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Plants are considered biological factories with their ability of converting solar 

energy into chemical energy in the form of various commercially valuable products, 

such as food, biofuel and pharmaceuticals. The yields of these products are directly 

influenced by the level of nitrogen nutrient supply. However, both biological and 

industrial nitrogen fixation are energetically expensive and thus managing the 

nitrogen cycle has been identified as one of the 14 grand challenges by the National 

Academy of Engineering (NAE). Therefore it is desirable to investigate how plants 

themselves adapt to nitrogen deficient environment and improve their nitrogen use 

efficiency (NUE). A powerful tool to study metabolism is isotope-assisted metabolic 

flux analysis (isotopic MFA), which quantifies intracellular chemical reaction rates 

(fluxes) via isotopic labeling experiments (ILEs) and subsequent mathematical 

modeling. In ILEs the labeling patterns of the metabolites can be measured at either 

  



isotopic steady state or isotopic instationary state. Between these two methods, 

collecting data during isotopic instationary state saves experimental time, but is 

computationally more challenging due to that instationary MFA involves solving 

ordinary differential equations (ODEs). In this study, we firstly developed an 

approach that combined the concept of “originomer” with an analytical based solution 

method to improve computational efficiency of instationary MFA. Simulation results 

showed that this approach reduced computational time by 23-fold for certain realistic 

metabolic network. Secondly, we managed to solve an intrinsic problem that affect 

steady state MFA in fed-batch cell culture environment – the influence of unlabeled 

biomass that are present before applying isotopic tracers in an ILE. We proposed a 

full “reflux” metabolic network model that significantly improved the accuracy of 

evaluated fluxes when compared to the models without “reflux”. Finally, we 

investigated the ability of adapting nutrient deficiencies and the NUE-improving 

mechanisms in suspension cells of poplar, a woody perennial tree capable of 

efficiently managing its nitrogen reserves. Through (i) steady-state 13C MFA and (ii) 

transcripomic profiling via microarray on poplar cells growing under different carbon 

(C) and nitrogen (N) supply levels, we found a plastidic localization of oxidative 

pentose phosphate pathway (oxPPP), as well as a lower oxPPP flux under low 

nitrogen supply. Gene expression data also points to possible NUE improving 

mechanisms employed by poplar cells. We hope this study will shed light on potential 

metabolic engineering directions to improve NUE in plants. 
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Chapter 1: Introduction  

1.1. Background and Motivation 

Plants are biological factories with their ability of converting solar energy into 

chemical energy in the form of various commercially valuable products. The yields of 

these products are directly influenced by the availability of carbon and nitrogen 

nutrients. The atmosphere primarily consists of nitrogen gas (N2, ~78%), oxygen gas 

(O2, ~21%), carbon dioxide (CO2, ~0.039%) and small amount of other gases. 

Although plants are capable of fixing atmospheric CO2 through photosynthesis, most 

plants are not able to directly utilize N2 for biomass production. The reduction of N2 

to ammonia (NH4+), the nitrogen nutrient form that can be assimilated by plants, is 

accomplished either industrially or biologically. However, since the bond energy of 

N2 is as high as 942 KJ/mol, nitrogen fixation is energetically expensive. For example, 

the industrial N2 fixation to produce fertilizers, also known as the “Haber process”, 

requires reactors operating at a temperature of 400-500 °C and a pressure of 150-250 

atm, with a relatively low yield of ~15% in each reactor (Marschner, 2012). 

Biologically, fixing one mole of N2 demands the energy equivalent to the hydrolysis 

of 16 moles of ATP (Lehninger, 2005). These energetic drawbacks, combined with 

the detrimental influence on the environment of using chemically synthesized 

fertilizers, makes it crucial to understand how plants themselves adapt to nitrogen 

deficient environment and how to improve their NUE. It has been estimated that an 

increase of 1% of the NUE by crops leads to annual savings of ~234 million dollars in 

fertilizer production (Raun and Johnson, 1999). 
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Wooden perennial trees are generally capable of managing their nitrogen 

cycle efficiently. Poplar, in particular, is able to recycle around 80% of its nitrogen 

reserves from senescing leaves during fall and store them in the form of bark storage 

proteins (BSPs) (Cantón et al., 2005; Pregitzer et al., 1990; Zhu and Coleman, 2001). 

There stored nitrogen can be remobilized in spring for de novo biomass synthesis. 

This efficient nitrogen recycling mechanism reduces the consumption of ATPs and 

reductants needed to assimilate nitrogen nutrient from the environment (Nunes-Nesi 

et al., 2010) and thus promote growth of the plant. In fact, poplar is one of the most 

fast growing perennial trees in the world (Stanturf et al., 2001), which makes it an 

ideal crop for various applications including biofuel and paper production (Sannigrahi 

et al., 2010). Together with the fact that the full genome of poplar has been sequenced  

(Tuskan et al., 2006), studying metabolism in poplar cells is of particular interest. 

 

Despite the importance of nitrogen as a nutrient, it is currently extremely 

difficult to predict the relationship between nitrogen deficiency and the concomitant 

poor performance of plants (Amtmann and Armengaud, 2009). This is due to the 

complexity of the metabolic networks underlying nitrogen metabolism and the 

inextricable links between carbon and nitrogen metabolism. Both carbon and nitrogen 

are important constituting elements of enzymes and cofactors needed for various 

cellular activities such as photosynthesis, respiration and biomass synthesis (Gao et 

al., 2008; Kruger and von Schaewen, 2003). The availability of carbon nutrient 

directly affect the production rate of ATP and NADPH required for nitrogen 
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assimilation (Allen and Young, 2013). Conversely, the nitrogen availability has been 

shown to affect the abundances of enzyme that catalyze the reactions in respiratory 

bypass pathways (Escobar et al., 2006). Besides, multiple studies have shown that the 

carbon and nitrogen balance regulate gene expressions. For example, through 

transcriptomic profiling Gutiérrez et al. (2007) found that carbon and nitrogen 

interactions affect expression levels of various genes encoding central carbon 

metabolism and protein catabolic pathways in Arabidopsis. Several other studies 

concluded that the carbon and nitrogen balance affect the expression levels of a 

putative nitrogen transporter (Little et al., 2005), a putative glutamate receptor (Kang 

and Turano, 2003) and a putative methyltransferase (Gao et al., 2008, p. 1) in 

Arabidopsis. Therefore comprehensive studies integrating carbon and nitrogen 

metabolism are desirable. 

 

Previous work on understanding plant metabolism under different nitrogen 

sources or provisions are mainly focused on metabolomics, proteomics or gene 

expression data (Allen et al., 2011; Hockin et al., 2011; Noorhana, 2011; Truong et al., 

2013; Zhila et al., 2005). Recently, researchers have started applying 13C isotope-

assisted MFA tool to study the influence of nitrogen source on central carbon 

metabolism in plants at a molecular level (Allen and Young, 2013; Masakapalli et al., 

2013). For example, Masakapalli et al. (2013) found that by replacing ammonium 

with nitrate in the culturing media, the oxidative pentose phosphate pathway flux 

increased by 50% in Arabidopsis cells. Allen and Young’s study (2013) on soybean 

embryos showed that reducing the ratio of carbon and nitrogen from 37:1 to 13:1 led 
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to a 90% increase in downstream TCA cycle flux, which promoted the contribution of 

malic enzyme to pyruvate production. 

 

1.2. Application and recent development of metabolic flux analysis 

MFA is the major computational and analytical method applied in this work. 

It is a vital tool in metabolic engineering due to its ability to quantify the relative rates 

of chemical reactions in an intracellular metabolic network (Ahn and Antoniewicz, 

2011; Kruger and Ratcliffe, 2009; Leighty and Antoniewicz, 2012; Schwender, 2008). 

MFA is also capable of elucidating previously unknown pathways (e.g. Schwender et 

al., 2004; Sriram et al., 2007a). Flux values obtained from MFA, if combined with 

metabolite concentration data, constitute a minimal set of information needed to fully 

characterize metabolism (Stephanopoulos, 1999). 

 

Besides, flux data can reflect the effect of genetic or environmental 

perturbations and thus identify metabolic engineering strategies (Sauer, 2006; 

Stephanopoulos, 1999; Stephanopoulos and Vallino, 1991). Many recent studies 

apply metabolic flux analysis for strain development. For examples, via 13C MFA 

several articles reported the redox (NADPH/NADH) imbalance was the major 

bottleneck for the biosynthesis of long chain fatty acids (He et al., 2014; Ranganathan 

et al., 2012; Wasylenko et al., 2015). They proposed different strategies to resolve the 

deficiency of the reductants, including the diversion of fluxes from glycolysis to 

serine synthesis pathway (Ranganathan et al., 2012) and Entner–Doudoroff pathway 
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(He et al., 2014; Ranganathan et al., 2012), or a more active pentose phosphate 

pathway (He et al., 2014; Wasylenko et al., 2015).  

 

The direct role of MFA is to quantify fluxes through certain intracellular and 

extracellular measurements. Two major approaches in MFA are flux balance analysis 

(FBA) and isotope-assisted MFA. Typical FBA only requires extracellular 

measurements such as uptake rates of nutrient sources and secretion rates of biomass 

(Orth et al., 2010; Ramakrishna et al., 2000; Varma and Palsson, 1994). It involves 

balancing the abundances of all the metabolites in the metabolic network (details are 

discussed in Sec. 1.2.3), which leads to a system of linear algebraic equations. 

Objection functions such as maximization of the growth rate of the organism, or 

maximization of the secretion rate of certain cellular products, are required to solve 

for fluxes. However, the assumed objection functions are sometimes inaccurate, 

which makes the flux estimation results biased (Chen et al., 2011; Wu et al., 2015). 

Fig. 1.1 shows a phenotype space representation of the FBA method. The surfaces of 

the polyhedron represent thermodynamic or artificial constraints. Any point in the 

polyhedron region represents a theoretically feasible flux solution, with the apexes 

defining the optimal solution based on an objection function. 
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Figure 1.1. A typical phenotype space of a metabolic network.  
The three dimensional axis represent three independent fluxes. The flux phenotype 
space can be represented by a polyhedron. Each surface represents a biological 
constraint (e.g. the thermodynamic irreversibility or feasible range of a flux). Any 
flux distribution that falls within the phenotype space is theoretically feasible. The 
apexes represent the metabolic state where certain flux is maximized. 
Figure retrieved from (Orth et al., 2010) 
 

Isotope-assisted MFA, specifically 13C MFA, is another approach that can 

provide more intracellular details than FBA. In general, 13C MFA detects the labeling 

response of intermediates of a metabolic network to certain types of labeled substrate 

(Wiechert, 2001) in an ILE. It solves for fluxes through a mathematical model that 

correlates this labeling response to fluxes. This approach is becoming very powerful 

with the widespread application of gas chromatography-mass spectrometry (GC-MS) 

(Ahn and Antoniewicz, 2011; Leighty and Antoniewicz, 2012; e.g. Wittmann and 

Heinzle, 1999), the development of tandem MS (Choi and Antoniewicz, 2011) and 

nuclear magnetic resonance (NMR) techniques (Goudar et al., 2010; Sriram et al., 

2007a; Szyperski, 1995). 

 

The labeling patterns of intracellular metabolites can be measured either at 

isotopically steady-date or isotopically instationary state. At isotopically instationary 
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state, the labeling patterns of metabolites evolve with time, but fluxes and metabolite 

concentrations (pool sizes) are constant. The transient labeling states of metabolites 

are then used to evaluate fluxes via instationary MFA (iMFA) (Nöh et al., 2006; 

Wiechert and Noh, 2005; Young et al., 2008). iMFA is different from steady-state 

MFA on two major counts. (i) Experimentally, pool size data and multiple sampling 

through the isotopic instationary state are required (Nöh et al., 2006; Wiechert and 

Noh, 2005). Although some pool sizes can be regarded as variables and estimated 

during flux evaluation, the results may be imprecise due to large confidence intervals 

(Young et al., 2008). (ii) Computationally, the extension from MFA to iMFA requires 

solving systems of ordinary differential equations (ODEs) during each step of a 

global optimization algorithm, which is a significantly expensive task (Wiechert and 

Noh, 2005; Young et al., 2008). Many efficient computational tools have been 

developed to improve the efficiency of simulation in iMFA (Nöh et al., 2006; Nöh 

and Wiechert, 2004). However, all these methods are based on numerical solvers for 

ODEs and thus the computational time and precision depends on the integration step 

size. Thus developing efficient computational tools for iMFA is of particular interest. 

 

1.3. Methods: Mathematical modeling of  13C MFA 

1.3.1.  Establishing metabolic networks from metabolic pathway databases 

Several free online databases provide comprehensive information on 

metabolic pathways and genomic information for various organisms, such as Kyoto 

Encyclopedia of Genes and Genomes (KEGG) (Masoudi-Nejad et al., 2008) and 
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MetaCyc Encyclopedia of metabolic pathways (Zhang et al., 2005). National Center 

for Biotechnology Information (NCBI) Genome site and Uniprot (Apweiler et al., 

2004) contain detailed information on protein sequences and gene annotations. We 

established real metabolic reaction networks based on the information from these 

databases.  

 

Moreover, since plant cells are eukaryotes, their chemical reactions are 

compartmentalized in different organelles such as cytosol, mitochondrion and 

chloroplast. Some information of the compartmentation is available from above 

online databases, or published genome scale models (e.g. Poolman et al., 2009). If 

these information are not available for certain organisms, we can iteratively revise the 

established metabolic network models during MFA until the best flux estimates are 

achieved. 

 

1.3.2.  Balancing intracellular metabolites 

Here we use a simple metabolic network (Fig. 1.2a) to illustrate the protocol 

of MFA. In this network, metabolite A is the carbon source. Two cleavage reactions 

v1 and v2 convert A to B and E, A to C and D, respectively. Two condensation 

reaction convert B and D to C, B and C to D, respectively. Reaction v0 is the influx of 

A and reaction v5, v6, v7 are the effluxes of F, E and D. Here we use v0 to v7 to denote 

both reaction names and flux values. This network consists of 8 chemical or transport 

reactions. However, not all of the fluxes are independent variables. For example, the 

measurements of v0 and v1 automatically gives v2 as v2 = v0 – v1. In other words, this 
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network has a degree of freedom smaller than 8. The purpose of balancing all the 

metabolites is to determine the degree of freedom of the flux space and express all the 

“dependent” fluxes with respect to the independent fluxes. 

 

The balancing of metabolites is based on the conservation of mass. One of the 

important assumption in isotope-assisted MFA is the achievement of metabolic steady 

state, during which the metabolites can neither be accumulated nor be depleted. Based 

on this assumption, we list the material balancing equations for all the metabolites in 

Table 1.1. 

 

A

B C

D

F

v1 v2

v3

v0

v5

v4

D
E

b
A

B C

F

DE

a v0

v1 v2

v3

v4

v5

D

c

v6

Reaction  Carbon atom rearrangement 
v1  

v2  

v3  

v4  

 

v7

v6 v7

 
 
 

Figure 1.2. Simple metabolic network for illustration of MFA.  
(a) Squares represent metabolites and arrows represent chemical reactions. Fluxes are 
denoted by v0 to v7. (b) Circles represent carbon atoms. Other notations are same as 
(a). (c) Carbon atom arrangements of the chemical reaction. 
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Table 1.1.  Materials balance equations for the metabolites in Fig 1.2. 
 

Metabolites Balancing equations 
A 0 1 2 0v v v− − =  

B 1 3 4 0v v v− − =  

C 2 3 4 0v v v+ − =  

D 2 3 7 0v v v− − =  

E 1 6 0v v− =  

F 4 5 0v v− =  
 

These linear equations can be expressed in a matrix form as, 

0

1

2

3

4

5

6

7

1 1 1 0 0 0 0 0 0
0 1 0 1 1 0 0 0 0
0 0 1 1 1 0 0 0 0
0 0 1 1 0 0 0 1 0
0 1 0 0 0 0 1 0 0
0 0 0 0 1 1 0 0 0

v
v
v
v
v
v
v
v

 
 − −        − −       −  • =    − −       −      −    
  

                     [1.1] 

in which the 6 by 8 matrix is the “stoichiometric matrix”, represented by S, and the 8 

by 1 vector is the “flux vector”, represented by v. Therefore we have 

• =S v 0                                                        [1.2] 

In the stoichiometric matrix, the entries in each row correspond to one 

metabolite, and entries in each column correspond to one flux variable. In this linear 

system, the number of independent flux variables, or free fluxes, is calculated by the 

formula,  

Number of free fluxes Number of fluxes Rank of= − S                 [1.3] 

The selection of independent flux set is not unique. A classic method to 

determine a valid set of free fluxes and subsequently solve this linear system is to use 
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Gaussian Elimination, which converts S to a upper triangular matrix through linear 

transformations. Here Eq. [1.2] can be transformed into,  

0

1

2

3

4

5

6

7

1 1 1 0 0 0 0 0 0
0 1 0 1 1 0 0 0 0
0 0 1 1 1 0 0 0 0
0 0 0 2 1 0 0 1 0
0 0 0 0 3 / 2 0 1 1/ 2 0
0 0 0 0 0 1 2 / 3 1/ 3 0

v
v
v
v
v
v
v
v

 
 − −        − −       −  • =    − −       − −      −    
  

                 [1.4] 

Therefore, if the effluxes of D (v7) and E (v6) are measured, all the other 

fluxes can be calculate as, 

 

0 6 7

1 6

2 6 7

3 6 7

4 6 7

5 6 7

4 2
3 3

1 2
3 3
1 1
3 3
2 1
3 3
2 1
3 3

v v v

v v

v v v

v v v

v v v

v v v

= +

=

= +

= −

= +

= +

                                                 [1.5] 

In this example, the “dependent” fluxes are solved manually through Gaussian 

Elimination. For more complex and realistic metabolic networks, this process requires 

the application of computational tools such as MATLAB.  
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1.3.3.  Balancing isotopomers of intracellular metabolites 

In the metabolic network Fig. 1.2b., assume that compounds A to F consist of 

certain numbers of carbon atoms as denoted in the figure. Carbon atom 

rearrangements in the chemical reactions are shown in Fig. 1.2c. The substrate is an 

isotopically labeled tracer of compound A (i.e. certain carbon atoms in A are 13C 

isotopes while others are 12C isotopes). As soon as the chemical reactions proceed, 

the carbon atoms of all the intermediate metabolites B to F can only have two isotopic 

states: labeled (13C) or unlabeled (12C). This yields a total of 2n labeling patters for a 

metabolite that consists of n carbon atoms and these labeling patters are referred to as 

isotope isomers, or isotopomers. At isotopic steady state, the formation rate of an 

isotopomer is identical to its depletion rate. Table 1.2 lists the balance equations of 

the total of eight isotopomers of metabolic C as an example.  

 

Table 1.2.  Materials balance equations of the isotopomers of metabolite C.  
“1” represents labeled carbon atoms and “0” represents unlabeled carbon atoms. Thus 
each combination of “0” and “1” denotes an isotopomer. Uppercase notations denote 
the isotopomer names and lowercase notations denote the fractions of the 
corresponding isotopomers (isotopomer abundances). 
 

Isopomers of C Balancing equations 
C000 4 000 2 0000 0001 3 00 0( )v c v a a v b d= + +   
C001 4 001 2 0010 0011 3 01 0( )v c v a a v b d= + +  
C010 4 010 2 0100 0101 3 10 0( )v c v a a v b d= + +  
C011 4 011 2 0110 0111 3 11 0( )v c v a a v b d= + +  
C100 4 100 2 1000 1001 3 00 1( )v c v a a v b d= + +  
C101 4 101 2 1010 1011 3 01 1( )v c v a a v b d= + +  
C110 4 110 2 1100 1101 3 10 1( )v c v a a v b d= + +  
C111 4 111 2 1110 1111 3 11 1( )v c v a a v b d= + +  
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1.3.4.  Applying an optimization procedure to calculate fluxes 

The isotopomer balance equations correlate isotopomer abundance, a 

measurable parameter, to intracellular fluxes that cannot be measured directly. 

Metabolic flux analysis relies on an optimization procedure to search for the best flux 

estimates (Fig 1.3). Specifically, initial values are assigned to a set of valid free 

fluxes and all the dependent fluxes are calculated as discussed in Sec. 1.3.2. 

Isotopomer abundances are then solved iteratively from their balance equations (e.g. 

Table 1.2) with different initial guesses of the free fluxes. The best flux estimates are 

determined when the difference between the calculated isotopomers and the measured 

isotopomers are minimized. 

 

Construct metabolic network

Make an initial guess 
of flux values

Simulate 
isotopomer abundances

Convert isotopomer abundances
to MS- or NMR-measurable 

data

Compare simulated and 
experimental isotopomer

abundances

Poor comparison: 
refine guesses of flux values

Acceptable comparison: 
report fluxes

Determine free fluxes

 

Figure 1.3. General flow chart of MFA protocol 
 

That solving for fluxes in MFA is an optimization procedure is mainly due to 

two reasons. Firstly, in most cases not every single isotopomer abundance is 
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experimentally measurable, which makes it impossible to solve for fluxes directly. 

GC-MS and NMR are currently the most widely used technique to measure isotopic 

data, but neither of the methods is capable of measuring individual isotopomers 

directly. For example, GC-MS (the technique applied in this study) data illustrates the 

mass isotopomer distributions (MIDs) of a metabolite. It can determine how many 

carbon atoms in a metabolite are labeled, whereas it cannot determine which carbon 

atom is labeled. Therefore, the data it measures is usually a combination of several 

isotopomer abundances. Table 1.3 displays the linear conversion from isotopomer 

abundances to MIDs for a metabolite containing three carbon atoms. C (M + k) (k=0, 

1, 2, 3) represents the mass isotopomer in which k carbon atoms are labeled. Among 

them only c (M+0) and c (M+3) are identical to an individual isotopomer abundance. 

c (M+1) and c (M+2), however, are both equal to the sum of three individual 

isotopomer abundances. 

 

Table 1.3. The conversion between isotopomer abundances and MIDs for 
metabolite C.  
Uppercase notations denote the variables’ names  and lowercase notations denote the 
abundances of the corresponding variables. 
 

MIDs of C Balancing equations 
C (M+0) 000( 0)c M c+ =   
C (M+1) 001 010 100( 1)c M c c c+ = + +  
C (M+2) 011 101 110( 2)c M c c c+ = + +  
C (M+3) 111( 3)c M c+ =  

 

 Additionally, current GC-MS technique is able to detect a vast number of 

metabolites, including but not limited to intermediate central carbon metabolites, 

amino acids (Sec. 3.3 and Sec. 4.3) and fatty acids (Wu et al., 2005). The large MID 
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dataset usually makes flux variables overdetermined by isotopomer balance equations. 

The attempt of utilizing all available measurement data in order to reduce flux 

estimation error also leads to the optimization procedure. 

