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Speech has evolved as a primary form of communication between humans. This most 

used means of communication has been the subject of intense study for years, but 

there is still a lot that we do not know about it. It is an oft repeated fact, that even the 

performance of the best speech processing algorithms still lags far behind that of the 

average human, It seems inescapable that unless we know more about the way the 

brain performs this task, our machines can not go much further. This thesis focuses on 

the question of speech representation in the brain, both from a physiological and 

technological perspective. We explore the representation of speech through the 

encoding of its smallest elements – phonemic features - in the primary auditory 

cortex. We report on how population of neurons with diverse tuning properties 

respond discriminately to phonemes resulting in explicit encoding of their parameters.  

Next, we show that this sparse encoding of the phonemic features is a simple 

consequence of the linear spectro-temporal properties of the auditory cortical neurons 



  

and that a Spectro-Temporal receptive field model can predict similar patterns of 

activation. This is an important step toward the realization of systems that operate 

based on the same principles as the cortex. Using an inverse method of 

reconstruction, we shall also explore the extent to which phonemic features are 

preserved in the cortical representation of noisy speech. The results suggest that the 

cortical responses are more robust to noise and that the important features of 

phonemes are preserved in the cortical representation even in noise. Finally, we 

explain how a model of this cortical representation can be used for speech processing 

and enhancement applications to improve their robustness and performance.  
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Chapter 1: 

Introduction 
 

Speech has evolved as a primary form of communication between humans. This most 

used means of communication has been the subject of intense study for more than 150 

years, but there is still a lot that we do not know about it. It is for instance a mystery 

how a thought expressed in the form of an acoustic wave organized as a string of 

sound segments, is perceived as the same thought in a listener. Unless this process is 

well understood, it will be difficult to imagine man-made machines that can 

communicate with humans at a comparable level of performance. It is an oft repeated 

fact, that even the performance of the best speech processing algorithms still lags far 

behind that of the average human [1]. It seems inescapable that unless we know more 

about the way the brain performs this task, our machines can not go much further [2].  

Understanding speech processing in the brain can also benefit those with hearing 

impairments. For example, peripheral hearing impairment results in a distorted 

cortical representation of speech that reduces the reliability and efficacy of its 

reception. Knowing the normal representation, one can ask how we can preprocess 

the speech to correct the representation.  

This thesis focuses on the question of speech representation in the brain, both from a 

physiological and technological perspective. We start by presenting an overview of 

basic concepts used throughout the thesis. The first is an overview of the auditory 

pathway, starting from the external ear and ending in the primary auditory cortex 

where our neural recordings are performed. The second introductory topic is on the 
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characteristics of speech and its phonemic categorization based on their articulatory 

features.  In the second chapter, we explore the representation of speech through the 

encoding of its smallest elements – phonetic features - in the primary auditory cortex. 

We report on how a population of neurons with diverse tuning properties respond 

discriminately to phonemes resulting in an explicit encoding of their parameters.  

Next, we show that this sparse encoding of the phonetic features is a simple 

consequence of the linear spectro-temporal properties of the auditory cortical neurons 

and that a Spectro-Temporal receptive field model can predict similar patterns of 

activation. This is an important step toward realization of systems that operate based 

on the same principles as the cortex. In chapter 3, we look at the encoding from a 

different angle where we discuss an inverse model that maps the population of neural 

responses to the sound spectrogram. This inverse model allows us to investigate more 

readily the features of speech encoded by the neural population. Using this method, 

we shall also explore the extent to which phonemic features are preserved in the 

cortical representation of noisy speech. The results suggest that the cortical responses 

are more robust to noise and that the important features of phonemes are preserved in 

the cortical representation even in noise. In the last chapter, we explain how a model 

of this cortical representation can be used for speech processing and enhancement 

applications. We describe specifically two systems that use the cortical model for 1) 

speech discrimination and 2) noise suppression. The goal of the first task is to 

discriminate between speech and any other sound such as music, animal 

vocalizations, and various types of noise.  This algorithm has outperformed all other 

state-of-the-art systems, and has even been adapted for application in robotics (Honda 
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Research), tracking (Advance Acoustic Concepts, Inc) and security  (US 

government). In the second task, we describe a noise suppression algorithm that uses 

the diversity of tunings seen in the cortex to separate the noise from speech in a way 

that is not possible at the level of the spectrogram. By suppressing the noise in this 

cortical representation and reconstructing the sound, we can enhance the speech part.  

Finally, we shall discuss future efforts to further understand the analysis of speech in 

the primary auditory cortex. For example, our current linear models of cortical 

processing are incapable of explaining the robustness of speech representation in 

severe noisy environments, and hence it is essential to develop nonlinear models to 

handle these situations. It is also critical that training (and its role in enriching and 

stabilizing speech representations) be addressed and incorporated in future systems. 
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Chapter 2 

2.1 Review of auditory pathway 
 

The auditory system in humans and other vertebrates is responsible for hearing, 

enables them to perceive sound by detecting vibration in the air. These vibrations are 

detected by the ear and transduced into nerve impulses that are perceived by the 

brain. In this section, we review part of auditory system in mammals that starts from 

the external ear and ends in the primary auditory cortex.  

2.1.1 The ear 

The ear has three functional parts: external ear, middle ear and internal ear. To hear, 

our ears must capture the mechanical energy (sound), transmit it to the ear’s receptive 

organ, and transduce it into electrical signals suitable for analysis by the nervous 

system. These three tasks are the functions of the external, middle and the inner ear 

(Figure 1). The external ear, especially the prominent auricle, focuses sound into the 

external auditory meatus. Alternating increases and decreases in air pressure vibrate 

the tympanum. These vibrations are conveyed across the air-filled middle ear by three 

tiny, lined bones: the malleus, the incus, and the stapes. Vibration of the stapes 

stimulates the cochlea, the hearing organ of the inner ear.  
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Figure 1. The structure of the human ear (external, middle and inner ear)  (Adapted from 

Noback 1967). 

 

The cochlea (Figure 2) in the inner ear consists of three fluid-filled compartments 

throughout its entire length of 33 mm. A cross section of the cochlea shows the 

arrangement of the three ducts. The oval window, against which the stapes pushes in 

response to sound, communicates with the scala vestibuli. The scala tympani is closed 

at its base by the round window, a tick, flexible membrane. Between these two 

compartments lies the scala media, an endolymph-filled tube whose epithelial lining 

includes the 16,000 hair cells surrounding the basilar membrane. 
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Figure 2. The structure of the cochlea 

 

2.1.2 Functional anatomy of the Cochlea 

The basilar membrane (Figure 3) is a mechanical analyzer of sound frequency. The 

mechanical properties of the basilar membrane are key to the cochlea’s operation. In 

brief, the membrane is tapered and it is stiffer at one end than at the other. The 

dispersion of fluid waves causes sound input of a certain frequency to vibrate some 

locations of the membrane more than the other locations. As shown in experiments by 

Nobel Prize laureate George von Bekesy, high frequencies lead to maximum 

vibrations at the basal end of the cochlear coil (narrow, stiff membrane), and low 
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frequencies lead to maximum vibrations at the apical end of the cochlear coil (wide, 

more compliant membrane).  

 

Figure 3. Motion of the basilar membrane. 
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2.1.3 Cellular architecture of the organ of Corti 

The organ of Corti (Figure 4) is the organ in the inner ear of mammals that contains 

auditory sensory cells, or hair cells. The organ contains some 16,000 hair cells 

arrayed in four rows: a single row of inner hair cells and three of outer hair cells. The 

mechanically sensitive hair bundles of these receptor cells protrude into endolymph, 

the fluid contents of the scala media. The hair bundles of outer hair cells are attached 

at their tops to the lower surface of the tectorial membrane, a gelatinous shelf that 

extends the full length of the basilar membrane.  The basic architecture of the organ 

of Corti is similar for all mammals.  

 

Figure 4. Cellar structure of the organ of Corti 
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Hair cells in the cochlea are stimulated when the basilar membrane is driven up and 

down by differences in the fluid pressure between the scala vestibuli and scala 

tympani. Because this motion is accompanied by shearing motion between the 

tectorial membrane and organ of Corti, the hair bundles that link the two are 

deflected. This deflection initiates mechanoelectrical transduction of the stimulus. 

When the basilar membrane is driven upward, shear between the hair cells and the 

tectorial membrane deflects hair bundles in the excitatory direction, toward their tall 

edge. At the midpoint of an oscillation the hair bundles resume their resting position. 

When the basilar membrane moves downward, the hair bundles are driven in the 

inhibitory direction (Figure 5). 
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Figure 5. Stimulation of hair cells when the basilar membrane is driven up and down. 

 

In mammalian outer hair cells (Figure 6.), the receptor potential triggers active 

vibrations of the cell body. Outer hair cells evolved only in mammals. They have not 

improved hearing sensitivity, but they have extended the hearing range and frequency 

selectivity which is of particular benefit for humans, because it enables sophisticated 

speech and music.  
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Figure 6. Outer hair cells 

 

2.1.4 Structure of the inner hair cells 

The structure of the hair cells is shown in Figure 7. The cylindrical hair cell is joined 

to the adjacent supporting cells by a junctional complex around its apical perimeter. 

From the cells apical surface extends the hair bundle, the mechanically sensitive 

organelle. Afferent and efferent synapses occur upon the basolateral surface of the 

plasma membrane. The bundle comprises some 60 stereocilia, each a cylinder with a 

tapered base, arranged in stepped rows of varying length. Deflection of the hair 

bundle to the right, the positive stimulus direction, depolarizes the hair cell; 

movement in the opposite direction elicits a hyperpolarization.   
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Figure 7. Structure of a vertebrate hair cell. 

2.1.5 Hair cells transform mechanical energy into neural signals 

Deflection of the hair bundle initiates mechanoelectrical transduction. This involves a 

mechanism for gating of ion channels that is fundamentally different from those 

employed in such electrical signals as the action potential or postsynaptic potential. 

The opening and closing of transduction channels is regulated by the tension in the 

elastic structure within the hair bundle (Figure 8). The ion channels that participate in 

mechanoelectrical transduction in hair cells are gated by elastic structures in the hair 

bundle. The channel is assumed to be a membrane-spanning protein with a cation-

selective pore. When the hair bundle is at rest, each transduction channel clatters 

between closed and open states, spending most of its time shut. Displacement of the 

bundle in the positive direction increases the tension in the gating spring, here assume 

to be a tip link attached to each channel’s molecular gate. The enhanced tension 
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promotes channel opening and the influx of cations, thereby producing a depolarizing 

receptor potential.  

 
Figure 8. A model for the mechanism of the mechano-electrical transduction by hair cells. 

 

2.1.6 Innervation of the organ of Corti. 

 

The great majority of afferent axons end on inner hair cells, each of which constitutes 

the sole terminus for an average of 10 axons. A few afferent axons of small caliber 
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provide diffuse innervation to the outer hair cells. Efferent axons largely innervate 

outer hair cells, and do so directly. In contrast, efferent innervation of inner hair cells 

is sparse and is predominantly axoaxonic, at the ending of afferent nerve fibers 

(Figure 9).  

 
Figure 9. Innervation of the organ of Corti. 

 

2.1.7 The central auditory pathway 

The central auditory pathways extend from the cochlear nucleus to the auditory 

cortex. Postsynaptic neurons in the cochlear nucleus send their axons to other centers 

in the brain via three main pathways: the dorsal acoustic stria, the intermediate 

acoustic stria, and the trapezoid body. The first binaural interactions occur in the 

superior olivary nucleus, which receives input via the trapezoid body. In particular, 

the medial and lateral divisions of the superior olivary nucleus, along with axons from 

the cochlear nuclei, project to the inferior colliculus in the midbrain via the lateral 

lemniscus. Each lateral lemniscus contains axons relaying input from both ears. Cells 
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in the colliculus send their axons to the medial geniculate nucleus of the thalamus. 

The geniculate axons terminate in the primary auditory cortex, a part of the superior 

temporal gyrus (Figure 10). Information flows from cochlear hair cell to neurons 

whose cell bodies lie in the cochlear ganglion.  The pattern of afferent innervations in 

the human cochlea emphasizes the functional distinction between inner and outer hair 

cells. At least 90% of the cochlear ganglion cells terminate on inner hair cells. Each 

axon innervates only a single hair cell, but each inner hair cell directs its output to 

several nerve fibers, on average nearly 10. The output of each inner hair cell is 

sampled by many nerve fibers, which independently encode information about the 

frequency and intensity of sound. The tonotopic organization of the auditory neural 

pathways begins at the earliest possible site, immediately postsynaptic to inner hair 

cells.  

The acoustical sensitivity of axons in the cochlear nerve mirrors the innervation 

pattern of spiral ganglion cells. Each axon is most responsive to stimulation at a 

particular frequency of sound, its characteristic frequency. Stimuli of lower or higher 

frequency also evoke responses, but only when presented at greater intensities. The 

relation between sound-pressure level and firing rate in each fiber of the cochlear 

nerve is approximately linear. Difference in neuronal responsiveness originate at the 

synapses between inner hair cells and afferent nerve fibers. Nerve terminals on the 

surface of a hair cell nearest the axis of the cochlear spiral belong to the afferent 

neurons of lowest sensitivity and spontaneous activity. The multiple innervations of 

each inner hair cell are therefore not completely redundant. Instead, because of 

systematic differences in the rate of transmitter release or in postsynaptic 
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responsiveness (or both), the output from a given hair cell is directed into several 

parallel channels of differing sensitivity and dynamic range.  

Three important general principles emerge from connections in the brain stem. First, 

acoustical information is processed in parallel pathways, each of which is dedicated 

to the analysis of a particular feature of auditory information. Second, the various cell 

types of the cochlear nuclei project to specific relay nuclei, so that the separation of 

information streams commence within the cochlear nuclei. Finally, there is extensive 

interaction between auditory structures on the two sides of the brain stem. The medial 

superior olive performs a specific function in a readily intelligible way. The ability to 

localize sound sources along the azimuthal axis stems in part from the processing of 

information about auditory delays.  

The inferior colliculus (IC) is divisible into two major components. Because it 

contains many neurons sensitive to interaural timing or intensity differences, the IC is 

apparently involved in sound localization. The medial geniculate body (MGN) 

constitutes the thalamic relay of the auditory system. This nuclear complex comprises 

at least three subdivisions of which the principal nucleus is the best understood. Most 

neurons in MGN are sharply tuned to specific stimulus frequencies, and most are 

responsive to stimulation through either ear.  

The ascending auditory pathway terminates in the cerebral cortex, where several 

distinct auditory areas occur on the dorsal surface of the temporal lobe. The most 

prominent projection from the ventral nucleus of the MGN extends to the primary 

auditory cortex (A1).  
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Figure 10. The central auditory pathway: Cochlear nuclei, Superior olivary nuclei, lateral 

lemniscus, inferior coliculus, medial geniculate nuclei, and finally primary auditory cortex 



 

 18 

 

2.2 Phonemes as elements of language 

Phonemes are the fundamental distinctive units of a language. The phoneme is a 

speech sound class that differentiate words of a language. To emphasize the 

distinction between the concept of a phoneme and sounds that convey a phoneme, the 

speech scientists uses the term phone to mean a particular instantiation of a phoneme.  

Different languages contain different phoneme sets. Syllables contain one or more 

phonemes, while words are formed with one or more syllables. Words are 

concatenated to form phrases and sentences. One broad phoneme classification for 

English is in terms of vowels, consonants, diphthongs, fricatives and semi-vowels [3] 

[4]. 

The phoneme arises from a combination of vocal fold and vocal tract articulatory 

features. Articulatory features, corresponding to the first two descriptor above, 

include the vocal fold state (whether the vocal folds are vibrating or open); the tongue 

position and height (whether it is in the front, central, or back along the palate) and 

whether its constriction is partial or complete; and the velum state (whether a sound is 

nasal or not). A particular set of speech muscles is responsible for “activating” each 

feature with certain relative timing. In English, the combinations of features are such 

to give 40 phonemes.  
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Figure 11. Categorization of English phonemes 

2.2.1 Vowels 

The largest phoneme group is that of vowels. Vowels contain three subgroups: front, 

central and back which are defined by the tongue hump position [3]. Each vowel 

phoneme corresponds to a different vocal tract configuration. The vocal tract shape is 

a function of the tongue, the jaw, the lips and the velum which is closed in non-

nasalized vowels. The degree of constriction by the tongue is another shape 

determinant, which can be open (like in the vowel /a/) or closed (like in the vowel /i/). 

The particular shape of the vocal tract determines its resonance structure. The shape 

of the vocal tract in the production of different vowels is shown in Figure 12. 
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Figure 12. Production of vowels 

 

2.2.2 Fricatives 

Fricative consonants can be specified in two classes: voiced and unvoiced. In 

unvoiced fricatives, the vocal folds are relaxed and not vibrating. Noise is generated 

by turbulent airflow at the point of constriction along the oral tract. The location of 

the constriction by the tongue at the back, center, or front of the oral tract, as well as 

at the teeth or lips, influences which fricative sound is produced. The constriction 

separates the oral tract into front and back cavities with the sound radiated from the 

front cavity. Voiced fricatives have a similar noise source and system characteristics, 

the difference is that for voiced fricatives the vocal fold usually vibrate 

simultaneously with noise generation at the constriction.  
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Figure 13. Production of fricatives 

 

The spectral nature of the sound is determined by the location of the tongue 

constriction. For example, with an /S/, the frication occurs at the palate, and with an 

/f/ at the lips. The /S/ has a highpass spectrum corresponding to a short upper oral 

cavity. The location of the constriction in the vocal tract for different fricatives is 

shown in Figure 13. 

2.2.3 Plosives 

As with fricatives, plosives are both unvoiced and voiced. With unvoiced plosives, a 

“burst” is generated at the release of the buildup of pressure behind a total 

constriction in the oral tract. The constriction can happen at the front, center or back 

of the palate. The sequence of production of a plosive starts with a complete  
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Figure 14. Production of plosives 

 

closure of the oral tract and buildup of air pressure behind closure; followed by 

releases of air pressure and generation of turbulence over a very short-time duration 

(burst). With the voiced fricatives, there is a buildup of pressure behind an oral tract 

constriction, but the vocal folds can also vibrate. When this vibration occurs, although 

the oral tract is closed, we hear a low-frequency vibration due to its propagation 

through the walls of the throat. The voiced onset time is the difference between the 

time of the burst and the onset of voicing in the following vowel. The length of the 

voice onset time and the place of constriction vary with the plosive consonants. 

