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Clouds play akey rolein regulating the Earth’s climate. Real cloud fields are
non-uniform in both the morphological and microphysical sense. However, most
climate models assume the clouds to be Plane-Paralel Horizontal (PPH) plates with
homogeneous optical properties. Three characteristics of 3D clouds have been found to
be important for longwave radiative transfer. They are: (1) the 3D geometrical structure
of the cloud fields, (2) the horizontal variation of cloud optical depth, and (3) the
vertical variation of cloud temperature. One way to incorporate the 3D geometrical
effect in climate studies is through the use of an effective cloud faction, for which a
major component isthe Probability of Clear Line Of Sight (PCLOS). The PCLOS also

plays an important role in accounting for longwave 3D effects caused by variable cloud



optical depth and vertical change of cloud temperature.

Aimed at improving the parameterization of longwave radiative transfer through
3D clouds, this study formulated a set of PCLOS models and tested the models with the

Atmospheric Radiation Measurement (ARM) cloud observations.

In order to investigate the sampling issue that arises from attempting to obtain
domain-averaged information from time series of observations, an evaluation technique
was devel oped and tested with Cloud Resolving Model (CRM) and Large Eddy

Simulation (LES) model data.

Various cloud properties that are necessary for the PCL OS models such as the
absolute cloud fraction (N), cloud thickness, cloud spacing, and horizontal size were
inferred from the ARM observations. A set of automated inference techniques were
developed. The modeled PCLOS was then tested with the PCLOS inferred from time

series of total sky images.

Based on parameters obtained, most models yield PCLOS values that agree with
the observations within +0.2 for the zenith angle range from 10° to 80°. Models that
assume the clouds are Poisson distributed give better results than those that explicitly

specify the cloud spacing and size distributions.

Ignoring the 3D geometrical effect, the PPH approximation underestimates the
downward flux by about 3.7 + 2.5 Wmfor the fair weather cumulus over the ARM
Southern Great Plains (SGP) site. The limiting factor for the modelsto generate reliable

estimates of the effect may be the uncertainties in the cloud parameters obtained to date.
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Chapter 1

I ntroduction

1.1 Background

Clouds can reflect solar radiation thereby cooling the climate system; they can
also trap thermal radiation and heat the system. One measure of the cloud radiative
effects on the climate system is cloud forcing, which is the difference between the clear-
sky and all-sky net radiation at the top of the atmosphere. The Earth Radiation Budget
Experiment (ERBE) indicates that clouds can result in a global mean shortwave forcing
of —44 Wm™ and a longwave forcing of 31 Wm™. The net forcing is —13 Wm™
(Ramanathan et al. 1989), which means that, were the clouds to be removed suddenly
from the atmosphere while keeping all other radiative properties unchanged, the global
mean earth-atmosphere system would realize an instantaneous increase of the net

radiation flux density to it of about 13 Wm™, an increase of about 5.5%.

The earth climate system is very sensitive to the changes of radiation balance.
An inter-comparison of 19 different global climate models showed that the differences
between model results may stem mainly from the climate induced changes of cloud
radiative forcing (Cess et al. 1990). This indicates that relatively small systematic errors
in either or both forcing components may greatly affect the performance of the models
in predicting the responses of the climate system to the increase of the greenhouse
gases. The high sensitivity of the climate models to the changes of radiative forcing

requires an accurate treatment of the cloud-radiation process in Global Climate



Model (GCM).

Most GCMss approximate radiation fluxes and heating rates as the cloud amount

weighted average of clear and overcast values, i.e.,

F=NF,, +(1-N)F

clear

(1.1)

cloud

where Fgear and Feoug are the clear and overcast (upward or downward) fluxes (F),
respectively. The weighting factor N is the absolute cloud fraction, which by definition
isthe fractional area of the vertical projection of clouds. Fgear and Fgouq @re calculated
using 1D radiative transfer model assuming both the atmosphere and clouds are
horizontally homogeneous. This simplification neglects the 3D structure of the real
cloud field and inhomogeneity of the optical properties within individual clouds. Itis
equivaent to modeling the clouds as plane-parallel horizontal (PPH) plates with
homogeneous optical properties. Some models make an additional assumption that

clouds are black in the longwave region.

Real cloud fields are non-uniform in both morphological and microphysical
senses. Morphologica properties that describe a cloud field include: cloud fraction or
number of clouds, spatial distribution of clouds, vertical and horizontal dimensions of
individua clouds, shape of clouds and cloud height. Microphysical properties include:
liquid water content, particle size distribution, phase composition, and temperature
inside clouds. In combination, the morphological and microphysical properties
determine the optical characteristics of acloud field. A cumulus cloud field isan

example of areal cloud field with high spatial variability.

A cumulus cloud field consists of agroup of individual clouds with finite



horizontal and vertical dimensions separated by clear air. The horizontal dimension of
an individua cloud isthe order of 0.1-10 km, which is much smaller than the resolution
of the state-of-art GCMSs. In addition to the bulk geometrical brokenness of the cloud
field, thereis also great spatia variation inside the clouds. A fine structure with
significant variations may occur over afew metersinside a cumulus cloud. All these

together make the optical propertiesin a cumulus cloud field highly inhomogeneous.

The error due to neglecting the 3D cloud effectsin radiative transfer calculations
may be large enough to be climatically significant (Harshvardhan and Weinman 1982;
Ellingson 1982; Heidinger and Cox 1996; Han and Ellingson 1999; Takaraand
Ellingson 2000). Based on Eq 1.1, the cloud forcing at the surface, defined as
CF = F - Fgear, Where F is the downward flux at the surface, may be written as
CF =N (Feoud - Felear)- Thusthe error in CF due to the variations of N at agiven level
may be estimated as AN (Fioud - Faiear). FOr low or middle clouds (cloud base less than
6 km) and N = 0.5, a cloud fraction change of no more than 5% would generate an error
in the surface longwave CF of the same magnitude as the direct forcing from CO,
doubling, which is about 1 Wm at the surface. As noted by the references cited
directly above, the effects of neglecting 3D cloud effects are often much larger than

this.

By using the ASTEX (Atlantic Stratocumulus Transition Experiment) data,
Heidinger and Cox (1996) estimated that longwave surface flux schemes that ignored
the vertical dimensions of clouds typically underestimated the longwave surface forcing

by about 9 Wm on average.

Harshvandhan (1982) made a study on the sensitivity of the outgoing longwave



and incoming shortwave radiative fluxes to the changes in global cloud cover. He
concluded that, compared to the PPH approximation, the magnitude of the individual
sensitivity terms (the shortwave sensitivity term and longwave sensitivity term) may be
altered two- or three-fold under certain conditionsif the cloud brokenness was taken
into account. These indicate that using the PPH approximation to deal with the

radiative transfer under cloudy conditions may not be valid for some climate studies.

1.2 Previouswork

The transfer of radiation through non-PPH clouds has received considerable
attention for the past three decades. Using the cumulus observations of Plank (1969),
Niylisk (1972) studied the possibility of computing the area averaged downward
longwave flux using amodified plane-parallel calculation while taking into account the
cloud side effects. He suggested the use of an effective cloud fraction, which
incorporates the cloud side effect, instead of the absolute cloud fractionin Eq 1.1 to
improve the calculation of the area-averaged fluxes. In addition, he presented a model
for calculating the probability of clear line of sight (PCLOS), which is a geometrical
characteristic of a 3D cloud field and also akey factor when discussing the cloud side

effect or formulating the effective cloud fraction.

In astudy of the effects of cloud dimensions on longwave irradiance and heating
rate calculations, Ellingson (1982) developed a simplified effective cloud fraction
model to incorporate the effects of cloud geometry and vertical temperature variation

within the cloud layer. The model is an extension of the approach of



Avaste et a. (1974). It parameterized clouds as randomly distributed black but non-
isothermal right circular cylinders with constant cloud base height. Based on the model,
he found that the irradiance and heating rate are nonlinear functions of the absolute
cloud amount, cloud size, and cloud base and top altitude. Incorporation of cloud
dimensionsin the calculation results in more downward irradiance at the surface

(1 - 4%) and less escaping the atmosphere (up to 8%) than from the PPH
approximation. The subcloud layer experiences more heating (as much as 20%),

whereas the tropospheric column experiences more cooling (up to 10%).

Harshvandhan and Weinman (1982) studied upward longwave radiative transfer
through aregular array of cuboidal clouds. Clouds are either black or uniformly non-
black. One of their conclusionsis that the geometrical considerations often dominate
over the microphysical aspects of radiative transfer through the clouds. Their example
shows that the difference in smulated 10 pum brightness temperature between black
isothermal cubic clouds and cubic clouds of optical depth 10 islessthan 2 K for zenith
angle less than 50° for al cloud fractions. While neglecting the cloud side effects may
result in 2 - 8 K error in brightness temperature for cubic clouds over awide range of
zenith angles. In their study, they also gave an expression for the effective cloud
fraction for aregular array of cubic clouds. Different from previous studies, their
expression is not derived directly from the PCLOS but is based on anumerical fit to the

transmission of diffuse light through an opaque array of cuboids.

Barker and Wielicki (1997) examined the impacts of the horizontal variation of
optical depth and cloud sides on the grid-averaged longwave flux transmittance. They

reveaed the effect of variable optical depth on the longwave radiative transfer. Like the



cloud side and variable temperature, variable optical depth is another aspect that affects
the longwave radiative transfer through a non-PPH cloud field. They concluded that the
magnitude of the effect due to variable optical depth islarger than that from cloud sides
and suggested a scheme to parameterize area-averaged cloud transmittance. Their study
was based on fields of optical depth inferred from 45 Landsat images and the PCLOS

was simulated using Monte Carlo technique from the optical depth fields.

Han and Ellingson (1999, 2000) made the first attempt to test the various
effective cloud fraction expressions with experimental data. Observations from the
Atmospheric Radiation Measurement (ARM; Stokes and Schwartz 1994)) Southern
Great Plains (SGP) Clouds and Radiation Tested (CART) site were used to derive the
absolute cloud fraction, cloud size, spacing and many other cloud field variables. The
effective cloud fraction was extracted from hemispheric flux observations. To derive
area-averaged variables from time series observations, al their variables were averaged
over asampling period of 10 minutes. Their conclusions were: (1) Cloud bulk
geometrical parameters significantly affect the difference between the effective cloud
fraction and the absolute cloud fraction; and (2) Cloud horizontal distributions do not
significantly influence cloud mutual shading and the effective cloud fraction for cloud

fields with small aspect ratios and absolute amount.

Takara and Ellingson (1996, 2000) investigated scattering effects on longwave
radiative transfer through afield of randomly distributed right cylindrical clouds. The
spectral interval was limited to the 8 - 12 um window region whereit is expected that
the longwave 3D cloud effects and scattering effects will be most significant. Their

results show that compared to the cloud side effect, cloud scattering can be neglected



for optically thick water clouds in summer and tropical soundings. The errors due to
neglecting cloud scattering are largest close to the cloud layer and decrease as the

distance from the cloud layer increases.

Many attempts have been made to find methods to incorporate 3D cloud effects
into radiative transfer calculations while, at the same time, save computational
resources. For example, the effective cloud fraction has been suggested to account for
the cloud side effect (Niylisk 1972; Ellingson 1982; Harshvandhan and Weinman 1982;
Naber and Weinman 1984; Han and Ellingson 1999; Masunaga and Nakajima 2001).
Area-averaged cloud transmittance or emittance has been parameterized to account for

the variable optical depth effect (Barker and Wielicki 1997; Li and Barker 2002).

Much of the aforementioned research explicitly employed various forms of the
PCLOS, which characterizes the radiative-transfer-relevant bulk geometrical effect of
clouds with finite vertical dimensions. The PCLOS describes the probability that aline
of sight can pass through a cloud field without intersecting a cloud. It is afunction of
absolute cloud fraction, cloud distribution, cloud size and shape. Figure 1.1 shows an
example of the PCLOS for randomly distributed cylindrical clouds with a constant
cloud base altitude. If clouds have any vertical dimension, the PCL OS decreases with
increasing zenith angle. Thisis due to the so-called cloud side effect. At a zenith angle
6> 0, cloud sides will also obscure part of the sky. Given the same cloud fraction and
distribution, the greater the cloud vertical dimensions, the larger the cloud side effect
until mutual shading occurs. At the zenith, the PCLOS = (1 - N), here N is the absolute

cloud fraction.

The PCLOS isaproperty of 3D cloud field. Its involvement in the longwave 3D



effect is very complicated, but correctly specifying the PCLOS in a parameterization
scheme for longwave radiative transfer through 3D cloud field is very important. Most
previous research focused on theoretical calculations and a variety of PCLOS models
have been suggested, based on different assumptions concerning the cloud field
properties and different approaches of modeling (Kauth and Penquite 1967,

Niylisk 1972; Ellingson 1982; Naber and Weinman 1984; Killen and Ellingson 1994,
Han and Ellingson 1999). Few efforts have been spent on the validation of the various

models. It is not clear which if any represents real clouds.

Although there are some observational investigationsin the literature (Lund and
Shanklin 1972, 1973; Rapp et al. 1973; Yu et a. 1986), they were aimed at obtaining
the climatic value of the PCLOS and did not have detailed information about the cloud
field properties available. For example, the PCLOS data from Lund and Shanklin (1972,
1973) was an average of three years of summer-season observations taken at
Columbia Mo. It ignored variations caused by diurnal cycles, weather conditions and
cloud altitudes, and did not have detailed cloud morphologica information available.
As such they are not useable for validating the PCL OS models we address in this study.
The experimental datafrom the ARM program (Stokes and Schwartz 1994) has a
detailed description of the clouds and radiation field over its CART sites. This enables
usto extract the PCLOS and the variables that were not available before but are
necessary for calculating the PCLOS from models, and hence makes the validation of

the PCLOS modelsfeasible.



1.3 Study objective and outline

To contribute to the goal of improving parameterization of longwave radiative

transfer through 3D clouds, this study has three objectives:

(1) Give asystematic discussion of the PCL OS models and make extensions based on

increased understanding of the morphological properties of cloud fields (Chapter 3).

The PCLOS models used by previous researchers are scattered in various papers. A
systematic discussion will enhance our understanding of the various PCLOS models
and facilitate the testing process. The PCLOS models will be grouped based on
different modeling approaches and basic assumptions. Besides detailing the

previous derivations, several improvements and extensions will also be attempted.

(2) Develop amethod to investigate the sampling issue that arises from attempting to
obtain area-averaged information from time series of observations at one location

(Chapter4).

Most of the ARM cloud observation instruments are fixed at the ground and detect
the clouds only in the zenith direction. Continuously operated instruments generate
time series of cloud observations. The desired spatially averaged quantities are
usually obtained by averaging the series over a period of time (assuming the frozen
turbulence approximation, that is, the statistical properties of the cloud field do not
change as the clouds advect with the mean wind speed or develop over the site).

I ssues that are very important to our testing work, and aso to anyone who wants to
infer spatially averaged variables from time series observations, are the length of the

time series and the frequency of the observations within the series. Over how long a



time period should the average be taken? How do observation frequencies of the
different instruments affect the result? How well does the time-averaged value
represent the area-averaged value? In this study, arandom field approach will be
taken to address the problem. The method evaluates the accuracy of various
averaging schemes by making use of the variance and auto-correlation function of
the field. The method will also be tested using several cloud fields generated by

cloud resolving or large eddy simulation models.

(3) Extract the various cloud variables from the ARM observations and test the PCLOS

models (Chapter 5).

For the purpose of testing the PCLOS models, cases with broken clouds present are
desired. In this study, we concentrate on cumulus cloud fields to test the PCLOS
models because they tend to have the most apparent bulk properties; they have
significant frequency of occurrence and spatial coverage especially over low and
middle latitudes (Hahn and Warren 1999), and they are also difficult to be
represented in large-scale models. To avoid the complexity of overlapping cloud
layers, only single layer cumulus cloud fields are selected from the comprehensive
observations and used in the testing. Comparisons will be made between model
calculated PCL OS and values determined from a variety of ground-based
instruments including sky dome images, cloud radar, lidar, radar wind profiler and a

narrow field-of-view radiometer.

Current GCMs do not explicitly account for 3D radiative effects. As an
important parameter for longwave radiative transfer through 3D cloud fields, the

PCL OS has the potential to be used in future radiation parameterization schemes. In this

10



study, through the systematic discussion of various PCLOS models, we explicitly point
out the needed variables for various PCLOS models, that is, the physical parameters
necessary to make use of the PCLOS in the parameterizations. Also, through the
comparison of models with the ARM observations, the performance of the models and
the validity of the various assumptions used by the models can be tested. This will
facilitate the selection of the modelsfor eventual use in climate simulations. In the long
run, the results from this study will be useful to the development of better GCM
parameterizations of radiative transfer in cloudy atmospheres, which in turn will

contribute to improved climate simulations.

Chapter 2 gives background descriptions concerning 3D cloud effects on
longwave radiative transfer and the ARM cloud observing instruments that are relevant
to testing the PCLOS models. Chapter 6 summarizes and concludes the research and

gives directions for future work.
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Chapter 2
3D cloud effects on longwave radiative transfer and the ARM

cloud observations

2.1 3D cloud effects on longwave radiative tr ansfer

Three characteristics of 3D clouds have been found to be significant to
longwave radiative transfer and have drawn much attention in the literature. They are
(1) the 3D geometric shape of clouds, (2) the horizontal variation of the cloud optical
depth, and (3) the vertical variation of cloud temperature. (Ellingson 1982; Harvandhan
and Weinman 1982; Takara and Ellingson 1996; Barker and Wielicki 1997; Han and

Ellingson 1999, 2000; Masunaga and Nakajima 2001).

The most apparent effect due to the 3D shape of the cloudsis the increase of the
probability of seeing a cloud when the line of sight goes from the zenith to horizon.
Thisinfluences the effective cloud fraction and hence the radiation fluxes under the

cloudy condition.

That the variable optical depth can affect the longwave radiative transfer isa

result of the nonlinear dependence of the longwave transmittance on the optical depth.

The cloud temperature links directly to the longwave radiation through the
Planck function. However, it isthe brokenness of the cloud field or the presence of non-
opaque clouds that alows the vertical temperature variation to ater the longwave

radiation under cloudy condition. Details will be given in the following sections.
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Figure 2.1 gives an illustration of the 3D cloud effect on longwave radiative transfer

due to the three characteristics of the clouds.

To help explain the 3D cloud effect, consider a quasi-3D cloudy atmosphere
(Fig. 2.2) comprised of a horizontally homogeneous atmosphere with alayer of
azimuthally averaged cloudsin it. All quantities are azimuthally averaged values. There
isonly one layer of clouds and all clouds are constrained in the layer between z, and z,
denoting cloud base height and cloud top height, respectively. Scattering is neglected.
We consider the area-averaged downward longwave radiation flux at alevel zunder the

cloud layer. Following Niylisk (1972) and Ellingson (1982),
. 1 27_[_ 1
F.p(2) = 277! (2, 1) Ry (1) s + Tlﬂdﬂk o lean Xy, p)dxdy  (2.1)

where lo(z,1) and I 3p(z XY, L) are the radiances received at level zfrom the clear and
cloudy portions of the sky above, respectively. Since the atmosphere is horizontally
homogeneous, 1o(z ) isindependent of horizontal position, while l¢3p(z Xy, L) isa
function of horizontal position, because of the inhomogeneity of the cloud field. Po(L) is
the azimuthally averaged probability of aclear line of sight. (isthe cosine of zenith
angle. Ac() isthe projection area of the clouds at direction p. Aisthetotal areaof the

domain.

Using the same form as Eq 2.1, the area-averaged flux for the PPH

approximation can be written as

Fee (2) = 277}' o(Z, 1)@= N) pdps + Zﬂjﬂdlu leppn (Z )N (22)
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where N is the absolute cloud fraction and I ppH(z L) 1S the radiance coming from a PPH
1

cloud. Since N isindependent of 4, and since F(z) = 271 I(z, i) pidpt, Eq 2.2 reduces to
0

Eq 1.1

We are interested in the difference between the area-averaged fluxes from the

PPH approximation and the 3D clouds.

AF(2) = Fepy (9 - Fip(9) = 2tf16(z, ) (1= N = By () pda
0 (2.3)

1 1 D
+ 27TJ0' a eppn (Z )N = ZJ’MM l.30(Z. X, Y, ,u)dxdyBud,u

In the above equation, the pencil of radiance passing through the 3D cloud field

and reaching on level zmay be written as

|C’3D(Z,X, y,u) =1,(0-2z,u) Tc,3D(Zt =2, % Y, 1) To(2, =z, 1)
+ Ic,3D (Zt 4, XY, ,U) TO(Zb - ,U) (2-4)
+1o(z, 2, 1)

where 0 — z denotes the mass along a dant path at adirection u between the top of
atmosphere and the level z. Thus, 1¢(0 — z, 1) denotes the radiance incident at z in
direction i generated by atmosphere above the cloud layer, and 1o(z, — z, 1) isthe
radiance at z in direction i generated by atmosphere below the cloud layer. To(z,—z, 1)
isthe transmissivity of the atmosphere below the cloud layer along 1. In the following,

we will ignore the absorption by atmospheric gases within the cloud layer for discussion

purposes. Thus, z — z, denotes only the cloud mass. T(z — 2, X,Y,4) isthe cloud

transmissivity through the cloud layer in direction w corresponding to a horizontal

14



position denoted as (X, Y). l¢3p(z — 2, X,Y, 4) istheradiance at z in direction p from the
clouds. I¢ppH(z 1) would have the same form as Eq 2.4, only the transmissivity and the

radiance from the cloud are independent of horizontal positions.

2.1.1 Geometrical effect

Consider the 3D clouds to be isothermal blackbodies. Thiswill eliminate the
optical depth and temperature variations. Only the cloud bulk geometric property can
contribute to this 3D effect. The cloud layer transmissivity Teppy = Tezp = 0. The PPH
cloud is assumed to be a black plane-parallel cloud. Under these assumptions, the flux

difference at level zmay be written as

AF (2) = 271 14(2, 1) (1= N = Py (1))
+ 277_[[' c,PPH (z, -z, )N - | ¢.30 (z, =z, 1)1~ Po(,u))]To(Zb =~z ) pdu

*+27[10(2, =2, f) (N =1+ Ry (1)) plpt

(2.5)

where | o, (2 — 2, 1) and | 5, (Z — 2z, 1) are downward radiance at level z, from the

PPH cloud and 3D black clouds, respectively. If the PPH cloud takes the same

temperature at the 3D isothermal black clouds, | op, (Z, =2, 1) = 1 35 (2, — Z,, ) .

