwave energy. Then, the spent beam exits the cavity, undergoes
decompression in the decreasing magnetic field and settles on the collector. The latter
also functions as an oversized output waveguide, which directs the outgoing radiation
toward the output window shown on the right.

The coherent cyclotron radiation in gyrotrons is caused by the cyclotron maser
instability. This instability was discovered in the late 1950s by several scientists
working independently [1]-[4]. Then, in the 1960s, it was experimentally verified in a
number of studies [5]-[8]. In the early 1970’s, electron cyclotron maser experiments
driven by intense relativistic electron beams were reported [9]-[11]. However, a
practical gyrotron oscillator configuration was invented and developed in the
U.S.S.R. [12]. Some details of the Soviet gyrotron program of that period can be
found in Refs. [13]-[17]. The first U.S. gyrotron oscillator was developed at the Naval
Research Laboratory (NRL) [18]. Since then, gyrodevices have dominated the
millimeter-wave region at the megawatt power level and successfully entered the
submillimeter wavelengths. They can be used in numerous scientific, military and
industrial applications such as plasma heating and diagnostics in controlled fusion
reactors, material processing and radar systems. The growth of satellite-based digital
communications technology also opens great opportunities for these devices.

The development of gyro-devices has been supported by extensive theoretical
research. The linear theory of the interaction between electromagnetic waves and

electrons either rotating in an external homogeneous magnetic field or moving along



trochoidal trajectories in crossed external electric and magnetic fields was developed
by Gaponov in 1961 [19]. The nonlinear theory of interaction at arbitrary cyclotron
harmonics between electrons moving periodically with a constant axial velocity and
an electromagnetic wave was published by Yulpatov in 1967 [20] (see also Ref. 8).
Since these publications were almost unknown to the Western community, the theory
of gyro-travelling-wave tubes (gyro-TWTs) operating at the fundamental and higher
cyclotron harmonics was renewed at the end of 1970°s by Chu et al [21],[22]. Later, a
rather general approach to the nonlinear theory of gyro-TWTs was made by Ginzburg
et al [23]. A generalization of this theory to the case of interaction of the electron
beam with electromagnetic waves propagating in waveguides was given by Fliflet
[24]. A single comprehensive monograph on gyrotrons addressed to a general
audience was presented recently by Nusinovich [25]. Also, during the last decade,
various numerical codes appeared, which are widely used for the analysis and design
of gyro-devices. One of the most powerful tools of nowadays is the self-consistent,
multifrequency code MAGY [26] developed at the University of Maryland and the
Naval Research Laboratory (NRL). Advances in the code development are reviewed
in [27].

During the extensive experimental and theoretical studies, various types of
gyrodevices emerged. They can be divided into two groups, oscillators and
amplifiers, each consisting of several configurations. The key members of this large
family and their classical linear beam counterparts are shown in Fig. 1.2. The most
well-known gyrotron oscillators are gyromonotrons and gyro-backward-wave

oscillators (gyro-BWOs). Gyroklystrons (GKLs), gyro-traveling-wave tubes (gyro-
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Fig. 1.2. Schematics of linear beam devices and corresponding gyrodevices.

TWTs) and gyrotwystrons form the group of gyrotron amplifiers. More detailed
layouts of the devices considered in this work will be shown in the corresponding
sections of the manuscript.

For a long period of time gyroklystrons were considered to be the major type
of gyroamplifiers. They are capable of high-gain and high-efficiency operation,
however they possess a rather narrow bandwidth, which can be a critical factor in
communication systems and Doppler radars. High-gain gyro-TWTs can offer much
larger bandwidth but their operation can be prone to parasitic self-excitation of
various kinds. In particular, a parasitic excitation of backward waves can occur in
gyro-TWTs with a long interaction region [28]-[30].

There exist various means for solving these problems and improving the
performance of the gyroamplifiers. The stability problem in gyro-TWTs can be
solved in at least two ways. The first one is to introduce distributed losses in one or
several stages of the device [29]-[31]. The presence of losses deteriorates the start
oscillation conditions and, hence, the stable operation can be achieved. The second
way is to use multi-stage devices, in which interaction sections are separated by drift

regions where the wave propagation is impossible. The stability of such



configurations can be achieved by decreasing the length of each stage, i.e. making it
shorter than is necessary for the backward wave excitation.

The bandwidth of narrow-band GKLs can be significantly increased by
detuning of cavities’ eigenfrequencies, which is referred in the literature as stagger
tuning [32]-[34]. The use of so-called clustered cavities in GKLs allows for
improving of both efficiency and bandwidth of these devices [35]-[37].

High-power millimeter-wave gyrotrons are capable of continuous-wave (CW)
operation at megawatt (MW) power levels [38], [39]. They are mainly used as
sources for electron cyclotron resonance heating (ECRH), electron cyclotron current
drive (ECCD), stability control and diagnostics of magnetically confined plasmas for
energy generation in controlled fusion reactors. To handle ohmic losses of such
power in cavity walls, these gyrotrons must operate at very high-order modes, which
form a dense spectrum. To excite the desired mode and to drive it into the regime of
MW:-level operation with high efficiency requires careful consideration of startup
scenario through which the operating parameters of the device are brought to their
nominal values [40].

In this work, the author considers some of the described problems related to
gyroamplifiers and the startup scenario problem for gyrotron oscillators. The
manuscript is organized as follows. The next section contains a simple formalism
necessary for understanding the basic principles of a gyrodevice operation. In Chapter
1, the theory of two-stage gyro-TWTs with distributed losses in the first section is
presented. The first two sections of this chapter introduce the reader to the basic

device configurations and theoretical tools for their analysis. In particular, the method



of non-linear gyro-averaged equations and the corresponding linear theory are
reproduced. The third section contains the linear analysis of the effect of distributed
losses on the device bandwidth and efficiency and also on the conditions for the
parasitic backward wave excitation. Also, in this section, the results of the studies by
using the nonlinear theory are shown and compared with the ones obtained by the use
of the accurate numerical code MAGY. For this purpose, a concrete Ka-band gyro-
TWT designed at NRL is considered.

In Section 4, an attempt to build a nonlinear theory of the gyro-TWT with
tapered waveguide radius and external magnetic field is made by the author. The
results of the gain and bandwidth analysis for a 250 GHz gyro-TWT with tapered
parameters are presented.

Chapter 2 contains the results of a comparative analysis of two gyroklystron
configurations. The first one is a regular four-cavity GKL, while the second one is a
clustered-cavity GKL with the same number of resonators. In the first section of this
chapter, both configurations are shown and principles of their operation are discussed.
The second section of this chapter reproduces the point-gap model formalism, which
was used for the analysis of both devices. Results of efficiency and gain studies of the
schemes are presented in Section 3.

In Chapter 3, the startup scenarios for two high-power millimeter-wave
gyrotrons are considered. In particular, the 140-GHz MW-class gyrotron developed
by Communications and Power Industries (CPI) for electron plasma heating and
current drive experiments on the “Wendelstein 7-X” stellarator is analyzed. The

second device under analysis is a 110 GHz 1.5 MW gyrotron presently being under



development at CPIl. The calculations are done with the code MAGY for six
competing modes and for short and long rise-times of the voltage pulse. Also, in the
last section of this chapter, the slow stage of the startup scenario is considered, where
attention is paid to the effects of ion compensation of the beam space charge and
beam current decrease due to cathode cooling. These effects are modeled within a
simple nonlinear theory.

Finally, the manuscript ends with a Summary and references.



1.1: Principles of operation of gyro-devices. Choice of parameters

As known, electrons can radiate when they exhibit some kind of an oscillatory
motion in external magnetic or electric fields, which can be either constant or periodic
(in the literature this type of radiation mechanism is referred to as bremsstrahlung).
For efficient interaction, the Doppler-shifted frequency of the radiated wave should
be close to the frequency of electron oscillations, 2, or its harmonic:

w—kyv ~sQ (1.1)

a4

Here w is the frequency and k. is the axial wavenumber of the EM-wave, whose

electric field E can be represented as E = Re{E(F) exp(i(a)t—kzz))} .Also, in (1.1), v,

is the axial velocity of electrons and s is the number of the harmonic of the electron
oscillation frequency Q. In gyro-devices, the oscillatory motion of electrons is
induced by constant magnetic field produced by solenoids or magnets. In this case 2
is the electron cyclotron frequency:

Q=eH,c/ &, (1.2)
where e is the electron charge, H, is the magnitude of the magnetic field, ¢ is the
speed of light and £ is the electron energy. To make the radiation process efficient,
the electrons must be forced to radiate EM-waves in phase, i.e. coherently. Electrons
can radiate in phase when they are gathered in compact bunches. Such bunches can
be formed in the process of interaction between the RF field and electrons initially
uniformly distributed in phase of gyration. The electron bunching in gyro-devices is

caused by the relativistic effect — relativistic dependence of electron mass on energy.



Now, let us consider the mechanism of the interaction in some more detail. As

follows from (1.2), changes in the electron energy &€& bring to the changes in the

cyclotron frequency 62 and electron axial velocity ov_. These changes have opposite
signs and, in principle, can compensate for each other. To analyze the phase slippage
during the interaction time 7, one may introduce the transit angle of electron gyration
with respect to the Doppler shifted wave frequency,
O=(w—kv,—sQ)T (1.3)
and represent this angle as the sum of the kinematic phase shift
O, =(@—kv.,—sQ)T, (1.4)
which is proportional to the initial cyclotron resonance mismatch, and the dynamic
shift
0,, =(-k.ov, —soQ)T . (1.5)
The changes in the cyclotron frequency in accordance with (1.2) can be found as
002 =—-(5E/E,) . To evaluate the changes in the axial velocity, one may use the
fact that the radiation of one photon not only reduces the electron energy by
o€ =hw, but also changes the axial momentum, p. , by op. =nk_ [41].
Correspondingly, the changes & and Jp. are related by
6&=v,,0p., (1.6)
where v, = w/k, is the phase velocity of the wave. This expression shows that in the

case of electron deceleration by a forward wave (4, >0, v, >0) the electron axial

momentum decreases. Correspondingly, when electron is decelerated by a backward

wave (k, <0,v,, <0), its axial momentum increases.

10



Since the axial momentum is equal tomyv,, where y = £/ mc® = (L-v*/c¢*)™?

is the normalized energy or the Lorentz factor, the changes in it can be represented as

op. =m(y,0v, +v_,0y). Using (1.6), the change in the axial velocity can be given as

ov, ZQ[C——%]- (1.7)

7/0 vph
Substituting this expression into the definition for @, (1.5) and using the cyclotron

resonance condition (I.1), one may obtain the following expression for the dynamic

phase shift:

_ 1,2
om = ZﬂNSQ 1= .
Yo 1=hp.,

(1.8)

Here h=k.clw=clv, isthe normalized axial wavenumber and 2z N = (T, where

N is the umber of electron orbits in the interaction space. It can be noticed that for the
particular choice of =1, i.e. when the phase velocity is equal to the speed of light,
the dynamic shift is equal to zero for arbitrary energy changes. This is the case when
the changes in the electron cyclotron frequency exactly compensate the ones in the
axial velocity. So, if the cyclotron resonance condition is initially fulfilled in such a
system, then it will be automatically fulfilled later for arbitrary large changes in the
electron energy. This remarkable effect is known as the autoresonance [42], [43].
One of the major concerns for practically all sources of coherent radiation is
their efficiency. The real efficiency of any source should be evaluated by calculating
the efficiency of one electron and averaging it over all initial distributions of electrons
in the coordinate and momentum space. Let us briefly consider the results of the

analysis of the single-particle efficiency. Expression (1.6) can be rewritten in the form

11



£ ¢
sz_pz: ! (Ig)

Vo

which allows determining the optimum phase velocity necessary for the complete

stoppage of electron axial motion and extraction of its Kinetic energy, i.e. making

P =0 and £, =mc”. One may easily find from these conditions

Voro -1
%:ﬂph,()pt = }/0 ' (|10)

0/7z0

The electron orbital momentum, p, , which can be represented as

2

pi =Dl +m* (A=) (y, —7)* = 2m*c*y, (ry — 7)A-hP.,) (1.11)
by the use of the general relation £° =m’c* +c*(p° + p?) and (1.9), also becomes

equal to zero for n=1/p, So, the condition (1.10) is the condition for the

h,opt *
complete electron deceleration, which is the case of single-particle efficiency equal to

100%. In practice, the electron beam parameters are often given in terms of the beam

voltage V3, which is related to y, as ¥, = (y, —1)(mc*/e), and the orbital-to-axial

velocity ratio, « =v ,/v_,. So, (1.10) can be rewritten as [44]

(r,~D+a )T (112)

ﬂph,opt :|: 70 +1

As mentioned, gyro-devices belong to the class of fast-wave devices, in which

B,, >1. Therefore, the interaction with fast waves is optimal (in the sense of single-

particle efficiency) when the velocity ratios are large enough:

) 2
o > .
7o-1

(1.13)

12



In order to estimate the magnitude of the external magnetic field, the
kinematic phase shift given by (l.4) should be considered. It should provide the

displacement of an electron bunch into the decelerating phase, i.e. &, ~ . This

yields the following estimate for the initial cyclotron frequency:

w 1
!%M;@%QJG—E@) (1.14)

The term 1/2Ns in this expression characterizes the mismatch of the cyclotron
resonance with respect to the Doppler-shifted wave frequency. This mismatch is
inversely proportional to the cyclotron harmonic number, s, and the number of
electron orbits, N. The number of electron orbits is proportional to the interaction
length and can be chosen in accordance with (1.8). As follows from this expression,

the changes in the electron energy are of the order of

oy 1 1-hp,
— 1.15
Yo SN 1-7h (115)

when the dynamic phase shift is of the order of 2z . The number of orbits in this
expression can be large when the operation is close to autoresonance (in this case the

terms sN and 1-4° compensate each other). For the energy changes of the order of the

initial kinetic energy, & —mc?, this means

1-hp
|1- 7% |<< 20 1.16
1_7/01 ( )

It follows from applying of (1.15) to (I1.11) in the case of N >> 1 that the term

m’c®(L-h*)(y,—y)* in (1.11) is small, and, therefore, the orbital momentum is

approximately equal to

13



PL”Pio {1—%(1%@0)[1—1} : (1.17)

L0 7o

When 3, > the decelerating electron loses its orbital momentum prior to

ph,opt !
stopping its axial motion. In this case, the single-particle efficiency, which is defined
as n,, =| 0| I(&, —mc?), can be found for the final value of p, =0:

Y
20-hpo)1=7y")

, (1.18)

The wave electric field can be evaluated by using the general equation for the

electron energy,

] (1.19)

which gives estimates for the changes in electron energy during the interaction time
T: |6€|~ev ET . The synchronous electric field E; has a structure of a rotating
multipole in the case of resonance at an arbitrary cyclotron harmonic, s [45]. It can be
represented as E, ~(a/A)"E, where a=v /€2 is the Larmor radius. The total
length of the electron trajectory in the interaction space can be estimated as 2zaN if
the orbital-to-axial velocity ratio is large. Therefore,

|6E |~ e(al A) " E2zaN . (1.20)
By substituting this expression into (1.15) and using the cyclotron resonance condition

(1.1), one may get [46]

eE (ajs_l 0 1 (1—hﬂ20)2. (1.21)

mcay, 2 ~27z(sN)2 1-h?
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This expression shows that the wave amplitude required for electron deceleration is
inversely proportional to N”. Also, the ratio /A in the left-hand side of (1.21) can be

written as a/A~sp ,/12x(1-hp.,), so the wave amplitude is inversely proportional

to g, .

