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An approach to modeling thermal noise effects in stochastic magnetization

dynamics using a jump-noise process is presented. The damping term present in

classical Landau-Lifshitz and Landau-Lifshitz-Gilbert equations is shown to result

from the average of the jump-noise process in the presented stochastic Landau-

Lifshitz equation approach. A numerical technique for solving the Landau-Lifshitz

equation driven by a jump-noise process based on the Monte Carlo method is in-

troduced and the results obtained from this method are shown. The drawback of

using the Monte Carlo approach is discussed as well as the introduction of an aver-

aging method to model stochastic magnetization dynamics on energy graphs. This

averaging technique takes advantage of the difference in time-scale between the pre-

cessional motion and thermal effects in the stochastic Landau-Lifshitz model. By av-

eraging over precessional trajectories, a stochastic magnetization dynamics equation

on graphs is obtained. This averaging technique is demonstrated to be consistent

with Monte Carlo results through numerical simulations. Application of the averag-



ing technique to self-oscillations in magnetization dynamics due to the spin-transfer

torque phenomenon is investigated and numerical results are presented. Finally, the

power spectral density for magnetization dynamics on energy graphs is calculated.

Numerical results for the power spectral density are studied and analyzed.
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Chapter 1: Introduction

1.1 Motivation

The study of magnetization dynamics of magnetic materials on the nano-scale

has been the focus of extensive research4,8. This focus has been largely motivated

by the direct application to magnetic recording technologies and other emerging

novel phenomena40. In the field of magnetic recording technologies, the properties

by which the magnetic state of a ferromagnetic material can be manipulated by

externally applied fields have been widely explored and exploited. Below the Curie

temperature of the ferromagnetic material, spontaneous magnetization of a uniaxial

magnetic storage cell will cause the magnetic state to align either parallel or anti-

parallel to the easy axis, as defined by the magnetic anisotropy. This allows cells

of ferromagnetic material in recording devices to be recorded as either a 0 or a 1

depending on the magnetic orientation. There are several major challenges facing

the magnetic recording field. These challenges can be categorized into the following

related problems: How can the areal density of magnetic storage be increased? How

can the read/write speed be increased? How can thermal stability be improved?

These problems can often be framed as an optimization problem as higher areal

density due to reduced cell size can lead to increased read/write speeds but also
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decreased thermal stability. This is because a simple reduction in size of the storage

cells will cause a reduction in the energy barrier between the magnetic states repre-

senting 0 and 1. A smaller energy barrier is good for read/write speeds as it will be

easier to switch between the two states, but will be detrimental to thermal stability.

Thermal fluctuations can cause the magnetic state of the ferromagnet to change

and as the energy barrier is reduced, the influence of thermal fluctuations becomes

greater. As a result, at smaller energy barriers, the possibility of unwanted magnetic

inversions due to decreased thermal stability becomes greater. To better optimize

the balance between these competing results, a more thorough understanding of the

fundamentals of the magnetization dynamic process is needed under various condi-

tions. This understanding will facilitate improvements in the current process as well

as lead to discoveries and advancements with novel techniques such as heat-assisted

magnetic recording (HAMR), spin-torque switching, and optical switching. These

reasons are the motivation for the research outlined in the following chapters.

1.2 Overview

Theoretical studies and experimental verification often go hand in hand. In

the case of magnetization dynamics, theoretical models and numerical analysis com-

plement and often extend and predict results, as experimental techniques can be

limited in scope and resolution. At very short time scales and very small spatial

dimensions, it is difficult to control magnetic properties and it is often not possible

to obtain accurate results. As a result, numerical simulations based on theoretical
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models are often used to bridge the gaps and are not limited by size or time or

other parameters such as choice in magnetic anisotropy. Therefore, it is of great

interest to develop numerical models that can explore the behavior at these extreme

conditions to better understand the physics behind magnetization dynamics.

Traditionally, basic magnetization dynamics are described by the Landau-

Lifshitz or Landau-Lifshitz-Gilbert equation13,14,19, which conform to micromag-

netic constraints, with modifications or variations to account for more complex

behaviors10. These basic equations consist of two terms: a term that accounts

for precessional motion and a term that accounts for damping. To account for inter-

actions with the thermal bath that introduce thermal fluctuation, these equations

were modified to include a white-noise term. In this interpretation of the Landau-

Lifshitz equation, there is a precessional term and two noise terms, as damping can

be considered as the average effect of thermal noise. This approach can therefore

be simplified as these two terms can be combined into a single noise term. This

dissertation aims to investigate magnetization dynamics based on this simplified

Landau-Lifshitz approach and to develop numerical models that accurately predict

ferromagnetic behaviors.

In chapter 2, the traditional Landau-Lifshitz equation for magnetization dy-

namics is introduced as well as the equivalent Landau-Lifshitz-Gilbert equation. The

structure of the equations is discussed as well as the various alternative determinis-

tic forms for modeling magnetization dynamics. The conditions for the use of each

form is discussed as well as their application to micromagnetic modeling. The tra-

ditional stochastic interpretation of the Landau-Lifshitz equation is also presented
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and discussed.

In chapter 3, a new model for magnetization dynamics is presented. In this

approach, thermal bath effects typically modeled using the distinct and disjoint

damping and white-noise terms that appear in the traditional Stochastic Landau-

Lifshitz equation are instead treated using a single jump-noise process term. This is

due to the fact that the jump-noise process can have non-zero mean and therefore the

expected value of the jump-noise process can be used to account for average thermal

bath effects. Using this approach, novel phenomena that arise in magnetization

dynamics due to external interactions can be studied.

In chapter 4, a modified approach to studying magnetization dynamics is pre-

sented. This approach is based on the concept that for very small damping, magne-

tization dynamics can be seen to behave on two different time scales with distinct

behaviors. The precessional motion at constant magnetic energy occurs on a very

fast time scale while damping and other effects occur on a much slower time scale.

Thus, using an averaging technique, the behavior at slow time scales can be explored

separately as a study of magnetization dynamics on energy graphs. This averaging

technique is used to explore the Kramers-Brown approximation7,17 and to explore

magnetization switching behavior at very low temperatures36,37,38,39.

In chapter 5, the effects of the spin-torque phenomenon on magnetization

dynamics is investigated. The spin-transfer torque is the phenomenon by which

the orientation of the magnetic state can be altered by injecting a spin-polarized

current1,6,35,41. The discovery of this effect ushered the advancement of magnetic

storage technologies by reducing the applied magnetic field needed for a magnetic
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inversion while maintaining thermal stability. It also opened the door for a new

field of study in spintronics and has led to novel devices such as spin-torque nano-

oscillators (STNOs) where a constant current input can produce an oscillating volt-

age output. Spin-torque driven magnetization dynamics is traditionally modeled

using the Landau-Lifshitz equation with an additional spin-torque term introduced

by Slonczewski to form the Landau-Lifshitz-Slonczewski equation. This spin-torque

term is an additional term that can also be included in the jump-noise process de-

scription as spin-torque can be interpreted as an effect from spin-polarized electron

scattering. The spin-torque phenomenon is explored with the help of the averaging

technique introduced in chapter 4. This approach is then applied to explore the

spin-polarized current injection-induced phenomenon of self-oscillations.

In chapter 6, power spectral density for magnetization dynamics is explored16.

The study of the power spectral density is important to connect the presented ap-

proach to experimental observations. The equations for calculating power spectral

density on energy graphs are derived. Numerical simulations are presented and

compared with expected experimental results.

Finally, a discussion and summary of the presented research is included in

chapter 7. Possible extensions of this research for future study are also presented.
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Chapter 2: Magnetization Dynamics Equations

2.1 Micromagnetic Model

In micromagnetics, the magnetization describes the state of the ferromagnet

and is a measure of the magnetic moment per unit volume. The magnetization is

therefore a function of the position within the ferromagnet r and the time t: M =

M(r, t). It is an measure of how a magnetic material is affected by magnetic fields,

both internally generated as well as those from outside the material. An important

property of the magnetization is that for materials far below their Curie temperature,

the magnitude of the magnetization is preserved due to strong dominance of local

exchange interactions and is equal to the spontaneous magnetization:

|M(r, t)| = Ms (2.1)

This condition is known as the micromagnetic constraint.

The magnetization can be affected by many internal and external sources. In

the micromagnetic framework, these sources include externally applied fields, short

range exchange interactions, long range magnetostatic interactions, and contribu-

tions from the magnetic anisotropy as well as numerous others.
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2.1.1 Micromagnetic Parameters

The micromagnetic model and its interactions can also be expressed in terms

of the micromagnetic free energy g. The micromagnetic free energy is a function of

the magnetization and the applied fields and can be defined by the following volume

integral:

g(M,Ha) =

∫
Ω

[ A
M2

s

((∇Mx)
2 + (∇My)

2 + (∇Mz)
2) (2.2)

+ fAN(M)− µ0

2
M ·HM − µ0M ·Ha

]
dV.