 

 Several softwares have been developed to perform MFA, such as 13CFlux2 

(Weitzel et al., 2013, p. 2), OpenFlux (Quek et al., 2009), Metran (not available 

publically) and NMR2Flux (not available publically). In this study we used 

NMR2Flux, a home grown program developed by Sriram et al. (Sriram and Shanks, 

2004). Briefly, this program accepts metabolic network stoichiometries and carbon 

atom rearrangements supplied by the user, employs cumulative isotopomer (cumomer, 

discussed in Sec. 1.3.5) balancing to simulate isotopomer abundances corresponding 

to any feasible set of fluxes in the network. Given a set of measured isotopomer 

abundances, the program uses a global optimization routine based on simulated 

annealing to iteratively evaluate flux values that best account for the measured data. It 

can also perform statistical analysis on estimated flux values via Monte-Carlo 

algorithm. 

 

1.3.5.  Linearization of isotopomer balance equations.  

One major step in MFA is to solve the isotopomer balance equations. 

However, solving for isotopomer abundances directly is computationally difficult 

because: (1) some of the balance equations are non-linear, which makes most 

analytical solution methods (e.g. LU decomposition) not applicable; (2) all the 

balance equations need to be solved simultaneously. Linearization of the isotopomer 
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balance equations can be accomplished by introducing a new type of labeling variable, 

such as the “cumulative isotopomer” concept (Wiechert et al., 1999), the “elementary 

metabolite units” concept (M. R. Antoniewicz et al., 2007) the “bond isomer” concept 

(Sriram et al., 2004; van Winden et al., 2002) and the “fluxomer” concept (Srour et al., 

2011).  

We applied the “cumulative isotopomer” (cumomer) concept to linearize the 

isotopomer balance equations in this study. Unlike isotopomers that distinguish 

carbon atoms between “labeled” and “unlabeled”, cumomers distinguish them 

between “labeled” and “labeled or unlabeled”. After performing a simple linear 

transformation converting isotopomer abundances to cumomer abundances, this new 

method decomposes the non-linear isotopomer balance equations into a series of 

linear systems that can be solved in a cascaded manner. The total number of balance 

equations remain the same, whereas solving several linear systems requires 

significantly less computational power compared to solving a single, large non-linear 

system (Wiechert et al., 1999). 

 

1.4. Outline of work performed in this study 

MFA is a powerful technique to study metabolism. However, the requirement 

of intensive computational power by MFA, especially instationary MFA, makes it 

difficult to be applied to complex but realistic metabolic networks. In the first chapter 

of this work, we introduced two novel approaches to improve the computational 

efficiency of MFA. Firstly, we presented the concept of “originomer”, which uses the 

origins of atoms, instead of the isotopic nature of atoms, as labeling variables. A 
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major advantage of this novel concept is that it eliminates the influence of natural 

abundances of atoms on the labeling and that it can be applied to most ILE scenarios. 

Secondly, we applied an analytical algorithm that solves the systems of ODEs 

resulting from instationary “cumulative originomer” balances by using eigensystems 

of the coefficient matrices. Comparisons between ILE simulations employing the 

traditional cumomer concept and the novel originomer concept, as well as 

comparisons between traditional numerical solutions and the new analytical solution 

method for a realistic metabolic network show that both improvements significantly 

reduced the computational time. 

 

In the second chapter, we aimed at illustrating and solving an intrinsic 

problem associated with MFA on cells or tissues in “fed-batch” culturing 

environment: the influence of initial present biomass on the accuracy of flux 

estimations. Through three parallel 13C ILEs with different types of labeled glucose as 

the major carbon source, we demonstrated that the mixing behavior of this initial 

present biomass with newly synthesized biomass involves “dilution” and “reflux”, 

which can significantly affect isotopomer abundances. Then we proposed a full 

“reflux” metabolic network model that accounts for measured isotopomer data much 

more satisfactory than three other previously reported strategies. Estimated flux 

results from our methodology using the reflux model were similar to those from 

another methodology involving minimal reflux, which further validated the 

application of the “reflux” concept. 
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Finally, we reported a study that investigated the metabolic adaptation to 

carbon and nitrogen deficiencies by poplar cells and the mechanism to improve their 

NUE under low nitrogen supply. To accomplish this, we concurrently performed 

(i) steady-state 13C metabolic flux analysis using multiple isotope labels and 

(ii) transcriptomic profiling using cDNA microarrays. 13C flux analysis revealed the 

absolute flux through the oxidative pentose phosphate pathway (oxPPP) to be 

substantially (~3-fold) lower under the low-nitrogen conditions and the relative flux 

partitioning between the tricarboxylic acid cycle and anaplerotic pathways to vary 

considerably, Together, the flux and gene expression data suggested a plastidic 

localization of the oxPPP as well as transcriptional regulation of some major flux 

alterations including that in the oxPPP. The gene expression data also pointed to 

NUE-improving mechanisms such as redirection of additional carbon to aromatic 

metabolic pathways and recruitment of photosynthetic and light-harvesting proteins 

as nitrogen sinks in nitrogen-abundant conditions. 
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Abstract 

Isotope-assisted metabolic flux analysis (MFA), with its ability to quantify 

carbon traffic through intracellular metabolic networks, is a powerful tool in 

metabolic engineering. However, implementing MFA in in organisms with complex 

biochemistries is time-consuming because of large computational costs. Moreover, 

instationary MFA (iMFA) exacerbates this situation because it necessitates the 

solution of ordinary differential equations instead of linear equations. To improve the 

computational efficiency of MFA and iMFA, we present two independent, novel 

approaches. The first approach is a concept called “originomer”, which uses the 

origins of atoms, instead of the isotopic nature of atoms, as labeling variables. Just as 

isotopomers are extended to cumomers or elementary metabolite units, it is possible 

to extend originomers to cumulative originomers and elementary originomer units 

(EOUs). Our second approach is an eigensystem method which facilitates analytical 

solutions of cumulative originomer or EOU balances in iMFA. Using this approach 

enabled us to represent labeling variables as sums of exponential terms. Simulation 

results for several example networks confirmed the improved efficiency resulting 

from the application of both approaches. While the analytical solution method does 

not save time for all metabolic networks, it can save time for many realistic iMFA 

scenarios without loss of accuracy. For example, a comparison between a cumulative 

originomer-based analytical solution method and the conventionally used cumomer-

based numerical method for the tricarboxylic acid cycle showed that the approaches 

introduced in this work lead to a 23-fold reduction in computational time. We 

anticipate that in the future, these methods will facilitate the extension of iMFA to 
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more complex metabolic networks and multi-element labeling experiments (e.g. 13C, 

15N). 

2.1.   Introduction 

Metabolic flux analysis (MFA) is a vital tool in metabolic engineering due to 

its ability to quantify the relative rates of chemical reactions in an intracellular 

metabolic network (Ahn and Antoniewicz, 2011; Kruger and Ratcliffe, 2009; Leighty 

and Antoniewicz, 2012; Schwender, 2008). MFA is also capable of elucidating 

previously unknown pathways (Schwender et al., 2004; Sriram et al., 2007a). Besides, 

flux data can reflect the effect of genetic or environmental perturbations and thus 

identify metabolic engineering strategies (Sauer, 2006; Stephanopoulos, 1999; 

Stephanopoulos and Vallino, 1991). Flux values obtained from MFA, if combined 

with metabolite concentration data, constitute a minimal set of information needed to 

fully characterize metabolism (Stephanopoulos, 1999). 

 

Two major approaches in MFA are flux balance analysis (FBA) and isotope-

assisted flux analysis. FBA is relatively straightforward to implement because it 

requires minimal experimental measurements (Orth et al., 2010; Ramakrishna et al., 

2000; Varma and Palsson, 1994). Isotope-assisted MFA, specifically 13C MFA, is 

another approach that can provide more intracellular detail than FBA. In general, 13C 

MFA detects the labeling response of intermediates of a metabolic network to certain 

types of labeled substrate (Wiechert, 2001). This approach is becoming very powerful 

with the widespread application of gas chromatography-mass spectrometry (GC-MS) 

(Ahn and Antoniewicz, 2011; Leighty and Antoniewicz, 2012; Wittmann and Heinzle, 
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1999), the development of tandem MS (Choi and Antoniewicz, 2011) and nuclear 

magnetic resonance (NMR) techniques to measure isotopic labeling patterns (Goudar 

et al., 2010; Szyperski, 1995).  

 

Interpreting GC-MS or NMR measurements to obtain fluxes requires the 

introduction of state variables connecting the flux values to the measurements. The 

most straightforward idea is to balance all atoms of the metabolites in the network 

(Zupke and Stephanopoulos, 1994). An extension of this idea that makes use of a 

larger experimental dataset is to balance all isotopomers of the metabolites (Schmidt 

et al., 1997). However, the nonlinear nature of the resultant algebraic systems requires 

iterative solutions and therefore makes these methods cumbersome. To surmount this 

problem, researchers have introduced concepts such as cumulative isotopomers 

(cumomers) (Wiechert et al., 1999), elementary metabolite units (EMUs) (M. R. 

Antoniewicz et al., 2007) and bondomers (Sriram and Shanks, 2004; van Winden et 

al., 2002). Wiechert et al. (1999) pioneered the concept of cumomer. A cumomer is a 

linear combination of certain isotopomers. This transformed variable enables the 

decoupling of the bilinear isotopomer balance equations to a cascade of linear 

equations that can be solved sequentially. However, this improvement does not 

reduce the number of state variables because the number of cumomers of a metabolite 

is identical to the number of its isotopomers. (A metabolite with n carbon atoms has 

2n isotopomers and 2n cumomers.) Recently, a new concept called fluxomer 

decouples bilinear terms by using a single variable that consolidates both fluxes and 

isotopomers (Srour et al., 2011), resulting in balances that can be solved sequentially.  
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To reduce the number of labeling variables in certain types of isotope labeling 

experiments (ILEs), van Winden et al. (2002) introduced and Sriram and Shanks 

(2004) advanced another concept called bondomer, which keeps track of the 

integrities of bonds in the substrate molecule instead of the labeling states of single 

atoms. This concept factors out the natural abundance of unusual isotopes (e.g. 13C 

and 15N) and can thus lead to a ~three-fold reduction in the number of labeling 

variables in realistic metabolic networks (Sriram and Shanks, 2004). However, a 

shortcoming of the bondomer concept is that it can only be applied to ILEs in which 

only a single uniformly labeled (carbon) source and its naturally abundant counterpart 

are supplied. Subsequently, Antoniewicz et al. (2007) introduced the EMU concept. 

By grouping isotopomers according to the way they participate in metabolism, this 

concept eliminates the labeling information of non-measurable molecules that do not 

affect the labeling states of measurable metabolites. Thus, this approach drastically 

reduces the number of labeling variables. Although the EMU concept can be applied 

to any labeling experiment, a limitation of it is that unlike bondomers, it does not 

factor out natural abundance. Due to the complementary shortcomings of both these 

methods, it is highly desirable to extend the bondomer concept to other types of 

labeling experiments and to ultimately combine this “extended bondomer” concept 

with EMUs. Toward this goal, we propose to introduce the concept of “originomers”. 

 

Another trend in 13C MFA besides the development of efficient network 

decomposition techniques is instationary MFA (iMFA). As discussed in Sec. 1.2.2, 
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iMFA saves experimental time, but is computationally more challenging due to the 

requirement of solving ODEs.  In this work, we introduce two novel approaches to 

improve the computational efficiency of MFA. Firstly, we present the concept of 

originomers, which uses the origins of atoms, instead of the isotopic nature of atoms, 

as labeling variables. A major advantage of this novel concept is that it eliminates the 

influence of natural abundances of atoms on the labeling, just as the bondomer 

concept does. However, the originomer concept is applicable to all labeling 

experiment scenarios and reduces the number of labeling variables or the number of 

significant labeling variables in many commonly used labeling experiments. Secondly, 

we introduce an analytical algorithm that solves the systems of ODEs resulting from 

instationary cumulative originomer balances by using eigensystems of the coefficient 

matrices. Comparisons between ILE simulations employing the traditional cumomer 

concept and the novel originomer concept, as well as comparisons between traditional 

numerical solutions and the new analytical solution method for an example network 

comprising the tricarboxylic acid (TCA) cycle and glyoxylate shunt show that both 

improvements significantly reduce the computational time. 

2.2.   Materials and Methods 

2.2.1.    Originomers track the origins of atoms in metabolites 

The originomer concept enables the extension of a bondomer-like idea to 

several commonly employed labeling experiments. In contrast to isotopomers, which 

are isomers of a metabolite that differ in the isotopic nature of their individual atoms, 

originomers are isomers of a metabolite that differ in the origins of their individual 
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atoms (Fig. 2.1A). To analyze an ILE by using the originomer concept, one atom of a 

substrate is designated “special”. Atoms of intracellular metabolites are then 

classified according to whether they originated from this special atom or did not 

originate from it. These two “origin states” apply to every atom in the metabolic 

network. Thus, a metabolite with n atoms of a certain element can have 2n isomers 

that differ in the origin states of their atoms. We define these new types of isomers as 

“originomers”. For example, in an ILE in which 1-13C glucose is the sole carbon 

source, it is convenient to designate the labeled (C-1) atom of glucose as “special”. 

All the carbon atoms of an intracellular metabolite, e.g. triose phosphate (T3P) in 

glycolysis, can then be in one of two states: (i) they originated from C-1 of glucose 

and are thus special (S), or they did not originate from C-1 of glucose and are thus 

non-special (N). In this manner, T3P can have eight originomers, just as it can have 

eight isotopomers (Fig. 2.1B, Fig. 2.1C). To distinguish originomer notation from 

standard isotopomer notation T3P101 (1: labeled; 0: unlabeled) (Wiechert et al., 1999), 

we denote originomers of T3P as T3PSNS (S: special; N: non-special).  

 

The originomer concept reduces the number of labeling variables in an ILE 

because although a given metabolite can have equal numbers of originomers and 

isotopomers, not all originomers of all metabolites may be feasible in a real metabolic 

network. This is because the originomer concept factors out the natural abundances of 

unusual isotopes and thus, “non-special” is absolute. Therefore, in an ILE in which 1-

13C glucose is the sole carbon source, exactly one originomer of glucose (GlcSNNNNN) 

is supplied. Conversely, “unlabeled” is not absolute because of the natural abundance 
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of isotopes such as 13C. Thus, feeding 1-13C glucose actually means feeding 63 

isotopomers of glucose (all except Glc000000), many of which may be present in 

measurable quantities.  

 

glycolysis

23 = 8 isotopomers

special non-special

carbon source:
1- 13C glucose

……

1
2

63

A

measured intracellular
metabolite: T3P

T3P T3P

23 = 8 originomers

2 feasible originomers

8 feasible isotopomers

B C

 

Figure 2.1. The originomer concept.  
Originomers are isomers of a metabolite that differ in the origins of their individual 
atoms. (A) To analyze an ILE by using the originomer concept, one or more atoms of 
(a) substrate(s) (C-1 of glucose in this example) is (are) designated “special”. Atoms 
of intracellular metabolites (e.g. T3P in glycolysis) are then classified according to 
whether they originated from this special atom or did not originate from this atom 
(non-special). These two “origin states” apply to every atom in the metabolic network. 
(B) Thus, a metabolite with n atoms of an element can thus have 2n isomers that differ 
in the origin states of their atoms. We define these isomers as “originomers”. Squares 
with bold borders denote special atoms; squares with light borders denote non-special 
atoms. (C) Originomers contrast with isotopomers, which are isomers of a metabolite 
that differ in the isotopic nature of their individual atoms. Filled squares denote13C 
atoms; empty squares denote 12C atoms. Abbreviation: T3P, triose phosphate. 

 

Furthermore, analogous to the extension from isotopomer to cumomer 

(Wiechert et al., 1999), we can extend the originomer concept to cumulative 

originomer. Using the symbol “?” to represent an atom whose origin state (S or N) is 
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undetermined or irrelevant, the notation T3P?S? represents a cumulative originomer of 

T3P in which the second carbon is special, whereas the first and third atoms may be 

special or non-special. Also analogous to cumomers, we define the order of 

cumulative originomers as the number of atoms that are known to be special. To 

further reduce computational time, we could extend the originomer concept to 

elementary originomer units (EOUs) similar to the extension of isotopomer to EMU 

(M. R. Antoniewicz et al., 2007). However, this extension is not discussed in this 

work. 

 

2.2.2.    Originomer enumeration 

To harness the potential of the originomer concept in reducing labeling 

variables, it is necessary to first enumerate all the originomers in a metabolic network 

and then write balance equations by disregarding the infeasible originomers. This 

enumeration-elimination procedure is similar to that used in bondomer balancing 

(Sriram and Shanks, 2004). We demonstrate originomer enumeration through an 

illustrative metabolic network (Fig. 2.2). Here, 1-13C-labeled M is the carbon source; 

A, B, C are intermediates; D, E, F are products of the network. Only the reaction v1 

(A → B) is assumed reversible, whereas all other reactions are assumed irreversible. 

Table 2.1 lists the carbon atom rearrangements of this network. Toward enumerating 

originomers, we designate carbon atom C-1 of the substrate M (the only atom that is 

labeled) as the special atom. Then, on working through the network by starting from 

the carbon source originomer MSNNN and using the carbon atom rearrangements, we 

realize that only 13 originomers (ASNNN, ANNNN, BSN, BNN, CSNN, CNNN, DS, DN, ENN, 
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FSNSNN, FSNNNN, FNNSNN, FNNNNN) are feasible in this network, out of the entire set of 66 

originomers of all the metabolites (A, B, C, D, E, F). For a complex and more 

realistic network, such an enumeration step may need to be performed in silico 

instead of manually. 

 

 

Figure 2.2. Metabolic network for illustration of originomers and isotopomers.  
This simple, hypothetical network contains seven intracellular metabolites (A to F), a 
single carbon source (M) and a single metabolite (F) whose labeling state is measured. 
Circles or squares represent carbon atoms and arrows represent reactions, whose 
fluxes are v0 to v5. Originomers and isotopomers are depicted beside the 
corresponding metabolites. Squares with bold borders represent “special” atoms (see 
text for definition), whereas filled squares represent labeled (13C) atoms. Due to the 
natural abundance of 13C in the “unlabeled” carbon atoms of the feed, all the possible 
(32) isotopomers of F are feasible in this network. However, only four originomers of 
F are feasible, and contain the same labeling information as the isotopomers. 
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Table 2.1. Stoichiometry and carbon atom rearrangements of the example 
network 
 

Reaction  Carbon atom rearrangement 
v0 abcd abcdM A→  
v1 abcd ab cdA B E→ +  
v2 abcd abc dA C D→ +  
v3 abc a bcC D B→ +  
v4 ab cde abcdeB C F+ →  

 

After determining a set of free fluxes and using a stoichiometric matrix to 

express all other fluxes in terms of the free fluxes, we can now write originomer 

balances for the network and decompose these balances into a series of cascaded  

cumulative originomer networks by following procedures analogous to cumomer 

decomposition (Wiechert et al., 1999). These cumulative originomer networks have a 

cascaded structure; therefore they should be solved from order 1 upwards to the 

highest order in the network. For example, the 1st-order (feasible) cumulative 

originomers AS???, BS?, CS??, FS???? and F??S?? (abundances indicated below by 

lowercase letters) can be balanced as: 

( )???
1 2 ??? 1 ? 0 ???

S
a S S S

daP v v a v b v m
dt

+ −= − + + +              [2.1] 

( )?
1 4 ? 1 ???

S
b S S

dbP v v b v a
dt

− += − + +               [2.2] 

( )??
3 4 ?? 2 ???

S
c S S

dcP v v c v a
dt

= − + +              [2.3] 

???
5 ???? 4 ?

S
f S S

dfP v f v b
dt

= − +               [2.4] 

?? ??
5 ?? ?? 4 ??

S
f S S

dfP v f v c
dt

= − +               [2.5] 

These are identical to the balances on the corresponding 1st-order cumomers 

(A1XXX, B1X, C1XX, D1, F1XXXX, FXX1XX), with “1” in the cumomer balances replaced by 

 29 
 



 

“S” in the cumulative originomer balances. As with cumomer balances, the 1st-order 

cumulative originomer balances are “self-contained” and linear in the unknown 

variables, so that they can be solved by matrix inversion. Although the 2nd-order 

cumulative originomer balances contain bilinear terms, these terms consist only of 

1st-order cumulative originomer abundances: 

? ??
5 ? ?? 4 ? ??

S S
f S S S S

dfP v f v b c
dt

= − +               [2.6] 

Therefore, once the 1st-order cumulative originomer balances have been 

solved, the set of 2nd-order cumulative originomer balances becomes linear in the 

unknown variables and can be solved analytically in a straightforward manner. 

 

A compact way to represent these balance equations is the following matrix 

representation: 

r
r r rd

dt
= −

xP A x b                                      [2.7] 

where P is a diagonal matrix containing pool sizes of the metabolites (irrelevant in 

steady-state MFA but indispensable in iMFA), r A is a coefficient matrix for the 

current order, entries of which are metabolic fluxes, vector r b collects all the terms 

obtained from entry fluxes or bilinear terms involving lower-order cumulative 

originomers. 

 

After using Eq. [2.7] to solve for the originomer abundances, we can convert 

them to isotopomer abundances measurable by mass spectrometry or nuclear 

magnetic resonance. For this, we multiply the originomer abundances by a mapping 

matrix whose elements, composed of natural abundances of carbon atoms, indicates 
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the labeling probabilities of the carbon atoms in each originomer. Therefore, each row 

of this matrix represents the contribution of different originomer abundances to a 

given isotopomer abundance. 

 

In the above example, we designated the 13C-labeled atom in the substrate as 

the special atom. However, the designation of special atoms is flexible to some extent. 

Importantly, multiple atoms from the same substrate can be simultaneously 

designated special. For ILEs involving a single carbon source it is usually convenient 

to designate the labeled atoms of this carbon source as special (Fig. 2.3, case I). 

However, for ILEs involving multiple carbon sources, it may be more advantageous 

to designate all the atoms of the smaller, unlabeled substrate molecule as special (Fig. 

2.3, cases II and III). Furthermore, in combined carbon-nitrogen MFA in which a 

13C,15N-labeled amino acid is fed as a carbon and a nitrogen source, it is beneficial to 

regard the nitrogen atom as special (Fig. 2.3, case IV). However, it is meaningless to: 

(i) simultaneously designate a labeled and an unlabeled atom from the same substrate 

together as special; and (ii) simultaneously designate atoms from multiple substrates 

as special. These designations will result in valid originomer networks; however, the 

originomers may not meaningfully correlate with isotopomers. Ultimately, the goal of 

designating special atoms is to reduce the number of feasible labeling variables. 
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2.2.3.    Solution of instationary originomer balances 

Our second approach is to improve the computational efficiency of iMFA by 

determining analytical solutions for the instationary cumulative originomer balances 

in Eq. [2.7], given that these equations are 1st-order, linear, inhomogeneous ODEs 

with constant coefficients. The general idea of this method is to diagonalize the 

coefficient 

N

special special

Case IV

GlutamateCarbon sources

labeled

special

Case I

Glucose

labeled

Case II

Glucose+CO2

N

labeled

Case III

Glucose+Acetate

special

labeled

 

Figure 2.3. Several ways of designating special atoms.  
Case I. In a labeling experiment in which 1-13C glucose is the sole carbon source, it is 
convenient to designate the C-1 of glucose as special. Cases II and III. Labeling 
experiments to investigate co-metabolism of two carbon sources may use U-13C 
versions of one of them and naturally abundance versions of others, e.g. U-13C 
glucose + naturally abundant CO2 or U-13C glucose + naturally abundant acetate. In 
such cases, it is convenient to designate all the carbon atoms of the substrate with 
fewer carbon atoms as special. Case IV. Experiments to investigate carbon-nitrogen 
interactions may use labeled carbon and nitrogen source, e.g. U-13C glucose and 
15NO3–. Even here, the substrate with fewer labeled atoms (15NO3–) can be designated 
special. 
 

matrix A by using eigenvalues and eigenvectors (or eigensystems). Then, we can 

decouple the ODE system to a set of ODEs that can be solved separately and 

analytically.  