2.2.4 Nasals 

Nasals are the closest to the vowels [3]. In their production, the velum is lowered and 

the air flows mainly through the nostrils. The nasal consonants are distinguished by 

the place along the oral tract at which the tongue makes a constriction. The 

spectrogram of a nasal is dominated by the low resonance of the large volume of the 

nasal cavity. The closed oral cavity acts as a side branch with  its own resonance that 

changes with the place of constriction of the tongue. Theses resonances absorb 
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acoustic energy and thus are anti-resonances (zeros) of the vocal tract. Figure 15 

shows the shape of the oral tract for different nasal phonemes. 

 
Figure 15. Production of nasals 
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Chapter 3 

Phoneme presentation and classification in primary 

auditory cortex 
Humans reliably identify many phonemes and discriminate them categorically, 

despite considerable natural variability across speakers and distortions in noisy and 

reverberant environments that limit the performance of even the best speech 

recognition algorithms [1] [2]. Trained animals have also been shown to discriminate 

phoneme pairs categorically and to generalize to novel situations [5] [6] [7] [8] [9] 

[10] [11] [12]. The neurophysiological basis of these perceptual abilities in humans 

and animals remains uncertain. However, there is experimental evidence for cortical 

encoding of phonetic acoustic features regarded as critical for distinguishing classes 

of consonant-vowel (CV) syllables, such as voice-onset-time [13] [14] [15] [16]. Key 

questions include the nature and location of the neural representations of different 

phonemes and, more specifically, whether the neural responses of the primary 

auditory cortex (A1) are sufficiently rich to support the phonetic discriminations 

observed in humans and animals. 

The general issue of the neural representation of complex patterns is common to all 

neuroscience and has been investigated in many sensory modalities. In the visual 

system, recent studies have shown that responses of approximately 100 cells in the 

inferior temporal cortex are sufficient to account for the robust identification and 

categorization of several object categories [17]. In the auditory system, a recent study 

has shown that neurometric functions derived from single unit recordings in the ferret 

primary auditory cortex closely parallel human psychometric functions for complex 

sound discrimination [18]. An important aspect of our approach in the present study is 
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the inclusion of temporal features of the response in the analysis. This is crucial 

because phonemes are spectro-temporal patterns, and hence analyzing their neural 

representation at a single cell or ensemble level requires consideration of the 

interactions between the stimuli and the intrinsic dynamics of individual neurons. 

In the present study, we recorded responses of A1 neurons to a large number of 

American English phonemes in a variety of phonemic contexts and derived from 

many speakers. Our results demonstrate that (I) time-varying responses from a 

relatively small population of primary auditory cortical neurons (< 100) can account 

for distinctive aspects of phoneme identification observed in humans [19], and that 

(II) well known acoustic features of phonemes are indeed explicitly encoded in the 

population responses in A1 [20] [21].   

The analysis of the categorical representation of phonemes across a neuronal 

population presented in this paper remains largely model-independent in that only 

relatively raw response measures (e.g., peri-stimulus time histograms, PSTHs) are 

used in the computations and illustrations. The one key departure from this rule is 

necessitated by the desire to organize the display of the population responses 

according to their best frequency, spectral scale, and temporal dynamics. These 

response properties are quantified using the measured spectro-temporal receptive 

field (STRF) model of the neurons [22] [23]. 

3.1 Experimental Procedures 

The protocol for all surgical and experimental procedures was approved by the 

IACUC at the University of Maryland and consistent with NIH Guidelines 
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3.1.1 Surgery 

Four young adult, female ferrets were used in the neurophysiological recordings 

reported here. To secure stability of the recordings, a stainless steel head post was 

surgically implanted on the skull. During implant surgery, the ferrets were 

anesthetized with Nembutal (40 mg/kg) and Halothane (1-2%). Using sterile 

procedures, the skull was exposed and a headpost was mounted using bone cement, 

leaving clear access to primary auditory cortex in both hemispheres. Antibiotics and 

analgesics were administered as needed. 

3.1.2 Neurophysiological recording 

Experiments were conducted with awake head-restrained ferrets. The animals were 

habituated to this setup over a period of several weeks, and usually remained relaxed 

and relatively motionless throughout recording sessions that may last 2-4 hrs. 

Recordings were conducted in a double-walled acoustic chamber. Small craniotomies 

(~1-2 mm in diameter) were made over primary auditory cortex before recording 

sessions. Physiological recordings were made using tungsten microelectrodes (4-8 

MΩ, FHC). Electrical signals were amplified and stored using an integrated data 

acquisition system (Alpha Omega). Spike sorting of the raw neural traces was done 

off-line using a custom PCA clustering algorithm. Our requirements for single unit 

isolation of stable waveforms included (1) that the waveform and spike rate remained 

stable throughout the recording, and (2) that the inter-spike interval for each neuron 

was distributed exponentially with a minimum latency of 1 ms. 

3.1.3 Speech Stimuli and data analysis 

Stimuli were phonetically transcribed continuous speech from the TIMIT database 

[24]. Thirty different sentences (3 seconds, 16 KHz sampling) spoken by different 
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speakers (15 male and 15 female) were used to sample a variety of speakers and 

contexts. Each sentence was presented five times during recordings. For a subset of 

neurons, 90 sentences spoken by 45 male and 45 female speakers were used. 

3.1.4 Mean phoneme representation 

The TIMIT phonetic transcriptions were used to align the responses of each neuron to 

all the instances of a given phoneme and then averaged to compute the peri-stimulus 

time histogram (PSTH) response to that phoneme, as illustrated in Figure 16 (10 ms 

time bins). We did not attempt to compensate for the relatively short latency of neural 

responses in the ferret (15-20 ms). We also computed the auditory spectrogram of 

each phoneme using the following procedure: Let S(t,f) be the auditory spectrogram 

of the speech stimulus computed using a model of cochlear frequency analysis [25], 

and let r(t) be the corresponding neural response. For phoneme k, which occurs at 

times
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The total number of occurrences of each phoneme, n, ranged from 7 (e.g. /g/) to 72 

(e.g., /Ǹ/) in the chosen sentences.  

3.1.5 Measurement of neuronal tuning properties 

We characterized each neuron by its spectro-temporal receptive field (STRF), 

estimated by normalized reverse correlation of the neuron’s response to the auditory 
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spectrogram of the speech stimulus [22]. Although methods such as normalized 

reverse correlation can produce unbiased STRF estimates in theory, practical 

implementation require some form of regularization to prevent overfitting to noise 

along the low-variance dimensions. This in effect imposes a smoothness constraint on 

the STRF. The regression parameters were adjusted using a jackknife validation set to 

maximize the correlation between actual and predicted responses [26]. Figure 16B 

illustrates the STRF of one such neuron. We measured several tuning properties from 

each STRF: Best frequency (BF) was defined as the largest positive peak value of the 

STRF along its frequency dimension. The STRF scale and rate were estimated from 

the 2-D modulation transfer function (MTF) (Figure 16B). The MTF is the 2-D 

Fourier transform of the STRF that is then collapsed along its temporal or spectral 

dimensions (known also as the rate and scale) to obtain the purely spectral (sMTF) or 

temporal (tMTF) modulation transfer functions (Figure 16B). The best scale (related 

to the inverse bandwidth) of an STRF is defined as the centroid of the sMTF (in 

"cycles/octave"), whereas "speed" or best rate of the STRF is defined as the centroid 

of the tMTF (in Hz), as illustrated in Figure 16B. To display the neural population 

responses for each phoneme, we generated two-dimensional "topographic" plots in 

which each row contained the average PSTH response of one neuron, sorted 

according to neural BF, scale or rate. The distribution of these three tuning properties 

in our sample was fairly broad, covering most BFs, best scales, and best rates (Figure 

17). However, because the parameters were not distributed exactly uniformly, we 

interpolated the vertical axis of the smoothed PSTH (2-D disk filter: 60ms * 6 

neurons) to have uniform spacing and then smoothed the PSTH display with the same 
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2-D filter. We characterized each phoneme according to the locus of maximal 

response within the neural population along the BF, scale and rate dimensions. For 

example, to find the locus along the BF dimension, we determined the position of the 

maximum PSTH responses over time for neurons ordered along the BF axis. The 

same procedure was repeated for PSTHs ordered along the scale and rate axes to 

obtain the three coordinates of the locus.  

3.1.6 Phoneme classification and confusions 

To examine the separation or overlap among the representations of different 

phonemes, we trained linear binary classifiers to discriminate each phoneme from all 

the others based on the neuronal population response. Formally, the neurons project 

the phoneme acoustic signals into a high dimensional space (i.e., the total number of 

neurons X the number of samples in each PSTH = 90 X 22). Because of the different 

selectivity of each neuron, different phonemes fall in specific sub-regions of this 

space.  

A Linear Support Vector Machine (LSVM [27]) was trained to find the optimal 

hyperplanes for each phoneme, such that the hyperplane has the maximum distance 

(or "margin") to the closest data points (or "support vectors") in the two classes it 

separates. Using linear hyperplanes is intuitively appealing because the classifier's 

output is a weighted sum of the neural responses that can be interpreted easily. The 

output of each classifier is a scalar value indicating the distance of the data point to 

the hyperplane. Novel sounds are identified by choosing the classifier that produces 

the maximum distance to the boundary. We should emphasize that the order of the 

neural responses is not important in any way for classification. 
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3.1.7 Statistical analysis 

The significance of correlations between the pattern of phoneme confusion predicted 

by the neural classifier and confusion observed for human perception [28] was 

ascertained by a randomized t-test. Random correlations were computed between 

neural and perceptual confusion matrices after randomly shuffling phoneme identity 

(20,000 shuffles). The significance of the correlation between the actual confusion 

matrices was taken as the probability that such a correlation could be produced by the 

randomly shuffled matrices. 

3.1.8 Measuring the acoustic distance among phonemes 

The average auditory spectrogram of each phoneme was computed as described 

above [25]. The acoustic similarity between any pair of phonemes was then defined 

as the Euclidean distance between their average spectrograms. 
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Figure 16. Neuronal responses to phoneme in continuous speech. (A) The 

spectrograms of all /ǫ/ vowel exemplars are extracted and averaged to obtain one 

grand average auditory spectrogram (bottom left). Red areas indicate regions of 

higher than average energy and blue regions indicate weaker than average energy. 

The corresponding PSTH response to /ǫ/ is computed by averaging neural spike rates 

over the same time windows (bottom right).  (B) The spectro-temporal receptive field 

(STRF) of a neuron as measured by normalized reverse correlation. Red areas 

indicate stimulus frequencies and time lags correlated with an increased response, 

and blue areas indicate stimulus features correlated with a decreased response. The 

neuron's BF is defined to be the excitatory peak of the STRF (red arrow). The 
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modulation transfer function (MTF) is computed by taking the absolute value of the 

2-D Fourier transform of the STRF. We then collapse along the temporal or spectral 

dimensions (known also as the rate and scale) to obtain the purely spectral (sMTF) 

or temporal (tMTF) modulation transfer functions. The best scale (proportional to the 

inverse of bandwidth) of an STRF is defined as the centroid of the sMTF (in 

"cycles/octave"), whereas "speed" or best rate of the STRF is defined as the centroid 

of the tMTF (in Hz). The choice of centroid for best-scale parameter results in a 

compressed range but it does not affect the ordering of neurons along this dimension. 

(C) Average auditory spectra of three phonemes (/Ǥ/, /ȓ/, /m/). Below each 

spectrogram is the PSTH response of 5 example neurons (labeled N1-N5).  (D) The 

STRFs of these neurons indicate a diversity of spectro-temporal tuning properties. 

 
Figure 17. Joint distribution of neural parameters. Joint distributions of 

best frequency, best rate (A), best frequency, best scale (B) and best rate, best 

scale (C) of 90 neurons 

3.2 Results 

3.2.1 Diversity of single-unit responses to phonemes  

 

Physiological responses were recorded from 90 single units in A1 of 4 ferrets 

(Mustela putorius) during the monaural presentation of continuous speech stimuli 

(see Figure 16A). The recorded neurons were broadly distributed in their spectral 

tuning and dynamic response properties as shown by population range of their best 

frequency (BF), best scale, and best rate (documented in the scatter plots in Figure 
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17). These neural tuning properties are based on measurements of the spectro-

temporal receptive fields of the neurons (STRFs) as depicted in Figure 16B and 

described in detail earlier in Section II. Figure 16C illustrates the PSTH responses of 

5 single units (N1-N5) to 3 different phonemes (vowel /Ǥ/, fricative /ȓ/ and nasal /m/) 

whose average auditory spectra are depicted in Figure 16C. The spectro-temporal 

receptive fields (STRFs) of the 5 selected neurons are shown in Figure 16D.   

Each phoneme activates these 5 neurons differentially, depending on the match 

between the neuron’s STRF and the spectro-temporal structure of the stimulus. For 

instance, the vowel /Ǥ/ drives N1 very effectively because of the low BF of the 

neuron (~ 700 Hz). By contrast, the fricative /ȓ/ maximally activates N4 and N5, 

which have the highest BF’s (~3 KHz and ~7 KHz, respectively). Finally, the 

response pattern of the nasal /m/ is unique in that it causes a depression of responses 

in N2 and N3, reflecting the energy dip midway through the phoneme over all 

frequencies, but especially in the middle frequencies (~0.5 - 4 KHz) [20][21]. In this 

manner, each phoneme evokes a unique response pattern across the population of A1 

cells that differs from the evoked responses elicited by other phonemes. 

3.2.2 Population responses to phoneme classes 

To appreciate the unique response patterns evoked by different phonemes and, in 

particular, in order to highlight the acoustic features enhanced in the neural 

representation, it is best to view the ordered activity of the entire population 

simultaneously. This ordering depends entirely on the neuronal tuning properties to 

be emphasized. For instance, inspired by the tonotopic organization of the auditory 
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pathway, the most common way to organize neural PSTHs has been by frequency 

according to the BF of the units [29] [30]. However, unlike the receptive fields of 

fibers in the auditory nerve, A1 neurons exhibit systematic variations of tuning along 

a myriad of feature axes, including bandwidth, asymmetry, and temporal dynamics 

[16] [31] [32]. 

Here we consider the ordered representation of phoneme responses along BF and two 

other dimensions derived from the STRF: best scale and best rate (see Section on 

Experimental Procedures above and Figure 16B). Best scale is inversely proportional 

to bandwidth and indicates how wide a range of sound frequencies are integrated into 

the neural response. Best rate indicates the dynamic agility of a neuron’s responses 

and hence reflects the temporal modulation of the stimulus spectrum that best drives 

the neuron. The coordinates of each cell along these three dimensions can be 

estimated using a variety of techniques and stimuli. The most common techniques 

include tuning curves or iso-response functions measured from tone [32] and STRFs 

measured from ripples [33]. We use the speech-based STRFs to estimate these 

parameters for each cell [22]. 
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Figure 18: Population response to vowels (A) I. Average auditory 

spectrogram of 12 vowels organized approximately according to their open-

closed and front-back articulatory features. The arrows at top indicate the 

degree of these features, with arrow “tips” representing minima (mid or 

central) and midpoints representing maxima. For example /Ȝ/ is maximally 

open, but is neutral (central) on the front/back axis. Note also that the axes are 
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presumed to loop around the page from right to left (dashed ends joining) 

creating a circular representation (II, III, IV): Average PSTH responses of 90 

neurons to each vowel. Within each heat map, each row indicates the average 

response of a single neuron to the corresponding phoneme. Red regions 

indicate strong responses, and blue regions indicate weak responses. The 

average PSTH responses are sorted by neurons’ best frequency (II), best scale 

(III) and best rate (IV) to emphasize the role of that parameter in the encoding 

of each vowel. (Details of the analysis and generation of these plots are given 

in Section II).  (B) I. Each vowel is plotted at the centroid frequency, rate and 

scale of its average neuronal population response. The centroid values are 

calculated from the average PSTH responses sorted by the corresponding 

parameter (2A). Open vowels are shown in red, Closed vowels in blue, Front 

vowels with hollow font, and Back vowels with solid. To visualize the 

contribution of each tuning property to vowel discrimination, the location of 

each vowel is also shown collapsed in 2-D plots of (II) rate-scale, (III) rate-

frequency and (IV) scale-frequency. All other details of the analysis and 

generation of these plots are given in Experimental Procedures. 

 

3.2.3 Encoding of vowels 

Population responses to 12 American-English vowels are summarized in Figure 18. 

Panels in the top row (Figure 18A-I) display the average auditory spectrogram of 

each vowel computed from all of its samples encountered in the speech database (see 

Section II for details). The vowels are organized according to their articulatory 

configurations along the Open/Closed and Front/Back axes [3], as illustrated at the 

top of Figure 18 : /o/, /Ǥ/, /ǡ/, /Ȝ/, /æ/, /ǫ/, /e/, /ə/, /i/, /Ǻ/, /Ǹ/, /ș/. The three middle 

vowels (/ǫ/, /e/, /ə/) are tightly clustered near the midpoint of the Front/Back and 

Open/Closed axes, and are difficult to order accurately along this 1-dimensional 

representation of the vowels. 
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The averaged spectra (top row) reveal that Mid/Back vowels (/o/, /Ǥ/, /ǡ/, and /Ȝ/) 

have relatively concentrated activity at low to medium frequencies (~0.4 - 2 KHz), 

whereas Front vowels sometimes have two peaks spaced over a larger frequency 

range (~0.3 and ~4 KHz). This is consistent with the known distribution of the three 

formants (F1, F2, and F3) in these vowels [3], namely, that they have F1 and F2 that 

are closely spaced, creating compact single broad peak spectra at intermediate 

frequencies (reminiscent of the center-of-gravity hypothesis of Chistovich and 

Lublinskaya [34]).  As the vowels become more “Front”ed, the single peak broadens 

and splits (/æ/ to /ə/). Continuing this trend, Front/Closed vowels (/i/, /Ǻ/, /Ǹ/, /ș/) 

exhibit relatively narrow and well separated formant peaks with F1 at low and F2 at 

high frequencies.  