In the above equation, Ha is the applied magnetic field, Ω is the region of the ferro-

magnet, A is the exchange stiffness constant, Ms is the spontaneous magnetization,

Mx, My, and Mz are the x,y, and z components of the magnetization respectively, µ0

is the free space permeability, and HM is the magnetic field from the magnetostatic

effect.

The first term in the integral is a term associated with the free energy from

exchange interactions. It can be seen from this term that non-uniformities in the

magnetization orientation are penalized by increasing the free energy. This is a

reflection of the physical manifestation of the exchange interaction wanting to align

neighboring spins due to spin-spin interactions.

The second term in the integral, fAN(M), describes the effects from the crystal

anisotropy of the ferromagnetic material. In ferromagnetic materials under the Curie

temperature there exists a lattice structure that produces an energy landscape of

preferred and non-preferred orientations. When all other applied fields are absent,
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the magnetization will tend to align with preferred orientations of energy minima,

called the easy axes or directions. Maxima of fAN(M) are called the hard axes or

directions. There can also exist saddle-points in fAN(M), and these orientations are

called intermediate axes.

The third term in the integral represents the free energy contribution from

magnetostatic field effects. This contribution depends on the field HM , which is

determined by the following magnetostatic Maxwell equations, subject to interface

conditions:

∇×HM = 0,∇ ·HM = −∇ ·M. (2.3)

The last term in the integral is the free energy contribution from interactions

with an externally applied magnetic field Ha. This externally applied field is a vector

field and can be a function of time. The energy contribution from these externally

applied magnetic fields is also known in literature as the Zeeman energy.

These four terms in the micromagnetic free energy integral encompass the

major components of interest for this dissertation. There can be additional terms,

such as contributions from magnetoelastic effects, but these are beyond the scope

of this dissertation.

The four terms of interest in the micromagnetic free energy integral can be

combined and interpreted as a single effective field:

Heff = HEX + HAN + HM + Ha. (2.4)

Here, HM and Ha are the same as previously defined and HEX and HAN represent

the exchange field and the anisotropy field, respectively. The exchange field, HEX

8



is defined

HEX =
2A

µ0M2
s

∇M, (2.5)

while the anisotropy field HAN is defined

HAN = − 1

µ0

∂fAN
∂M

. (2.6)

Using these effective fields, the equilibrium magnetization can be found by

solving for the micromagnetic energy extrema: δg = 0. The free energy variation

due to magnetization variation δM is defined by

δg = −µ0

[ ∫
Ω

Heff · δMdV − 2A

µ0M2
s

∮
Σ

∂M

∂n
· δMdS

]
. (2.7)

The first term is familiar and results from interactions with the effective applied

field while the second term is an integration over the surface Σ of the ferromagnet.

This second term represents changes in the magnitude of the magnetization as ∂/∂n

is the derivative normal to Σ.

Solving for δg = 0 results in

M×Heff = 0 (2.8)

for each point in Ω, and

∂M

∂n
= 0 (2.9)

for each point on Σ. These results are consistent with the micromagnetic constraints

as the first result implies that the magnetization will align parallel or antiparallel

to the effective applied field and the second result implies that the magnitude of

magnetization is preserved. Equation (2.8) is also known as Brown’s equation.

9



2.2 Deterministic Magnetization Dynamics

In the previous section, the equilibrium condition was analyzed and was found

to satisfy M × Heff = 0 such that the magnetization aligns with the effective

applied field. In reality, this condition is very rarely satisfied and the dynamics

of the magnetic state when it is not in equilibrium is much more complex and

interesting. To study this, Landau and Lifshitz introduced a dynamic equation to

model the evolution of the magnetic state19. Over the years, there have been many

modifications to the basic dynamic equations, including a mathematically equivalent

form known as the Landau-Lifshitz-Gilbert equation13,14.

2.2.1 Landau-Lifshitz equation

The basic Landau-Lifshitz equation and all of its variants are based on the idea

that when the magnetic state is not in equilibrium, the effective field Heff acting

on the magnetization will induce a precessional motion. This precessional motion

will center around an equilibrium point with a precessional rate γ and will obey

∂M

∂t
= −γM×Heff . (2.10)

The precessional rate γ is the gyromagnetic ratio and is associated with the electron

spin.

It can be seen that the free energy in the above equation is conserved and

therefore (2.10) cannot be used to describe the thermal relaxations to the equilib-

rium condition that are expected from physical systems. To account for dissipative

10



interactions, the Landau-Lifshitz equation took the form

∂M

∂t
= −γLM×Heff −

αγL
Ms

M× (M×Heff ), (2.11)

where α is a dimensionless damping factor. From the form of the second term in

the equation, it is easy to see that this term acts orthogonal to the magnetization

and the precessional motion and drives the magnetization towards regions of lower

energy. Therefore, while both terms in the Landau-Lifshitz equation satisfy micro-

magnetic constraints and preserve the magnitude of magnetization, only the first

term preserves free energy.

2.2.2 Landau-Lifshitz-Gilbert Equation

Another common deterministic magnetization dynamics equation was pro-

posed by Gilbert as a modification of the Landau-Lifshitz equation. This Landau-

Lifshitz-Gilbert equation has the form:

∂M

∂t
= −γGM×Heff +

α

Ms

M× ∂M

∂t
. (2.12)

As seen from the equation, the first term in the Landau-Lifshitz-Gilbert equa-

tion appears to be very similar to the Landau-Lifshitz equation. This first term also

represents a precessional term in the magnetization dynamics. The second term is

also a damping term with α as a damping component. The difference is that the

damping term in the Landau-Lifshitz-Gilbert equation depends on the time deriva-

tive of the magnetization. These equations may look different, but with the proper

rescaling of γG, the Landau-Lifshitz-Gilbert equation can be shown to be mathe-

matically equivalent to the Landau-Lifshitz equation. This can be done by taking
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the cross product of the magnetization and the time derivative of the magnetization

in the Landau-Lifshitz equation to get:

M× ∂M

∂t
= M×

[
−γLM×Heff −

αγL
Ms

M× (M×Heff )

]
. (2.13)

Reorganizing the equations gives:

M× ∂M

∂t
= −γLM× (M×Heff )−

αγL
Ms

M× (M× (M×Heff )). (2.14)

From the definition of cross product, the second term can be simplified:

αγL
Ms

M× (M× (M×Heff )) =
αγLM

2
s

Ms

M×Heff = αγLMsM×Heff . (2.15)

Therefore, equation (2.14) can be reordered to show:

− γLM× (M×Heff ) = M× ∂M

∂t
+ αγLMsM×Heff . (2.16)

Rescaling (2.16) to fit the second term in the Landau-Lifshitz equation gives:

− αγL
Ms

M× (M×Heff ) =
α

Ms

M× ∂M

∂t
+ α2γLM×Heff . (2.17)

Replacing (2.17) in the Landau-Lifshitz equation gives:

∂M

∂t
= −γLM×Heff +

α

Ms

M× ∂M

∂t
+ α2γLM×Heff . (2.18)

Regrouping terms gives:
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∂M

∂t
= −(γL − α2γL)M×Heff +

α

Ms

M× ∂M

∂t
. (2.19)

By defining γG = γL − α2γL, it is evident that the Landau-Lifshitz-Gilbert

equation in (2.12) is recovered, thereby showing the mathematical equivalence of

the two magnetization dynamics equation forms.

These two deterministic equations for magnetization dynamics are the most

common. While the two equations are mathematically equivalent, one form may

be preferred over the other based on the strength of the damping. In the Landau-

Lifshitz equation, the equivalent gyromagnetic ratio is dependent on the damping

parameter, which better represents ferromagnetic behavior for large damping. On

the other hand, the damping in the Landau-Lifshitz-Gilbert equation is proportional

to the energy dissipation. In this way, it more accurately predicts slower changes in

the magnetization motion as the damping increases. In either case, the equations can

be fitted by introducing the appropriate gyromagnetic ratio and damping constants.

2.2.3 Other Deterministic Equations

There are many other forms for deterministic magnetization dynamic equa-

tions than the two presented above. One variant is a combination of the Landau-

Lifshitz and Landau-Lifshitz-Gilbert equation:

∂M

∂t
= −γM×Heff +

α1

Ms

M× ∂M

∂t
− α2γ

Ms

M× (M×Heff ). (2.20)

Another variant is the Landau-Lifshitz-Bloch equation which is used for magne-

tization dynamics close to the Curie temperature40. This is because the Landau-
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Lifshitz-Bloch equation has a term that lies parallel to the applied field such that the

magnetization magnitude may no longer be preserved. The Landau-Lifshitz-Bloch

equation has the form:

∂M

∂t
= c1Heff + c2Heff ×M + c3Heff × (Heff ×M). (2.21)

In addition to these equations, there are many other variants but the discussion of

their forms and uses are beyond the scope of this dissertation.