 

 32 
 



 

The eigenvalues  and eigenvectors x of a matrix A are defined so that: 

=Ax x                                            [2.8] 

After left multiplying the inverse of the pool size matrix -1P  to both sides of Eq. 

[2.7], we obtain (the order number r is deleted in Eq. [2.9] for simplicity): 

d
dt

= +1 1
x A x b                                           [2.9] 

Using the eigenvalues and eigenvectors of 1A  enables a transformation of 

variables: 

d
dt

=
y Dy +β                                      [2.10] 

where =x Qy, in which Q is the eigenmatrix of 1A  and D is a diagonal matrix whose 

entries are eigenvalues of 1A . By expanding Eq. [2.10], we decouple the ODE system 

to a list of ODEs: 

1
1 1 1

2
2 2 2

...

n
n n n

dy y
dt
dy y
dt

dy y
dt

 

 

 

= +

= +

= +

                                       [2.11] 

The solutions of these equations are: 

( )−= + ∫j jt t
j j jy e c e dt                                     [2.12] 

After substituting the values of transformed variables jy  back to =x Qy, we 

obtain the cumulative originomer abundances x. 

 

The constants jc  are determined from expressions of the transformed variables 

jy  (Eq. [2.12]). ODEs with respect to y  are decoupled and thus, the integration 
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constants can be determined directly from Eq. [2.12]  given the initial conditions of jy : 

0
0j t

y
=
= . This condition arises from the fact that before the instationary experiment, 

no special atom should have been present in the network. For example, for 1st-order 

cumulative originomer abundances, the constants jc  are: 

, =1
, 1

, 1

j order
j order

j order
c



=
=

=                                [2.13] 

Similarly, for higher order cumulative originomer abundances, constants jc  

are functions of eigenvectors of the coefficient matrix 1A  of the lower order and 

eigenvalues of matrix 1A  of the current order.  

( ), 1
, 2

, 2

j order
j order

j order

f
c




=

=
=

=                             [2.14] 

This analytical solution method for instationary balances is equally applicable 

to cumomers, EMUs, bondomers and originomers. However, due to natural 

abundance, using it with cumomers and possibly EMUs may result in a very large 

number of terms in Eq. [2.12], making the method impractical. Below, we show that 

the reduction in labeling variables afforded by the originomer concept renders the 

analytical solution method practical for various realistic iMFA scenarios. 

 

In this work, we used MATLAB 7.0 and a computer with an i5 760 CPU to 

solve algebraic and ODE systems of originomer or cumomer balances. To measure 

computation times for various solution methodologies, we solved the relevant 

equations or executed the relevant process 1000 times (so as to obtain robust 

estimates of computation time) and employed the tic/toc command in MATLAB 
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2.3.   Results 

We applied the originomer concept and the analytical solution method to three 

typical metabolic networks encompassing central carbon and primary nitrogen 

metabolism. Network 1 comprises the TCA cycle and glyoxylate shunt with 1-13C 

acetate as substrate (Fig. 2.4), network 2 features primary nitrogen metabolism with 

15NH4+ and naturally abundant glutamine as substrates (Fig. 2.5); and network 3 

exemplifies mixotrophic algal metabolism with U-13C glucose and naturally abundant 

CO2 as substrates, featuring glycolysis, pentose phosphate pathway (PPP) and 

photosynthetic carbon assimilation (Fig. 2.6). For all these networks, we first 

demonstrated the computational efficiency of the originomer concept by comparing 

the total number of variables that needed to be balanced using the cumomer and 

originomer concepts. Subsequently, we demonstrate our analytical solution method 

for network 1 and compare computation times for solving balance equations using the 

standard numerical method and our analytical method. 

 

2.3.1.    The originomer concept reduces the number of labeling variables 

Network 1: TCA cycle and glyoxylate shunt.  

In the network shown in Fig. 2.4, 1-13C acetate is the carbon source (this 

enters the network as 1-13C acetyl-CoA) and oxaloacetate is the product. We 

designated the C-1 atom of acetate (acetyl-CoA) as special. Table 2.2 shows carbon 

atom rearrangements for the reactions in this network. Because succinate is a 

symmetric molecule, its carbon atoms C-1 and C-4 are chemically identical, as are C-

2 and C-3. Therefore, we consolidated the two cumulative originomers ???SSUC
 
and  
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Figure 2.4. The originomer concept factors out natural abundances to reduce the 
total number of variables.  
(A) Metabolic network comprising TCA cycle and glyoxylate shunt, with 9 
metabolites and 8 fluxes. 1-13C acetyl-CoA is the substrate and oxaloacetate is the 
product. (B) Designation of C-1 of acetyl-CoA as special results in much fewer 
feasible originomers than feasible isotopomers. The total number of originomers (32) 
is 7-fold lower than the total number of isotopomers (230). This translates to a 
significantly greater reduction in the number of operations as the number of 
operations in matrix inversion scales with the cube of the number of rows or columns. 
The lower dashed line indicates the highest number of originomers of any metabolite 
(8 for Cit, iCit, α-KG, Suc, Fum, Mal and OAA); the higher dashed line indicates the 
highest number of isotopomers for any metabolite (64 for Cit and iCit). Abbreviations: 
ACA, acetyl-CoA; Cit, citrate; Fum, fumarate; Glo, glyoxylate; iCit, isocitrate; Mal, 
malate; OAA, oxaloacetate; Suc, succinate; α-KG, α-ketoglutarate. 
 

???SSUC
 
into a single entity, representing it as ???SSUC . Originomer enumeration for 

this network indicates that only 32 originomers and 12 cumulative originomers are 

feasible (listed in Table 2.3, summarized in Table 2.4), with eight 1st-order 

cumulative originomers and four 2nd-order cumulative originomers (Table 2.3), out 

of the complete set of 230 possible cumulative originomers of all metabolites. Due to 

natural abundance of 13C, this network has 230 non-zero isotopomers and 230 non-

zero cumomers. Thus, employing the originomer concept can save substantial 

computation time for this network. This especially happens because matrix inversion 

 36 
 



 

is the most computationally expensive process in the solution of compartmented 

systems such as cumomer (and analogously, cumulative originomer) balances. Since 

the inversion of an n n×  matrix requires ~O( 3n ) multiplications (Press et al., 2007), 

reducing the number of labeling variables, as in this example, can substantially reduce 

computation time. 

 

Table 2.2. Carbon atom rearrangements for TCA cycle with glyoxylate shunt. 
 

Reaction Carbon atom rearrangement 
v1 2ab cdef fedba cACA OAA AKG CO+ → +  

v2 2
1 1
2 2abcde bcde edcb aAKG SUC SUC CO→ + +  

v3 
1 1
2 2abcd dcba abcdSUC SUC MAL+ →  

v4 abcd abcdMAL OAA→  

v5 
1 1
2 2ab cdef abdc cdba efACA OAA SUC SUC GLO+ → + +  

v6 ab cd dcbaACA GLO MAL+ →  

 
Table 2.3. Cumulative originomer balances for TCA cycle with glyoxylate shunt. 
 

Order Cumulative 
originomer Balance equation 

1 

AKGS???? ????
1 ??? 2 ????

S
akg S S

dAKGP v OAA v AKG
dt

= −  

AKG????S ????
1 ? 2 ????

S
akg S S

dAKGP v ACA v AKG
dt

= −  

SUCS??? 
( )

( ) ( )

???
2 ???? 3 ??? ???

5 ? ??? 3 5 ???

S
suc S S S

S S S

dSUCP v AKG v MAL MAL
dt

v ACA OAA v v SUC

−

+ + −

= + +

+ + − +
 

MALS??? 

( )

???
3 ??? 4 ??? 6 ?

3 4 ???

1
2

S
mal S S S

S

dMALP v SUC v OAA v GLO
dt

v v MAL

+ −

− +

= + +

− +
 

MAL???S 
( )

???
3 ??? 4 ??? 6 ?

3 4 ???

1
2

S
mal S S S

S

dMALP v SUC v OAA v ACA
dt

v v MAL

+ −

− +

= + +

− +
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OAAS??? 
( )

???
4 ??? 5 ???

4 5 1 ???

S
oaa S S

S

dOAAP v MAL v SUC
dt

v v v OAA

+ −

− +

= +

− + +
 

OAA???S 
( )

???
4 ??? 5 ?

4 5 1 ???

S
oaa S S

S

dOAAP v MAL v GLO
dt

v v v OAA

+ −

− +

= +

− + +
 

GLO?S ( )?
5 ??? 5 6 ?

S
gly S S

dGLYP v OAA v v GLO
dt

+ −= − +  

2 

AKGS???S ??
1 ? ??? 2 ??

S S
akg S S S S

dAKGP v ACA OAA v AKG
dt

= −  

SUCS??S 
( )

??
3 ?? 5 ? ???

3 5 ??

S S
suc S S S S

S S

dSUCP v MAL v ACA OAA
dt

v v SUC

− +

+ −

= +

− +
 

MALS??S 
( )

??
3 ?? 4 ?? 6 ? ?

3 4 ???

S S
mal S S S S S S

S

dMALP v SUC v OAA v ACA GLO
dt

v v MAL

+ −

− +

= + +

− +
 

OAAS??S 
( )

??
4 ?? 5 ? ???

4 5 1 ??

S S
oaa S S S S

S S

dOAAP v MAL v GLO SUC
dt

v v v OAA

+ −

− +

= +

− + +
 

 
Table 2.4. Number of labeling variables that need to be balanced if the concepts 
of isotopomer, cumomer, EMU and originomer, cumulative originomer and 
EOU are invoked.  
When using the originomer concept, we considered only metabolic feasible 
originomers, cumulative originomers and EOUs. We performed a comparison 
between EMU and EOU only for network 1, where we assumed that the mass 
isotopomer distributions of OAA and αKG are measureable. 

Network → 

 

Number of variables ↓ 

Network 1: 

TCA cycle 

(Fig. 4) 

Network 2: 

Primary 

nitrogen 

metabolism 

(Fig. 5) 

Network 3: 

Glycolysis, PPP, 

photosynthesis 

(Fig. 6) 

Isotopomers 230 369 314 

Originomers 32 24 71 

Cumomers 230 369 314 
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Cumulative originomers 12 15 71 

EMUs 124 – – 

EOUs 56 – – 

Comment   

Originomer 

reduces higher 

order variables 

 

 

Network 2: Primary nitrogen metabolism. The originomer concept is particularly 

powerful in analyzing 15N labeling experiments in which the natural abundances of 

both 13C and 15N have to be considered. Nitrogen usually enters metabolism in the 

form of one atom (NO3–, NH4+ or rarely, glutamate) or two atoms (glutamine or rarely, 

urea). Since the incoming nitrogen atoms are not chemically bonded to each other in 

any of these substrates, it is impossible to obtain detailed flux information from 

steady-state MFA. Because the originomer concept factors out the influence of 

natural abundances of atoms, we can neglect the naturally abundant carbon atoms and 

design a decomposition procedure only for nitrogen atoms. This becomes a crucial 

advantage in instationary 15N labeling experiments, where using the isotopomer or 

cumomer concepts may lead to a very large number of labeling variables. 

 

To illustrate this, we analyzed a simple, but relevant metabolic network of 

nitrogen metabolism in plant cells (Fig. 2.5). This model features two compartments: 

cytosol and plastid, and accounts for pools of five amino acids, γ-aminobutyric acid 

(GABA) and ammonium. The substrates of this network are 15NH4+ and naturally 
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abundant glutamine. The steady-state labeling patterns in this network enable 

identification of the relative contributions of glutamine and ammonium fluxes to 

nitrogen-containing metabolites, whereas the instationary labeling patterns enable 

evaluation of nitrogen fluxes. Originomer enumeration with designation of the two 

nitrogen atoms in glutamine as special led to only 15 feasible originomers, which is a 

96% reduction over the 369 isotopomers or cumomers feasible for this network 

(Table 2.4). 

feed NH4 Gluc

Glnc

Glnp Glup

Asp Asn

GABA

Ala

Biomass

feedcytosol

plastid

N N

N

 
 
Figure 2.5. Plant nitrogen metabolism (simplified model) with two 
compartments: the cytosol and the plastid. 
15NH4+ and naturally abundant glutamine are the substrates. The atoms of the 
substrate glutamine are designated special. Abbreviations: Ala, alanine; Asn, 
asparagine; Asp, aspartate; GABA, γ-aminobutyric acid; Glnc, cytosolic glutamine; 
Glnp, plastidic glutamine; Gluc, cytosolic glutamate; Glup, plastidic glutamate. 
 

Network 3. Mixotrophic algal metabolism with glycolysis, PPP and 

photosynthesis. Our third illustrative network features glycolysis, PPP and 

photosynthetic carbon assimilation in a typical model of algal mixotrophic 
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metabolism, and is supplied with U-13C glucose and atmospheric CO2 (Fig. 2.6). This 

network is particularly complex due to significant carbon atom rearrangement and 

reversible reactions. Due to this complexity, we find that on designating CO2 carbon 

as the special atom, the number of cumulative originomers with non-zero abundance 

is identical to the number of cumomers. Despite this, employing cumulative 

originomers is still advantageous because the aforementioned choice of special atom 

results in a cumulative originomer distribution almost completely concentrated in 

orders 1 and 2. Thus hardly any information will lost if cumulative originomer 

balances beyond order 2 are not solved. Conversely, using cumomer representation 

results in measurable abundances for cumomers of all orders, making it necessary to 

balance all cumomers. 
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Figure 2.6. The originomer concept can reduce higher-order variables.  
(A) Metabolic network comprising glycolysis and PPP in a photosynthetic organism, 
with 7 metabolites and 8 fluxes. U-13C glucose and naturally abundant CO2 are the 
substrates and T3P is the product. (B) Comparison of distributions of labeling 
variables among different orders by using isotopomer and originomer concepts. The 
total number of labeling variables is identical for isotopomers and originomers. 
However, using originomer representation (with CO2 carbon as the special atom) 
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generates higher-order cumulative originomers at such low abundances that can be 
neglected. 
 

An explanation for this observation is that a mixotrophic ILE feeding (a) U-

13C glucose and 12CO2 (not naturally abundant) is a complement or “mirror image” of 

an ILE feeding (b) U-12C glucose (not naturally abundant) and 13CO2. Thus, 

analyzing ILE (a), which features hardly any cumomers above order 2, is equivalent 

to analyzing ILE (b). However, completely 12C-labeled substrates are quite expensive, 

often more so than 13C-labeled ones. For example, U-12C glucose is significantly 

more expensive than U-13C glucose (data from catalog of Cambridge Isotope 

Laboratories, Andover, MA, retrieved in April 2013). Furthermore, substrates in 

which some atoms are 13C and others are purely 12C are not available to the extent of 

our knowledge. Thus, substrates containing 12C atoms unadulterated by natural 

abundance are not a practical option in designing ILEs; therefore, researchers have to 

resort to cheap, naturally abundant substrates. With the introduction of natural 13C 

abundance, ILEs (a) and (b) are no longer mirror images of each other nor can be 

analyzed equivalently using the cumomer or EMU concepts. The originomer concept 

is able to establish an equivalence between the two ILEs, so that cumulative 

originomer solutions can be stopped at order 2 with negligible loss in accuracy. As 

discussed below, the exclusion of higher-order labeling variables is especially 

beneficial in iMFA that employs analytically solutions. 
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2.3.2.    The originomer concept facilitates time-saving analytical solutions for 

iMFA 

Using the TCA cycle-glyoxylate shunt network as an example, we compared 

relative errors and computation times of the (cumulative) originomer and (cumulative) 

isotopomer approaches, as well as between analytical and numerical solutions (Fig. 

2.7). The relative errors of numerical solutions are represented by the difference 

between calculation results by numerical solutions and by analytical solutions. As 

expected, the relative error of the numerical solution increases significantly as the 

tolerance increases (Fig. 2.7 bars/left axis). However, the number of integrations 

steps is not sensitive to tolerance, decreasing from 113 to 105 as the tolerance 

increases by three orders of magnitude (Fig. 2.7 squares/right axis). A comparison of 

computational times (Fig. 2.7 triangles/right axis) reveals that the analytical solution 

method is ~20-fold more efficient than the numerical method at 0.001 tolerance for 

this network (2.34 s vs. ~48.0 s for a system of 11 originomer balance equations). 

Moreover, the results also show that using the analytical solution with originomer 

decomposition leads to 2.56-fold faster than with cumomer decomposition (2.34 s vs. 

6.00 s). 
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Figure 2.7. Originomer-based solutions are faster than isotopomer-based ones; 
analytical solutions are faster than numerical ones.  
The left axis and histograms depict the relative errors of the analytical method 
employing (cumulative) originomers or isotopomers when compared with the 
analytical method. The right axis shows the number of integration steps (squares) and 
10 × the computation times (triangles) for the various methods and their combinations. 
We estimated computation time as explained in Methods.  
 

2.4.   Discussion 

In this work, we introduced two new concepts: a new labeling variable called 

originomer and a new analytical solution method for iMFA. The originomer concept 

factors out natural abundance from ILE calculations, and thus: (i) reduces the number 

of labeling variables and (ii) facilitates a more intuitive, metabolism-centric 

interpretation of isotope labeling data. Thereby, it enables faster computation without 

loss of accuracy as well as more intuitive experimental design. The analytical 

solution method for iMFA can, for many commonly performed ILEs, substantially 

cut down computation time. 
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2.4.1.    Originomers reduce computation time. 

There are several advantages of employing the originomer concept and its 

derived concepts cumulative originomers and EOUs over isotopomers and its derived 

concepts cumomers and EMUs. Foremost, in an isotopomer or cumomer model, a 

complete set of isotopomers or cumomers of every metabolite in the network must be 

included because of the natural abundance of 13C, 15N or other unusual isotopes. (The 

exceptions to this are rare cases wherein the abundance of higher-order cumomers is 

so small that they need not be simulated.) By contrast, natural labeling abundance 

does not complicate originomer balancing since it is the origins of the atoms in a 

metabolite that are considered rather than the labeling states. Therefore, several 

originomers are infeasible in many typical metabolic networks, as we demonstrated 

for network 1 (Fig. 2.4) and network 2 (Fig. 2.5). Secondly, even if most or all 

originomers in a network are feasible, choosing an appropriate special atom can lead 

to originomer abundances that are concentrated in the first few orders, so that the 

balance equations need not be solved for higher orders. We exemplified this in 

network 3, which is a typical scenario in mixotrophic metabolism.  

 

It is highly desirable to reduce computation time in MFA and iMFA because 

of the large number of operations inherent in the evaluation of metabolic fluxes from 

isotope labeling data. Even at isotopic steady state, this process is a challenging 

parameter estimation problem in an extensive parameter space (Antoniewicz et al., 

2006), wherein the fluxes are parameters that have to be iteratively estimated from 
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isotope label data and other measurements. For example, accurate flux evaluation for 

a medium-sized plant metabolic network (with ~1000 isotopomers, ~100 fluxes and 

~30 flux parameters) requires hundreds or thousands of iterations of this parameter 

estimation process. Each iteration simulates isotopomer or (cumomer or EMU) 

abundances from guessed flux values using matrix inversions that require O(N3) 

operations where N is approximately the number of labeling variables balanced. 

Furthermore, this cycle of iterations has to be repeated several times to calculate flux 

confidence intervals or to check for multiple flux solutions. Thus, reducing the 

number of labeling variables has enormous impact on the computation time. 

 

2.4.2.    Originomers permit a more intuitive, metabolism-centric interpretation 

of isotope labeling data. 

The originomer and cumulative originomer concepts track the metabolic 

origins of atoms in a network, which depend only on metabolism (i.e. the structure of 

the metabolic network and the values of fluxes in it). On the other hand, the 

isotopomer and cumomer concepts track isotopes through a network, which depend 

not only on metabolism but also on the natural abundance of isotopes such as 13C and 

15N. Thus, the originomer concept decouples (or “cleans”) the effects of natural 

abundance from those of metabolism. Although the EMU concept is more 

metabolism-centric than the cumomer concept, it still does not decouple natural 

abundance from metabolism. Additionally, because originomers and their abundances 

depend only on metabolism, they permit a more intuitive interpretation of labeling 

data. For example, if a researcher conducting a mixotrophic experiment with U-13C 
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glucose and naturally abundant CO2 wishes to evaluate how much carbon the two 

substrates contribute to various metabolites, the answer can be directly obtained from 

originomer abundances. Furthermore, because many originomers will be infeasible in 

real metabolic networks, measuring a significant abundance for these originomers 

will unequivocally indicate that the metabolic network is incorrect and needs to be 

refined. Moreover, we anticipate that new EMU-based methods for the design of 

isotope labeling experiments (Crown et al., 2012; Crown and Antoniewicz, 2012a) 

may benefit from the fact that originomers and EOUs are metabolism-centric. Finally, 

in the analysis of network 3 (Fig. 2.6; see Results), we observed that two ILEs that 

are mirror images of each other, e.g. {U-13C glucose and 12CO2} vs. {U-12C glucose 

and 13CO2}, are exactly equivalent. Thus, the ILE whose analysis is mathematically 

more convenient may be analyzed instead of the other. However, it is practical to use 

naturally abundant substrates instead of pure 12C substrates and the equivalence 

between the ILEs disappears when 12C is adulterated by natural abundance. 

Nonetheless, the originomer concept still establishes an equivalence between the ILEs, 

as we demonstrated with network 3. 

 

2.4.3.    Originomers permit analytical solutions to iMFA 

We established an analytical solution strategy for iMFA that enables obtaining 

explicit analytical solutions for labeling variables. These expressions only need to be 

evaluated at select time points at which metabolites were sampled. This is a 

tremendous advantage over the currently used numerical method, in which the 

solution of ODEs involving thousands of variables within each iteration of an 
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optimization loop becomes a major bottleneck. However, a potential disadvantage of 

our analytical solution strategy is that the analytical expressions for labeling variables 

could involve a very large number of exponential terms. Since many originomers in a 

metabolic network are clearly infeasible, they enable a realistic implementation of 

this analytical solution strategy. Furthermore, as we have shown, the analytical 

solutions are exact whereas the numerical ones are slightly inexact. 