Thus the difference between the PPH approximation and 3D black clouds can be

rewritten as

15



AF () =271[ [Io(2. 1) =1z ]2~ N = Py (1)) pd (2.6)

Eqg. (2.6) shows that, for isothermal black clouds, the difference between the
area-averaged fluxes from the PPH approximation and 3D black cloudsis caused by the

difference between P,(0) =1- N and Po(1). Notethat (1- N) = P, (u) for al 4, and on

the other hand, since the atmosphere temperature generally decreases with height, the
clear-sky radiance is usualy less than that from the cloudy-sky, i.e.

l,(z, ) = 1.(z, 1) < 0. Thus, the PPH approximation would underestimate the

downward flux at level z

Referring to Fig. 2.1, the geometric effect can also be described intuitively. The
PPH approximation uses the absolute cloud fraction N as a weighting factor to calculate
the domain-averaged fluxes. N is the fractional cloud cover projected vertically
downward on the ground. It is equivaent to say that the PPH approximation uses this
same cloud fraction for al zenith angles to count the radiance from clouds. No matter
the zenith angle, only those beams that fall in the N portion of the cloud projection (the
homogeneous rectangular boxesin the figure) are counted as the beams from clouds
(beam (B) for example). Whereas in a broken cloud field, the existence of spacing
between clouds allows radiation from cloud sides to reach at level zaswell (beam (A)
in Fig. 2.1). However, since these beams fall outside the PPH cloud vertical projection,

they will be neglected by the PPH approximation and instead be counted as clear.

When clouds are broken and have vertical dimensions, viewed at any angle

6> 0, the clouds will expose alarger area to an observer than that from the PPH
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approximation. A larger projection area means alarger fraction of sky being obscured
by clouds. That is, thereis anincrement in N. Since the increment will always be
positive, if clouds are assumed as blackbodies, compared to the PPH approximation, the
brokenness of the cloud field will increase the downward flux under the clouds and

decrease the upward flux above the clouds.

The extent of the longwave geometric effect depends on the vertical dimension
of the clouds, the distribution of the spacing between clouds and the shape of the
clouds. The larger the vertical extent of the clouds and the spacing between clouds, the
larger the geometric effect of the clouds. The spacing between clouds closely relates to
the cloud fraction. Asthe cloud fraction becomes larger and larger, the spacing between
clouds becomes smaller and smaller. Thiswill depress the geometric effect because of
the increase in the mutual obscuration. The shape of the clouds also has an impact on
the geometric effects. Given a same vertical extent, a cloud with alarge, flat top tends
to obscure more sky than a cloud with asmall, round top, and thus will have more

pronounced geometric effect.

From Eg. (2.6) we notice that there is another term that aso controls the impact
of clouds on alevel outside thecloud layer. Theterm | ,(z, u) — 1 .(z, 1) isthe
difference between clear and cloudy radiance at level z, and

lo(z, 1) = 1.(z, 1) :[lo(zbuu)_ Ic(zb7:u)]T0(Zb —Z,14),

where [I,(z,, 1) - | .(z,, 1)] isthe difference between clear and cloudy radiance at

cloud base level z,. The transmissivity To(z,— z, 1) represents the attenuation by the

atmosphere between the cloud base z, and the level z. If the intervening atmosphere is

17



very opaque, the 3D cloud effect or any cloud effects at level z will be largely
attenuated. Thisimplies two consequences. First, especially at lower levels of the
atmosphere, due to the large amount of absorbing gases, the 3D effects will mostly
affect the layersthat are close to the cloud layer. Second, the 3D cloud effect will be
more significant in the window region because there is alarge difference between

lo(z, 1) and (2, ) and To(z,— 2z 1) iscloseto 1. These are actually general properties
of longwave radiative transfer in a cloudy atmosphere and are not limited to the 3D

cloud effect.

2.1.2 Variable cloud optical depth effect

Liquid water clouds are not always black, as there may be a substantial amount
of thin clouds present in abroken cloud field. The optical depth may span awide
spectrum of values. Due to the nonlinear dependence of the cloud transmission and
emission on the optical depth, neglecting the inhomogeneity in the optical depth may be

another source of biasin the PPH approximation (Barker and Wielicki 1997).

To illustrate the impact of the variable optical depth, assume the 3D clouds are
non-black and isothermal, and for simplicity aso ignore the geometric effect, i.e.,

Po() =1 - N. The PPH cloud is assumed to be a non-black plane-parallel

homogeneous cloud. The flux difference between the PPH approximation and 3D

clouds at level z can be written as

AF () = 27N[ [15(0- 2, 1) AT () + Al ()] To (2, = 2. 1) 1l (2.7)
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BﬁTc () =T, pen (z -z, 1) _ITc,aD (z, —z,,tl, ) p(rf | ) drf
O
ENC(,U) =l ¢ppn (z _Zb7lu)_I|c,3D(Zt =z, 1%, 1) p(rf | p)drf

where

are the transmissivity and radiance differences between the PPH approximation and the
3D clouds for the cloud layer. The area averages have been replaced by averages over

the optical depth ensemble, i.e,
1 - — (- R ,, “
ALW) X(z, - z,,%y, 1) dxdy = (1 Po(,u))IX(zt z,, 74, 1) p(t# | p)dr?

X = Tc,3D (lu) or I c,3D (,U)

' isthe cloud optical depth measured along the dant path described by 1. p(r¥ | 1) is

the probability distribution of the slant path optical depth conditional upon 2 (Barker

and Wiedlicki 1997). Again for discussion purposes we neglect the absorption by
atmospheric gases within the cloud layer. Note that with the isothermal assumption, the

radiance difference may be further written as

DI, (1) = B fe o (2 = 200 ) = [ €00 (5 = 2,72 1) P(TE | ) |
=-B, ¢,PPH (Zt - Zbuu) _ITC,SD(Zt - thrcﬂuu) p(Tél |,u)drcﬂ]

where B, is the Planck function at the cloud temperature. £_ .., (2 — z,, 1) and

E.3p(Z — 2,1, 1) arethe dant path emissivities for the PPH cloud and 3D clouds,

respectively. The flux difference (Eq. (2.7)) can berewritten as
. 1
AF(2) = 2N[ [15(0- 2., 11) = B AT (1) To (2, = 2. 40) pdlu (2.8)
0

Where
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AT (1) =T, pen (z -z, 1) _ITc,aD (z, —z,,t], ) p(rf | ) drf
— e'Tc,ppH//I _Ie-rc“(#) p(Té’ |,U)dTé1

The manifestation of the effect of neglecting the horizontal variation of the
optical depth in the PPH approximation is through the transmission (or emission)
difference between the PPH approximation and 3D clouds. The difference results from
the nonlinear dependence of the transmission on the optical depth. The transmission at

the average optical depth may not equal the average transmission, i.e.,

g e/ 2 I e Wp(r# | u)dr¥ . Thesign and size of the effect due to the variable
optical depth depend on the choice of 7, and the distribution of 7(). It has been
shown that if 7., takesthemean of 7/(1), i.e. the mean value of the vertical optical
depth, the PPH approximation will overestimate the downward flux at the surface.

The expression for the flux difference due to the variable optical depth
(Eq. (2.8)) issimilar to that due to the geometric effect (Eq. (2.6)). Both of them imply
that the state of the atmosphere above the cloud layer or intervening the cloud layer and

level zwill aso affect the 3D cloud effect observed at level z. For example, consider
the [I 0o(0-2z,u) - BC] termin EqQ. (2.8). For downward longwave radiation, if the
absorbing gases above the cloud layer are so dense that they emit radiation at a
temperature close to the cloud temperature, there will be little contrast between the
clouds and their background. Neither the geometric change nor the optical depth
variation will have much impact on the downward flux at level zfor this condition. This

isan important consideration away from the window regions; however, the atmosphere
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isalways sufficiently transparent that there is a spectrally integrated difference between

the emission from the clear and overcast portions of the sky.

2.1.3 Variable temperature effect

The third aspect of the longwave 3D cloud effect is due to the non-uniform
temperature within the cloud layer. To simplify the explanation of the effect, assume the
3D clouds are non-isothermal and opaque, and ignore the geometric effect, i.e.

Po(1) =1 - N. Only the vertical variation of temperature is considered. The PPH cloud

isassumed to be ablack plane-paralel plate. The downward flux difference between the

PPH approximation and 3D cloud may be written as

1
_ 1
AF(2) = 27N j@ (=2 )= [, ) Voo (22X YD) dxdy@ro(zb - 2, 1) el
0
1
= 27N [[Bum [ Buso (2.0 P(Z 1 1) 2] Ty (2, = 2,40) el
0

(2.9)

where Bcppn 1S the Planck function for the PPH cloud. B 3p(z’,1) is the Planck function

for the 3D clouds at dtitudez’ . z' isthe height of the location on the cloud side from

where a pencil of radiance emits downward to level z at direction . z' ranges from the
cloud base height, z, to the cloud top height, z;. p(Z' | 1) denotes the probability
distribution of z' conditional on w. Likethat in Eq. (2.7), the ensemble average over z'

has been substituted for the average over area. The size and sign of the flux difference

depend on the choice of the temperature of the PPH cloud and the distribution of
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p(Z' | ). Sincethe temperature of areal cloud will usually decrease with increasing

atitude, if the PPH cloud is set at the cloud base temperature, the PPH cloud will
overestimate the downward flux, as has been shown by Ellingson (1982). The reason
for thisis because the portion of radiation from cloud sidesis emitted at atemperature
that is lower than the cloud base temperature, which is the one the PPH cloud assumed.
For upward flux, the PPH approximation usually emits radiation at the cloud top
temperature. This may underestimate the upwelling flux. Compared with the geometric

effect, theimpact of the variable temperature is of opposite sign.

In the above discussions, the three aspects of the 3D effects were addressed
separately, but in reality, the three aspects act simultaneously. That is, areal cloud field
may have ssmultaneous variations in the cloud vertical dimension, optical depth and
vertical temperature gradient. The longwave fluxes though the 3D cloud field isa
combined result of all three aspects of the 3D effects. The PCLOS plays amajor rolein
determining the radiative transfer through the broken cloud field for each effect,
although it is primarily connected with the geometrical effect. The effective cloud
fraction, suggested by some researchers to address the geometrical effect, is almost
solely dependent on the PCL OS. Nonetheless, the PCLOS is an important modulating
factor for the longwave 3D cloud effects. Thus, aclose study of the PCLOS of broken
cloud fields will surely contribute to the genera understanding of the longwave 3D

radiative transfer.
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2.2 The ARM cloud observation instruments.

The Central Facility (CF) of the ARM SGP CART siteislocated between
Lamont and Billings, Oklahoma (36.61N, 97.49W, 315 m above sealevel). A variety of
instruments have been deployed at the site aimed for mapping the three-dimensional
structure of the atmosphere, cloud and radiation field in a continuously and automated
fashion. In the following, a brief description will be given for severa instruments that
are relevant to our goal of testing the PCLOS models. Detailed information can be
found at http://www.arm.gov. Table 2.1 lists the desired cloud field properties and the

instruments from which the properties will be determined in this study.

Table2.1: The desired cloud properties and the instruments used to measure or infer them.

Variable Instruments

PCLOS(6) TSI, WSl

Absolute cloud fraction NFOV, TSI, Lidar/Ceilometers, MMCR, ARSCL
Cloud spacing distribution NFOV, Lidar/Ceilometers, MMCR, ARSCL
Cloud horizontal size distribution NFOV, Lidar/Ceilometers, MMCR, ARSCL
Cloud base height Lidar/Ceilometers, MMCR, ARSCL

Cloud top height MMCR, Lidar, BBSS

Wind speed RWP915, BBSS

TSI — Total Sky Imager

WSI —Whole Sky Imager

NFOV — Narrow Field of View Sensor

MMCR — Millimeter wave Cloud Radar

RWP915 — 915-Mhz Radar Wind Profiler and radio acoustic sounding system
BBSS — Balloon-Borne Sounding System

ARSCL - Active Remotely-Sensed Clouds Locations
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The all sky images taken by the Total Sky Imager (TSI) and Whole Sky Imager
(WSI) will be used to infer the PCLOS as a function of zenith angle. The TSl isan
automatic, full-color sky imager system. It records visual images of the sky dome from
a heated, rotating hemispherical mirror at an adjustable sampling rate, which is set at
one per 20 seconds at the SGP site. Thefield of view of the TSI is about 160°. The
resolution of the output image is 352x288 pixels. The TSI data available at the ARM
data archive starts in July 2000 and includes the raw sky images and classified ‘cloud
decision’ images. The availability of the classified images greatly facilitates our
retrieval of the PCLOS. Detailed information on inferring the PCLOS from the TSI and

WSI is presented in Chapter 5.

The WSI is a ground based imaging system that monitors the upper hemisphere
using a fisheye lens and four spectral filters (near IR, red, blue and neutral). Besides the
cloud presence and distribution, the WSI can also measure the radiance in an
approximately 1/3° increment over the entire sky dome (180°). The chief advantage of
the TSI compared to WSI is its higher time resolution. The time interval between
images for the TSI is 20 seconds, whereas for the WSI, it is 6 minutes. The WSI is
capable of acquiring images under daylight, moonlight, and starlight conditions. The

data has been available from the SGP site since 1995.

The Narrow Field of View Zenith Radiometer (NFOV) is a ground-based
radiometer that looks vertically upward. It operates at a wavelength of 869 nm and
senses a spectral interval that has a Full Width at Half Maximum (FWHM) of 10 nm.
The field of view of the instrument is 5.7°. The output of the instrument is a time series

of 1-sec observations of the downwelling spectral radiance at the zenith. Two main
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features of the NFOV pertinent to our study are its high sampling rate and narrow field
of view. These features enable us to precisely measure the horizonta sizes of the clouds

and spacing between clouds as will be discussed in detail in Chapter 5.

Since the horizontal size and spacing are inferred using the frozen turbulence
assumption, wind speed isamust for this study. It is obtained from the 915-Mhz Radar
Wind Profiler (RWP915). The RWP915 makes observations in a cyclic sequence of
five pointing directions, onein vertical and four in near-vertical directions (two in the
north-south vertical plane, and two in the east-west vertical plane). The radial
components of the wind speed are determined for each of the directions from Doppler-
shifted return signals. Horizontal wind speed and direction are then obtained by
combining the radial components. Profiling is achieved by measuring the time delay of
the radar pulses. The measurement range of the RWP915 at the SGP siteis 0.1 — 5 km.
The wind speed data from the radar is a 50-minute averaged value with an accuracy of

about 1 m/s.

The Millimeter wave Cloud Radar (MMCR) is a 35 GHz zenith-pointing cloud
profiling radar. It measures the radar reflectivity (dBZ) of the atmosphere up to 20 km
at atimeresolution of 10s. Its Doppler capability also allows the measurement of the
vertical velocities of cloud constituents. The main purpose of thisradar isto determine
cloud boundaries (e.g., cloud bottoms and tops). Although the short operating
wavelength gives the MMCR the capability of observing almost all clouds including the
non-precipitating clouds, large amounts of non-hydrometeor particul ates over the SGP
CART dite, such asinsects and bits of vegetation, make the radar difficult to use for

detecting lower lever clouds during the warm seasons.
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Information from various laser instruments can be used to complement the
MMCR cloud detection. Severa Lidarsrelevant to this study are the Micropulse Lidar
(MPL), the Vaisala Laser Ceillometer (VCEIL) and the Raman Lidar (RL). These
instruments emit short, powerful laser pulsesin the vertical direction, and measure the
light intensity backscattered by haze, fog, clouds and atmospheric molecules (RL only)
asthe laser pulsestraverse the sky. The MPL and VCEIL are elastic backscatter
systems that measure the return signal at the same wavelength as the transmitted beam.
Based on the delay time between the transmitted pul se and the returned scattering signal
the MPL and VCEIL can detect the cloud base height and, for some thin clouds, the top
height. The RL measures the Raman scattering signals at 387 and 408 nm dueto
nitrogen and water vapor molecules, respectively. A range-resolved water vapor mixing
ratio can then be deduced from the ratio of the water vapor signal to the nitrogen signal.
The water vapor mixing ratio profiles may help usto determine the availability of the
water vapor to cloud formation at the cloud top level and thus acts as a complementary

information source for the determination of the cloud top height.

The Active Remotely-Sensed Clouds Locations (ARSCL) is ARM’ s attempt to
produce an objective determination of hydrometeor height distributions, their radar
reflectivities, vertical velocities, and Doppler spectral widths from the combination of
data from the various remote sensing instruments including the MMCR, the Lidars and
aMicrowave Radiometer (MWR) (Clothiaux et al. 2001). It contains information about
the cloud boundary heights (cloud base and cloud top) for each cloud layer detected, as
afunction of time. However, due to the lack of a satisfactory solution to the airborne

clutter problem at the present, the cloud top data from the ARSCL isin itstentative
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state, especialy for those boundary clouds that occur with the clutter layer present and

extended to above the cloud top.

Table 2.2 summarizes specifications of the various cloud observation

instruments that are relevant to our work of testing the PCLOS models.

Table2.2 The ARM cloud observation instruments and their specifications.
(More details concerning the above instruments can be found at:
http://www.arm.gov)

Instrument Primary quantities | Spectral Field of Temporal Vertical M easur ement
obtained characteristic View resolution resolution Accuracy
Total Sky Imager Time series of Full color visible 160° 20 sec.
(TS) hemisphere sky (352 x 288
images. pixels)
Whole Sky Imager | Sky radiance; 650 nm, 180° 1-10min. +5% (radiance)
(wsl) Cloud cover. (FWHM = 70nm); | (34 mrad (6 min at
450 nm, Angular SGP)
(FWHM = 70nm); | resolution)
800 nm,
(FWHM = 70nm);
400 — 900 nm.
Narrow Field of Zenith spectral 869 nm 5.7° 1 sec. +15% (radiance)
View Sensor radiance. (FWHM = 10nm)
(NFOV)
915-MHz Radar Wind profiles 915 MHz 60 min. 0.06 — 1 m/s (wind
Wind Profiler and (0.1 -5km); 1km speed)
Radio Acoustic Virtual temperature
Sounding System (0.1-1.5km).
(RWP9I15)
Millimeter Wave Radar reflectivity; 35GHz 0.2° 10 sec. 45m, 0.1 m/s (vertica
Cloud Radar Doppler spectra; 0m velocity)
(MMCR) Cloud boundaries; 0.5dB
Cloud constituent (reflectivity)
vertical velocity.
(0.1 —15km)
Micropulse Lidar Cloud boundary. 523 nm 0.1 mrad. 1 min. 300 m,
(MPL) (0.12 - 20 km) (beam 75m
divergence)
Vaisala Cloud base height. 905 nm 0.66 mrad 15 sec. 15m
Ceilometer (0.2-7.5km) (beam
(VCEIL) divergence)
Raman Lidar Vertical profiles of 408 nm (H20) 0.1 mrad 10 min. 78m
(RL) water vapor mixing | 355 nm (aerosol) (beam
ratio or aerosol 387 nm (N2) divergence)
scattering ratio.
Balloon-Borne Vertical profiles of Every 6 2s 0.3% (temp.)
Sounding System temperature, hours at (sampling %1 (R.H.)
(BBSS) relative humidity, 0530, 1130, | rate) 0.5m/s (wind)
wind speed and 1730, 2330
direction.
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Chapter 3

Formulation of the PCLOS Models

The PCLOS is the probability of aclear line of sight through acloud field at a
given zenith angle. Assuming the cloud field isisotropic in horizontal directions, the
PCLOS is not a function of azimuth. We will address three ways to model the PCLOS.
(1) Sincethe PCLOS isequivalent to 1 - N(8), where N(6) is the cloud fraction seen at
zenith angle @ or the fractional projection area projected at 8 onto a horizontal plane,
finding N(6) is equivalent to determining the PCLOS. (2) Following the definition of
“PCLOS?”, one can trace a line of sight to determine its chance of passing through a
clear section of the cloud field, provided that one has statistical information concerning
the cloud field along the line of sight. (3) Following Han and Ellingson (1999), PCLOS
can be modeled as the fractional number of cloud pairs that are separated from each
other by a critical distance.

For each method mentioned above, depending on the assumptions made about
the cloud field, there are differences among various PCLOS models. For example, for

the method of calculating N(6), if we assume clouds are regularly distributed on a plane,

we obtain one model of the PCLOS. Or if we assume clouds are randomly distributed
on a plane, we get another model of the PCLOS. In this chapter, we will discuss the

three methods of modeling the PCLOS and give expressions for the various models.
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3.1 Modeling the PCLOS by computing N(6)

Depending on the method of describing a cloud field, three methods of modeling
N(68) will be addressed in this section. The first method describes the cloud field by
explicitly specifying cloud size and spacing distributions. The second method assumes
the clouds with arbitrary sizes are randomly distributed on a horizonta plane. The third

method arranges the clouds regularly on a horizontal plane.

3.1.1 Given cloud size and spacing distributions

Thistype of model wasfirst used by Niylisk (1972), and latter by Killen and
Ellingson (1994) and Han and Ellingson (1999). Here we will give a systematic
discussion of the model. The model infers N(6) from a vertical section of acloud field.
Fig. 3.1 illustrate such a section of a cloud field. For such a 2D cloud field, 1-N(6),

which is equivaent to the PCLOS, is given by

> s.(6) _ s.(6)
total length of the domain line  mean length of the cloud element
3.0

p(f) =1-N(@) =

where s;(6) represents a clear section on ahorizontal line parallel to the line of the cloud
base that is not covered by the projections of the clouds at zenith angle 6.

Asseen from Fig. 3.1, afeature of this 2D cloud field isthat for every cloud
thereis a corresponding spacing associated with it. The number of cloudsisthe same as

the number of spacings. We may define a combination of a cloud and the spacing to its
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left as a cloud element. A cloud field consists of many such cloud elements. Fig. 3.2
illustrates a single cloud el ement.

The absolute cloud fraction N, which by definitionis the fraction of the total
lengths occupied by the vertical projections of clouds for such a 2D cloud field, may be

given as

_ o Yd _d
NESdrys s (3.2

where s=s_(0), and d + s isthe mean length of the cloud elements. Eq. (3.2) connects

the mean cloud horizontal size to the mean cloud spacing through the absolute cloud

fraction. With agiven N, p(6) can be written as

s.(6)

s

p(@) =(1-N) (33

Eq. (3.3) indicates that when the line of sight isin the zenith direction, s_(8) equals s
and the PCL OS becomes (1-N). When the zenith angle of the line of sight approaches
90°, (the horizontal), % goes to zero and PCL OS approaches zero.