This dissertation will focus on the specific case of individual particles with uni-

form magnetization M. Knowledge and understanding of magnetization dynamics

at the level of a single particle can be extended to the general challenge of solving

the evolution of complex systems such as for bulk materials, thin films, and other

particle ensembles.

2.3 Stochastic Magnetization Dynamics

In the previous section, several deterministic forms of the magnetization dy-

namic equations were presented. In this section, thermal fluctuations are incorpo-

rated into the deterministic magnetization dynamics to model stochastic magne-

tization dynamics. As magnetic storage cell sizes decrease, the effect of thermal

fluctuations plays a larger role. Thermal fluctuations can cause changes to the

magnetization state and the aggregate effect may even induce transitions from one

stored state to another. In other words, thermal fluctuations may cause an un-

wanted inversion between stored states in a magnetic storage element from 0 to 1 or

vice versa. As this can be a dominant effect in magnetization dynamics, stochastic

14



magnetization dynamics due to thermal fluctuations will be the focus of the rest of

this dissertation.

2.3.1 Ito vs. Stratonovich Calculus

Before any meaningful discussion of stochastic magnetization dynamics can

begin, it is important to clarify how the stochastic equations are to be treated. As

stochastic magnetization dynamics are described using stochastic differential equa-

tions, particularly non-linear stochastic differential equations, it is important to note

that these equations cannot be treated using ordinary calculus methods11,12,15,18.

To treat stochastic differential equations, Ito and Stratonovich defined alter-

native stochastic calculus methods called Ito and Stratonovich calculus respectively.

These two methods both effectively treat stochastic differential equations and differ

only in their definition of integration. They are both in common use where Ito

calculus is commonly seen in the area of finance for solving the Black-Scholes model

for option pricing and Stratonich calculus is frequently used for modeling in physics.

For the case of magnetization dynamics, interpretation in the Stratonovich

sense is appropriate and has distinct advantages over the Ito calculus interpretation

as will be seen in later chapters.

2.3.2 White Noise

Thermal fluctuations in magnetization dynamics are usually studied by intro-

ducing a stochastic term to the deterministic Landau-Lifshitz or Landau-Lifshitz-
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Gilbert equation. As the white-noise process has been extensively studied and of-

ten appears in mathematical descriptions of other physical systems, the traditional

choice is to introduce a white-noise process to the deterministic magnetization dy-

namics. There is also some debate as to how the white-noise process should be

introduced in the equation. One form the stochastic Landau-Lifshitz equation can

take is:

dm

dt
= −m× (heff + νhN(t))− αm× (m× heff ), (2.22)

where m and heff are normalized versions of the magnetization and effective applied

field, respectively, and hN is a white-noise vector field with parameter ν. ν is a

parameter that measure the intensity of thermal perturbations. In this form, the

noise term is a perturbation of the precessional term.

An alternative form is:

dm

dt
= −m× (heff + νhN(t))− αm× [m× (heff + νhN(t))] (2.23)

In this form of the stochastic magnetization dynamics, the noise field is a perturba-

tion of the effective field.

In both cases, the noise field is a random field whose components are indepen-

dent gaussian white-noise processes and both can be shown to be equivalent up to

a renormalization of coefficients. Gaussian white-noise processes are defined as the

derivative of the isotropic Wiener process W(t) so

hN(t) =
dW(t)

dt
. (2.24)

By considering the Wiener process, the stochastic Landau-Lifshitz equation (2.22)
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can be rewritten as:

dm = −[m× heff + αm× (m× heff )]dt+ νm× dW(t). (2.25)

This stochastic differential equation is complex and hard to solve with exact an-

alytical solutions only possible in the simplest cases. To solve more complicated

equations of this form, many numerical methods have been developed to evaluate

numerical solutions for certain special cases of interest.
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Chapter 3: Jump-Noise Driven Magentization Dynamics

3.1 Stochastic Interpretation

Stochastic magnetization dynamics has traditionally been modeled using a

white-noise process in the Landau-Lifshitz or Landau-Lifshitz-Gilbert equations as

mentioned in the previous chapter. In their simplest form, these equations contain

three terms: a precessional term, a damping term, and a stochastic noise term. In

reality, the last two terms can be seen to model the same thermal phenomenon. The

reason that these two terms are necessary is that neither term can fully describe

the noise effects from the thermal bath on their own. The damping term can model

an aggregate effect but does not contain the necessary mathematics to deal with

random fluctuations in time. The white-noise term can deal with fluctuations in

time but, as white-noise is inherently a zero-mean process, it cannot deal with the

aggregate motion of thermal drift. These relations were originally established by

using the fluctuation-dissipation theorem such that the Landau-Lifshitz or Landau-

Lifshitz-Gilbert equations establish an equilibrium condition that is disturbed by

small random fluctuations. This approach works for conditions close to equilibrium

such that the damping effect is small, but may not accurately describe the behavior

when the magnetization state is far from equilibrium. To develop a better model, the

18



influence of the thermal bath should be considered as a whole, without restrictions

such as applying the fluctuation-dissipation theorem.

One method of accounting for thermal fluctuations without the fluctuation-

dissipation theorem is by using a jump, or ‘jump-noise’ process. In a jump-noise

process, the magnetization experiences random, discrete ‘jumps’ in magnetization

that follow a set probability distribution27,28,31,34. Since the jump-noise process is

not zero-mean, thermal effects can be fully described using a single term. Using this

approach, the jump-noise driven magnetization dynamics can also be shown to be

equivalent to the traditional stochastic magnetization dynamics under certain cases

as the traditional damping term appears as the average of the jump-noise process.

3.1.1 Jump-Process

It is useful to briefly describe the nature of the jump-process and highlight

some differences that separate this stochastic process from the Wiener white-noise

process.

Under the white-noise stochastic interpretation, random effects will occur as

continuous noise that satisfies the Hölder condition, with stationary, independent

increments that follow a zero-mean, Gaussian distribution. The stochastic interpre-

tation of the jump process differs in that the jump process has large discrete ‘jumps’

and can follow a distribution with a non-zero mean. Common usages for the jump

process are in the description of particle transport in semiconductor physics or for

modeling the movement of prices in financial models.
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3.2 Stochastic Magnetization Dynamics using Jump-Noise

As mentioned in the previous section, a jump-noise process can be introduced

to account for interactions with the thermal bath. The stochastic magnetization

dynamics can therefore be written as

dM

dt
= −γ(M×Heff ) + Tr(t), (3.1)

where M is the magnetization, γ is the gyromagnetic ratio, and Heff is the effective

magnetic field as described in the previous chapter. In this equation, Tr(t) is a

time-dependent jump-noise process that is introduced to account for thermal bath

effects. Tr(t) is defined by the equation

Tr(t) =
∑
i

miδ(t− ti), (3.2)

where mi represent random jumps in the magnetization that occur at random in-

stances of time ti. This random jump is also known as a ‘scattering’ event. It

is important to note that in this definition of jump-noise, it can be seen that the

jump-noise does not directly depend on the magnetization. From the equations

presented in (3.1) and (3.2), it is easy to see that the magnetization dynamics con-

sists of the typical precessional motion randomly interrupted by random jumps in

magnetization as shown in Figure 3.1.

As the conditions under consideration are far below the Curie temperature,

the local exchange interactions prevail and so the magnitude of magnetization must

satisfy the micromagnetic constraints:

|M(t)| = Ms = const, (3.3)
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Figure 3.1: Magnetization dynamics consists of precessional motion ran-
domly interrupted by random jumps in magnetization.
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where Ms is the spontaneous magnetization. Therefore, the random jumps in mag-

netization defined by the jump-noise process must remain on the surface of the

sphere Σ defined by (3.3).

To solve for the jump-noise process, the statistics for mi and ti must be fully de-

fined. This can be done by introducing the transition probability rate S(Mi,Mi+1),

where Mi = M(t−i ) and Mi+1 = M(t+i ) = Mi + mi are the magnetization imme-

diate prior to and following a random jump at random time ti, respectively. This

transition probability rate represents the rate at which transitions from Mi to Mi+1

are likely to occur. To satisfy (3.3) such that the magnitude of magnetization re-

mains constant, S(Mi,Mi+1) must therefore be defined on the sphere Σ. What this

means is that transitions to magnetizations off of the sphere cannot happen, and

that S(Mi,Mi+1) = 0 for all Mi+1 not on the sphere Σ.

To find the transition probability rate, it is easier to start with a description of

the stochastic magnetization dynamics from the point of view of transition proba-

bility densities w(M, t;M0, t0), which describes the probability distribution at time

t. This is a Markov approach and for notational simplicity, the ‘backward’ variables

will be omitted from the following chapters. It can be shown that the transition

probability density is a solution to

∂w

∂t
= −γ∇Σ · [(M×∇Σg)w] + Ĉ(w), (3.4)

where Ĉ(w) is a collision integral given by

Ĉ(w) =

∮
Σ

[S(M′,M)w(M′, t)− S(M,M′)w(M, t)]dΣ′, (3.5)
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and g is the micromagnetic free energy. g is related to the effective field Heff by

Heff = −∇Σg. (3.6)

By observing (3.4) and (3.5), it is clear that the collision integral does not

share the same form of a second-order PDE ‘diffusion’ term that is expected from a

white-noise process. Instead, the collision integral is first-order, which makes (3.4) a

linear PDE and considerably easier to solve. Equation (3.4) is therefore convenient

for deriving the transition probability rate S(M,M′).