 

2.4.4.    Cases when the originomer method is not applicable 

As demonstrated in our examples, the originomer method is best applied to 

ILEs in which a single label of a single carbon source is fed. Thus, an apparent 

shortcoming of this concept is that it is not applicable to ILEs where multiple labels 

of a carbon source (e.g. 1-13C glucose and U-13C glucose) are fed as a mixture. 

However, recent studies on ILE design have shown that feeding multiple labels in 

parallel experiments provides more information than feeding a mixture of the labels 

in a single experiment (Crown and Antoniewicz, 2012b; Nargund and Sriram, 2013). 

This is very likely because when the labels are fed together, isotopomers arising from 

one label mask those arising from the other (Nargund and Sriram, 2013). Thus, 

performing parallel ILEs, each with a single label, is actually desirable. The 

originomer concept becomes very appropriate here, because each of the parallel ILEs 

can now be analyzed by designating a unique special atom (or set of special atoms) 

appropriate to that ILE. The only exception would be an ILE in which a U-13C 

substrate diluted with its naturally abundant version is fed; the bondomer concept 
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(Sriram and Shanks, 2004; van Winden et al., 2002) provides a metabolism-centric 

approach for this type of ILE. 

 

2.4.5.    Analytical solution method for iMFA 

We showed that the analytical solution method improves computational 

efficiency by 23-fold over the numerical method. We substantiated this by estimating 

the number of operations required for the analytical and numerical solution methods 

for network 1, and found that the analytical method requires 18-fold lesser operations 

than the numerical method.   

 

A major barrier in that analytical solution method is the huge number of 

exponential terms involved in Eq. [2.12]. In the homogeneous part of the ODE, or the 

first term of Eq. [2.12], the number the exponential terms is equal to the number of 

variables at that cumulative originomer order. However, in the inhomogeneous part, 

or second term, that number is determined by the number of exponential terms 

present in k , which arises from the bilinear term b in the balance Eq. [2.7]. Entries of 

the vector b are multiplications of two lower orders cumulative originomer 

abundances, and this is the major cause for the numerous exponential terms. For 

example, in the condensation reaction A B C+ → , the cumulative originomer 

abundances of C will depend on those of A and B. If the analytical expressions for 

certain same-order cumulative originomers of A and B have 100 exponential terms 

each, the inhomogeneous part of the corresponding cumulative originomer of C will 

consist of at least 2
101 5050C =  exponential terms, and more if different-order 
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cumomers of A and B are being considered. This problem is the intrinsic bottleneck 

of the analytical solution method. Even if this does not contribute much to the 

computational cost, significant memory must be allocated to store these exponential 

terms, especially for higher-order cumulative originomers. Fortunately, it is in such 

cases that originomer decomposition shows obvious superiority over isotopomer 

decomposition. Once an appropriate special atom is chosen, many cumulative 

originomers are either infeasible or most higher-order cumulative originomer 

abundances have negligible abundances, making the analytical solution still feasible 

as we demonstrated for network 1. 

2.5.  Conclusions 

In this work we presented two novel approaches to facilitate faster 

computation and more intuitive interpretation of ILEs. The originomer and its 

extension, the cumulative originomer, factor out natural abundances of unusual 

isotopes. At best, the cumulative originomer concept significantly reduces either the 

total number of labeling variables in an ILE or the number of higher-order labeling 

variables. At worst, this concept yields the same number of equations as the popular 

cumomer concept. Furthermore, it is possible to extend this concept to an EMU-like 

concept called EOU, which has further potential to enhance computational efficiency. 

The originomer and its derivative concepts can find widespread application in 

isotopic steady-state and instationary ILEs, from single substrate to parallel, multi-

substrate scenarios. We also developed an analytical solution method for ODEs 

arising in iMFA. This method is feasible and advantageous for many commonly 

employed instationary ILEs. The superiority of analytical solutions over numerical 
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solutions results from the fact that the analytical expressions need to be evaluated 

only for the time points at which metabolites were sampled instead of at every 

integration step. The analytical solution method can result in large numbers of 

exponential terms; however, this problem is alleviated by combining it with the 

originomer concept. Our simulation results show that for typical networks, this 

combination reduces computation time by over 90%.  
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Abstract 

Isotope-assisted metabolic flux analysis (MFA) is a powerful methodology to 

quantify intracellular fluxes through isotope labeling experiments (ILEs). In batch 

cultures, which are often convenient, inexpensive or inevitable especially for 

eukaryotic systems, MFA is complicated by the presence of the initially present 

biomass. This unlabeled biomass may either mix with the newly synthesized labeled 

biomass or reflux into the metabolic network, thus masking the true labeling patterns 

in the newly synthesized biomass. Here, we report a detailed investigation of such 

metabolite reflux in cell suspensions of the tree poplar. In ILEs supplying 28% or 

98% U-13C glucose as the sole organic carbon source, biomass components exhibited 

lower 13C enrichments than the supplied glucose as well as anomalous isotopomers 

not explainable by simple mixing of the initial and newly synthesized biomass. These 

anomalous labeling patterns were most prominent in a 98% U-13C glucose ILE. By 

comparing the performance of light- and dark- grown cells as well as by analyzing the 

isotope labeling patterns in aspartic and glutamic acids, we eliminated photosynthetic 

or anaplerotic fixation of extracellular 12CO2 as explanations for the anomalous 

labeling patterns. We further investigated four different metabolic models for 

interpreting the labeling patterns and evaluating fluxes: (i) a carbon source (glucose) 

dilution model, (ii) an isotopomer correction model with uniform dilution for all 

amino acids, (iii) an isotopomer correction model with variable dilution for different 

amino acids, and (iv) a comprehensive metabolite reflux model. Of these, the 

metabolite reflux model provided a substantially better fit for the observed labeling 

patterns (sum of squared residues: 538) than the other three models whose sum of 
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squared residues were (i) 4,626, (ii) 4,983, and (iii) 1,748, respectively. We compared 

fluxes determined by the metabolite reflux model to those determined by an 

independent methodology involving an excessively long ILE to wash out initial 

biomass and a minimal reflux model. This comparison showed identical or similar 

distributions for a majority of fluxes, thus validating our comprehensive reflux model. 

In summary, we have demonstrated the need for quantifying interactions between 

initially present biomass and newly synthesized biomass in batch ILEs, especially 

through the use of ≈100% U-13C carbon sources. Our ILEs reveal a high amount of 

metabolite reflux in poplar cell suspensions, which is well explained by a 

comprehensive metabolite reflux model. 

 

3.1．Introduction 

Isotope-assisted metabolic flux analysis (isotope MFA) is a powerful tool for 

investigating metabolic networks because it can estimate intracellular chemical 

reaction rates (fluxes) (Ahn and Antoniewicz, 2011; Kruger and Ratcliffe, 2009; 

Leighty and Antoniewicz, 2012; Schwender, 2008) and elucidate new metabolic 

pathways (Schwender et al., 2004; Sriram et al., 2007a). The basis of this 

methodology is the isotope labeling experiment (ILE), which involves supplying one 

or more isotopically labeled substrates to a cell or tissue culture, followed by 

measurement of isotope labeling patterns (isotopomers) in synthesized products such 

as biomass components or intracellular metabolites (Wiechert, 2001). Isotope MFA 

involves interpretation of these labeling patterns through a mathematical model of 

metabolism to ultimately result in metabolic flux maps for the cell or tissue of interest. 
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This modeling component serves as a bridge that connects the measurable quantities 

in an ILE, including isotopic labeling patterns and extracellular or biomass fluxes, to 

the underlying intracellular fluxes. 

 

Two major approaches in isotope MFA are (i) steady-state MFA (e.g. 

Wiechert, 2001), in which the labeling states of cellular products are measured after 

isotopic steady state is reached, and (ii) instationary MFA (e.g. Wiechert and Noh, 

2005; Wiechert and Nöh, 2013), in which the labeling states are intentionally 

measured during the approach to isotopic steady state. Of these, steady-state MFA is 

currently more widespread due to two reasons: first, its experimental implementation 

is easier and second, it is computationally less challenging as it does not involve 

solutions of large systems of ordinary differential equations within a global 

optimization algorithm (Nöh and Wiechert, 2006; Wiechert and Noh, 2005). For both 

types of MFA, it is ideal to measure isotope labeling patterns in intracellular 

metabolites. However, in steady-state isotope MFA, biomass components such as 

proteinogenic amino acids and sugars are used as surrogates for intracellular 

metabolites (Dauner et al., 2001; Sriram et al., 2008, 2004; Szyperski, 1995). This is 

because these compounds are synthesized from intracellular metabolite precursors 

distributed throughout primary metabolism. Furthermore, cellular protein and sugars 

are much more abundant than intracellular metabolites and can be hydrolyzed to 

amino acids (Klapa et al., 2003) or sugar hydrolysates (Sriram et al., 2007b) directly 

without employing any extraction steps. In this case, information on fluxes is 

contained in the isotopically labeled biomass synthesized de novo during the ILE 
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from the supplied carbon sources. Biomass present before the commencement of the 

ILE (hereafter, “initial biomass”) is labeled at the natural 13C abundance of 1.1%, and 

is thus effectively unlabeled. Often, this initial biomass can constitute up to ~10% of 

the biomass harvested at the end of the ILE and can interfere with the interpretation 

of labeling patterns. Continuous culture, such as in a chemostat, affords the washing 

out of the initial biomass and has been employed for many microbial systems. 

However, continuous culture is infeasible, unsuitable or expensive for many plant, 

mammalian and even microbial cell types, leaving batch culture as the only available 

option. In fact, steady-state isotope MFA in batch culture has been reported in studies 

investigating the metabolic landscapes of the bacterium E. coli (Chen et al., 2011; 

Shen et al., 2013), cell cultures of the plant Arabidopsis thaliana (Masakapalli et al., 

2013; Nargund and Sriram, 2013) and various mammalian cells (Metallo et al., 2009; 

Omasa et al., 2009; Quek et al., 2010). 

 

Unless batch culture is performed for long periods of time extending into 

multiple subculture cycles, the naturally abundant initial biomass can never be 

washed out. Thus, the biomass harvested at the conclusion of the ILE will consist of a 

mixture of initial (naturally abundant) and newly synthesized (13C-labeled) portions 

(Fig. 3.1). This raises an important question: does the initial biomass interact with the 

newly synthesized biomass? If there is no interaction, but only simple mixing 

between the initial and newly synthesized biomass, the ratio of the initial biomass to 

the newly synthesized biomass can be used to factor out the isotopomer abundances 

of the initial biomass from those measured in the harvested biomass. However,  
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Figure 3.1. Metabolic flux and reflux in isotope labeling experiments (ILEs).  
(a) In ILEs, a combination of isotopically labeled (13C or 12C) carbon sources is fed to 
a metabolic network. The metabolite molecules synthesized by the network from the 
13C or 12C atoms of the carbon sources will consist of isotopically distinct isomers 
(isotopomers). Information on intracellular fluxes that is concealed in the isotopomer 
patterns and abundances can be unraveled by mathematical modeling. In batch ILEs, 
the biomass present at the beginning of the ILE may interfere with the ILE. This 
initial biomass, labeled at the natural abundance of 13C (~1.1%), may either mix with 
the newly synthesized isotopomers (“mixing” arrow) or reflux into the metabolic 
network (“reflux” arrow). The isotopomers of a hypothetical four-carbon metabolite 
M4 illustrate these interactions. (b) An ILE supplying a single, ~100% U-13C carbon 
source will produce isotopomers that clearly distinguish mixing from reflux, as well 
as quantify the extent of these interactions. In such an ILE, biomass that is newly 
synthesized from the supplied carbon source will be represented by U-13C 
isotopomers. Mixing of the initial biomass with the newly synthesized biomass will 
result in isotopomers that are almost entirely 12C, whereas reflux of the initial biomass 
will result in isotopomers that are predominantly 13C but contain a few 12C atoms. 
Small rectangles represent carbon atoms (black: 13C, white: 12C). Small circles 
represent entire metabolite molecules. The newly synthesized and initially present 
intracellular isotopomers correspond the metabolite M4, shown shaded in gray. 
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interaction between the initial biomass and the newly synthesized biomass (or 

“reflux” of the initial biomass into the metabolic network) can result in additional 

labeling patterns that can only be factored out by a metabolic model that mimics this 

interaction. Previous isotope MFA studies have used data correction strategies toward 

factoring out the effect of the initial biomass. A straightforward method is to assume 

that the initial biomass does not reflux into the metabolic network and that the 

measured isotopomers are a weighted average of the known, naturally abundant 

isotopomers of the initial biomass and the unknown, isotopomers of the newly 

synthesized biomass. In this case, a simple algebraic operation decouples the 

isotopomer abundances of the initial biomass from those of the newly synthesized 

biomass. This “dilution rate” method has been reported in multiple studies (Dauner et 

al., 2001; Sriram et al., 2007a, 2004). Another approach is to assume a small influx of 

the naturally abundant version of the supplied carbon source (e.g. glucose), the value 

of this influx being a parameter estimated by MFA (M. Antoniewicz et al., 2007). 

Recently, researchers have begun hypothesizing interactions between the initial 

biomass and the newly synthesized biomass, and modeling these interactions as 

influxes of unlabeled amino acids. Such models either assume identical influxes for 

each amino acid on the basis of the culture growth rate (Lonien and Schwender, 

2009), or different influxes for each amino acid, which are estimated as part of the 

flux evaluation procedure (Kruger et al., 2011; Masakapalli et al., 2013). Although 

these solutions have partially solved the intrinsic shortcoming of steady state MFA in 

batch-like cell cultures resulted from initial biomass, their validity, performance and 
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ability to obtain accurate flux estimates have not yet been comprehensively 

investigated.  

We report an experimental and computational investigation of the interactions 

between initial and newly synthesized biomass, or metabolite reflux, in batch-grown 

cell suspensions of the forest tree poplar, a potential biofuel feedstock(Sannigrahi et 

al., 2010). We performed ILEs by supplying three labeled varieties of 13C glucose. Of 

these, a 98% U-13C glucose ILE revealed the presence of numerous, anomalous mass 

isotopomers that appeared to have been formed due to metabolite reflux. By 

comparing labeling patterns in light- and dark- grown cells as well as by interpreting 

the labeling patterns of tricarboxylic acid (TCA) cycle metabolites, we determined 

that these mass isotopomers were neither contributed by photosynthesis nor by 

anaplerotic CO2 assimilation. On elimination of these processes, metabolite reflux 

remained the sole cause for the anomalous mass isotopomers. We then compared the 

ability of three previously reported flux-isotopomer models to account for the 

observed mass isotopomer data. These models accounted for the anomalies by (i) 

using a uniform or non-uniform (for different amino acids) dilution rate to correct the 

isotopomer abundances, (ii) assuming a small influx of naturally abundant glucose, or 

(iii) accounting for the reflux by full-fledged reflux model in which reflux is 

mimicked by influxes of several amino acids and metabolites. Our results show 

significant metabolite reflux in poplar suspension cells, with the 98% U-13C glucose 

ILE being most sensitive to the effects of reflux. Among the four models we 

examined, the comprehensive reflux model accounts best for the observed anomalies 

in the labeling patterns. While flux results from this model compare qualitatively with 
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those obtained from the labeling patterns of intracellular metabolites, there are some 

numerical differences between fluxes. This points to the need for future extensions of 

the metabolite reflux model. 

3.2.   Materials and Methods 

3.2.1.    Poplar cell suspension culture and growth rate measurement 

Poplar (Populus. tremula × Populus. alba clone 717-1B4) cell suspensions 

were grown at 20 °C in 125 mL Erlenmeyer flasks shaken at 125 rpm on an orbital 

shaker. The flasks were placed in continuous light from cool-white fluorescent light 

(Ecolux® Technology Plant and Aquarium F40T12 bulbs (photosynthetically active 

radiation of 200-300 μmol m-2 s-1, incident radiation on flasks measured to be 28.3 ± 

2.6 μmol m-2s-1) or continuous dark; the dark condition was realized by wrapping the 

flasks in aluminum foil. The suspensions were subcultured every 7 d by transferring 

600 mg cells into 30 mL Murashige and Skoog medium (Phytotechnology 

Laboratories, Shawnee Mission, KS) containing 20 g L-1 glucose as the sole organic 

carbon source. 

 

To quantify growth, several flasks of cells were subcultured in parallel. Three 

biological replicates were harvested at 7 d by vacuum filtration through glass 

microfiber filter paper (Whatman, Piscataway, NJ). Fresh and dry weights of the 

harvested cell pellets were obtained by weighing them before and after lyophilization, 

respectively. 
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3.2.2.    Parallel ILEs 

We performed three parallel ILEs by growing cells in continuous light, 

replacing the usual 20 g L-1 naturally abundant glucose in the medium with 20 g L-1 

of: (i) 98% U-13C glucose, (ii) 100% 1-13C glucose or (iii) a mixture of 28% U-13C 

and 72% naturally abundant glucose. The 98% U-13C glucose ILE was also 

performed in continuous dark. Isotopically labeled glucose was obtained from 

Cambridge Isotope Laboratories (Andover, MA). Each ILE was represented by three 

biological duplicates, which were harvested on day 7 of culture. Cells were harvested 

from the ILEs by vacuum filtration through glass microfiber filter paper, and were 

immediately frozen in liquid nitrogen to arrest metabolism. The frozen cell pellets 

were then lyophilized and stored at –80°C until further analysis. We further 

performed three 21-d ILEs by supplying the same three types of 13C labeled glucose. 

In these ILEs, we transferred cells to fresh media every 7 d, harvested cells at 21 d 

and analyzed the mass isotopomers of soluble metabolites (free amino acids) from the 

harvested cells. 

 

3.2.3.    Measurement of isotopomer abundances of proteinogenic amino acids 

and intracellular metabolites 

To analyze proteinogenic amino acids, 20 mg of ground, lyophilized cells 

were vacuum-hydrolyzed with 6 N HCl for 5 h at 160 °C in hydrolysis tubes (Thermo 

Fisher Scientific, Rockford, IL). The hydrolysate was dried overnight in a RapidVap 

evaporator (Labconco, Kansas City, MO), reconstituted in 1 mL water, filtered, 

lyophilized and stored in -80 °C until further analysis. To improve their volatility in 
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the GC, the amino acids were derivatized with 100 µL of N-(tert-butyldimethylsilyl)-

N-methyltrifluoroacetamide (MTBSTFA; Sigma-Aldrich, St. Louis, MO) in 100 µL 

dimethylformamide (Thermo Fisher Scientific) by heating at 70 °C for 1 h.  

Intracellular metabolites were extracted and quantified as described by Fiehn and co-

workers(Fiehn et al., 2000). Briefly, 20 mg of ground, lyophilized cells were 

contacted with 1 mL methanol and 50 µL water, heated at 75 °C for 15 min and then 

centrifuged, after which the supernatant containing the soluble metabolites was 

collected. These steps were repeated once, following which the supernatant was dried, 

re-dissolved in 100 µL of a 20 mg mL-1 solution of methoxyamine hydrochloride (MP 

Biomedicals, Solon, OH) in pyridine (EMD Chemicals, Gibbstown, NJ) and heated at 

30 °C for 90 min. The resulting soluble metabolites were derivatized by adding 100 

µl MTBSTFA and heating at 70 °C for 1 hr. Soluble metabolites were quantified by 

gas-chromatography as described below, using norleucine (Sigma-Aldrich, St. Louis, 

MO) as an internal standard. 

 

A Varian 450 gas chromatograph (GC) connected to a Varian 300 mass 

spectrometer (MS) (Bruker Corporation, Fremont, CA) was used to measure the 

abundances and mass isotopomer distributions of amino acids. The GC was equipped 

with a VF-5ms column (30 m × 0.25 mm × 0.25 µm; Bruker). One microliter of each 

sample was injected in to the GC at a split ratio of 50:1, with helium as the carrier gas 

at a flow rate at 1.0 mL min-1. To analyze proteinogenic amino acids, the oven 

temperature was programmed as follows: an initial temperature of 150 °C for 2 min, 

increased to 230 °C at 3 °C min-1, then to 240 °C at 2 °C min-1 and finally to 275 °C 
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at 10 °C min-1 and a constant temperature of 275 °C for 6 min, amounting to a run 

time of 43.2 min. To analyze intracellular metabolites, the oven temperature was 

programmed as follows: an initial temperature of 150 °C for 2 min, increased to 

250 °C at 3 °C min-1, then finally to 275 °C at 10 °C min-1 and a constant temperature 

of 275 °C for 5 min.  The MS was operated in electron ionization mode, with the ion 

source at 280 °C. Isotopomer abundances were recorded under selected ion 

monitoring mode. 

 

The Varian MS Workstation software (version 6.9.3) was used together with 

the NIST mass spectral library (National Institute of Standards and Technology, 

Gaithersburg, MD) to identify and quantify the peaks in the MS spectra. An in-house 

MATLAB (The Mathworks, Natick, MA) script(Sriram et al., 2008) was used to 

correct the mass isotopomer distributions for the natural abundances of isotopes of 

hydrogen, nitrogen, oxygen, sulfur, silicon and non-metabolic carbon. By acquiring 

and processing spectra of amino acid standards of defined compositions, we verified 

that both the MS measurements and the natural abundance correction program were 

accurate (data not shown). The thus corrected mass isotopomer distributions from the 

three parallel ILEs are listed in Supplementary Table S1. This correction different 

from the data correction strategy described in Introduction because the data correction 

strategy aims at elucidating the effects of initial 12C naturally abundant biomass in a 

ILE, while this MATLAB program corrects for all non-metabolic carbon atoms in a 

measurable molecule resulted from derivatization. 
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3.2.4.    Flux evaluation from isotopomer data 

To estimate intracellular metabolic fluxes, the corrected mass isotopomer 

distributions were processed by our flux evaluation program NMR2Flux+. Details 

about NMR2Flux+ and its capabilities are described elsewhere(Nargund and Sriram, 

2013; Sriram et al., 2008, 2004). Briefly, this program accepts metabolic network 

stoichiometries and carbon atom rearrangements supplied by the user, employs 

cumomer balancing to simulate isotopomer distributions and isotopomer abundances 

corresponding to any feasible set of fluxes in the network. Given a set of isotopomer 

abundances, the program uses a global optimization routine based on simulated 

annealing to iteratively evaluate flux values that best account for the supplied 

isotopomer abundances. NMR2Flux+ assesses goodness-of-fit using the sum of 

squared residuals (SSR) metric, calculated as: 

 2

2SSR
x

j j

jj

II



  

where the index j cycles through all the (mass) isotopomer abundances, Ix represents 

measured isotopomer abundances, I represents simulated isotopomer abundances 

corresponding to the evaluated set of fluxes and σ represents the measured standard 

deviations of the isotopomer abundances. For all metabolic models, the SSR was 

evaluated for 405 isotopomer abundances (see Supplementary Table S1) measured 

from three ILEs on 98% 1-13C glucose, 28% U-13C glucose and 98% U-13C glucose. 