So far, the electron deceleration by a wave of given amplitude has been
analyzed in this section. The EM field is excited (or amplified) by an electron beam
when real devices are considered. Correspondingly, the field amplitude depends on
the beam parameters. This dependence can be determined by a balance equation for
the simplest case of oscillations in a single cavity. The power balance equation is
valid for stationary regimes. In such regimes, the microwave power withdrawn from
the beam is equal to the power of the microwave losses (ohmic and diffractive) in a
cavity having a finite quality factor Q:

nP, =(w! QW. (1.22)
Here P, = V1, is the beam power, 7 is the device interaction efficiency , and W is the

microwave energy stored in the cavity. The energy is determined as ¥ (| E*}/8z,

where V' is the cavity volume, which depends on the operating wavelength and mode,
and the angular brackets designate the averaging of the intensity of the field over the

cavity volume.
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Chapter 1: Two-Stage Gyro-TWTs

1.1: Basic device configurations

A typical configuration of a gyro-TWT is shown in Fig. 1.1. It consists of a
magnetron injection gun (MIG), the interaction region, input and output windows,
collector and one or more solenoids. The MIG is responsible for producing an e-beam
and launching it into the interaction space, where electrons exchange their energy
with an EM-wave. The signal EM-wave is fed into the tube through the input
window. Having interacted with the beam and amplified it leaves the device through

the output window. The exhausted electrons are accumulated at the collector. The

Input window

Solenoids
x‘

Collector

l_,_,..--""1
% |f Output

MIG-type window

Interaction region
electron gun

Fig. 1.1. Typical gyro-TWT configuration.

solenoid produces a strong magnetic field to support the cyclotron motion of the
beam electrons. The axial motion of electrons is provided by a potential difference
between the MIG emitter and the interaction region. Fig. 1.2 schematically shows the
geometry of a two-stage gyro-TWT with distributed losses in the first section. In

practice, losses in such devices can be realized by the use of a layer of lossy material

16



spread on the waveguide walls in the interaction region [29]. The use of diffraction

losses in gyro-TWTs is also possible [30].

Input window Solenoids

i Collector

D) l-st section  2-nd section ) '
Interaction region

’tr_' — F \A
Y : Output
MIG-type Distributed window

electron gun losses

Fig. 1.2. Configuration of a two-stage gyro-TWT

with distributed losses in the first section.

Fig. 1.3 demonstrates the scheme of a severed two-stage gyro-TWT. This
device allows operation at different cyclotron harmonics in each section. In particular,
it might prove advantageous to operate in frequency multiplication regimes. Also, by
a proper choice of each section length one may solve the stability problem for such
configuration.

Input
window _ Solenoids

T Collector

~ lll /
|:D '\J 1-st section — 2-nd section .
l""-’—' I |‘| | \L
|§ L/_:.| Output

Al
MIG-type
electron gun

/ .
Drift region window

Fig. 1.3. Configuration of a two-stage severed gyro-TWT.
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1.2: General formalism

1.2.1: Self-consistent set of equations for the gyro-TWT

The operation of a gyro-TWT can be described by a self-consistent set of
nonlinear equations. This set consists of equations of electron motion through the
waveguide field and the equation to describe wave excitation by an electron beam.
The method used for deriving these equations is based on presenting the EM-field
acting upon a gyrating electron as a superposition of angular harmonics of the waves
that rotate around an electron guiding center. The cyclotron resonance condition
allows selecting just one resonant harmonic from all the harmonic components
representing the field. All others will vanish after the equation of motion has been
averaged over fast gyrations. The averaged equations have a compact and general
form, which greatly simplifies their analysis. This method was initially suggested by
Gaponov in the linear theory of cyclotron resonance masers [19] and later used by
V.K. Yulpatov for developing the nonlinear theory [20]. The detailed derivation of
these equations for the gyro-TWTs can be found in Ref. 25. Here the author just

reproduces the self-consistent set used for obtaining the results presented in this work:

_ s/2 )
d_W:_z—(l w) Re(Fe™) (1.1)
d¢ 1-bw '
Z—? = ﬁ {w+s(1- W)E_l Im(Fe ")} (1.2)
2 _ s/2 ]
d_F_iAF=_10Lj&e’9d90 (1.3)
dg 2wy 1-bw

In these equations, w=(1—-hpB.,) (7, —7)/ Bi,y, is the normalized electron energy,

where h =k c/w is the normalized axial wavenumber, S ,=v ,/cand S,,=v,,/c
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are, respectively, the initial electron axial and orbital velocity components normalized
to the speed of light, y is the electron energy normalized to the rest energy, and y, is
its initial value determined by the beam voltage, Vy: 7, =1+eV, /mc’. In (1.1)-(1.3)

9 1is a slowly-variable gyrophase of the resonant cyclotron harmonic s with respect to

the phase of the forward TE,,, wave:
3=s(0-Q,7)—wt, +sz.(vz —v,)dt' = (sFm)y .
0

Here € is the electron cyclotron frequency, y is the azimuthal coordinate of the

electron guiding center and m is the azimuthal index of the wave. At the entrance, this

phase has an initial value $(0) = s6, — wt, — (s F m)y , which is uniformly distributed
in all beamlets from 0 to 2z for an unmodulated electron beam. Also, in (1.1)-(1.3),
§=pwz/cp, is the normalized axial coordinate, where
parameter = 7, (1-h*)/2(1-hp.,) characterizes the effect of the changes in

electron energy on the cyclotron resonance conditions. The parameter

b=hp:,/2B.,(1-hp.,) characterizes the changes in the electron axial velocity with

the change in electron energy and A is the normalized cyclotron resonance mismatch

between the Doppler-shifted wave frequency w—k_ v, and the resonant harmonic of
the electron cyclotron frequency sQy:
A=(w-kv,,—s£) ou. (1.4)

The normalized beam current parameter, /y, present in the last equation is equal to

I 120D (1_p 5-2s -1 2
1, =165 K (A=hB.) { }G (1.5)

me h 7B | (s=D)12°
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where &*=1-h* and parameter G, =J,_ (k R)/(v’—m)J,(v) describes the

coupling of a beam having the radius of electron guiding centers R, to the field of a
TE-wave in a cylindrical waveguide. The initial value of the normalized amplitude, F

is determined by the input power, P;, as

1/2 . _S
e'P Gwl} (sk)"” L04(1_hﬂz0)3 . (1.6)

F |=4|2—*=
[ 5ol [ m*c® h 7ok (s—1)12°
The ratio m’c’/e’ in square brackets is a product of the fundamental constants mc’/e =

17.04 kA and mc’/e = 511 kV and is equal to 8.687-10° kW. The set (1.1)-(1.3) can

be supplemented by the expression for the orbital efficiency of interaction
1 27
=— | wd$ ,
= ! 0 (1.7)

which characterizes the changes in the electron orbital momentum in the process of
interaction. The total electron efficiency is related to 77, as

.
20-y,)1=hB) (1.8)

77 = nspnj_ =

where 77, is the single-particle efficiency discussed in the Introduction. The system of
equations (1.1)-(1.3) has the following integral
|F [ =|F, =17, (1.9)
which represents the energy conservation law for the beam-wave system.
Typical processes of the electron energy modulation, phase bunching and
wave amplification are shown in Fig. 1.4. These results are obtained by integrating
Egs (1.1)-(1.3) with the following set of parameters: s =1, b= 0.1, 4=0.5, I, = 0.1

and Fy = 0.01. Initially, the changes in the electron energy and phase are linear and
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Fig. 1.4. Typical processes of (a) electron energy modulation,

(b) phase bunching and (c) wave amplification.
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the wave amplitude grows exponentially, which is the linear stage of interaction.
Then the saturation effects become pronounced, when the changes in the electron
energy and phase are significant, and the wave amplitude reaches its maximum. As
follows from the comparison of Fig. 1.4(b) with Fig 1.4(c), the maximum of the wave
amplitude corresponds to the shift of an electron bunch in phase on the order of 7.
Since for realizing the wave amplification the bunch should be formed in the
decelerating phase, this shift indicates that electrons move from the decelerating
phase into the accelerating one. In the latter phase, the electrons start to withdraw the
EM wave energy back, thus decreasing the wave amplitude.

Equations (1.1)-(1.3) are given for an ideal electron beam with no velocity
spread. In order to take into account the effect of the spread, it is expedient to

normalize all dimensionless parameters to the mean values of velocity components
B, and B [47], ie jm=pBl0-h)/2(0-hp.), b=hplI2B.(1-hp.),
A=(1-hp. —s£2,/w)/ u and introduce the following coefficients describing the

effect of the spread on these parameters:

8 ﬂzol_hﬂzo B
— —_ =2
L P (ﬁl—h j
" —
z0 L l_hﬁzo
k, ===,
4 ﬂzO

where k, = k= ka =1 in the absence of the spread. Also, an additional averaging of

the source term in the right-hand side of the wave excitation equation (1.3) over the



velocity distribution is necessary. Then one can rewrite equations (1.1)-(1.3) for the

case with the electron velocity spread as

dw _ (- w)”2 i

a@g__ 1 w+ Ak, kbw)— (k —1)+s(1—w)3’1 Im(k, Fe ™) (1.11)
d¢  1-kbw 4 g '
dF k.k, (1-w)? i

%_ZAF _]OJW(ﬁLO) k, _[1 kbw evdS vdp,. (1.12)

The velocity distribution function W(f,,) in (1.12) obeys the normalization
condition I W(B.,)dp,,=1. The expression (1.7) for the orbital efficiency takes the

following form in this case:

kb 1 2z
anj'W(ﬁJ_O)E{_de'go}dﬂJ_O' (1.13)

27
If distributed losses are present in the circuit, the axial wavenumber becomes
complex: k& =k!+k! and so does the normalized detuning parameter:

A=A"+iA"=A"+id , where d =A" is the attenuation parameter. In this case, the

energy conservation law (1.9) can be written as
¢
2 2 " 2 '
|F[—|F,P=n.1,=2[A4"| F}dS". (1.14)
0

It shows that the changes in the wave intensity are determined by the power extracted

from the beam and wave attenuation in the circuit.
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1.2.2: Linear theory of the gyro-TWT

In the small-signal regime, the EM-wave can produce only small perturbations in

electron energy and phase, hence in Egs. (1.1)-(1.3) w=w,,, $=39, +9,,, where

8, << 8, , the subscripts (0) and (1) denote zero- and first-order terms, respectively,

0)>

and 4

o) =9(0). Therefore, by linearizing Egs. (1.1)-(1.3) with respect to these

perturbations and introducing

one can bring these equations to the form

Z—??F (1.15)
d3
¢
dF
d¢

~ .5 =
=(1-bdyiv—i F (1.16)
—iAF =— 0{i§+(b—%)ﬂz} (1.17)

Assuming an exp(i/¢) dependence for w, 3 and F (where I is the propagation

constant in the presence of the electron beam), i.e.
3 . 3 .3
W= Aexp(ilg), §=2 Bexp(l¢), F= Cexp(il{) (1.18)
=1 =1 =1

Here the coefficients 4; and B, can be expressed with the use of (1.15)-(1.17) via C; as
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4 =iS and B =-ap) S 2S
r, I’ 2r,

With the use of (1.18), the following dispersion equation can be obtained from (1.15)-
(1.17) [24], [46], [48], [49]:

(F =AY +1h)£1,(1-s)=0, (1.19)
where the “+” sign before the second term corresponds to the equation for the forward

(1A

wave and the sign corresponds to the one for the backward wave.

Let us establish a relationship between our propagation constant, I, which is
determined by (1.19), and the axial wavenumber in the presence of the beam, .
When the beam current is negligibly small (I, — 0), equation (1.19) yields one
solution /" =4 and another degenerate solution /7~ =0. The former describes the
wave propagation in a ‘cold’ waveguide, while the latter describes the cyclotron
waves in the beam. Since the detuning 4 contains the axial wavenumber in a ‘cold’

system, while the variable /" contains £, the solution 7~ = A simply indicates that in

the absence of the beam £, = k.. In the presence of a beam, as follows from these

definitions, k., =k, — B, —A4)/2v,. (Here we assumed that the operating

voltage and the axial wavenumber are not too large and, therefore, A can be
expressed as A~ (2/B;,)(1-hpB.,— s,/ w)). Thus, the growth-rate of the wave can
be expressed via the imaginary part of /"as |Imk, , [=[Im /| Bl AB.,, where A is

the wavelength in free space.
The coefficients C; in (1.18) are to be determined from the boundary

conditions. Taking into account the absence of modulation of electron energies and
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phases at the entrance, as well as the existence of an input signal wave, one may

obtain;

iq:L 23:&:0, i(l—bg—ir,ji:o. (1.20)
T, 2 )y

=1

Note that in our notations the wave amplitude is normalized to its initial value. These
equations can be solved for C; and then expressions (1.18) should be used to find the
electron energy and phase and the wave amplitude at the end of the interaction region.
For the case of a multi-stage gyro-TWT, the boundary conditions at the n-th stage can

be written as

3 ~
2. =FE
=1

2 Cl(n) (n)
Py ==
2T (S) (1.21)
3 C(n) ~
1—bA<">—ir<">] L= 3¢,
;[ 2 ! ]-,l(n)z (é/zn )

where ¢ is the normalized distance at which the n-th waveguide section begins.
Equations (1.21) form a set of linear inhomogeneous algebraic equations, which can

be easily solved. The coefficients of these equations depend on 7~ which are the

roots of Eq. (1.19) for the n-th stage. The amplitude at the output,

M-

CMexp(il ™M =&y, (1.22)

out

~
1l

1
where N is the number of the final stage, determines the gain of the device:
F

out

G= ZOlog{

). (1.23)
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1.3: Two-stage gyro-TWTs with distributed losses

As mentioned in the introduction, in tubes with a long interaction region a
parasitic excitation of backward waves may occur. The use of distributed wall losses
or diffraction losses for the suppression of such spurious oscillations was successfully
demonstrated in Refs. [29] and [30]. A simple linear theory of a gyro-TWT, in which

part of the waveguide has finite losses is presented in the following sections.

1.3.1: Results of the linear theory. Gain and bandwidth studies

Before the analysis of the parasitic BW suppression our study was focused on
the effect of distributed losses on the gain and bandwidth of the two-stage gyro-TWT.
The author was obtaining the solutions of Eq. (1.19) as functions of the real part of
the normalized detuning, A’, for finite values of the loss parameter d. In Fig. 1.5, the
corresponding imaginary parts of the complex roots 7/~ are shown. Here Figs. 1.5 (a)
and 1.5 (b) correspond to two respective magnitudes of the normalized beam current
parameter, namely 0.03 and 0.3. It follows from these results that losses decrease the
maximum growth rate of the wave but, at the same time, increase the range of
resonance detunings, at which the wave amplification is possible. To check the
validity of the linear model, we applied it to the Ka-band gyro-TWT designed at NRL
[30]. This tube is driven by a 70 kV, 6 A electron beam with the orbital-to-axial
velocity ratio of about 0.71. The interaction circuit is a circular waveguide of 2.72

mm radius and of the 27 cm total length. The first 22 cm of this waveguide are
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Fig. 1.5. Imaginary parts of propagation constants as
functions of the normalized detuning for several values
of the loss parameter d and two values of the

normalized beam current parameter /.

characterized by cold circuit losses of 3.45 dB/cm, which correspond to the loss
parameter d ~0.55at the central frequency of 35 GHz. The last 5 cm of the
waveguide are lossless. The operating mode is 7E;;. The circuit geometry and

magnetic field profiles for this tube are shown in Fig. 1.6. The resulting gain of the
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tube calculated in accordance with Eq. (1.23) is shown in Fig. 1.7. As can be seen, the

bandwidth at the -3 dB level is about 8% and the maximum gain is about 50 dB. For

1.8 — v T T T T T T 13
l 5 | | ” TRA 5 2 ENERIAN R R L SSE J 12
g 411 =
9 Q
é 1.2F o
= {10 =
= %]
o 0.9F E:
2 g
g =
gy 06} =
5} lg =0
> =
§ ; =
0.3 -_\.. : 17
‘ «— Diffraction losses ——
0.0 — " . . i . . N 6
0 5 10 15 20 25 30 35 40 45

Axial Distance, cm

Fig. 1.6. Circuit geometry (solid) and magnetic field
(dotted) profiles of the gyro-TWT designed at NRL.

the sake of comparison, also shown are the calculated design data (dashed line),
which correspond to the input power value P, =0.9 W, being the case closest to the
small-signal operation. The data were obtained by the use of self-consistent, time-
dependent code, MAGY [26], which has been known to provide accurate results that
are, in most cases, in a close agreement with the measurements. As can be seen, there
is a good agreement between the gains calculated by the two methods. The gain found

in Ref. 30 is a little smaller, possibly, first due to the effect of 4% electron velocity

spread and second, because at P, =0.9 W one may already observe in Fig. 11 of this

paper some saturation effects. The fact that the calculated bandwidth in Ref. 30 is
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Fig. 1.7. Gain as a function of frequency for the NRL gyro-
TWT. The results of Ref. [30] are shown by the dashed line.

slightly larger (about 10%) than the one obtained in our calculations can be attributed
to the changes of the external magnetic field in the lossless section of the waveguide,

which we ignored in our model.
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1.3.2: Analysis of backward wave excitation

As already mentioned, parasitic excitation of backward waves is one of the most
critical issues in the development of high-gain gyro-TWTs. Since it is preferable to
have an amplifier capable of stable operation even in the absence of the signal (so-
called ‘zero-drive’ stability), the conditions for onset of oscillations in a two-stage
gyro-TWT in the absence of forward waves will be considered below. In general, the
similarity of the dispersion equation for gyro-backward wave oscillators (gyro-
BWO’s) to that for linear BWQO’s allows one to study the starting conditions in gyro-
BWO’s by the methods that are known for conventional BWQO’s [50]. Such a method
was used for analyzing the starting conditions in a single-stage gyro-BWO [51], [52].