Given a zenith angle 6, every cloud element has acorresponding s.(6) whichis
the portion of s uncovered by the projection of the cloud on the horizontal line at 6.
Assuming the cloud elements are independent of each other, the mean s.(6) can be

given by

s.(0) = I I s.(6,s,h) p(s,h) dsdh (3.4

(all cloud elements with s, >0)
where p(s, h)dsdh is the joint probability of acloud element with its spacing liesin

[s, s+ds] and height in [h, h+dh] . If we further assume that the cloud spacing and
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Size are independent of each other, in other word, p(s,h) = p(s) p(h), then the mean

s(6) can be written as

s.(0) = I I s.(6,s,h) p(s)p(h) dsdh (3.5)

(all cloud eleents with s, >0)
In the above discussion, the three characteristic parameters of a cloud element s,
d and h are all independent of each other. Thereis no restrictive relations among them,
except Eqg. (3.2).
Plank (1969) found that the cloud height and the cloud diameter for fair weather

cumulus may be fitted to afunction of the form

h_ Od
a7 g

where d is the cloud diameter, dma is the maximum diameter of the clouds, and a and 8
are fitting parameters. He also found that the average value of aiscloseto 0.0. Thus,
the cloud height can be related to cloud diameter smply by h= 5d, i.e., afixed aspect

ratio. This result has been used by several other authors (Han and Ellingson 2000;
Killen and Ellingson 1994). The ssimple linear relationship between the h and d qualifies
them to have asame distribution. That is p(h) and p(d) will have same functional form

and parameters. Instead of using(s, h), we use (s, d = h/ () to characterize a cloud

element. Eq. (3.5) can be rewritten as

s.(0) = I I s.(6,s,d) p(s)p(d) dsdd (3.6)

(all cloud elements with s; >0)

Now ageneral form of PCLOS for the 2D cloud field can be given as

p(o) = (1__N) H s.(8,s,d) p(s)p(d) dsdd (3.7)
S

(all cloud elements with s, >0)
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So far our discussion isin ageneral sense. No specific form of p(s), p(d) and
cloud shape have been assumed. There can be various combinations of p(s), p(d) and
cloud shapes. The power law distribution, Weibull distribution, exponentia distribution
and the lognormal distribution are four theoretical distributions that have been used to
model cloud size and/or cloud spacing distributions (Plank 1969; Lopez 1977; Joseph
and Cahalan 1990; Zhu et a. 1992; Han and Ellingson 1999). The cloud shapes that
have been used by various authors include right-cylinder, semi-ellipse, isosceles-
trapezoid and so on. In the following sections we will discuss some combinations of the
aforementioned distributions and cloud shapes.

To facilitate the following discussion, we give a naming convention for the
various PCLOS models according to the different p(s), p(d) and cloud shape each model

employed. All the PCLOS models will be named in the form of

“Domain Dimension _ (sd/xd/cd) _ Type of p(s) _ Type of p(d) _ Cloud Shape”

where the domain dimension, 1D or 2D, indicates the dimension of the space that the
cloud bases occupy. A 1D domain is a horizontal line, and every cloud is assumed to be
a 2D geometric object that lies on the line. “sd/xd/cd” indicates the type of cloud
spacings (see Fig. 3.3). “sd’ denotes that the cloud spacing is defined as the distance
between the edges of two adjacent clouds. “xd/cd” type of cloud spacing will be
mentioned in the following sections. As an example of the naming convention,

“1D_sd_Power_Power_lIsoscelesTrapezoid” means a PCLOS model which assumes an
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one dimensional cloud base domain, ‘sd’ type of the cloud spacing, power-law
distributions for both the cloud size and spacing, and an isosceles-trapezoidal cloud

shape.

3.1.1a 1D_sd Power Power_lsoscelesTrapezoid

For an isosceles trapezoidal cloud, s.(6) can be written as

S.(6,s,d) =s—df(tan6 —tann) (3.8)

where sis the cloud spacing, d is the cloud size and Sis the aspect ratio (= h/d). The
angle 77 is the inclination angle of the isosceles trapezoidal cloud. To compute the
PCLOS we need to calculate the mean s; as shown in Eq. (3.7). When performing the
integration, one should pay attention to the integration limits in Eq. (3.7), as some
combinations of sand d may generate unrealistic negative values of s.. As seen from
Fig. 3.2, s.is the clear section of sat zenith angle &€ It decreases with increasing &, but
should not be less than 0. The zero value occurs when the spacing is totally covered by
the cloud projection. Thus, one has to carefully select the limits of the integration to
fulfill the condition s.= 0. This condition implies s> df(tané —tann) or
d < s/f(tan6 —tann) . Another condition for Eq. (3.8) is that the equation applies only
when 8> n. Note that, when a line of sight is at a zenith angle 8< n, it will either see

the clear sky or be blocked by the cloud base, but not see the cloud side.

If there exist minimum values for the cloud size and spacing, the integral

domain will have different shapes for &greater or less than 6, =tan™(s,;,/h,;, +tann),
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where Smin and dmin ( = hmin/ ) denote the minimum spacing and size, respectively. All
these conditions combined to determine the integra domain for s, (), asillustrated in
Fig. 3.4.

When 8> @, the shadow of the cloud with any height will be greater than Smin.
Thusthe integral domainis

0 S
o d,, -

Ed ™ B(tan@ —tann)

Hs: d_ B(tanf-tann) —

When < @, the shadow of acloud is very short, and even the cloud elements
with smallest spacing will have s; > 0. Thusthe integral domainis

0, s
Ed' Gin = B(tan8 —tann)
Hs:

S

min = ©
Considering the appropriate integral domain, Eq. (3.7) for isosceles trapezoidal
clouds can be rewritten as

|:| S

1-N) © Alen-tan)
TI p(s) ds dj [s—dB(tand —tann)] p(d) dd, for n<6<8,
E Smin min
p(6) =0
U s

1_ N) o0 B(tan 6-tann)
JL_ J’ p(s) ds dj [s—dgB(tan@ —tann)] p(d) dd, for 8=6,
H S dupto-mn n

(3.9

Assume the cloud spacing and horizontal size both have power law distributions

given as,



p(s) =(u-1) sy s™ (3.10)
p(d) =(v-1) d* d '

where u and v are parameters, and Syin and dmi, denote the minimum values of sand d,
respectively. The PCLOS for a 1D domain, isosceles trapezoidal shape and power law

distributions for both cloud spacing and size may be written as

1-N) for 8<n
U
() = @(1— N) [aF @) -bF@) +1]  for n<o<8, (3.11)
U
U
Hi-N) [a -b + 1] F(#)*" for 6> 6,
where a= ,U—2 b:w
v-2)(u+v-3)° (v=-2)(u-1)
F(g):m and  tan@, =—mn_+tann

tan ec - tan,] min
When 6 approaches 17, PCL OS goes to (1-N). When 6 approaches 90°, PCLOS

approaches zero. Please note that the above equations implicitly assume

u>2 u+v>3 Vv#1l v#2.

3.1.1b 1D_sd Power_Power_SemiEllipse
In this section we address a model that is different from the above one only with
the cloud shape changed to a semi-ellipse. Cloud shape is incorporated into the model

by giving different s; and limits to the integralsin Eq. (3.7). The derivation of the s; for
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asemi-elipse cloud isillustrated in Fig. 3.5. In thefigure, acloud is placed in an x-y
plane with the cloud base centered at the origin of the coordinates. The cloud horizontal

sizeisd. A line of sight that is tangent to the cloud is written as

(J1+4B° tan®6) (312)

By setting x = 0in EQ. (3.12), we can obtain s(6) for a semi-ellipse cloud as

s.(0) = s—%(\/1+ 457 tan® 6 -1) (3.13)

where Sisthe aspect ratio ( = h/d ). By the same arguments as for the isosceles-

y= tan6 2tan6

trapezoid clouds, one can determine the integration limits for s and d for the semi-

ellipse clouds
g‘j dmin - 1 > )
E 2(1/1+4ﬁ tan“d -1 for 6> @,
0 d
[5: —mn (,/1+4ﬁ tan® @ - 1)ﬁ 00
C 2
Qj: dmin - 1 >
] 2(,/1+ 443%tan* @ —1) for < G
U
ES: Smin = ®

Assuming the same power law distributions as Eq. (3.10) for both cloud spacing and

cloud size, Eq. (3.7) yields p(6) for the“1D_sd Power_Power_SemiEllipse’” model

1-N) for <1
O
p(6) = @(1— N) [aF ) -bF@) +1]  for <6<, (3.14)
O
O
Hi-N) [a -b + 1] F(@)*" for >0,
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H=2 p= V" D-2)

where a= ,
v-2(u+v-3)" ~ W-2u-D
F= P01 i tang, :i\/E’iﬂm +1E7 -1
\/l+ 4ﬁ2 tanz HC -1 Zﬁ dmin

As seen, it has the same form as Eq. (3.11), except the different form for F(6) and tané..
Since asemicircleisaspecial case of asemi-ellipse, we can obtain p(6) for

“1D_sd Power_Power_Semicircle” model by setting 5= 0.5.

3.1.1c 1D _sd Exp_Exp SemiEllipseand 1D_sd Exp Exp_I|soscelesTrapezoid
In addition to the power law distribution one may also assume other
distributions for cloud spacing and size distributions. Here we assume exponential

distributions for both the spacing and size,

p(s) =ue™ (315)
p(d) =ve™
where i and v are distribution parameters. These yield the formulas for p(6) as
1-N
p(6) = — (3.16)
1+ = F(6)
v
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%(,/H 4537 tan’ @ —1) for semi - ellipseclouds

where F(0) =0
Ep(tan 6 -tann) for isosceles- trapezoid clouds
U

The expression for p(6) obtained by assuming the exponentia distributionsis
relatively simple compared with the one assuming the power law distributions. For the
power law distributions, due to the requirement of the existence of minimum values for
the cloud spacing and size, p(6) hasto be divided into two parts, onefor > g, and one

for 8< &, whilefor the exponentia distributions, there is no such inconvenience.

3.1.2 Poisson distributed Clouds

The aforementioned models explicitly specify the cloud size distribution (by
giving p(d)) and characterize the cloud spatial distribution using the distance between
clouds. Another way to describe a cloud field is to assume that clouds of arbitrary sizes
are randomly placed on a 1D or 2D domain according to a Poisson law. Use of the
Poisson distribution in PCLOS modeling was seen in the work of Kauth and
Penquite (1967), where he derived a PCLOS modd for a cloud field consisting of
randomly distributed ellipsoidal clouds. In this section we will use his method for both
1D and 2D domains and consider cloud shapes of semi-ellipses, isoscel es-trapezoids
and truncated-cones, not necessarily because these shapes are better but because they

yield results comparable to other PCL OS models we address in this work.
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Consider a1D domain cloud field. Each cloud in the field will cover acertain
part of the domain. Assuming the domain isinfinite in length, the increment in the total

fractional length by adding a new cloud would be an infinitesimal dt(6), wheret(6) is
the total fractional length covered by the projections of the clouds at angle 6, whichis

computed by summing the fractional length contributed by every cloud and multiply-
covered lengths would be counted multiply. As more clouds are added onto the line, a
greater chance for overlap will occur. When overlapping cases occur, the increment in

cloud cover at g, or theincrement in the probability of observing a cloud in the line of
sight at 6, will be
dN(6) = [1- N(6)] dt(6) (3.17)
Taking the initial condition N(6) = t(6) =0, rearranging and integrating (3.17), yields
N(@@) =1-€'®
Since N(6) =1- p(6), p(O) isgiven as
p(6) =e™® (3.18)
Defining f (6) =t(6)/t(0), and noting that (1-N) = p(0) =e™® enables p(é) to be
written as
p@) =(1-N)'® (3.19)
Since a PCLOS modd of this kind assumes a Poisson distribution for the cloud

gpatial distribution and does not explicitly incorporate cloud size distribution, the only

variable factor that can lead to variant forms of p(6) isthe cloud shape. This can be seen

from Eq. (3.19) aswell, where only f(8) is unspecified.
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According to the definition, f(6) is afunction of only cloud shape and should be

caculated as

0 _J’a(é?,r,h,...) p(r,h,...) dr dh...

f .
© Ia(O,r,h,...) p(r,h,...) drdh... (320)

wherer isthe radius of the cloud base and h the cloud height. a(g, r, h, ...) is the
shadow area of a single cloud with the characteristic parameters r, h, and any other
parameters. p(r, h, ...)drdh... is the probability of a cloud with r lying between r and
r+dr, h between h and h+dh, and so on.

If a cloud shape can be described by solely specifying r and h, like the simple
shapes as semi-ellipse, right cylinder, et al., then f(8) can be written as

( @) = [ 21 £ () plr) dpc
[ a0, B) p(B) (D) dB

Here we have introduced the aspect ratio, which is defined as £ =h/2r . In practice, we
may further assume £is a constant. That is, all clouds can vary in their size but will
keep their aspect ratio fixed. With this further assumption, f(6) can be further simplified

as

p :J’a(é?,r)p(r)dr

f 3.2
© Ia(O,r)p(r)dr (3.21)
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3.1.2.a 1D_Poisson_IsoscelesTrapezoid and 1D_Poisson_SemiEllipse

Here we follow a naming convention similar to that described in section 3.1.1.
The cloud domain can be 1D or 2D. There isno need to specify the “sd/xd/cd” term,
since the cloud positions are assumed to be distributed according to a Poisson
distribution. Also, thereis no explicit specification of the cloud size distribution for this
type of PCLOS models.

Using Eq. (3.21), f(6) for isosceles trapezoidal clouds may be written as

_ () _ [ld +dB(tan6 - tann)] p(d)dd

= G-
{0 (4 p@)ad 1+ B(tan - tann)

f(6)

where d is the cloud horizontal size and p(d) is probability density function for d. For

semi-ellipse clouds (see Fig. 3.5), f(6) isgiven as

f(8) :%
[ ‘;(,/1+ 4% tan? 0 +1)p(d) dd

[ dp(d)ad

:%(1/1+ 4p*tan® 6 +1)

Thus, p(6) for the 1D Poisson distributed i soscel es-trapezoid clouds, denoted as
“1D_Poisson_IsoscelesTrapezoid”’, may be written as
p(e) - (1_ N)l+ﬁ(tan€—tanl7) (322)

and for the “1D_Poisson_SemiEllipse’” model,

p(6) = (1— N2 T o (3.23)
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When = 1/2, a semi-éllipse cloud reduces to asemicircle.

3.1.2.b 2D_Poisson_TruncatedCone and 2D_Poisson_Ellipsoid

The above derivation for a 1D domain also appliesto a 2D domain. In this
section we derive p(6) for truncated-cone clouds randomly distributed on a 2D plane.
For atruncated-cone cloud (Fig. 3.6), the shadow can be seen asa set of circles aligned
along a straight line, which is the projection of the central-symmetrical axis of the
truncated cone. The area of the shadow is the area within the circumference of the set of
circles and can be given as

o T+0 o -0
a(@ :Er H tan8cos—+ 71 —H—Er H -h)tanfcos— -7, ——
( ) |:cb 2 cb 27T [ |:ct( ) 2 ct 27T [

whererg, and r¢; are theradii of the base and top of the truncated cone, respectively. H

isthe height of the cone before being truncated, h the height of the truncated cone and &
the projection of the top angle of the cone. Rearranging the expression, noting that

H =r, /tann , and substituting a(é) in Eq. (3.21), f(6) may be written as

a 1 2 2 a 2 2
(o) _ J’ (rCb + rct)htané?cosE + 2(7ch +7T, )+ ZT(HCb -m,") p(r,)dr,
t(O) I r[cbz p(rcb) drcb

2 2
d= ZCos'ﬂll—tanz,] : cosézwll—tan—zn : (for 621n)
tan” & 2 tan“ &

(3.24)

(@)=
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To describe atruncated cone we need three parameters, (rep, I, h) or (fep, 17, B)-
We have set the £ as a constant. Further assume 77 is aso a constant for a given cloud
field. With these assumptions and noting that r, =r, —htané, and h=2fr, Eq. (3.24)

can be written as

f(6) :%(1—,8tan/7),8tan9cosg + %[1+(1—2,8tan/7)2] + %[1—(1—2ﬁtan/7)2]
(for 8=n)

(3.25)

Substituting Eg. (3.25) into Eq. (3.19), one will obtain p(6) for the
“2D_Poisson_TruncatedCone” model.

Asaspecial case, when r, =r,, 7= 0= 0, the truncated cone transforms to a

right cylinder, and f(6) becomes
4
f(@) =1+ —pBtand (3.26)
T
Thus, one can obtain

1+£ﬁtan9
p(@)=@a-N) ~ (3.27)
for right cylinder clouds, where 5 =h/2r , r istheradius of the cylinder. If we define
L =h/r, Eq. (3.27) is exactly the same as the PCLOS model used by Avaste et al.

(1974) and Ellingson (1982).
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p(6) for the“2D_Poisson_Ellipsoid” and “2D_Poisson_SemiEllipsoid” models

were given by Kauth and Penquite (1967) as

p(6) = (L— N)"*"™"¢  for ellipsoida clouds (3.29)
1 2 2
p(6) = (L— N )™ =045 for semi - ellipsoidal clouds (329)

Eq. (3.29) is coincidently the same as Eq. (3.23) for semi-ellipse cloudsin a 1D domain.

3.1.3 Regularly distributed clouds (Naber and Weinman model)

This model (Naber and Weinman 1984) is amodification of the regular
distribution model proposed by Harshvandhan and Weinman (1982). Instead of a
completely regular distribution, the model allows each row of clouds to be shifted a
fixed distance with respect to the adjacent row (see Fig. 3.8). Here we present their

resulting equations, namely

p(6) = ZW 0,(6) (3.30)
%Ni (1- Btang), for 0<tanf < @_\/\/WN—I)
0(6) =1 (f_ i
E{l— N, + N, (@L+ Btan@), for tan@ > ﬁ\/\/NET)

where Np = absolute cloud fraction, N, = N, +0.05, N,, =N,*0.1, w, =w,, =0.25
and w,, =0.125; Bistheaspect ratio; f = x/d, xisthe shift distance of arow with

respect to the adjacent row, and d is the side length of the cuboidal clouds.



3.2 Modeing the PCLOS by tracing aline of sight

This method models the PCL OS by following a beam of light randomly incident
on acloud field. The PCLOS isthe probability that the beam will pass through the
cloud field without touching any clouds. In order to pass through the cloud field clearly,
the beam first has to reach the cloud base level at the (1-N) portion of the sky, where N
isthe absolute cloud fraction. Within the (1-N) portion of the sky, the beam may fall at
any point of the gap between clouds. Not all beams arriving at the (1-N) portion of the
sky will pass through the entire cloud field. The factors determining whether the beam
will pass the cloud field depend on the height of the nearest cloud to the right of the gap
(we assume the beam direction istoward the upper right and only the nearest cloud can
block the beam, see Fig. 3.7) and the horizonta distance to the cloud. Let us denote x as
the distance between the beam and its nearest cloud measured on the cloud base level.

Notethat 0< x<s

max ?

where smax 1S the maximum cloud spacing in the cloud field.
Given distributions for x and the cloud height h and assuming £ = h/d, where d

represents the cloud horizontal size, the PCLOS can be expressed as

X
F(6)

St
p(@) =(1-N) J’ p(x)dI p(d) dd dx (3.3

d.inF ()

where F(6) depends on cloud shape, as different cloud shapes yield different forms of

F(6). For example:

(tan@-tann), 6=n, for truncated -cone clouds (3.32)

F(0) =
() %(J1+4ﬁ2 tan?6 -1),  for semi -ellipse clouds

45



Theintegral in Eq. (3.31) isdifferent from that in Eq. (3.7). Theintegral in
Eq. (3.7) computes the cloud coverage seen at zenith angle 6, while theonein
Eqg. (3.31) computes the probability that aline of sight will meet a cloud that is either
high or near enough to block the sight. The two models require different information
about the cloud spatial distribution. Eq. (3.7) requires p(s) —the distribution of the
spacing distance s between two neighboring clouds, while Eqg. (3.31) requires p(x) —the
distribution of the distance x between an arbitrary point on the line of the cloud base
level and its nearest cloud (in the half plane formed by the line of sight and its vertical

projection).

3.2.11D xd_Weib_Power_SemiEllipseand 1D_xd_Weib_Power_|soscelesTrapezoid
The naming convention used here is the same as that in section 3.1.1, but here
we use “xd” instead of “sd” or “cd” to denote different methods of specifying the cloud
spacing distribution (refer to Fig. 3.3).
Since x can take any value from 0 to Sna and its minimum is 0, we cannot
assume a power law distribution for x, because the probability density function of a
power law distribution goesto infinity at x = 0. The Weibull and exponential
distributions do not have this restriction, so in this and the next section, we will derive

p(6) by using only the Weibull and exponentia distributions to model the cloud spatial

distribution. The Weibull distribution is given as (MATLAB" statistics toolbox)

p(x) = abx" e (3.33)
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Assuming the Weibull distribution for x and the power law distribution for cloud
size, using Eq. (3.31), p(H for the“1D_xd Weib_Power_SemiEllipse” model and the

“1D xd Weib_Power_l|sosceleTrapezoid” model may be written as

=(1- D_a(dmin':(g))b _ V-1 VT_l b-v+1 b b-v+1
p(6) = (L N)Ee .. F(@) a EE& . %Fga(dmmF(e)), b

(3.34)

where F[Ein,b_Tm[Hisagammafunction and F[Ea(dmmF(B))b, b_l;Hl[Histhe

incomplete gamma function. F() is as defined in Eq. (3.32). The incomplete gamma

function requires b >v-1.

3.2.2 1D xd_Exp_Exp_SemiEllipseand 1D_xd_Exp_Exp_lsoscelesTrapezoid

Assuming exponential distributions for both spacing and size and given as

p(x) =ue (3.35)
p(d) =ve™
where p and v are distribution parameters, p(6) may be written as
1-N
p(6) = — (3.36)
1+=F()

v
where F(6) isasdefined in Eq. (3.32). EQ. (3.36) has the same form as Eqg. (3.16).