The dataset used for flux evaluation includes all the proteinogenic amino acid 

fragments detected by GC-MS (a total of 30 fragments across 12 amino acids: Ala, 

Asp, Gly, Glu, His, Ile, Leu, Phe, Pro, Ser, Thr, Val; Supplementary Table S1). 
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To obtain standard deviations for the evaluated fluxes, we used a bootstrap 

Monte-Carlo algorithm that operated as follows: (i) the original isotopomer 

abundance dataset was perturbed 280 times, resulting in 280 synthetic datasets 

normally distributed around the original dataset; (ii) NMR2Flux+ independently 

evaluated fluxes from each synthetic dataset to obtain 280 synthetic flux distributions; 

(iii) these synthetic distributions were used to generate standard deviations for the 

evaluated fluxes. Fluxes and standard deviations evaluated by NMR2Flux+ for the 

four metabolic models in this work – uniform isotopomer correction (Iso_corr[U]), 

variable isotopomer correction model (Iso_corr[V]), glucose dilution (Gluc_dilu) and 

amino acid reflux (AA_in) (see Results for details) – are listed in Supplementary 

Table S3. The metabolic networks corresponding to these four models are listed in 

Supplementary Tables S4, S5, S6 and S7, respectively. All NMR2Flux+ 

computations were performed on three identical workstations equipped with an Intel 

Xeon E5620 CPU and 32 GB of RAM. 

3.3.   Results 

3.3.1.    Proteinogenic amino acids from a 7-d batch ILE exhibit anomalous 13C 

enrichments and mass isotopomer distributions 

The net 13C enrichments (evaluated as explained in Fig. 3.2) of proteinogenic amino 

acid fragments from poplar suspension cultures grown on 28% or 98% U-13C glucose 

for 7 d in batch cultures were considerably lower (22%-28%) (Fig. 3.2) than that of 

the supplied glucose. For growth on 28% U-13C glucose, the enrichments ranged from 

22%-23% for isoleucine, lysine and proline fragments to 27%-28% for glutamate and 
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alanine fragments. Proportionally, for growth on 98% U-13C glucose, the enrichments 

ranged from 76% for isoleucine, lysine and proline fragments to 92%-98% for 

glutamate and alanine fragments. These enrichment data were reproduced in several 

labeling experiments performed weeks apart from each other. The observed 13C  
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Figure 3.2. Proteinogenic amino acid fragments from poplar cell suspensions 
grown on U-13C glucose are less13C-enriched than the supplied glucose.  
For a fragment containing n metabolic carbon atoms, the 13C enrichment is defined as: 

13 0 10 1m m m nA A n A
C enrichment

n
       


  

where Am+i is the (relative) abundance of a mass isotopomer in which i of the n carbon 
atoms are 13C. Thus, the 13C enrichment simply represents the fraction of atoms in a 
fragment that are 13C. The 13C enrichments of various proteinogenic amino acid mass 
spectral fragments (horizontal axis) were calculated from the mass isotopomer 
distributions of the fragments. Fragments belonging to the same amino acid are 
grouped within boxes. Two ILEs were performed, using 98% U-13C glucose (white 
circles) or 28% U-13C glucose (gray circles) as the sole organic carbon source. The 
dashed lines denote the 13C enrichments expected for each ILE if the amino acids 
were entirely synthesized from the supplied glucose. All data points have error bars, 
although most error bars are too small to be visible. 
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enrichments are anomalous because they contradict the expectation that the non-

photosynthetic poplar cell suspensions should synthesize biomass components 

entirely from the supplied glucose. A recent study (Wasylenko and Stephanopoulos, 

2013) shows that enzymes can discriminate against 13C atoms principally because 13C 

atoms form stronger bonds than 12C atoms, and that this isotopic effect can contribute 

up to 0.8% in GC-MS measurements when particular 13C tracers are used. 

Nevertheless, the observed discrepant 13C enrichments (up to 20%) are too large to be 

explained by the difference in enzyme affinities for 12C and 13C. Additionally, a 

previous study (Kruger et al., 2007) demonstrated that feeding 13C-labeled carbon 

sources to Arabidopsis cell suspensions does not perturb metabolism. 

 

One explanation for the discrepant 13C enrichments is that they were due to mixing of 

initial biomass with the newly synthesized biomass without reflux of the initial 

biomass. However, an examination of the mass isotopomer abundances from a 98% 

U-13C ILE (Fig. 3.3 and Supplementary Table S1) revealed that this explanation is 

invalid. Mixing between the initial biomass and the newly synthesized biomass at a 

ratio of 1:9 (as obtained from dry weight measurements before and after the ILE) 

would result in the least massive (entirely 12C) and most massive (entirely 13C) mass 

isotopomers for each fragment (left panels of Fig. 3.3). Contrastingly, reflux of the 

initial biomass would result in breakdown of the initial biomass and condensation of 

the ensuing fragments with 13C labeled fragments from the supplied glucose, thus 

producing a range of mass isotopomers for each fragment (right panels of Fig. 3.3). 
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The measured mass isotopomer abundances (center panels of Fig. 3.3) clearly agree 

with the latter possibility. This suggests reflux of the initial biomass in addition to 

simple mixing. It may appear that two competing hypotheses – photosynthetic or 

anaplerotic fixation of 12CO2 – could potentially explain the anomalous isotopomers.  

 

Postulated MIDs Postulated MIDsMeasured MIDs

Ser[123]Ser[123] Ser[123]

His[123456]His[123456] His[123456]

Without reflux With reflux

         

    

 

Figure 3.3. Metabolites from a 100% U-13C ILE contain anomalous mass 
isotopomers not explained by mixing of initial and newly synthesized biomass.  
This figure depicts mass isotopomer abundances (MIDs) of two illustrative fragments 
Ser[123] and His[123456]. The MIDs on the left were postulated by assuming mixing 
between the initial biomass and the newly synthesized biomass (at a ratio of 1:9 
obtained from dry weight measurements) but no metabolite reflux. In this case, the 
initial biomass is naturally abundant (lowest mass isotopomers) and the newly 
synthesized biomass is fully 13C-labeled (highest mass isotopomers). The MIDs in the 
center were experimentally measured in a 98% U-13C glucose ILE. The MIDs on the 
right were postulated assuming metabolite reflux (right). The mass isotopomers 
between the lowest and highest masses are anomalous and cannot be explained by 
mixing between the initial and newly synthesized biomass.  
The black “” marks indicate isotopomers postulated to be feasible, whereas the red 
“” marks indicate isotopomers postulated to be infeasible under the relevant 
scenario. All data points have error bars, although most error bars are too small to be 
visible. 
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However, as explained below, further experiments and a detailed examination of 

isotopomer data did not support these hypotheses. 

 

3.3.2.    Photosynthetic 12CO2 assimilation does not explain anomalous 

isotopomers 

To assess if photosynthetic 12CO2 fixation explained the anomalous isotopomers, we 

performed 98% U-13C glucose ILEs for 7 d in continuous light or continuous dark. 

Photosynthetic 12CO2 fixation would occur in the light but not in the dark. Therefore, 

if it were responsible for the anomalous 13C enrichments of Fig. 3.2, only light-grown 

cells would exhibit substantially lower enrichments than the supplied glucose. 

Furthermore, since photosynthesis will result in 12CO2 incorporation at C-1 of the 

photosynthetic product 3-phosphoglycerate, the light-grown cells should exhibit 

lower 13C enrichment on C-1 of Ser (an amino acid derived from 3-phosphoglycerate) 

than dark-grown cells. Contrary to this expectation, intracellular metabolites (amino 

acids) from light- and dark-grown cell suspensions exhibited nearly identical 13C 

enrichments (Fig. 3.4), including Ser. This clearly demonstrates that the discrepant 

13C enrichments cannot be explained by photosynthetic fixation of extracellular 12CO2. 

Although the light- and dark-grown cell suspensions exhibit some differences 

between their glutamate and glutamine enrichments, this difference cannot be 

explained by photosynthetic CO2 fixation as these metabolites are not generated in the 

Calvin cycle. Instead, it might be a result of a possible regulation of glutamine 

synthetase by light, which has been shown in multiple studies on Arabidopsis 

thaliana (Oliverira et al., 2001; Peterman and Goodman, 1991). 
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Figure 3.4. Photosynthetic 12CO2 assimilation does not explain anomalous 
isotopomers.  
The 13C enrichments (vertical axis) of various proteinogenic amino acid mass spectral 
fragments (horizontal axis) were calculated from the mass isotopomer distributions of 
the fragments. The dashed lines denote the 13C enrichments expected for each ILE if 
the amino acids were entirely synthesized from the supplied glucose. 
Photosynthetic assimilation of atmospheric 12CO2 may be one possible explanation 
for the anomalous isotopomers observed in Fig. 3.3. To test this, we measured 13C 
enrichments of proteinogenic amino acid fragments between poplar cell suspensions 
grown on 98% U-13C glucose in continuous light (white circles) and continuous dark 
(black circles). The similarity of 13C enrichments between light and dark conditions 
indicates that photosynthetic carbon assimilation did not occur; therefore 
photosynthesis cannot explain the anomalous isotopomers. All data points have error 
bars, although most error bars are too small to be visible. 
 

3.3.3.    Anaplerotic 12CO2 assimilation does not fully explain anomalous 

isotopomers 

Anaplerotic reactions interconvert three-carbon glycolytic metabolites such as 

phosphoenolpyruvate or pyruvate and four-carbon tricarboxylic acid (TCA) cycle 

metabolites such as oxaloacetate or malate, by fixing or releasing CO2. Significant 
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flux through these reactions can be expected during growth as they are necessary for 

biomass synthesis and for shuttling reductants between organelles(Sriram et al., 

2007a). To determine whether net anaplerotic incorporation of extracellular 12CO2 

was solely responsible for the anomalous isotopomers, we scrutinized the mass 

isotopomers of aspartate and glutamate (Fig. 3.5). The significant anomalous 

isotopomers of these amino acids include the M+1 isotopomers of aspartate[12] and 

aspartate[234], the M+2 and M+3 isotopomers of glutamate[2345] as well as the M+3 

and M+4 isotopomers of glutamate[12345] (Fig. 3.5c).  

 

In a 98% U-13C glucose ILE, anaplerotic fixation of 12CO2 would cause 13C 

depletion of oxaloacetate (OAA; the keto acid precursor of aspartate) at C-4 and at C-

1 due to exchange between OAA and the symmetrical molecules fumarate and 

succinate. It would also cause 13C depletion of α-ketoglutarate (AKG; the keto acid 

precursor of glutamate) at C-1 due to the forward TCA cycle (Fig. 3.5a). Anaplerotic 

12CO2 fixation, even if followed by infinite turns of the TCA cycle, cannot result in 

13C depletion at C-2 or C-3 of OAA or aspartate nor at C-2, C-3, C-4 or C-5 of AKG 

or glutamate. Hence, anaplerotic 12CO2 fixation cannot produce the M+1 isotopomer 

of aspartate[12] or aspartate[234], nor the M+1, M+2 or M+3 isotopomers of 

glutamate[2345] or glutamate[12345] (Fig. 3.5b). However, the significant observed 

abundances of these isotopomers imply that even if significant anaplerotic 12CO2 

occurred during the ILEs, it would not explain all anomalous isotopomers of aspartate 

and glutamate.  
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Figure 3.5. Anomalous isotopomers of glutamate (Glu) and aspartate (Asp) are 
not fully explained by anaplerotic 12CO2 assimilation, but are explained by 
acetyl-CoA (ACA) reflux.  
One possible explanation for the anomalous isotopomers in Fig. 3.3 is that 12CO2 was 
assimilated by anaplerotic reactions that interconvert three-carbon glycolytic 
metabolites (e.g. phosphoenolpyruvate or pyruvate) and four-carbon TCA cycle 
metabolites (e.g. oxaloacetate or malate). However, this possibility cannot explain all 
the anomalous isotopomers of Glu (derived from the metabolic precursor α-
ketoglutarate [AKG]) and Asp (derived from the precursor oxaloacetate [OAA]). For 
example, in the 100% U-13C ILE, anaplerotic 12CO2 fixation (a) will result in AKG 
with 12C on C-1 and OAA with 12C on C-1 and/or C-4, even after infinite turns of the 
TCA cycle. This will result in mass isotopomer distributions of Glu and Asp (b) 
lacking containing only the isotopomers indicated with a black “” and lacking the 
mass isotopomers indicated with a red “”. The isotopomer measurements from the 
100% U-13C ILE (c) do not agree with this prediction. An alternative model (d) 
featuring anaplerotic 12CO2 fixation and reflux of acetyl-CoA (ACA, obtainable from 
the degradation of several amino acids) predicts isotopomer abundances (e) consistent 
with measurements. Small rectangles represent carbon atoms (black: 13C, white: 12C). 
On the horizontal axis, the numbers “+0”, “+1”, etc. represent M+0, M+1, etc. mass 
isotopomers. All data points have error bars, although most error bars are too small to 
be visible. 
 

On exploring various metabolic models that could explain the anomalous 

isotopomers of aspartate and glutamate, we arrived at a model that included reflux of 

acetyl-CoA (ACA) in addition to anaplerotic 12CO2 fixation (Fig. 3.5d). This is 
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consistent with amino acid reflux, as the degradation of many amino acids including 

glutamate, serine, alanine, threonine, valine and tyrosine produces pyruvate, ACA or 

fatty acids, and the degradation of fatty acids produces ACA (degradation pathways 

obtained from the MetaCyc metabolic pathway database (Caspi et al., 2011)). By 

tracing carbon atom rearrangements, it is clear that this model results in 13C 

depletions at appropriate carbon atoms in the TCA cycle metabolites to satisfactorily 

explain all the anomalous isotopomers of aspartate and glutamate (Fig. 3.5e). 

Simulations using a metabolic model (development explained below) also showed 

that the anomalous isotopomers were best explained by the influx of naturally 

abundant ACA, but neither 1-13C nor 2-13C ACA. In summary, these results 

eliminated photosynthesis and anaplerotic 12CO2 fixation as explanations for the 

anomalous 13C enrichments and isotopomers, leaving only metabolite reflux as an 

explanation. In particular, the reflux of ACA that can be derived from degradation of 

amino acids and lipids, was crucial to explain several anomalous isotopomers. 

 

3.3.4.    Metabolic model incorporating reflux quantitatively explains isotopomer 

data better than previously reported models 

We developed a comprehensive flux-isotopomer model to simulate 

isotopomer abundances and infer a carbon traffic in the batch-grown poplar cell 

suspensions (Fig. 3.6). Our model consists of plant primary metabolic pathways 

including glycolysis, the pentose phosphate pathway (PPP), the TCA cycle, multiple 

anaplerotic reactions as well as reactions leading from intracellular metabolites to 

biomass components such as proteinogenic amino acids and fatty acids. Furthermore 
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our model is compartmentalized, with the compartmental organization of pathways 

based on previous plant metabolic network models published by one of the us (GS) 

(Iyer et al., 2008; Nargund and Sriram, 2013; Sriram et al., 2007a, 2004) and one of 

the models evaluated by Ratcliffe and co-workers (Masakapalli et al., 2010). 

Accordingly, our model features duplicated (cytosolic and plastidic) glycolysis and 

pentose phosphate pathways connected by multiple intercompartmental transport 

fluxes as well as a mitochondrial TCA cycle. U-13C glucose and 12CO2 (though 

anaplerotic fixation) are the principal carbon sources in the model. The model 

incorporates metabolite reflux in the form of influxes of naturally abundant amino 

acids and metabolites resulting from the degradation of biomass components. As 

suggested by the anomalous isotopomers (Fig. 3.3), the amino acids entering the 

network are histidine, serine, glycine, leucine, alanine, aspartate/asparagine, threonine, 

methionine, isoleucine, leucine and glutamate/glutamine. The biomass component 

degradation products entering the model are fructose-6-phosphate (degradation 

product of sugars), cytosolic and plastidic pyruvate (degradation of serine, alanine, 

leucine and glutamate via citramalate pathway (Wu et al., 2009)), 3-phosphoglycerate 

(degradation of serine and glycine), succinate (degradation of valine) and ACA 

(degradation of fatty acids and acetate/propanoate resulting from the degradation of 

glutamate, threonine, valine and tyrosine). These influxes are marked in red in Fig. 

3.6. The complete metabolic model incorporating metabolite reflux, hereafter 

designated “AA_in”, is listed in Supplementary Table S7. 
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Figure 3.6. Metabolic network model incorporating amino acid reflux.  
This three-compartment metabolic network is a model of primary metabolism in 
poplar cell suspension. It includes glycolysis and PPP in the cytosol and the plastid, 
TCA cycle in the mitochondrion as well as amino acids synthesis and reflux reactions. 
Gray circles represent intracellular metabolites and white circles represent amino 
acids derived from them. Arrows indicate biochemical reactions, with green arrows 
representing amino acid “dilution” or “mixing” and red arrows representing amino 
acid “reflux”. Names of significant or interesting reactions (as designated by us) are 
shown adjacent to their arrows. The stoichiometries, carbon atom rearrangements and 
fluxes evaluated for all reactions are listed in Supplementary Table S6 and S7. 
Standard three-letter abbreviations are used for amino acids. Abbreviations for other 
metabolite names: ACA, acetyl-CoA; AKG, α-ketoglutarate; Cit, citrate; E4P, 
erythrose-4-phosphate; F6P, fructose-6-phosphate; Fum, fumarate; G6P, glucose-6-
phosphate; Glc, glucose; ICit, isocitrate; Mal, malate; OAA, oxaloacetate; P5P, 
pentose-5-phosphate (representing ribose-5-phosphate, ribulose-5-phosphate and 
xylulose-5-phosphate); PEP, phosphoenolpyruvate; Pyr, pyruvate; S7P, 
sedoheptulose-7-phosphate; Succ, succinate; Succ-CoA, succinyl-CoA; T3P, triose-3-
phosphate (representing glyceraldehyde-3-phosphate, dihydroxyacetone phosphate 
and 3-phosphoglycerate). For metabolites duplicated in more than one compartment, 
compartmentalization is indicated by subscripts: c, cytosol; p, plastid. 
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We constructed this metabolic network model iteratively. Beginning with a 

simpler network, we attempted various refinements to the network and accepted those 

refinements that better accounted for the isotopomer abundance measurements 

(mathematically, those refinements that lowered the SSR of the model). In particular, 

a single-compartment model did not yield a satisfactory SSR, and introducing 

cytosol-versus-plastid compartmentalization lowered the SSR. Similarly, we 

introduced the amino acid influxes iteratively into successive versions of the model. 

We allowed the flux evaluation program NMR2Flux+ to find, through a simulated 

annealing global optimization algorithm, values of the metabolic pathway fluxes as 

well as the influxes, so as to result in the lowest possible SSR. We constrained the 

amino acid influxes to a lower bound of zero and an upper bound of the order of 12% 

of their rate of incorporation into biomass. We calculated the upper bound from 

measurements of (i) the growth rate (data not shown), (ii) the ratio of the initial 

biomass to newly synthesized biomass (1:9) as evaluated from growth rate 

measurements and (iii) the biomass composition (data not shown). However, the 

upper bounds for some influxes had to be increased, especially in case of the ACA 

influx, to achieve a low SSR. The evaluated fluxes and influxes, as well as their 

standard deviations (estimated as described in Materials and Methods) are listed in 

Supplementary Tables S3 and S7. 

 

We compared the ability of the AA_in model to account for the measured 

isotopomer abundances with that of previously reported models  (Lonien and 

Schwender, 2009)  that employed other mechanisms to model the effect of the initial 

 76 
 



 

biomass. One previously employed approach is adjustment of the purity (13C 

enrichment) of the labeled carbon source. Our model “Gluc_dilu” (listed in 

Supplementary Table S5) uses this approach to model the effect of the initial biomass 

instead of the metabolite influxes described above. Another previous approach is the 

correction of the measured MIDs by a factor based on the ratio of the initial to final 

biomass. Our uniform isotopomer correction model “Iso_corr(U)” (listed in 

Supplementary Table S4) uses this approach. Instead of introducing additional 

metabolite influxes, it assumes that all proteinogenic amino acid isotopomer 

measurements are uniformly diluted by natural abundance in the ratio 1:9, which is 

the measured ratio of initial biomass to newly synthesized biomass. An improved 

version of this model, the variable isotopomer correction model “Iso_corr(V)”, allows 

different dilution ratios or mixing coefficients for different amino acids. These 

dilution ratios are parameters in the flux model and are estimated by our flux 

evaluation program NMR2Flux+ (the evaluated ratios are in Supplementary Table 

S6). This new Iso_corr(V) model is clearly an improvement over the original 

isotopomer correction model, as it reflects the expectation that different amino acids 

may be diluted by naturally abundant intracellular pools to different extents upon 

introduction of the labeled carbon source. 

 

To evaluate the performance of the models, we calculated an SSR based on a 

set of 405 isotopomer abundances of all the 30 amino acid fragments detected on GC-

MS measured from three ILEs using 98% 1-13C glucose, 28% U-13C glucose and 98% 

U-13C glucose. As evident from the parity plot Fig. 3.7, the AA_in model fits the 
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isotopomer measurements significantly better than the other three models. 

Quantitatively, the AA_in model yielded an SSR of 538, whereas the Gluc_dilu 

model gave an SSR of 4,626, the Iso_corr(U) model gave an SSR of 4,983, and the 

Iso_corr(V) gave an SSR of 1,748 (Fig. 3.7, inset). Remarkably, SSR corresponding 

to the 98% U-13C glucose ILE was the lowest in case of the AA_in model, whereas 

the two alternative models provided substantially poorer fits and thereby larger SSRs. 

The statistically acceptable SSR value for 405 redundant measurements is 462. The 

AA_in model comes reasonably close to this, given that it modeled a batch culture at 

a pseudo-steady state. 