We applied the same method for studying a two-stage gyro-BWO whose first
section included distributed losses. As described in section 1.2.2, the values of
electron energy and phase and the wave amplitude at the end of the first stage were
used as initial conditions for the corresponding variables in the second stage. We

were interested solely in such solutions of the dispersion equation that would render
the total wave amplitude F equal to zero at a distance ¢ ., from the beginning of the
interaction region. In other words, we expected the excitation of the BW to start from
a zero-amplitude. With given values of the normalized current /), loss parameter d

and the length of the first section ¢!} one may find a pair (4/,,¢,,) that would satisfy

out st
this condition. Fig. 1.8 shows an example of such a search in the lossless case (dotted
lines) and in the case with distributed losses in the first section of the tube (solid

lines). The normalized length of the lossy section is equal to 10 and the corresponding
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Fig. 1.8. Excitation of backward waves in the lossy (solid)
and lossless (dotted) cases. The amplitude of a BW starts
growing from the zero amplitude, which can be obtained by
varying the detuning parameter A’ .

loss parameter d is equal to 0.5. One may see that in the lossless case the amplitude of

the backward wave starts growing when the interaction distance exceeds £, = 6.9
whereas in the presence of losses ¢, *14.9. The corresponding detuning parameters

are given in the figure for both cases. The curves for A'=0.4and A’ =0.5 indicate no
growth of the BW and are shown as an example. For the detuning parameters
corresponding to the BW solutions, one may obtain the frequency at which the
oscillations occur once the magnitude of the external magnetic field and waveguide
parameters are given.

The results of a more detailed analysis are presented in Fig. 1.9 as the
dependences of the length of the second stage at which the self-excitation starts, on
the loss parameter d for several values of the normalized current parameter /) and

several lengths of the first stage. Solid, dashed and dotted lines correspond to the
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Fig. 1.9. BW self-excitation conditions: the starting length of the
second section is shown as the function of the loss parameter d

for several values of the normalized beam current and different

lengths of the first section ¢, which are indicated in the figure.

normalized length of the first stage equal to 5, 10 and 15, respectively. As can be seen
from this figure, the starting length of the second stage strongly depends on the length
of the first stage when the losses are quite small. However, starting from the loss
parameter values d = 0.5, the length of the first stage does not play any significant
role. This shows that the first stage becomes so lossy that the oscillations can appear
only in the second, lossless stage.

The results illustrating the effect of losses on the self-excitation of the first section
alone are shown in Fig. 1.10. Here the starting length of a single-stage gyro-BWO is
shown as a function of the loss parameter for several values of the normalized
current. As can be seen, for any value of the current there is a critical value of losses,

above which the self-excitation is impossible at any length. This is the case when the
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Fig. 1.10. The starting length of a lossy waveguide as the
function of the loss parameter d for several values of the

normalized beam current.

attenuation rate caused by losses is higher than the beam-induced growth rate of the
wave.

At the next stage of our studies we applied our method to the analysis of the
BW excitation in the NRL gyro-TWT. The dispersion curves for the operation 7E1;
mode and two parasitic waves are shown in Fig. 1.11, also showing the cyclotron
beam lines for resonances at the first three cyclotron harmonics (s = 1, 2 and 3). The
case of grazing for the operating wave at the fundamental resonance corresponds to
the external magnetic field By = 12.08 kG. As can be seen from this figure, the 7E,;
mode can be excited at the second harmonic closer to cut-off than other modes in the
region of the backward wave interaction (k. < 0). Therefore, it can be expected to be

the most troublesome parasite. Indeed, the analysis of BW self-excitation conditions
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showed that for this mode the normalized beam current parameter [, is equal to

0.0137 and the normalized lengths of the first and second waveguide sections are

100

Frequency, GHz

5 10 15
. -1
Axial wavenumber, k_(cm )

Fig. 1.11. Dispersion diagram for the operating TE;;-mode and
spurious TF,| and TEy-modes for the NRL gyro-TWT design.

equal to 26 and 5.92, respectively. At the same time the starting length of the second,
lossless section is equal to 7.3, i.e. it exceeds the real length by about 20% only.

For the backward TE;; wave at the second cyclotron harmonic the normalized
lengths of two sections are equal to 14.0 and 3.2 and the normalized beam current

parameter is 0.0029 only. Accordingly, the starting length of the second section is

about 14.0, so there are huge safety margins.
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1.3.3. Results of the nonlinear analysis

The self-consistent set of non-linear equations (1.1)-(1.3) was studied
numerically. Results of the gyro-TWT efficiency analysis are shown in Figs. 1.12 and

1.13, which correspond to the case without losses and the one with distributed losses

10.5

0.4

103

Normalized detuning, A

02 025 03 035
Normalized current, /,,

C.r oul

35

130

25

20

Normalized detuning, A’

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Normalized current, /,,

Fig. 1.12. Orbital efficiency of interaction (a) maximized over the

length of the interaction space (b) for a lossless gyro-TWT.

36



in the first section of the tube, respectively. The length of the first section in the lossy
case equals to 8.0 and the loss parameter d is equal to 0.4. These figures show the

orbital efficiency of interaction 77, maximized over the length of interaction space

¢, (Figs. 1.12 (a) and 1.13 (a)) on the plane of normalized current parameter, /y, and

i
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0.6
10.5
104

10.3

Normalized detuning, A’

0.2

0.1

0.0 005 01 015 02z 025 03 035 04 045 05
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g out
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0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Normalized current, /,

Fig. 1.13. Orbital efficiency of interaction (a) maximized over the
length of the interaction space (b) for the two-stage gyro-TWT
with distributed losses in the first section. The loss parameter d is

equal to 0.4.
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detuning, A’'. The corresponding optimal values of £, on the same parameter plane

are shown in Figs. 1.12 (b) and 1.13 (b). As one may see, the maximum efficiency
achieved is slightly lower in the presence of losses than in the lossless case, however
the region of efficient operation is larger. This corresponds to the results obtained
from the linear analysis, i.e. losses result in the increased effective bandwidth of the
device (see Fig. 1.5).

The regions of maximum efficiency, however, do not coincide with the regions of
maximum gain. This can be seen from Fig 1.14. showing the gain of a lossless two-
stage gyro-TWT calculated for the parameters quoted above. The gain of the device
grows with the increase of the normalized current, whereas the zones of maximum
efficiency correspond to rather small values of the parameter. As discussed in the
previous sections, stability problems may become critical at large values of /, and,

therefore, care should be taken when selecting the parameters to provide the optimum

Gain (dB)

30

120

Normalized detuning, A’

0.0 005 01 015 02 025 03 035 04 045

Normalized current, /,

Fig. 1.14. Gain of the gyro-TWT maximized over the

interaction length. Losses are not included.
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operation. Moreover, the values of ¢, shown in Figs. 1.12 (b) and 1.13 (b) were

obtained without the analysis of BW self-excitation conditions, and hence the
question of their choice remains open.

To analyze the effect of electron velocity spread on the device operation, one
should consider a concrete device design since the number of parameters in the model
increases and their choice cannot be arbitrary any more. Let us use the parameters of
the NRL gyro-TWT described above. The effect of velocity spread on the amplifier
bandwidth and output power is illustrated in Fig. 1.15. In this figure the output power
is shown in dependence on the operating frequency for several values of the spread in
orbital components of electron velocities. The driving power is constant for all the
cases, being equal to 1.8 W. The ‘triangular’ velocity distribution function has been
used in the computations, with RMS values of the spread indicated in the figure. As

can be seen, there is a considerable degradation of power, gain and bandwidth as the

80 T T T T T T

20l AVL/ v =0%

60F
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40}

30F

Output power, kW

20p

10F

33 34 35 36 37 38
Frequency, GHz

Fig. 1.15. Effect of orbital velocity spread for the NRL gyro-TWT.

The RMS values of the spread are indicated in the figure. The

driving power is equal to 1.8 W in all the cases.
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amount of the spread is increased. It can also be noticed that the effect is relatively
small at low frequencies, which are close to cutoff, while being better pronounced at
the high frequency edge where the inhomogeneous Doppler broadening of the
cyclotron resonance band (owing the axial velocity scatter) is much stronger.

We compared the results of our calculations with those obtained by MAGY as we
did before in the linear analysis. First, only the uniform interaction region was
considered with the input and output tapered sections ignored. Besides, the interaction
with the operating 7E;;-mode alone was analyzed. Fig 1.16 illustrates axial wave
power profiles calculated by these two methods for three operating frequencies.
Dependence of the output power upon the operating frequency is shown in Fig. 1.17.
The two figures demonstrate a very good agreement between the results of the two
approaches.

However, when the input taper (where the operating wave is partially converted
into other modes) is included in MAGY simulations, a considerable difference
between the results of the two approaches appears. As can be seen in Fig. 1.18, a
good agreement exists between the axial power profiles at low frequencies (see Fig.
1.18 (a)) but the results diverge at high frequencies (Fig. 1.18 (b)). The agreement at
low frequencies is observed in spite of the fact that MAGY predicts two minima in
the axial dependence close to the input, whereas the theory predicts only one. At the
same time, both methods yield only one minimum at high frequencies.

If, in the framework of our theory, we model the input downtaper by a waveguide

section with a variable axial wavenumber, the theory also predicts two minima, as
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Fig. 1.16. Axial wave power profiles calculated for three
operation frequencies by the use of nonlinear theory
(solid) and MAGY (dotted). Only the uniform section of
interaction space is analyzed. The driving power is equal

to 1.8 W for all the cases.
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Fig. 1.17. Output power versus frequency obtained by
nonlinear theory (solid) and MAGY (dotted). The uniform
section of the interaction region is considered. The value of

input power is equal to 1.8 W.

shown in Fig. 1.19 (a). However, MAGY yields a much higher power at low
frequencies. As shown in Fig. 1.19 (b), the final gains are now in agreement at high
frequencies only. The reason for the discrepancy at low frequencies can be attributed
to the effects of interaction with backward waves that is ignored in our theory. In
general, it is known that in the case of near cutoff operation wave excitation should be
described by the second-order equation following from the wave equation, instead of
the first-order equation (1.12) [49], [53]. In our case, the presence of the input
downtaper where the input wave is partially reflected into a backward wave, makes
this effect even more pronounced. A certain role can also belong to mode conversion

in tapers, which effects have been ignored in the simple theory. As can be seen from
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Fig. 1.18. Axial wave power profiles obtained at high and low
frequencies. The input downtaper is included in MAGY
simulations. The driving power is equal to 1.8 W. Fig. (a)

shows that MAGY predicts two minima near the input.
Fig. 1.20, the level of the parasitic 7E;, mode in the input and output taper regions is
substantially higher than in the regular part of the structure. In order to reduce the

effect of reflection, we considered the input taper with the angle of tapering

0 =0.51". (Accordingly, the initial radius of the waveguide was reduced from 3.248
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Fig. 1.19. (a) Axial wave power profiles for the central operation
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both in the theory and in MAGY calculations. (b) Gain versus
frequency calculated by the two methods. The curve corresponding
to the case without input section in the theoretical calculations is

shown for comparison. The input power is equal to 1.8 W.
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Fig. 1.20. Axial wave power profiles obtained by
MAGY for dominant 7E;, and parasitic 7E;, modes.
Larger magnitudes of the TE;; mode in the input and

output tapered sections can be observed.
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Fig. 1.21. Gain versus frequency for the case of
reduced taper angle in the input section. MAGY
predicts a considerable oversaturation at low
frequencies in comparison with the theoretical results.

The driving power is equal to 1.8 W.
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Fig. 1.22. Gain versus frequency for the case of

reduced taper angle in the input section. Lower input

power decreases the effect of oversaturation observed

in MAGY results.
mm to 2.9 mm.) The results shown in Fig. 1.21 indicate this measure to have reduced
the disagreement between the results of the two approaches. In particular, at high
frequencies the agreement is very good. However, the MAGY prediction for low
frequencies is a considerable oversaturation, possibly because the beam interacts
strongly with both the forward and backward waves in the input taper of a smaller
radius. To eliminate this additional effect, the input power was cut down from 1.8 W

to 0.9 W. As shown in Fig. 1.22, the result is a reasonable agreement between the two

approaches.

46



1.4: Theory of the gyro-TWT with tapered parameters

As mentioned in the previous sections, the theory of gyro-TWTs and gyro-BWOs
with constant parameters has been developed a long time ago. The nonlinear theory of
gyro-BWO with tapered waveguide radius and external magnetic field was presented
in Ref. 54. In that paper, it was shown that for the case of linear tapering the
maximum orbital efficiency of the gyro-BWO could be almost three times higher than
that of the tube without tapering. However, so far, the nonlinear theory of the gyro-
TWT with tapered parameters has not been developed in a similar form. In the

present work, the author makes an attempt to start developing such a theory.
1.4.1: General formalism

Let us restrict our consideration to the case of a small tapering of the waveguide
radius and/or external magnetic field. In this case, the effects of tapering can be taken
into account in the cyclotron resonance mismatch A and the beam current parameter

Iy only. For the simplest case of linear tapering of the waveguide radius

R,(2)=R,o(1+6;,~—) (1.24)

out

the corresponding changes of the normalized wavenumbers have the form:

2

z K z
K(Z):K0(1_5R2_)= h(z):ho(1+h_25RZ_)a (125)
out 0 out
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where «x, and A, are, respectively, the transverse and axial wavenumbers at the
waveguide entrance, J, is the waveguide taper parameter (0, < 1) and z,, is the

waveguide length. These expressions are valid under the assumption that the device
operates far enough from the cutoff. Correspondingly, the cyclotron mismatch given

by (1.4) can be represented as

5
A(z)=Ao—b—Ri, (1.26)

0 “out

where b, =h,p},/2B.,(1-h,pB.,) is the recoil parameter at the entrance. This

parameter is small when the operating voltages are relatively low and the operation is

not too far from the cutoff (7/z,, <k, < @/c) [48]. Therefore, when &, and b,

are of the same order of magnitude, the changes in the cyclotron mismatch can be
large and comparable with its initial value. In other words, even small tapering of the
waveguide radius may bring to significant changes in the device performance due to
variation in the cyclotron resonance conditions.