These averaged phoneme spectra are broadly reflected in the response distributions 

ordered along the BF axis; neurons with BFs matching regions of high energy in a 

phoneme spectrum tend to give strong responses to that phoneme (Figure 18A-II). 

However, notable differences of unknown significance exist such as the relative 

weakness of the low BF peaks in /e/ and /ə/, and of the high BF peak in /i/). More 

striking, however, are the response distributions along the best scale axis, which 

roughly indicates the inverse of the vowels’ spectral bandwidths (Figure 18A-III). 

Here, consistent with the bandwidths of the spectral peaks discussed earlier, 

Central/Open vowels tend to evoke maximal responses in broadly tuned cells 

commensurate with their broad spectra (low scales < 1 Cyc/Oct) while Closed vowels 

evoke maximal responses in narrowly tuned cells (scales > 1 Cyc/Oct), as indicated 
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by the blue and red boxes in Figure 18A-III, respectively
1
. Response distributions in 

the best rate panels (Figure 18A-IV) reveal a trend in the dynamics of the vowels as 

one moves along the Front/Back axis. Specifically, Front vowels (/ə/, /i/, /Ǻ/, /Ǹ/) 

evoke relatively stronger responses in the slower cells (with best rates <~ 12 Hz), as 

compared to the more Back vowels (/ș/, /o/, /Ǥ/) as highlighted by the green boxes in 

Figure 18A-IV. The remaining more Central vowels (/ǡ/, /Ȝ/, /æ/, /ǫ/, /e/) exhibit all 

dynamics. This response pattern may reflect the longer durations required to complete 

the articulatory excursions toward or away from Closed vowels towards the front of 

the vocal tract.  

Figure 18B provides a compact summary of the population response to vowels. Each 

vowel is placed at the locus of maximum response in the neural population along the 

BF, best scale, and best rate axes. To highlight more clearly which of the three 

features best segregates them, the 3-D display is projected onto each of the three 

marginal planes (Figure 18B-II and Figure 18B-IV)). It is readily evident in these 

displays that the Open and Closed vowels separate along the scale axis above and 

below 1 Cyc/Oct (horizontal dashed lines in Figure 18B-II and Figure 18B-IV)). 

They are also distinguished by BF, with the Open vowels clustering in the range 1.0 – 

4.5 KHz (vertical dashed lines in Figure 18B-III). Finally, the best rate axis 

segregates the Front/Back vowels (as discussed earlier), with Central and Back 

vowels located at high rates (> 12 Hz), and Front vowels below it. It remains to be 

                                                 
1
 We emphasize that this response pattern is unlikely to be due to a non-uniform sampling of 

the scale and frequency variables, since no such bias in the joint distribution of the scale-

frequency is evident in Figure 17.  Furthermore, note that high scale neurons can be driven 

well by spectra with low frequencies as in phoneme /o/. The opposite is true for vowel /e/ 
where low scale units are driven well by high frequency energy. 
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confirmed, however, whether these locations which reflect the vowels’ overall 

spectro-temporal similarity, can explain the perceptual confusion among them [35].   

3.2.4 Encoding of consonants 

Population responses to 15 consonants are shown in Figure 19 in the same format 

already described for vowels. Three properties are commonly used to organize and 

classify consonants: place of articulation, manner of articulation, and voicing [3] [21]. 

Here we examined how these three properties are encoded in the responses of the 

neuron population. 

The distributions of the responses to the consonants sorted along the BF axis (Figure 

19A-II) approximates the features of their averaged spectra (Figure 19A-I), which in 

turn are known to be closely related to place of articulation cues. For instance, the 

difference between the more forward places of constriction for /s/ compared to /ȓ/ is 

mirrored by the downward shift of the highpass spectral edge. Similarly the high-

frequency noise burst at the onset of the forwardly-constricted /t/ contrasts with the 

lower-frequency distribution of the other plosives (/p/, and /k/).  However, there are 

also some notable differences in detail between the two sets of plots. There is 

generally a slight delay of about 20 milliseconds in the neural responses relative to 

the spectrograms (presumably due to the latency of cortical responses). In addition, 

however, there are substantial differences between the responses and spectrograms in 

certain phonemes. For example, high BF responses to /f/ in Figure 19A-II are strong 

despite their relative weakness in the spectrograms. Similarly, the low BF responses 

to /v/ are not consistent with the spectrogram. In other consonants, there are 

differences in the "timing" of certain frequency regions such as the rapid onset of 
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high frequencies in the spectrogram of /t/ relative to its more delayed response, or in 

the continuity of the spectral regions in /ȓ/, /d/ and /ŋ/. The origin of all these 

differences is unclear and may reflect the nonlinearity of neural responses or our 

limited sampling of the neural population (90 neurons). 

Response distributions along the best scale and best rate axes (Figure 19A-III and 

IV) capture well the essential manner of articulation cues that supply the information 

necessary to discriminate plosives, fricatives, and nasals in continuous speech.  For 

example, the broad distinction between “plosives” and “continuants” (e.g. /p/, /t/, /k/, 

/b/, /d/, /g/ versus /s/, /ȓ/, /z/, /n/, /m/, /ŋ/) is evident in the distribution of responses 

along the scale and rate axes (Figure 19A-III and IV). Thus, plosives with their 

sudden and spectrally broad onsets display relatively strong activation in broadly 

tuned (low scales < 1.1 cyc/oct) and fast (rates > 12 Hz) cells (regions outlined in red 

in Figure 19A-III and IV) compared to the more suppressed responses to longer 

duration unvoiced fricatives and nasals (outlined in blue in Figure 19A-IV). Note 

also the brief suppressed response preceding the onset of all plosives due to the 

(silent) voice-onset-time (VOT) in all panels within the red box (Figure 19A-III and 

IV).  

Finally, the third cue of voicing is associated with the harmonic structure of voiced 

spectra near the low to mid-frequency range (0.2 to 1 KHz), and to a lesser extent the 

weak energy at low BFs near the fundamental of the voicing. Only this latter cue 

seems to distinguish consistently the voiced (/b/, /d/, /g/, /v/, /ð/, /z/, /m/, /n/, /ŋ/) from 

unvoiced (/p/, /t/, /k/, /f/, /s/, /ȓ/) consonants in our data as indicated by the green 
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outlined region of Figure 19A-II. However, such a strong low BF response as an 

indicator of “voicing” is missing in many of the vowel responses discussed earlier 

(e.g., the Open/Back vowels in Figure 19A-II). Instead, its presence seems to 

correlate with the low F1 of the Closed vowels there. Therefore, our data suggest that 

the low frequency voicing is reliably represented only in consonant responses, and 

perhaps in vowels where the F1 is low enough to amplify it [36]; however, there may 

well be a different and separate representation of voicing in the auditory cortex, for 

example in terms of the pitch it evokes, or the harmonicity of its spectral components 

[37]. 

Figure 19B illustrates the locus of the population response to each consonant in a plot 

of best frequency, best rate and best scale similar to that used with vowels earlier. The 

lower panels of Figure 19B are projections of the 3-D plot onto its three marginal 

planes. Members of the three groups of consonants - plosives (red), fricatives (blue), 

and nasals (green) - are located roughly close together in this parameter space. For 

instance plosives tend to drive broadly tuned (scale < 0.9 Cyc/Oct) and fast (rates > 

12 Hz) cells (Figure 19B-II). Rate is also a distinguishing feature between plosives 

on the one hand, and nasals and (most) fricatives on the other (above and below 12 

Hz, respectively). Similarly, phoneme groups roughly segregate along the BF axis, 

with unvoiced fricatives occupying the highest frequencies (> 4KHz), unvoiced 

plosives falling between 2-4 KHz, and other voiced phonemes falling below 2 KHz 

(Figure 19B-III and IV). As with vowels, this plot of the neural loci of consonants 

reveals the relative distances among them and perhaps explains the pattern of 

perceptual confusion observed among them, as we shall elaborate next. 
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Figure 19. Population response to consonants (A) I.  Average spectrogram 

of 15 consonants phonemes grouped as 6 plosives, 6 fricatives and 3 nasals. 

Each of the plosive and fricative groups contains 3 voiced and 3 unvoiced 

phonemes (see arrows at top). (II, III, IV) Average PSTH responses of the 
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neural population to each consonant, plotted as in Figure 18A. The average 

PSTH responses are sorted by neurons’ best frequency (II), best scale (II) and 

best rate (IV) to emphasize the role of that parameter in the encoding of 

consonants. (All other details of the analysis and generation of these plots are 

given in Section II). (B) Each consonant is placed at the centroid frequency, 

rate and scale of its neuronal population response, measured from the 

corresponding PSTH responses (Figure 19A). Plosive phonemes are plotted 

in red, fricatives in blue and nasals in green. The locus of each consonant is 

also shown collapsed in 2-D plots of (II) rate-scale, (III) rate-frequency and 

(IV) scale-frequency. (All other details of the analysis and generation of these 

plots are given in Section II). 

 

3.2.5 Phoneme confusions 

Average phoneme responses give useful insights into the mean representation of each 

phoneme, but they fail to indicate how well the neural population can discriminate 

phonemes, given the natural acoustic variability among samples of the same phoneme 

during continuous speech. To delineate perceptual boundaries implied by the 

responses to the phonemes, we trained a linear classifier for each phoneme to separate 

it from all others, based on the PSTHs of the neural population. To determine the 

identity of a novel phoneme, the population response was applied to all the classifiers, 

each computing the likelihood of its designated phoneme. The classifier indicating the 

maximum likelihood was taken as the identity of the input phoneme. To train and test 

the classifiers, we divided the speech data into 100 train and test subsets. In each 

subset, 90% of the data was randomly chosen for training and the remaining 10% was 

used for testing. The classification accuracy and the confusion matrices reported here 

are the average results of the 100 subsets.  
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Once trained, each linear classifier can be viewed as a mask that selects, by 

multiplication with the population response, the neurons and response latencies that 

most effectively distinguish the associated phoneme from all others. Figure 20 

displays the masks computed for the unvoiced consonants /p/, /t/, /k/, /f/, /s/, /ȓ/. The 

masks are ordered in the same way as the PSTHs in Figure 19A (i.e., by BF, best 

scale, and best rate). In the masks, black regions signify neurons and response 

latencies for which a strong response provides evidence for the phoneme, and white 

regions signify strong responses that provide evidence against that phoneme. The 

masks in Figure 20 differ from the mean neural responses in Figure 19A in that they 

emphasize the unique features of each phoneme. For example, the mean responses to 

/ȓ/ (Figure 19A-II) indicate strong responses in high and medium BF neurons, but in 

the masks the mid-BF neurons (2 KHz) are given higher weights. This differential 

weighting reflects the fact that both /ȓ/ and /s/ evoke strong responses from high BF 

neurons, but only /ȓ/ evokes responses from the mid-BF neurons. Similarly, the /p/, 

/t/, /k/ masks reflect only the features that distinguish these phonemes from each 

other. The BF masks (Figure 20A), emphasize the low (750 Hz), high (> 2 KHz), and 

medium (0.3-1.5 KHz) spectral regions for the /p/, /t/, /k/ bursts, respectively. Note 

also how the rate masks (Figure 20C) distinguish plosives /p/, /t/, /k/ from the long 

fricatives /s/, /ȓ/ by enhancing the regions outlined in the rectangle, namely the slow 

rates of the fricatives (< 11 Hz) relative to the faster rates of the plosives. It should be 

noted that the classifier performance does not depend in any way on the order of the 

neural responses, which is solely used for analysis and display purposes. 
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Figure 20. Phoneme classification based on the population response 

Classification masks for 3 unvoiced plosives (/p/, /t/, /k/) and 3 unvoiced 

fricatives (/f/, /s/, /ȓ/) sorted by neurons’ best frequency (A), best rate (B) and 

best scale (C). Grey scale indicates the importance of the presence (black 

regions) or absence (white regions) of neural response for the classification of 

that phoneme. The output of each phoneme classifier is a scalar, computed as 

the sum of the population PSTH multiplied by the mask. Thus the order of the 

mask/PSTH is irrelevant to the output of the classifier. 

 

The extent to which the neural phoneme representations can account for the 

perception of individual phoneme exemplars can be assessed by studying the pattern 

of pair-wise confusions by the classifier. Figure 21A shows the confusion matrix 

measured from classifications of the neural data. Labels along each row indicate the 

phoneme presented, and columns report the probability of the phoneme output by the 

classifier [28] [38]. The classifier was trained on two sets of data. In a small set of 20 
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neurons, we succeeded in measuring responses to 330 seconds of speech (90 

sentences) to be used in the training; these are shown in Figure 21. In an ideal case 

that all phonemes are accurately identifiable, we would expect to see a diagonal 

confusion matrix. Off-diagonal values represent misidentification. The phonemes are 

arranged based on voiced-unvoiced and plosive, fricative, nasal consonant categories 

to facilitate comparison with a previous study of human perception [19] [38] 

(replicated in Figure 21B). The dashed boxes delineate the 3 major phoneme 

categories: plosives, fricatives, and nasals. In both neural and perceptual data, 

phonemes within each category—plosives (/p/, /t/, /k/), fricatives (/f/, /s/, /ȓ/), and 

nasals (/m/, /n/)—tend to be more confusable within the group than across categories. 

The correlation coefficient between the complete neural and perceptual matrices is 

0.78 (p=0.0002, randomized t-test). Ignoring the confusions between voiced and 

unvoiced consonants improves the similarity to 0.86, with a correlation of 0.95 for 

only the unvoiced consonants and 0.71 for their voiced counterparts. At least some of 

the difference between confusion matrices reflects noise due to limited sampling of 

neural responses, or limited data for training the phoneme classifiers.  
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Figure 21. Neural and human phoneme confusions, and phonemes 

acoustic similarity. Consonant confusion matrices from neural phoneme 

classifiers (left panels) and human psychoacoustic studies [28] (middle 

panels). Grayscale indicates the probability of reporting a particular phoneme 

(column) for an input phoneme (row). (Right panels) The acoustic similarity 

between phoneme pairs defined as the Euclidian distance between their 

average auditory spectrograms. (A) Confusion matrices and phonemic 

distances for unvoiced consonants. Blue lines separate the plosives /p/, /t/, /k/ 

from fricatives /f/, /s/, /ȓ/. (B) Confusion matrices and phonemic distances for 

voiced consonants. Blue lines separate the plosives /b/, /d/, /g/ from fricatives 

/v/, /ð/, /z/ and the red lines distinguish the nasal consonants /m/ and /n/ from 

the rest. 

 

Alternatively, we explored the sensitivity of the classification in Figure 21 to the 

number of neurons included (using the same training material). As expected, the 
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results indicate that percentage of correct classification (averaged across all consonant 

phonemes) improves as the number of randomly selected neurons is increased 

(Figure 22). More detailed exploration of this issue should take into account the 

differential contribution of specific neurons to different phonemes, e.g., high BF 

neurons to the classification of /s/ and /ȓ/. 

Finally, we also explored the extent to which both the neural and human confusion 

matrices are a reflection of the acoustic similarity (or "distances") among the 

phonemes at the level of the auditory spectrograms [25]. Figure 21 illustrates that 

such a phoneme "similarity matrix" fundamentally resembles the human and neural 

confusion matrices (with correlation coefficients of 0.66 and 0.93, respectively). In 

fact, the neural matrix encodes remarkably well details of the phoneme acoustic 

similarity, such as the confusions between /v/ and the nasals /m/, /n/, and also 

between /ð/ and the voiced consonants /b/, /d/, /g/.  

3.3 Discussion 

Neuronal responses to continuous speech in the primary auditory cortex of the naive 

ferret reveal an explicit multidimensional representation that is sufficiently rich to 

support the discrimination of many American English phonemes. This representation 

is made possible by the wide range of spectro-temporal tuning in A1 to stimulus 

frequency, scale and rate. The great advantage of such diversity is that there is always 

a unique sub-population of neurons that responds well to the distinctive acoustic 

features of a given phoneme and hence encodes that phoneme in a high-dimensional 

space.  
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As an example, consider the perception of the plosive consonant /k/ in a CV syllable, 

which is identified by a conjunction of several acoustic features: an initial silent 

voice-onset-time (VOT), an onset burst of spectrally broad noise, and the direction of 

the following formant transitions. Each of these features can be encoded in the 

cortical responses along different dimensions. Thus, neurons selective for broad 

spectra respond selectively to the noise burst. Rapid neurons respond well following 

the VOT, whereas directional neurons selectively encode the vowel formant 

transitions. In this manner, /k/ is encoded robustly by a rich pattern of activation that 

varies in time across the neural population. This neuronal activation pattern 

constitutes the phoneme representation in A1 and presumably forms the input to a set 

of neural “phoneme classifiers” in higher auditory areas. If one acoustic feature is 

distorted or absent, the pattern along the other dimensions (and hence the percept) 

remains stable. 

We have focused here on describing a few prominent features of the response 

distributions that correspond to well-known distinctive acoustic features of the 

consonants considered [21]. There are clearly many other aspects and more details of 

the responses that reflect intricate articulatory gestures, contextual effects, or speaker-

dependent variability that can only be reliably considered with a much larger sample 

of responses. One example is the distribution of the directionality index of the 

responses in the neighborhood of a consonant [39], an attribute that would indicate 

whether the formants are upward or downward sweeping, or if they are converging 

towards or diverging away from a locus frequency. 
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Humans confuse the phonemes of their native tongue when placed in unusual or noisy 

contexts. Typically, phonemes that share some acoustic features tend to be more 

confusable than those that do not. This was confirmed by the similarity we found 

between the acoustic distance and the human confusion matrices. Similarly, since A1 

responses in our naive ferrets also preserve the relative acoustic distances between the 

phonemes (as they would presumably for other complex sounds), we are led to the 

conjecture that human phoneme perception can (in principle) be explained in large 

measure by basic auditory representations such as the auditory spectrogram and the 

cortical spectrotemporal analysis common to many mammalian (and also avian) 

species [8] [11] [12] [40] [41].  