At thermal equilibrium, the transition probability density follows a global

Boltzmann-type distribution and obeys the equations:

w(M, t) = w0(M) = Ae−
g(M)
kT , (3.7)

∂w0(M)

∂t
= 0, (3.8)

and

∇Σ · [(M×∇Σg)w0] = 0, (3.9)

where w0 is the equilibrium transition probability density and A is a normalization

parameter.

This means is that assuming the magnetization is in well R1, the distribution

in that well can be mathematically expressed by the formula

wo1(M) =
1

Z1

e−
g(M)−g1

kT , (3.10)

where Z1 is a partition function that is define by

Z1 =

∫
R1

e−
g(M)−g1

kT dg, (3.11)
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and g1 is the energy minimum in R1.

By using the equation in (3.5), the collision integral at equilibrium becomes

Ĉ(w) =

∮
Σ

[S(M′,M)w(M′, t)− S(M,M′)w(M, t)]dΣ′ = 0. (3.12)

Put another way, (3.4) is satisfied at equilibrium if the “detailed balance” condition

is satisfied:

S(M′,M)w(M′, t) = S(M,M′)w(M, t). (3.13)

This is a natural result as it expresses that at equilibrium, the probability of scatter-

ing from M to a point M′ on Σ is exactly balanced by the probability of scattering

from M′ to M.

From the detailed balance equation and (3.7), it is easy to see that S(M,M′)

can be expressed in the form

S(M,M′) = φ(M,M′)e
g(M)−g(M′)

2kT , (3.14)

where φ(M,M′) is a symmetric function such that φ(M,M′) = φ(M′,M). In

general, φ(M,M′) should be determined from experimental results, but it is natural

to assume that it is narrow peaked at M = M′ since small jumps in magnetization

are much more likely than large jumps. The symmetric function φ(M,M′) can

therefore be defined as

φ(M,M′) = φ(|M−M′|). (3.15)

Using the identity

φ(x) = elnφ(x), (3.16)
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and taking the first three terms of the Taylor expansion for the natural logarithm,

lnφ(x) ' lnφ(0)− |φ
′′(0)|

2φ(0)
x2. (3.17)

The transition probability rate can therefore be written as

S(M,M′) = Ae−
|M−M′|2

2σ2 e
g(M)−g(M′)

2kT , (3.18)

where A and σ2 characterize the thermal bath effects and

σ2 =
φ(0)

|φ′′(0)|
. (3.19)

Now that the transition probability rate is defined, the equation for jump-noise

process driven magnetization dynamics can be characterized. From the transition

probability rate construct, the timing of the jumps can be characterized by

Pr(ti+1 − ti > τ) = e−
∫ ti+1
ti

λ(M(t))dt, (3.20)

where λ(M(t)) is the scattering rate. This scattering rate is defined as

λ(M(t)) =

∮
Σ

S(M(t),M′)dΣ′, (3.21)

where Σ′ is the sphere defined by all possible magnetizations of M′.

From equation (3.21) it is easy to see that the scattering rate is the probability

of a magnetization scattering event occurring from M(t) to any point M′ on Σ during

a time interval dt. Assuming a scattering event occurs, the conditional probability

density of the jump in magnetization mi is given by

χ(mi|Mi) =
S(Mi,Mi + mi)

λ(Mi)
. (3.22)
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This conditional probability density satisfies normalization conditions,∮
Σ

χ(mi|Mi)dΣmi
= 1, (3.23)

where Σmi
is the sphere defined by all possible mi such that Mi + mi remains on

the sphere Σ.

To show that this jump-noise process approach can be interpreted in the same

way as the classical stochastic magnetization dynamics, the magnetization damping

term can be extracted from the expected value of the jump-noise. The jump noise

process defined above can also be written as

Tr(t) = E(Tr) + T0
r(t), (3.24)

where the first term is the expected value of the jump-noise process and the second

term is the zero-mean fluctuations.

It has been shown15 that the expected value of the jump-noise process can be

written

E(Tr) = λ(M(t))E(m(t)). (3.25)

From a physical viewpoint, it can be safe to assume that only small jumps

m(t) in magnetization have non-negligible probability of occurring. This assump-

tion also follows from (3.22) where large jumps will have a very small transition

probability rate. Using this assumption and the fact that jumps in magnetization

are constrained to Σ, it can be concluded that

M(t) · E(m(t)) ' 0 (3.26)

since the angle of the magnetization does not change significantly.
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From equations (3.25) and (3.26) and multiplying through by λ(M(t)), it is

easy to see that

M(t) · E(Tr(t)) ' 0. (3.27)

This implies that the expected value of the jump-noise process is in a direction that

is orthogonal to the magnetization M(t). As a consequence, this means that the

magnitude of magnetization is conserved by the jump-noise process. By choosing

basis vectors in the plane orthogonal to M(t), the expected value of the jump-noise

process can be written as

E(Tr(t)) ≈ −γ′(M×Heff )− αM× (M×Heff ). (3.28)

This leads to the expression for the stochastic magnetization dynamics equation:

dM

dt
= −(γ + γ′)(M×Heff )− αM× (M×Heff ) + T0

r(t). (3.29)

This has the same form as the stochastic Landau-Lifshitz equation. With the ap-

propriate change in basis vectors, it can easily be shown that the stochastic Landau-

Lifshitz-Gilbert equation emerges.

3.3 Numerical Modeling

Now that the jump-noise process driven magnetization dynamics has been fully

defined, a method of solving the equation is needed. As mentioned at the end of

chapter 2, exact analytical solutions of stochastic magnetization dynamics are only

possible in certain cases. Therefore, to analyze general stochastic magnetization

dynamics, numerical methods are needed.
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From (3.1) it is clear that there are two distinct components to the jump-noise

driven dynamics. The first component is a deterministic precessional motion and the

second component is a random scattering due to the jump-noise process. A natural

breakdown for finding a numerical solution is to also have two distinct components –

one part to handle the precessional motion and another part to handle the stochastic

term.

3.3.1 Precessional Motion

To numerically integrate the precessional motion of the stochastic magneti-

zation dynamics, some extra care is needed. As (3.1) is a stochastic differential

equation, ordinary differential equation methods do not necessarily apply. In the

case of multiplicative stochastic noise, as with (3.1) where the noise is a function

of magnetization, there is a choice in stochastic integration interpretation as men-

tioned previously. The two different interpretations are known as Itō calculus or

Stratonovich calculus. These two interpretations handle random processes differ-

ently but have been shown to produce equivalent results after an appropriate trans-

formation. Generally, the use of Itō calculus is more prevalent in fields such as

finance theory where the stochastic equation can only depend upon past events. On

the other hand, the Stratonovich integral has gained wide acceptance in physics due

to its ability to model physical phenomena and the convenient fact that it obeys

certain ordinary calculus rules such as the chain rule. To solve (3.1), a numerical

strategy based on the Stratonovich interpretation will be used.
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Looking at only the precessional component of the magnetization dynamics,

the equation is left with:

dM

dt
= −γ(M×Heff ). (3.30)

This equation can be solved by using a mid-point finite difference scheme:

M(n+1) −M(n)

∆tn
= −γM

(n+1) + M(n)

2
×H

(n+ 1
2

)

eff . (3.31)

This scheme is borrowed from finite element analysis techniques where the magne-

tization is analyzed at discrete time steps t1, t2, ...tn and ∆tn = tn+1 − tn. In this

method, M(n+1) is the magnetization at tn+1, M(n) is the magnetization at tn, and

H
(n+ 1

2
)

eff is the effective magnetic field at tn+ 1
2

= tn + ∆tn
2

.

An easily seen benefit of this approach is that the micromagnetic constraints

are satisfied. This can be proven by dot-multiplying both sides of (3.31) by M(n+1)+

M(n). Since the right side of (3.31) contains the cross product with respect to

M(n+1) + M(n) and since the cross product of a vector is orthogonal to itself, the

right side of the equation disappears. What remains is:

[
M(n+1) + M(n)

]
·
[
M(n+1) −M(n)

∆tn

]
= 0. (3.32)

Rearranging the terms gives:

[
M(n+1) + M(n)

]
· M

(n+1)

∆tn
=
[
M(n+1) + M(n)

]
· M

(n)

∆tn
. (3.33)

Multiplying through by ∆tn and distributing gives:

M(n+1) ·M(n+1) + M(n) ·M(n+1) = M(n+1) ·M(n) + M(n) ·M(n). (3.34)
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Simplifying this equation gives:

|M(n+1)|2 = |M(n)|2 = M2
s . (3.35)

It is easy to see that this result is independent of Heff and thus demonstrates that

this method will always conserve the magnitude of magnetization and can accurately

model precessional magnetization dynamics.