The normalized current parameter in the similar manner can be expanded as

z
Iy (2)=1,,,(1-9, Z—), (1.27)

out

where Iy, 1s the current parameter at the entrance and

Ko LK. ]
0,=0,| —+3——L 4. 1.28
! i ( hg ho (1 o hOﬂzO) ( )

(This expression has been obtained for the case of operation at the fundamental

harmonic, s = 1).
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The tapering of the external magnetic field brings to the changes in the

cyclotron frequency, £2) =eBc/& and, therefore, in the detuning parameter only. For

2
out

the case of parabolic tapering, B(z) = B,(1-8,z°/z.,), which describes the axial

dependence of the real field rather accurately, the cyclotron mismatch takes the form

‘QO in 22
A(Z)=A0+Sa)—’537, (1.29)
0 out

where €3, is the cyclotron frequency at the entrance, u, = Bl.(=h))/2(1-h,B.,)
and J, is the magnetic field taper parameter. The expression (1.29) is written in the
exact form and therefore J, is not necessarily a small parameter. It can be noticed

that when both waveguide and magnetic field tapers are used, the corresponding
changes in the detuning parameter can to some degree compensate for each other due
to their opposite signs.

Since b,,6, u, and £, depend upon specific device parameters, viz. A,

K,,» B.,» Ro and By, and, therefore, there exists a relationship between them, it is

quite problematic to carry out the analysis of the tapering effects in a general way.
Instead, design parameters of a concrete device should be considered, which will be

done in the next section.
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1.4.2: Results of the numerical analysis

The author analyzed a gyro-TWT operating at about 250 GHz. To obtain its
parameters, the design of the Ka-band gyro-TWT described in section 1.3.1, typical
gun parameters for this frequency and the scaling properties of the equations (1.1)-

(1.3) were used. The set of parameters obtained is the following:

Operation freqUenCy.........oovviiiiiiiiiiiiii e 250 GHz
Operation MOAE. ... ...ouuiieiiiiit e TEo:
Beam voltage. ........ooiiiiiii i 20kV
Beam Current...........coiuiiiiii 1A
Radius of electron guiding centers.................covvviinennn. 0.037 cm
External magnetic field value...................oci . 87 kG
Initial waveguide radius...........o.oveeiiiiiiiiiii 0.076 cm
Waveguide length..............oo 6.725 cm
Length of the lossy section in the waveguide........................ 5.5cm

The dependences of the cyclotron detuning and normalized current parameters upon
the axial coordinate for the four frequency values and fixed waveguide taper
parameter &, = 0.01are shown in Fig. 1.23. The expressions (1.4) and (1.5) were used
in these calculations. Also, for the purpose of comparison, shown are the curves
calculated by the use of expressions (1.26) and (1.27) (dashed lines). As one may see,
the changes in the detuning parameter can be described quite well by the expression

(1.26) even close to cutoff (f.,,= 240.6 GHz), whereas the normalized current at these
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Fig. 1.23. Axial dependences of (a) the cyclotron detuning
and (b) the normalized current current parameters for several
frequency values. The waveguide taper parameter is equal to
0.01 in all the cases. Solid and dashed lines correspond to the
results obtained by the use of expressions (1.4), (1.5) and
(1.26), (1.27), respectively.
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frequencies demonstrates strongly nonlinear behavior and the expression (1.27)
proves to be inaccurate. Second-order small terms should be used in the expansion of
Iy. Tt can be seen in Fig. 1.23 (a) that the absolute values of the detuning parameter at
the exit of the device are at least three times larger than those at the input even for the
central frequency of operation. The normalized current parameter in Fig. 1.23 (b)
experiences significant changes only near the cutoff.

After these preliminary calculations, the contours of gain, bandwidth and

gain-bandwidth products were obtained on the plane of taper parameters 6, and o,

for several values of input power, pitch-angle and initial magnetic field. The
maximum gain values were found in the operational frequency range and bandwidths
were estimated for these optimized values. The contours shown in Fig. 1.24 are
obtained for the following set of parameters: P;,, = 100 mW, « =0.8, By = 87.5 kG.
Figure 1.24 (a) shows gain in dB, Fig. 1.24 (b) shows bandwidth per cent and Fig.
1.24 (c) demonstrates the gain-bandwidth product in dB-GHz for the values of taper
parameters specified on the figure axes. As can be seen, the maximum gain achieved
is about 47 dB, which corresponds to the largest tapering of the magnetic field,
0, =0.04 . The waveguide taper parameter for this point is equal to 0.026. However
Fig. 1.24 (b) shows that the corresponding bandwidth value is about 2% only.
Contrary to the gain, the largest bandwidth (about 6.5%) is obtained for the case of
constant magnetic field (5, =0) and for the waveguide taper parameterd, =~ 0.035.
Although such a discrepancy exists, the main factor that determines the gain-

bandwidth product on the parameter plane is the bandwidth behavior. This can be

seen in Fig. 1.24 (c¢), which shows that the gain-bandwidth product reaches its
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maximum near the optimum bandwidth point and is about 540 dB-GHz. One may
conclude from these results that it is possible to significantly increase the bandwidth
and gain-bandwidth product of the device by tapering the waveguide radius only.

It is expedient to consider the dependences of gain and bandwidth upon the
magnetic field near the optimum point. These are shown in Figs. 1.25 and 1.26,
respectively, for two values of input power. Also, in Fig. 1.25, shown are the
frequencies that correspond to the optimum gains (dashed lines). As on may see,
higher gain and larger bandwidth can be achieved at lower driving powers since the
saturation effects for those are less pronounced. The sharp drops on the curves near
By =88 kG in Fig. 1.26 are caused by the presence of a valley on the corresponding
frequency dependences. The valley near this magnetic field value becomes deeper

than 3 dB, which brings to bandwidth collapse. This can be clearly seen in Fig. 1.27,
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Fig. 1.25. Optimized gain (solid) and corresponding

frequency values (dash) as functions of the magnetic field.

The results are shown for two input power values indicated

in the figure. The waveguide taper parameter is equal to

0.03 1n all the cases.
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Fig. 1.26. Bandwidths estimated for the optimum gain as

functions of the magnetic field. The results are shown for

two values of input power indicated in the figure. The

waveguide taper parameter is equal to 0.03.
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Fig. 1.27. Gain versus frequency for several values of
the magnetic field. The waveguide taper parameter is

equal to 0.03, the input power is indicated in the figure.
which shows frequency characteristics for the four values of By. The input power
equals to 50 mW in all the cases. Also, one may notice in this figure that the
maximum gain value shifts from lower frequencies to higher ones with the increase of
By. This shift causes a jump on the curve of optimum frequencies for the case of P;, =
50 mW (see Fig. 1.25).

The author has also analyzed the dependence of gain-bandwidth product upon
the electron orbital-to-axial velocity ratio, & . The results are shown in Fig. 1.28 for
the same input power and By = 87.8 kG. One may see, that by going from « =0.7to
a = 0.8 the gain-bandwidth product (solid line) changes its value from approximately
45 to 610 dB-GHz, i.e. it gets increased by almost 13.6 times. Also, in this figure, the
gain-bandwidth product for the tube without tapering is shown (dashed line) for the

sake comparison. All other device parameters are the same as for the device with
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Fig. 1.28. Gain-bandwidth product for the tapered (solid)
and untapered (dash) gyro-TWT as functions of the orbital-
to-axial electron velocity ratio. The input power and

magnetic field values are indicated in the figure.

tapering in this example. It can be seen that the corresponding increase in the gain-
bandwidth product is 4 times only (from approximately 150 to 422 dB-GHz) for this
case. Also, smaller gain-bandwidth product in the narrower range can be obtained for
the untapered device for the same values of & considered. So, although the tapering
allows one to increase the maximum gain-bandwidth by ~50%, this effect exists in a
relatively narrow range of « ’s: from o =0.77to o =0.88.

Here, the author has studied the effect of simple linear tapering of the
waveguide wall radius and parabolic tapering of the magnetic field on the gyro-TWT
performance. It has been shown that tapering of the waveguide radius alone may
significantly increase the gain-bandwidth product of the device, which is a figure of

merit for most of the gyroamplifiers nowadays. Obviously, other, optimized nonlinear
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types of tapering can make better showing but their analysis is beyond the scope of

this work.
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Chapter 2: Theory of Multi-Stage Gyroklystrons

2.1: Basic device configurations

The schematic of a simple two-cavity gyroklystron is shown in Fig. 2.1. Very
often, to improve the characteristics of a GKL, a larger number of cavities is
employed. The interaction between the electron beam and the EM-wave occurs in the
cavities separated by drift regions in which wave propagation is impossible. The input

cavity is excited by an input signal. The EM-field in this cavity modulates the energy

Solenoids . mput cavity Output cavity

z Collector

2
i ™ Drift section

MIG-type
electron gun

Fig. 2.1. Typical configuration of a two-cavity gyroklystron.

of electrons that, in accordance with (I.2), leads to their gyration with slightly
different cyclotron frequencies and results in the electron phase orbital bunching,
which proceeds when electrons move along the device axis in the drift sections. These
modulation and bunching processes cause an appearance of high-frequency
components at the signal frequency and its harmonics in the electron current density.
One of these high-frequency components excites oscillations in the subsequent

cavities that improve the quality of electron bunches and increase the gain and
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efficiency. The microwave power is extracted from the output cavity. When the
output cavity is excited by one of harmonics of the signal frequency, the device
operates in the frequency multiplication regime.

The configuration of a clustered-cavity GKL is shown in Fig. 2.2. This is a

four-cavity three-stage device, in which the first and last stages are represented by

Solenoids ITPUt cavity Output cavity

E Collector

......................

-----------------------

MIG-type y
electron gun Clustered cavity

Fig. 2.2. Schematic of a three-stage clustered-cavity
gyroklystron.

single cavities, while the intermediate stage is a cluster consisting of two cavities. The
concept of clustered cavities was originally suggested by R. Symons for conventional
linear beam Klystrons for improving their bandwidth characteristics [56], [57].

It should be mentioned that there is no limitation for the number of cavities in
the cluster, and the use of multiplets is also possible. The location of clusters is not
limited by the intermediate sections, the input and output stages may also contain
clustered cavities [35]. In this work the author considers the scheme shown in Fig. 2.2
with two cavities in the cluster located in the intermediate section of the device and

compares this scheme with a standard 4-cavity GKL.
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2.2: General formalism

2.2.1: Gyro-averaged equations of electron motion and the balance equation

We will ignore space charge effects and velocity spread in the electron beam
and ignore the effect of the beam on the axial structure of the cavity field (cold-cavity
approximation, cf. [55]). Also, negligible cross-talk between the cavities in each
cluster is assumed when the clustered-cavity configuration is considered. Therefore,
the electron motion in each cavity can be described by two equations, one for
normalized magnitude of the orbital momentum p and another for the slowly varying

gyrophase of gyrating electron relative to the rf field, $[8], [34]:

P _ st Re(F £, exp(isS)!] (2.1)

dg

3—§—A+1— p® = p*? Re{iF, f, exp(is9)} (2.2)

Hereis the normalized axial coordinate, A=(2/p°,)(1-s2,/w) is the
normalized mismatch between the signal frequency or its harmonic and the resonant
harmonic of the electron cyclotron frequency, s is the cyclotron harmonic number, F
is the normalized amplitude of the I-th cavity field and the function f,(S) describes

the axial structure of this field. Let us designate each cavity by two indices among
which the first one, k, indicates the cluster number and the second one, |, refers to the
number of a cavity in a given cluster. However, when single cavities are considered,

we will be ignoring the second index in such notation. The susceptibility of the
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electron beam with respect to the resonator field can be obtained by integrating Egs.

(2.1) and (2.2) with corresponding boundary conditions:

2i o * 1 2 i\ Skl
Ak, “TE I fe {g}!‘(pelg) ' dlgo}dé/ (2.3)

Kl Ctin
Here £, ,;, and &, correspond to the input and the output of a given cavity,
respectively, and & is the initial gyrophase homogeneously distributed at the

entrance to the first cavity between 0 and 2z . The functions f, (¢) in Egs. (2.1)-

(2.3) are normalized in such a way that Jj“"’“‘
k,l,in

f,,dg =1. The susceptibility of the

electron beam, y, its conductivity, o, and the dielectric constant, ¢, are related as [8]
e=1+4rl,y=1-idnolw

(1o is the normalized current parameter specified below).

In the stationary regime, the amplitude and phase of a resonator field

Fe., = F, lexp(iy, ;) can be found from balance equations. For the first cluster (or
single cavity) they can be written as

F, {1+5k,| +“0(k,|))(k,|}+'°ﬁ =0. (2.4)
Here A, is the complex amplitude of the field excited in the I-th cavity by the driver,

lo is the normalized current parameter, which is proportional to the beam current and

to the Q factor of a given cavity

N
| el Q{ S j 2(s-3) g2- J;;s(klRo)

" mC3}/0 (S—l)l + (V2 _mz)Jé(V)Il f |2 dz’ ! (25)
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where z'=wz/c and v is the eigenvalue, which for a TE,, mode of a cylindrical
cavity is the p-th root of the equation J; (v) =0.
As there is no input power for other cavities, the balance equations for them
are:
Lo Zia =L TognyZin = =6k, (2.6)
In Egs. (2.4) and (2.6) the detuning parameter &, , is the mismatch between the signal

frequency or its corresponding harmonic and the cold-cavity frequency e,

normalized to the width of the resonance curve of this cavity:

w—ay

By =2 27
! a)k,I/ZQk,I 27)

The expression for the gain describing the signal amplification in the I-th cavity of the

k-the cluster can be given as

1 &
G =10log {le F, |2}, (2.8)
1=1

where A’ :ZAZ is the total intensity of the field excited in the input cluster or
|

single cavity by the driver. This intensity for the case of single input cavity relates to

the power of the driver, Pq, as

AZ — 4IOlPerl .
POLQcpI

Here Q; is the loaded Q factor of this cavity, Qcp is the coupling or external Q factor

of the drive cavity, P, =7, V,1, =[5 /20—, )M,l, is the beam power associated

with the electron gyration and V, and I, are the beam voltage and current,

respectively.
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2.2.2: Point-gap model

As known, in gyroklystrons as well as in conventional klystrons the drift regions
are much longer than the cavities. The ‘point-gap’ model is the limiting case of very
short cavities. We will assume that the total length of each cluster consisting of a
number of closely located short cavities is also very small. Therefore, the electron

phase at the entrance to an arbitrary (k,I) cavity can be determined as [35]

H =0)=& + Z [A -1+ p; (/uk’)}/udr,k' + Z Re{iFk,l’ exp(ilgdr,k—l)} (2.9)

k'<k

Here p, () is the electron momentum at the exit from the k’-th cluster and s, . is

the normalized length of the drift-section following the one. The term Zﬂﬂdr,k' in
=

the first sum of this expression describes the transit effect for electrons passing

through all previous drift sections and the term Z[l— P2 (14)] Hg, . describes the
=

cumulative ballistic bunching due to modulation of electron momentum in each
cavity. The last sum in Eq. (2.9) describes the effect of previous cavities in a given

cluster on the electron phase (4, ,_, is the electron phase after passing k-1 clusters).