However, since we have assumed different methods of specifying the cloud spacing

a7



distribution, i.e., the meaning of x isdifferent from s, the value of 1 in Eq. (3.36) may

be different from the onein Eqg. (3.16).
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3.3 TheHan modd

Killen and Ellingson (1994) and Han and Ellingson (1999) proposed a PCLOS

model given as
Smax s
p(@) = I p(s) I p(r)drds (3.37)
Shiin Tmin

where

_ S
- 2y —yBtann + ftand

s represents the cloud spacing measured between the centers of two neighboring clouds
(seeFig. 3.3), r represents the larger radius of either the cloud top or base of atruncated
cone cloud, yisaparameter used to integrate the truncated cone and truncated square
pyramid into one form. j =7/ 4for atruncated cone and y = 24/2/rrfor atruncated
square pyramid. 77 isthe inclination angle. The cloud aspect ratio Sis defined as 5= h/r.
Eq. (3.37) isin fact the probability of occurrence of a pair of adjacent clouds
with spacing s=>r(2) —yftann + 5 tan6) . Han and Ellingson (1999) scale the value of
p( a 6 = 0to (1-N) and usesit to model the PCLOS. Their final expression for p(6) is

given as

-1
_NEﬁ.ﬂé for9<ec
2y — yBtann

—H
)% ptand g for@ =6,
2y — yBtann

-1
where 6. = tan'lﬁw v1 —1%—ytann%
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When obtaining Eq. (3.38), the power law distributions were assumed for both

the cloud spacing and radius, i.e.,

p(s) =(u-1) sy, s™

min

p(r)=(v-1 d¥tr™

min

(3.39)

These have the same form as Eg. (3.10). However, the spacing sin the Han model is
defined differently from the spacing in Eqg. (3.10), where the spacing is measured
between the cloud edges, not the cloud centers. Thisis different when modeling the
PCLOS, as measuring between cloud edges in fact makes the spacing independent of
the cloud horizontal size, while measuring between centersimplicitly restricted the
maximum cloud size. For a given cloud spacing s, the cloud radiusr hasto ber < §/2.
The Han model makes use of the same type of information about the cloud field
as the models we discussed in section 3.1, i.e. the spacing distribution, the size
distribution and cloud shape. To keep naming uniformity, in the following we will refer

itasthe“1D_cd Power_Power_VariableShape (Han)” model.
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3.4 Chapter Summary

In this chapter, we discussed three methods of modeling the PCLOS, i.e., by
computing N(6), tracing aline of sight and the Han's method. A variety of PCLOS
models were presented. All these models require geometrical information about the
cloud fields. Required information includes cloud spatia distribution, cloud shape
distribution, cloud size distribution (those model s assuming the Poisson distribution for
cloud locations do not require the specification of the cloud size distribution) and cloud
shape. The cloud shapes we assumed in this chapter include:

* |sosceles-trapezoid (rectangle as a special case)
» Semi-éllipse (semi-circle)

* Truncated-cone (right-cylinder)

»  Semi-éllipsoid (hemisphere)

» Ellipsoid

» Cuboidal.

In this study, all cloudsin a same cloud field are assumed to have a fixed aspect
ratio. Thus the cloud size distribution can be specified by the distribution of the cloud
horizontal size. Assumed cloud horizontal size distributions include the power law,
exponential and the Weibull distribution.

The cloud spacial distribution is specified either by the distribution of cloud
locations or by the distribution of the distances between clouds (the cloud spacings).
Assumed distributions include the Poisson (for cloud locations), power law (for
distances), exponential (for distances) and the Weibull (for distances) distribution.

Different models use different definitions of the cloud spacing. Three types of spacing
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used in this study are shown in Fig. 3.3. Thefollowing isalist of the PCLOS models

we addressed in this chapter.

1D _sd Exp _Exp_SemiEllipse Eq.(3.16)
1D sd Exp_Exp_IsoscelesTrapezoid Eq.(3.16)
1D _sd Power Power_SemiEllipse Eq.(3.14)
1D sd Power Power_lsoscelesTrapezoid  Eq.(3.11)
1D xd Exp Exp_SemiEllipse Eq.(3.36)
1D xd Exp Exp_lsosecelesTrapezoid Eq.(3.36)
1D xd Weib_Power_SemiEllipse Eq.(3.34)

1D xd Weib_Power_|soscelesTrpezoid Eq.(3.34)
1D _cd_Power_Power VariableShape(Han) Eq.(3.38)

1D _Poisson_SemiEllipse Eq.(3.23)
1D Poisson_IsoscelesTrpezoid Eq.(3.22)
2D_Poisson_SemiEllisoid Eq.(3.29)
2D_Poisson_TruncatedCone Eq.(3.24)
2D_Poisson_Ellipsoid Eq.(3.28)
2D_Poisson_Hemisphere Eq.(3.29)
2D_Poisson_RightCylinder Eq.(3.27)
2D_ShiftRegular_Cuboidal Eq.(3.30)
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Chapter 4

Sampling Strategy

In Chapter 3, during the development of the PCLOS models, several cloud
parameters were introduced to summarize the properties of the cloud field or cloud
population. All these parameters are domain-averaged or population-averaged
guantities. For example, the absolute cloud fraction is a domain-averaged cloud
fraction. The PCLOS is adomain-averaged vaue for every zenith angle. The
parameters 4, v, a, b (Chapter 3) are population-averaged values used to characterize
the cloud size and spacing distributions. Thus, when estimating these parameters, one
must take some sort of average, either over alarge area or over a collection of
individua clouds. However, the ARM cloud sensing instruments are fixed at the surface
at the ARM CART site, and most can only sample the cloud field in the zenith
direction. In order to estimate the appropriate spatially averaged values from these
fixed-point observations, one has to assume a space-time relationship. Hereit is
assumed that the cloud field statistical properties do not change as the clouds move with
the mean wind (the frozen turbulence approximation). Under this assumption, the
appropriate domain averaged properties can beinferred from atime sequence of
observations. This bringstwo questions: (1) For agiven wind condition, over how long
aperiod or over how many individual clouds does one need to average? (2) What
sampling rate will give the most accurate estimate? In other words, given atime series
of observations of a known length and sampling rate, how accurately does the average

over thistime series represent the domain-averaged or population-averaged value?

53



Answering these questionsis critical to the use and interpretation of the ARM
data. In previous work, Han and Ellingson (2000) assumed a 10-minute sampling
period. Hisjustification for the 10-minute averaging period was his observation of the
relative consistency between two absolute cloud fraction estimates sampled using two
different period lengths. Here we will investigate these questions in more depth and
will attempt to establish criteria based on sampling theory. In section 4.1, arandom
field approach is taken to evaluate the accuracy of the measurement of the absolute
cloud fraction and the PCLOS. The results are aso tested with cloud fields generated by
aLarge Eddy Smulation (LES) or Cloud Resolving Model (CRM). Section 4.2

discusses the sampling problem of the cloud size and spacing.



4.1 The absolute cloud fraction and the PCLOS

4.1.1 A Random Field approach

Aswe mentioned earlier, we rely on the time sequence of vertical observations
to infer the domain-averaged values of the cloud field parameters. For the cloud
fraction, the ARM CART observations yield the presence or absence of clouds at the

zenith. Given a series of n observations, the average cloud fraction may be estimated as

|<| == Ni (41)
n &

where N; is an indictor function which equals 1 if acloud isobserved or O if clear sky is
observed at observation i and i isthe index of the observations. Based on the
assumption of the frozen turbulence, the series of Ni’sin Eq. (4.1) can be seen asa
series of observations taken along a single sampling line drawn randomly on the cloud
field. Our question is how many N; do we need and what is the sampling error. To
address the problem, we follow the random field approach used by Kagan (1997),
Matern (1986) and Bell et a. (2001). A systematic investigation of the random field
approach can be found in the monograph written by Kagan (1997).

The random field approach models a cloud field as arandom process. The cloud
field one actually observed is arealization of the process. When making a measurement

at apoint in the cloud field, one may get an ensemble of values, each corresponding to a
particular realization. With this model, the mean-squared error of the estimate N
(EQ. (4.1)) may be expressed as

D2=E(N-N_)? (4.2)
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where N, denotes the average cloud fraction for adomain of agiven size. E denotes
taking the average over the ensemble. For a2D domain with area A, N, may be

expressed as
1
N, = ZIAIN(X, y)dxdy (4.3

Assuming the cloud field is homogeneous and isotropic, i.e. the mean of the
field is constant everywhere and the covariance depends only on the distance between
the two points not on their absolute positions and orientations. Neglecting measurement

error, EQ. (4.2) can be written as

D? =02 +0f_-2cov(N,N,) (4.4)
where o isthe variance of the N , which isafunction of the length of sampling line

and the number of sample points, a,ﬁa isthe variance of the average over the target
domain, i.e. the areafor which we intend to estimate the mean using Eq. (4.1)

cov(N, N,) represents the covariance between the averages over the sampling points
and the one over the target domain. Kagan (1997) defined a quantity £° to measure the

relative error (relative to variance of the field) of representing the domain average with

the sample mean, given as

2

D -

£ =—=ug +uy —2wW(N,N,) (4.5)
N

where ug =02 /o, uy =0% /oh . of denotesthe variance of the cloud field.

Using a cloud classification algorithm, a2D cloud field can be converted into a

binary image with 1 representing cloud and O representing clear sky. For such a binary
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cloud field, the variance o/ issimply N (1-N), here N is the cloud fraction. The
maximum variance occurs a N = 0.5, and the variance decreases with N departing
from 0.5.

Equation 4.5 needs information about the arrangement of the sampling points
and the size and shape of the target domain. For smplicity, we assume the target
domain to be arectangular area, with the sampling line located at the center of the area

aong the longer side of the area (Fig. 4.1). For this sampling arrangement, ug, u, and

w(N,N,) may be expressed as

Ug =—U§ : —22 n l( n—i) r(iAl) (4.6)
UN n n" &
U, = I, = 4l l 1-x)(@A-vy) r( (LX)? + (Wy)? )dxdy 4.7)
Na Uri _!_! .

. cov(NN) 1ot H 152 1.1 H
w(N, N, ) = 20 Na) .Z”r H( Lx-)g + @\/(y—z)g [Ddxdy

00 [
(4.8)
where n isthe total number of the observations made along the sampling line; r denotes
the correlation function of the cloud field; Al istheinterval between two consecutive

observations, L and W are the length and width of the target area, respectively; x; isthe

coordinate of the observation point i (see Fig. 4.1).
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o? =ogu (Eq. (4.6)) actually gives the variance of the average of n random

variables with the relation between variables specified by correlation function r(p). The

continuous version of Eg. (4.6) has been give by Matern (1986)

o2 = [oov(p) f (P)dlp (49

where N :Ii

J’ N(X, y)dl, isthe estimate of the domain mean by averaging over a curve
C

C of length Is. N(x, y) isaredlization of the random field in a2-D plane, i.e. an isotropic
cloud field. dl isthe element of arc length measured along C. cov(p) isthe covariance
function of the cloud field. pis the distance between two points chosen independently
on the curve C. If Cisaline segment of length I, the frequency function of the distance
pis f(p)=2(,-p)/l.> whereO<pg<lI_.

The most important item in Egs. (4.6) — (4.8) isthe correlation function, which
describe the statistical spatia structure of the cloud field. If r =0, i.e., the cloud
properties at different locations are totally independent of each other, then £ =1/n.
Thisisthe well-known result for the average of n independent random variables.
Usually the cloud properties are not spatially independent. This spatial dependenceis
taken into account in the above equations by the correlation function. The effects of the
arrangement of the sample points and the interval between sample points enter into the
above equations through the formation of the integrand.

In the above discussionsit is assumed that the observations are taken on a set of
points along a straight line centered in the domain. This sampling arrangement applies

to the measurement of the absolute cloud fraction. Later we will give equationsfor the
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average over a set of circles, which applies to the estimation of the PCLOS as afunction
of the zenith angle.

The correlation function r(p) has the following properties: (1) r(0) =1; (2)
r(p)=r(-p),i.e,r(p) isaneven function; and (3) |r(p)| <r(0), i.e., the maximum of

r(p) occurs at r(0). For atruly random process, r(0) will usually decay to zero with
increasing p. The shape and the rate of the decay depend on the underlying processes.
Various forms of correlation functions have been suggested. Matern (1986) and
Vanmarke (1983) gave some detailed discussions about the choice of the correlation
function for arandom field. In this study, asjustified below, we assume a negative

exponential form of correlation function

P

r(p)=e * (4.10)
where p denotes the distance between two points, o is a parameter which characterizes
the decay rate of the correlation.

The estimated correlation functions for the cumulus cloud fields over the ARM
CART dteisshown in Fig. 4.2. The correlation function was estimated from the
Narrow Field Of View Sensor (NFOV) data (details about the processing of the NFOV
data are discussed in Chapter 5). In all, 45 days with single layer cumulus clouds
present were selected from July 2000 through October 2001. The correlation functions
were estimated for each of the 45 days. The mean correlation function and its standard
deviation (the shadowed areain Fig. 4.2) together with the fitted correlation model
(EQ. (4.10)) are shown in the figure. As seen, the observed correlation function does not

approach zeros at the same rate as the negative exponential model. This may be an
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indication of the existence of large-scale components in some of the cloud fields. For
our intent of obtaining a directional hint on the sampling strategy, we ignore the
complexity of the multi-scale structure of the cloud field, but ssmply assume asingle-
scale correlation function represented by Eq. (4.10) with gp = 1267 m. Thisvaueis
obtained by fitting the model (Eg. (4.10)) to the mean correlation function. If the model
were fit to each of the 45 cases, the average and standard deviation of g are 1300 m and
670 m, respectively.

The standard deviation of 670 m shows the dispersion of the estimated o for the
cumulus cloud fields over the SGP. Note that there may aso be errorsin the estimated

0. Thus, it is necessary to assess the sensitivity of the mean-squared error D?

(Eg. (4.4)) or Root-Mean-Squared error (RMS; = 4/D?) to the uncertainties associated

with po. Later we will show that the variance of the average, o (= ogu; Eq. (4.6)),

is the dominant term in the expressions for £2 and D? for along-sampling-line
measurement. Thus, we will focus on this term to address the sensitivity problem.

Substituting the correlation function (Eg. (4.10)) into Eqg. (4.9), one obtain
F o 205-p)
0% = [N@-N)e sl_zp do
0 S

2 . (4.12)
= 2N(1- N) 2o s qpenl

I Heo H
where N is the absolute cloud fraction; s is the length of the sampling line. The

sensitivity coefficient which is defined as the derivative of the RMS (= o ) with respect

to oy can be written as
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d(RMS) _ dog = K(I_S,N)i (4.12)
doy do, P Po

where K(l,/£,,N) isafunction of the scaled sampling line length and the cloud
fraction. It can be seen that for a given length of the sampling line (scaled by o) the
sensitivity of the RMS (=0 ) isinversely proportiona to .

Figure 4.3 illustrates the dependence of K(l,/g,,N) on the scaled sampling line
length, I,/ 6, and N. Thelargest value of K(l./g,,N) occurswhen N = 0.5. For
sampling lineslonger than 500, the values of K(l,/g,,N) arelessthan 0.05 (in the
unit of the cloud fraction). A 670 m standard deviation is about half the oy estimated for

the cumulus cloud field over the ARM CART site. Hence, the error of Oy duetothe

uncertaintiesin powill be about or less than 0.025, if one take a sampling line longer

than 50.

Figure 4.4 shows an exampleof £°, u, uy, and w(N, N, ) as functions of the
length of the sampling line. In this example all dimensions have been scaled by o. The
size of thedomainissetto W/ g, =100, L/g, =100. The sampling line is located

along L at the center of the domain. As seen from the figure, £ decreases as the length

of the sampling line increases. Among the three terms in the right-hand side of

Eq. (4.5), uy isthe dominant quantity. u, and w(N, N, ) are very small and contribute

littleto £°. Thus we may use Eq. (4.6) alone to evaluate the accuracy of the

observations.
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Please note that using u; to approximate ¢ * only applies when the size of the

target domain is much larger than the ‘size’ of the sampling line. Here the ‘size’ of the

line may be thought of as the small neighborhood area around the line. Figure 4.5 shows

the ratio between |uy, — 2w(|§|, N.)| and ug, whichis obtained when the target domain

IS set to be a square and the length of the sampling line is the same as the domain side.

As can be seen from the figure, when the size of the square islarger than 300y x 300,
the error resulting from the use of u to approximate & % will beless than 10%.
£ gives the amount of the mean-squared error D? relative to the variance of the

cloud field. To be more specific for our goal of estimating the cloud fraction, we may

define a Relative Root-Mean-Squared error (RRMYS) as

2.2  [~2,2
OE o us
RRMS = R:\\IAS: I: = I:IN (4.13)

where N is the cloud fraction, RMS is the root-mean-squared error. The RRMSisa
function not only of the cloud field variance, shape and size of the target domain, length

of the sampling line, but also of the cloud fraction, since g = N(1- N) for abinary

cloud field. Figure 4.6 illustrates the RRM S as functions of the various parameters.
Given asampling line of aknown length, the larger the cloud fraction, the less the
RRMS will be. In other words, to achieve the same relative accuracy, one may need a
longer time of observations for acloud field with smaller cloud fraction than for a cloud
field with larger cloud fraction. Please note that this statement is for the RRMS. An

absolute error of 0.1 for acloud field with N = 0.1 will give aRRMS of 100%, while for
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acloud field of N=10.9, it will be only 11%. If we are interested in the absolute error,
then the maximum will occur at N = 0.5.

From Fig. 4.6 one may notice that, for a cloud field with very small cloud
fraction, for example N = 0.1, even if one uses a sampling line of 1000y, the RRMS of
representing the domain mean by thisline average will be aslarge as 40%, assuming the
size of the domain is 1000, x1000. Aswe will see later, the most frequent cloud
fraction of the fair weather cumulus fields over the SGP is between 0.3 and 0.5. Thus, if
we make an observation length of 500, we may expect a RRMS of about 30%.

The above discussion is about the length of the sampling line, and addressed the
guestion of the accuracy one may expect for agiven length of observation. Another
guestion that needs to be addressed is the frequency of the observations. How does the
sampling rate affect the accuracy of the cloud parameters? The real observations are
made in a discrete fashion, and different instruments have different sampling rates.
Additional observations may bring in more information about the cloud field. However,
due to the correlation structure of the field, points close to each other will be not
independent from each other. That is, they will contain much redundant information.

Figure 4.7 shows the RRMS as a function of the number of observations for
various cloud fractions when the domain size is 1000, x1000. The length of the

sampling lineis 100, and islocated at the center of the domain. Observation points are

regularly distributed on the sampling line with an interval Al =100g,/n, wheren

denotes the total number of observation points. As shown in the figure, the error
decreases as the number of the observations incresses, i.e., as the sampling rate

increases. However, for a sampling line of a given length, the accuracy improvement
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resulting from increasing n hasits limit. As the observation points become closer and
closer, the decrease of the RRMS becomes slower and slower. The limiting value
occurswhen n - c. However, when n> 100, or when the interval becomes |ess than
Po, the improvement of accuracy by adding more points becomes less and less
noticeable.

It iswell known that the variance of the average of n independent random

variables with the same individual varianceis given by

0.2
d (4.14)

g

MN

n
where & denotes the average of n independent random variables and a§ isthe variance

of thevariablesbeing averaged. Analogous to Eq. (4.14), an effective number of

observations may be defined as

2
n, = % = Eiz (4.15)

Ne gives an indication of the number of the independent measurements needed to
achieve the same accuracy as using n correlated measurements and using Eq. (4.1) as
the estimator. Figure 4.8 illustrates the relation between ne and n. The domain size, the
length and the position of the sampling line and the arrangement of the observation
pointsisthe same asthat for Fig. 4.7. When n < 30, or the interval greater than 3o, the
linear relation roughly holds between ne and n, which means that two observations made
30 apart may be considered as independent of each other. When the interval between
observations become less than oy, adding more observations in a given length of

sampling line leads to no significant increase in ne. Please note that this statement only



applies to the measurement of the quantities like N, PCLOS or other cloud field
properties that can be assumed as functions of spatial position. For the measurement of
the cloud horizontal size or spacing, the higher the sampling rate the better the
measurement accuracy. (see the next section).

The PCLOS is measured from whole sky images taken at a fixed surface
location. Like the absolute cloud fraction, we till have to employ the frozen turbulence
approximation and rely on the horizontal advection of the cloud field to obtain an
estimate of the large area average. The PCLOS isa function of the zenith angle and
PCLOS(0) = (1 — N). For acertain zenith angle 6, PCLOS can be estimated from
observations on a set of circles with their centersregularly aligned on the sampling line.
If the PCLOS(6) can be seen as the complementary fraction of the projections of the
clouds on the cloud base plane at zenith angle 6, then the radius of the circlesis
R = H tang, where H denotes the cloud base height (Fig. 4.9).

Assuming the same correlation function given by Eq. (4.10), and al distances

scaled by o the expressions for u, and w(I5, P,) for PCLOS measurement may be

written as
1 -1 ) 2m2m i " 2m2mr p D
u.s—4772n2 ) (n—|)££(e +e )d91d92+n££e deldezg (4.16)
R 1 o2l
wW(P,P,) =-— e d@dxdy (4.17)
om & 1]
d, = \/(kAI + pcosl, — pcosh,)’ + (psing, — psing,)? k=-i,i,0
O 1.0 .0 1.0
S = -+ pcosfd - L(Xx—-=)q + psSn@-W(y-=
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where n isthe total number of circles along the sampling line. Al isthe interval between
two consecutive centers. L and W are the length and width of the target rectangle,
respectively. x; is the coordinate of the observation point i. d; and d.; represent the
distances between two points positioned on two circles with the coordinates

(x+pcosby, psing) and (x+kAIl +pocosé, psiné), where KAl is the distance between two
circle centers. do represents the distance between two points positioned on the same
circle. s represents the distance between two points, one on the circlei and the other
within the domain with coordinates being (x,y), LI2=2x>-L/2and W/2 >y > -W/2. The

shape of the domain isthe same as that for N, thus uj, takes the same form asEq. (4.7).

Also like that for N, Eq. (4.16) and Eqg. (4.17) can only be evaluated numerically.

Given the same number of observations (number of circles), one should expect a
higher accuracy for the PCLOS than that for N, since the PCLOS is averaged over a
circle that contains more observations than a single point. Figure 4.10 gives an example
of the accuracy of the PCLOS. The domain size is once again 1000 x 1000, Circles
with radius R = o, which corresponds to a zenith angle of 45° for a cloud base height
Po, areregularly lined along the centerline of the domain with interval Al = 0.60p.
Comparing with Fig. 4.6, we notice that for a 500, long sampling line, for the case of
the PCLOS(0) equals 0.4, the RRMS of the PCLOS averaged over circles of radius
R = g, isabout 5% less than the that for N.