The representation of phonemic features across a population of filters tuned to BF, 

scale and rate suggests a strategy for improved speech recognition systems, and 

further study may reveal additional strategies for speech processing. However, many 

questions about the neural representation of phonemes still remain unclear; for 

example, how can one extrapolate from such neurophysiological findings to the 

human perceptual ability to perceive phonemes categorically (also found in monkeys 

[13], cats [10], chinchillas[5], birds [11] and rats [42]), and to shift categorical 

boundaries arbitrarily between phoneme pairs? In summary, humans’ ability to 

discriminate perfectly their native phonemes is the result of years of training. Naïve 

ferrets lack such a history, and hence their perception of clean phonemes is more akin 

to that of humans listening to noisy phonemes. In both cases, confusion patterns 

would reflect the acoustic distances between the phonemes. However, if ferrets are 

trained to actively discriminate phonemes, it is likely that dimensions useful for this 
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specific discrimination would be emphasized, creating the heightened sensitivity 

necessary to perform the task. This is presumably what happens in humans as they 

learn their phonemes, and what the classifier essentially simulates in our analysis 

when it learns the masks and boundaries that enable robust phoneme discriminations. 

Therefore, from a neural perspective, one may view the masks as either a subsequent 

layer of synaptic weights or as pattern of behaviorally-driven plasticity of AI 

receptive fields - the end-result of perceptual learning in which neurons adapt their 

tuning along the dimensions appropriate for the phoneme discrimination task. This 

same general principle would apply to any complex sound, using additional cortical 

response dimensions, such as pitch, spatial location, and loudness. 

 

Figure 22. Dependence of phoneme classification accuracy to the number 

of neurons. Classification accuracy as a function of the number of neurons 

used by the classifier. The red line indicates chance performance (7% for 14 

phonemes) (see Section II for details). 
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Chapter 4 

Prediction of speech representation in the primary auditory 

cortex 

4.1 Introduction 

We showed in the previous section that a large population of neurons in the primary 

auditory cortex encodes the perceptually important features of phonemes along 

various dimensions, including frequency, spectral and temporal modulations. These 

parameters for the neurons in the auditory cortex can be estimated from a linear 

receptive field model of auditory neurons, STRF as we showed in the previous 

chapter. Here, we demonstrate that the predicted responses from a much larger 

population of neurons in the auditory cortex results in the same multidiemsional 

representation as the actual responses to phonemes in the auditory cortex. The 

predicted responses preserve all the categorical distinctions between phoneme groups 

along different tuning dimensions. Having a large set of receptive fields provide a 

more complete coverage of the parameter space and let us investigate the role of 

different neural tuning in encoding the perceptually and categorically important 

features of speech. We will examine the role of several tuning characteristics in the 

encoding: frequency, temporal (rate) and spectral (scale) modulations and directional 

selectivity in the actual and predicted responses.  

4.2 Methods 

The physiological experiments were executed in a manner similar to what we 

described in the previous chapter. We have already shown how the best frequency, 

rate and scale are estimated from the STRFs of the neurons. We also used the MTF 

function to measure the directionality preference of the neurons for downward and 
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upward going modulations. The directionality index was estimated by finding the 

ration of the power in the first quadrant (upward) to the second (downward) of the 

MTF. As in the previous chapter, to highlight the role of a specific parameter in the 

encoding of the phonemic categories, we sorted the average neural responses to that 

phoneme according to the parameter of interest.  

For the predicted responses, we used STRFs of 2500 primary auditory cortex neurons 

to predict the response of the population to speech stimuli using STRF equation: 

∑∫ −=
f

dfthfstr τττ ),(),()(  

We used the same characteristic parameters as the real data to estimate them from the 

2500 STRFs and we used the sorted predicted responses along different parameters to 

highlight the categorical encoding of phonemes along that parameter.   

4.3 Encoding of vowels 

The average neural and predicted responses to different vowels are shown in Figure 

23. When the responses are sorted by the best frequency of neurons (Figure 23a), the 

predicted responses (second row) match the actual ones with good accuracy. For 

example, the gradual increase in the frequency of the neurons responding to open 

vowels or the two peaks (two dominant formants) of closed vowels that can be seen 

in both the actual and predicted responses. Figure 23b shows the sorted responses 

according to the scale of the neurons in which a close match can be seen between 

actual and predicted responses. Closed vowels activate the high scale neurons better 

(black box in Figure 23b) and open vowels activate the low scale neurons which 

happens both in the actual and predicted responses (Figure 23b black and blue 

boxes). Similarly, in the panels that show the actual and predicted responses sorted by 
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rates (Figure 23c), we see that the different responses of fast and slow neurons to 

open and close vowels is evident both in the actual and predicted responses. Finally, 

when we sort the responses by the direction preference of the neuron (as described in 

the methods), we see that the neurons that respond to upward going modulations are 

activated more strongly by open-back vowels (Figure 23d bottom row).  
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Figure 23. Actual and predicted average vowel neural responses. (a), (b), 

(c) and (d) show the average actual (top rows) and predicted (bottom rows) of 

neural responses to vowels sorted by best frequency, best rate, best scale and 

best direction correspondingly. In all cases, the actual and predicted responses 

show similar categorically distinct patterns (highlighted by boxes).  
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4.4 Encoding of consonants 

Different population of neurons respond distinctively to different consonants based on 

how they match the spectro-temporal tuning of neurons as we described in the 

previous section. Here, to see if this distinct pattern of response can be captured by 

the linear tuning model of neurons, we used the predicted neural responses to 

different consonants and compared it to the actual one as shown in Figure 24. It is 

evident that the neurons with best frequency tuning that respond to certain phonemes 

show the same pattern in their predicted responses. For example, the population that 

respond to fricative /s/ are mostly high frequency cells, and the predicted responses of 

high frequency neurons are also very strong to /s/ (Figure 24a). When we sort the 

responses according to their best scale and rate, we see that the patterns described in 

the previous section are also observed in the predicted ones: plosives activate low 

scale and high rate neurons, and fricatives and nasals activate high scale ones. In 

addition, when we consider the sorted responses along the directionality preference of 

the neurons, we see that neurons with diverse directionality tuning respond selectively 

to different consonants. For example, neurons that are tuned to upward 

spectrotemporal modulations respond well to plosive /p/, the ones with downward 

preference are active when /t/ is spoken, and /k/ activates the neurons with less 

directionality preference. In addition, the high frequency fricatives seem to activate 

upward population better (green boxes in Figure 24d, top row). This pattern is 

captured well by the predicted responses as well (Figure 24d, bottom row).  
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Figure 24. . Actual and predicted average consonant neural responses. (a), 

(b), (c) and (d) show the average actual (top rows) and predicted (bottom 

rows) of neural responses to consonants sorted by best frequency, best rate, 

best scale and best direction correspondingly. In all cases, the actual and 

predicted responses show similar categorically distinct patterns (highlighted 

by boxes). 
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Finally, to do a more quantitative analysis on the predicted and actual responses, we 

estimated the correlation coefficients between the average actual and predicted 

responses to phonemes. The correlation coefficients for different phonemes are 

shown in Figure 25. For most phonemes, the correlation is quite good validating our 

hypothesis that the distinct patterns observed in the precious section are the result of 

neural tunings that can be explained by a linear STRF model.   

 

Figure 25. Correlation coefficients between average predicted and actual 

neural responses to phonemes. Vowels show the highest correlations (more 

than 0.85) while most fricatives and plosives have a correlation higher than 

0.8. 
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Chapter 5 

Reconstruction of speech from population responses in 

auditory cortex 

5.1 Introduction 

 Population responses of cortical sensory neurons encode considerable details 

about their stimulus structure, detail that is often difficult to discern because of the 

complexity and diversity of cortical receptive fields. The typical approach used for 

understanding how stimuli are encoded across a neural population is to examine the 

distribution of some tuning property measured for a large set of neurons.  By 

examining the distribution of tuning, one can infer that ranges spanned by a large 

number of neurons reflect stimulus features that are encoded with greater fidelity than 

ranges spanned by fewer neurons. Such an approach has been used to develop 

fundamental descriptions of most sensory systems (e.g.  [43] [44]).  

A more complete understanding of population codes can be developed by 

visualizing responses to several different stimuli after sorting the neurons according 

to basic tuning properties. This approach is most commonly applied to the auditory 

system with the “neurogram,” in which neural responses are sorted by best frequency 

[45]. More generally, it is possible to organize the population responses along 

ordered axes of any parameter derived from the receptive field or response 

sensitivities of each neuron. Examples include distributions along a “rate axis” that 

reflects the dynamics of each neuron, a “scale axis” that encodes spectral selectivity 

(or bandwidth) [46] or an “AM or FM” index that captures the best modulation rate 

sensitivity [47]. This approach can provide a more complete understanding of the 

population code, but it is still limited, particularly in systems where neurons are 
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characterized by several different tuning properties that vary randomly from neuron 

to neuron. 

 A different approach to tackle this question is to reconstruct the stimulus from 

the response of the neural population. This method of reverse reconstruction [48] 

finds the best approximation of the input stimulus, which can then be compared to the 

original to discover which features are preserved or enhanced and to assess the 

accuracy of their encoding. This method was developed for studies of the fly visual 

system [48] [49] [50] but has since been employed successfully in measuring the 

encoding of the fine temporal structure of visual stimuli by motion–sensitive neurons 

in macaque MT area [51], quantifying the effect of natural sound structure in neural 

coding in frog auditory nerve [52] and reconstruction of a visual stimuli by the 

collective activity of many retinal ganglion cells [53] and LGN [54].  

An important issue in reconstructing natural and complex stimuli is the 

presence of strong statistical regularities in the stimulus. Knowledge of these 

correlations allows for the application of priors to the reconstruction procedure that 

can substantially benefit reconstruction in noise or when sampling of the neural 

population is limited. Although reconstruction may be possible with a relatively small 

neural population by taking advantage of these priors, it is unclear whether actual 

neural systems benefit from the same prior information in decoding sensory 

representations. 

Another issue with stimulus reconstruction is effect of neuronal plasticity on 

reconstruction. If the response properties of a neuron change, then its contribution to 

an optimal stimulus reconstruction should also change. However, allowing a neuron’s  
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Figure 26. The forward and inverse models. The forward model (left 

columns) is the mapping from the acoustic spectrogram to the neural response 

found using reverse correlation technique (see Methods). The forward model 

describes neural response properties with the STRF, which can predict the 

response to a novel stimulus, as displayed in the left panels for three neurons. 

The inverse model of a neuron (right column) is the mapping from a 

population of neuronal responses back to the sound spectrogram. Using the 

inverse model, one can reconstruct the spectrogram of a sound from its 

population responses (right panel). 

 

role in the reconstruction procedure to change implies that the downstream system 

that interprets the activity of that neuron also changes to match the plasticity. We 

report here on how we applied this computational framework and the associated 

experimental procedures to study the representation of complex auditory noise and 

natural speech stimuli [24] in primary auditory cortex (A1) of the ferret. Specifically, 

we assessed the dynamics and spectral selectivity of a large set of A1 neurons as they 

responded to these stimuli. We also explored the influence of prior knowledge of 

stimulus statistics on the reconstruction accuracy, both in neural data and in 
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simulation. Finally, we explored how such reconstructions can be utilized to discover 

and interpret response modulations and receptive field plasticity induced during 

behavior [55].   

5.2 Methods 

 The protocol for all surgical and experimental procedures was approved by 

the IACUC at the University of Maryland and consistent with NIH Guidelines.   

5.2.1 Surgery 

 Four young adult, female ferrets were used in the neurophysiological 

recordings reported here. To secure stability of the recordings, a stainless steel head 

post was surgically implanted on the skull. During implant surgery, the ferrets were 

anesthetized with Nembutal (40 mg/kg) and Halothane (1-2%). Using sterile 

procedures, the skull was exposed and a headpost was mounted using bone cement, 

leaving clear access to primary auditory cortex in both hemispheres. Antibiotics and 

analgesics were administered as needed. 

5.2.2 Neurophysiological recording  

Experiments were conducted with awake head-restrained ferrets. The animals 

were habituated to this setup over a period of several weeks, and usually remained 

relaxed and relatively motionless throughout recording sessions that may last 2-4 hrs. 

Recordings were conducted in a double-walled acoustic chamber. Small craniotomies 

(~1-2 mm in diameter) were made over primary auditory cortex before recording 

sessions. Physiological recordings were made using tungsten microelectrodes (4-8 

MΩ, FHC). Electrical signals were amplified and stored using an integrated data 

acquisition system (Alpha Omega). Spike sorting of the raw neural traces was done 
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off-line using a custom PCA clustering algorithm. Our requirements for single unit 

isolation of stable waveforms included (1) that the waveform and spike rate remained 

stable throughout the recording, and (2) that the inter-spike interval for each neuron 

was distributed exponentially with a minimum latency of 1ms. The number of 

neurons used for each analysis varied. The analysis of spectro-temporally modulated 

noise used 256 neurons; the speech reconstruction analysis used 250 neurons; and the 

analysis of behavior-induced plasticity used 11 or 23 neurons. 

5.2.3 Auditory stimuli and analysis  

 Experiments and simulations described in this report include spectro-

temporally modulated noise and speech. The spectro-temporally modulated noise 

consisted of 30 Temporally Orthogonal Ripple Combinations (TORCs) [56]. Each 

TORC was a broadband noise with a dynamic spectral profile that was the 

superposition of the envelopes of six ripples (depicted in Figure 27a). A single ripple 

has a sinusoidal spectral profile, with peaks equally spaced at 0 (flat) to 1.4 peaks per 

octave; the envelope drifted temporally up or down the logarithmic frequency axis at 

a constant velocity of up to 48 Hz [56]. It was constructed by adding the envelopes of 

6 ripples, where each ripple is a broadband noise with a sinusodially-modulated 

envelope along the frequency dimension (spectral density in cycles/octave), and 

spectral peaks that drift at a constant velocity along the time dimension (rate in Hz).  

All ripples in a TORC were of equal level and the same spectral density, but spanned 

a range of rates from -48 to 48 Hz (i.e., drifting up and down the frequency axis) with 

specially selected phases [56]. Therefore, the two-dimensional Fourier transform of 

each TORC envelope was a line that we refer to as a modulation spectrum (MS). We 
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constructed 30 TORCs that spanned spectral modulations from 0 to 1.4 cyc/oct in 

steps of 0.2 cyc/oct (each consisting of ripples at 6 different rates from -48 to 48 Hz), 

and with two variants for each TORC with opposite polarities to minimize bias from 

the spike threshold in neural responses on measurements of spectro-temporal tuning, 

as detailed in [56]. To estimate the reconstruction error, we first subtracted the 

reconstructed TORC spectrograms from the original ones. The normalized error for 

different spectral and temporal modulations is then defined as the magnitude of the 

normalized 2-D Fourier transform of subtracted spectrograms (error spectrograms) at 

the corresponding modulation values. 

Speech stimuli were phonetically transcribed continuous speech from the 

TIMIT database [24]. Thirty different sentences (3 seconds, 16 KHz sampling) 

spoken by different speakers (15 male and 15 female) were used to sample a variety 

of speakers and contexts. Each sentence was presented five times during recordings. 

To compute the average spectrogram representation of a given phoneme, the TIMIT 

phonetic transcriptions were used to align the auditory spectrograms of all the 

instances of that phoneme and then averaged across different exemplars as described 

in details in [57].  

5.2.4 Reconstructing sound spectrograms using the inverse model 

 The inverse model is a linear mapping between the response of a population 

of neurons and the original stimulus [48] [54]. We represent the response of each 

neuron, n, as a function of time, )(trn . Because neurons in auditory cortex are not 

phase-locked to the modulations in the original sound pressure waveform, we 
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represent the stimulus as its spectrogram ),( ftS , which has a more linear relationship 

to responses in A1 [58]. The inverse function, ),( ftG , is then defined as follows: 

∑∑ −=
n

nn rftGftS
τ

ττ )(),(),(  

The function G is estimated by minimizing the mean-squared error between actual 

and reconstructed stimulus. Solving this analytically results in normalized reverse 

correlation [48] [54]: 

( )
rsrr

f t

CCGftSftSe 1
2

),(),(ˆmin −=→−=∑∑       (1)  

5.2.5 Reconstruction of the sound using the forward model of auditory 

neurons 

 The forward model of a neuron maps the sound spectrogram to the neural 

response. We characterized each neuron by its spectro-temporal receptive field 

(STRF), estimated by normalized reverse correlation of the neuron’s response to the 

auditory spectrogram of the speech stimulus. Although methods such as normalized 

reverse correlation can produce unbiased STRF estimates in theory, practical 

implementation require some form of regularization to prevent overfitting to noise 

along the low-variance dimensions [22]. This in effect imposes a smoothness 

constraint on the STRF. The regression parameters were adjusted using a jackknife 

validation set to maximize the correlation between actual and predicted responses. 

Having the STRFs of the neurons, we now describe the reconstruction using the 

forward models: 

 The STRF, ),( fth , is a mapping from the sound spectrogram ),( fts  to the 

neural response )(tr : 
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∑∫ −=
f

dftsfhtr τττ ),(),()(     (2) 

It is not possible to invert this equation to find ),( fts  from )(tr  because of the 

ambiguity of the frequency dimension (response is a function of time and not 

frequency). However, we can recover the frequency dimension provided we have 

enough neurons to construct an invertible system of linear equations (full coverage of 

the frequency space). To do so, we rewrite equation 1 in the matrix form: 

Shr =  

The STRFs are estimated using normalized reverse correlation: 

srss CCh
1−=       (3) 

Assuming we have the response of n  neurons to the same sound, we construct the 

following system of linear equations: 

Shr

HSR

Shr

nn =

=→

=

M

11

   (4) 

Assuming the H matrix has a pseudo-inverse, which intuitively means the set of 

STRFs cover the whole frequency space, we invert equation 4 to find S : 

RHHHS TT 1)( −=  

5.2.6 The relation between forward and inverse model of reconstructions 

 We described two methods for reconstructing the input spectrograms from the 

neural responses. They are illustrated schematically in Figure 26. In the first method, 

we used the neuron’s STRFs to construct a series of linear equations mapping the 

sound spectrogram to the neural responses and then solving for the input. In the 

second method, we directly estimate the mapping from neural responses to the 
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spectrograms using the inverse model of neurons. The main difference between the 

two methods is inclusion and exclusion of known statistical structure of the input in 

the reconstruction. The first method does not use any prior knowledge about the 

statistics of the stimuli since they are taken out in the estimation of STRFs. The 

second method, by contrast, imposes that prior knowledge into the reconstruction. 