The electron momentum at the entrance to the same cavity can be determined as

p(g, =0) =1+ Re{Fk’,l' eXp(ilgdr,k'—l)} : (2.10)

"<k, <l
By integrating the equations for electron motion (2.1) and (2.2) one may calculate the

susceptibility given by Eq. (2.3) [34]:
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_i_—z Fo —F—<exp( 19 11)) (2.11)

k (IS kI
Here the first term on the RHS describes the beam loading effect, the second term
describes the effect of preceding cavities in a given cluster. Notice that this term is
absent in conventional gyroklystrons where I=1. The last term describes the effect of

ballistic bunching (angular brackets denote averaging over 4, ). Equation (2.11) being

combined with the balance equation (2.4) or with Egs. (2.6) determines the

amplitudes and phases of fields in all cavities. This yields for the input cluster or

cavity:
EM
| 1,||=(1+| 1')2+52, (2.12)
o(Ll) 1,1
oA, =@+l n)A)
ta”(¢s—%,|)= 1111 ( 0(1,|)) 11 (2.13)

1+ IO(l,I))fl.,'l +51,|]:1,'|' ’

where 7, and 7| are, respectively, the real and imaginary parts of the function
F =l A |+2|0(1|)Z| R lexp(iy, —id.,) (2.14)

and ¢

sgn

is the phase of the signal A = A [exp(ig,,) . The field intensities and phases

for other clusters are equal to

2

IO(kI) 2
: F 2.15
1+ |0(k,|))2 +5k2,| | ! | ( )

5k,lﬁ',l -1+ Io(k,l))ﬁ’,ll
1+ Io(k,l))}_k'J +§k,|‘7:k’,'|

|F =

tan(¢sgn _l//k,l) = (216)

where

I'<l

Fy = [<exp(_i'9dr,k1)> + Z Fk,I'JeXp(_i¢sgn) (2.17)
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2.3: Comparison of two concepts: Conventional multi-cavity

versus clustered-cavity gyroklystrons

The results of the analysis of clustered-cavity gyroklystrons were presented in
Ref. 35. In that work, a two-cluster GKL with two cavities in each cluster was
analyzed. The results were compared with the ones obtained for a conventional two-
cavity GKL. It was shown that by using the clustered-cavity gyro-concept, the
bandwidth of gyroklystrons could be significantly enlarged, the efficiency of the
device could be the same as of conventional GKLs or even higher; also the gain in the
device of a given drift section length could be increased. However, a question arises
whether such comparison between the clustered-cavity and the conventional scheme
is valid. As mentioned, one resonator of the conventional tube was replaced by a
couple or triplet in the clustered-cavity device. This means that the total number of
cavities in the clustered-cavity GKL was larger than that in the conventional GKL of
comparison and, therefore, the comparative analysis was not quite balanced. The
present section is aimed at a *“one-to-one” comparison of the conventional and
clustered-cavity GKLs, in which the total number of cavities is the same for both
schemes. The author considers two schemes of four-cavity GKLs: conventional
scheme, in which all cavities are separated, and the clustered-cavity scheme shown in

Fig. 2.2.
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2.3.1: Point-gap model for the three-stage clustered-cavity gyroklystron

In this subsection the author will show the most important steps in the derivations
for the clustered-cavity GKL under analysis. The derivations are based on the
formalism described in the previous section.

The following representation for the field in the cluster can be used [35]:
Fee =l Fo1 lexp(iy, )+ | Fy , [exp(iv, ), (2.18)
where |F,, |exp(iy,,) and |F,,|exp(iy,,)are the complex fields in the first and
second cavities of the cluster, respectively. The susceptibility of the beam with

respect to the field in the first cavity of the cluster can be given as

2i

Koa =—1————(exp(-if,, ,) ) exp(-iy,,), (2.19)

| Fol
which allows one to determine the complex field in the first cavity of the cluster from

the balance equation (2.6):

Ji(@) Loz
(|0(2,1) +1)+ i52,1

| . lexp(iy,, —ig,) =2 (2.20)

Here g, =2|F, |, is the so-called bunching parameter of the input cavity where
14, 4 1s the normalized length of the first drift-section. In the same manner, the beam

susceptibility with respect to the field in the second cavity of the cluster is

F
Xop=—1—2i mexp(iz//zyl ~iy,,)-2i Jy (@)

exp(ig, — iy, ,) , (2.21)
| Fz. | | Fz. | Lo

which gives
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I0(2,2) (1_ |0(2,1) + '52,1)

F,, |exp(iy,, —ig,)=-2J :
|F,, lexp(iy,, —ig,) (@) Ut Ty +10,,) L+ oy +10,2) (2.22)
So, the expression for the complex field in the cluster can be given as:
I I
F_=-2J.(q,)exp(i o) 0z2) -
o 1(a;) exp( ¢2)(1+ sy 410y, T+ oy 410,
21 |
_ : 0(2,1) '0(2,2) : (2.23)
(1+ I0(2,1) + '52,1)(1"' I0(2,2) + I52,2)

For the case of small beam loading, small input cavity prebunching and with the

assumption 1, = ly,, =15, the expression for the field intensity in the cluster

takes the following form

1+[(S,, +6,,)1 2
F 2: 2 | 2 21 2,2 .
| Fee ['=(20,15,) (1+522,1)(1+522,2) (2.24)
The field intensity in the output cavity is given as
N F P
|, [P= o |7 | (2.25)

A+1,)° +87°
where F, =exp(—ig;)(g, —iq, exp(ig,))/ 2. Assuming g, > g, (small signal case), one
may easily get | 7, [’=q; /4=|F, [ ui, , where u,, is the normalized length of the

second drift-section. From the expressions just obtained and the expression for the
field intensity in the input cavity, A, the following expression for the gain of the
three-stage clustered-cavity GKL can be obtained:

G otust = 20109(81 g5l g5 14, g1 145 ) —
1010 {(1+ S2)(L+S2) A+ 82,)(1+52) }

1+[(S,,+6,,) 1 21 (2.26)
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2.3.2: Efficiency studies

We start our comparative analysis with the efficiency studies of both schemes.
First, we will consider the conventional four-cavity GKL. The bunching efficiency of

the device can be given by

2

1%
nb=‘gfe><p(h9emr)dn9 , (2.27)
0

where 9

entr

is the slowly variable gyrophase at the entrance to the output cavity. The

bunching efficiency is equal to the orbital efficiency of interaction at the first

harmonic within the point-gap model. The slowly variable gyrophase 4 . has the

entr
following form (see Eq. (2.9)):

9

entr
+AMu, - SinG) —a;sin(Ay, + & + Ar,u, — (2.28)
—q,r, sing, —q,rsinfdy, + 8, + Aru, —q,r;sing]).

=9 +Au, —q,sin 3, —q, sin(Ady, + 9 +

Here u, is the normalized length of the circuit preceding the output cavity, qs, g, and
gs are the bunching parameters describing the ballistic bunching due to the first,
second and third cavity field, respectively. The parameter r, =L, , /L, characterizes
the location of the second cavity, r, =L, , /L, characterizes the location of the third
cavity and r=(L,, —L ) /(L; —L ). Also, in Eq. (2.28), Ay, and Ay, are the

phase differences between the complex fields in the first and second and the first and
third resonators, respectively. For simplicity, we fixed in our consideration the
bunching parameter of the first cavity, q;=1.84, which corresponds to the maximum

of the first harmonic in electron current density in the case of one-cavity prebunching.
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Also, for the sake of simplicity, the case of exact cyclotron resonance was considered.

Efficiency has been calculated as the function of the second (q,) and third (q,)

bunching parameters for various locations of the second and third resonators and

different values of the phase differences Ay, and Aw,. Some results of these

calculations are shown in Fig. 2.3. In this figure, cases (a) and (b) correspond to the

relative location of the second cavity r,=0.1 and positions of the third cavity
r,=0.15 and r, =0.95, respectively. In other words, the third cavity is, first, close to

the second one and both are close to the input cavity (a), and then the third cavity is
shifted to the output one (b). As one can see, such shift allowed for increasing the
maximum orbital efficiency from about 42% to almost 75%. Figures (c) and (d)

correspond to the relative locations r,=0.3,r,=035 and r,=0.3,1,=0.95,

respectively. The efficiency values in case (c) are higher than in case (a) and again,
by moving the third cavity to the output one, the maximum efficiency for this cavity

arrangement is achieved. Results for relative locations 1, =0.6,r,=0.65 and
rr=0.8,r,=095 are shown in figures (¢) and (f). The maximum efficiency
corresponds to the case (f) and is about 80%. The phase shifts are Ay, =7/2and
Ay, =z in all the cases. Notice that the location of the maximum efficiency point on
the g, g,-plane, which corresponds to the negative values of q,, in cases (b), (d) and
(f) is actually the result of a shift of the parameter Ay, by 7z . In other words, by
adding £z to Ady,, one may keep the values of ¢, and g, always positive, which

has more sense since the bunching parameter is positive by definition. However, for
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Fig. 2.3. Contour plots of bunching efficiency describing the effect of prebunching in a four-
cavity gyroklystron on the plane of bunching parameters: (a) the second and third cavities
are located near the input one: r;= 0.1 and r, = 0.15; (b) the third cavity is shifted to the
output resonator, r; = 0.1 and r, = 0.95; (c) the resonator locations are r; = 0.3 and r, = 0.35;
(d) r;=0.3,r,=0.95; (e) r. = 0.6, r, = 0.65; (f) both intermediate cavities are located close to
the output one: r; = 0.8 and r, = 0.95.
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simplicity of calculations and similarity of the plots, values of Ay, were kept

unchanged. The results summarizing the ones shown in Fig. 2.3 are demonstrated in
Fig. 2.4. In this figure, the dependences of the maximum efficiency values upon the

relative location of the third resonator are shown for several locations of the second

e i e
= ~ o0

Bunching efficiency, 7,

<
W

01 02 03 04 05 06 07 08 09 10

0.4

Relative position of the third cavity, r,

Fig. 2.4. Maximum values of bunching efficiency of a
four-cavity gyroklystron. These are shown as functions of
the relative position of the third cavity for several

locations of the second one.

cavity. One may notice the initial maximum on the curves, which corresponds to
positive values of the parameter gs. The sharp bends on the curves are related to the
shift of the parameter Ay, just discussed. Notice, that when the relative position of
the second cavity reaches the values about 0.6, the first maximum on the curves
disappears, which means that the maximum efficiency is obtained only for negative

values of qz.
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Similar calculations were also done for the clustered-cavity GKL. For the

clustered-cavity GKL L,, — L, , Which gives r, —r. The expression for the

gyrophase at the entrance to the 4-th cavity for the case of exact synchronism now
takes the form

0, =6,—0,8In6,—a,sin(4y, +6,—q,,sing,) -

—Q, Sin(Ay, + 6 — a1, Sin &) (2.29)
The results of the calculations are shown in Fig. 2.5. Here the figures a), b), ¢) and d)

correspond to the relative position of the cluster r,=0.1, 0.3, 0.7and 0.95,

respectively.

Fig. 2.5. Contour plots of orbital efficiency describing the effect of prebunching in the
three-stage clustered-cavity gyroklystron on the plane of bunching parameters. (a) the
cluster is close to the input resonator, r; = 0.1; (b) r; = 0.3; (c) ry = 0.7; (d) the cluster is

close to the output cavity, r; = 0.95.
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Figure 2.6 demonstrates the results similar to the ones shown in Fig. 2.4. In
this figure the dependences of the maximum efficiency versus the relative cluster

location are shown. The maximum efficiency is about 70% for r, =0.95 that is a little

0.70 T T T T T T T T

0.65

0.60 -

Bunching efficiency, 7,

045

040 1 1 1 1 1 1
01 02 03 04 05 06 07 08 09 10

Relative cluster position, 7,

Fig. 2.6. Maximum bunching efficiency values of the
clustered-cavity gyroklystron as a function of the relative

position of the cluster.

smaller than in the previous case. This result is similar to the one obtained for the
conventional GKL where the maximum efficiency is obtained when the second and
third cavities are located near the output one. Therefore, a conclusion can be made
that both conventional and clustered-cavity GKLs reach the highest efficiency values

when their intermediate cavities are located close the output.
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2.3.3: Gain studies

In a small-signal regime, the expression for the gain for both the conventional
GKL and the clustered-cavity GKL can be represented as a superposition of two

terms [34]:
G5 =G&™ + G (@yqn)
In the case of negligibly small beam loading, corresponding expressions for the
clustered-cavity GKL gain can be written as (See Eq. (2.26)):
Gy = 2010981, 1 euin, (1-1)} (2.30)

G = —101l0g{(L+ 87) L+ 57,) L+ 67, )L+ 62 )3+
+10log{1+[(S,, + 5,,) 1 2I°} (2.31)
In these expressions, u, is the total normalized length of the device. Similar
expressions for the conventional GKL can be written as [34]:
Gt = 20109810, 1511235, (F, —£)(L-1,)} (2.32)
Gt = —1010g{(L+ &)L+ 5 )(L+ 57 )L+ 57} (2.33)

One may notice that when the cavities in the cluster are symmetrically detuned, i.e.

when in Eq. (2) d,, =—0,,, the variable parts of the gains are the same for both

schemes.
It can easily be shown that the constant parts of the gain, which depend upon the

location of the cavities, reach their maximum values when r, =1/3 and r, =2/3 for
the conventional GKL and when r, =1/2 for the clustered-cavity GKL. This means

that the cavities must be equally spaced in the conventional device and the cluster
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must be in the middle of the device in the clustered-cavity GKL. Obviously, these
results are not consistent with the ones obtained in the efficiency analysis, where the
maximum efficiency is achieved when the intermediate cavities are close to the
output in both schemes. Therefore, the choice of resonator location should be
determined as a result of a trade-off between the gain and efficiency.

Now, let us compare the constant parts of the gains for both schemes with the
assumption that the lengths of the devices are equal, the resonators are located to

yield the maximum gain and 1, =1,. Then, for the conventional GKL one may get:
GEe) =60log(21,u, 13), and  for  the clustered-cavity =~ GKL:
G =20log2+40log I, . Figure 2.7 demonstrates both gains plotted as

functions of 1,u,. One may conclude from this figure that the clustered-cavity

scheme is preferable when there are limitations on the length of the device and/or the

beam current.

Constant part of the gain, dB

Ly,
Fig. 2.7. Constant parts of the gains for the conventional four-cavity
GKL (dashed) and the three-stage clustered-cavity GKL (solid) as

functions of the normalized current - device length product.
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2.3.4: Bandwidth studies

For the sake of simplicity, let us consider the case when eigenfrequencies of the
cavities’ modes form an equidistant spectrum, i.e.

.., -0, =Ao=const (n=1,2,3).

The dependences of G, and G, upon frequency detuning given by (2.31) and

SS,conv

(2.33) for several values of the stagger-tuning parameter, & (& ~ Aw), are shown in

Fig. 2.8. It can be seen that the use of clustered cavities allows one to achieve much
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Fig. 2.8. Variable parts of the small-signal gains for the
four-cavity conventional GKL (dashed) and the three-stage
clustered-cavity GKL (solid) as functions of frequency

detuning for several values of the stagger-tuning parameter.

larger bandwidths in comparison with the conventional scheme. Bandwidths in terms
of ¢ as functions of the stagger-tuning parameter are shown in Fig. 2.9. One may see

that the bandwidth of the clustered-cavity GKL is almost twice larger than that for the
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Fig. 2.9. Bandwidths in terms of & as functions of the stagger-
tuning parameter for the four-cavity conventional GKL (dashed)

and the three-stage clustered-cavity GKL (solid).
conventional device when ¢& is about 1.8. The sharp drop on the curve for the

clustered-cavity GKL is due to the fact that the valley at the center of its bandwidth
characteristic (see Fig. 2.8) becomes deeper than 3dB and the bandwidth collapses.
However, such bandwidth degradation must not be a problem since it occurs at large
values of & where device operation is not practical because of substantial gain loss
caused by stagger tuning.