Figure 4.11 shows that the RRM S decreases with increasing circle radius (i.e.,

increasing zenith angle). From 8 = 0°to @ = 80° (cloud base height equals o), an
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accuracy increase of about 15% can be seen for PCLOS(0) = 0.4. The accuracy change
for the smaller PCLOS(0) is more significant than for the larger PCLOS(0). For
example, the change for PCLOS(0) = 0.2 is about 20%, while for the PCLOS(0) = 0.8 it
isonly 5%.

In the above discussions we ignored a factor that will also affect the accuracy of
the measurement of the PCLOS. In practice, the PCLOS is estimated by averaging over
an annular ring but not a circular line. Thisis because the whole sky pictures consist of
pixels having finite angular resolution. Every pixel has afinite field-of-view. Thisfield-
of-view will generate afinite “foot print” on the cloud field. Thus when taking an
average over aring of pixels, we are actually averaging over aring-shaped area on the
cloud field. This means that we may get a more accurate measurement than just
averaging over acircular line as modeled above. On the other hand, the size of the “foot
print” varies with the zenith angles of the pixels. A larger zenith angle corresponds to a
larger “foot print”. As the zenith angle approaches 90°, the corresponding “foot print”
approaches infinity. Thus, when measuring the PCLOS, we may expect a higher

accuracy at larger zenith angles than around the zenith.

4.1.2 Application to LES/CRM simulated cloud fields

To test its validity, the technique devel oped above was applied to cloud fields
generated by a Cloud Resolving Model (CRM) or aLarge Eddy Smulation (LES)
model. Four cloud fields areillustrated on Fig. 4.12. These are cloud fields selected for

use in the Intercomparison of Radiation Codesin Climate Models (ICRCCM) phase I11
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(http://reef.atmos.col ostate.edu/icrccm/). In the figure, (a) is ashallow sparse cumulus

field smulated using data from the Barbados Oceanographic and Meteorological
Experiment (BOMEX) by Siebesma and Cuijpers (1995). The domainsizeis

6.8 km? and the horizontal grid-spacing is 0.05 km. The cloud fraction is 0.16; (b) isa
cloud field simulated by Bjorn Stevens (refer to the ICRCCM homepage) using
observations made during the Atlantic Tradewind Experiment (ATEX). The domain
sizeis 6.8 km?, the horizontal grid-spacing is 0.1 km and the cloud fraction is 0.57; (c)
isfrom Vanda Grubisic’s (refer to the ICRCCM homepage) simulation of open cellular
clouds. The Domain size is 50 km? with 0.4 km horizontal grid-spacing. The cloud
fraction is about 0.92; (d) is from Grabowski et a.’s (1998) simulation of phase I11 of
the Global Atmospheric Research Programme Atlantic Tropical Experiment (GATE),
which contains very deep convective clouds and extensive anvils. The domain sizeis
400 km? with 2 km horizontal grid-spacing and the cloud fraction is about 0.46.

Figure 4.13 shows the simulated root-mean-square error, RMS (1), and relative
root-mean-square error, RRMS (1), as function of the sampling line length and the
cloud fraction N. The RMS (I and RRMS (I¢) were evaluated in the following way:
First, for each of the above four cases, the cloud field was extended by cyclically
repeating it in both x and y directions. Then, for each length from a set of lengths
ranging from 1 to 600 (in the unit of point) at a step-length of 5 points, we maden

simulated single-line measurements. These n single-line measurementsyield n
estimates of the cloud fraction I\AI,S,i (i =1, n), wherels(= 1, 600) isthe length of then

sampling lines. The RMS (I) and RRMS (I¢) based on these n estimates of the cloud

fraction were then calculated for each length as
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n

RMS (I,) = \/Ez (N_, —N)’

1=1

RRMS (I.))=RMS(I,)/N
where N is the desired domain-averaged cloud fraction. This procedure was repeated

until the sampling line length reached 600 points. Also shown in the figure isthe
modeled RMS (=,/ogu; ) and RRMS (=, /ogu? /N ), assuming the correlation

function with the negative exponential form as given in Eq. (4.10). The parameters of
the correlation functions were estimated by fitting Eq. (4.10) to the mean
autocorrelations of the cloud fields. The mean autocorrelation of a cloud field was
obtained by averaging over 1000 autocorrelations estimated from 1000 sampling lines
of 3000 points long and being randomly placed on the cloud field with random starting
points and orientations. It is seen from Fig. 4.13 that, given the appropriate value of the
parameter of the correlation function, the sampling error estimated using Eq. (4.13)
agrees well with the smulated one.

The above calculations are based on the unit of point, i.e. the length is measured
in the unit of grid point. If we take into account the size of the grid box, the same
number of points will correspond to different physical length. For example the same
100 points will be trandated to 5, 10, 40 and 200 km for the BOMEX, ATEX,
OPENCELL, and the GATE clouds, respectively. Thisimpliesthat the length of the

sampling line needed to achieve certain accuracy depends on the scale of the pattern.

The scale may be definedas S =2 J’ r(p)do (Vanmarcke 1983; Taylor 1922), where,
0

r(p) isthe correlation function. Among the four smulated cloud fields shown in
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Fig. 4.12, the BOMEX field has the finest scale with S= 0.32 km. By extending the
cloud field cyclically in both the x and y directions, we actually constructed a
homogeneous cloud field of scale S= 0.32 km. For thiscloud field, a sampling line of
30 km (=600 x 0.05) can achieve aRRMS of 20%, given the cloud fraction N = 0.16
(Fig. 4.13). On the other hand, the GATE cloud field isa simulation of a deep
convective cloud system over the Atlantic. The simulated domain is 400 km?. The scale
of the constructed homogeneous cloud field is S= 24 km. Provided the existence of the
so constructed homogeneous cloud field, to achieve the same accuracy as for the

BOMEX cloud field, one needs a sampling line of length equaling 600 km (= 300 x 2).
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4.2 The cloud horizontal size and spacing

All models developed in Chapter 3 need avalue for the cloud horizontal size.
Some models also need avalue for cloud spacing. For the 2D models, the horizontal
size is defined as the diameter of the cloud base; for the 1D models, the horizonta size
isthe length of the cloud base in avertical cross section. The spacing isused in the 1D
models and is a'so measured in avertical cross section (or ax-z plane). Different models
have different definitions of the cloud spacing (see Chapter 3).

The 1D version of the cloud size can be measured directly from the
observations, as can the spacing. Error arises from two primary sources, (1) thelimited
sampling rate of the instruments, and (2) the limited number of clouds or spacings
observed. Thefirst error is analogous to that of measuring the length of aline using a
ruler with alimited resolution. A ruler tells the integer part of the length, which isan
integer increment of the ruler, but will round off the decimal part of the length and thus
cause measurement error. The only difference hereisthat the “ruler” (the sampling
line) is randomly placed on the cloud field, thus the starting edge of a cloud or a space
between clouds could be at any position within a sampling interva (Fig. 4.14).

In a paper addressing the accuracy of one-dimensional systematic sampling
(sampling design with random start and with equally spaced measurement along a
gpatial or temporal axis) and its application to the estimation of the volume of rat hearts,
Mattfeldt (1989) gives an expression for the precision of the “Cavalieri estimation of
the volume of a set with constant cross-sectional area”. That is, estimating the volume
of an object by integrating the profile areas of the object on a series of equally spaced

cut sections.
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Appling the same ideas to our cloud size and spacing measurement, the RRMS
error of measuring a cloud base size or spacing using the periodic sampling method may

be written as

_ Jld —rem(D,d)| rem(D, d)
D

RRMS = U—DD (4.18)

where o, isthe standard deviation of the cloud size. D isthe real length of the cloud
base or spacing between clouds. d isthe sampling interval. “rem” denotes the remainder
of D divided by d. If the cloud size is exactly an integer times the interval, the error will
be zero. Thisisillustrated in Fig. 4.15, where the RRMS is plotted as afunction of D,
with the interval d set to 25. Also shown on the figure is the upper limit of RRMS,
whichis

RRMS < % (4.19)

Eqg. (4.19) indicates that the error is proportional to the interval distance, or
inverse of the sampling rate. Thusfor the measurement of the cloud size or spacing, the
higher the sampling rate the less the sampling error. At the ARM CART site, the Micro-
Pulse Lidar (MPL) has asampling interval of 20 seconds. If we assume the wind speed
is 10 m/s, then the standard error (standard deviation) of the MPL due to the limited
sampling rate will be less than d/2 = 100 m. The sampling interval of the NFOV is1
second, thus the standard error of the NFOV due to the limited sampling rate will less
than 5 m for a10 m/swind speed.

The second error is connected to the number of clouds or spacings observed.

2
The variance of the mean of n independent samplesis ag = U% , which depends on
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the population variance o and n. Noting that the RRMS can be written as

_05 —
RRMS = '3/5 then n can berelated to RRMS by n= ﬁ% ERRMS%' For the

cumulus clouds over the SGP, the standard deviation of the cloud size o, is about

1500 m (Chapter 5) and D is about 1000 m, thus to achieve a RRMS less than 20% one
needsn=57. That is, at least 57 cloud samples are needed to achieve 20% accuracy in
measurement of the mean cloud size.

For the 2D version of the cloud size, beside the aforementioned two errors, there
is another source of error when inferring the cloud size from the observations made on a
line. Because the observations only yield aset of chord lengths, one hasto derive the
cloud base size from the chord lengths. This process will induce new uncertainties into
the estimated cloud size. The problem turns out to be very complicated, and the same
problem is the subject of the study in “stereology”, which by definition is“a body of
mathematical methods relating three-dimensional parameters defining the structure to
two-dimensional measurements obtainable on sections of the structure” (DeHoff &
Rhines 1968; Weibel 1979). Although afew methods for such estimates have been
developed, at least at present, all the methods are based on an assumption that the
objects, for which we intend to obtain the parameters, are of simple shape, like spheres,
ellipsoids or at least convex solids. A convex solid isasolid for which any line segment
connecting any two pointsin the solid lie totally within the solid. In other words, aline
traversing the solid forms only one chord or intercept. Thisisthe main difficulty when
trying to apply the methods to measurement of the cloud size, since the shapes of the

cloud base are not convex. Thisis avery complex problem that requires much more
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work. In this study, we ssimply approximate the cloud diameters with the observed chord
lengths. The mean of the cloud diametersis approximated by the mean of the chord
lengths and the distributions of the cloud diameters are also approximated by the

distributions of the cloud chord lengths (see Chapter 5).
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4.3 Chapter summary

In this chapter, we discussed methods of assessing measurement accuracy of the
various cloud field properties. For cloud fraction, arandom field approach was used to
address the sampling problem. A cloud field is modeled as a homogeneous random
process. Assuming the frozen turbulence approximation, atime series of observations
can be considered as a series of observations taken along a spatial line randomly drawn
in the cloud field. The accuracy of the estimation of the domain average from the
average of observations on the sampling line can be expressed as a function of the
correlation function of the cloud field, the length of the sampling line and the cloud
fraction.

The correlation function is the key factor in the assessment of the measurement
accuracy. It gives information about the spatial structure and the scale of the cloud field.
A negative exponential form of correlation function is assumed in this study. Using the
NFQOV observations, the correlation functions for the cumulus cloud field over the
ARM CART site were estimated and a model correlation function was obtained by
fitting to the mean of these correlation functions. The e-folding parameter of the

correlation function was estimated to be o= 1267 m. For along-sampling-line
measurement, given the relative length of the sampling line with respect to o, the
senditivity of the predicted measurement error isinversely proportional to the scale of
the cloud field. For our casei.e., the cumulus cloud field over the SGP, a 50%
uncertainty in the estimated pp may result in an error of about 0.025 (cloud fraction
unit) in the predicted measurement error, which is negligible for most of the cases

except for cloud fieldswithN < 0.1.
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Given the form of the correlation function and the value of o, for the most
frequent shallow cumulus fields (N = 0.3 to 0.5) over the ARM CART site, one may
expect a RRMS of about 30%, for an observation length of about 60 km (=50).
Assuming a 10 m/s wind speed, the spatial length of 60 km corresponds to a time span
of 100 minutes. Due to the limited life span of the shallow cumulus clouds and
requirement of the frozen turbulence approximation i.e., the statistical properties of the
cloud fields do not change with the advection of the cloud field, 100 minutes may be a
practical compromise between the accuracy and the changing characteristics of the
cloud field with time.

Also defined in this chapter is the effective number of observations. It givesthe
number of independent observations that would yield the same accuracy as a number of
correlated observations. Its counterpart in the time domain is the effective sampling
rate.

The absolute cloud fraction N is aspecial case of the 1 - PCLOS(6), which
occurred when 8 = 0°. The sampling problem of the PCL OS can be addressed using the
same technique developed for N. For any 8 > 0°, there are more sampling points
available for the estimation of the PCLOS than for the absolute cloud fraction, since the
PCLOS is estimated by averaging over the circumference of acircle. Thus, one may
expect a higher accuracy for the PCLOS than for N, given that the two were sampled at
the same rate.

The technique was tested on four LES/CRM generated cloud fields. Given the
appropriate estimates of the parameter of the correlation function, the technique can

yield reasonable predictions of the measurement error.
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The cloud size and spacing need a different approach to assess their
measurement errors. For asingle cloud, the error in measurement of the horizontal size
through randomly started periodic sampling islessthan d/2, where d isthe spatial
interval corresponding to atime step of the sampling instrument. To assess the accuracy
of the estimated mean of the cloud base size and spacing, one may employ the central

[imit theorem and the number of clouds observed can be related to the RRMS by
n= ﬁﬂ% RRM Sﬁ . The problem of inferring the cloud diameter from the

measurements of the cloud chord lengths isimportant but is not addressed in detail in
this study, due to the complexity of cloud shapes. Here the average cloud diameter and
the diameter distribution are approximated by the mean of the observed chord lengths

and their distribution, respectively.
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Chapter 5
Extraction of Cloud Parametersand Comparison between

M odédls and Observations

To determine whether the PCLOS models are valid for an actual cloud field, we
need to extract the necessary model parameters from observations and compare the
model PCL OS with the observed PCLOS. Table 5.1 summarizes the various parameters
used by the PCLOS models we consider in this study. Each model has different
parameters. The number of parameters ranges from one for the
“2D_Poisson_Hemisphere” model to eight for the Han and Ellingson (1999) model (the
“1D_cd_Power_Power_VariableShape” model). To facilitate the following discussion,
we group the models into two groups based on the information required by the models:
Group-1: Models require the cloud spatia distributions to be specified by the

distribution of the distances between clouds or the distances between an arbitrary
point to its nearest cloud. The cloud size distribution is aso explicitly required. All
Group-1 models are 1D model. Examples are:

* 1D xd_Weib_Power_SemiEllipse,
* 1D sd Exp Exp_lsoscelesTrapezoid, and
* 1D cd Power_Power_VariableShape(Han).

Group-2: Models assume clouds are randomly or regularly distributed in a cloud field.
The cloud size can be arbitrary. The domain can be 1D or 2D. Examples are:

* 1D Poisson_IsoscelesTrapizoid,

» 2D _Poisson_Hemisphere, and
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o 2D_ShiftRegular_Cuboidal (uniform cloud size)

The Group-1 models explicitly specify the cloud size distributions; hence they
usually need more parameters than the Group-2 models (see Table 5.1). Those models
which assume the cloud shape as truncated-cone or isoscel es-trapezoid have one more
parameter, 1, the inclination angle, than the other models.

In this chapter, we will first develop atechnique to obtain the PCLOS using the
time series of sky images taken at the ARM CART site. We will aso derive the various
cloud parameters listed in Table 5.1 from the ARM surface cloud observations and

make a comparison of the model PCL OSs with the observed PCLOS.
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Tableb5.1 PCLOS Modd Parameters.

2D _Poisson_Hemisphere N
1D_Poisson_SemiEllipse N, g

2D _Poisson_SemiEllipsoid

2D _Poisson_Ellipsoid

2D _Poisson_RightCylinder

1D_Poisson_|soscelesTrapizoid N, 8 n

2D _Poisson_TruncatedCone

2D_ShiftedRegular_Cuboidal N, B, f
1D_xd Exp_Exp_SemiEllipse N, B u v,

1D_sd Exp _Exp_SemiEllipse

. parameter of the Exponential distribution for
cloud spacing.

v parameter of the Exponential distribution for
cloud size.

1D xd Exp Exp_lsoscelesTrapezoid N, B uvn,;
1D _sd _Exp Exp_lsoscelesTrapezoid M, v same as the Exp-Exp-SemiEllipse model.
1D_xd Weib_Power_SemiEllipse N, 8, a,b, v, dmin ;
a, b : parameters of the Weibull distribution for
cloud spacing

v parameter of the Power Law distribution for
cloud size.

1D_xd Weib_Power_|soscelesTrapezoid

N1 ﬂ! a1 b1 V1 dmil’h 77 1
a, b, v: same as the Weibull-Power-SemiEllipse
mode!.

1D_sd Power_Power_SemiEllipse

N, ﬂy H V; Smins Omin ;

M . parameter of the Power Law distribution for
cloud spacing.

v parameter of the Power Law distribution for
cloud size.

1D_sd Power_ Power_|soscelesTrapezoid

N1 ﬁ! ﬂ! V1 Sﬂil’h dmil’h 77 1
M, v same as the Power-Power-SemiEllipse
model

1D_cd_Power_Power_VariableShape (Han)

N! ﬂ! R4V 4 Shin, dmim n ;

M, v same as the Power-Power-SemiEllipse
model.

y . parameter control the shape of the cloud.

Where N isthe absolute cloud fraction; Sisthe cloud aspect ratio; 77 is the inclination angle of the cloud;

Smin @Nd dn,in @re the minimum cloud sze and cloud spacing, respectively. Models are named with the
pattern (1D/2D) E Cor (1D/2D)_(xd/sd/cd) A_B_C, where E represents the spatial distribution of the
clouds, C represents the assumed cloud shape; A represents the cloud spacing distribution; B represents

cloud size digtribution. ‘sd’ means the spacing digtribution is specified for, s, the distance between two

clouds measured between the edges of two adjacent clouds(refer to Fig. 3.3). ‘xd’ means the spacing

distribution is specified for, x, the distance from an arbitrary point to it nearest cloud to theright. ‘cd’

means the cloud spacing is measured between centers of two adjacent clouds.
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5.1 Determining the PCL OS from the Time Series of SKy | mages

The PCLOS is by definition the probability of aline of sight passing through a
cloud field at a certain zenith and azimuth angle without being blocked by any clouds.
Assuming an isotropic cloud field, the PCLOS is afunction of only zenith angle, 6. A
whole sky image can give us a snap shot of the sky condition at all zenith anglesfrom
the zenith to the instrument horizon. If we have simultaneous whole sky images at many
different locations over alarge area, the PCLOS as a function of &8 can be estimated by
taking an average over these images. Since a the ARM CART site, we only have one
site with images of the sky condition, we use atime average to replace the area average
That is, we approximate the spatial average by taking an average over atime series of
whole sky images at one location to infer the PCLOS(6).

There are two whole-sky-imaging instruments available at the ARM CART site,
aTotal Sky imager (TSI) and aWhole Sky Imager (WSI). Fig. 5.1 shows an example of

the TSI and WSl cloud decision images. The horizontal area of the cloudy sky seen by
theimager’s FOV isafunction of the cloud height: D = 2H tan[BgEH where D isthe

diameter of the cloudy sky within the FOV and H is the cloud height. As an example,
assuming the cloud height is 1.5 km, a160° FOV imager can see a patch of cloud field
with a diameter of 17 km.

Estimation of the PCL OS requires a mapping function that relates the zenith
angle to theradial distance of an image point away from the picture center. The WS
function was determined by ARM personnel as part of its calibration. We make use of

the sun’s position to estimate this function for the TSI. During the summer, at the ARM
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SGP site, the solar zenith angle approaches 10° at solar noon, Thusit is possible to
calibrate the TSI mapping function by using solar position information on clear days.
To perform the TSI calibration, we selected seven clear daysin May and June, 2001.
For each day, the sun’s zenith angles and the corresponding pixel positions were
recorded from the time-lapse TSI images. The mapping function was obtained by
fitting a cubic curve to the data from the seven-day period. Fig. 5.2 shows the mapping
function for the TSI. The fitted curve is slightly diverging from a linear relationship.

Using the time-lapse TSI images for a sampling period of about 100 minutes, the
temporal fraction of the occurrence of clear sky for every pixel position was estimated.
This estimates the PCLOS at all azimuth and zenith angle within the instrument FOV.
PCLOS(6) is obtained by averaging over azimuth angle within each 1° annular ring
from zenith to the instrument horizon. The same processes were also applied on the
WSI images.

Figure 5.3 shows the differences between the PCLOS estimated from the WSI
and the TSI. When estimating the PCLOS, the images from the TSI and the WSI are
taken from the same sampling period but with different sampling rates. The result is an
average of 77 cases of single layer fair weather cumulus cloud fields obtained over the

ARM CART site (there are 86 cases when TSI data are available, but the WSI data are

available for only 77 of these). From the figure, we notice that below 600 the

PCLOS,, 4 agree well with the PCLOS 4 with a standard deviation of about 0.07 (in

cloud fraction unit). While above 600, the WSI tends to give larger cloud fraction (or

smaller PCLOS). This may be caused by the classification of heavily loaded haze or
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dust into cloud by the WSI’s cloud classification algorithms. (private communication
with Chuck Long, Pacific Northwest National Laboratory (PNNL)).

The standard deviation (the width of the grey stripe along the blueline) is
mainly caused by the different temporal resolutions of the TSI and the WSI. The time-
lapse images are taken every 6 minutes by the WSI and every 20 seconds by the TSI.
For aone-hour time interval, one may get 180 TSI images, but only 10 WSI images.
This makes the PCL OSrs; smoother than the PCLOSys . From the figure we aso notice
that the standard deviation decreases dightly with the zenith angle increasing from
0to 35°, thisis expected, since the zenith-angle rings at small angles cover less sky area
than at larger zenith angles. However, above the 35°, this decreasing trend doesn’t
continue. Thisis probably because the differences between the cloud decision
algorithms used by the TSI and the WSI.

Figure 5.4 shows p(6)/(1- N) for the 86 cases derived from the TSI data. This
normalized PCLOS is the conditional probability of aclear line of sight given that the
line of sight reaches the cloud base level in the (1-N) portion of the cloud field.