From equations 1 and 3, the forward model ( H ) and inverse model (G ) are related 

by the following equation: 

GCCH rrss

1−=  

5.2.7 Effect of STRF changes on reconstructions 

During behavior, the functional relationship between stimulus and neural response 

can change to facilitate behavior [55], e.g., through top-down attentional influences 

that change the gain or shape of the receptive field H, e.g., during performance of a 

behavioral task. To understand how these changes affect reconstruction, consider the 

receptive field formulation: 

RHS =  

where S  is the stimulus, H the neural receptive fields, and R  is the population 

response. Because the model is linear, if there is a change in the receptive field, H∆ , 

it results in a change, R∆ , in the neural response: 

RHS ∆=∆  

Rather than modeling the change in the receptive field, we assume that the system has 

not changed and instead find the effective stimulus change that produces the observed 

change in the neural response: 

RHS ∆=∆  
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The effective stimulus change ( S∆ ) can be found using the inverse reconstruction 

method: 

RGS ∆=∆ , 

where G  is the inverse transformation of the system measured before the change. In 

effect, this approach enables us to project response changes ( ∆R) to the stimulus 

domain where it is often more intuitive to interpret. Minor variations on this 

formulation include examining transformations of the reconstructed stimulus (such as 

its Fourier transform), or computing the stimulus change as ∆S = G'∆R , where G'  is 

the inverse transformation computed from the responses collected after the change in 

receptive fields. 

5.3 Results 

 5.3.1 Reconstruction of spectro-temporally modulated noise spectrograms 

 To study the fidelity of auditory encoding by neurons in primary auditory 

cortex (AI), we reconstructed spectrograms of specially designed spectro-temporally 

modulated broadband noise stimuli (“temporally orthogonal ripple combinations,” 

TORCs) from the responses of 256 AI neurons (see Methods and [56]). Each of the 

30 TORCs contains a range of spectral and temporal modulations as illustrated in 

Figure 27. The fidelity of their reconstruction reveals the extent to which these 

modulations are preserved in cortical responses. Such modulations are the key 

carriers of information in complex signals such as speech and music. Hence it is 

important to determine if AI responses could encode them and whether the range 

encoded matches the observed perceptual capabilities of the ferret.  
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Figure 27b illustrates the result of reconstructing all 30 TORCs, which had 

with an average correlation of 0.5. The representation of the combined modulation 

spectrum of the TORCs (originally flat in the range +/- 48 Hz, and 0-1.4 cyc/octaves) 

had a bandpass structure that could be visualized more clearly when collapsed along 

its temporal and spectral dimensions (Figure 27b, right and top panels). The temporal 

modulation spectrum was most sensitive around 10-14Hz, while the spectral 

modulation spectrum showed a low pass characteristic. These neural spectral and 

temporal modulation spectra are consistent with the perceptual modulation sensitivity 

measured in ferrets [59].  

 

5.3.2 Effect of number of neurons on reconstruction accuracy 

Neurons in AI vary substantially in their spectro-temporal tuning properties, 

each of which matches only a narrow range of the spectro-temporal patterns in 

TORCs [60]. It was therefore expected that many neurons would be required to 

achieve a full coverage of the stimulus and that increasing the number of neurons 

used for reconstruction would improve its accuracy. To test this hypothesis, we varied 

the number of neurons used for reconstruction and measured the corresponding 

normalized reconstruction error (see Methods). For each number of neurons used in 

reconstruction, N, we selected 10 random subsets and averaged the reconstructed 

spectrograms across the subsets. 

Figure 27c shows the normalized error for different temporal modulation 

ranges as a function of N. As N increases from very small values, the reconstruction 
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error improves for all temporal modulation ranges. However, the error for slower 

 

Figure 27. Reconstruction of broadband noise stimuli (TORC). 

Temporally Orthogonal Ripple Combinations (TORCs) are specially 

constructed broadband modulated noise stimuli. In each of 30 different 

TORCs, the stimulus consists of the superposition of the envelopes of six 

ripples, all at the same ripple density (0.2, 0.4 … 1.2 or 1.4 cyc/octave) and 

ripple velocities from 4 to 48 Hz and -4 to -48 Hz. Therefore (a) the two 

dimensional power spectrum of each TORC (modulation spectrum, MS) is a 

line at a particular spectral modulation density. (b) The average MS of the 

TORCs reconstructed from all neurons appears bandpass compared to the 

original flat MS, illustrated in the collapsed MS along temporal and spectral 

modulations (right and top, respectively). (c) Normalized reconstruction 

error (see Methods) vs. number of neurons for different temporal 

modulation ranges. The reconstruction error converges to lower values for 

lower temporal modulations. (d) Normalized reconstruction error for 

different spectral modulations. Higher scales show larger errors. 
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modulation rates (4-12Hz) remains consistently lower than for faster modulation rates 

(40-48Hz). Based on analysis, the reconstruction error converges to lower values for 

4-12 Hz modulations and to higher for 40-48 Hz.  

Figure 27d shows the normalized error for different spectral modulation 

ranges as a function of N. As for temporal modulation, we observe and improvement 

in error with increasing N. However, the difference low and high spectral modulations 

is less extreme. For 0-0.2 cycle/octave modulations, the reconstruction error 

converges to lower values than the error for 1.2-1.4 cycle/octave modulations. 

A possible reason for the lower bounds is the loss of information at higher 

rates and scale as cortical neurons fail to phase-lock to these faster modulations. 

Another possible factor is that increasing the number of neurons adds to the number 

of parameters that have to be estimated from limited data, and hence constrains the 

quality of the reconstruction. 

 

5.3.3 Comparison of forward and inverse models for speech 

reconstruction 

 Because TORCs are designed to have minimal spectro-temporal correlations, 

reconstructing TORC spectrograms cannot take advantage of prior knowledge of 

stimulus statistics to improve reconstruction accuracy. However, for natural stimuli 

such as continuous speech, which do contain strong correlations, this information can 

be used to infer features in the stimulus that are not explicitly coded in the neural 

responses. Regions of the stimulus spectrogram that do not excite a neuron directly 

can still be recovered if they are highly correlated with another feature of the stimulus 

that is encoded by the neuron. As defined in the Methods, the inverse model for 
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reconstruction utilizes information about stimulus correlations, and the forward 

model does not.  

We examined how the inverse model benefited from prior knowledge of 

input correlations to reconstruct continuous speech spectrograms from simulated 

responses of a sparse sampling of neurons. We simulated the responses of 8 neurons 

that were spectrally narrowly tuned and were spaced in such a way as to leave parts of 

the spectrogram unseen by the population. We then reconstructed the spectrogram of 

one speech sample using the two methods as illustrated in Figure 28b, c. The forward 

model (Figure 28b) resulted in a sparse reconstruction with no data in the unseen 

parts of the spectrogram. In this case, the correlation of the reconstructed and original 

spectrograms was 0.70. Using the inverse model (Figure 28c), however, improved 

the reconstruction accuracy to 0.83 and resulted in less sparse reconstruction because 

speech is a highly correlated signal.  

 To contrast the forward and inverse models using experimental data, we 

reconstructed the spectrograms of speech from actual responses of 250 AI neurons 

(all the neurons were presented the same stimuli, but they were not recorded 

simultaneously). For each neuron, responses to speech stimuli over 90 seconds were 

collected and used to estimate the forward and inverse models (H and G in Figure 

26). Figure 28 shows an example of one speech sentence (Figure 28a) and its 

reconstructions using the forward (Figure 28e) and inverse (Figure 28f) models. 

Using exactly the same data, the reconstruction by the inverse model was superior to 

that of the forward model, as judged by its higher correlation with the original speech 
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(0.78 versus 0.42), demonstrating the benefit of prior knowledge in the 

 

Figure 28. Comparison of the forward and inverse reconstruction 

methods. Reconstruction of a speech spectrogram using forward and inverse 

models in simulations and with physiological data. (a) Spectrogram of a 

speech sample. (b) Forward reconstruction of the speech spectrogram from 

simulated responses of 8 neurons that were spectrally narrowly tuned and 

spaced in such a way as to leave parts of the spectrogram unseen by the 

population, resulting in a sparse spectrogram. (c) Reconstruction using inverse 

model from same neurons in (b) that results in a better correlation with the 

original spectrogram. (d) Comparison of the reconstruction accuracy of the 

inverse and forward models for 30 different sentences. The distribution of the 

correlation coefficients for the forward model was considerably lower than 

that for the inverse model. (e) Forward reconstruction from physiological 

responses to 250 neurons. (f) Inverse reconstruction of the speech produces a 

better match to the original spectrogram. 

reconstruction. Similar results are summarized in Figure 28d which depicts the 

correlation coefficients between original and reconstructed speech for 30 additional 

sentences using both methods.  
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 To compare the perceptibility of these reconstructions, we inverted the 

spectrograms to generate the best approximation of corresponding acoustic signals 

using a convex projection method described in (61). Audio examples of 

reconstructions using the inverse model were noticeably more intelligible than those 

from the forward model.  

 

5.3.4 Reconstructed phonemes from neural population responses 

How and to what extent do responses of cortical neurons in the ferret encode 

phonemes with enough fidelity to account for their perception in humans? This 

question implicitly tests the hypothesis that auditory processing mechanisms up to the 

level of the primary auditory cortex, and that are common across other mammals like 

ferrets, are sufficient to account for the robust perception of speech [15] [2]. Previous 

analyses of A1 responses in mammals have been consistent with this point of view 

[46] [62]. Here we took a different approach to shed more light on this issue and 

examine in particular the pattern of errors observed in the perception of various 

phonemes. 

 We first analyzed the encoding of the average features of each phoneme in the 

population response Figure 29(a-d) (top rows) illustrates the average phoneme 

spectrograms of four groups of phonemes (Plosives, Fricatives, Nasals, and Vowels) 

extracted from using the methods detailed in [46]. The corresponding panels in the 

bottom rows of Figure 29(a-d) depict the average spectrograms of the same 

phonemes but from reconstructions using the inverse model. The strong similarity 

between the two sets of spectrograms (average correlation coefficient of 0.88) 



 

 75 

 

indicates that average responses of AI neurons have the dynamics and spectral 

selectivity to capture linearly most details of the average spectrotemporal features of 

phonemes.  

 Comparing only the average phoneme spectrograms may improve apparent 

performance by averaging out differences between phoneme exemplars. To make a 

more critical assessment of the results, we examined the accuracy of reconstructions 

for each phoneme exemplar separately. Figure 29e plots the average of such 

correlations across all instances of each phoneme. Some phonemes, such as the high 

frequency fricatives (s, ȓ) [3], display excellent reconstruction accuracy even at the 

level of individual exemplars. Most plosives (p, b, t, d, k, g) were encoded with an 

intermediate level of accuracy (average correlation 0.6). Nasals (m, n, ŋ) were the 

least accurately decoded perhaps due to their weak acoustic energy. 

 The sometimes low and variable accuracy of the reconstructions for individual 

phoneme exemplars stands in striking contrast to the highly accurate encoding of the 

average features Figure 29(a-d). Averaging of spectrograms across all instances of a 

phoneme preserved only features that were common across all syllabic contexts and 

hence not affected by co-articulatory factors. These common features were generic 

enough to be captured well by the linear spectro-temporal response models in AI. By 

contrast, the unique features of individual phoneme samples were sometimes not well 

described by the reconstruction (as with the Nasals in Figure 29e). 
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Figure 29. Average phoneme spectrograms from original and 

reconstructed phonemes (a-d) (Top panels) The average phoneme 

spectrograms of four groups of phonemes (plosives, fricatives, nasals, and 

vowels). (Bottom panels) The corresponding panels depicting the average 

phoneme spectrograms from reconstructed spectra using the inverse model. 

The original and reconstructed spectrograms are quite similar and have an 

average correlation coefficient of 0.88. (e) The correspondence between 

reconstructions and actual spectrograms for each phoneme exemplar, 

averaged across all instances of each phoneme. 

5.3.5 Stimulus reconstruction and neural plasticity 

 Receptive field properties in AI can rapidly change during task performance 

in accordance with specific task demands and salient sensory cues [55]. Such 

plasticity may reflect attentional demands, task difficulty and performance. One 

approach for inferring the functional significance of these changes is to examine the 

receptive fields of single neurons and to extrapolate the consequences of their 

changes on neural encoding [59]. In tasks requiring simple discrimination (e.g., tone 

versus noise), changes in spectro-temporal tuning have been shown to enhance 

overall cortical responsiveness to a foreground (or target) sound while suppressing 
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the background (or reference) sound, presumably increasing the likelihood of 

detecting the attended target.  

 However, as the complexity of auditory tasks increases (e.g. when 

discriminating among phonemes, tonal sequences, or musical timbres), receptive field 

changes are likely to become more elaborate and hence more challenging to relate to 

the acoustical properties of the stimuli. Another limitation of the traditional approach 

of examining the plasticity of neurons in isolation is that it does not benefit from 

multielectrode recordings. The complexity of the analysis increases proportionately 

with the number of electrodes, but the same amount of data is required from each 

neuron in order to identify significant changes in tuning. Both of these challenges can 

be addressed by a reformulation of the problem to make use of the inverse model to 

reconstruct the stimuli.  

 We demonstrate this approach using both simulated and actual changes that 

were recorded in behavioral physiology experiments. TORC responses were used to 

measure the spectro-temporal receptive fields (STRFs) and hence the adaptive 

changes that they exhibit. Therefore, all reconstructions considered here were those of 

the TORC stimuli before and during the STRF changes.  

 A simulation of the effects of STRF plasticity is shown in Figure 30a. The 

simulated STRF changes were based on observations in tone detection experiments 

reported in [55]. Here the STRFs constituted a bank of tonotopically distributed 

filters, illustrated by the three STRFs on the left centered at the 7
th

, 9
th

, and 11
th

 

channels (Figure 30a, left column). During behavior, a target tone was played at the 

center frequency of the 8
th

 channel, which caused the nearby STRFs (at the 7
th

 and 9
th
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channels) to expand towards the target, or become more sensitive to it (Figure 30a, 

right column), inducing channel 8 responses to become more correlated with its 

neighboring channels. Figure 30b illustrates the reconstructed TORC stimuli before 

the task (top panel) and during it (middle panel). The changes were best seen in the 

difference ( S∆ ) between two reconstructions (bottom panel). When we measured the 

cross-correlation between each pair of channels in the reconstructed stimulus (Figure 

30c), we found significant non-zero values at off-diagonal entries between the 8
th

 

channel and each of the 7
th

 and 9
th

 channels emerging only during the task when the 

STRF was changing. 

 To illustrate how this method can be applied to real physiological data, 

we analyzed the data previously published in [55] that showed STRF changes similar 

to the simulations above. Figure 31a illustrates the difference between the 

reconstructed TORC spectrograms from responses prior to the behavior (passive) and 

during the behavior (active) for data collected at two different target frequencies, 

channel 13 (top panel, 11 neurons) and 12 (bottom panel, 23 neurons). The difference 

between passive and active TORC reconstructions showed a noticeable change at the 

frequency of the target in both data sets. This difference is more directly indicated 

after the collapsing over time (Figure 31b) and in the matrices of correlations 

between spectral channels (Figure 31c), which showed an enhancement at the target 

frequency.  In both cases the target channel also showed a weak negative correlation 

with adjacent frequencies (light blue regions in Figure 31c), consistent with a 

decrease in response to frequencies close to the target [55]. 
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Figure 30. Detecting STRF changes in simulated data. (a) Simulated 

STRFs displaying changes that might occur during behavioral experiments. 

Left column (“passive”): Before the behavioral experiment, three STRFs are 

tuned to different frequencies centered at the 7
th

, 9
th

, and 11
th

 channels. The 

target tone during the experiment is at the frequency of the 8
th

 channel. Right 

column (“active”): During behavior, the STRF closest to the target tone 

becomes more sensitive to the target tone frequency by broadening its 

excitatory field toward the target tone frequency. (b) Reconstructed TORCs 

using passive (top panel) and active (middle panel) responses. The change in 

the STRF at the 8
th

 channel causes the TORC reconstruction to change locally, 

which can be detected by subtracting the two TORC spectrograms (bottom 

panel). (c): Detecting and quantifying the changes through cross-correlation of 

spectral channels (top and middle panels)  
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Figure 31. Detecting STRF changes in actual physiological data. 

Difference between reconstructed TORCs before and during a tone detection 

task. Top panel shows the difference for data from 23 neurons when the target 

tone was in channel 12. Bottom panel shows the difference for reconstruction 

from 11 neurons when the target tone was in channel 13 (b) In each case, 

averaging the mean difference between the reconstructed spectrograms over 

time shows a peak at the target frequency. (c) The matrix of correlations 

between spectral channels also signals the change at the target tones.  

5.4 Cortical representation of speech in white noise 

It is well known that humans can robustly perceive phonemes despite of the 

variability across speakers, context, and natural distortions like noise and 

reverberation. This robustness is attributed to a rich and invariant representation of 

perceptually important features of speech. Here, we use the method of reconstruction 

described in this section to study the issue of noise robust representation of speech in 

the primary auditory cortex. To investigate this issue, we recorded the responses of 

100 neurons in the primary auditory cortex to clean, 6dB and 0dB Signal To Noise 

(SNR) speech in white noise. The method of reconstruction then is used to go back to 

the spectrogram representation and to compare the reconstruction with the noisy one.  
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The speech samples used in the noise study were the same as the previous sections,: 

90 seconds speech from Timit [24], half male and half female speakers. The only 

difference was that in two additional conditions, white Gaussian noise was added to 

the clean speech at two SNR levels: 0 and 6dB.  