The plots of gain-bandwidth products and gain degradation as functions of stagger-

tuning parameter are shown in Fig. 2.10. Case (a) corresponds to the constant part of

the gain G{™ =35 dB and case (b) corresponds to GE™ =45dB for both

schemes. Such choice of G corresponds to Iy, =52 and lu, =85,

respectively (see Fig. 2.7). This, for example, may stand for shorter and longer tubes

to be analyzed keeping 1, fixed. Again, it can be seen that the clustered-cavity GKL
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possesses an advantage over the conventional GKL in both cases (even in the absence

of stagger tuning).
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Fig. 2.10. Normalized gain-bandwidth product and gain
degradation for the four-cavity conventional GKL (dashed) and
the three-stage clustered-cavity GKL (solid) as functions of the
stagger-tuning parameter. The constant parts of the gain are (a)
35 dB and (b) 45 dB for both schemes.
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Chapter 3: Startup Scenarios in High-Power Gyrotrons

3.1: Preliminary remarks

As a rule, any microwave oscillator passes through a time-dependent variation
of operating conditions before it reaches its steady-state operating point. This startup
scenario should first fulfill the conditions for self-excitation, and then move to the
stable operating point in a way that ensures that the desired mode is excited with
maximum efficiency at the desired power level, while the neighboring modes are
suppressed.

For microwave sources driven by electron beams, the self-excitation
conditions are usually characterized by the starting current /;,, which is a function of
various operating parameters (such as the beam voltage, beam position, etc.) So,
when beam current /, exceeds I;; the self-excitation conditions are fulfilled, and this
gives rise to oscillations. If the operating parameters are reasonably chosen, the
oscillations reach the steady-state regime in a certain transit time. The parameter
region, where /, > 1, is known as the region of soft self-excitation. The oscillations
in this region can start growing from the noise level, which is usually determined by
the presence of the beam. In addition to the region of soft self-excitation, there is also
a region of hard self-excitation, which exists in many oscillators. The self-excitation
conditions starting from low noise level are not fulfilled in this region (i.e./, <1,),

however the oscillations can be sustained, once their initial amplitude exceeds a

certain threshold level. This classification was first introduced by Appleton and van
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der Pol for radio oscillators [58] and then used in consideration of various sources of
coherent electromagnetic radiation. In the region of hard self-excitation, devices
exhibit hysteresis. That is, depending on the history of parameter variation, one can
observe for a given final set of parameters either the presence or the absence of
oscillations. Very often, the maximum efficiency can be obtained only in the region
of hard self-excitation. In such cases, the device parameters should, first, pass through
the region of soft self-excitation before reaching the point of the most efficient
operation in the hard self-excitation region. Of course, the oscillations should remain
stable in the process of this transition.

If a device is designed to operate at a high-order mode, the startup problem
becomes even more complicated, because the mode spectrum is very dense and,
therefore, the self-excitation conditions can simultaneously be fulfilled for several
modes. It is desirable to excite the operating mode prior to the others in this case and
then maintain the conditions under which this mode will suppress all competitors.
Suppression occurs due to nonlinear competition between the modes [59]. The mode
competition results in the fact that effectively the starting current of a parasitic mode
is increased by the presence of the desired operating mode. Therefore, relying upon
the effect of mode competition, it becomes possible to drive the desired mode to the
point of the most efficient operation even in the presence of many competing modes
[60]. It is necessary to emphasize that such a scenario should be realized on a

timescale that greatly exceeds the cavity fill time, Q/®, since all changes made on a

shorter timescale can be considered as an instant turn-on. For typical frequencies in

the range of 100 GHz and Q-factors of the order of 10°, this means the variation of
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parameters with the timescale exceeding 10 ns. (In reality, the beam voltage and
current rise times are usually much longer than microseconds in devices designed for
a long-pulse operation).

Now, the question arises “Which parameters in the scenario should be varied
to fulfill all the conditions described?” It is known that the minimum start current in
gyrotrons corresponds to smaller mismatches of the resonance than the high-
efficiency regime, because the EM-field of large amplitude can trap electrons even in
the case of large initial mismatches [61], [62]. Since the cyclotron resonance

mismatch in gyrotrons is proportional tow—s€2 , it can be concluded that the

relativistic cyclotron frequency in the initial excitation phase should be larger than in
the final one of the efficient operation. So, the startup scenario should imply either the
decrease of the external magnetic field or the increase of the beam voltage. In the case
of continuous wave operation, both of them can be varied. However, the possibilities
of varying the magnetic field are severely limited in the case of pulsed operation,
especially when the superconducting solenoids are used. Therefore, the studies of
start-up scenarios are usually focused on the voltage variation [63], [64]. It should be
emphasized that the beam voltage rise alone, which is typically slow enough,
automatically changes the cyclotron resonance mismatch in the desired way.

Now, let us briefly discuss different types of mode interaction in gyrotrons.
The simplest case of interaction is the one between two modes only. When their

frequencies are well separated, |@, —m,|> ®/Q, or the modes are azimuthally
orthogonal, m, # m,, the phase relations can be eliminated from the equations for

mode intensities, i.e. the changes in mode amplitudes become independent of their
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phases. This is the same situation that occurs in radio oscillators with two degrees of
freedom [59], as well as in other microwave oscillators [65], where the mode
frequency separation is much larger than the mode resonance width. This kind of
interaction is often called the nonsynchronous one [60]. Two kinds of coupling
between modes in this case, “strong” and “weak”, were analyzed by Lamb for lasers
[66]. In the first case, both modes interact with the same electrons, and hence strongly
compete. In the second case, the modes predominantly interact with different
electrons and, therefore, are weakly coupled.

The case when the evolution of mode amplitudes depends on the phase
relations is known as the synchronous or parametric interaction. When all modes are
in resonance with electrons at the same cyclotron harmonic, the synchronous or
parametric interaction may occur between three modes, whose frequencies and
azimuthal indices obey the following conditions [60]:

o+, =20, m+m=2m,. (3.1)
Here index “2” designates the central mode, while indices “1” and “3” designate the
low-frequency and high-frequency satellites, respectively. The first condition in (3.1)
is an approximate one because the modes have a finite width of resonance curves. So,
it is possible to have the mode frequencies slightly detuned from an exactly

equidistant spectrum. The corresponding condition can be written more precisely as
@
|2a)2—a)l—a)3|3—. (32)

Neighboring whispering gallery modes (m > p ) with the same radial index generally

satisfy the conditions given by (3.1) and (3.2). So, the parametric interaction between

such modes can take place. Obviously, this interaction becomes significant only when
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the mode frequency separation is smaller than the cyclotron resonance band, i.e.,
when each of the modes can interact with electrons resonantly.

Instability of the central mode with respect to such symmetric satellites is
often called the automodulation or sideband instability. The first study of this
instability was carried out by Zapevalov and Nusinovich in 1985 [67]. In this work,
the authors showed that the regime with maximum efficiency can be stable with
respect to the satellites when the resonator length is reasonably short. It was also
found that the most dangerous satellites are not the modes located very close to the
operating one, but those that have a certain frequency separation. This conclusion was
later confirmed by other authors [68], [69]. There are two conditions of the stability
of the central mode oscillations. The authors in Refs. [68] and [69] characterized
corresponding instabilities as the phase instability and the overbunch instability. The
result of the phase instability is the jumping from one mode to another, while the

result of overbunch instability can be a multimode equilibrium.
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3.2: Excitation of the gyromonotron

In this section, the formalism describing the excitation of resonators at one
mode is described briefly. Obviously, it cannot give the idea of mode excitation in the
presence of other modes, however it can be used for some simple estimates that will
be shown below.

The non-stationary interaction process in the gyrotron cavity can be described
by the gyro-averaged equations of electron motion and the equation, which describes
the excitation of the resonator field by an electron beam. The equations of electron

motion can be given as

Z_V; =2Im{Ff({)w'"? exp(-i)} (3.3)
99 At w-1=—sRe {EF(Ow? exp(-i9)} (3.4)
% : :

These are essentially equations (2.1) and (2.2) rewritten in new variables, viz.
w=p?=pl/pl,=1-2(&-E)/ BLE, (=5, F=F'/s and 9=—(s9+7/2)
(here primes denote the “old” variables used in Chapter 2). The excitation equation

has the following general form [70]:

dB -
L (o-w)B=-——o/|F, - Edv,
g H@me)B =g [T, Edy (3-5)

sV
where the integration in the RHS is performed over the resonator volume V. In this

equation, B is the complex amplitude of the magnetic field represented

as H =Re{B[§S(F)exp(ia)t)}, where the function I:IS(F) describes the spatial
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structure of this field (correspondingly, ES (7) describes the spatial structure of the
electric field), w, =w/(1+i/2Q,) is the cold-cavity frequency, j, is related to the

electron current density / as j = Re {j,exp(iowt)} and N is the norm of the operating

mode given by
N _——1 I|Eﬁ I’ a’v———1 J.|Hq I’ dv (3.6)
s 4 7 S 4 7 N .

The real part of the cold-cavity frequency, @, , determines the mode eigenfrequency,

whereas its imaginary part describes some losses. Typically, two sorts of losses —
ohmic and diffraction — can be important when gyrotron open resonators are
considered. Thus, O, can be determined as

IR y
0 0, On S

The excitation equation (3.5) can be rewritten in the gyrotron form for the

normalized amplitude F:

aF _plio-L 2=l (3.8)
dr ‘ 20 0]

where 7 = wt is the normalized time, /; is the normalized current parameter and @ is

the complex gain function
’ . /" l 1 N * s/2 .
D= +i® =———j jf (W exp(i®)d¢ S, . (3.9)
F 27 :

This function can be expressed via the susceptibility of an electron beam with respect

to the resonator field, 7 [71]:

(3.10)

S

I

L
\S) |>‘{)
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In the regime of stationary oscillations at frequency w the real part of Eq. (3.8)
represents the balance of active powers

210" =1. (3.11)
This is essentially the balance equation (I.22) given in the Introduction. The
imaginary part of Eq. (3.8) in the same regime demonstrates the so-called frequency
pulling effect, i.e. the shift of the oscillation frequency w with respect to the
oscillation frequency:

®— o,

1" = oy (3.12)
w

By integrating Eq. (3.3) and averaging it over the initial phases, one may represent

the real part of the gain function as @' =7, /2| F ', where 1, = <1—w(§um)>9 is the

orbital efficiency of interaction introduced before. Correspondingly, the balance

equation (3.11) can be rewritten as
|F =1y, (3.13)
where a new normalized current parameter, /, =/ 0, has been introduced. It can be

noticed that this equation is similar to the energy conservation law for the gyro-TWT
given by Eq. (1.9) of Chapter 1.

Equation (3.11) defines the starting value of the normalized beam current
through the corresponding value of the real part of the gain function. It is possible to
calculate @ in the framework of the small-signal theory in the following way.
Assuming that the normalized amplitude F' is small, one may find the zero-order
solutions for w and 9:

w,

0 =L % =%-4¢. (3.14)
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The first-order approach results in

4
Wy =2Im {F If (&) exp(=id))dg } (3.15)

G = jwa)(; Mg’ —sRe{F [ £&exp(= zs(oodé} (3.16)

Substituting these solutions into the expression for the linearized gain-function,
2z

. Cout
@D, = —%— j { j f (4)[ +13(1)jexp(il9(0))dé’}du90, (3.17)

and introducing f"({) = f({)exp(iAS{), one may obtain
o ¢ ¢ ¢
I SO dg [ Fi¢ndg-s[ £1¢hds e (3.18)
Sin 0 0 0
which does not contain the normalized amplitude F' and depends only on the axial
structure of the field and the detuning parameter. This expression can be simplified by

the use of the relations

)dg

Sou ¢ Sout I
= | f'(é){ | f'*(g”')dé'}dm | f’*(e"){ | f'(é')dg"'}dg
Sin 0 Cin 0

and df'/dA=il f'. Thus, the imaginary part of the susceptibility 7 introduced in

Eq. (3.10) can be given as

o (4 G ?
- (s+dA]if(§)dé“ . (3.19)

It follows from the Egs. (3.10)-(3.11) that 7" is related to the starting current /j as

ly=—, 3.20
073 (3.20)
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which represents the self-excitation condition for a given mode in gyrotron.

Oscillations start to grow in the region where 7, >1/ 7".

The axial structure of the field in open resonators is often approximated by the

Gaussian function f(¢) = exp{—(2¢ / z£—1)*}, for which [62]

;2":%ﬂ2 (%—s]exp{—%} (3.21)

with u being the normalized length of the resonator.
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3.3: Analysis and simulations

3.3.1: Starting current and the growth rate of oscillations

The beam current and the starting current vary during the voltage rise. The
evolution of the beam current and the electron orbital-to-axial velocity ratio with the
voltage can be determined with the use of either the adiabatic theory of magnetron-
type electron guns [72]-[74], or numerical codes (such as the widely used E-gun code
[75]). The starting current determination is somewhat more complicated. As shown in
the previous section, it is possible to derive an expression for the starting current in
the framework of the small-signal theory. However, these results are valid only in the
case of cold-cavity approximation and when there is no interaction between the
electrons and the RF field after the resonator output cross section. The cold-cavity
approximation works well when the diffractive O-factor for a resonator of length L,

QO =oL/v

gr’

is much larger than its minimal value, which can be estimated as

Qi min ~4r(L/A) [53]. The designs presently used in MW-class CW gyrotrons

often have a smooth transition between the cylindrical section, which plays the role of
the resonator, and the output uptaper (see Fig. 3.1). The diffractive Q-factor for such
resonators is close to its minimum value. Even more important is the fact that the
interaction between the electron beam and the outgoing radiation continues in the
output uptaper. Indeed, the angle of tapering is rather small (it typically ranges from
2" to 5), and the external magnetic field remains close to its maximum value even
after the cylindrical cavity region. Therefore, the interaction can continue in this

uptaper and it is very difficult (if not impossible) to precisely determine the cross
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section where this process stops. The analysis in Ref. 76 has shown that, depending
on the output cross section, i.e. the axial position at which we assume the interaction
stops, the starting current can vary significantly. Moreover, the starting currents of the
operating and parasitic modes may vary in such a way that the starting current of the
operating mode can be either higher or lower than the one of the parasitic mode
depending upon the choice of interaction length. Obviously, the linearized starting
current calculations are insufficient for determining which of the two neighboring
modes will be excited first during the voltage rise.

The growing rate of oscillations can be estimated from the field excitation
equation. Since the initial stage of the oscillation growth is considered, the nonlinear

terms in the equation (3.8) can be neglected. Then, it can be found that the field

1
exp(or) = exp {g [l—i - IJ t} : (3.22)

So, in addition to the estimate (Q/®) one gets a factor that characterizes the excess

intensity grows in time as

of the beam current over the starting current. Now, the time necessary for the mode to
grow from the noise level to the large-signal level should be estimated. The field
amplitude at this level becomes large enough to affect the starting current of the

second mode. The noise level is the level of spontaneous radiation providing the

white noise. As shown in Ref. 69, the amplitude of this noise is proportional to N\,
where N, is the number of electrons passing the resonator during the cavity decay

time. This number can be estimated as
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_ 0_L,0_I5(4H010
N, =nS,v, o ew GHz) (3.23)

For typical operating parameters such as I, <50A, Q=~10°, f>100 GHz, this

number is of the order of 10" and, therefore, the initial noise-level amplitude is of the
order of 10°. At the same time, numerous simulations show that large-signal effects
start to occur when the amplitude reaches the level of 0.1-1. Correspondingly, the

time necessary to reach saturation can be estimated to be

0 1
t,, ~(11.5-14 ‘.
war )~ -1 (3.24)

st
The cases of the instant turn-on and adiabatically slow voltage rise considered in the
Section 3.1 can now be redefined more accurately. Lets us assume that there are two

competing modes and that the self-excitation conditions are fulfilled for these modes

at the voltages V" and V?, respectively. The time interval between these voltages
for the case of a linear voltage rise, V(¢)=&t, can be estimated as
(At),_, = (VP =V ")/ & . Correspondingly, the “instant turn-on” will be the case when
the intensity of the first mode grows insignificantly during this time interval, i.e.