Alternatively, 1- p(6)/(1— N) isthe probability of seeing cloud sides at an angle &

given that the line of sight reaches the cloud base level in the (1-N) portion of the cloud
field. The curve changes from 1 as the zenith angle increases depending on the fraction,
distribution, size and shape of the clouds as was discussed in Chapter 3. Note that some
cases have the conditional probability larger than 1 at some angles. Thisislikely

caused by the presence of acloud streak or an inhomogeneity in the cloud field.
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5.2 Determining the Absolute Cloud Fraction

The absolute cloud fraction, N, is defined as the fractional area of the vertical
projections of the clouds on the surface. Without large areaimagery data over the ARM
CART dite, we infer the absolute fraction by applying the frozen turbulence assumption
to the zenith pointing instruments. In other words, we assume the cloud field properties
do not change significantly as the clouds advect over the site with the mean wind speed.
The absolute cloud fraction is estimated as N = L¢/Liot, Where Ly IS the total length of a
time series of observations and L. is the summation of the lengths of the cloud
segments. If wind speed does not change during the observation time, the above
equation is equivaent to

M
N=—= 5.1
- 51)

tot
where M. is the number of times when the instrument see the clouds and the My is the
total number of observations during the period.

Several instruments at the ARM CART site have the potential to be used to infer
N because they are sensitive to the presence of clouds and they generate time series of
observations. These instruments include the TSI, WSI and aNarrow Field Of View
sensor (NFOV). When using TSI and WSI data, N is estimated as the fractional number
of cloudy pixels within the 20° circle around the zenith during the observation period.
Details concerning the NFOV data processing are given in the following section.
Eqg. (5.1) was used when inferring N from the NFOV data.

Besides these three instruments, there is also an ARM value-added data product,

the Active Remotely-Sensed Clouds L ocations (ARSCL ), that can be used to obtain N.



The ARSCL product contains atime series of estimates of the cloud base height, which
are generated by ARM from ceilometer and Micro-Pause Lidar (MPL) datafollowing a
technique developed by Clothiaux et a. (2001). For every timesin the ARSCL time
series, if thereis one or more clouds detected, a positive value denotes the lowest cloud
base height observed; otherwise, a negative value marks the clear condition at the time
of observation. Likethat for the NFOV, N is estimated from the ARSCL cloud base
data by using Eq. (5.1).

Figure 5.5 shows a comparison of the N's estimated from the four techniques
(Ntsi, Nwsi, Nnrov, Narser). As seen in the plot, Nys agrees well with Nyrg. The
variance between Nrg and Nwg is mainly due to the different sampling rates of the two
instruments, as noted previously. Among the four methods of inferring N, Nyrov and
the NarscL tend to overestimate the cloud fraction by about 20% relative to Nrg or
Nwsi. The cause of these biases may be due to the sensitivity of the instruments to the
various clouds and the cloud decision algorithms used to infer cloudiness. The TSI and
the WS detect only visible and relatively thick clouds, while the NFOV and the laser
instruments are senditive to thin and sub-visible high clouds. This can aso explain the
trend that isillustrated in the histograms of the N's (Fig. 5.6), where the NFOV and
ARSCL tend to have more occurrences of larger cloud fraction. Since our interest ison
checking models of near opaque clouds, we are most interested in occurrences of
thicker clouds. Furthermore, by using the TSI we can get awider field-of-view and
higher time resolution than with the other instruments. Thus, in this study, we will take

the Ntg as our best estimate of the absolute cloud fraction.
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5.3 Determining the Cloud Thickness

There are three instruments, a Microwave Millimeter Cloud Radar (MMCR), the
MPL and a Vaisala Ceilometer (VCEIL), at the ARM CART site that were designed to
profile the cloud field with high temporal and spatial resolutions. The laser instruments
infer the cloud variables from measuring the backscattered laser energy. The cloud
height is determined from the time delay between the transmitted pulse and the
backscattered signal. The MMCR has the same physical principle except it employs
microwave energy.

Each type of instrument has advantages and limitations. The laser instruments
are capable of detecting ailmost al clouds, thin or thick, high or low, water or ice, if
only the clouds arein the detection range of the instruments. However, the laser energy
iseasily attenuated by the cloud droplets, hence, they are usually unable to penetrate the
cloud and detect the cloud top.

The strength of the MMCR isits ability to penetrate clouds and detect multiple
cloud layers aoft, but it is not very sensitive to clouds composed of small
hydrometeors. At the ARM CART dite, thereis aso a special MMCR problem that is
caused by large amounts of nonhydrometeor particul ates, such as insects and bits of
vegetation, suspended in the atmosphere. Since the MMCR is very sensitive to these
relatively large particulates and this airborne clutter may reach as high as 3 km during
summer season, the real hydrometeor returns from lower clouds may be totally hidden
by noise from the clutter and thus make the low clouds that are immersed in the clutter

practically undetectable.
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In addition to the cloud base data mentioned in the previous section, the ARSCL
product also contains estimates of cloud top which were obtained by combining the data
from the MMCR, laser ceilometer, micro-pulse lidar, and microwave radiometer,
although they arelabeled as “More work may need to be done here, so be very careful
with thisvariable” (Clothiaux et a. 2001). An example of the ARSCL cloud height data
isshown in Fig. 5.7. In the figure, the upper panel shows the cloud bases and tops, and
the lower panel shows the histogram of the cloud thicknesses corresponding to the
upper panel. The thicknesses are evaluated for every observation moment by subtracting
the cloud base heights from the corresponding top heights. The mean thickness for this
case is475 m and the standard deviation is 205 m.

When clutter is present, the ARSCAL data may report an incorrect cloud top.
Figure 5.8 gives an example. In addition to the ARSCL cloud base and top data shown
in panel (c), panels (a) and (b) show the relative humidity profiles from the Raman
Lidar (RL) and radiosondes, respectively. Panel (d) shows the MMCR reflectivity data
obtained during the same period as the profiles. The ARSCL cloud top is around
3600 m, which matches the MMCR reflectivity top. While the RL or the radiosonde
relative humidity profiles show that, around 2300 m, thereis arapid decrease of the
relative humidity and, above 2500 m, the relative humidity has decreased to lower than
40%. Under this circumstance, we assume the cloud top is no higher than the level
where the relative humidity decreased to 60%. This method is based on Slingo’s
research (1980, 1987) and has been used by Han and Ellingson (1999). In this study,
we first use the ARSCL cloud top data to calculate afirst guess of the cloud thickness,

and then, thisthicknessis checked with the relative humidity profilesif available. If the
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relative humidity profiles do show arapid decreasg, i.e., the relative humidity decreases
more than 40% within a 500 m height, and if the level where this decease occursis very
different from the ARSCL cloud top (>300 m), then we take the level where therelative
humidity decreases to about 60% as the final cloud top.

The histograms of the cloud thicknesses obtained before and after taking into
account the relative humidity information (Fig. 5.9) show that the correction based on
the relative humidity profiles mainly eliminates some larger cloud thicknesses reported
by the ARSCL data, which we think are mainly caused by the submersion of the clouds
in alarge amount of nonhydrometeor particulates. Also seen from Fig. 5.9 isthat for the
fair weather cumulus over the SGP site, the most frequently occurring cloud thicknessis
less than 500 m.

Since for many cases we have to rely on the relative humidity profilesto infer
the cloud thicknesses, we lose detailed information about each cloud and cannot obtain
the distribution of the cloud thickness for each selected cloud field. To give arough
picture of the range of variation of the cloud thickness, we use either the standard
deviation, if the thicknessis calculated solely using the ARSCL data, or half of the
changing-range of the heights of the 60% relative humidity, if the thicknessisinferred
from the relative humidity profiles, as a measure of the cloud thickness variation.

Fig. 5.10 illustrates the histogram of the relative thickness variation (thickness variation
to cloud thickness). The mode is around 40%, which may be taken as the uncertainty of
characterizing the thickness population of a cloud field using the average value.

Most PCLOS models require the cloud aspect ratio, which by definition isthe

ratio of the cloud thickness to its horizontal size. The aspect ratio is a characteristic

88



quantity of each individual cloud, and has its own distribution for a given cloud field.
However, not only isit impossible, under current conditions, to obtain the detailed
distribution of the aspect ratio, but PCLOS models have yet to take this into account.
That is, al of them assume the aspect ratio to be aconstant for agiven cloud field. In
this study, for each case, the aspect ratio is estimated as the ratio of average cloud
thickness to average cloud horizontal size. Fig. 5.11 shows the histogram of the so
obtained aspect ratios. Most cases have 5 < 1. The mean and median values are 0.65
and 0.43, respectively. The fair weather cumulus over the SGP arerelatively thin
compared with those over Florida (Plank 1969), where Plank observed atypica aspect
ratio of 1 to 2. Thisis quite likely due to the differences in surface forcing and water

content of the atmosphere between two locations
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5.4 Determining the Cloud Spacing and Horizontal Size Distribution

The requirement of information about cloud sizes and spacingsis one of the
main differences between the broken and the unbroken-plane-parallel cloud radiation
problems. In this study, assuming that the cloud field properties do not change
significantly as they move at mean wind speed, the spacings and horizontal sizes are
estimated as the products of wind speed and time lengths of observations. Thisis a one-
dimensional estimate of the cloud horizontal sizes and spacings.

Observational issues are the sampling rate and the field-of-view (FOV) of the
instruments. Too small a sampling rate may cause the instrument to miss small clouds
or cloud spaces, whereas too wide FOV will smear the cloud boundaries. As seen from
Table 2.1, the NFOV has arelatively high sampling rate (1 measurement per second)
and anarrow FOV (5.7°). Thus, the NFOV was chosen to measure the cloud horizontal
sizes and spacings in this study. The step length between sampling pointsis afunction
of wind speed. For typical conditions at the CART site, the wind speed is about 10m/s,
which corresponds to a step length of 10 m. The size of viewing areawithin the FOV is
afunction of height. For a cloud base of 1.5 km, the aperture diameter of the areais
about 150 m. Fig. 5.12 gives an example of the NFOV data, which is atime series of
downward diffuse spectral radiance at a wavelength of 869 nm.

For atime interval of less than two hours, the clear sky solar diffuse radiance at
869 nm can be assumed to be a constant or only change linearly with time. This greatly
simplifies our determination of the threshold for identifying the cloud segment of the
signal. To determine the threshold, we first use the VCEIL datato find the times when

the VCEIL doesn’t see any cloud. A first-guess threshold for the clear-sky NFOV
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radiance data is determined by fitting aline to the NFOV data corresponding to the
clear VCEIL periods.

Because the two instruments are not located at exactly the same point on the
ground and may not be synchronized well with each other, the VCEIL and NFOV don’t
see exactly the same volume and may report different sky conditions on some
occasions. In other words, at some moments the VCEIL reported clear sky but the
NFQOV gave cloudy radiances. When this occurs, the aforesaid method cannot find the
real clear sky radiance (the green signal shown in Fig. 5.12), but will generate a
threshold that is higher than the clear-sky radiance. Thereal clear-sky radiance will lie
between this fist-guess threshold line and zero radiance. In order to get a better estimate
of the clear-sky background, our algorithm allows the aforesaid first-guess threshold
line to move between the V CEIL-determined threshold and zero radiance.

As mentioned earlier, for a period of one or two hours, the clear-sky solar
diffuse radiance is almost constant or changes linearly with time. Also, at 869 nm, the
diffuse radiance from acloud is quite different from that from the clear background.
That means, when a cloud moves into the FOV of the NFOV, therewill be abig jump
in the time series of radiance data. If the clear-sky radiance is really constant, when
moving the threshold line in a small neighborhood around the clear-sky radiance value,
the number of the points located on the threshold line, i.e., with their radiance equal to
the threshold value, will be always be zero unless the threshold line is placed exactly on
the value of the clear sky radiance. This way we can find the desired clear background

radiance value.

91



In practice, the clear-sky radiance is not a constant. WWhen moving the threshold,
the number of points on the line will be afunction of the threshold value. However
there must be a maximum between zero and the first-guess threshold. In our algorithm,
this position is defined as the clear-sky background. The new threshold lineis then set
at aposition whereit is 0.015 w/m?/nm/sr above the clear-sky background. Thisisthe
red line shown in Fig. 5.12. Values greater than the threshold are counted as from cloud.
If the clear-sky radiance changes with time, a slope is determined from the data and the
dope istaken into account in the af orementioned process of finding the clear sky
radiance.

The wind speed at the height of the cloud layer is obtained from measurements
by the ARM 915 MHz Radar Wind Profiler (RWP915). The radar data provide 1-hour
averaged wind profilesfrom 0.1 km to 5 km with accuracy of 1 m/s compared with the
winds from the balloon borne sounding system. The time-nearest available radar wind
profile is used to estimate the wind speed. Fig. 5.13 shows the histogram of the wind
Speeds obtained for all 93 selected cases. In generd, the wind speed is between 1 and
20 m/s. The mode is about 7 m/s.

It should be noted that the sizes and spacings obtained by the above technique
are only the cloud chord and gap lengths from a one-dimensional transect of the cloud
field. Thus, when we say ‘cloud size' in the text, we actually mean the so obtained
chord length. Figure 5.14 (a) and (b) show the distributions of the inferred cloud
spacings and horizontal sizes, respectively, for all cases. The stair step line in the figure
is the histogram of the spacings and sizes. Cloud sizes and spacings are grouped in a set

of log-scale bins. In Fig. 5.14, the ordinate values of the histogram have been scaled to
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the number of counts per unit length (= Number of countsin abin/ Bin width). When
estimating the cloud size and spacing, we have neglected those segments less than 50 m.
Thus the minimum value in the figureis 50 m for both the size and spacing.

As seen in the figure, both the size and spacing distributions are asymmetric and
have long tails. Also shown in the figure are four maximum-likelihood-fitted theoretical
distributions including the power law distribution, the Weibull distribution, the
exponential distribution and the lognormal distribution. The power law distribution
appears as a straight line in the log-log plots. It doesn't fit the observed cloud size and
spacing distributions very well. The Weibull distribution works fine in the range from
600 — 3000 m. Since the exponentia distribution is a special case of the Weibull
distribution, it has roughly the same performance as the Weibull distribution. Generally,
the lognormal distribution gives the best overal fit.

Figure 5.15 shows the cloud size histogram for cloud fractions grouped into
three groups, 0—0.3, 0.3 —-0.6 and 0.6 — 1. Herethe y-axisis alinear scale. The area
under the histogram corresponds to the total number of cases in the cloud-fraction
group. From the figure, we may notice a dight mode at around 100 — 200 m for the
cloud size distributions, especially for small cloud amount cases. Since we obtained the
chord length, thereal cloud horizontal scale may be different. A relationship between
the chord length and a characteristic horizontal scale only exists for very smple
geometrical shapes, such asacircle. If we assume the cloud base isacircle and define
the diameter, D, as the characteristic scale of the circle, then, the average of the

randomly selected chord lengths, L, can berelated to D by D = 1.5L (Mathai 1999).
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Thus, the most frequently occurring fair weather cumulus over the ARM SGP site have
horizontal sizesin the range of about 200-300 m.

To obtain information about the range of variation of the cloud size and spacing
for every case, we calculated the median and the 20" and 80™ percentile values for
every case and display them in Fig. 5.16 and Fig. 5.17. For most selected fair weather
cumulus cases, the average (median value) cloud sizes and cloud spacings are less than
1000 m and 2000 m, respectively. Like the population for all the selected cases, the
populations of the size and spacing for every individual case also have the asymmetric
distributions (refer to Fig. 5.14), which are indicated in the upper panelsin Fig. 5.16 and
Fig. 5.17 by the unequal whisker lengths for the 20™ and 80" percentiles, respectively.
The average ranges between the 20" and the 80™ percentiles for the cloud size and
gpacing are 1000 m and 2000 m, respectively, which are the same order of magnitude as
the values of themselves.

Finally we will estimate the spacing and size distribution parameters for every
case. These parameters are closely associated with the theoretical distributions used to
model the cloud spacings and sizes. Different theoretical distributions have different
parameters (refer to Table 5.1). Among the four theoretical distributions mentioned in
the preceding text, we use three of them in this study. They are the exponentia, the
power law and the Weibull distributions. Although it may fit the data better, the
lognormal distribution was disregarded because it is difficult to use in a PCLOS model.

As discussed in chapter 3, we addressed three types of cloud spacingsin alD
section of the cloud field (refer to Fig. 3.3). These are: (1) spacing is measured between

the edges of two adjacent clouds, i.e., the “sd” type; (2) spacing is measured between an

94



arbitrary point and its nearest cloud in the view direction, i.e., the “xd” type; and (3)
spacing is measured between cloud centers of two adjacent clouds, i.e., the “cd” type.
Each may assume various distributions, the possible combinations of which are shown

in Table5.2.

Table5.2 Combinations of types of the cloud spacing and their assumed
distributions. Where ‘X’ means a possible combination. For example, the
“sd” type of spacing may assume the exponential, the power law and the
Weibull digtributions.

Exponential Power law Weibull
PO = He™™ | p(x) = (H=DX," " x* | p(x) =abx"'e™
“sd” X X X
“xd” X X
“cd” X X X

As seen from the Table 5.2, for cloud spacing, we may have eight combinations.
Each exponential or power law distribution has one parameter, and each Weibull
distribution has two parameters. Thus, for cloud spacing, there are 11 parameters.
Counting the 4 parameters for the cloud size distributions (two for exponentia and
power law and two for Weibull), there are 15 parameters in total that need to be
estimated from the data.

The“cd” type spacing is measured between an arbitrary point and its nearest
cloud. When inferring its distribution, arandom number was first generated in the range
from O to the length of the NFOV observation interval. If the point corresponding the
random number lies within a spacing then the distance between the point and the cloud

to itsleft istaken as a sample of the “cd” type spacing. This process was repeated until
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we obtained 200 samples or the iteration number exceeds 5000. The results are used as
the sample space to estimate the parameters of the various assumed distributions.

Following the conventions in Chapter 3, we denote u as the parameter of the
exponential and the power law distributions for the cloud spacing, and v for the cloud
size. For the Weibull distribution, a, b are used for both cloud spacing and size.
Figures 5.18 - 5.21 show the maximum likelihood estimates of the various distribution
parameters for the cloud size distributions (Fig. 5.18), the cloud spacing distributions of
the “sd” type (Fig. 5.19), the cloud spacing distributions of the “cd” type (Fig. 5.20),
and the cloud spacing distributions of the “xd” type (Fig. 5.21). Also shown in the
figures are 95% confidence intervals.

From the figures, we notice that some cases ( case #: 7, 8, 9, 27, 28, 29, 34, 37,
42, 53, 70, 92) tend to generate “outlier” estimates or “abnormal” (too wide or zero
wide) confidence intervals. Except cases 8 and 9, dl of them are due to the very low
cloud amount (< 0.1). The low cloud amount makesit difficult for the surface
instruments to capture enough cloud samples to infer reliable values for the parameters.
Cases 8 and 9 are sampled on the same day when the wind speed isonly 1 m/s, which is
the minimum among all cases. Remember, we rely on advection of the clouds with wind
to infer cloud size and spacing. A low wind speed means few cloud samples can be
obtained during afinite period. Like the low cloud amount, thiswill aso lead to low-
quality estimates.

Table 5.3 lists the means and ranges for the various parameters (4, v, a and b).

The exponential parameter (1 for cloud spacing and v for cloud size) isthe inverse of

the mean of population. Thus, the mean cloud size for our cases is about 700 m. Please
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note that due to the positive skewness of the cloud size distribution, the most frequently
occurred cloud size will be smaller than the value estimated in preceding section. The
mean spacing between two adjacent cloud centers ( “cd” ), cloud edges ( “sd” ) and a
random point to acloud ( “xd” ) are estimated as 2500 m, 1100 m and 1400 m,

respectively.

Table5.3 Means and ranges of the estimated distribution parameters for the
various combinations of the cloud size or spacing for the three distributions.

Exponential Power law Weibull
Horv Range Horiy Range a Range b Range
(x 10°) (U/m) (pure No.) (x 109 (Um") (pure No.)
Spacing, “sd” 0.9 0.06 -3.8 15 1.3-34 35 0-17 10 05-44
Spacing, “xd” 0.7 0.07-3.0 16 0-12 10 07-15
Spacing, “cd’ 0.4 0.06 —0.8 1.8 1.3-5.2 0.2 0-3 15 07-81
Size 14 0.3-52 16 1.3-37 14 0-12 12 06-49

The Weibull distribution is a generalization of the exponential distribution.
When b =1, aWeibull distribution reduce to an exponential distribution. As seen from
Figs. 5.18 —5.21, the values of b isclose to 1 for the cloud size and spacings of the “sd”
and “xd” types. Thisindicates that the three distributions do not depart much from the
exponential distribution.

The power law slope of the cloud size distribution has drawn a lot attention in
recent decades, because it relates to the fractal property of the clouds (Lovejoy 1982;
Cahalan and Joseph 1989; Sengupta et al. 1990; Joseph and Cahalan 1990). Cahaan

and Joseph (1989) concluded that the cumulus cloud size distribution is best represented
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by a double power law distribution. For fair weather cumulus the break point is around
500 m. With the cloud base diameters less than 500 m their estimate of the power law

dope v = 0.6, and for cloud diameters larger than 500 m, v = 2.3. In this study, we did
not break the cloud sizesinto two groups. The mean of our estimates of vis 1.6, which

isin between the above results. Our value also agrees with the results from Sengupta
et a. (1990). They found the power law slopes for small cumulus are ranging from
v=14tov =235. It should be mentioned that the results in this study are based on
chord lengths obtained in vertical cross sections of the cloud fields, provided the frozen
turbulence assumption isvalid. They are different from the effective cloud base
diameters used by the af orementioned researchers, although the two quantities may
closely relate to each other. Here the effective cloud base diameter is the diameter of a
circle that has the same area as the cloud base.