Figure 32 shows the spectrogram of one such sentence in clean and white noise 

(Figure 32, left column). The effect of white noise is more evident in higher 

frequencies because of the increasing bandwidth of the filters. We used the responses 

of the neurons to clean speech to estimate the inverse transformation (G functions) for 

the population. This G then was applied to the responses of neurons to noisy speech 

to reconstruct back the speech spectrograms. The result of the reconstruction can be 

seen in Figure 32 right column. As one can see, the noise distortion is reduced in the 

reconstructed signal compare to the original noisy spectrograms.  

 

Figure 32. Original and reconstructed spectrograms of speech in clean 

and noise. Left column shows the spectrogram of a speech sample in clean 

(top row), 6dB (middle row) and 0dB (bottom row). The right column shows 

the reconstructed spectrograms from the neural responses to clean and noisy 

speech. The reconstructed noisy spectrograms show more similarity to the 

clean than is the case in the noisy original spectrograms. 
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To quantify this effect, we compared the correlation coefficient between the actual 

and reconstructed spectrograms for speech at various noise levels as shown in Figure 

33. This figure shows that the reconstructed speech spectrograms are always more 

similar to the clean speech than the noisy ones, even when the reconstruction is from 

the noisy speech responses. This can be the result of the lack of the representation of 

noise in the neural responses that causes a poor correlation between reconstruction 

from noisy speech and actual noisy spectrograms (blue bars in Figure 33).  

 

Figure 33. Correlation coefficients between original and reconstructed 

spectrograms from actual neural responses. Reconstructed speech always 

has a higher correlation with clean speech (red bars), even if the responses are 

from noisy speech.   

 

To investigate whether this noise robustness observed in the neural responses can be 

explained by linear receptive model, we used the predicted responses of neurons to 

noisy speech obtained from the STRFs. When we reconstruct the spectrograms using 

the predicted responses to noisy and clean speech, a different pattern emerges that 

was different from the actual data. Figure 34 shows the same correlation analysis in 

Figure 33 but for the predicted responses.  In this case, the correlation coefficient for 

each case is the largest between reconstructed spectrogram and corresponding 
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original spectrogram (blue bar for 0dB, green bar for 6dB and red bar for clean). This 

shows the deficiency of the STRF model to capture the noise robustness of the 

responses, which can be due to a non-linear effect such as adaptation to background 

noise. 

 
Figure 34. Correlation coefficients between original and reconstructed 

spectrograms from predicted neural responses. Reconstructed speech has a 

higher correlation with when its from the responses to the same noise level. 

This means a linear STRF model can not predict the noise robustness 

observed in the data.  

 

Finally, to investigate the effect of noise on phoneme representation, we constructed 

the average phoneme responses from the original and reconstructed clean and noisy 

speech. The reconstructions are shown in Figure 35 for vowels and Figure 36 for the 

consonants. To exemplify the noise robustness of the neural representation, we 

consider the vowel /I/. The second formant for this vowel (red box in Figure 35) is 

masked by white noise specially at 0dB (green box in Figure 35). However, the 

representation of this formant is more evident in reconstructed spectrogram from 0dB 

responses (blue box in Figure 35). This pattern also is evident in the encoding of the 

consonants as shown for /t/ and /s/ in Figure 36. Again, the reconstructed noisy 
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spectrograms show a stronger representation of the high frequency features of the 

consonants /t/ and /s/ (Figure 36 black box) compared to the actual noisy 

spectrogram (Figure 36 blue box). 

 

Figure 35. Average vowel representation obtained from original and 

reconstructed spectrograms of speech at different noise level. Top three 

rows are the average vowel spectrograms from the original clean and noisy 

speech, the bottom three rows are from reconstructed spectrograms. The 

highlighted boxes show how the second formant of vowel /I/ begins to 

disappear in the original noisy spectrograms but not in the reconstructed one.  
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Figure 36.  Average consonant representation obtained from original and 

reconstructed spectrograms of speech at different noise level. Top three 

rows are the average vowel spectrograms from the original clean and noisy 

speech, the bottom three rows are from reconstructed spectrograms. The 

highlighted boxes show how features of plosive /t/ and fricative /s/ becomes 

distorted in the noisy spectrograms (third row), but not as badly in the 

reconstructed speech from noisy responses (bottom row).  

5.4.1 Phoneme discriminability in the original and reconstructed 

spectrograms 

To get an estimate of phoneme discriminability, we measured the ratio of within-class 

to between class variability in the representation of phonemes. The higher the ratio is, 

the easier it is to separate different categories. The within and between class 

variability are defined as follow: 
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Where )( j
c  is the centroid of the thj  class and c is the global centroid. By definition, 

)( wStrace  measures the within-class cohesion, while )( bStrace measures the 

between-class separation. A good representation of phonemes is the one that keeps a 

high between-class separating, and at the same time, minimizes the within-class 

cohesion resulting in a larger separability: 
)(

)(

w

b

Strace

Strace
=ρ . Here we compare this ratio 

for original and reconstructed spectrograms at different SNR levels. Figure 37 shows 

this ratio for 0dB, 6dB and clean speech. The ratio from original spectrograms is 

shown in red bars while the reconstruction is in blue. The separability in clean is 

almost the same for both original and reconstruction, however, in the degraded 

speech, the separability drops much faster for the original representation than the 

reconstructed (53% compared to 26%). Thus, the separation between the 

representations of different phonemes is more preserved in the cortical responses than 

is the case in the spectrogram. 
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Figure 37. Fisher discriminability between different phoneme categories. 

In clean, the original and reconstructed spectrograms show a similar 

discriminability, however, when noise is added the discriminability drops 

much faster for the original spectrograms compare to the reconstructed. 

5.5 Discussion 

We have illustrated the advantages and limitations of reconstructing stimulus 

spectrograms from the responses of populations of neurons in primary auditory cortex 

(AI). The inverse model, used by the method of reverse reconstruction, was 

contrasted with the forward model for estimating the STRFs and using them to 

reconstruct the stimuli. The basic difference between the two methods is the former’s 

utilization of the stimulus correlations in the reconstruction. In natural stimuli, 

including speech and music, significant correlations exist across a wide range of 

frequencies. Consequently, reconstructions with the inverse model making use of 

these priors generate far cleaner reconstructions than is possible with the forward 

model.  
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5.5.1 Characteristics of the A1 population code 

Beyond their overall fidelity, stimulus reconstructions can indicate the limits, 

tuning, and many other properties of the cortical population response, as well as of 

the stimulus features preserved in them. By judicious choice of stimuli, one can 

interrogate the ability of cortical cells to encode their parameters. The example we 

presented of the encoding of TORC spectral and temporal modulations is but one that 

is appropriate in primary auditory cortical cells that tend to phase-lock well over a 

range of rates and densities. This approach can also be beneficial in pre-cortical areas 

that follow stimulus modulations to higher rates.  

This same approach can generalize to areas outside of the auditory system. 

Rather than reconstructing the stimulus spectrogram, one can parameterize the 

stimulus in terms of other features that are correlated with neuronal responses. Such 

an approach is similar to methods for decoding movements from the population 

response in the motor system. In the visual system, reconstruction methods could be 

used to measure coding of stimulus orientation, spatial frequency and phase [63]. In 

more central areas, this approach could be used to measure information about abstract 

and learned stimulus features [64]. 

5.5.2 Encoding of Complex Features as in Speech 

 An appealing aspect of the inverse reconstruction method is the mapping of 

potentially complex acoustic features in the neural response back to the stimulus 

space, where they can be displayed intuitively. Speech is a prime example where 

much has been learned over the decades about its acoustic features almost exclusively 

in the spectrogram domain [2]. It is of course possible to explore the encoding of 
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plosive bursts and voice-onset-times [60] but this exercise requires manually 

identifying features and provides less general insight than the reconstructed 

spectrograms, where these features were defined in the first place. The disparity 

between the inverse and forward approaches becomes bigger as more cells are 

recorded and as STRFs exhibit more complex shapes that cannot be reduced to simple 

orderly mappings [57]. 

5.5.3 Interpreting Adaptive STRFs  

 A potentially exciting deployment of the “inverse” method is in detecting and 

interpreting adaptive responses as illustrated with the simple example in Figure 30. 

Changes in the STRFs at the frequency of the target tone can be revealed by the trace 

they induce in the difference between original and reconstructed spectrograms 

(Figure 30b and Figure 31a). One can extrapolate from this simple example to far 

more intricate situations where top-down influences such as attention, expectations, 

or memory can substantially modify receptive field responses and shapes. For 

instance, changes induced in detecting an amplitude-modulated target tone or a 

phoneme modified on a spectral or temporal dimension might span many frequencies 

and temporal parameters. These changes would be expressed differently in each 

STRF depending on its BF and initial spectrotemporal properties. In such a case, 

simultaneous recordings from large assemblies of primary cortical neurons may 

facilitate reconstruction of the “adapted” stimulus, and hence reveal in the 

spectrogram the features directly targeted by the top-down influences. This possibility 

suggests a means to interpret large multiunit recording methods in behavioral 

physiology in the future. 
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Chapter 6 

Applications of spectrotemporal modulations in speech 

signal processing  
 

We have shown so far, how the brain performs a multiresolution mapping to represent 

speech in a high dimensional space where different categories fall in separate 

locations in this space. Here, we use a model of this transformation in two different 

speech processing tasks. In the first application, we show how speech has a very 

different characteristics in the cortical representation and we use this fact to 

discriminate between speech and other sounds. In the second task, we use this 

separation to part speech from noise and subsequently achieve noise suppression.   

6.1 A computational model for spectrotemporal features 

The computational auditory model is based on neurophysiological, biophysical, and 

psychoacoustical investigations at various stages of the auditory system [65]–[11]. It 

consists of two basic stages. An early stage models the transformation of the acoustic 

signal into an internal neural representation referred to as an auditory spectrogram. A 

central stage analyzes the spectrogram to estimate the content of its spectral and 

temporal modulations using a bank of modulation-selective filters mimicking those 

described in a model of the mammalian primary auditory cortex [65]. This stage is 

responsible for extracting the key features upon which the classification is based. 

6.1.1 Early auditory system 

The stages of the early auditory model are illustrated in Figure 38. The acoustic 

signal entering the ear produces a complex spatiotemporal pattern of vibrations along 
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the basilar membrane of the cochlea. The maximal displacement at each cochlear 

 

 Figure 38. Schematic of the early stages of auditory processing. (1) 

Sound is analyzed by a model of the cochlea consisting of a bank of 128 

constant-Q bandpass filters with center frequencies equally spaced on a 

logarithmic frequency axis (tonotopic axis). (2) Each filter output is then 

transduced into auditory-nerve patterns by a hair cell stage which is modeled 

as a 3-step operation: a highpass filter (the fluid-cilia coupling), followed by 

an instantaneous nonlinear compression (gated ionic channels) and then a 

lowpass filter (hair cell membrane leakage). (3) Finally, a lateral inhibitory 

network detects discontinuities in the responses across the tonotopic axis of 

the auditory nerve array by a first-order derivative with respect to the 

tonotopic axis and followed by a half-wave rectification. The final output of 

this stage (auditory spectrogram) is obtained by integrating YLIN over a short 

window, mimicking the further loss of phase-locking observed in the 

midbrainphase-locking observed in the midbrain. 

 

point corresponds to a distinct tone frequency in the stimulus, creating a 

tonotopically-ordered response axis along the length of the cochlea. Thus, the basilar 

membrane can be thought of as a bank of constant- highly asymmetric bandpass 

filters (Q = 4) equally spaced on a logarithmic frequency axis. In brief, this operation 
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is an affine wavelet transform of the acoustic signal. This analysis stage is 

implemented by a bank of 128 overlapping constant-Q (QERB = 5.88) bandpass 

filters with center frequencies (CF) that are uniformly distributed along a logarithmic 

frequency axis (f), over 5.3 octaves (24 filters/octave). The impulse response of each 

filter is denoted by hcochlea (t; f) . The cochlear filter outputs are then transduced 

into auditory- nerve patterns yan(t, f) by a hair cell stage which converted cochlear 

outputs into inner hair cell intracellular potentials. This process is modeled as three-

step operation: a highpass filter (the fluid-cilia coupling), followed by an 

instantaneous nonlinear compression (gated ionic channels) (.)hcg , and then a 

lowpass filter (hair cell membrane leakage) )(thcµ . Finally, a lateral inhibitory 

network (LIN) detects discontinuities in the responses across the tonotopic axis of the 

auditory nerve array [66]. The LIN is simply approximated by a first-orderderivative 

with respect to the tonotopic axis and followed by a half-wave rectifier to produce 

),( ftyLIN . The final output of this stage is obtained by integrating ),( ftyLIN  over a 

short window, ),( τµ tmidbrain with time constant 8=τ  ms mimicking the further loss of 

phase-locking observed in the midbrain. This stage effectively sharpens the 

bandwidth of the cochlear filters from about Q = 4 to 12 [65]. The mathematical 

formulation for this stage can be summarized as follows: 
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where ∗ denotes convolution in time. The above sequence of operations effectively 

computes a spectrogram of the speech signal (Figure 38, right) using a bank of 



 

 93 

 

constant-Q filters, with a bandwidth tuning Q of about 12 (or just under 10% of the 

center frequency of each filter). Dynamically, the spectrogram also encodes explicitly 

all temporal envelope modulations due to interactions between the spectral 

components that fall within the bandwidth of each filter. The frequencies of these 

modulations are naturally limited by the maximum bandwidth of the cochlear filters. 

6.1.2 Central Auditory System 

Higher central auditory stages (especially the primary auditory cortex) further analyze 

the auditory spectrum into more elaborate representations, interpret them, and 

separate the different cues and features associated with different sound percepts. 

Specifically, the auditory cortical model employed here is mathematically equivalent 

to a two-dimensional affine wavelet transform of the auditory spectrogram, with a 

spectro-temporal mother wavelet resembling a two-dimensional D spectro-temporal 

Gabor function. Computationally, this stage estimates the spectral and temporal 

modulation content of the auditory spectrogram via a bank of modulation-selective 

filters (the wavelets) centered at each frequency along the tonotopic axis. Each filter 

is tuned (Q = 1) to a range of temporal modulations, also referred to as rates or 

velocities (ω  in hertz) and spectral modulations, also referred to as densities or scales 

( Ω  in cycles/octave). A typical Gabor-like spectro-temporal impulse response or 

wavelet [usually called spectro-temporal response field (STRF)] is shown in Figure 

39.  

We assume a bank of directional selective STRFs (downward and upward) that are 

real functions formed by combining two complex functions of time and frequency. 
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This is consistent with physiological finding that most STRFs in primary auditory 

cortex have the quadrant separability property [33].  
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where ℜ denotes the real part, * the complex conjugate, ω and Ω the velocity (rate) 

and spectral density (scale) parameters of the filters, and θ and φ  are characteristic 

phases that determine the degree of asymmetry along time and frequency 

respectively. Functions rateH and scaleH  are analytic signals (a signal which has no 

negative frequency components) obtained from rateh  and scaleh  
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Where .̂ denotes Hilbert transformation. rateh  and scaleh  are temporal and spectral 

impulse responses defined by sinusoidally interpolating between symmetric seed 

function (.)rh (second derivative of a Gaussian function) and (.)sh (Gamma function), 

and their asymmetric Hilbert transforms 
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The impulse responses for different scales and rates are given by dilation 
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Therefore, the spectro-temporal response for an input spectrogram is given by 
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where ft ,∗ denotes convolution with respect to both t and f . It is useful to compute 

the spectro-temporal response (.)±r in terms of the output magnitude and phase of the 

downward )(+ and upward )(−  selective filters. For this, the temporal and spatial 

filters, rateh  and scaleh  can be equivalently expressed in the wavelet-based analytical 

forms (.)ωrh and (.)ωsh as  

);(ˆ);();(

);(ˆ);();(

Ω+Ω=Ω

+=

fhjfhfh

thjthth

sssw

rrr ωωωω

 

 

The complex response to downward and upward selective filters, (.)+z  and (.)−z , is 

then defined as 
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where * denotes the complex conjugate. The cortical response [66] [33] for all 

characteristic phases θ and φ  can be easily obtained from (.)+z and (.)−z as follows: 
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where ⋅ denotes the magnitude and ⋅∠  the phase. The magnitude and the phase of 

+z and −z have a physical interpretation: at any time and for all the STRFs tuned to 

the same ),,( Ωωf , the ones with 
2

−+ ∠+∠
=

zz
θ and 

2

−+ ∠−∠
=

zz
φ symmetries 

have the maximal downward and upward responses of +z and −z . These maximal 

responses are used for the purpose of classification. Where the spectro-temporal 

modulation content of the spectrogram is of particular interest, we obtain the summed 

output from all filters with identical modulation selectivity or STRFs to generate the 

rate-scale plots: [as shown in Figure 39 for speech] 
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The final view that emerges is that of a continuously updated estimate of the spectral 

and temporal modulation content of the auditory spectrogram. All parameters of this 

model are derived from physiological data in animals and psychoacoustical data in 

human subjects as explained in detail in [40], [33], and [67]. Unlike conventional 

features, our auditory-based features have multiple scales of time and spectral 

resolution. Some respond to fast changes while others are tuned to slower modulation 
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patterns; A subset are selective to broadband spectra, and others are more narrowly 

 

Figure 39. The cortical model of auditory pathway (A) The cortical multi-

scale representation of speech. The auditory spectrogram (the output of the 

early stage) is analyzed by a bank of spectrotemporal modulation selective 

filters. The spectro-temporal response field (STRF) of one such filter is shown 

which corresponds to a neuron that responds well to a ripple of 4Hz rate and 

0.5 cycle/octave scale. The output from such a filter is computed by 

convolving the STRF with the input spectrogram. The total output as a 

function of time from the model is therefore indexed by three parameters: 

scale, rate, and frequency. 