(At)l—Z < tsat . (325)
In this case, the self-excitation conditions for the second mode will not be affected by

the first one, which has a small amplitude. In the opposite case

(At)l—Z > Z‘sat (326)
the first mode has sufficient time to grow large enough to suppress the excitation of

the second mode. The coefficient £, which characterizes the voltage rise time, in

short pulses can be very different from that in long pulses, depending on the
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characteristics of the power supply employed. For example, it takes about 1 us to
reach the nominal voltage of about 80 kV in short-pulse gyrotron experiments at MIT

[77], whereas this time is larger than 100 us in long-pulse tests at CPIL.

3.3.2: Simulation results for the 140 GHz, 1 MW CPI gyrotron

First, our simulations were performed for the 140 GHz gyrotron developed at

CPI for electron-cyclotron resonance heating and current drive in the German

stellarator “Wendelstein 7-X” [78]. The circuit geometry and magnetic field profile
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Fig. 3.1. Circuit geometry (solid) and magnetic field profile
(dash) for the 140 GHz, 1 MW gyrotron developed at CPI.

for this tube are shown in Fig. 3.1. The operating mode in this tube is 7E»57 and the

operation is at the fundamental cyclotron resonance. The nominal accelerating
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voltage is 80 kV and the corresponding orbital-to-axial velocity ratio is about 1.4. The
beam current for this voltage is 40 A.

The preliminary analysis shows that the most important competing modes for
a given beam radius are 7E»7;7 and TEyy;. The operating mode and these two
competitors form a triplet of modes corotating with gyrating electrons, which can
interact parametrically. Indeed, the eigenvalues of these modes are the following:

Vy, =55.3046, v,,=56.5182 and v, ,=57.7281 and the corresponding

nonequidistance of cutoff frequencies is
~ -5
| 2V28,7 Va7 Va7 | /V28,7 ~6.55-107.

The cold-cavity O-factor for this gyrotron is about 1.2-10°, therefore, the conditions
(3.1)-(3.2) for synchronous interaction between these modes are fulfilled. However,
the frequency separation of these modes is about 2.2%, while the cyclotron resonant
band typically does not exceed 1%. Therefore, when one of such modes is excited by
the beam, its low- and high-frequency satellites can be present due to the parametric
interaction, but the amplitudes of these satellites should be small, because they do not
interact resonantly with the beam.

Also important is the triplet of counterrotating modes, having the radial index

p=8: TE 43, TE»s 3 and TE 56 3. The radial profile of the coupling impedance,

J}f’lis (Vm,pRO / Rw)

=7 2N 72 )
(Vm,p_m )J (Vm,p)

m

(3.27)

for the six modes under consideration in the vicinity of the beam position is shown in
Fig. 3.2. The “minus” and “plus” sign in the expression (3.27) stand for the corotating

and counterrotating modes, respectively. In Fig. 3.2, the corotating modes are shown
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Fig. 3.2. Coupling impedances of the corotating (red) and
counterrotating (green) modes in the vicinity of the beam position as
functions of the electron guiding center radius. The beam position is

indicated by the dashed line.
in red color, while the counterrotating ones are shown in green. The beam position is
indicated by the vertical dotted line and it corresponds to the beam radius employed
in the gyrotron. The position is intentionally made a little larger than the optimum
radius of the operating mode, which strongly reduces the coupling to the
counterrotating parasites.

14

Fig. 3.3 demonstrates the imaginary part of the susceptibility, 7" as a
function of the operating frequency and accelerating voltage for the parameters of the
device specified. Assuming that the axial field structure in the resonator is close to the
Gaussian one, the expression (3.21) was used in these calculations. One may see that

the modes with higher frequencies are excited first, whereas the low-frequency modes
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are excited at high voltage values at the end of the voltage rise. This is consistent with

the changes of the detuning parameter during such rise discussed in Section 3.1. So, a

100 F
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Fig. 3.3. Imaginary part of the beam susceptibility as a function

of the operating frequency for several values of the accelerating

voltage. The mode cutoff frequencies of the corotating and

counterrotating triplets are shown by the red and green vertical

lines, respectively.
possible scenario will be the following. The TE» 7 and TE s modes are excited first
in the regime of soft self-excitation and start growing competing between each other.
Then, as the voltage continues to grow, the mode, which wins the competition and
suppresses its rival, moves to the region of hard self-excitation, while the modes
TE»37 and TE s g become excited in the regime of soft self-excitation. At this point a

competition may occur between the operating mode and the counterrotating 7F.»sg.

Also, the operating mode may compete with the remaining high-frequency mode.
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Eventually, with further voltage increase, the TE»97 or TE 553 should get outside the
resonance band and stop interacting efficiently, while the 7FE»s7 or TE 553 get into the
region of hard self-excitation. The operating mode should stay in this region to
achieve the maximum efficiency point. At the end of the voltage rise, the low-
frequency modes (7E..43 and TE»77) may enter the game and bring to a competition,
but at that time the operating mode should be strong enough to suppress them.

To verify these simple arguments, simulations were carried out for the six
considered modes by the use of the self-consistent, multifrequency code MAGY [26].
Our experience with this code has shown that in order to achieve accurate results, the
time step should not exceed 0.1 ns, a small fraction of the cavity fill time

(Q/®~=8.57 ns). Thus, the time step chosen in the simulations was 0.05 ns. Then we

determined that it takes about 4 h of real-time to simulate 100 ns of mode evolution
when six modes are considered. Obviously, it is impossible to simulate the complete
100 ps of the voltage rise in long-pulse gyrotrons. Instead, we had to employ two
time-saving techniques. First, we began our simulations at about 50 kV (rather than
zero), choosing the initial voltage to be slightly below the voltage at which the
modes’ growth rates become positive. Second, we divided the voltage rise into 2 kV
steps, simulating the mode evolution at each voltage value for 100 ns (a time long
enough for these modes to reach steady-state in most cases), and using the final
values of the mode amplitudes and phases from the previous run as input data for the
subsequent run. This choice of voltage steps and duration of each run corresponds to
the voltage rise time coefficient & equal to 20 kV/us. This coefficient is, for

comparison, approximately 80- and 0.8 kV/us for MIT short-pulse experiments and
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CPI long-pulse experiments, respectively. Thus, our choice of steps and lengths of
runs should be adequate for modeling slower startup scenarios in comparison with the
MIT experiments. Although our simulations employ a series of instantaneous voltage
steps, such an approach is acceptable if these steps are small enough. The choice of 2
kV step allows accurate description of the mode excitation and competition during the
voltage rise; calculations with smaller steps yield the same results.

Results of the simulations are shown in Fig. 3.4. The figure shows the
radiated power in all six modes at the output cross section, where the simulations
were ended. This cross section is about 3 cm downstream from the end of the straight
section forming the resonator (z = 8.5 cm, see Fig. 3.1). As expected, the high
frequency TFEy97 and TE.ss modes are excited first at low voltages with the
counterrotating mode winning their subsequent competition. This mode remains
dominant up to voltages of about 64 kV, however its power level is on the order of a
few milliwatts only. Then, the central modes of both triplets are excited at 64 kV and
the operating mode starts to suppress the counterrotating rival when the voltage
reaches 70 kV. However, the oscillations of the low-frequency parasitic TE»77 begin
to grow at this voltage level. The three corotating modes coexist at comparable power
levels in the range of voltages between 72 and 76 kV. The counterrotating triplet is
not completely suppressed here, but the power of its modes is at least two orders of
magnitude lower than the power in the corotating triplet. Finally, the desired
operating mode starts to suppress all others at about 78 kV reaching the power level
of 1 MW at the final voltage. The power of each of the remaining five parasites does

not exceed 1 W at this point.
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Fig. 3.4. Startup scenario for the 140 GHz, CPI gyrotron. The
beam voltage varies in 2 kV steps. For each voltage value, the
simulations are conducted for 100 ns time intervals. The

voltage values are indicated in the figures.
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Although the operation of the desired mode at the final operating parameters
has been predicted, it should be noticed that the mode amplitudes did not reach the
steady state before the subsequent step at some voltage values. In addition, since
some steps demonstrate oscillations in multiple modes, there is a concern that these
simulations might indicate that the gyrotron will not reach the desirable steady state if
operated at lower voltages. Therefore, we checked some stages of our simulation
using longer computational runs. First, we checked the results for 60 kV, where the
steady state was not reached in 100 ns. The dominant 7E 55 mode (as well as other
modes) reached the steady-state during the run of 400 ns instead of 100 ns. Then we
conducted a longer simulation at 64 kV, where the 100-ns interval was clearly not
long enough for reaching the steady state. Results of a 700 ns run for this voltage are
shown in Fig. 3.5 (a). Its is interesting to notice that during the first 300 ns of this run,
when the power of two competing modes (7E»s7 and TE.»s3g) increases, other modes
exhibit steady-state operation at lower power levels. However, when the operating
mode starts to suppress its rival, the damping of the parasitic 7E ;s g mode brings to
the appearance of automodulation oscillations in all modes, including the operating
one. A further voltage increase causes only the growth of the operating mode power
up to 1 MW level, a shown in Fig. 3.5 (b), while the power of all parasites does not
exceed 1 mW. It should be noted that the highest power of the most dangerous
parasitic 7E »ss-mode did not exceed 1 W in the long runs, while some parasitic
modes reached the 100 kW level in the short ones (see Fig. 3.4 (b)). These effects
demonstrate that the predicted behavior is quite sensitive to the details of the startup

scenario if the voltage changes fast relative to the rise times of the modes considered.
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3.3.3: Simulation results for the 110 GHz, 1.5 MW CPI gyrotron

In an effort to produce a gyrotron design that is both more reliable and cost
effective for large fusion installation such as U.S. tokamak “Doublet-IIID” [79], a
new 110 GHz design has been developed at CPI that has a power-handling capability
of 1.5 MW. The circuit geometry and magnetic field profile for this gyrotron are
shown in Fig. 3.6. The operating mode is TE» 6, the operation is at the first cyclotron
harmonic. The accelerating voltage is 96 kV, the corresponding beam current is 40 A

and the orbital-to-axial velocity ratio is about 1.4.
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Fig. 3.6. Circuit geometry (solid) and magnetic field profile (dash)
for the 110 GHz, 1.5 MW gyrotron developed at CPI.

The most important competing modes are TE»; ¢ and TE»3 6, which form a triplet with

the operating mode. The eigenvalues of these modes can be found to be
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Vy e =44.403, v, =456243 and v, =46.8407, and the corresponding
nonequidistance of cutoff frequencies is
| 2:Vy6—Vars Ve | /V22,6 ~1.1:107,

which satisfies the conditions (3.1) and (3.2) for the O-factor being equal to 10°. The
counterrotating triplet is formed by the modes with radial index p = 7: TE 137, TE 197
and TE 7. The radial profile of the coupling impedance for the six modes is shown
in Fig. 3.7. As before, red and green colors in the figure correspond to corotating and

counterrotating modes, respectively. We were considering two beam positions in our

3
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Fig. 3.7. Coupling impedances of the corotating (red) and
counterrotating (green) modes in the vicinity of the beam positions

(dashed) as functions of the electron guiding center radius.

analysis, which are shown by dashed lines with the corresponding indices. The first

position was initially used by the CPI during the test simulations for this tube. As we
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will see, this position results in the excitation of the parasitic 7E.j9 7-mode instead of
the desired 7E»; ¢-mode.

The imaginary part of the susceptibility versus frequency is shown in Fig. 3.8.
It can be seen in this figure that the high-frequency TE»; ¢ and TE.» 7 modes should be
excited at about 56 kV during the voltage rise. Then, the central modes of both
triplets, TE» ¢ and TE.197, should start growing near 74 kV and, finally, the low-

frequency TE» ¢ and TE.;57 will enter the game when the voltage reaches 88-90 kV.
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Fig. 3.8. Preliminary calculations for the CPI 110 GHz gyrotron.
Imaginary part of the beam susceptibility as a function of the
operating frequency for several values of the accelerating voltage.
The mode cutoff frequencies of the corotating and counterrotating

triplets are shown by the red and green vertical lines, respectively.

Corresponding MAGY simulations for the first beam location are shown in

Fig. 3.9. As before, the length of each run corresponding to a fixed voltage value was
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100 ns and the voltage was increasing in 2 kV steps. The cross section, at which the
results were obtained, was located at z = 9.82 cm, i.e. at the end of the output section
(see Fig. 3.6). One may see that instead of only high-frequency modes, all three
modes of the corotating triplet exist above the noise level at initial voltages. Then,
when the voltage is about 54 kV, the high-frequency 7F»3¢ mode starts suppressing
the operating 7E» ¢ mode slightly. At the same time, at 56-58 kV, the central mode of
the counterrotating triplet, 7E.97, begins to grow replacing the operating one. It is
interesting to notice that magnitudes of the operating and the high-frequency
counterrotating TE 97 modes oscillate with the same frequency of about 40 MHz
when the voltages are between 58 and 62 kV. At 64 kV, the TE 197 and TE» ¢ start
growing very rapidly, however they differ in power by almost two orders. The growth
of these modes provokes a similar growth of the low-frequency TE; s mode. The
growth of the central modes stops at 70 kV where they experience a small drop, while
the TE»; ¢ continues to grow and drops only at 72 kV. At this voltage, the TE 197 and
TE 7 start rising again competing between each other. The counterrotating mode
wins this competition, while the operating mode gets suppressed and starts dropping
at 78 kV. All other modes also become suppressed and drop to the noise level. The
parasitic TE 197 reaches the point of its maximum efficiency at the final voltage.

As can be seen in the Fig. 3.9, the modes did not reach the steady state at most
of the voltage values. Therefore, the results obtained were checked in longer runs.
These are shown in Fig. 3.10. It can be noticed immediately that there is a significant
difference in mode behavior in both figures. At first, the results for initial voltage

values in Fig. 3.10 (a) are comparable with those in Fig 3.9 (a). Indeed, one may see
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Fig. 3.9. Startup scenario for the 110 GHz, CPI gyrotron. The
results are obtained for the first beam position shown in Fig. 3.7.
The beam voltage varies in 2 kV steps. For each voltage value, the
simulations are conducted for 100 ns. The voltage values are

indicated in the figures.
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that the TFE»3 6 and TE»; ¢ modes are growing slowly suppressing the operating 7E»; ¢,
while the TE.,p7 mode is oscillating with the frequency about 35-40 MHz. Such
oscillations can be noticed in both Fig. 3.9 (a) and Fig. 3.10 (a). However, starting
from the value of 58 kV, an absolutely different behavior can be seen in Fig. 3.10 (a).
The high-frequency TE 507 and TE»3 ¢ modes in this figure start growing relatively fast
and eventually reach significant power levels. One may notice that although the
cutoff frequency of the 7TE »y7-mode is lower than the one for the 7F»3 ¢-mode, it is
excited first possibly because the value of its coupling impedance is larger for the
given beam radius (see Fig. 3.7). Both TE 507 and TE»; 6 are growing slowly at 58 kV
(Fig. 3.10 (b)) and reach saturation in about 4.5 ps. As can be seen from Fig. 3.9 (a),
this growth was not predicted in the short runs. Also, it is interesting to notice that the
modes with lower frequencies in Figs. 3.10 (a) and 3.10 (b) do not interact and remain
stable during this rise. The two high-frequency modes start falling at 60 kV (Fig. 3.10
(b)), while the central TE.97-mode experiences a small rise. As can be seen in Figs.
3.10 (b), 3.10 (c) and 3.10 (d), the TE ;97 and TE»3; modes fall to the level of other
modes in about 9 ps. Then, at 62 kV, the TE 97-mode continues to rise while the
operating mode starts oscillating with a slowly increasing amplitude. It can be noticed
that for these central modes, the TE 197 is excited prior to the TE»; s-mode although it
couples to the beam slightly weaker. One may see in Figs. 3.10 (e) and (f) that the

TE_,,-mode reaches the saturation at this voltage value in about 7 us. The

oscillations of the operating mode die away at the end of this time interval. At
subsequent voltage steps, the parasitic TE.j97-mode continues to grow suppressing all

other modes and reaches its highest efficiency at 96 kV (Fig. 3.10 (g)). These results
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Fig. 3.10. Startup scenario for the 110 GHz, 1.5 MW CPI gyrotron.
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Fig. 3.10. (cont.)

are also in contradiction with the ones obtained by short runs, although the operation
of the TE ;9 7-mode at the final stage has been predicted for both simulations. A keen
mode competition can be observed between 68 kV and 78 kV in Fig. 3.9, which is
absent in Fig. 3.10. Also, the operating TE»; s-mode reaches almost 10 kW level at 78
kV in Fig. 3.9 (b), whereas it barely gets to 1 pW in Figs. 3.10 (f) and 3.10 (g). As in
the case of the 140 GHz gyrotron, we may conclude that the predicted mode behavior
is quite sensitive to the rate of the voltage rise.