Another method to verify the accuracy of the mid-point finite difference scheme

is that as (3.30) only includes the precessional motion, the micromagnetic free energy

should remain constant. What this means is that precessional trajectories traced

out by the magnetization must form closed trajectories. Figure 3.2 shows that for

sufficiently small time steps ∆tn, the numerical scheme does indeed result in closed

precessional trajectories. The three trajectories presented together in Figure 3.2

represent closed paths of constant energy under different anisotropy and externally

applied field conditions.

3.3.2 Jump-Noise Component

Once the precessional term in (3.1) is solved using the finite midpoint differ-

ence scheme, it is necessary to evaluate the second term in the equation. Since the

scattering rate λ(M(t)) for the jump-noise process is a function of the magnetiza-

tion, the time-statistics therefore obey a inhomogeneous Poisson distribution. As a

result, it is very difficult to determine τ , the time interval between jumps, or scat-

tering events. To handle this random component of the magnetization dynamics,
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Figure 3.2: Magnetization dynamics with no damping results in closed
precessional trajectories. Three separate closed trajectories are shown
for different anisotropy and applied field values.
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a technique called ‘self-scattering’ is borrowed from analyzing semiclassical trans-

port of electrons and holes in semiconductor physics26. To simplify the problem of

solving jump-noise, a complementary random jump process T
(0)
r (t) that describes

‘self-scattering’ can be added to (2.1):

dM

dt
= −γ(M×Heff ) + Tr(t) + T(0)

r (t). (3.36)

While this may seem to make the equation more complex as there are now two

random jump-processes to consider, the way T
(0)
r (t) is defined considerably simplifies

the calculations.

Similar to Tr(t), T
(0)
r (t) is defined by transition probability rate S0(Mi,Mi+1).

This transition probability rate is given by

S0(Mi,Mi+1) = λ0(Mi)δ(Mi+1 −Mi). (3.37)

The conditional probability density χ0(mi|Mi), for this new scattering term is found

to be

χ0(mi|Mi) =
S0(Mi,Mi + mi)

λ0(Mi)
= δ(mi). (3.38)

What this means is that this additional scattering process will produce jumps in

magnetization that stay exactly in the same place. For this reason, this additional

scattering process is called ‘self-scattering.’

Since the addition of a self-scattering process does not actually change the

magnetization dynamics, one can wonder: what is the point of this additional term?

While self-scattering does not affect the stochastic dynamics, the self-scattering rate

can have an impact on the total scattering rate experienced by the magnetization.
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Figure 3.3: The self-scattering rate λ0 is added to the thermal scattering
rate λ to create a homogeneous total scattering rate Γ.

By choosing an appropriate self-scattering rate, it is possible to homogenize the total

scattering rate in time as seen in Figure 3.3. This greatly simplifies the numerical

calculations needed for finding the time between jumps. By choosing λ0(M(t)) such

that the total scattering rate Γ is

Γ = λ(M(t)) + λ0(M(t)) = const, (3.39)

then the time interval between scattering events becomes much easier to solve.

The statistics for the time between jumps given in (3.4) then becomes

Pr(ti+1 − ti > τ) = e−Γτ . (3.40)

Since (3.40) gives the probability that scattering occurs after time interval τ , the

33



complement of this equation gives the probability P (τ) of scattering during τ :

P (t ≤ τ) = 1− e−Γτ . (3.41)

As seen from (3.40) and (3.41), both of these time statistics are independent of ti.

To generate the time intervals τ between scattering events for numerical sim-

ulations, the inverse of (3.41) can be used:

τ = − 1

Γ
ln[1− P (τ)]. (3.42)

Since P (τ) is a probability distribution with values that lie between 0 and 1, a

value for τ can be obtained by randomly generating a value for P that is uniformly

distributed between 0 and 1. Thus, if a scattering event occurs at ti, the next

scattering event is calculated to occur at ti+1 = ti + τ .

Once a scattering event has been determined, a determination must be made as

to if the scattering event was due to self-scattering or due to thermal fluctuations.

Since the total scattering rate is the sum of the individual scattering rates, the

probability densities of thermal scattering and self-scattering are proportional to

their respective scattering rates, λ(M) and λ0(M). Discrimination between the

two events can therefore be made by randomly generating a value ν between 0

and Γ whose probability is uniformly distributed. If 0 < ν < λ(M), then the

scattering is said to be due to thermal fluctuations. The new magnetization is then

determined using the conditional probability density in (3.22). If λ(M) < ν < Γ,

a self-scattering event is determined to have occurred. The new magnetization

after the scattering is therefore the same as before the scattering in accordance

to the conditional probability density in (3.38). Once these determinations have
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been made, the process repeats by generating a new random time interval τ and

precessing the magnetization until that time instance is reached.

3.3.3 Monte Carlo Analysis

The evolution of a single instance of a ferromagnetic particle driven by a

jump-noise process can be obtained by following the numerical techniques outlined

in the previous subsections. Because the jump-noise process is inherently random,

the magnetization trajectories resulting from these dynamic evolutions will also be

random. As a result, each trajectory will be different and will represent just one

of an infinite realm of possible trajectories the magnetization can take. To obtain

useful information from these trajectories and to gain a better understanding of the

time evolution of the system, a Monte Carlo approach is necessary. By generating

hundreds, or thousands, or even more trajectories that differ by their randomly

generated time intervals and jumps in magnetization, the Monte Carlo approach

can produce a distribution from the aggregate trajectories. Therefore, not only are

the possible trajectories obtained, but how likely each realization is will also be

known.

Figure 3.4 illustrates the cumulative distribution function for the probability

of first switching in a uniaxial particle with energy barrier of 1.74kT .

Figure 3.5 shows that the cumulative distribution function for the probability

of first switching in a uniaxial particle does not change at elevated temperatures as

long as the energy barrier remains the same.
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Figure 3.4: Cumulative distribution function for Dx = Dy = 0.1, Dz =
0.01, Ha = 0, T = 300K, σ2 = 0.1, B = 1012, normalized g/kT = 1.7407.
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Figure 3.5: Cumulative distribution function for Dx = Dy = 0.15, Dz =
0.01, Ha = 0, T = 466.7K, σ2 = 0.1,B = 1012, normalized g/kT =
1.7406.
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Figure 3.6: Cumulative distribution function for Dx = Dy = 0.15, Dz =
0.01, Ha = −0.0277, T = 300K, σ2 = 0.1,B = 1012, normalized g/kT =
1.742.

In figure 3.6, the cumulative distribution function for the probability of first

switching in a uniaxial particle can be seen to be the same under applied magnetic

fields as long as the energy barrier remains the same.

Because of the random nature of this Monte Carlo approach, simulations re-

sults may differ from simulation to simulation, even with the same initial conditions.

Therefore, for higher accuracy, a larger number of realizations are necessary. How-

ever, even with more realizations, it is not possible to realize every trajectory and

so the Monte Carlo approach can only approach the exact solution as the number

of trials approach infinity.
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3.3.4 Parallel Processing

It should be mentioned that the Monte Carlo approach to modeling mag-

netization dynamics can be inherently slow since it depends on aggregating large

numbers of independent trajectories to create the resulting probability distribution.

Using traditional computing resources where calculations are performed on CPUs,

this Monte Carlo process can easily become time restrictive.

Using an alternative computational approach, the Monte Carlo method can

be designed such that the calculations can be performed in parallel on Graphics

Processing Units (GPUs)25. Since the trajectories calculated using the Monte Carlo

approach are inherently independent from each other, the Monte Carlo simulations

are uniquely suited for parallel processing.

Figure 3.7 illustrate the simulated results of the equilibrium distribution for

a uniaxial superparamagnetic cobalt nanoparticle. This calculation was performed

on GPUs using over 10,000 Monte Carlo simulations and show close agreement with

the expected Monte Carlo distribution. Additional details of this GPU approach

are beyond the scope of this dissertation and will be omitted.
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Figure 3.7: Uniaxial cobalt nanoparticle with Dx = 0.2 Dy = 0.2 Dz =
0.01 Ms = 1.42×106 γ = 1.837 T = 300 V = 2×10−25 σ = 0.1 B = 1012.
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Chapter 4: Magnetization Dynamics on Graphs

4.1 Averaging Technique

In the previous chapter, a numerical method of modeling stochastic magne-

tization dynamics driven by a jump-noise process was discussed. Using the Monte

Carlo approach outlined, magnetization dynamics can be accurately analyzed by

exploring the many different magnetization trajectories that the magnetization can

follow. One distinct disadvantage of this Monte Carlo approach is that many, many

magnetization trajectory realizations are needed to form an accurate picture of the

magnetization dynamics and even then, the results will not, and in most cases, can-

not perfectly reflect all possible instances of the magnetization trajectories. Another

disadvantage is that using the Monte Carlo approach can be very time intensive

and computationally intensive to obtain an accurate picture of the magnetization

dynamics. In this chapter, a different approach to solving stochastic magnetization

dynamics is introduced and explored.