 

Highlights of the flux map evaluated by using the AA_in model (fluxes and 

statistics shown as blue boxes in Fig. 3.8, Supplementary Table S3) include 

substantial net flux through the plastidic PPP (g6pdhp: 0.43 ± 0.23) and relatively 

lower flux through the cytosolic PPP (0.16 ± 0.07), as well as relatively low 

anaplerotic cycling (ana_net: 0.04 ± 0.01). To assess the efficacy of the metabolite 

reflux model, we also performed a second set of three parallel ILEs on 98% 1-13C, 

28% U-13C and 98% U-13C glucose on poplar cell suspensions over a 21-d period, by 

seeding the cells in fresh, appropriately 13C-labeled medium every 7 d. These ILEs, 

although excessively long, can be expected to be relatively reflux-free because of (i) 

their length and (ii) the fact that intracellular metabolites will be less affected by 

reflux and unaffected by mixing (Fig. 3.1) as compared to biomass components such 

as proteinogenic amino acids. We isolated and measuring isotopomer abundances of 

intracellular metabolites from this experiment, and evaluated fluxes using a metabolic  
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Figure 3.7. Metabolic model incorporating amino acid reflux outperforms 
models incorporating glucose dilution or isotopomer correction in explaining 
isotopomer abundances measured from three ILEs.  
In the parity (scatter) plot, 405 isotopomer abundances measured from three ILEs 
(100% 1-13C glucose, 28% U-13C glucose and 98% U-13C glucose) are plotted against 
isotopomer abundances simulated on the basis of the estimated fluxes. Each ILE was 
performed in triplicate on batch cultures of poplar cell suspensions. This plot 
illustrates the ability of four separate metabolic models respectively employing 
uniform isotopomer correction (Iso_corr[U], lavender points and bars), glucose 
dilution (Gluc_dilu, green points and bars), variable isotopomer correction 
(Iso_corr[V], blue points and bars) and amino acid reflux (AA_in, gold points and 
bars) to model the batch culture. The y = x diagonal line corresponds to a perfect fit. 
The histogram in the inset depicts the sums of squared residues (SSRs) for the three 
models. All data points have error bars, although most error bars are too small to be 
visible. 
 

model that lacked metabolite reflux (except the ACA influx), glucose dilution or 

isotopomer correction. The resulting flux evaluation yielded a statistically acceptable 

SSR of 382 for 357 isotopomer abundances, and the corresponding fluxes and their 

statistics are depicted in Fig. 3.8 (red boxes). Clearly, the results of both 
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Figure 3.8. Comparison of metabolic fluxes estimated from two independent 
experiments and models.  
Fluxes shown here are identified by name in the metabolic network of Fig. 3.7 and 
Supplementary Table S7. Fluxes were estimated (i) from a one-week ILE by 
measuring labeling in proteinogenic amino acids and employing a model 
incorporating amino acid reflux (blue boxes) as well as (ii) from a three-week ILE by 
measuring labeling in intracellular metabolites and employing a model without amino 
acid reflux (red boxes).. For each methodology, flux distributions were obtained by 
performing 280 bootstrap Monte Carlo simulations that accounted for the larger of the 
measurement and biological errors in the measured isotopomer abundances. For each 
flux, the central bar in the box denotes the median of the flux distribution, the lower 
and upper ends of the box represent the 25th and 75th percentiles of the distribution, 
and the lower and upper whiskers represent the 10th and 90th percentiles of the 
distributions. Therefore, shorter boxes and whiskers indicate better flux identifiability. 
Gray boxes group flux distributions of the same reaction obtained from the two 
methods. The canonical pathways containing some of the fluxes are indicated above 
the data points. The flux ana_net is a net anaplerotic CO2 fixation flux that 
consolidates the forward and reverse directions of various anaplerotic fluxes in the 
metabolic model. 
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methodologies are qualitatively the same, although there are numerical differences 

between them for some flux values, especially the CO2 influx (CO2in, reflux model: 

0.18 ± 0.16, model without reflux: 0.03 ± 0.01) and the net flux through the plastidic 

PPP (g6pdhp, reflux model: 0.43 ± 0.23, model without reflux: 1.50 ± 0.11). Despite 

this, the estimates of many fluxes (CO2out, pgif, pgibp, pdhp, tktBb, sdhr, mdhr, 

ana_net) are similar. 

 

3.5.   Discussion 

Isotope MFA is a powerful systems biology tool for studying cellular 

metabolism. It relies on the measurement of labeling patterns of metabolites 

(isotopomers) generated by the metabolic processing of specific 13C-labeled carbon 

sources, usually at isotopic steady state. In conjunction with information on carbon 

atom rearrangements in metabolic reactions, this methodology quantitatively tracks 

the trajectories of the 12C and 13C atoms through the metabolic network to simulate 

isotopomer abundances. By fitting these simulated isotopomer abundances to the 

experimentally measured ones, it evaluates flux values and distributions that best 

explain the labeling data. Consequently, the flux distributions estimated by isotope 

MFA are very sensitive to the isotopomer abundances of metabolites. In batch ILEs, 

an important biological phenomenon that could influence the isotopomer abundance 

measurements is the presence of the initial biomass and interactions between this and 

the newly synthesized biomass (Fig. 3.1). Because batch ILEs are convenient or 

inevitable for many biological systems, it is necessary to quantify the effects of the 

initial biomass on the isotopomer abundance measurements. 
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In this work, we show that the use of ≈100% U-13C carbon sources can 

provide much information on the interactions between the initial and newly 

synthesized biomass. An ILE using a single U-13C carbon source will typically yield 

no flux information, as all isotopomers will be 13C-labeled. However, reflux of the 

naturally abundant initial biomass into metabolism is amplified in such an ILE. The 

anomalous 13C enrichments (Fig. 3.2) and mass isotopomer abundances (Fig. 3.3) 

from our 98% U-13C glucose ILEs suggested that the initial biomass did not remain 

isolated from the newly synthesized biomass and that it refluxed into the metabolic 

network. If the initial biomass had remained isolated and had only mixed with the 

newly synthesized biomass, we would only have observed the least massive (M+0) 

and most massive (M+n) isotopomers of each fragment. However, isotopomer 

measurements from the 98% U-13C ILE clearly disagreed with this expectation. We 

eliminated two competing causes for these isotope labeling trends – photosynthetic 

and anaplerotic 12CO2 incorporation – by performing follow-up ILEs (Fig. 3.4) or 

examining mass isotopomers of aspartate and glutamate (Fig. 3.5). Although these 

results were not able to exclude the “mixing” phenomenon, they did point at reflux of 

the initial biomass as the major cause of the anomalous isotope labeling patterns. 

 

Previous reports (M. Antoniewicz et al., 2007; Dauner et al., 2001; Sriram et 

al., 2007a, 2004) of isotope MFA in batch cultures have used two approaches to 

account for the initial biomass: (i) adjustment of the 13C enrichment of the labeled 

carbon source, or (ii) correcting the isotopomer abundance measurements assuming 

 82 
 



 

that they are produced by mixing of the initial and newly synthesized biomass. Only 

one report(Kruger et al., 2011; Masakapalli et al., 2013) used amino acid influxes to 

model the effect of initial biomass. However, there is no previous report quantifying 

the extents to which these models account for isotopomer measurements. This is a 

pressing need, given our 98% U-13C glucose ILEs that are sensitive to metabolite 

reflux. Our comparison of all these models clearly showed that the model 

incorporating amino acid and metabolite reflux (AA_in; Fig. 3.6) is more accurate 

than the other three models. It especially outperforms them in explaining the data 

from the 98% U-13C glucose ILE (Fig. 3.7). Two reasons may explain the superior 

performance of the metabolite reflux model. Foremost, the glucose dilution and 

isotopomer correction models only use a single dilution factor to account for 

anomalous isotopomers. In contrast, the reflux model uses several amino acid and 

metabolite influxes as flux parameters. In other words, we are introducing additional 

degrees of freedom at reasonable places of our metabolic network. These additional 

degrees of freedom can explain the anomalous isotopomers observed by us. For 

example, the reflux model estimated the acetyl-CoA reflux (~0.02 units) to be much 

higher than histidine reflux (~0.0001 units), indicating that the reflux of acetyl-CoA is 

much more responsible for the anomalous mass isotopomers than the reflux of His. 

Nevertheless, increased degrees of freedom are not the sole explanation for the 

anomalous isotopomer measurements. Specifically, the improved isotopomer 

correction model Iso_corr(V) does have a large number of degrees of freedom, just as 

the reflux model. Despite this, the Iso_corr(V) model failed to acceptably fit the 

labeling data, indicating that the dilution or mixing effect is insufficient to account for 
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the anomalous isotopomers. The fact that the AA_in model is able to acceptably fit 

the labeling data, including most of the anomalous isotopomers, emphasizes the 

evidence for reflux. Moreover, our observation of different 13C enrichments for amino 

acid fragments sharing a common metabolic precursor (e.g. 27.1%, 27.4%, 27.8% for 

glutamate[2345] fragments and 22.7%, 23.0% for proline[2345] fragments despite 

their both being derived from the same metabolic precursor AKG) can only be 

explained by a comprehensive reflux model.  

 

Being tree cells, poplar cell suspensions are especially appropriate for this 

study because trees are known to be capable of conserving and reusing nutrients over 

small and large timescales. Previous studies show that poplar efficiently manages its 

nitrogen reserves by recycling nitrogen from leaves during senescence in fall, storing 

this recycled nitrogen in the form of a protein (bark storage protein [BSP]) during 

winter and remobilizing this stored nitrogen for de novo protein synthesis in spring 

(Cantón et al., 2005; Zhu and Coleman, 2001). Exploring how poplar cells’ metabolic 

landscapes are altered by this nitrogen cycling and storage process is a fascinating 

research question and metabolic flux analysis holds promise in shedding light into 

this question. Therefore, our study of biomass reflux model in poplar suspension cells 

serves as a forerunner of studying the larger problem of nitrogen recycling 

mechanism in poplar.  

 

The flux distribution obtained by using isotopomer measurements of 

proteinogenic amino acids from a 7-d ILE and the reflux model agreed qualitatively 
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with the flux distribution obtained using intracellular metabolites by an independent 

methodology – 21-d ILEs and a model with minimal reflux (Fig. 3.8). Although there 

were numerical differences between flux values estimated through the two 

methodologies, many flux values (e.g. ACA reflux, net anaplerotic flux) and all flux 

trends (e.g. large cyclic PPP in the plastid) were identical for both methodologies. 

This consistency justifies the application of reflux methodology in analyzing 

anomalous labeling patterns of proteinogenic amino acids. 

3.6.   Conclusions 

The development and isotope MFA in plants and mammalian cell or tissue 

cultures, combined with the inevitability of batch culture, necessitates accurate 

modeling to account for the initial biomass. In this regard, our work addresses two 

important gaps in knowledge: the use of an ILE supplying a ≈100% U-13C carbon 

source to accurately quantify the extent of reflux, and the demonstration that a 

comprehensive reflux model accounts for the isotopomer abundances from such an 

ILE much more satisfactorily than previously employed models. Furthermore, flux 

results from our methodology using the reflux model were similar to those from 

another methodology involving minimal reflux. We anticipate our methodology to be 

especially useful for isotope MFA of batch cultures of bacterial, plant or mammalian 

cell or tissue where it is not practical to remove the initial biomass.  

 

Future extensions to our work include targeted ILEs to improve estimates of 

reflux, especially of the biomass components that reflux to the greatest extent. 
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Additionally, investigation and explicit incorporation of more nontrivial amino acid 

degradation pathways similar to the valine ≫ succinate and glutamate ≫ ACA 

pathways in our model is also necessary.  
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Abstract 

Reduced nitrogen is indispensable to life. However, its sparing availability in 

soil, combined with the energetic or environmental drawbacks of chemically 

synthesized fertilizers, this motivates research into molecular mechanisms to improve 

plant nitrogen use efficiency (NUE). A systems-level investigation of this problem 

may benefit from the use of multiple ’omics methodologies. We report such a study 

on cell suspensions of Populus trichocarpa, a woody perennial tree capable of 

efficiently managing its nitrogen reserves. Acclimation of poplar cell suspensions to 

four environmental conditions ranging from nitrogen and carbon abundant supply to 

deficient supply of both elements revealed that the low-nitrogen conditions were 

associated with substantially higher NUE. To investigate the underlying intracellular 

mechanisms, we concurrently performed (i) steady-state 13C metabolic flux analysis 

using multiple isotope labels and (ii) transcriptomic profiling using cDNA 

microarrays. 13C flux analysis revealed the absolute flux through the oxidative 

pentose phosphate pathway (oxPPP) to be substantially (~3-fold) lower under the 

low-nitrogen conditions and the relative flux partitioning between the tricarboxylic 

acid cycle and anaplerotic pathways to vary considerably, from 84%-16% (abundant 

carbon and nitrogen) to 55%-45% (deficient carbon and nitrogen). Together, the flux 

and gene expression data suggested a plastidic localization of the oxPPP as well as 

transcriptional regulation of some major flux alterations including that in the oxPPP. 

The gene expression data also pointed to NUE-improving mechanisms such as 

redirection of additional carbon to aromatic metabolic pathways and extensive 

downregulation of many genes encoding photosynthetic and light-harvesting proteins 
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in these non-photosynthetic cells, suggesting the recruitment of these proteins as 

nitrogen sinks in nitrogen-abundant conditions. 

4.1.   Introduction 

Nitrogen plays an indispensable role in life as it is contained in the building 

blocks of proteins and nucleic acids, and is a component of many secondary 

metabolites that defend against stress (Heldt and Piechulla, 2010). Plants facing 

nitrogen deficiency can present problems ranging from poor yield, poor nutritional 

quality or taste, difficulty in downstream processing or storage to increased pathogen 

susceptibility (Amtmann and Armengaud, 2009). Despite the importance of nitrogen 

as a nutrient, it is currently extremely difficult to predict the relationship between 

nitrogen deficiency and the concomitant poor performance of plants (Amtmann and 

Armengaud, 2009) because of the complexity of the metabolic networks underlying 

nitrogen metabolism and the inextricable links between nitrogen and carbon 

metabolism. The interaction between nitrogen and carbon metabolism are reflected in 

various aspects. For example, nitrogen metabolism requires carbon skeletons, energy 

and reductants, which are generated by carbon metabolism (Gao et al., 2008; Kruger 

and von Schaewen, 2003). Carbon metabolism also supplies organic acids that 

facilitate nitrate uptake by acting as counter-ions (Sahrawy et al., 2004). Conversely, 

nitrogen availability also affects carbon metabolism such as photosynthesis (CO2 

fixation), photorespiration (undesirable O2 fixation) and respiration which are 

important cellular functions in plants (Nunes-Nesi et al., 2010). The interactions 

between C and N themselves respond to a multitude of factors: light and water 

availability, adenosine triphosphate (ATP), reducing factors (required for assimilation 
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of inorganic N), and pH balance and consequently they are regulated by various 

signaling molecules such as nitrate, ammonium, sugars, amino acids (especially 

glutamine, glutamate and aspartate), and organic acids (Nunes-Nesi et al., 2010). 

Because nitrogen and carbon metabolism can compete for resources such as ATP 

(Sahrawy et al., 2004) and reductant (Escobar et al., 2006), their control is likely to be 

tightly interlinked at the level of gene expression as illustrated by several lines of 

evidence (Escobar et al., 2006). 

 

Uptake and assimilation of N needs energy in the form of ATP and reducing 

power (Nunes-Nesi et al., 2010). Studying the existing metabolic machinery that 

helps recycle N and genetically eliminating possible bottle necks in this process will 

help trees utilize N more efficiently and make them better biomaterial crops. Poplar, a 

potential cellulosic biofuel source, is capable of recycling up to 80% of the N in 

leaves to perennial tissues during leaf senescence through the bark storage proteins 

(BSPs) (Cantón et al., 2005; Pregitzer et al., 1990). Hence there is tremendous interest 

in understanding N cycling and C-N interaction in this tree. Probing the intracellular 

fluxes in poplar cell suspensions (hereafter, “poplar cells” or “cells”) under various N 

conditions will help understand the N cycling and C-N interactions.  

 

A crucial first step in elucidating nitrogen metabolism is a quantitative 

understanding of nitrogen fluxes and carbon-nitrogen interactions in plant primary 

metabolism (Amtmann and Armengaud, 2009), and the relationship between these 

fluxes and plant growth/productivity. That this problem remains uninvestigated is not 
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surprising, as the mathematical and experimental tools necessary for this investigation 

have become available very recently. One example is isotope-assisted or 13C 

metabolic flux analysis (13C MFA), a vital tool to study metabolism due to its ability 

to quantify intracellular fluxes by analyzing the labeling patterns of cellular products 

in isotopic labeling experiments (ILEs). Recently developments in isotope-assisted 

MFA such as instationary MFA (Nöh and Wiechert, 2006; Wahl et al., 2008) and 

improved mathematical techniques (M. R. Antoniewicz et al., 2007; Young et al., 

2008) have expanded the application of MFA and made it computationally more 

feasible for analyzing complex metabolic networks.  

 

Previous work on understanding plant metabolism under different nitrogen 

sources or provisions are mainly focused on metabolomics, proteomics or gene 

expression data (Allen et al., 2011; Hockin et al., 2011; Noorhana, 2011; Truong et al., 

2013; Zhila et al., 2005). Recently, researchers have started applying 13C isotope-

assisted metabolic flux analysis tool to study the influence of nitrogen source on plant 

central carbon metabolism at a molecular level (Allen and Young, 2013; Masakapalli 

et al., 2013). For example, Masakapalli et al. (2013) found that by replacing 

ammonium with nitrate in the culturing media, the oxidative pentose phosphate 

pathway flux increased by 50% in Arabidopsis cells. Allen and Young’s study (2013) 

showed that reducing the ratio of carbon and nitrogen from 37:1 to 13:1 leads to a 

90% increase in downstream TCA cycle flux, which then increase the contribution of 

malic enzyme to pyruvate production. Here we probed the influence of different 

carbon and nitrogen supply on central carbon metabolism in poplar suspension cells 
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via steady state 13C-MFA and transcriptomics data. We rationally designed a two-

dimensional nutrient concentration gradients of carbon and nitrogen: (i) high carbon-

high nitrogen (CN), (ii) high carbon-low nitrogen (Cn), (iii) low carbon-high nitrogen 

(cN) and (iv) low carbon-low nitrogen (cn). Micro-scale growth characteristics 

provide a first hint of how cells response differently to carbon and nitrogen 

starvations. Then we used 13C isotopic labeling data and metabolic flux analysis, 

together with microarray data, to confirm these hypotheses. The altered metabolic 

flux distributions and gene expressions revealed the cells’ capability to adapt low N 

environment by improving nitrogen use efficiency. 

4.2.   Materials and Methods 

4.2.1.    Poplar cell suspension culture and growth rate measurement 

Throughout this work we used Poplar (Populus. tremula × Populus. alba 

clone 717-1B4) cell suspensions maintained in 125 mL Erlenmeyer flasks shaken at 

125 rpm. The flasks were placed at 20 °C under continuous light from cool-white 

fluorescent light (Ecolux® Technology Plant and Aquarium F40T12 bulbs, 

photosynthetically active radiation of 200-300 μmol m-2 s-1, incident radiation on 

flasks 28.3 ± 2.6 μmol m-2 s-1). We subculture the cell suspensions every 7 days by 

transferring 0.6 g fresh cells from the previous growth cycle into 30 mL Murashige 

and Skoog medium (Phytotechnology Laboratories, Shawnee Mission, KS) media 

with glucose as the principal carbon source. As quantified in our previous publication 

(Nargund et al., 2014), the cells also consumed additional, minor carbon sources 

including anaplerotically fixed CO2 (the cells did not photosynthetically fix 
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extracellular CO2) and initially present unlabeled biomass that chiefly manifested as 

an influx of acetyl-CoA into the metabolic network. We realized the four 

environmental conditions by growing poplar cell suspensions under two initial 

concentrations of glucose (high: 20 g L-1, low: 10 g L-1) combined with two initial 

concentrations of their only nitrogen sources, NH4NO3 and KNO3 (high: 1,650 mg L-1 

NH4NO3 and 1,900 mg L-1 KNO3, low: 264 mg L-1 NH4NO3 and 304 mg L-1 KNO3). 

This gave four conditions in all of which the ratio of NH4NO3 and KNO3 

concentrations was constant:  (i) high carbon-high nitrogen (CN), (ii) high carbon-low 

nitrogen (Cn), (iii) low carbon-high nitrogen (cN) and (iv) low carbon-low nitrogen 

(cn). We chose the aforementioned concentrations iteratively such that the cells were 

capable of both (i) growing continuously for 6 d to 7 d under any of the four 

conditions and (ii) exhibiting tangibly different cell growth characteristics from the 

CN condition. We acclimated cells on these four conditions for several months before 

performing 13C MFA and microarray analysis.  

 

For growth rate and extracellular measurements, we grew 12 flasks of cells in 

parallel under each environmental condition. On 2 d, 4 d, 6 d and 7 d, three biological 

replicate flasks for each condition were harvested by vacuum filtration through glass 

microfiber filter paper (Whatman, Piscataway, NJ). Fresh weights of the cell pellets 

were obtained by weighing them immediately after the filtration; dry weights are 

obtained by weighing the cell pellets after lyophilization for extended time (over 1 d). 

We measured residual glucose in the media by a glucose analyzer (YSI Incorporated, 

Yellow Springs, OH), and measured residual ammonium and nitrate levels by a 
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nitrite/nitrate assay kit (Sigma-Aldrich, St. Louis, MO). The residual nutrient 

concentrations were also were performed on three biological replicates for each 

condition. 

 

4.2.2.    Concurrent 13C MFA and transcriptome profiling 

We grew 12 flasks of poplar cells under each of the four environmental 

conditions. Of these, nine flasks were used to perform three parallel ILEs in three 

biological replicates. In these flasks, the naturally abundant glucose in the medium 

was replaced with: (i) 98% U-13C glucose, (ii) 98% 1-13C glucose or (iii) a mixture of 

30% U-13C and 70% naturally abundant glucose (Cambridge Isotope Laboratories, 

Andover, MA). The three remaining shake flasks per environmental condition were 

used for microarray analysis.  

 

All flasks were grown for three weeks (with inoculation into fresh, 

appropriately 13C-labeled medium every 7 d) in accordance of the three-week labeling 

strategy, which we demonstrated previously on the CN condition (Nargund et al., 

2014). Specifically, after 7 d of growth, 0.6 g fresh cells were inoculated into fresh 

media that contained the same type of labeled glucose. After a cumulative growth 

period of three weeks (three inoculations), the cells were harvested, vacuum-filtered 

and immediately quenched in liquid nitrogen. The frozen cell pellets were stored at –

80 °C until further analysis. 
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4.2.3.    Measurement of isotopomer abundances of intracellular metabolites by 

GC-MS 

Detailed protocols for the extraction of soluble metabolites, quantification of 

isotopomer abundances by GC-MS and correction of the raw mass isotopomer 

abundance data for the natural abundances of hydrogen, nitrogen, oxygen, sulfur, 

silicon and non-metabolic carbon atoms described in our previous article (Nargund et 

al., 2014), and were exactly followed in this study. 

 

4.2.4.    Flux evaluation from isotopomer data 

The flux evaluation procedure follows the protocols discussed in Sec. 3.2.4. 

Moreover, we carried out a bootstrap Monte-Carlo algorithm to calculate the standard 

deviations of the estimated fluxes. Briefly, the program perturbed the measured 

isotopomers within their standard deviations for 400 times. Then it evaluates the 

fluxes for each perturbed set of isotopomers separately using the optimization 

procedure described above. The standard deviations of the fluxes were then calculated 

based on these 400 evaluated flux sets. 

 

4.2.5.    RNA extraction and microarray data processing 

To extract RNA, the harvested cells were chilled by liquid nitrogen and 

ground to fine powder. Each cell sample was transferred to 2 mL tubes added with 

1~1.5 mL RLT buffer (QIAGEN, Venlo, Netherlands) that contains 0.01 g soluble 

polyvinylpyrrolidone (Sigma-Aldrich, St. Louis, MO) and 10 μg/mL of 2-

 95 
 



 

Mercaptoethanol (Sigma-Aldrich, St. Louis, MO). Then it was added with 0.4 mL 5 

M potassium acetate (Sigma-Aldrich, St. Louis, MO) at pH 6.5. After gently 

vortexing and centrifuging the tubes at 12, 000 rpm, we transferred the supernatant to 

two new 2 mL clear tubes and placed them in a fully automated RNA extraction 

instrument, QIACube (QIAGEN, Venlo, Netherlands) loaded with extraction buffer 

and DNase (QIAGEN, Venlo, Netherlands). After the automated extraction, we 

collected the extracted RNA solution and checked the RNA quality by measuring the 

absorbance ratio at 260 nm over 280 nm using a NanoDrop spectrophotometer 

(Thermo Scientific, Wilmington, DE). 