Since the operation of the desired 7F»; ¢-mode was not achieved, we changed
the beam radius from 0.996 cm to 1.01 cm (see Fig. 3.7). Correspondingly, the ratio
of the coupling impedance of the operating mode to the one of the most dangerous

TE.19,7-mode changed from 1.066 to 1.211. The results of short runs for the second
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Fig. 3.11. Startup scenario for the 110 GHz, CPI gyrotron. The results
are obtained for the second beam position shown in Fig. 3.7. The
beam voltage varies in 2 kV steps. For each voltage value, the
simulations are conducted for 100 ns. The voltage values are

indicated in the figures.
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beam radius are shown in Fig. 3.11. In this figure, one may observe a severe mode
competition in the range of beam voltages from 66 kV to 78 kV, which is similar to
the one shown in Fig. 3.9. However, the operating TE», s-mode wins in this case and
successfully reaches its maximum efficiency at 96 kV. It is interesting to notice that
the parasitic TE.j97-mode starts growing before the operating one and has a higher
power at 64-68 kV but still loses its advantage at 70 kV. (It should be mentioned that
a smaller beam radius than the one shown in Fig. 3.2 was initially employed for the
140 GHz gyrotron. But it was found in a series of simulations [80] and experiments
that the parasitic 7E.»s g-mode was suppressing the desired TE,g7-mode under those
conditions).

As in the results for the first beam radius, the modes did not reach steady state
in the majority of runs and, therefore, the results should be verified in long
simulations. These simulations are currently in progress.

A few important conclusions can be made based on the results of our
simulations. First of all, they show that it is necessary to consider the time scale of the
voltage rise when attempting to predict the outcome of a startup scenario, because the
sequence of modes that can be excited, and their final power levels can be quite
different depending on whether the voltage rises slowly or rapidly relative to the rise
times of the modes themselves. This means, in particular, that the results of short-
pulse tests of gyrotrons operating in high-order modes may not be reproducible in
long-pulse tests of the same tubes. Second, these results show that to predict the final
power levels of various modes, it is necessary to track the behavior of the oscillator

starting from a voltage, at which the first mode can be excited from the noise level, up
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to the nominal voltage. Third, in the case of exciting many modes, it is often
necessary to consider the temporal mode evolution during the intervals much longer
than the saturation time, which was estimated above for a single-mode excitation. Our
results also show that a simultaneous treatment of two triplets was absolutely
necessary for determining details of mode excitation and interaction. Finally, it
should be emphasized that the results of our simulations agree qualitatively with

experiments conducted at CPI.
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3.4: Slow stage of startup scenarios

3.4.1: Slow processes in CW and long-pulse gyrotrons

Recently, attention has been paid [81]-[83] to the fact that in CW and long-
pulse gyrotrons some slow processes may take place, whose typical time is much
larger than the voltage rise time and whose presence can be important for stability of
gyrotron operation. In this section, we will discuss the following three effects:

1) ion neutralization of DC space charge fields;

2) frequency deviation caused by the temperature rise of cavity walls due to

the ohmic heating;

3) the decrease of the beam current due to cathode cooling.

Ion neutralization. Initially, an electron beam is injected into the interaction

space, which contains a small amount of the residual gas. There is a certain clearance
between the cavity wall and the electron beam, which is immersed at the position

close to the caustic radius, R, =m/v, , of the high-order TE,, ,-mode. This clearance

determines the depression of the beam potential with respect to the wall potential due
to the DC beam space charge forces. In gyrotrons, which operate in the range of
voltages between 80 kV and 100 kV, this voltage depression, oV, is typically of the
order of several kV. Collision of beam electrons with the molecules of residual gas
creates ions and electrons, with the latter ones quickly escaping to the cavity walls
because of the beam space charge force. Then, the ions compensate the DC space

charge of an electron beam and the beam potential reaches its nominal value
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determined by the applied voltage. Certainly, the time of this process depends on the
initial gas pressure, but typically it is on the order of hundred milliseconds [84] or
even seconds [82], [85].

Frequency deviation. The ohmic losses of microwave power in the cavity wall

cause a certain thermal expansion of the walls, which in its turn decreases the
frequency of radiation. Typically, the shift of the operating frequency due to this
effect is of the order of several hundred MHz and it usually occurs during the interval
of hundreds of milliseconds. This interval depends on the cavity wall thickness and
the cooling conditions. The frequency change is reversible if the operation is under
normal cooling conditions. In this case, the cavity shape remains unchanged after
long-pulse operation. The cavity geometry changes [86] in the case of excessive wall
loading (ohmic losses of the order of several kW/cm® or more) and this affects not
only the mode frequency, but also its quality factor Q [84].

Cathode cooling. In some tubes, the effect known as cathode cooling was

observed in the long-pulse operation. This effect means a slow decrease of the
electron current. For example, in the 170 GHz ITER gyrotron studied at JAERI [83],
the beam current decreased from 35 A at the beginning of the pulse to 25 A at the
end.

As mentioned in Section 3.1, the most efficient gyrotron operation is often
possible only in the regime of hard self-excitation, where the optimum beam current
is smaller than the starting current. As discussed elsewhere [87], another
characteristic current for such regime is the minimum current, at which the

oscillations can be stable. This current is smaller than the optimum one, but if the
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beam current experiences a large decrease and at some point becomes smaller than
this minimum current, then the oscillations of a given mode will loose the stability. In
this case, the oscillator operating at a high-order mode exhibits a hopping to a lower
frequency mode, which can be excited in the soft self-excitation regime in this case.

This mode hopping was observed in Ref. 83.

3.4.2: Analysis of the effects

Let us analyze the processes just discussed by the use of a simple general
theory based on the use of gyro-averaged equations of electron motion and cold-
cavity approximation for the resonator field presented in Section 3.2.

The effects of ion compensation and frequency shift affect, first of all, the
cyclotron detuning A= (2/;,)(1-s£, /), because the ion compensation changes
the electron energy, y, =1+eV, /mc’, and, hence, the cyclotron frequency £2,, while

the frequency deviation changes the operating frequency w. Corresponding changes

in the cyclotron resonance detuning can be given as

oA

2 Aa) Vcom _V epr
{ e ”’“’] (3.28)

- Bl o mc’/e+V,
Here Vj gepr and Vi, comp are the beam potentials before and after the ion compensation
of the voltage depression, respectively. As follows from this equation, the frequency
deviation, which is typically of the order of 0.1-0.2%, in the gyrotron driven by a 96
kV electron beam with the orbital-to-axial velocity ratio of 1.4 causes the reduction of

the detuning parameter by about 0.01-0.02. Also, the voltage drop in such beam, as
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show simulations for the 1.5 MW, 110 GHz CPI gyrotron, is about 4.6 kV. Then, Eq.
(3.28) predicts that the ion compensation of this voltage depression should increase
the detuning by 0.0785.

To illustrate the importance of these changes, the dependence of the orbital
efficiency upon the cyclotron detuning A is shown in Fig. 3.12 for several values of
the normalized interaction length # for a gyrotron with a Gaussian axial distribution
of the RF field. As follows from this figure, the increase in A by about 0.08 from its
optimal value does not lead to the loss of oscillation stability when the normalized

length u does not exceed 14 — corresponding maximum value of the orbital efficiency
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Fig. 3.12. Orbital efficiency as a function of the normalized

detuning parameter for several normalized interaction lengths.

is close to 65 %. However, in the regimes providing the maximum orbital efficiency —

over 80% for x4 = 18 — such shift in A is too large for sustaining stable oscillations.
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This conclusion about necessity to have the normalized length not exceeding 14
agrees with a similar conclusion (¢ < 13) made on the basis of the analysis of the
stability of single-mode oscillations in multimode gyrotrons [69].

In Fig. 3.13 the dependence of the orbital efficiency on the normalized beam
current parameter is given for several values of the normalized length x; the cyclotron

resonance detuning is chosen to maximize the efficiency at the peak point of 7, (/)
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Fig. 3.13. Orbital efficiency of interaction versus the normalized
current parameter for several values of the interaction length. The
cyclotron resonance detuning is chosen to maximize the
efficiency at the peak point. The optimum and break currents are

indicated in the figure for = 12.

for each u. (This plot is similar to those shown in Ref. 60.) This dependence again
shows that when the operating parameters approach their optimal values the

requirements for their deviation become more stringent. Indeed, considering the
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difference &/ between the current corresponding to maximum efficiency, foop, and
the break current, Iy, (see Fig. 3.13), below which the oscillations become unstable,

one may see that for the case of =18, the cathode cooling should not reduce the
beam current by more than 5%. However, in the case of ¢ =12 the allowed cathode

cooling is close to 17% of the nominal beam current.
Fig. 3.14 summarizes the results presented in Fig. 3.13. It shows the

dependence of the ratiodl/1,,, = (1,

0,0pt

—1op )/ 1y, on the normalized length p. It

opt
can be seen that in order to provide stable operation, the interaction length should be
equal to or less than 14. This conclusion agrees with the one based on the results

shown in Fig. 3.13.
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Fig. 3.14. The difference between the optimum and break
currents related to the optimum current as a function of

the normalized interaction length.
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For the sake of comparison, we have modeled the effect of cathode cooling
with MAGY for the 110 GHz, CPI gyrotron. The results are shown in Fig. 3.15. We
started the simulations from the optimum operating point corresponding to V, = 96

kV and I,=40 A (see Fig. 3.11). Then, by gradually reducing the beam current, the

40A [385A: 37TA (355A1 3A [325A1 31A (295A 28A [265A 265A 265A
: v
T ?FEJHJ FHIV%F
o' b _—an-w,? rxd T
ijemﬁ
— .“::;11,5

Mode power, W

10°f
; |

T 'la mm
T 'wL

e
2300 2400 2500 2600 2700 2800 2900 3000 3100 3700 3300 3400 3500
Time, ns

Fig. 3.15. The cathode cooling effect simulated by using MAGY
for the 110 GHz, CPI gyrotron.

point where the operating 7FE»; ¢-mode loses its stability was reached. As one may

see, it occurs at [, = 26.5A (i.e. the current decrease is about 34%), where the

operating mode is replaced by the low-frequency TFE>;¢-mode. Similar results were
obtained for the 170 GHz long-pulse gyrotron developed at JAERI [83]. The beam
current decreased from 35 A to 25 A (i.e. the decrease was about 29%) for that tube
and the operating 7FE3; s-mode was replaced by the TE3(s-mode. Since the normalized

length u is usually chosen to be about 13-14 for most gyrotrons, one may see that the
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permissible current decrease predicted by MAGY is much larger than the one shown
in Fig. 3.14 for the same interaction length. Such discrepancy may be attributed to the
fact that the axial field distribution in real tubes can differ from the Gaussian one

significantly, whereas we used the Gaussian profile in our simple theory.
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Summary

Gyro-TWTs. The results of both linear and nonlinear analyses of two-stage
gyro-TWTs with distributed losses have been presented. The effect of distributed
losses on the gain and bandwidth of the devices has been studied and the analysis of
starting conditions for excitation of the backward waves has been carried out. It has
been shown that the presence of losses in the interaction region of a gyro-TWT allows
eliminating of the parasitic BW oscillations in the device. Examples have been
considered which show that predictions of both linear and nonlinear theories may
agree well with the results of a thorough numerical analysis based on the use of
accurate codes.

The nonlinear theory of gyro-TWT with tapered parameters has been
developed. A particular configuration of a gyro-TWT has been analyzed within the
theory. The results of this analysis demonstrated that the bandwidth and gain-
bandwidth product of the device can be significantly enlarged by the use of
waveguide wall tapering only.

Gyroklystrons. Conventional and clustered-cavity GKLs with the same
number of cavities in both schemes have been compared. The gain studies showed
that for the case of limitations on the length of the device and the beam current, the
clustered-cavity scheme is preferable. Studies of the bandwidth properties showed
that the use of clustered cavity approach allows one to achieve much larger

bandwidths in comparison with the conventional scheme.
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Startup scenarios in high-power gyrotrons. The startup scenarios of two MW-

class gyrotrons developed at CPI have been simulated. The operation at the desired
mode and power level has been demonstrated for both devices. It has been shown that
it is necessary to consider the time scale of the voltage rise when attempting to predict
the outcome of the startup scenario. Also, we have demonstrated that a simultaneous
treatment of two triplets is absolutely necessary for determining details of mode
excitation and interaction. The results agree well with the experiments conducted at
CPLI.

Some slow processes in CW and long-pulse gyrotrons have been considered.
The effects of frequency deviation caused by cavity temperature expansion and
decrease of beam current due to cathode cooling have been analyzed by the use of a
simple nonlinear theory. It has been shown that these effects can be critical in the
devices with a long interaction region.

A detailed description of some results presented in this work can be found in
the following publications:

1) G.S. Nusinovich, O.V. Sinitsyn and A. Kesar, “Linear theory of gyro-traveling-
wave tubes with distributed losses,” Phys. Plasmas, vol. 8, pp. 3427-3433, 2001.

2) O.V. Sinitsyn, G.S. Nusinovich, K.T. Nguen, and V.L. Granatstein, “Nonlinear
theory of the gyro-TWT: Comparison of analytical method and numerical code
data for the NRL gyro-TWT,” IEEE Trans. Plasma. Sci., vol. 30, pp. 915-921,
2002,

3) O.V. Sinitsyn, G.S. Nusinovich and V.L. Granatstein, “Comparison of two
concepts: Multi-cavity versus clustered-cavity gyroklystrons,” Proc. 6™ Workshop
on High Energy Density and High Power RF., Berkeley Springs, WV, 2003, AIP
Conf. Proc. 691, pp. 378-385, 2003.

4) G. S. Nusinovich, O. V. Sinitsyn, M. Yeddulla, L. Velikovich, T. M. Antonsen, Jr.,
A. N. Vlasov, S. Cauffman, and K. Felch, “Effect of the radial thickness of
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electron beams on mode coupling and stability in gyrotrons,” Phys. Plasmas, vol.
10, pp. 3335-3343, 2003.

5) G.S. Nusinovich, O.V. Sinitsyn, J. Rodgers, T. M. Antonsen, Jr., V.L. Granatstein,
and N.C. Luhmann, Jr., “Comparison of multistage gyroamplifiers operating in the
frequency-multiplication regime with gyroamplifiers operating at a given
cyclotron harmonic,” IEEE Trans. Plasma. Sci., vol. 32, pp. 957-969, 2004.

6) G.S. Nusinovich, O.V. Sinitsyn, L. Velikovich, M. Yeddulla, T.M. Antonsen, Jr.,

A.N. Vlasov, S.R. Cauffman, and K. Felch, “Startup scenarios in high-power
gyrotrons,” IEEE Trans. Plasma. Sci., vol. 32, pp. 841-852, 2004.
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