 

tuned. For this study, temporal filters (rate) ranging from 1 to 32 Hz, and spectral 

filters (scale) from 0.5 to 8.00 cycle/octave, were used to represent the spectro-

temporal modulations of the sound. 
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6.2 Speech detection 

Audio segmentation and classification have important applications in audio data 

retrieval, archive management, modern human-computer interfaces, and in 

entertainment and security tasks. In speech recognition systems designed for real 

world conditions, a robust discrimination of speech from other sounds is a crucial 

step. Speech discrimination can also be used for coding or telecommunication 

applications where nonspeech sounds are not of interest, and, hence, bandwidth is 

saved by not transmitting them or by assigning them a low resolution code. Finally, as 

the amount of available audio data increases, manual segmentation of audio sounds 

has become more difficult and impractical and alternative automated procedures are 

much needed. Speech is a sequence of consonants and vowels, nonharmonic and 

harmonic sounds, and natural silences between words and phonemes. Discriminating 

speech from nonspeech is often complicated by the similarity of many sounds to 

speech, such as animal vocalizations. As with other pattern recognition tasks, the first 

step in this audio classification is to extract and represent the sound by its relevant 

features. To achieve good performance and generalize well to novel sounds, this 

representation should be able both to capture the discriminative properties of the 

sound, and to resist distortion under various noisy conditions. Research into content-

based audio classification is relatively new. Among the earliest is the work of Pfeiffer 

et al. [68], where a 256 phase-compensated gammatone filter bank was used to 

extract audio features that mapped the sound to response probabilities. Wold et al. 

[69] adopted instead a statistical model of time-frequency measurements to represent 
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perceptual values of the sound. A common alternative approach involves the 

extraction of different higher level features to classify audio, such as Mel-frequency 

cepstral coefficients (MFCCs) along with a vector quantizer [70], or noise frame 

ratios and band periodicity along with K-nearest neighbor and linear spectral pair-

vector quantization [71], average zero-crossing rate and energy with a simple 

threshold to discriminate between speech and music [72], and an optimized 

dimensionality reduction using distortion discriminant analysis (DDA) [73]. 

Two more elaborate systems have been proposed, against which we shall compare 

our system. The first is proposed by Scheirer and Slaney [74] in which thirteen 

features in time, frequency, and cepstrum domain are used to model speech and 

music. Several classification techniques [e.g., maximum a posteriori (MAP), 

Gaussian mixture model (GMM), K nearest neighbor (KNN)] are then employed to 

achieve a robust performance. The second system is a speech/nonspeech 

segmentation technique [75] in which frame-by-frame maximum autocorrelation and 

log-energy features are measured, sorted, and then followed by linear discriminant 

analysis and a diagonalization transform. The novel aspect of our proposed system is 

a feature set inspired by investigations of various stages of the auditory system 

[65][40]. The features are computed using a model of the auditory cortex that maps a 

given sound to a high-dimensional representation of its spectro-temporal modulations. 

A key component that makes this approach practical is a multilinear dimensionality 

reduction method that by making use of multimodal characteristic of cortical 

representation, effectively removes redundancies in the measurements in each 

subspace separately, producing a compact feature vector suitable for classification. 
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6.2.1 Multilinear tensor analysis 

The output of the auditory model is a multidimensional array in which modulations 

are presented along the four dimensions of time, frequency, rate, and scale. For our 

purpose here, the time axis is averaged over a given time window which results in a 

three mode tensor for each time window with each element representing the overall 

modulations at corresponding frequency, rate, and scale. In order to obtain a good 

resolution, sufficient number of filters in each mode are required. As a consequence, 

the dimensions of the feature space are very large (5 scale filters * 12 rate filters *128 

frequency channels = 7680). Working in this feature space directly is impractical 

because a sizable number of training samples is required to characterize the space 

adequately [76]. Traditional dimensionality reduction methods like principal 

component analysis (PCA) are inefficient for multidimensional data because they 

treat all the elements of the feature space similarly without considering the varying 

degrees of redundancy and discriminative contribution of each mode. Instead, it is 

possible using multidimensional PCA to tailor the amount of reduction in each 

subspace independently of others based on the relative magnitude of corresponding 

singular values. Furthermore, it is also feasible to reduce the amount of training 

samples and computational load significantly since each subspace is considered 

separately. We shall demonstrate here the utility of a generalized method for the PCA 

of multidimensional data based on higher-order singular-value decomposition 

(HOSVD) [77]. 
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6.2.2 Basic tensor definition 

 

 

Multilinear algebra is the algebra of tensors. Tensors are generalizations of scalars 

(no indices), vectors (single index), and matrices (two indices) to an arbitrary number 

of indices. They provide a natural way of representing information along many 

dimensions. Substantial results have already been achieved in this field. Tucker first 

formulated the three-mode data model [78], while Kroonenberg formulated 

alternating least-square (ALS) method to implement three mode factor analysis [79]. 

Lathauwer et al. established a generalization of singular value decomposition (SVD) 

to higher order tensors [77], and also introduced an iterative method for optimizing 

the best rank ),,,( 21 NRRR K  approximation of tensors [80]. Tensor algebra and 

HOSVD have been applied successfully in wide variety of fields including higher-

order-only independent component analysis (ICA) [81], face recognition [82], and 

selective image compression along a desired dimension [83]. 

A Tensor NIII
A

×××ℜ∈ L21 is a multi-index array of numerical values whose elements are 

denoted by 
Niiia

L21
. Matrix column vectors are referred to as mode-1 vectors and row 

vectors as mode-2 vectors. The mode-n vectors of an thN  order tensor A are the 

vectors with nI components obtained from A by varying index nI while keeping the 

other indices fixed. Matrix representation of a tensor is obtained by stacking all the 

columns (rows, …) of the tensor one after the other. The mode-n matrix unfolding of 

NIII
A

×××ℜ∈ L21 denoted by )(nA is the )( 1121 Nnnn IIIIII LL +−×  matrix whose columns 

are n-mode vectors of tensor A .  
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An thN -order tensor A has rank – 1 when it is expressible as the outer product of 

N vectors 

NUUUA oKoo 21=  

 

The rank of an arbitrary thN -order tensor A , denoted by )(Arankr =  is the minimal 

number of rank-1 tensors that yield A  in a linear combination. The −n rank of 

NIII
A

×××ℜ∈ L21 denoted by Nr , is defined as the dimension of the vector space 

generated by the mode-n vectors  

)()( )(nnn ArankArankR ==  

 

The n-mode product of a tensor NIII
A

×××ℜ∈ L21 by a matrix nn IJ
U

×ℜ∈ denoted by 

UA n× is an −××××× )( 21 Nn IJII LL tensor given by 

∑=×
n

nnNnNn

i

ijiiiiijiin uaUA
LLLL 2121

)(  

For all index values. 

 

6.2.3 Multilinear SVD and PCA 

 

Matrix singular-value decomposition orthogonalizes the space spanned by column 

and rows of the matrix. In general, every matrix D can be written as the product 

VUSVSUD T

21 ××=⋅⋅=   

in which U and V are unitary matrices contains the left- and right-singular vectors of 

D. S is a pseudodiagonal matrix with ordered singular values of D on the diagonal. If 

D is a data matrix in which each column represents a data sample, then the left 

singular vectors of D (matrix) are the principal axes of the data space. Keeping only 

the coefficients corresponding to the largest singular values of D (principal 
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components or PCs) is an effective means of approximating the data in a low-

dimensional subspace. To generalize this concept to multidimensional data, we 

consider a generalization of SVD to tensors [77]. Every -tensor can be written as the 

product 

)()2(

2

)1(

1

N

N UUUSA ×××= K  

in which )(n
U is a unitary matrix containing left singular vectors of the mode-n 

unfolding of tensor A, and S is a )( 21 NIII ××× K  tensor which has the properties of 

all-orthogonality and ordering. The matrix representation of the HOSVD can be 

written as 

( )TnNn

n

n

n UUUUUSUA
)1()2()1()()1(

)(

)(

)( . −+ ⊗⊗⋅= LL  

 

in which ⊗ denotes the Kronecker product. The previous equation can also be 

expressed as  

T
nnn

n VUA
)()()(

)( ⋅Σ⋅=  

 

in which )(nΣ is a diagonal matrix made by singular values of )(nA and  

 

( ))1()2()1()()1()( −+ ⊗⊗= nNnn UUUUUV LL  

 

This shows that, at matrix level, the HOSVD conditions lead to an SVD of the matrix 

unfolding. Lathauwer et al. shows [77] that the left-singular matrices of the different 

matrix unfolding of A correspond to unitary transformations that induce the HOSVD 

structure which in turn ensures that the HOSVD inherits all the classical space 

properties from the matrix SVD. HOSVD results in a new ordered orthogonal basis 

for representation of the data in subspaces spanned by each mode of the tensor. 

Dimensionality reduction in each space is obtained by projecting data samples on 



 

 104 

 

principal axes and keeping only the components that correspond to the largest 

singular values of that subspace. However, unlike the matrix case in which the best 

rank-R approximation of a given matrix is obtained from the truncated SVD, this 

procedure does not result in optimal approximation in the case of tensors. Instead, the 

optimal best ),,,( 21 NRRRrank K− approximation of a tensor can be obtained by an 

iterative algorithm in which HOSVD provides the initial values [80]. 

6.2.4 Multilinear analysis of cortical representation 

 

The auditory model transforms a sound signal to its corresponding time-varying 

cortical representation. Averaging over a given time window results in a cube of data 

in rate-scale-frequency space. Although the dimension of this space is large, its 

elements are highly correlated making it possible to reduce the dimension 

significantly using a comprehensive data set, and finding new multilinear and 

mutually orthogonal principal axes that approximate the real space spanned by these 

data. The assembled training set contains 1223 samples from speech and nonspeech 

classes. The resulting data tensor D, obtained by stacking all training tensors is a 

5*12*128*1223 tensor. Next, the tensor is decomposed to its mode-n singular vectors 

samplesscaleratefrequency UUUUSD 4321 ××××=  

In which frequencyU , rateU , and scaleU are orthonormal ordered matrices containing 

subspace singular vectors, obtained by unfolding D along its corresponding modes. 

Tensor S is the core tensor with the same dimensions as D.  Each singular matrix is 

then truncated by setting a predetermined threshold so as retain only the desired 

number of principal axes in each mode. New sound samples are first transformed to 
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their cortical representation, A, and are then projected onto these truncated 

orthonormal axes ''' ,, scaleratefreq UUU  (as shown in Fig. 3) 

T

scale

T

rate

T

freq UUUAZ
'

3

'

2

'

.1 ×××=  

The resulting tensor Z whose dimension is equal to the total number of retained 

singular vectors in each mode, thus, contains the multilinear cortical principal 

components of the sound sample. Z is then vectorized and normalized by subtracting 

its mean and dividing by its norm to obtain a compact feature vector for 

classification. 

 

 

6.2.5 Classification 

Classification was performed using a support vector machine (SVM) [84], [85]. 

SVMs find the optimal boundary that separates two classes in such a way as to 

maximize the margin between separating boundary and closest samples to it (support 

vectors). This in general results in improving generalization from training to test data 

[84]. Radial basis function (RBF) was used as SVM kernel. 

6.2.6  Experimental results 

Audio database  

 

Figure 40. Illustration of Tensor dimensionality reduction 
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An audio database was assembled from five publicly available corpora. Details of 

the database are as follows. Speech samples were taken from TIMIT Acoustic-

Phonetic Continuous Speech Corpus [24] which contains short sentences spoken by 

male and female native English speakers with eight dialects. Two hundred ninety-

nine different sentences spoken by different speakers (male and female) were selected 

for training and 160 different sentences spoken by different speakers (male and 

female) were selected for test purpose. Sentences and speakers in training and test 

sets were also different. To make the nonspeech class as comprehensive as possible, 

sounds from animal vocalizations, music, and environmental sounds were assembled 

together. Animal vocalization were taken from BBC Sound Effects audio CD 

collection [86] (263 for training, 139 for test). Music samples that covered a large 

variety of musical styles were selected from RWC genre database [87] (349 for 

training, 185 for test). Environmental sounds were assembled from Noisex [88] and 

Auroa [89] databases which have stationary and nonstationary sounds including white 

and pink noise, factory, jets, destroyer engine, military vehicles, cars, and several 

speech babble recorded in different environments like restaurant, airport, and 

exhibition (312 for training, 167 for test). The training set included 299 speech and 

924 nonspeech samples and the test set consisted of 160 speech and 491 nonspeech 

samples. The length of each utterance in training and test is equal to the selected time 

window (e.g., one 1-s sample per sound file). 

Number of principal components 

 

The number of retained PCs in each subspace is determined by analyzing the 

contribution of each PC to the representation of associated subspace. The contribution 
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of thj  principal component of subspace iS whose corresponding eigenvalue is ji,λ is 

defined as 

∑
=

=
iN

k

ki

ji

ji

1

,

,

,

λ

λ
α  

 

where iN  denotes the dimension of iS  (128 for frequency, 12 for rate and 5 for 

scale). The number of PCs in each subspace then can be specified by including only 

the PCs whose α  is larger than some threshold. The classification accuracy on a 

validation set was used to determine the number of PCs used in each subspace. Based 

on this analysis, the minimum number of principal components to achieve 100% 

accuracy was specified to be 7 for frequency, 5 for rate and 4 for scale subspace that 

includes PCs that have contribution of 3.5% or more. 

 

Figure 41. Effect of window length on the percentage of correctly 

classified speech and non-speech 

 

6.2.7 Comparison and results 

To evaluate the robustness and the ability of system to generalize to unseen noisy 

conditions, we conducted a comparison with two state-of-the-art studies, one from 
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generic-audio analysis community by Scheirer and Slaney [74] and one from 

automatic-speech-recognition community by Kingsbery et al. [75]. Multifeature [74]: 

 

Figure 42.  Percentage of correctly classified speech and non-speech in 

noise and reverberation. The percentages are shown for auditory model, 

multifeature[74] and voicing-energy[75] methods in additive white noise (left 

panels), additive pink noise (middle panels) and reverberation (right panels).   

 

The first system, which was originally designed to distinguish speech from music, 

derived 13 features in time, frequency, and cepstrum domain to represent speech and 

music. The features were 4-Hz modulation energy, percentage of “low-energy” 

frames, spectral rolloff point, spectral centroid, spectral flux, zero-crossing rate, 

cepstrum resynthesis residual, and their variances. The 13th feature, pulse metric, was 

neglected for this comparison since its latency was too long (more than 2 s). In the 

original system, two models were formed for speech and music in the feature space. 

Classification was performed using a likelihood estimate of a given sample for each 

model.  
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To eliminate performance differences due to the use of different classifiers, an SVM 

with an RBF kernel was used in all comparisons. Our implementation of the system 

was first evaluated on the original database and similar or better results were obtained 

with SVM compared to the original publication [74]. Voicing-Energy [75]: A second 

system was tested that was based on an audio segmentation algorithm from the ASR 

work [75]. In the proposed technique, the feature vector used in the segmentation 

incorporated information about the degree of voicing and frame-level log-energy 

value. Degree of voicing is computed by finding the maximum of autocorrelation in a 

specified range, whereas log-energy was computed for every short frame of sound 

weighted with a Hanning window. Several frames of these features were then 

concatenated and sorted in increasing order, and the resulting feature vector was 

reduced to two dimensions by a linear discriminant analysis followed by 

diagonalizing transform. The reason for sorting the elements was to eliminate details 

of temporal evolutions which were not relevant for this task. Our evaluation of 

Kingsbury’s system suggested that direct classification of the original sorted vector 

with an SVM classifier similar to the other two systems outperformed the one in 

reduced dimension. For this reason, the classification was performed in the original 

feature space. Our auditory model and the two benchmark algorithms from the 

literature were trained and tested on the same database. One of the important 

parameters in any such speech detection/discrimination task is the time window or 

duration of the signal to be classified, because it directly affects the resolution and 

accuracy of the system.  Figure 41 demonstrate the effect of window length on the 
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percentage of correctly classified speech and nonspeech. In all three methods, some 

features may not give a meaningful measurement when the time window is too short. 

The accuracy of all three systems improve as the time window increases. Audio 

processing systems designed for realistic applications must be robust in a variety of 

conditions because training the systems for all possible situations is impractical. 

Detection of speech at very low SNR is desired in many applications such as speech 

enhancement in which a robust detection of nonspeech (noise) frames is crucial for 

accurate measurement of the noise statistics [90]. A series of tests were conducted to 

evaluate the generalization of the three methods to unseen noisy and reverberant 

sound. Classifiers were trained solely to discriminate clean speech from nonspeech 

and then tested in three conditions in which speech was distorted with noise or 

reverberation. In each test, the percentage of correctly detected speech and nonspeech 

was considered as the measure of performance. For the first two tests, white and pink 

noise were added to speech with specified signal to noise ratio (SNR). White and pink 

noise were not included in the training set as nonspeech samples. SNR was measured 

from the average power of speech and noise 

n

s

P

P
SNR log10=  

Figure 42 left and middle column illustrate the effect of white and pink noise on the 

average spectro-temporal modulations of speech. The spectro-temporal representation 

of noisy speech preserves the speech specific features (e.g., near 4 Hz, 2 cycle/octave) 

even at SNR as low as 0 dB (Figure 43, top and middle rows). The detection results 

for speech in white noise (Figure 42, left column) demonstrate that while the three 

systems have comparable performance in clean conditions, the auditory features 
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remain robust down to fairy low SNRs. This pattern is repeated with additive pink 

 

Figure 43.  Effect of white and pink noise and reverberation on average 

rate-scale representation of speech. (top row) Effect of white noise on 

average spectro-temporal modulations of speech for SNRs −15dB, 0dB and 

15dB. The spectro-temporal representation of noisy speech preserves the 

speech specific spectro-temporal features (e.g. near 4Hz, 2Cyc/Oct) even at 

SNR as low as 0 dB. (middle row) Effects of pink noise on average spectro-

temporal modulations of speech for different SNRs −15dB, 0dB and 15dB. 

The speech specific spectrotemporal features (e.g. near 4Hz, 2Cyc/Oct) are 

preserved even at SNR as low as 0 dB. (bottom row) Effects of reverberation 

on average spectro-temporal modulations of speech for time delays 200ms, 

400ms and 600ms. Increasing the time delay results in gradual loss of high-

rate temporal modulations of speech. 