In the derivation of the p(8) for the“1D_sd_Power_Power_SemiEllipse” and
“1D_sd Power_Power_l|soscelesTrapezoid”, we have shown that the models require
U > 2. (refer to Chapter 3). From Fig. 5.20 we find that for most of the cases, u < 2.
This means that, for this model, our assumption that the cloud spacing can range from
Smin to infinity isinappropriate. If we define the cloud spacing as the “sd” type and want
to model its distribution with the power law distribution, we have to assume the spacing
has finite lower and upper limits, i.e,, s, <s<s_, . Thiswas not donein the present
study. Hence the above two models are not used in the comparisons presented in the

next section.
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5.5 Comparison of the model PCLOS’s with the observations

Knowing the parameterslisted in Table 5.1, we can calculate the PCLOS using
the models (PCL OSyo0e) @and compare them with the PCL OS measured from the TS
(PCLOSrg). Figures 5.22(a, b) and 5.23(a, b) show comparisons of observations with

Group-1 and Group-2 model calculations, respectively. In panels (a) of Fig. 5.22 and

Fig. 5.23, PCLOSnoge/(1-N) is compared with PCLOSrg/(1-N) (denoted as CPCLOS
in the following ). Asmentioned in section 5.1, 1-PCLOS(6) /(1- N) givesthe

conditional probability of seeing a cloud side in clear regions of the sky. Panels (b) of

Fig. 5.22 and Fig. 5.23 show the differences between the PCL OSyde @nd PCLOSrg

(denoted as APCLOS in the following). All curvesin the figures are averages over 38
cases (these 38 cases are the non- streak cases whose cloud thicknesses were confirmed

with the relative humidity data):

PCLOS(6, case)
CPCLOS(g) = e (1- N{case) for panels (a), or
No. of Cases P ’

z PCLOS, , (,case) - PCLOS, (8, case)

APCLOS(@) = dleases N, of Cases for panels (b).

The various model calculations were performed using the values of the

parameters N, S, i, v, a, b (refer to Table 5.1 for definitions of the parameters) inferred

from the observations using the techniques discussed in the preceding sections. The

minimum cloud spacing and cloud size required by the power low distributions are set
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to 50 m. The Shift Regular-Cuboidal model has a parameter f that is the shift distance of
arow with respect to its adjacent rows (see Table 5.1). Itsvalueis set to 0.2/N, which is
the value used by Naber and Weinman (1984).

The models that assume the cloud shape to be truncated-cones or isosceles-

trapezoids require, 1, theinclination angle as an additiona parameter. As 17 varies from
0 to 7max, the cloud shape changes from right-cylinders or rectangles to right-cones or
isosceles triangles. /7max 1S the maximum value that an inclination angle may assume.
Keeping the aspect ratio as a constant, the maximum 77 occurs when the top length of an

isosceles trapezoid or the top diameter of a truncated cone equals zero. Thus

Do = tan‘l(%) = tan‘l(%) . For example, for the fair weather cumulus over the

ARM CART dite, the mean aspect ratio is 0.65 (see section 5.3), which trandates to
Nimax = 38°.

At present, thereis no information available for r7 from the ARM observations,
except Nmax, Which can be inferred from the cloud aspect ratio as mentioned above. In
this study, 17 was specified using the following considerations. To facilitate the
description, the “2D_Poisson_SemiEllipsoid” and “2D_Poisson_TruncatedCone”
models are used as examples. The two models differ only in their assumptions about the
cloud shape. Thelatter has one additional adjustable parameter, the inclination angle.

Giving an arbitrary value to 77 will induce additional uncertainty in the comparison of
the two models. To minimize the uncertainty, we set 77 to the value at which the two

models have the |least average difference in the predicted PCL OS over the selected 38

cases. In other words, we fix the truncated-cone model to have the same or close

100



performance as the semi-ellipsoid model in this comparison. But keep in mind that the
truncated-cone model has one more parameter that can be adjusted to fit the more
genera conditions.

There are six models that require avaue for 7. Except for the Han model, al n

values are determined using the above considerations. The Han model does not have a

counterpart of around-top cloud shape. Itsvalue of 77 is set to be the average of the
other valueslisted in Table 5.4. The valueslisted in Table 5.4 are relative factors that
range from O to 1, with O corresponding to 7 =0° and 1to n =1, . For example, when
n =0.53,.,, the“2D_Poisson_TruncatedCone” model is roughly equivalent to the

“2D_Poisson_SemiEllipse” model for the cases we selected over the ARM CART site.

Table 5.4 Vaues for the inclination angle, 7.

Model Vauefor 77 (X Mmax)
1D_Poisson_|soscelesTrapizoid 0.74
2D_Poisson_TruncatedCone 0.53
1D_xd _Exp_Exp_lsoscelesTrapezoid 0.68
1D_sd Exp_Exp_lsoscelesTrapezoid 0.68

1D_xd Weib_Power_lsoscelesTrapezoid 0.47
1D_cd Power_Power VariableShape (Han) 0.62

In figures 5.22 and 5.23, all model PCL OSs, except the Han model, tend to

decrease more rapidly for < 50° and more dowly for > 60°. Both groups of models

tend to underestimate the PCL OS in the middle range of the zenith angles

(30° < < 70°), athough the Group-2 models give better results than the Group-1
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models. For al Group-2 models, except the “2D_Poisson_RightCylinder” model and
the “2D_ShiftRegular_Cuboidoa” model, the average PCL OSyoqe/(1-N) agrees with
the TSI observations within about £0.1 of the cloud fraction unit (panel (a) inthe
Fig. 5.23).

The average (PCL OSnode-PCLOSrg) curves disperse with increasing zenith
angle ( Fig. 5.22(b) and Fig. 5.23(b) ). The fact that all the curves start from zero at 0° is
simply because we have set the parameter N = Nrg, thereby forcing the models to have

zero difference with the TSI observationsat 8 = 0. Assuming the TSl inferences of the

PCLOS are accurate, the dispersion of the curves at larger zenith angles reflects the
different performance of the various models, which depends on the vaidity of the
model assumptions and the accuracy of the various model parameters, including N. As
seen, for most of the zenith angles the dispersion isless than 0.15 (in units of cloud
fraction).

Also noticed from the figuresis the big difference between the
“2D_Poisson_RightCylinder” model and the “2D_Poisson_TruncatedCone” model,
although the former isjust a special case of the latter. The only difference between these
two modelsis the different cloud shapes. This indicates that the cloud shape (inclination
anglein this case) may be an important factor when modeling the PCLOS.

Figure 5.24 shows the standard deviation of the difference between the models
and the TSI observations as afunction of zenith angle for the different models. For most
models, the maximum standard deviation of (PCLOSmode -PCLOSrg) islessthan 0.2

(in cloud fraction units), except the “1D_cd_Power_Power_VariableShape (Han)” and
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“2D_ShiftRegular_Cuboidal” models. Among the models, the
“2D_Poisson_Hemisphere” model tends to have the smallest bias and variance.
To further compare the performance of the various PCLOS models, we define a

quantity,
1
CSE = 21[1— N — PCLOS(u)] 2 du
0

where i = cos(6), and the PCLOS( 1) is the probability of aclear line of sight at angle 6.
The CSE denotes the Cloud Side Effect, which represents the contribution of the cloud

sides to the effective cloud fraction Ne. In fact, CSE = N, — N for isothermal black

clouds. The factor CSE can be viewed as a summary quantity that provides us an overall
measure of the cloud side effect on the cloud coverage. Figure 5.25 shows summary
statistics of the model predictions of CSE and those inferred from the TSI observations.
In the figure, the bottom and the top of the box give the 25™ and 75" percentiles of the
sample. The linein the middle of the box is the sample median. The plus signs are
outliersin the data (i.e, values that are more than 1.5 times the box length away from
the top or bottom of the box). The last column in the figure is CSE computed from the
TSI observations. CSE has units of cloud fraction.

Aswe mentioned before, CSE denotes the contribution from cloud sides to the
effective cloud fraction. This part of the effective cloud fraction increases the radiation
fluxes from the cloud field relative to flat plates. The y-axis on the right-hand side of the
figure gives the estimated value of the increase of downward flux at the surface due to

the cloud side effect. SinceF = F,, + N (F,, —F, ) and Ne=N + CSE,

¢F =(F 4 —Fy ) [CSE, where Fq, and Fq denote the fluxes under clear and overcast
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conditions, respectively. The F, and Fq are calculated using MDTERP (Ellingson and
Gille 1978; Takara and Ellingson 2000). The McClatchey midlatitude summer profileis
used in the calculation and the cloud base height is assumed to be 1.5 km. The TSI
column (the last column in the figure) shows that, for those the fair weather cumulus
over the ARM CART site, the mean flux departure at the surface due to the cloud side
effect is about 3.7 W/m?. Table 5.5 lists the mean and standard deviation of the CSE

values estimated from the various models and the one from the TSI.

Table 5.5 The mean and standard deviation of the CSE values estimated from the
various modd s and the one from the TSI. Where STD. denotes standard deviation.

CSE F (W/m?)

Model or TSI Mean | STD. | Mean | STD.
1D_sd Exp_Expl_lsoscelesTrapezoid 0.111 0.094 | 6.9 5.9
1D_sd Exp_Exp_SemiEllipse 0.111 | 0.093 | 69 5.8
1D _xd_Exp_Exp_lsoscelesTrapezoid 0.096 | 0.089 | 6.0 5.6
1D_xd_Exp_Exp_SemiEllipse 0.095 |0.087 | 59 55
1D _xd Welb_Power_|soscelesTrapezoid 0.102 |0.061 | 6.3 3.8
1D_xd Web_Power_SemiEllipse 0.094 |0.059 | 59 3.7
1D_cd_Power_Power_VariableShape (Han) 0.068 |0.148 | 4.2 9.3
1D _Poisson_|soscelesTrapezoid 0.092 0.092 | 5.7 5.7
1D_Poisson_SemiEllipse 0.093 | 0.090 | 5.8 5.6
2D_Poisson_TruncatedCone 0.092 0.087 | 5.7 5.4
2D_Poisson_SemiEllipsoid 0.093 | 0.090 | 5.8 5.6
2D_Poisson_Hemisphere 0.057 0.029 | 3.6 1.8
2D_Poisson-Ellipsoid 0.074 0.082 | 4.6 51
2D_Poisson-RightCylinder 0.156 0.112 | 9.8 7.0

2D_ShiftedRegular _Cuboidal 0.20 0.182 | 12.9 114
TSI observation 0.059 |0.040 | 3.7 25
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Figure 5.26 shows box plots of the differences between the CSE predicted by
the models and that from the TSI. Corresponding mean and standard deviation of the
differences are listed in Table 5.6. All Group-1 models tend to have positive biases. The
“2D_Poisson_Hemisphere” model is a specia case of the “2D_Poisson_SemiEllipsoid”
model, as the hemisphere model sets the aspect ratio to be a constant, while the semi-
ellipsoid model uses the observed aspect ratio. Interestingly, the former gives a better
result than the latter. The range of the differences for the hemisphere model is less than
that for the semi-ellipsoid model. This might indicate that our estimates of the aspect
ratio are dightly positively biased, at least for some of the cases.

Once again, we see a difference between the “2D_Poisson_TruncatedCone”
model and the “2D_Poisson_RightCylinder” model. The only difference between the
two modelsisthe inclination angle, but they yield quite different predictions of CSE.
The“2D_Poisson_RightCylinder” model apparently overestimates the cloud side effect.

Among all models, the “2D_Poisson-Hemisphere” generates the best results.
However, because the “2D_Poisson-TruncatedCone” model has been fixed to its semi-
ellipsoid counterpart and the semi-ellipsoid model is a genera case of the hemisphere
model, we expect that given appropriate values for the aspect ratio and inclination
angle, the “2D_Poisson_TruncatedCone” model and the “2D_Poisson_SemiEllipsoid”
model have the potential to generate the same result as the “2D_Poisson_Hemisphere”

model.
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Table 5.6 The means and standard deviations of the differences between the CSE predicted
by the models (CSEo4e) and those obtained from TSI (CSErg). Where STD. denotes
standard deviation.

CSEnoce- CErsr | Fmoga-Frs (W/NT)

Model or TSI Mean STD. Mean STD.
1D_sd Exp_Expl_lsoscelesTrapezoid 0.052 0.088 3.3 55
1D_sd Exp_Exp_SemiEllipse 0.052 0.087 33 54
1D_xd _Exp_Exp_lsoscelesTrapezoid 0.037 0.085 2.3 5.3
1D_xd_Exp_Exp_SemiEllipse 0.036 0.084 23 5.2
1D_xd Weib_Power_lsoscelesTrapezoid 0.041 0.067 2.6 4.2
1D_xd_Weib_Power_SemiEllipse 0.034 | 0.065 21 41
1D_cd Power_Power_ VariableShape (Han) 0.009 0.162 0.6 10.1
1D _Poisson_|soscelesTrapezoid 0.033 0.082 21 51
1D_Poisson_SemiEllipse 0.034 0.080 21 5.0
2D_Poisson_TruncatedCone 0.033 0.077 21 4.8
2D_Poisson_SemiEllipsoid 0.034 0.080 21 5.0
2D_Poisson_Hemisphere -0.002 0.042 -0.1 2.7
2D_Poisson-Ellipsoid 0.016 0.073 1.0 45
2D_Poisson-RightCylinder 0.098 0.098 6.1 6.2
2D_shiftedRegular _Cuboidal 0.141 0.165 8.8 10.3
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5.6 Chapter Summary

The parameters required by the PCLOS models are the absol ute cloud fraction
N, the aspect ratio S, the parameters characterizing the cloud spacing and size
distributions 4, v, a, b, and the cloud inclination angle 7. In this chapter, methods have
been developed to infer these parameters from the ARM cloud observations (not
including the inclination angle). The absolute cloud fraction is estimated as the
frequency of the central portion of the TSI image being covered by clouds. Among all
93 cases, most are fair weather cumulusfields and have N < 0.7. The aspect ratio is
theoretically defined for every cloud, but we cannot obtain such detailed observations of
the cloudsin practice. Thus, in this study, Sis estimated for every case as the ratio of
the average cloud thickness to the median cloud horizontal size. The median is used
instead of the mean because the cloud horizontal size is highly asymmetrically
distributed. Among all 93 cases, more than 80% have < 1, (8= H/D). The mean value
equals 0.65 and the median is 0.43.

Three theoretical distributions, the exponential, the Weibull and the power law
distributions are used to model the cloud spacing and size distributions. The distribution
parameters for the three distributions are inferred for every case from the time series of
the NFOV observations. Several models need the inclination angle /7 as a model
parameter. Without observational information about ), these models are set to have the
same performance as their round-top-shape counterparts by specifying avalue for 77 so
that the pair (the n-adjustable model and its round-top-shape counterpart) has minimum

average difference in the predicted PCL OSs.
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We also developed a method to estimate the PCL OS using time series of images
from the TSl. Based on this TSI observed PCLOS, the cloud side effect on the
downward longwave radiation flux is estimated. For the fair weather cumulus clouds
over the ARM CART dite, the mean flux departure at the surface due to the cloud side
effect is about 3.7 W/m? (assuming the cloud height is 1.5 km). The standard deviation
among various casesis about 2.5 W/mZ.

Model calculated PCLOS values were compared with those obtained from the
TSl. Based on the obtained parameters, the models that assume the clouds are Poisson
distributed give better result than those that specify cloud distribution by explicitly
specifying the cloud spacing and size distributions. Most PCL OSyo4e’ S 8gree with the
observations within £0.2 (Fig. 5.24). All models, especialy those models that assume
the cloud shape as right cylinder or cuboidal and 1D models tend to underestimate the
PCLOS (or overestimate the cloud side effect). This may partly due to the incorrect
information about the cloud aspect ratio and inclination angle. For example, the cloud
base diameter was assumed to be the measured chord length. Thismay result in an
underestimate of the cloud base diameter and hence an overestimate of the aspect ratio.
For acircular cloud base, the real diameter may be 1.5 times longer than the average
chord length (Mathai 1999). However, due to the complicated nature of the cloud base
shape, there is no exact relationship between the diameter and chord length available.
Hence, there is not a good way to correct this bias at present

Among the modelslisted in Table 5.1, the “2D_Poission_Hemisphere” model
generates the best average results for the cases selected in the present study. The

“2D_Poisson_Hemisphere” model is a specia case of the “2D_Poisson_SemiEllipsoid”
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model when = 0.5. This may indicate that the aspect ratio of the fair weather cumulus
cloud over the ARM CART siteis most probably around 0.5. However, since the
hemisphere model assumes a constant aspect ratio, it may not work for other type of
clouds or clouds at different geographical locations. The “2D_Poisson_Ellipsoid” model
and the “2D_Poisson_TruncatedCone” model are generalizations of the hemisphere
model. They may be used in broader conditions.

The cloud aspect ratio and the inclination angle can largely affect the modeled
PCLOS. The differences due to the three theoretical distributions used to model the
cloud spatial and size distributions are no greater than the differences resulting from the
different cloud inclination angles.

Finally, it should be noted that since the fair weather cumulus clouds over the
SGP region are relatively small, the cloud side effect is relatively weak. For these small
clouds, the goodness of the model resultsis largely limited by the accuracy of the
estimates of the model parameters. Asillustrated in Fig. 5.26 and Table 5.6, although
some models achieve zero bias, their dispersion is of the same order of magnitude of the
CSE value itself. We expect that this situation may improve when dealing with cumulus

clouds over the ARM Tropical Western Pacific (TWP) site.
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Chapter 6

Summary, Conclusion, Discussion and Futur e work

The Probability of Clear Line Of Sight (PCLOS) isa basic property of 3D cloud
fields and isimportant to the understanding and parameterization of longwave radiative
transfer in climate models. One way to incorporate the 3D geometrical effectsin the
parameterization is through the use of an effective cloud fraction, for which amajor
component is the PCLOS of the cloud field. The PCLOS a so plays an important rolein
accounting for longwave 3D effects caused by variations of horizontal optical depth and
the vertical temperature gradient in heterogeneous cloud fields. Aimed at improving the
understanding and parameterization of longwave radiative transfer under cloudy
conditions in climate models, this study addressed the formulation, measurement and

testing of the PCLOS.

(1) Formulation of the PCLOS

Theoretical formulation of PCLOS models was addressed in a systematic way in
the study. Several extensions and improvements were made. Three approaches for
modeling the PCL OS were discussed in Chapter 3. They are: (1) computing the ratio of
the projected clear areato the total domain area on a horizontal plane; (2) tracing aline
of sight through a cloud field; and (3) modeling the PCL OS as the probability of
occurrence of apair of clouds having spacing larger than athreshold value (Han's

method). In al, 17 models based on different formulation approaches and different
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assumptions about the cloud shape, spatial and size distributions were discussed

(Table 6.1).

Table6.1. The PCLOS models used in this study. Among them 9 are new and
the others are revisions or extensions of the previous studies. Also shown in the
table are the equation numbers that appear in the text.

1D_sd Exp_Exp_SemiEllipse New Eqg. (3.16)
1D_sd Exp_Exp_lsoscelesTrapezoid New Eq. (3.16)
1D_sd Power_Power_SemiEllipse New Eq. (3.14)
1D_sd Power_Power_|soscelesTrapezoid  Revision of the Han and Eq. (3.11)
Ellingson (1999) model
1D_xd_Exp_Exp_SemiEllipse New Eqg. (3.36)
1D_xd Exp_Exp_lsosecelesTrapezoid New Eqg. (3.36)
1D _xd Weib_Power_SemiEllipse New Eq. (3.34)
1D_xd Weib_Power_lsoscelesTrpezoid Revision of the Han and Eq. (3.34)

Ellingson (1999) model
1D_cd_Power_Power_VariableShape(Han) Han and Ellingson (1999) Eqg. (3.38)

1D_Poisson_SemiEllipse Extension of the Kauth and Eq. (3.23)
Penquite (1967) model
1D_Poisson_|soscelesTrpezoid New Eqg. (3.22)
2D_Poisson_SemiEllisoid Kauth and Penquite (1967) Eq. (3.29)
2D_Poisson_TruncatedCone New Eq. (3.24)
2D_Poisson_Ellipsoid Kauth and Penquite (1967) Eqg. (3.28)
2D_Poisson_Hemisphere Kauth and Penquite (1967) Eqg. (3.29)
2D_Poisson_RightCylinder New Eq. (3.27)
2D_ShiftRegular_Cuboidal Naber and Weinman (1984) Eqg. (3.30)

(2) Sampling Strategy

In order to determine an objective sampling strategy and place uncertainty limits
on the inference of the PCLOS and other cloud field parameters, an evaluation method
was developed and tested with CRM/LES model data. The method is an extension of

the one used in geostatistics (Cochran 1977; Matern 1986), stereology (Stoyan et al.
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1987) and meteorology (Kagan 1997). It not only applies to the measurement of the
cloud parameters at the ARM site, but also has general significance for evaluating the

sampling error when one wants to extend local measurements to a larger domain.

The ARM cloud observations produce time series of measurements of the
directly overhead cloud field. Area-averaged quantities are inferred from time average
ones from a series of data by assuming the frozen turbulence approximation. Under the
assumption, atime series of data can be interpreted as a spatial series of observations
taken along a single sampling line (atransect) in the cloud field. Depending on the
sampling rate, the observations may not be independent of each other. To evaluate the
gpatial representativeness of the measurement from the line of observations, a random
field approach is taken in this study. The approach assumes the cloud field isa
homogeneous and isotropic random field. Given the covariance function (= variance x
correlation function), the sampling error of the area-averaged quantities can be

estimated.

The approach was applied to the measurement of the cloud fraction. A
correlation function with a negative exponential form was assumed for the cloud
fraction field. The investigation indicates that the sasmpling error is dependent on
several parameters including the covariance function of the cloud fraction field, size of
the target area, length of the sampling line, sampling rate of the observations and the
position of the sampling line. The e-folding parameter, o, of the correlation function is
an important quantity when evaluating the sampling strategy, asit is a measure of the

correlation scale of the random field. Using the data from the NFOV, the average o for

the fair weather cumulus cloud fields over the ARM SGP siteis estimated as 1267 m.
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For alarge target area (the dimensions of the area being larger than 30pp) with a
given o, the sampling error decreases monotonically with increasing length of the
sampling line and sampling rate. The accuracy improvement resulting from increasing
the sampling rate is limited because the observations taken within the distance of the
correlation scale are not independent. Given a sampling line of 500, in the middle of the
target area, one may expect a sampling error of about 30%, assuming a cloud fraction

of 0.4.

Please note that, when determining the averaging time, considerations should
also be given to such factors as wind speed, cloud development and life span of the
cloud field, because these factors affect the validity of the frozen turbulence
approximation. The approximation requires statistical properties of the cloud field not to

change as the cloud field advects over the observation site.