Typically, thermal noise effects in the magnetization dynamics equation are

small in comparison with the precessional motion. This leads to magnetization

damping and thermal fluctuation effects that occur on a much longer time-scale

than the precessional motion of the magnetization. As the effects of thermal noise
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are the main focus of this research, the stochastic magnetization dynamics on the

level of transition probability densities described by equation (3.4) can be aver-

aged over precessional trajectories to isolate the damping and thermal fluctuation

components2,3. These precessional trajectories are uniquely defined by their micro-

magnetic free energy g and the implementation of this averaging technique reduces

the stochastic magnetization dynamics defined on the sphere Σ, to dynamics defined

on specific graphs defined by g. The energy graphs that result from this averaging

technique are an accurate and complete reflection of the energy landscapes on Σ and

includes all critical nodes such as energy wells (minima), energy peaks (maxima),

and saddle points.

As described in chapter 3 in (3.4) and (3.5), the stochastic magnetization

dynamics driven by a jump-noise process can be described on the level of transition

probability density w(M, t) using a Kolmogorov-Fokker-Planck equation:

∂w

∂t
=− γ∇Σ · [(M×∇ΣgL)w]

+

∫
Σ

[S(M′,M)w(M′)− S(M,M′)w(M)]dΣM′ . (4.1)

To study (4.1) in the limit of small fluctuations, where S(M,M′) is small, it

is convenient to use a different coordinate system, one in which g plays a role as a

coordinate variable. A coordinate system defined by the following unit vectors is

considered:

eg =
∇Σg

|∇Σg|
, eψ = M× eg. (4.2)

These unit vectors are mutually orthogonal and are tangential to the constant energy

curves Ck(g), where k denotes an edge of the energy graph. In this coordinate
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system, the differential displacements of magnetization (dmg and dmψ) along the

unit vectors are given by:

dmg = eg · dM = lgdg, dmψ = eψ · dM = lψdψ, (4.3)

where lg and lψ are appropriate metric factors. From (4.2), lg is found to be

lg =
1

|∇Σg|
. (4.4)

Using this new coordinate system, the collision integral Ĉ can be written as

Ĉ =
∑
n

∫
Ln

∮
Cn(g′)

[S(Mn(g′, ψ′),Mk(g, ψ))wn(g′, ψ′, t) (4.5)

− S(Mk(g, ψ),Mn(g′, ψ′))wk(g, ψ, t)]dmψ′dmg′ ,

where Mk(g, ψ) is the magnetization at (g, ψ) on the edge Ln of the energy graph.

Ln is an edge of the graph corresponding to the region Rn of the sphere Σ with the

property that there exists only one precessional trajectory Cn(g) corresponding to

energy g.

In this new coordinate system, one main advantage is that the two axes rep-

resent the nature of the separate time-scales in the dynamics of the problem. g

represents the slow variable while ψ represents the fast variable. As mentioned pre-

viously, the objective is to remove the fast variable from the equation and isolate

an approximate diffusion equation that is left in terms of the slow variable g.

To eliminate the fast variable, the assumption is made that the transition

probability density w(M, t) is uniform along each curve g(M) = g. This assumption

is valid for fast precessional motions, but breaks down near critical points, called
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separatrices, that include boundaries between energy wells where the precessional

period goes to infinity. Fortunately, the separatrix has measure zero and so the

assumption is generally valid. Because of this, the distribution function of the

transition probability density becomes a function of g:

w(M, t) ≈ wk(g(M), t)⇒ wk(g, ψ, t) ≈ wk(g, t), (4.6)

where k represents the region defined by energy well k that M belongs to and ⇒

indicates a change of variable from a functional dependence on M to a functional

dependence on g.

To facilitate integration with respect to ψ, the probability density distribution

function ρ(g, t) is derived in terms of energy and is given by

ρk(g, t) =

∮
Ck(g)

w(M, t)

|∇Σg|
dmψ ≈ wk(g, t)τk(g), (4.7)

where τn is a function defining the period such that

τn(g) =

∮
Cn(g)

dmψ

|∇Σg(M)|
(4.8)

and ρk(g, t) satisfies the normalization condition imposed by the axioms of proba-

bility that the total probability sums to unity:

∑
k

∫
Lk

ρk(g, t)dg = 1. (4.9)

Since the equations no longer have a ψ dependence, the dmψ in the integrals will be

replaced with the notation dlM in the following equations such that:

τn(g) =

∮
Cn(g)

dlM
|∇Σg(M)|

(4.10)
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Returning to (4.1) and integrating both sides over precessional trajectories,

the master equation becomes

∮
Ck(g)

1

|∇Σg|
∂w

∂t
dlM = −

∮
Ck(g)

1

|∇Σg|
γ∇Σ · [(M×∇ΣgL)w]dlM

+

∮
Ck(g)

1

|∇Σg|

∫
Σ

[S(M′,M)w(M′)− S(M,M′)w(M)]dΣM′dlM. (4.11)

First, consider the first term on the right side of the equation. This term is integrated

along dlM, which is in the eψ direction. From the definition of eψ in (4.2), it is

important to note that M×∇ΣgL also lies in the eψ direction. But, since the term

in the integral is the divergence of M×∇ΣgL, the integral evaluates to 0:

−
∮
Ck(g)

1

|∇Σg|
γ∇Σ · [(M×∇ΣgL)w]dlM = 0 (4.12)

Therefore, the master equation can be written with only the collision integral:

∮
Ck(g)

1

|∇Σg|
∂w

∂t
dlM

=

∮
Ck(g)

1

|∇Σg|

∫
Σ

[S(M′,M)w(M′)− S(M,M′)w(M)]dΣM′dlM. (4.13)

Using (4.7) and rearranging, the master equation becomes

∂ρ(g, t)

∂t
=

∮
Ck(g)

∫
Σ

[
S(M′,M)w(M′)

|∇Σg(M)|
− S(M,M′)w(M)

|∇Σg(M)|

]
dΣM′dlM. (4.14)

Replacing the w(M) on the right side of the equation with the appropriate approx-

imation on g and taking into account the different energy wells N in Σ:

∂ρk(g, t)

∂t
=
∑
n

∮
Ck(g)

∫
Ln

∮
Cn(g′)

S(M′,M)wn(g′, t)

|∇Σg(M′)||∇Σg(M)|

− S(M,M′)wk(g, t)

|∇Σg(M′)||∇Σg(M)|
dlM′dmg′dlM. (4.15)
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Replacing the w and rearranging the integrals gives:

∂ρk(g, t)

∂t
=
∑
n

∫
Ln

∮
Ck(g)

∮
Cn(g′)

S(M′,M)ρn(g′, t)

τn(g′)|∇Σg(M′)||∇Σg(M)|

− S(M,M′)ρk(g, t)

τk(g)|∇Σg(M′)||∇Σg(M)|
dlM′dlMdmg′ . (4.16)

A new function Kn,k(g
′, g) can be defined related to S(M′,M) by the formula

Kn,k(g
′, g) =

1

τn(g)

∮
Ck(g)

∮
Cn(g′)

S(M′,M)

|∇Σg(M′)||∇Σg(M)|
dlM′dlM. (4.17)

This function Kn,k(g
′, g) can be seen as the equivalent transitions probability rate

on energy graphs.

Using this definition, it is easy to see that the stochastic energy dynamics is

described by the following continuous master equation

dρk(g, t)

dt
=
∑
n

∫
Ln

[Kn,k(g
′, g)ρn(g′, t)−Kk,n(g, g′)ρk(g, t)]dg

′,

(k = 1, 2, ...N), (4.18)

where ρn(g, t) is the probability density on edge Ln and the summation is performed

over all N edges of the graph.

4.2 Alternative Eigenvalue Method

To further study the continuous master equation in (4.18), a more concise form

of the equation can be used29:

∂ρ

∂t
= K̂ρ, (4.19)
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where

ρ(g) =



ρ1(g)

ρ2(g)

...

ρN(g)


, (4.20)

and K̂ is an integral matrix operator describing the collision integral defined from

the right-hand side of (4.18).

Looking at (4.19), it is clear that there exists an equilibrium distribution

ρ(0)(g) > 0 that is the solution of the equation

K̂ρ(0) = 0. (4.21)

From the “detailed balance” equation in (3.13), a similar “detailed balance” can be

found for probability distributions on energy graphs.