 

noise although performance degradation for all systems occurs at higher SNRs 

(Figure 42, middle) because of more overlap between speech and noise energy. 
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Reverberation is another widely encountered distortion in realistic applications. To 

examine the effect of different levels of reverberation on the performance of these 

systems, a realistic reverberation condition was simulated by convolving the signal 

with a random gaussian noise with exponential decay. The effect on the average 

spectro-temporal modulations of speech are shown in Figure 43. Increasing the time 

delay results in gradual loss of high-rate temporal modulations of speech. Figure 42 

demonstrate the effect of reverberation on the classification accuracy. 

On the whole, these tests demonstrate the significant robustness of the auditory 

model. 

6.2.8 Conclusions 

A spectro-temporal auditory method for audio classification and segmentation has 

been described, tested, and compared to two state-of-the-art alternative approaches. 

The method employs features extracted by a biologically inspired auditory model of 

auditory processing in the cortex. Unlike conventional and spectral resolution. The 

drawback of such a representation is its high dimensionality, and, hence, to utilize it, 

we applied an efficient multilinear dimensionality reduction algorithm based 

on HOSVD of multimodal data. The performance of the proposed auditory system 

was tested in noise and reverberation and compared favorably with alternative 

systems, thus, demonstrating that the proposed system generalizes well to novel 

situations, an ability that is generally lacking in many of today’s audio and speech 

recognition and classification systems. The success of these multiscale features for 

this speech detection task suggests that these features are more worth investigating for 

speech recognition or noise suppression than conventional approaches based on 
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simple cepstral features. This work is but one in a series of efforts at incorporating 

multiscale cortical representations (and more broadly, perceptual insights) in a variety 

of audio and speech processing applications. For example, the deterioration of the 

spectro-temporal modulations of speech in noise and reverberation (Figure 43), or 

indeed under any kind of linear or nonlinear distortion, can be used as an indicator of 

predicted speech intelligibility [91]. Similarly, the multiscale rate-scale-frequency 

representation can account for the perception of complex sounds and perceptual 

thresholds in a variety of settings [92]. Finally, the auditory model can be adapted and 

expanded for a wide range of applications such as the speech enhancement [90], or 

the efficient encoding of speech and music [93]. 

6.3 Speech enhancement 

Noise suppression with complex broadband signals is often employed in order to 

enhance quality or intelligibility in a wide range of applications including mobile 

communication, hearing aids, and speech recognition. In speech research, this has 

been an active area of research for over fifty years, mostly framed as a statistical 

estimation problem in which the goal is to estimate speech from its sum with other 

independent processes (noise). This approach requires an underlying statistical model 

of the signal and noise, as well as an optimization criterion. In some of the earliest 

work, one approach was to estimate the speech signal itself [94]. When the distortion 

is expressed as a minimum mean-square error, the problem reduces to the design of 

an optimum Wiener filter. Estimation can also be done in the frequency domain, as is 

the case with such methods as spectral subtraction [94], the signal subspace approach 

[95], and the estimation of the short-term spectral magnitude [96]. Estimation in the 
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frequency domain is superior to the time domain as it offers better initial separation of 

the speech from noise, which (1) results in easier implementation of optimal/heuristic 

approaches, (2) simplifies the statistical models because of the decorrelation of the 

spectral components, and (3) facilitates integration of psychoacoustic models [97]. 

Recent psychoacoustic and physiological findings in mammalian auditory systems, 

however, suggest that the spectral decomposition is only the first stage of several 

interesting transformations in the representation of sound. Specifically, it is thought 

that neurons in the auditory cortex decompose the spectrogram further into its 

spectrotemporal modulation content [98]. The focus of this section is an application 

of this model to the problem of speech enhancement. The rationale for this approach 

is the finding that modulations of noise and speech have a very different character, 

and hence they are well separated in this multiscale representation, more than the case 

at the level of the spectrogram. Modulation frequencies have been used in noise 

suppression before (e.g., [99]), however this study is different in several ways: (1) the 

proposed method is based on filtering not only the temporal modulations, but the joint 

spectrotemporal modulations of speech; (2) modulations are not used to obtain the 

weights of frequency channels. Instead, the filtering itself is done in the 

spectrotemporal modulation domain; (3) the filtering is done only on the slow 

temporal modulations of speech (below 32 Hz) which are important for intelligibility. 

A key computational component of this approach is an invertible auditory model 

which captures the essential auditory transformations from the early stages up to the 

cortex, and provides an algorithm for inverting the “filtered representation” back to 

an acoustic signal.  
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6.3.1 Multiresolution representation of speech and noise 

In this section, we explain how the cortical representation captures the modulation 

content of sound. We also demonstrate the separation between representation of 

speech and different kind of noise which is due to their distinct spectrotemporal 

patterns. The output of the cortical model described is a 4-dimensional tensor with 

each point indicating the amount of energy at corresponding time, frequency, rate, 

and scale ( z±(t,f,ω,Ω) ). One can think of each point in the spectrogram (e.g., time tc 

and frequency fc in Figure 45) as having a two-dimensional rate-scale representation 

(z ± (tc, fc,ω,Ω)) that is an estimate of modulation energy at different temporal and 

spectral resolutions. The modulation filters with different resolutions capture local 

and global information about each point as shown in Figure 45 for time tc and 

frequency fc of the speech spectrogram. In this example, the temporal modulation has 

a peak around 4Hz which is the typical temporal rate of speech. The spectral 

modulation, scale, on the other hand spans a wide range reflecting at its high end the 

harmonic structure due to voicing (2–6 Cycle/Octave) and at its low end the spectral 

envelope or formants (less than 2 Cycle/Octave). Another way of looking at the 

modulation content of a sound is to collapse the time dimension of the cortical 

representation resulting in an estimate of the average rate-scale-frequency modulation 

of the sound in that time window. This average is useful, especially when the sound is 

relatively stationary as is the case for many background noises and is calculated in the 

following way: 

dttfzfU

t

t

∫ Ω=Ω ±±

2

1

),,,(),,( ωω  
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Figure 44 shows the average multiresolution representation (U±) of speech and four 

different kinds of noise chosen from Noisex database [100]. Top row of Figure 44 

shows the spectrogram of speech, white, jet, babble, and city noise. These four kinds 

of noise are different in their frequency distribution as well as in their 

spectrotemporal modulation pattern as demonstrated in Figure 44. Rows B, C, and D 

in Figure 44 show the average rate-scale, scale-frequency, and rate-frequency 

representations of the corresponding sound calculated from the average rate-scale-

frequency representation (U±) by collapsing one dimension at a time. As shown in 

rate-scale displays in Figure 44b, speech has strong slow temporal and low-scale 

modulation; on the other hand, speech babble shows relatively faster temporal and 

higher spectral modulation. Jet noise has a strong 10Hz temporal modulation which 

also has a high scale because of its narrow spectrum. White noise has modulation 

energy spread over a wide range of rates and scales. Figure 44c shows the average 

scale-frequency representation of the sounds, demonstrating how the energy is 

distributed along the dimensions of frequency and spectral modulation. Scale-

frequency representation shows a notable difference between speech and babble noise 

with speech having stronger low-scale modulation energy. Finally, Figure 44d shows 

the average rate frequency representation of the sounds, that shows how energy is 

distributed in different frequency channels and temporal rates. Again, jet noise shows 

a strong 10Hz temporal modulation at frequency 2 KHz. White noise on the other 

hand activates most rate and frequency filters with increasing energy for higher-

frequency channels reflecting the increased bandwidth of constant-Q auditory filters. 

Babble noise activates low and mid frequency filters better, similar to speech but at 
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higher rates. City noise also activates wide range of filters. As Figure 44 shows that 

spectrotemporal modulations of speech have very different characteristics than the 

four noises, which is the reason we can discriminately keep its modulation 

components while reducing the noise ones. The three-dimensional average noise 

modulation is what we used as the noise model in the speech enhancement algorithm 

as described in the next section. 

 

Figure 44. Auditory spectrogram and average cortical representations of 

speech and four different kinds of noise. Row (a): auditory spectrogram of 

speech, white, jet, babble, and city noise taken from Noisex database. Row 

(b): average rate-scale representations of sound demonstrate the distribution of 

energy in different temporal and spectral modulation filters. Speech is well 

separated from the noises in this representation. Row (c): average scale-

frequency representations. jet have mostly high scales because of its narrow-

band frequency distributions. Row (d): average rate-frequency representations 

show the energy distributions in different frequency channels and rate filters. 
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6.3.2 Estimation of noise modulations 

A crucial factor in affecting the performance of any noise suppression technique is 

the quality of the background noise estimation. In spectral subtraction algorithms, 

several techniques have been proposed that are based on three assumptions: (1) 

speech and noise are statistically independent, (2) speech is not always present, and 

(3) the noise is more stationary than speech [97]. One of these methods is voice 

activity detection (VAD) that estimates the likelihood of speech at each time window 

and then uses the frames with low likelihood of speech to update the noise model. 

One of the common problems with VADs is their poor performance at low SNRs. To 

overcome this limitation, we employed the speech detector (also based on the cortical 

representation) which detected speech reliably at SNR’s as low as −5dB as described 

in the previous section. The frames marked by the SVM as nonspeech are then added 

to the noise model (N±),which is an estimate of noise energy at each frequency, rate, 

and scale: 

dtftzfN
framesnoise

∫ Ω=Ω ±± ),,,(),,( ωω  

As shown in Figure 44, this representation is able to capture the noise information 

beyond just the frequency distribution, as is the case with most spectral subtraction-

based approaches. Also, as can be seen in Figure 3, speech and most kinds of noises 

are well separated in this domain. 

6.3.3 Noise Suppression 

The exact rule for suppressing noise coefficients is a determining factor in the 

subjective quality of the reconstructed enhanced speech, especially with regards to the 

reduction of musical noise [97]. Having the spectrotemporal representation of noisy 
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sound and the model of noise average modulation energy, one can design a rule that 

suppresses the modulations activated by the noise and emphasize the ones that are 

from the speech signal. One possible way of doing this is to use a Wiener filter in the 

following form: 
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where ±N is the noise model calculated by averaging the cortical representation of 

noise-only frames and SN is the cortical representation of noisy speech signal. The 

resulting gain function maintain the output of filters with high SNR values while 

attenuating the output of low-SNR filters: 

 

),,,(),,,(),,,(ˆ Ω⋅Ω=Ω ±±± ωωω ftHftzftz  

ẑ is the modified (denoised) cortical representation from which the cleaned speech is 

reconstructed. This idea is demonstrated in Figure 45. Figure 45A shows the 

spectrogram of a speech sample contaminated by jet noise and its rate scale 

representation at time tc and frequency fc (Figure 45A) which is a point in the 

spectrogram that noise and speech overlap. This type of noise has a strong temporally 

modulated tone (10 Hz) at frequency around 2 KHz. The rate-scale representation of 

the jet noise for the same frequency, fc, is shown in Figure 45B. Comparing the noisy 

speech representation with the one from noise model, it is easy to see what parts 

belong to noise and what parts come from the speech signal. Therefore, we can 

recover the clean rate-scale representation by attenuating the modulation rates and 
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scales that show strong energy in the noise model. This intuitive idea is performed by 

 

Figure 45. Filtering the rate-scale representation: modulations due to the 

noise are filtered out by weighting the rate-scale representation of noisy 

speech with the function H(t, f ,ω,Ω). In this example, the jet one noise from 

Noisex was added to clean speech at SNR 10 dB. The rate-scale 

representation of the signal, rs(tc , fc ,ω,Ω) and the rate-scale representation of 

noise, N(tc , fc ,ω,Ω) were used to obtain the necessary weighting as a 

function of ω and Ω (11). This weighting was applied to the rate-scale 

representation of the signal, rs(tc , fc ,ω,Ω) to restore modulations typical of 

clean speech. The restored modulation coefficients were then used to 

reconstruct the cleaned auditory spectrogram, and from it the corresponding 

audio signal. 

 

the Wiener filter which for this example results in the function shown in Figure 45C. 

The H function has low gain for fast modulation rates and high scales that are due to 

the background noise (as shown in Figure 45B), while emphasizing the slow 

modulations (<5 Hz) and low scales (<2 cyc/oct) that come mostly from speech 

signal. Multiplication of this rate-scale-frequency gain which is a function of time, 
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and the noisy speech representation results in denoised representation which is then 

used to reconstruct the spectrogram of the cleaned speech signal using the inverse 

cortical transformation (Figure 46). 

 

6.3.4 Results from experimental evaluations 

To examine the effectiveness of the noise suppression algorithm, we used subjective 

and objective tests to compare the quality of denoised signal with the original and a 

Wiener filter noise suppression method by Scalart and Filho [101] implemented in 

[102]. The noisy speech sentences were generated by adding four different kinds of 

noise: white, jet, babble, and city from Noisex [100] to eight clean speech samples 

from TIMIT [24]. The test material was prepared at three SNR values: 0, 6, and 12 

dB. We used mean opinion score (MOS) test to evaluate the subjective quality of the 

denoising algorithm. In the subjective quality tests, ten subjects were asked to score  
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Figure 46. Examples of restored spectrograms after “filtering” of 

spectrotemporal modulations. Jet noise from Noisex was added to speech at 

SNRs 12 dB (top), 6 dB (middle) and 0 dB (bottom) panels. Left panels show 

the original noisy speech and right panels show the denoised ones. The clean 

speech spectrum has been restored although the noise has a strong temporally 

modulated tone (10 Hz) mixed in with the speech signal near 2 kHz (indicated 

by the arrow). 

 

the quality of the original and denoised speech samples between one (bad) and five 

(excellent). All subjects had prior experience in psychoacoustics experiments and had 

self-reported normal hearing. The sounds were presented in a quiet room over 

headphones at a comfortable listening level (approximately 70 dB) and the responses 

were collected using a computer interface. Figure 47 shows the MOS score and the 

errorbars for the original and denoised signals using modulation and Wiener methods. 

The results are shown for four types of noise and three SNR levels. In most stationary 
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noise conditions, subjects reported the highest scores for the modulation method. 

 

Figure 47. Subjective and objective scores on a scale of 1 to 5 for 

degraded and denoised speech using modulation and Wiener methods. 

(a): Subjective MOS scores and errorbars averaged over ten subjects for 

white, jet, babble, and city noise. (b): Objective scores and errorbars 

transformed to a scale of 1 to 5 for degraded and denoised speech using 

modulation and Wiener methods. 

 

However, for the nonstationary sounds, the modulation method outperformed the 

Wiener methods in the babble tests, and produced comparable results for the city 

sounds. In addition, we conducted objective test using perceptual evaluation of 

speech quality (PESQ) [103] measure for the twelve conditions to obtain the objective 

score for each sample. The resulting scores and their errorbars are reported in Figure 

47b. PESQ gives higher scores for the modulation method in the stationary 

conditions, but the performance in this measure appears comparable for the 

nonstationary conditions. Our method performs better for stationary noise because of 
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its ability to model the average spectrotemporal properties of the stationary noise 

better. This also explains the better performance in the babble speech since the babble 

is relatively “stationary” in its long-term spectrotemporal behavior, especially 

compared to the city noise which fluctuates considerably. 

6.3.5 Conclusions 

We have described a new approach for the denoising of contaminated broadband 

complex signals such as speech. In this method, the noisy signal is first transformed 

to the spectrotemporal modulation domain in which the speech and noise are 

separated based on their distinct modulation patterns. 

This allows for the possibility of suppressing noise even when it spectrally overlaps 

with the desired signal. The spectrotemporal representation used is based on a model 

of auditory processing inspired by physiological data from the mammalian primary 

auditory cortex. Subjective and objective tests are reported that they demonstrate the 

effectiveness of this method in enhancing the quality of speech without introducing 

artifacts or substantially deleting spectrally overlapping speech energy. 
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Chapter 7 
 

Conclusions 

7.1 Thesis overview 

This thesis is an attempt to fill the gap between what we know about the physiology 

of speech and engineering models that can be applied to speech processing systems. 

To investigate the neural basis of speech perception, we observed how neuronal 

responses to continuous speech in the primary auditory cortex of the naive ferret 

reveal an explicit multidimensional representation that is sufficiently rich to support 

the discrimination of many American English phonemes. This representation is made 

possible by the wide range of spectro-temporal tuning in A1 to stimulus frequency, 

scale and rate. The great advantage of such diversity is that there is always a unique 

sub-population of neurons that responds well to the distinctive acoustic features of a 

given phoneme and hence encodes that phoneme in a high-dimensional space.  In 

addition, using a method of stimulus reconstruction from the population of neurons in 

the auditory cortex, we showed how we can investigate the neural code for speech, 

and observed a remarkable robustness of the cortical representation to noise and 

distortions.  

We then explored the efficacy of a simple spectro-temporal receptive field model of 

auditory cortical neurons and showed that this model is capable of predicting the 

selectivity of auditory cortical neurons to phoneme categories. This is an important 

step toward building systems that use this knowledge. In fact, we showed how 

systems that use such a representation can achieve state of the art performance 

operating better than many traditional methods. 
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7.2 Future directions 

 

We have focused here on describing a few prominent features of the response 

distributions that correspond to well-known distinctive acoustic features of the 

consonants considered. There are clearly many other aspects and more details of the 

responses that reflect intricate articulatory gestures, contextual effects, or speaker-

dependent variability that can only be reliably considered with a much larger sample 

of responses. The representation of phonemic features across a population of filters 

tuned to BF, scale and rate suggests a strategy for improved speech recognition 

systems, and further study may reveal additional strategies for speech processing. 

However, many questions about the neural representation of phonemes still remain 

unclear; for example, how can one extrapolate from such neurophysiological findings 

to the human perceptual ability to perceive phonemes categorically and to shift 

categorical boundaries arbitrarily between phoneme pairs. In addition, although we 

showed how the linear spectrotemporal models predict the selective representation 

observed in the auditory neurons, the current models are unable to explain the noise 

robustness of the representation observed in the cortex. In order to enhance the 

performance of speech processing systems, we need to understand the mechanism and 

the theory behind this noise robustness which is likely to be the result of nonlinear 

adaptation in the neurons. 
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