 

The 12 extracted RNA solution samples (3 biological replicates for each C, N 

condition), together with GeneChip® poplar genome arrays (Affymetrix) were 

processed by Biopolymer/Genomics Core Laboratory Services (University of 

Maryland, Baltimore) for microarray processing. The microarray raw data that 

contained 61, 413 probesets was processed by software ArrayStar 5.0 (DNASTAR, 

Inc., Madison, WI) using RMA normalization method. Besides, we performed an 

unsupervised clustering analysis, principle components analysis (PCA) to make an 

initial comparison of the microarray raw data among the four conditions. The 

correspondence between microarray probesets and gene IDs were obtained from 

Affymetrix poplar annotations, release 33. The functions of the genes were obtained 

from three major online sources: Poplarcyc 5.0, Uniprot and PLEXdb. 
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4.3.   Results 

4.3.1.    Low nitrogen availability improves nitrogen utilization efficiency (NUE) 

We characterized various macroscopically measurable metabolic properties of the 

cells under the four conditions, including cell growth, carbon and nitrogen source 

uptake rates, biomass composition as well as distribution of amino acids in protein. 

Cell growth measurements (Fig. 4.1a) showed that growth was reduced substantially 

under both low-C and low-N conditions, as consistent with previous studies 

(Noorhana, 2011; Truong et al., 2013). Besides, the high-N conditions exhibited 

faster initial growth than low-N conditions. Analysis of nutrient uptake rates showed 

that the yield of biomass on carbon (Fig. 4.1c) remained relatively unchanged across 

the four conditions, ranging from 1.3 mg biomass (mg carbon)-1 to 1.5 mg biomass 

(mg carbon)-1. By contrast, the yield of biomass on nitrogen (Fig. 4.1d) was 

significantly higher under the low-N conditions (21 mg biomass [mg nitrogen]-1 for 

the Cn condition, 23 mg biomass [mg nitrogen]-1 for the cn condition) than under the 

high-N conditions (11 mg biomass [mg nitrogen]-1 for the cN condition and 15 mg 

biomass [mg nitrogen]-1 for the cn condition). This evidences higher NUE under 

nitrogen-limited conditions irrespective of carbon limitation. Furthermore, a 

comparison of carbon and nitrogen consumption (Fig. 4.b) showed that under the 

low-N conditions, the cells were able to utilize less nitrogen while consuming the 

same amount of carbon source, suggesting an altered carbon-nitrogen balance. 

Besides, distributions of amino acids in protein were sensitive to nitrogen availability 

(Fig. 4.1e). For example, Leu constituted more than 15% of protein under the high-N 

conditions, but constituted less than 4% of protein under the low-N conditions. 
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Similarly, the combined proportion of Glu and Gln (Glx) was 20% under the high-N 

conditions but fell to less than 10% under the low-N conditions. 
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Figure 4.1. Effect of carbon and nitrogen limitation on growth rates, NUE and 
proteinogenic amino acid proportions in poplar cell suspensions.  
The four environmental conditions of this study are distinguished by four colors: 
black represents CN; green represents cN, blue represents Cn and red represents cn. 
(a) Cell growth represented by dry biomass weight (mg) versus time (d); (b) yield of 
biomass on carbon represented by correlation between dry biomass weight (mg) and 
residual carbon in media (mg); (c) yield of biomass on nitrogen represented by 
correlation between dry biomass weight (mg) and residual nitrogen in media (mg). 
The slopes of the linear trendlines in (b) and (c), which equal the biomass yield on 
carbon or nitrogen, respectively, are tabulated adjacent to the plots. (d) Correlation 
between residual nitrogen in media (mg) and residual carbon in media (mg). (e) 
Protein proportion in biomass and amino acid proportions in protein for the four 
conditions. The patterns in the stacked bar plot represent different amino acids, which 
are organized based on their metabolic precursors as indicated in the panel to the right. 
 
 

4.3.2.    Differences in mass isotopomer abundances suggest flux variations in 

oxidative pentose phosphate pathway, TCA cycle and acetyl-CoA reflux 

To resolve intracellular fluxes in cells under the four environmental conditions, we 

performed three-week ILEs as described in Experimental Procedures. Briefly, cells 

growing under each condition were fed (i) 98% U-13C glucose, (ii) 98% 1-13C glucose 

or (iii) a mixture of 30% U-13C and 70% naturally abundant glucose in separate, 

parallel ILEs. The resulting isotopomer dataset consisted of 400 amino acid mass 

isotopomers for each condition (Table S8-S10). A comparison of the isotopomer data 

across the four conditions showed that the largest number of significantly different 

isotopomer abundances lay between the CN and the cn condition (85 isotopomer 

abundances with difference > 0.03, p < 0.05 and 29 isotopomer abundances with 

difference > 0.06, p < 0.05) (Fig. 4.2a). In mass isotopomer space, a difference of 

0.06 (on a scale from 0 to 1) is substantial, considering that many recent 13C MFA 

studies reported mass isotopomer differences less than 0.06 even between genetically 

variant strains that show significant flux differences (e.g. Kind et al., 2013;  
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Wasylenko and Stephanopoulos, 2014; He et al., 2014; Lonien and Schwender, 2009).  
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Figure 4.2. Unsupervised comparison of isotopomer data and clustering analysis 
of the microarray data across the four conditions.  
We counted the number of isotopomers abundances (a) and transcriptomics levels (b) 
that are different between each pair among the four carbon-nitrogen conditions. The 
threshold is: difference > 0.075 with p value < 0.05 for isotopomer abundances and 
fold change > 8 with p value < 0.05 for transcriptomics levels. The two high nitrogen 
conditions are listed on the top and the two high carbon conditions are listed on the 
right. Besides, we performed unsupervised clustering analysis for both the isotopomer 
dataset (c) and the gene expressions dataset (d). The four conditions are listed along 
horizontal axis with three biological replicates each. 
 

For example, Lonien and Schwender et al. (2009) observed four-fold flux alterations 

in Arabidopsis stains resulting from a transcription factor mutation, while the 

maximum difference of mass isotopomer abundances was ≈ 0.06. Thus the 
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differences in mass isotopomer abundances across conditions observed in this study 

suggest non-trivial flux differences. 

 
The MIDs of certain amino acid fragments revealed straightforward 

information on flux alterations. For example, in the 1-13C ILE, 53% ± 1% of the 

His[2345] fragment (i.e., the His fragment consisting of carbons C2-C5, same 

notation hereafter) and the His[23456] fragment were unlabeled under the Cn 

condition whereas under the CN condition, 61% ± 1% of the His[2345] and 

His[23456] fragments were unlabeled (Fig. 4.3a). His originates from pentose-5-

phosphate, which in turn is produced from glucose either via the oxidative or non-

oxidative pentose phosphate pathway (PPP). The entire His molecule synthesized via 

the oxidative PPP does not contain the first carbon atom of glucose and would 

therefore be completely unlabeled in the 1-13C glucose ILE. Under low-N conditions, 

since close to 50% of the His was unlabeled, it suggested that the oxidative and non-

oxidative PPP contributed equally to its production. Whereas under high-N conditions, 

with 60% of the His molecules being unlabeled, the oxidative PPP might be the 

dominant route for His production. However, the isotopomer abundances of His are 

influenced not only by the flux through the oxidative PPP, but also by reaction 

reversibilities and cyclic flow in this and connected pathways (e.g. glycolysis). 

Therefore, quantification of flux differences between the four conditions requires full 

isotopomer modeling and statistical analysis.  

 

Similar analysis applies to MIDs of Thr and Glu MS fragments from the 98% 

U-13C glucose ILE. In the 98% U-13C glucose ILE, we observed lower M+n (i.e. mass 
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isotopomer abundance with the highest mass and n refers to the number of carbon 

atoms in the amino acid fragment) and hence lower net 13C enrichments in Thr 

fragments and Glu fragments under low-N conditions (Fig. 4.3b & 4.3c). Both amino 

acids are derived from TCA cycle intermediates, with Thr originating from 

oxaloacetate and Glu from α-ketoglutarate. Consequently, the observation of lower 

net 13C enrichments pointed to greater influxes of two unlabeled carbon sources in 

98% U-13C glucose ILE under low nitrogen conditions: CO2 uptake through 

anaplerotic reactions or unlabeled acetyl-CoA reflux through lipid degradation. 
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Figure 4.3. Mass isotopomer distributions (MIDs) under conditions of different 
carbon and nitrogen availability.  
MIDs of fragments of three amino acids (a) His (from a 98% 1-13C glucose ILE), (b) 
Thr (from a 98% U-13C glucose ILE) and (c) Glu (from a 98% U-13C glucose ILE) 
under the four conditions CN, cN, Cn and cn. The conditions are distinguished by 
four colors: black represents CN; green represents cN, blue represents Cn and red 
represents cn. Different MIDs from M+0 to M+n are distinguished by patterned filled 
bars, from bottom to top. 
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4.3.3.    Lower oxPPP flux, higher anaplerotic flux and higher acetyl-CoA reflux 

were observed due to lack of nitrogen source 

Our metabolic network model, similar to the one used in our previous study 

(Nargund, et al., 2014), consisted of glycolysis, PPP, TCA cycle, anaplerotic 

reactions and reflux of acetyl-CoA. The inclusion of acetyl-CoA reflux was supported 

by measured Glu isotopomer abundances (refer to Sec. 4.3.2). Glucose and 

anaplerotically fixed CO2 are two carbon sources. Three intracellular compartments 

were included: cytosol, mitochondrion and plastid, with glycolysis and pentose 

phosphate pathways duplicated in both cytosol and plastid. The complete metabolic 

network model used for MFA is displayed in Fig. 4.4 and Table S11. We applied a 

compartmentalized model because: (i) the different measured MIDs between Ser[123] 

and glycerol[123] under the CN condition (Fig. 4.5); (ii) the much lower sum of 

squared residuals (SSR) achieved using a compartmentalized model (216) compared 

with using a single-compartment model (1137) under the CN condition (Fig. 4.5). 

 

For each of the four environmental conditions, we evaluated metabolic fluxes 

from the entire dataset of around 400 isotopomer abundances from the three ILEs for 

that condition. The sum of residuals (SSR) between measured and calculated mass 

isotopomer abundances fall within the acceptable ranges for all the four conditions 

(achieved SSR: CN – 216, cN – 285, Cn – 331, cn – 395; acceptable SSR: CN – 389, 

cN – 375, Cn – 373, cn – 396).The flux estimations (Table S12) showed several 

differences in the fluxes through the glycolytic and PPP between the cytosol and 

plastid. Under all four conditions, the glycolytic flux (pgif) was greater than the 
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Figure 4.4. Metabolic flux map: low-N conditions are characterized by lower 
oxPPP flux and higher net anaplerotic flux.  
This is the flux map for a three-compartmented (cytosol, mitochondrion and plastid) 
metabolic network model, with glycolysis and PPP duplicated in both cytosol and 
plastid. Circles represent metabolites and arrows represent chemical reactions. Flux 
values for the four conditions CN, cN, Cn and cn are labeled in boxes adjacent to the 
arrows. The lengths of the grey bars overlaying the numbers represent the scales of 
the flux values. For bidirectional reactions, net fluxes are indicated.  
 

oxPPP flux (g6pdh) in the cytosol. However, in the plastid there was a very high flux 

through the oxPPP (g6pdhp) which was realized by the reversal of plastidic glycolysis 

(pgifp). More than 90% of the total PPP fluxes were found to occur in the plastid. 

While comparing the overall PPP fluxes (a combination of g6pdh and g6pdhp) across 

all four conditions, we found lower oxPPP fluxes due to deficiency of carbon or 
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nitrogen, especially of nitrogen (CN: 6.60 ± 0.89 μmol day-1 [mg biomass]-1, cN: 3.97 

± 1.0 μmol day-1 [mg biomass]-1, Cn: 2.08 ± 0.65 μmol day-1 [mg biomass]-1, cn: 2.60 

± 0.62 μmol day-1 [mg biomass]-1). The This is consistent with previous studies on 

soybean embryos showing that higher carbon and nitrogen ratios resulted in lower 

PPP flux (Allen and Young, 2013).  
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Figure 4.5. The compartmented model was justified by comparisons between Ser 
and Glr MIDs and comparison between calculated isotopomer and measured 
isotopomers.  
(a) compared the MIDs of Ser[123] and Glr[123]. MIDs of M+0 through M+3 were 
represented by lengths of the bars, from bottom to top. (b) shows the comparison 
between measured MIDs (represented by M) and calculated MIDs using multi-
compartmented model (represented by C) and uni-compartmented model (represented 
by U), for two example amino acid fragments: His[2345] and Met[2345] (under CN 
condition in 30% U-13C ILE). The table below shows the acceptable and achieved 
sum of squared residues (SSR) by using the two models. This comparison confirms 
that the calculated isotopomer data using the multi-compartmented model agree better 
to measured isotopomer data compared to using the uni-compartmented model. 
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Besides, we observed a much higher forward flux of anaplerotic reactions under low-

C and low-N conditions (CN: 0.36 ± 0.23 μmol day-1 [mg biomass]-1, cN: 1.55 ± 0.27 

μmol day-1 [mg biomass]-1, Cn: 1.35 ± 0.22 μmol day-1 [mg biomass]-1, cn: 0.92 ± 

0.11 μmol day-1 [mg biomass]-1). Significant influx of unlabeled acetyl-CoA were 

also observed under low-N conditions (CN: 0.14 ± 0.03 μmol day-1 [mg biomass]-1, 

cN: 0.27 ± 0.04 μmol day-1 [mg biomass]-1, Cn: 0.35 ± 0.04 μmol day-1 [mg biomass]-

1, cn: 0.21 ± 0.04 μmol day-1 [mg biomass]-1). In our previous article (Nargund et al., 

2014), we concluded that the poplar cells were able to obtain additional carbon 

sources apart from glucose: assimilation of CO2 into malate and oxaloacetate, and 

recycled acetyl-CoA produced from degradation of lipids and various amino acids. 

Here a comparison across the four conditions further indicated that carbon or nitrogen 

deficiency led to higher acetyl-CoA reflux.  

 

Moreover, we calculated the relative flux ratios at the G6P and PEP-Pyr (i.e. an 

artificial metabolite that combines PEP and Pyr pools) nodes (Fig. 4.6). At the G6P 

node, the reversal of pgi (phosphoglucose isomerase) reaction accounted for about 

50% of the oxPPP flux for the two low-C conditions. However, a comparison 

between the two high-C conditions (CN vs. Cn) revealed that when nitrogen source 

was abundant, pgi reaction was significantly more reversed to maintain a high oxPPP 

flux. At the PEP-Pyr node, the comparison of flux ratio results exactly mirrors the 

comparison of absolute flux values: a substantial proportion of carbon flow was 

redirected to anaplerotic reaction under the deficiency of either carbon or nitrogen 

supply. 
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Figure 4.6. Metabolic flux map highlights: carbon partitioning and reductant 
balance.  
Carbon partitioning as calculated from the flux data shown in Fig. 4.4: (a) overall 
partitioning of carbon from glucose (supplied carbon source) and acetyl-CoA (from 
reflux of proteins and lipids) between biomass and CO2 (all units: μg day-1 [mg 
biomass]-1), (b) partitioning between glycolysis and oxPPP at G6P branchpoint, (c) 
partitioning between TCA cycle and anaplerosis at consolidated PEP/Pyr branchpoint; 
arrow thicknesses are proportional to the relative fluxes. (d) NADPH supply through 
oxPPP (as calculated from the flux data shown in Fig. 4.3) and consumption through 
amino acid synthesis, lipid synthesis and nitrate reduction (as estimated from biomass 
measurements). NAPDH productions are represented by solid filled bars while 
NADPH consumptions are represented by patterned filled bars. 
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4.3.4.    Gene expression was regulated more by nitrogen supply than by carbon 

supply 

To learn more insights of how poplar cells adapt to carbon or nitrogen 

starvations to increase NUE, we performed microarray measurements of the poplar 

whole genome and an extensive comparison of the gene expression levels of 873 

selected metabolic genes from the four environmental conditions. Consistent with the 

comparison of isotopomer abundances, lower nitrogen supply leads to more 

differentially expressed genes than lower carbon supply [Fig. 4.2(b)].  Moreover, an 

unsupervised hierarchical clustering study of the metabolic genes via principal 

component analysis method also showed similar trend. The dendrogram [Fig. 4.2(d)] 

clearly clustered the three biological replicates of each condition at the first level 

(variance around 5 ~ 15). The two low-N conditions and the two high-N conditions 

then clustered respectively at the second level (variance around 25 ~ 30).  

 

We further evaluated what specific genes responded to different carbon and 

nitrogen availability. Specifically, we searched the biological functions of all the 873 

metabolic genes via PoplarCyc and UniProt (Apweiler et al., 2004). Fig. 4.7 shows a 

comparison between the expressions of genes encoding chemical reactions in central 

carbon metabolism and the corresponding evaluated fluxes. All fold changes were 

calculated in log2 scale with respect to the CN condition. We found that many of 

these transcriptomic observations agreed well with our flux estimations, such as 

downregulation of one G6pDH (cN, -2.4 ± 0.2; Cn, -3.9 ± 0.3; cn, -4.1 ± 0.1) and 

PyrK (cN, -1.2 ± 0.2; Cn, -1.9 ± 0.2; cn, -2.1 ± 0.2) under low-N conditions. Besides,  
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Figure 4.7. Comparison between evaluated fluxes and transcript measurements 
suggests that many flux changes were transcriptionally regulated.  
For nine important metabolic reactions, we compared flux changes with changes in 
the expression level of the genes encoding the enzymes catalyzing the reactions. Flux 
names, chemical reaction stoichiometry, enzyme names, gene ensemble IDs as well 
as fold changes of both fluxes and gene expression levels are listed. Fold changes 
(relative to the CN condition) are expressed by color scales. Separate color scales are 
used for flux and gene expression fold changes as shown in the color bar below. 
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we also observed an upregulation of PepC under low-N conditions (cN, 0.1 ± 0.2; Cn, 

3.2 ± 0.2; cn, 2.8 ± 0.2), consistent to the higher anaplerotic fluxes predicted by MFA 

(Section 4.3.3).  

 

Despite of these observed consistencies between transcriptomics data and 

metabolic fluxes, we also found a few inconsistencies. Two examples are the 

universally underexpressed GapDH (glyceraldehyde-3-phosphate dehydrogenase) 

and underexpressed PDH (pyruvate decarboxylase) under low-C or low-N conditions 

(cN, -3.9 ± 0.1; Cn, -5.5 ± 0.1; cn, -5.6 ± 0.4), while evaluated fluxes show very small 

difference among all the four conditions. 

 

Moreover, we investigated the expressions of genes that encode enzymes 

involved in pathways beyond central carbon metabolism. Fig. 4.8 displays the genes 

categorized in six groups we are particularly interested in. Since we focus on studying 

the influence of low nitrogen supply on transcriptome, here we will discuss the 

comparison between the Cn and the CN condition only. Under nitrogen deficiency, 

we observed significantly altered transcriptome in central carbon metabolism (Fig. 

4.8a), as discussed previously. More differentially expressed genes in primary 

metabolism include one AcT (acyl-CoA thioesterase) and two AcLs (acyl-CoA ligase) 

that were both upregulated under the Cn condition (AcT: Cn, 4.4 ± 0.1; AcL: Cn, 1.9 ± 

0.1 and 1.8 ± 0.1). The transcriptomics data also shed light on the influence of 

nitrogen availability on synthesis of amino acids. Fig. 4.8b showed the genes 

controlling the synthesis of four amino acids: Gln, Glu, Cys and Gly. Most of them 
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remain robust against changes of carbon or nitrogen supply. Additionally, the 

transcriptomics data indicated that productions of many secondary metabolites were 

also influenced by nitrogen starvation. For example, substantial downregulation of 

three inositol-3-phosphate synthase genes (Fig. 4.8c, I3pS: Cn, -7.5 ± 0.1, -3.4 ± 0.5 

and -4.4 ± 0.2) were observed; the photosystem and light harvesting genes were also 

downregulated universally at low nitrogen supply (Fig. 4.8d, LHCB, PSA, PSOE, etc.: 

Cn, fold changes ranging from -8.3 ± 0.5 to -0.5 ± 0.1); Five lignin metabolic genes 

and three phenylalanine metabolic genes were significantly upregulated (Fig. 4.8e, 

CCAR: Cn, 4.8 ± 0.2; CA3MT: Cn, 1.7 ± 0.1 and 1.8 ± 0.1; LnCA: Cn, 5.2 ± 0.1, 5.4 ± 

0.1 and 4.4 ± 0.1; PheAL: Cn, 4.6 ± 0.2, 2.0 ± 0.7, 1.6 ± 0.2; APDH: Cn, 2.2 ± 0.2, 

2.4 ± 0.1, 2.1 ± 0.4, 1.5 ± 0.6); four cytochrome P450 defense response genes also 

showed substantial upregulation (Fig. 4.8f, CYP450D: Cn, 4.4 ± 0.7, 3.4 ± 0.1, 4.9 ± 

0.1 and 4.7 ± 0.2), while two cytochrome P450 oxidation-reduction genes showed 

substantial downregulation (CYP450OR: Cn, -5.8 ± 0.2 and -5.7 ± 0.3). Overall, 

these results are consistent with Gutierrez et al.’s (2007) study, which concluded that 

nitrate deprivation resulted in reduced mRNA levels of genes encoding 

photosynthesis and increased mRNA levels of genes encoding many secondary 

metabolites. 
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CCAR, cinnamoyl-CoA reductase; 
CYP450D, cytochrome P450, defense 
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carboxykinase; 
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PSA, photosystem I reaction center 
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PSOE, photosystem II oxygen-evolving 
complex); StaS, starch synthase; 
SucS,  sucrose synthase;
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Figure 4.8. Selected families of differentially expressed genes.  
Amongst the 873 differentially expressed genes encoding enzymes related to 
metabolism, these plots depict the expression levels of ~50 genes whose products 
catalyze reactions in six representative metabolic subsystems including (a) central 
carbon metabolism, (b) amino acid synthesis/degradation, (c) lignan- and lignin-
related, (d) redox and cytochrome, (e) sugar synthesis and (f) photosynthesis/light 
capture. In each panel, rows correspond to one of the four conditions CN, cN, Cn and 
cn, whereas columns correspond to individual genes. Expression levels are 
represented on a log2 scale using a heat map with a spectrum ranging from red 
(positive fold change) to green (negative fold change). Gene name abbreviations are 
shown in the figure and they follow the HUGO Gene Nomenclature Committee 
guidelines: http://www.genenames.org/hgnc-guidelines#genenames. 
 