(3) Measurement of the cloud parametersand test of the PCLOS models

Part of this study was directed at developing a set of automated techniques for
estimating PCLOS from the ARM sky imagers and for a variety of important cloud field
properties from ARM observational data or previously established cloud products. As
such, these techniques may be employed on more extensive cloud data sets to further
enhance our understanding the longwave 3D effects for awider range of cloudiness
conditions. The data from these techniques, combined with the sampling strategy
outlined above, allow a major extension of previous PCL OS studies, namely the testing

of PCLOS models with datawith realistic confidence limits.
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93 cases of single layer broken cloud fields at the ARM SGP CART site during
the period from July 2000 though October 2001 were selected for inferring various
cloud field parameters and testing PCL OS models, but only 38 non-streak cases whose
cloud thickness has been confirmed with the relative humidity datawere used in the
comparisons of the modeled with the observed PCLOS. The absolute cloud fraction,
cloud thickness, cloud size and spacing distributions were extracted from the TSI,
NFOV, RWP915, MMCR, MPL, RL, BBSS and the ARSCL data using the techniques
mentioned above. Time series of total sky images were used to infer the PCLOS and its

uncertainty for the individual cases.

The absolute cloud fraction of the selected cases ranges from 0.1 to 0.9 with the
mode around 0.4. The cloud thickness ranges from 100 m to 3000 m, but most of cases
have the thicknesses less than 500 m. For each case, the cloud thickness was taken to be
the mean value for awholefield. Thusthereisavariation in the thickness for each case.
The most frequent size of the variation is about a half of the mean cloud thickness. The
aspect ratio ranges from 0.1 to 4 with most less than 1. For most of the cases, the
median cloud horizontal size and spacing are less than 1000 m and 2000 m,
respectively. The cloud spacing tends to have greater case-to-case variation than the

cloud horizontal size.

In all, 15 PCLOS models were compared with the observations. Based on the
parameters obtained, most models yield PCLOS vaues that agree with the observations
within +£0.2 for the zenith angle range from 10° to 80°. All models tend to dlightly
underestimate the PCL OS within the 30° to 70° zenith angle range, but the models that

assume the clouds are Poisson distributed give better results than those that explicitly
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specify the cloud spacing and size distributions.

Cloud aspect ratio and inclination angle have large impacts on the modeled
PCLOS, but the inclination angleis not an observable quantity. Among the models, the
“2D_Poisson_Hemisphere” model has the best average performance. Since the
“2D_Poisson_SemiEllisoid” and the “2D_Poisson_TruncatedCone” models are
generdizations of the hemisphere model, we expect that they may have at least the

same performance as the hemisphere model if given accurate cloud parameters.

The geometrical effect of 3D clouds on the downward longwave radiation flux
at the surface was estimated using both PCLOS model calculations and the TS
observations. Based on the observations, the mean departure from plane-parallel clouds
at the surface due to the geometrical effect (CSE) of the cloudsis about 3.7 + 2.5 Wm'
for acloud height of 1.5 km. Given the obtained cloud parameters, most model
estimates tend to overestimate the effect and have standard deviations of the same order
as the mean values. Thisindicates that, confined by the uncertainties in the cloud
parameters obtained to date, most models may not be able to generate reliable estimates
of the geometrical effect of fair weather cumulus over the SGP site. One exception is
the “2D_Poisson_Hemisphere” model, which gives reasonabl e estimates
(CSE = 3.6 + 1.8 Wm™). It isinteresting to note that the hemisphere model requires the
least number of cloud parameters but generates better results than its generalizations,
such asthe “2D_Poisson_SemiEllipsoid” model and the “2D_Poisson_TruncatedCone’
model. Thisis another indication that the confining factor may be the quality of the

cloud parameters.

115



(4) Futurework

All the cases we selected in this study are non-precipitating fair weather
cumulus fields. The clouds are relatively small and they are members of a special
category of broken cloud fields. To more thoroughly investigate the validity of the
PCLOS models and study the impact of the 3D clouds on longwave radiative transfer, it
will be necessary to consider more categories of broken clouds in future studies. Such

studies are now possible with data from the ARM Tropical Western Pacific (TWP) site.

The airborne clutter problem at the ARM SPG site greatly limits our ability to
precisaly infer the cloud thickness from the MMCR data. Since the total sky imager is
also planned for the TWP site where there is no clutter problem, one may expect a
better data set and thus a more solid test of the PCLOS models. In addition, using the
TWP datawill also give us a chance to test with anew category of broken clouds —

tropical fair weather cumulus.

The PCLOS models addressed in this study are all based on Euclidean geometric
models of the cloud field. The clouds are modeled as geometric objects with smple
shapes and distributed on a common cloud base line or plane regularly or randomly
according to relatively simple distribution laws. Recently, some researchers have been
modeling the cloud field using the fractal technique. The method generates, at least
from the morphological perspective, more realistic cloud fields. Since the PCLOS is
mainly a morphological property of the cloud field, a PCLOS model based on fractal

theory may be an attractive choice for future studies.
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The observations at the ARM CART site can yield empirical PCLOS functions
for individual periods. Thisleads to the question of the sensitivity of climate studiesto
PCLOS models. Should we use a theoretical or an empirical PCLOS model or any such
model at al? Should people place more effort into improving the PCLOS models or
observations? To answer the questions one will need more information about the
PCLOS and cloud field parameters in various climate regions, seasons and cloud
categories. If the PCLOS has large variations at different locations and times, then one
may have to put more effort on the models. Otherwise, if the PCLOS doesn’'t change
very rapidly with location and time, or the PCLOS variations are not significant to
climate model studies, then an empirical PCLOS may be good enough. Answering these

guestions is another possible direction for future work.
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Fig. 1.1 Examples of the Probability of Clear Line Of Sight (PCLOS) for
randomly distributed semi-ellipsoids and right-cylinders. Due to the cloud side
effect, the PCLOS decreases with increasing zenith angle. Given the same cloud
fraction and distribution, the greater the cloud vertical dimensions, the larger the
cloud side effect until mutual shading occurs. At the zenith, the PCLOS = (1 - N),
where N is the absolute cloud fraction. The inclination angle of the clouds has large
impact on the PCLOS.
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Radiation from plane parallel
clouds with homogeneous
optical depth at alevel Z and

Non-isothermal cloud, cloud
tembnerature decreases with

Radiation from vertically extended clouds with variable optical depth at alevel Z and
angle 6

Fig. 2.1 Anillustration of three aspects of 3D cloud effects.

(1) Geometric effect. When viewed at a zenith angle 6, vertically extended clouds will project
greater lengths than the PPH clouds. The PPH cloud lengths were obtained by projecting the
clouds vertically downward and have been displaced here to coincide with the start of the
projections of the vertically extended clouds.

(2) Variable optical depth effect: Due to the 3D structure of the cloud field and variation of the
optical properties within the clouds, the optical depth seen at an angle 6 may vary horizontaly.
Because of the highly non-linear dependence of the cloud transmission or emission on the
cloud optical depth, the domain-averaged radiance may be significantly different from the
radiance at the average cloud optical depth.

(3) Non-isothermal cloud effect: Clouds are not isothermal. Temperature may very with height.
Due to the existence of brokenness and non-opague clouds, radiation from the cloud layer may
be emitted from various heights and thus from various temperatures.

In thefigure:
The pencil of beam (A): Radiance from cloud side, which is neglected by PPH approximation.
The pencil of beam (B): Radiance from PPH approximation.
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Fig. 2.2 A quasi-3D cloud field.

The atmosphere is horizontally homogeneous. All clouds properties are
azimuthally averaged values. Thereisonly one layer of clouds and all clouds
are constrained in the layer between z, and z, which denote the cloud base and

top height, respectively. Scattering is neglected.
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A single cloud element

Fig.3.1 A vertical section of a hypothetical cloud field.
S isaclear section of the horizontal line (parallel to the line of the cloud base)
that is not covered by the projection of the cloud projected at zenith angle 6. A

cloud element consists of a cloud and a spacing associated with it.
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A line of sight
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Fig.3.2 Geometrical features associated with a cloud element. In thefigure,
d isthe length of the vertical projection of the cloud on the horizontal line;
sisthe spacing between two adjacent vertical projections; h is the cloud

thickness; 77 istheinclination angle of the cloud side relative to the zenith.
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‘sd’ type of spacing is defined
as the distance between the two
nearest edges of two adjacent
clouds.

tn

‘cd’ type of spacing is defined
as the distance between two
cloud centers of two adjacent
clouds.

tn

‘xd’ type of spacing is defined
as the distance between an
arbitrary point and its nearest
cloud to theright.

Fig.3.3 Three types of cloud spacing. Different PCLOS

models use different definitions of the cloud spacing.
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s=df(tan6, —tann)

6 > 6:> 6

s=d . [f(tan6, —tann) s=df(tané, —tann)
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Fig.3.4 Integral domainof s (€). Thevalid domainis shown in the figure as the shaded area.

Ed: d., - S

0 B(tan@ —tann) for 6>6.
Hs: d_ B(tand—tang) — o

Ed: d., - S

0 B(tan@ —tann) for < 4.
%: smin - ®

Where s denotes the cloud spacing, d denotes the cloud horizontal size, Sis the aspect ratio,

dB= h. Theangle 7 isthe dant angle of the isosceles trapezoid cloud.
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A line of sight at zenith angle 6

x ,_d 1+ 4B%tan® 6

tan6 2tané

<Y

'<—

Fig.3.5 <(6) for asemi-ellipse cloud. The cloud is placed in an x-y plane with the base
center located at the origin of the coordinates. The cloud horizontal sizeis d=a(0). A
line of sight tangent to the cloud is also shown on the plot. By setting x = 0intheline

equation, we can obtain (6. (refer to Eq.(3.13)).
a0 =1(6), a(0) =t(0) for asingle cloud (refer to Eq.(3.23)).
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re(H —h)tané?cosaE

ry,H tané cosé
2

Fig.3.6. a(6) for atruncated cone cloud. The shaded area can be seen as a set of circles
aligned along a straight line, which is the projection of the central-symmetrical axis of the
truncated cone. The area of the shadow is the area within the circumference of the set of

circles and can be given as

o T+0 o -0
a(o) = Htanf8cos—+ 7T, —— H -h)tan@cos— -7, ——
©)=e o7 CEE (M ~hytandcos? -, 7Ot
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;e 5095 x:=0

Fig.3.7 Modeling the PCLOS by tracing aline of sight. To pass the cloud
field clearly, aline of sight has to penetrate the cloud base in the (1-N)
portion of the cloud base plane and the cloud in front of the line has to be
far enough away or short enough to not block the line of sight. Note the
distance x is measured on the cloud base level between the penetrating point

and the nearest cloud to itsright.
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View Direction

Fig.3.8 Naber and Weinman's ShiftedRegular_Cuboidal model

(After Naber and Weinman 1984). Every row is shifted a distance of x with
respect to the adjacent row. Eq. (3.30) appliesto the view direction shownin
the figure.
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Xi A' \N

Fig. 4.1 Sampling arrangement for the measurement of the absolute cloud
fraction N. Based on the frozen turbulence approximation, observations can be
seen as taken along a straight line placed on the center of the domain. In the
figure, the domain size is WxL. The length of the sampling lineis|s. Sampling

points are regularly spaced on the sampling line.
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Correlation function, r(p)

Mean r(p)
r(p)=exp(-p/p,)

0 2000 4000 6000 8000 10000 12000

Distance p (m)

Fig. 4.2, Observed and model correlation functions for cumulus cloud fields over
the ARM CART site, derived from 45 days of NFOV data during the spring and
summer seasons in the years of 2000 and 2001. Also shown in the figure isthe

_P
modeled correlation function, r(p) =e *, with g, =1267m. The shadowed area

represents the standard deviation of the correlation functions.
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K (;'j , N) has units of cloud fraction and its maximum value occurs when N = 0.5.
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2*w(N", N,)
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Fig.4.4 £, Ug, Uy, and W(N, N, ) as functions of the length of the sampling

line, for adomain of W/ g, =100, L/p, =100. The sampling lineis located

along L at the center of the domain.
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Fig.4.5 Theratioof |u, - 2w(|§|, N,)| to u, asafunction of domain size.

The length of the sampling line was set to be the same length as the domain

size.
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Relative root-mean-square error
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Fig.4.6 The RRMS as a function of the length of the sampling line for

different cloud fractions. The domain sizeis W = L =100g, . The sampling

lineislocated at the center of the domain.
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Fig.4.7 Sampling error as afunction of the number of observations. Upper panel: £2,
Ug, Uy, and W(N, N,) asfunctions of the number of observations. Lower panel:
RRMS as afunction of the number of observations for various cloud fractions. The
domain sizeisW =L =100g, . The sampling lineis positioned at the center of the
domain and its length is the same as L. The observation points are regularly
distributed on the sampling line with interval Al =100, /n, where n denotes the

number of observations.
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Effective number of observations, n
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Number of observations, n

Fig. 4.8 The relationship between the effective number of random

observations and the actual number of observations. The effective number is

. oy 1
defined as n, = D <2 (Eq. (4.19)).
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Fig. 4.9 Sampling arrangement for the PCLOS. The PCLOS is afunction of, 6,
the zenith angle. The estimation of the PCLOS(6) is made by averaging over a

set of circles centered on the sampling line. The sampling error hererefersto
the difference between the domain (W x L) averaged PCLOS(6) and the one

averaged over the set of circles.
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Fig. 4.10 Samping error for the measurement of PCLOS for a 10060%1006o
domain. The circle radius R = o, which corresponds to a zenith angle of 45° for a

cloud base of height . The set of circles are regularly aligned along the centerline
of the domain with interval Al =0.60. Upper panel:¢2, ug, uy, and w(N, N,)as

functions of the length of the sampling line. Lower panel: the RRMS as a function
of the length of the sampling line.
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Fig. 4.11. Upper panel: model parameters £°, Ug, Uy, and W(N, N,) asfunctions of

zenith angle. Lower panel: the relationship between the RRMS and the zenith angles for
the cloud base height H = p. The set of circlesareregularly spaced aong a sampling
line of length Is= 50, and with theinterval Al =0.60.
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Fig. 4.12. The LES/CRM simulated cloud fields. (8) BOMEX; (b) ATEX;
(c) OPENCELL; (d) GATE. The color scales shown in the figure represent
the Liquid Water Path (LWP) of the fieldsin the unit of g/m®.
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Fig. 4.13. Application to four LES/CRM generated cloud fields. Upper panel: RMS and RMS
changing with the length of the sampling line and the cloud fraction N. Lower panel: RRMS
and RRMS changing with the length of the sampling line and N. The RM S and the RRMS are

calculated as:
RMS N@-N)ug
RMS=./N(1-N)u? , RRMS= =
JN@-N)ug N N
The RMS and RRMS' are calculated as;
Rl\/ls*as)=\/EZ(|\]I - —N)? RRMS (I,) =RMS (I,)/N
n < ®

where, N isthe desired domain-averaged cloud fraction, nis the number of smulations for
each sampling line length [s. I\AI,S,i (i=1, n; I<=1, 600) is the estimated cloud fraction from thei™

single-line measurement of length [s.
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Fig. 4.14 lllustrations of the terms associated with the measurement of the cloud
horizontal size or spacing with limited sampling rate. Only the integer part of D
will be reported by the instrument. In the above case, the instrument will report
the cloud size to be D =3. Randomly placing the “ruler” with respect to the
position of the cloud, the variance of the measurement would be

o? =[d -rem(D,d)] rem(D,d), where rem(D,d) represents the remainder of D

divided by d.
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Fig. 4.15 Relative error due to the limited sampling rate when measuring the
cloud base length. d denotes the sampling interval and D istherea length of the

cloud base.
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1: clear sky,

2: thin cloud,

3: thick (opagque) cloud,

4: ignored (masked) pixels.

(@

1: clear (spectral and densty);

2: aerosol (spectral);

3: mixed aerosol and cloud (spectral);
4: bright cloud (spectral);

5: intermediate cloud (spectral);

6: dark cloud (spectral);

7: tranducent (density);

8: opaque (density);

9: indeterminate (spectral and density);
10: undefined.

(b)

Fig. 5.1 The TSI (a) and the WSI (b) cloud decision images.

Zenith is at the picture center.
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Fig. 5.2 Mapping function between the zenith angle and the radial

distance of a TSI pixel.
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Fig. 5.3 The difference between the PCL OS values estimated from the WSI
and the TSI. The blue lineisthe average of (PCLOSws — PCLOSyg) over 77
cases. The shadowed region represents the standard deviation of the

differences.
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Fig. 5.4 The PCLOS inferred from the TSI. The curves have been normalized as
PCLOS(6)/(1-N), which represents the conditional probability of a clear line of
sight given the line of sight starting from the (1-N) portion of the cloud base

plane.

148



0.9f . : ] o .

NWSI’ NNFOV’ NARSCL

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

TSI

Fig.5.5 A comparison of the absolute cloud fractions estimated from the TSI,
WSI, NFOV and the ARSCL cloud base data. (86 casesfor the TSI, NFOV and
ARSCL; 77 cases for the WSI.)
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Fig. 5.6 Histogram of the absolute cloud amount, N, from different instruments for
cases selected during the spring and summer seasons in 2000 and 2001. (86 cases
for the TSI, NFOV and ARSCL; 77 cases for the WS .)
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Fig. 5.7 An example of ARSCL cloud thickness data from 23 July 2001.
The upper panel: cloud base and top height from the MPL, VCEIL, and
MMCR. The lower pandl: histogram of the cloud thickness, which is
evaluated by subtracting the base heights from the corresponding top
heights for every observation moment.
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Fig.5.8 Determining the cloud thickness with the aid of relative humidity profiles from
Raman Lidar (RL) and soundings. Panel (a) and (b) are relative humidity (R.H.) profiles
from the RL and soundings. Panel (c) isthe cloud base and top heights from the ARSCL
data. Pandl (d) isthe MMCR reflectivity data obtained at the same period as the profiles.
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Fig.5.9 Histograms of the cloud thicknesses determined
before and after taking into account the relative humidity
information, for all 93 cases.
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Fig. 5.10 Histogram of the relative cloud thickness variation
(thickness variation to cloud thickness) for all 93 cases sel ected
from July 2000 to 2001.
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Fig. 5.11 Histogram of the aspect ratios ( = cloud thickness over
cloud diameter) for all 93 cases selected from July 2000 through
2001.
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Fig. 5.12 A time series of NFOV radiance data at 869 nm for 22

July 2000. The red line is the threshold.
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Fig. 5.13 Histogram of the wind speeds obtained from the
915 MHz Radar Wind Profiler (RWP915) for all 93 cases
selected from July 2000 to October 2001.
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Fig. 5.14 The cloud spacing (a) and cloud size (b) distributions for all
cases selected from July 2000 through October 2001. The spacing and
size areinferred from the NFOV data. Also shown in thefigures are
four theoretical distributions.
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Fig.5.15, Histograms of cloud size distributions asa
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Fig. 5.16 Therange of variation of the cloud spacings for the data used in this
study. The upper panel shows the range of variations of the cloud spacings;
The lower panel is the histogram of the obtained cloud spacings. Thered line

in the upper panel represents the median values of the cloud spacing.
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Fig. 5.17 Therange of variation of the cloud horizontal sizes. The upper
panel shows the range of variations of the cloud sizes; the lower panel is
the histogram of the obtained cloud sizes. Thered line in the upper panel

represents the median values of the cloud size.
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Fig. 5.18 Estimates of the cloud size distribution parameters.
(a) Parameter v for the exponential distribution: p(d) =ve™¢
(b) Parameter vfor the power law distribution: p(d) =(v —1)dmm”'l d”

¢) and (d) Parameters a and b, respectively, for the Weibull distribution: p(d) = abd® e "
(c) and (d) esp y p(d)

where d denotes the cloud horizonta size.
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Fig. 5.19 Estimates of the cloud spacing distribution parameters for “sd” type.

(a) Parameter i for the exponential distribution: p(s) = ue™*®
(b) Parameter w for the power law distribution: p(s) = (¢ —1)smm“'l s
(c) and (d) Parameters a and b, respectively, for the Weibull distribution: p(s) = abs” e

where s denotes the cloud spacing of the “sd” type.
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Fig. 5.20 Estimates of the cloud spacing distribution parameters for “cd” type.
(a) Parameter i for the exponential distribution: p(s) = ue™*®
(b) Parameter w for the power law distribution: p(s) = (¢ —1)smm“'l s

(c) and (d) Parameters a and b, respectively, for the Weibull distribution: p(s) = abs” e

where s denotes the cloud spacing of the “cd” type.
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Fig. 5.21 Estimates of the cloud spacing distribution parameters for the “xd” type.
(a) Parameter i for the Exponential distribution: p(x) = e ™

(b) and (c) Parameters a and b, respectively, for the Weibull distribution: p(x) = abx* e’

where x denotes the cloud spacing of the “xd” type.
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Fig. 5.24 Standard deviation of the difference between the models and the TSI observations as a function

of zenith angle. The various panels are as follows:

1 1D_sd Exp_Exp_IsoscelesTrapezoid 8 1D_Poisson IsoscelesTrpezoid
2 1D sd Exp_Exp_SemiEllipse 9 1D_Poisson_SemiEllipse

3 1D xd _Exp_Exp_lsosecelesTrapezoid 10 2D_Poisson_TruncatedCone
4 1D xd Exp Exp_SemiEllipse 11 2D_Poisson_SemiEllisoid

5 1D xd Web_Power_lsoscelesTrpezoid 12 2D_Poisson_Hemisphere

6 1D xd Web_Power_SemiEllipse 13 2D_Poisson_Hllipsoid

7 1D _cd Power_ Power VariableShape(Han) 14 2D_Poisson_RightCylinder

15 2D_ShiftRegular_Cuboida
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Fig. 5.25 Statistics of the model predictions of the CSE values and those inferred from the TSI
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Fig. 5.26 Differences between the CSE values predicted by the models and those obtained from TSI.

Box plot propertiesfollow thosein Fig 5.25. The individua boxes correspond as follows:

1 1D _sd Exp Exp_IsoscelesTrapezoid 8 1D _Poisson_IsoscelesTrpezoid
2 1D _sd Exp_Exp_SemiEllipse 9 1D _Poisson_SemiEllipse

3 1D _xd Exp_Exp_lsosecelesTrapezoid 10 2D_Poisson_TruncatedCone
4 1D xd Exp Exp_SemiEllipse 11 2D_Poisson_SemiEllisoid

5 1D _xd Web_Power_lsoscelesTrpezoid 12 2D_Poisson_Hemisphere

6 1D xd Web_Power_SemiEllipse 13 2D_Poisson_Ellipsoid

7 1D _cd Power_Power_ VariableShape(Han) 14 2D_Poisson_RightCylinder

15 2D_ShiftRegular_Cuboidal
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