Starting with the “detailed balance” equation from (3.13),

S(M′,M)weq(M′, t) = S(M,M′)weq(M, t), (4.22)

integration along precessional trajectories as shown in (4.11) gives:∮
Ck(g)

∮
Cn(g′)

S(M′,M)weq(M′, t)

|∇Σg(M′)||∇Σg(M)|
dlM′dlM

=

∮
Ck(g)

∮
Cn(g′)

S(M,M′)weq(M, t)

|∇Σg(M′)||∇Σg(M)|
dlM′dlM. (4.23)

Since the equilibrium distribution weq depends on M or M′, it can be taken out of

the inner integral:∮
Cn(g′)

weq(M′, t)

∮
Ck(g)

S(M′,M)

|∇Σg(M′)||∇Σg(M)|
dlMdlM′

=

∮
Ck(g)

weq(M, t)

∮
Cn(g′)

S(M,M′)

|∇Σg(M′)||∇Σg(M)|
dlM′dlM. (4.24)
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Making the same assumption as in (4.6), the equilibrium distributions can be writ-

ten:

weq(M, t) ≈ weqk (g(M), t) ≈ weqk (g, t). (4.25)

The equilibrium distribution therefore does not depend on M or M′ and so can be

extracted from the integral. The detailed balance equation can then be written:

weqn (g′, t)

∮
Cn(g′)

∮
Ck(g)

S(M′,M)

|∇Σg(M′)||∇Σg(M)|
dlMdlM′

= weqk (g, t)

∮
Ck(g)

∮
Cn(g′)

S(M,M′)

|∇Σg(M′)||∇Σg(M)|
dlM′dlM. (4.26)

From (4.7), the equilibrium distribution can be written as an equilibrium distribu-

tion on energy graphs:

ρ
(0)
k (g, t) ≈ weqk (g, t)τk(g), (4.27)

and

ρ(0)
n (g′, t) ≈ weqn (g′, t)τn(g′). (4.28)

Replacing weqk (g, t) and weqn (g′, t) with their appropriate equilibrium distributions on

energy graphs in the detailed balance equation gives:

ρ
(0)
n (g′, t)

τn(g′)

∮
Cn(g′)

∮
Ck(g)

S(M′,M)

|∇Σg(M′)||∇Σg(M)|
dlMdlM′

=
ρ

(0)
k (g, t)

τk(g)

∮
Ck(g)

∮
Cn(g′)

S(M,M′)

|∇Σg(M′)||∇Σg(M)|
dlM′dlM. (4.29)

From the definition in (4.17), it is easy to see that ρ0 = ρ(0) satisfies the “detailed

balance” condition

Kh,k(g
′, g)ρ

(0)
h (g′) = K ′k,h(g, g

′)ρ
(0)
k (g). (4.30)
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This “detailed balance” condition is necessary to prove that the operator K̂ is self-

adjoint in the Hilbert space using an inner product defined by

〈ρ,ρ′〉ρ0 =
∑
k

∫
Lk

ρk(g)ρ′k(g)

ρ(0)(g)
dg. (4.31)

By definition, if operator K̂ is self-adjoint, then

〈K̂ρ,ρ′〉ρ0 = 〈ρ, K̂ρ′〉ρ0 (4.32)

and the converse is also true.

Next, an eigenvalue approach to solving (4.19) by solving the eigenvalue prob-

lem is considered:

K̂ρ(ν) = λνρ
(ν). (4.33)

Since K̂ is self-adjoint, all of its eigenvalues λν must be real. Furthermore, by using

the detailed-balance condition (4.30), it can be shown that

〈K̂ρ(ν),ρ(ν)〉ρ0 < 0. (4.34)

From the master equation, the inner product can be written:

〈K̂ρ(ν),ρ(ν)〉ρ0 =

∫
Lk

1

ρ0(g)

[ ∫
Ln

[
K(g′, g)ρ(ν)(g′)

−K(g, g′)ρ(ν)(g)
]
dg′
]
ρ(ν)(g)dg (4.35)

Rearranging the order of the integrals gives:

〈K̂ρ(ν),ρ(ν)〉ρ0

=

∫
Lk

∫
Ln

1

ρ0(g)

[
K(g′, g)ρ(ν)(g′)−K(g, g′)ρ(ν)(g)

]
ρ(ν)(g)dg′dg (4.36)
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Using the detailed balance equation,

K(g′, g)ρ0(g′) = K(g, g′)ρ0(g), (4.37)

it can be seen that K(g′, g) is symmetric in the 1/ρ0 space:

K(g′, g)

ρ0(g)
=
K(g, g′)

ρ0(g′)
. (4.38)

Using (4.38), (4.36) can be rewritten as

〈K̂ρ(ν),ρ(ν)〉ρ0

=

∫
Lk

∫
Ln

K(g′, g)

ρ0(g)

[
ρ(ν)(g′)ρ(ν)(g)− ρ0(g′)

ρ0(g)

(
ρ(ν)(g)

)2
]
dg′dg. (4.39)

But, the indices used in the integrals are arbitrary so can be switched:

〈K̂ρ(ν),ρ(ν)〉ρ0

=

∫
Lk

∫
Ln

K(g, g′)

ρ0(g′)

[
ρ(ν)(g)ρ(ν)(g′)− ρ0(g)

ρ0(g′)

(
ρ(ν)(g′)

)2
]
dgdg′. (4.40)

Using (4.38), the first term in the integral can be replaced such that:

〈K̂ρ(ν),ρ(ν)〉ρ0

=

∫
Lk

∫
Ln

K(g′, g)

ρ0(g)

[
ρ(ν)(g)ρ(ν)(g′)− ρ0(g)

ρ0(g′)

(
ρ(ν)(g′)

)2
]
dgdg′. (4.41)

Since they share common terms, (4.39) and (4.41) can be combined to give

〈K̂ρ(ν),ρ(ν)〉ρ0

=
1

2

∫
Lk

∫
Ln

K(g′, g)

ρ0(g)

[
ρ(ν)(g′)ρ(ν)(g)− ρ0(g′)

ρ0(g)

(
ρ(ν)(g)

)2

+ ρ(ν)(g)ρ(ν)(g′)− ρ0(g)

ρ0(g′)

(
ρ(ν)(g′)

)2
]
dgdg′. (4.42)
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Rearranging the terms gives:

〈K̂ρ(ν),ρ(ν)〉ρ0

= −1

2

∫
Lk

∫
Ln

K(g′, g)

ρ0(g)

[
ρ0(g′)

ρ0(g)

(
ρ(ν)(g)

)2

+
ρ0(g)

ρ0(g′)

(
ρ(ν)(g′)

)2 − 2ρ(ν)(g)ρ(ν)(g′)

]
dgdg′. (4.43)

The terms within the bracket can be simplified by completing the square to give:

〈K̂ρ(ν),ρ(ν)〉ρ0

= −1

2

∫
Lk

∫
Ln

K(g′, g)

ρ0(g)

[√
ρ0(g′)

ρ0(g)
ρ(ν)(g)−

√
ρ0(g)

ρ0(g′)
ρ(ν)(g′)

]2

dgdg′. (4.44)

Evaluating each term in the integral it can be seen that

K(g′, g)

ρ0(g)
> 0, (4.45)

since K(g′, g) and ρ0 are both strictly positive and

[√
ρ0(g′)

ρ0(g)
ρ(ν)(g)−

√
ρ0(g)

ρ0(g′)
ρ(ν)(g′)

]2

> 0, (4.46)

since the value in the bracket is squared. Therefore it is easy to see that

〈K̂ρ(ν),ρ(ν)〉ρ0 < 0. (4.47)

This inequality implies that all eigenvalues of K̂ are negative:

λν < 0. (4.48)

This can be seen from the definition of the eigenfunction:

K̂ρ(ν) = λνρ
(ν). (4.49)
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Taking the inner product with the eigenvector gives:

〈K̂ρ(ν), ρ(ν)〉 = 〈λνρ(ν), ρ(ν)〉 = λν〈ρ(ν), ρ(ν)〉. (4.50)

Therefore the eigenvalues can be found by

λν =
〈K̂ρ(ν), ρ(ν)〉
〈ρ(ν), ρ(ν)〉

. (4.51)

Since the inner product of a vector with itself is strictly positive,

〈ρ(ν), ρ(ν)〉 > 0, (4.52)

and using (4.47), it is evident that all eigenvalues of K̂ are negative.

Futhermore, since K̂ is self-adjoint, its eigenfunction vectors ρ(ν)(g) are or-

thonormal:

〈ρ(ν)(g),ρ(ν′)(g)〉ρ0 = δνν′ , (4.53)

where δνν′ is the Kronecker delta function.

Now that the eigenvalue problem has been explored, (4.19) can be solved

using eigenfunction expansions. This means that assuming the eigenvalue problem

is solved and the solution consists of eigenvalues λν and eigenfunctions ρ(ν)(g) has

been found, a solution for (4.19) can easily be expressed.