4.4.   Discussion 

4.4.1.    Minimization of metabolite reflux and achievement of isotopic steady 

state 

In our previous study (Nargund et al., 2014), we studied the poplar cell 

suspensions growing for one week under the CN condition as the model system and 

demonstrated that these cells were characterized by mixing and reflux between 
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initially present naturally abundant (“unlabeled”) biomass and newly synthesized 

metabolites and biomass. Different from that work which aimed at studying “reflux” 

phenomenon, here we designed the ILEs such as the influence of “reflux” on 

isotopomer measurements was minimized. Firstly, we were performing three week 

ILEs that washed out most of the initially present biomass. Besides, we were 

measuring amino acids in soluble metabolite pools that were less affected by “reflux” 

compared to proteinogenic amino acids (Nargund et al., 2014). In fact, the total 13C 

enrichments of most amino acids measured in this work were substantially higher 

than those we reported previously, indicating that a much smaller proportion of 

initially present, unlabeled biomass was left at cell harvesting after three weeks of 

growth. Nevertheless, we still observed a few isotopomer signatures (e.g. MIDs of 

Glu[12345]: M+2, 8% ± 1%; M+3, 11% ± 1%) that could be explained by the acetyl-

CoA reflux (Nargund et al., 2014), the only “reflux” considered in this study. 

 

Moreover, our experimental design also ensured that the isotopic steady state 

was approximately achieved. To verify this, we measured the MIDs of intracellular 

soluble amino acids obtained from cells harvested after each week of growth 

throughout the three week growth period. Here we selected the cells growing under 

the CN condition in 30% U-13C ILE as an example. The result (Fig. 4.9, both panels) 

showed that after two weeks of growth, the total 13C enrichments of most amino acids 

were already very close to 30%. This comparison justified our application of a steady 

state model to estimate fluxes. 

 

 113 
 



 

0

10

20

30

40

A
la

[2
3]

A
la

[1
23

]
A

sp
[1

2]
A

sp
[2

34
]

A
sp

[2
34

]
A

sp
[1

23
4]

G
lu

[2
34

5]
G

lu
[2

34
5]

G
lu

[1
23

45
]

G
ly

[2
]

G
ly

[1
2]

H
is

[2
34

5]
H

is
[2

34
56

]
H

is
[1

23
45

6]
Ile

[2
34

56
]

Ile
[2

34
56

]
Le

u[
23

45
6]

Le
u[

23
45

6]
Ly

s[
23

45
6]

Ly
s[

12
34

56
]

Ly
s[

12
34

56
]

M
et

[2
34

5]
M

et
[2

34
5]

M
et

[1
23

45
]

Ph
e[

12
]

Ph
e[

23
45

56
67

]
Ph

e[
12

34
55

66
7]

Pr
o[

23
45

]
Se

r[
12

]
Se

r[
23

]
Se

r[
23

]
Se

r[
12

3]
Th

r[
23

4]
Th

r[
12

34
]

Ty
r[

12
]

Ty
r[

23
45

56
67

]
Ty

r[
23

45
56

67
]

Ty
r[

12
34

55
66

7]
Va

l[1
2]

Va
l[2

34
5]

Va
l[2

34
5]

Va
l[1

23
45

]

13
C

 e
nr

ic
hm

en
t (

%
)

Week 1
Week 2
Week 3

0%

10%

20%

30%

0 7 14 21

13
C

 e
nr

ic
hm

en
t

Days

Ala[123]

0%

10%

20%

30%

0 7 14 21

13
C

 e
nr

ic
hm

en
t

Days

His[123456]

0%

10%

20%

30%

0 7 14 21

13
C

 e
nr

ic
hm

en
t

Days

Ile[23456]

0%

10%

20%

30%

0 7 14 21

13
C

 e
nr

ic
hm

en
t

Days

Thr[1234]

 

Figure 4.9. The comparisons of MIDs and 13C enrichments of soluble amino 
acids from the cells harvested after each week of growth verified the 
achievement of isotopic steady state.  
(a), the comparison of 13C enrichments of all the amino acid fragments between from 
the cells harvested after 7 days, 14 days and 21 days. (b), the development of 13C 
enrichments of four example amino acids throughout the three weeks of growth. This 
comparison revealed that the MIDs and 13C enrichments of soluble amino acids from 
cells of two weeks old and three weeks old were very close, indicating the 
approximate achievement of isotopic steady state. 
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4.4.2.    Isotopomer abundances and transcriptomics data supported the 

duplication of glycolysis and PPP in poplar cell suspensions 

The duplication of central carbon metabolism in multiple cellular 

compartments have been studied extensively for other organisms. For example, 

Masakapalli, et al. (2010) concluded that labeling data alone was not sufficient to 

distinguish the cytosolic and plastidic PPP. Another more recent study on soybean 

embryo metabolism came to the similar conclusion (Allen and Young, 2013). 

However, other evidence such as the enzyme localization information suggested that 

glycolysis and PPP are very likely to be present in both cytosol and plastid (Kruger 

and von Schaewen, 2003). Here, the compartmentation in poplar cells was supported 

by multiple observations. One example is the comparison of MIDs between Ser[123] 

and glycerol[123] fragments (Fig. 4.5a) under CN condition. Both Ser and glycerol 

(Glr) originate from triose phosphate, whereas they exhibit more than 10% difference 

in MIDs from 98% 1-13C glucose ILE and 30% U-13C glucose ILE. This observation 

justifies the duplicated T3P pools in cytosol and plastid. Besides, we also performed 

MFA using a unicompartmented model in which cytosolic pathways and plastidic 

pathways were not distinguished. Calculated isotopomer data using 

unicompartmented model showed significantly more inferior agreement with 

measured isotopomer data than using the multi-compartmented model (sum of 

squared residues [SSR] under CN condition: multi-compartmented model, 216 vs. 

unicompartmented model, 1137). Fig. 4.5b displays the comparisons between 

measured and calculated isotopomers (entire calculated isotopomer data is not shown) 
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obtained from 30% U-13C glucose ILE for two amino acid fragments, His[2345] and 

Met[2345], as examples. 

 

To further substantiate our compartmented model, we searched the 

compartmental information for all the G6pDH genes of poplar from PLEXdb (Wise et 

al., 2007) database. Among a total of four G6pDH genes (eight probe sets), one 

plastidic G6pDH gene showed substantial underexpression under low N conditions, 

while all cytosolic G6pDH genes showed similar expressions across all the C-N 

conditions. This was consistent with the evaluated flux results, which revealed that 

plastidic g6pdh flux accounted for the major difference in total g6pdh flux. 

 

4.4.3.    Some flux changes including oxPPP and anaplerotic reactions are likely 

regulated at the transcriptional level 

Under low nitrogen conditions, we have observed some metabolic flux 

responses similar to those reported by Allen and Young (2013) on soybean embryo, 

including reduced flux of plastidic oxPPP pathway, increased flux of anaplerotic 

reactions and fructose bisphosphate aldolase reactions. However, some flux results 

are different from those reported by Allen and Young (2013), such as a more active 

upstream TCA cycle under low nitrogen supply. Nevertheless, most of our observed 

flux changes agreed well with our microarray data, as discussed in Sec. 4.3.4, 

suggesting that these reactions may be controlled at the transcriptional level. 

Nevertheless, for a few reactions, gene expression data and flux estimation results are 

deviant, or even at opposite trends (Fig. 4.7). The explanations for this might be that 
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the enzymes encoded by the genes are present in different organelles or that these 

chemical reactions are controlled more by post transcriptional intracellular processes 

like phosphorylation (Tovar-Mendez et al., 2003). 

 

4.4.4.    Lower NADPH production through oxPPP is consistent with lower 

NADPH requirement under low N conditions 

It has been shown that altering culturing conditions can significantly redirect 

carbon flow from Glycolysis to PPP (Ayar-Kayali, 2010; Cadière et al., 2011; 

Masakapalli et al., 2014, 2013). Here interestingly, we even observed substantially 

reversed flux of plastidic phosphoglucose isomerase (pgifp, Sec. 4.3.3), which is the 

consequence of the huge oxidative PPP (g6pdh, Sec. 4.3.3) flux. This revealed that 

the poplar cells produce pyruvate, the feedstock of the downstream TCA cycle, 

primarily through PPP. Our flux estimations showed that cells under high-N 

conditions exhibit higher oxidative PPP flux and thus more reversed pgi reaction. The 

first step of PPP, g6pdh reaction, produces two NADPH at the cost of losing one 

carbon atom in the form of CO2. One major consumer of NADPH or NADH is the 

nitrate reduction process. The conversion of one mole of nitrate to ammonia costs one 

mole of NADPH or NADH, and six moles of reduced ferredoxin (i.e. four moles of 

NADPH equivalent in total). The operation of the plastidic oxidative PPP has been 

shown to be directly linked with the assimilation of inorganic nitrogen (Bussel 2013). 

A knockdown of the plastidic oxidative PPP enzyme, 6-phosphogluconolactonase 3, 

in Arabidopsis was found to lower the contents of amino acids and lead to an N-

starved profile in the mutants compared to wild type plants (Bussel 2013). Another 
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major consumer of NADPH is the synthesis of fatty acids, since the addition of two 

carbon atoms to a fatty acid chain costs two NADPH. Estimated fluxes showed that 

upon nitrogen deficiency, poplar cells preserve the carbon atoms for synthesizing 

more ATP through TCA cycle, while producing less reducing power in plastid. This 

is consistent with the similar CO2 outflux with respect to glucose uptake rate across 

the four conditions (Fig. 4.6a), and also explains similar biomass yield on carbon 

source showed in Fig. 4.1b. Quantitatively, lower NADPH production via oxPPP 

corresponds well to lower NADPH consumption by nitrate reduction, lipid synthesis 

and amino acid synthesis under low-N conditions (Fig. 4.6d). Besides, for all the four 

C-N conditions, NADPH production through oxPPP and NADPH consumption by the 

above biological processes were approximately balanced.  

 

4.4.5.    Photosynthetic and light-harvesting proteins may serve as nitrogen sinks 

The gene expression data hold substantial information of secondary 

metabolism under low nitrogen availability. One interesting observation is the lower 

activities of photosynthetic and light harvesting genes under low nitrogen availability. 

Previous reports on various species showed that the expression levels of many genes 

could be affected by nitrogen starvation. For example, Bi, et al. (2007) found that 

among entire genome 44 genes encoding photosystem I and II family proteins in 

Arabidopsis leaves were down-regulated under nitrogen starvation (e.g. At1g03600 

and At4g28660 both show -3.0 fold change under N limitation). Another study also 

concluded that most photosynthesis related genes were repressed (e.g. 

GRMZM2G461279 and GRMZM2G429955 both show -1.1 fold change under N 
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limitation, in log2 scale) in nitrogen deficient maize leaves (Schluter et al., 2012). 

Martin et al studied the effects of varying C/N availability on the growth of 

Arabidopsis seedlings, and found that the levels of the photosynthetic genes dropped 

significantly under N starvation conditions (Martin 2002). Our poplar cells are non-

photosynthetic, but we observed much more significant downregulation of 

photosystem genes under low nitrogen supply. This observation also put forward the 

possibility of increasing photosynthetic productivity in other photosynthetic tissues or 

organisms by increasing nitrogen supply.  

 

More importantly, our observation indicated that these photosynthetic and 

light-harvesting proteins served as nitrogen sinks in poplar cells when nitrogen supply 

is sufficient. This hypothesis was supported by the substantial larger reflux of acetyl-

CoA under Cn condition (0.35 ± 0.04 μmol day-1 [mg biomass]-1), as compared with 

CN condition (0.14 ± 0.03 μmol day-1 [mg biomass]-1), because acetyl-CoA can be 

produced from degradation of lipids and various amino acids including Glu, Thr, Val 

and Tyr. In fact, one previous report showed that 16 photosystems genes were 

significantly under-expressed under nitrogen starvation in rice roots, which are also 

non-photosynthetic tissues (Cai et al., 2012).  

 

Therefore, based on the comparisons of growth measurements, intracellular 

fluxes and transcriptomics data across the four conditions, we are proposing a 

mechanism that the poplar cell suspensions may apply to improve NUE under low 

nitrogen availability (Fig. 4.10). When nitrogen supply is abundant, oxPPP is more 
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active, producing more reducing power (NADPH) to incorporate the inorganic 

nitrogen source into various storage proteins. When nitrogen supply is deficient, 

oxPPP flux is reduced, consistent with the lower demand of the reducing power to 

assimilate and reduce NO3- and thus less storage proteins are synthesized. Meanwhile, 

a larger proportion of carbon flow is redirected to the downstream TCA cycle, 

maintaining a robust ATP production for major cellular activities including biomass 

synthesis. 
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Figure 4.10. Lower NAPDH production, higher TCA cycle flux and 
(hypothesized) reduced storage protein synthesis contribute to improved NUE 
under low nitrogen supply.  
These diagrams summarize the results for the (a) CN and (b) Cn conditions to 
propose a mechanism for the higher NUE observed under the low-N conditions. 
Glucose uptake rates are normalized in both panels and all carbon flows are relative 
fluxes to glucose uptake fluxes. Arrow thicknesses are subject to different scales 
between carbon flows (represented by ○c E A), nitrogen flows ( A○NE A) and NADPH flow 
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( A○e-E A). The areas of the NH4 and NO3 boxes are proportional to their concentrations 
in media. Dashed lines represents that these processes or explanations are 
hypothesized. 
 

4.5.   Conclusions 

In this study we applied a fully compartmented model of central carbon 

metabolism for MFA. This model was justified not only by the measured isotopomer 

abundance data and statistical test of calculated isotopomer abundances, but also by 

the compartmental information of the genes encoding enzymes involved in pentose 

phosphate pathways. Estimated fluxes explained the macroscopic growth 

characteristics, whereas they were unable to directly reveal how the poplar cells 

improve NUE at low nitrogen supply. This is because the understanding of nitrogen 

recycling mechanism requires information including abundances of related proteins 

or expression levels of related genes, which cannot be obtained from MFA on central 

carbon metabolism. Transcriptome, on the other hand, is not capable of predicting the 

fluxes through intracellular pathways, because gene expressions may not necessarily 

be consistent with enzyme levels, enzyme activities or flux values. However, 

transcriptomics data covers a wide range of cellular activities, which provides more 

insights on how cells responded to nitrogen deficiency beyond central carbon 

metabolism. Here we successfully connected the fluxomics observations and 

transcriptomics observations to explain how poplar cells improve NUE under low 

nitrogen supply. We also showed the consistencies between fluxes and gene 

expressions (including G6pDH and PepC) indicating these pathways could be 

regulated at the transcriptional level. 
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Chapter 5:  Summary and Future Outlooks 

5.1.   Summary 

Isotope-assisted MFA is a technique that integrates experimental design and 

implementation, measurements of massive amount of labeling data, and simulating 

labeling data to calculate fluxes via powerful computational tools. This work aims at: 

(1) Increasing the computational efficiency and improving the accuracy of flux 

estimation by developing new modeling technique; (2) Applying MFA to an 

important case study – investigating the metabolic landscape influence of nutrient 

deficiency on poplar cells and understand the mechanism to improve NUE. The two 

approaches we proposed in the first chapter successfully improved the computational 

efficiency for instationary MFA. Comparisons of the total number of labeling 

variables that need to be balanced and the computational time required to solve the 

balance equations, shows that applying these new modeling approaches leads to a ~20 

fold improvement of computational efficiency in some cases. This potentially allows 

MFA to be applied to large, complex metabolic networks, which is currently difficult. 

 

Additionally, we developed a metabolic network modeling strategy, “reflux”, 

to account for the influence of “initial present” biomass on the accuracy of flux 

evaluation. Compared with previously reported modeling strategies, isotopomers 

calculated via this “reflux” model agrees considerably better with measurement data. 

Besides, the estimate flux results using this reflux model and the flux results from 

another methodology involving minimal reflux are consistent. With the inevitability 
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of cell cultures in “fed-batch” environment, we anticipate a widespread application of 

this “reflux” modeling method in steady state MFA. 

 

We applied steady state MFA on cell suspensions from poplar tree, which has 

been shown to be capable of recycling its nitrogen reserves efficiently. We compared 

the fluxomics data and transcriptomics data obtained from cells growing under 

different carbon and nitrogen supply levels. Both 13C MFA results and gene 

expression results show that central carbon metabolism are substantially affected by 

nitrogen deficiency. This includes a lower oxPPP flux and a higher activity of 

anaplerotic reactions. Expression levels of many genes encoding secondary 

metabolism further shed light on potential NUE improving mechanisms, which can be 

validated by proteiomics measurements.  

 

5.2.   Future outlooks 

The “reflux” model discussed in this study is an isotopic steady-state model. 

However, a steady-state model of metabolite reflux is not exact as reflux of the initial 

biomass in a batch culture is strictly an instationary process. For example, the 

assumption that refluxed biomass components are naturally abundant throughout the 

ILE is only a first approximation. In reality, the aggregate (sum of initial and newly 

synthesized) biomass gets more and more 13C-enriched during the course of the ILE; 

correspondingly, the refluxed biomass components get gradually enriched during the 

ILE. Here we used an isotopic steady state model as an approximation of dynamic 

MFA to simulate the reflux process and demonstrated its ability to explain the 
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anomalous isotopomer measurements. Nevertheless, it is still desirable to incorporate 

the metabolite reflux model into instationary isotope MFA (M. Antoniewicz et al., 

2007; Nöh and Wiechert, 2006; Wiechert and Noh, 2005). By accomplishing this, we 

should expect more accurate metabolic pool size estimations as well as intracellular 

flux estimations. We hope the future studies of metabolite reflux in isotope MFA will 

incorporate these extensions. 

 

To formulate a complete conclusion on what exact proteins the poplar cells 

recruit to store the redundant nitrogen and recycle these nitrogen reserves, more 

proteomics studies are desirable. Some previous work have reported the methodology 

to identify peptides in Arabidopsis thaliana via 15N isotopic labeling experiments 

(Nelson et al., 2007) and to infer compartmental information of specific proteins via 

MFA applying 13C peptide label experiments (Mandy et al., 2014). Besides, the 

application of genome scale models (e.g. Poolman et al., 2009) may also help 

revealing where the carbon or nitrogen flow is redirected. Future studies may include 

manipulating genes that are likely to be involved in NUE-improving mechanisms and 

testing its influence on nitrogen uptake rate and fluxes in central carbon metabolism. 

For example, our hypothesized mechanism will be strengthened if a knock-out or 

knock-down of g6pdh genes and light harvesting genes result in decreased nitrogen 

uptake rate and slowed cell growth. We anticipate that this work enables a more in-

depth understanding of how poplar cells improves nitrogen source efficiency at the 

metabolic and genetic levels and moreover, shed light on potential strategies of 

genetic modifications to improve NUE in other organisms. 
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Appendices 
 

Table S1. Mass isotopomer abundances of proteinogenic amino acids from three 

ILEs 

MIDs of proteinogenic amino acids were measured in three ILEs performed 

for 7 d on poplar cell suspensions under light. The ILEs used 28% U-13C, 100% 1-

13C and 98% U-13C glucose, respectively, as the sole organic carbon source. MIDs 

are reported as percentages and were obtained by correcting GC-MS spectral data for 

the natural isotopic abundances of O, H, N, S, P, Si and non-metabolic C atoms14. 

For each ILE, we report individual MID measurements of three biological replicates, 

an average and a standard deviation (SD). ND, not determined. 
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Table S2. Mass isotopomer abundances of intracellular metabolites from one-

week ILE under light and dark environment. 

MIDs of intracellular metabolites were measured in ILEs performed for 7 d on 

poplar cell suspensions grown under light and dark. The ILEs used 98% U-13C 

glucose as the sole organic carbon source. MIDs are reported as percentages and were 

obtained by correcting GC-MS spectral data for the natural isotopic abundances of O, 

H, N, S, P, Si and non-metabolic C atoms(Sriram et al., 2008). For each condition, we 

report individual MID measurements of three biological replicates, an average and a 

standard deviation (SD). 
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Table S3. Fluxes evaluated through the four metabolic models 

This table reports averages and standard deviations of flux distributions 

obtained by performing 280 bootstrap Monte Carlo simulations (Press et al., 2007) 

that accounted for the larger of the measurement and biological errors in the 

measured isotopomer abundances. The three models employed amino acid reflux 

(AA_in), glucose dilution (Gluc_dilu) and isotopomer correction (Iso_corr), 

respectively, to model the batch culture. Tables S4, S5, S6 and S7 list stoichiometries 

and carbon atom rearrangements for the reactions. SD, standard deviation. 
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Tables S4-S7. Metabolic network models: S4: uniform isotopomer correction 

model (Iso_corr[U]);  S5: glucose dilution model (Gluc_dilu); S6: variable 

isotopomer correction model (Iso_corr[V]); S7: amino acid reflux model (AA_in) 

In these three-compartment models, metabolites with a subscript “p” are 

plastidic, metabolites with a subscript “m” are mitochondrial and metabolites without 

a are cytosolic. Carbon atom rearrangements of reactions are indicated by the 

numbers in parenthesis; these numbers correspond to carbon atoms numbered 

according to IUPAC rules. Estimated net flux values, standard deviations and reaction 

reversibilities are shown for each reaction. For a bidirectional reaction: f

b

v
v

A B



, 

where vf and vb are the fluxes of the forward and backward reactions, respectively (vf 

≥ vb) , the net flux is vf – vb and the reaction reversibility is vb/vf (expressed as a 

percentage). SD, standard deviation. 
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Table S8-S10. Mass isotopomer distribution (MID) measurements for three ILEs 

under different carbon-nitrogen conditions.  

For each carbon-nitrogen condition, we measured the MIDs of soluble amino 

acids in three ILEs (Table S8., 98% 1-13C glucose; Table S9., 28% U-13C glucose 

and Table S10., 98% U-13C glucose). MIDs were presented after the correction for 

the natural abundances of N, O, H, S, Si, P and non-metabolic C atoms using a 

MATLAB program. There are three biological replicates in each ILE. Averages and 

standard deviations of MIDs, as well as averages and standard deviations of total 13C 

enrichment of each MS fragment, are shown here. 
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Table S11. The compartmented metabolic network model used in MFA.  

In this compartmented model, Column A displays the flux names that 

correspond to the flux values in Table S12. Column B displays the reaction 

stoichiometry and carbon atom rearrangements of each chemical reaction. The carbon 

atoms of the reactants are numbered based on IUPAC rules. Column C indicates if the 

reactions are reversible (reversible if with an “R”).  
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Table S12. Metabolic fluxes for each chemical reaction under each carbon-

nitrogen condition.  

The flux names are consistent with that in Table S4. Flux values and standard 

deviations were obtained via MFA on the MIDs measured from all three ILEs, as 

discussed in Section 5.4. The units of the flux values and the standard deviations are 

μmol day-1 (mg biomass)-1. Negative flux values indicate that the net fluxes flow at 

the opposite direction to the default direction shown by the reaction stoichiometry in 

Table S11. 
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