It is easy to check that the vector functions ρ(ν)eλνt are solutions of equation

(4.19). Using this, a general solution of equation (4.19) can be written as

ρ(g, t) =
∑
ν

aνρ
(ν)(g)eλνt, (4.54)

where the unknown coefficients aν are determined using the initial condition ρ(g, 0),

which is assumed to be normalized

∑
k

∫
Lk

ρk(g, 0)dg = 1. (4.55)
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From (4.54) it is easy to see that at t = 0,

ρ(g, 0) =
∑
ν

aνρ
(ν)(g). (4.56)

Using the orthonormality relations from (4.53) and the equation (4.56), the coeffi-

cient aν can be found to be

aν = 〈ρ(g, 0),ρ(ν)(g)〉ρ0 . (4.57)

Substituting the coefficient expression into formula (4.54), the probability density

can be expressed as

ρ(g, t) =
∑
ν

〈ρ(g, 0),ρ(ν)(g)〉ρ0ρ(ν)(g)eλνt. (4.58)

This solution to the master equation in (4.18) can be used for any initial condition

and it gives an analytical representation of the time-dynamics of ρ(g, t) provided

that the eigenvalue problem in (4.19) has been solved. It is important to mention

that the summation in (4.54) includes a term with ρ(0)(g) that corresponds to an

eigenvalue of zero. As a result of this and using the inequality in (4.47) in the limit

of t→∞, formula (4.54) is reduced to

ρ(g,∞) = 〈ρ(g, 0),ρ(0)(g)〉ρ0ρ(0)(g). (4.59)

From the definition of inner product (4.31) and the normalization condition for

ρ(g, 0) in (4.55), the first part of the term in (4.59) is seen to be

〈ρ(g, 0),ρ(0)(g)〉ρ0 = 1, (4.60)

and so

ρ(g,∞) = ρ(0)(g). (4.61)
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Figure 4.1: Uniaxial particles have an energy graph with two edges con-
necting the minimum energy wells at the energy maximum.

This means that the dynamic probability distribution will tend towards the equilib-

rium probability distribution as t→∞, as expected.

4.3 Numerical Method Comparison

The techniques described in the previous sections have been numerically im-

plemented and their accuracy have been tested in the case of uniaxial magnetic

particles with various energy barrier heights. The energy graph for this particle

consists of two edges corresponding to two energy wells. These edges are connected

at the point corresponding to the energy maximum, while the ‘free’ unconnected

ends of these edges correspond to the two energy minima as shown in Figure 4.1.

The equilibrium distribution ρ(0)(g) is first computed by using a discretized

version of equation (4.21) and the normalization condition (4.55). This equilibrium

distribution has been compared with the Boltzmann equilibrium distribution

w0(g(m)) =
1

Z
e−

g(m)
kT (4.62)

that has been properly averaged along precessional trajectories of constant energy.
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Figure 4.2: Computational results for equilibrium distributions, marked
with symbols, closely match the predicted analytical results, marked
with lines, for various energy barriers.

In this equation, Z is a partition function.

Figure 4.2 represents the results from these comparisons for three different

values of energy barrier heights. It can be seen from this figure that the averaged

Boltzmann distributions are sharply peaked at Mz = 0, which corresponds to g =

gmax. This occurs because the averaged Boltzmann distributions ρav(g) are given

by the formula

ρav(g) = w0(g)τn(g), (4.63)

where τn(g) is defined by equation (4.8). From (4.8) it can be seen that as τn(g)

approaches g = gmax, its value goes to ∞ as expected from the precessional period

approaching infinity at a separatrix. It is evident from Figure 4.7 that the equilib-
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Figure 4.3: Results comparing the probability distribution of magneti-
zation dynamics obtained from using the finite difference method versus
using the eigenvalue method show very close agreement for various en-
ergy barriers.

rium distributions ρ(0)(g) computed using (4.14) accurately resolve the center peaks

of ρav(g) as expected.

Figure 4.3 shows the results of the time dynamics of the probability density

function, ρ(g, t). This study was carried out for the case of a uniaxial magnetic

particle with initial condition

ρ(g, 0) = δ(g − gmin), (4.64)

which corresponds to the initial localization of magnetization to the energy minima

of energy well 1. The numerical analysis was performed by solving a discretized

version of (4.18) by using the finite difference technique presented in chapter 3 as
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well as by using the eigenvalue method discussed in section 4.3. In both cases, a

finite energy mesh was introduced to the energy graph and was used to create a finite

matrix to replace the integral operator K̂. Meshes of up to 5000 points were used in

the computations for increased accuracy. The comparison of these two techniques

is illustrated in Figure 4.3, where the vertical axis corresponds to the probability

P1(t) that the magnetization still lies within energy well 1, where it was initialized.

This probability is computed as

P1(t) =

∫
L1

ρ(g, t)dg =

∫ gmax

gmin

ρ(g, t)dg. (4.65)

From the figure, it is easy to see that there is very good agreement between these

two techniques. The difference between these two approaches is that the eigenvalue

technique has been shown to be much more computationally efficient when the simu-

lations are carried out over longer time intervals. These simulations can therefore be

extremely helpful in studying the time dynamics of ρ(g, t) as it approaches equilib-

rium or to study the random switching at high energy barriers as these simulations

are typically very computationally intensive.

Figure 4.4, 4.5, 4.6, and 4.7 illustrate the time dynamics of ρ(g, t) for the case

of an energy barrier of 3.67 kT. From these figures, it is easy to see its gradual

approach to the equilibrium distribution ρ(0)(g) from the starting initial condition

(4.64). In these figures, the results of the eigenvalue analysis based on formula (4.58)

are compared with results from the Monte-Carlo simulations of random magneti-

zation dynamics described in (3.1) and (3.2). These Monte-Carlo simulations were

conducted by using over 104 realizations and the computations were performed with
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Figure 4.4: A comparison of the probability density distribution at t =
10−9 s shows good agreement between the Monte-Carlo method and the
averaging technique.
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Figure 4.5: A comparison of the probability density distribution at t =
5× 10−9 s shows good agreement between the Monte-Carlo method and
the averaging technique.
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Figure 4.6: A comparison of the probability density distribution at t =
10−8 s shows good agreement between the Monte-Carlo method and the
averaging technique.
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Figure 4.7: A comparison of the probability density distribution at t =
10−7 s shows good agreement between the Monte-Carlo method and the
averaging technique.
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the help of GPUs. As expected, the figures show that the Monte-Carlo simulations

exhibit some sample noise but otherwise agree quite well with the numerical sim-

ulations based on formula (4.58). This agreement remains true over time and is

observed at various time instances of ρ(g, t)-dynamics.

4.3.1 Verifying the Kramers-Brown Approximation

The Kramers-Brown approximation is an approximation that has been exten-

sively applied in the theoretical study of random magnetization switching, specifi-

cally in the case of two-well uniaxial magnetic particles. The essence of this approx-

imation is that a “truncated” Boltzmann distribution is established in an energy

well long before random switching from one well to the other well is likely to occur.

It is interesting to clarify the meaning of a “sufficiently high” energy barrier

and how the necessary ratio can depend on the time-scale at which the “truncated”

Boltzmann distribution is formed to determine when this approximation can be held

as valid. Figures 4.8, 4.9, 4.10, and 4.11 show the time-evolution of the formation of

the truncated Boltzmann distribution and how they are formed for different energy

barriers. The height of the energy barrier is measured in terms of the relation to kT .

In these figures, the truncated Boltzmann distributions averaged over precessional

trajectories ρ(0)(g) are shown as dotted lines and the distributions of ρ1(g, t) are

shown at various time instances. The distribution functions ρ1(g, t) were computed

using a δ-function as the initial condition corresponding to the localization of mag-

netization at the energy minimum g1. By comparing the figures, the formation time
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Figure 4.8: For a 1.74kT energy barrier, ρ1(g, t) quickly escapes the
initial energy well and approaches the truncated Boltzmann distribution.

of ρ(0)(g)) is clearly seen to increase as the height of the energy barrier increases.

Additionally, the formation time of truncated Boltzmann distributions were

compared with the average switching (exit) time between wells. This time was

also computed from the solution of equation (4.18). For the sake of numerical

simulations, the formation time for ρ(0)(g) was defined as the time t̃ by which the

difference between ρ(0)(g) and ρ1(g, t) was found to be less than 1%.

The average time of switching from well R1 to the other well R2 was also

computed. These computations were computed through the use of the continuous

master equation (4.18). The average switching times were compared with the for-
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Figure 4.9: For a 3.67kT energy barrier, ρ1(g, t) quickly escapes the
initial energy well and approaches the truncated Boltzmann distribution.
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Figure 4.10: For a 5.61kT energy barrier, ρ1(g, t) quickly escapes the
initial energy well and approaches the truncated Boltzmann distribution.
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Figure 4.11: For a 7.54kT energy barrier, ρ1(g, t) quickly escapes the
initial energy well and approaches the truncated Boltzmann distribution.
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Figure 4.12: The ratio between average switching time to the time
needed to establish a truncated Boltzmann distribution is shown as a
function of the height of the energy barrier. At energy barrier values of
about 4kT, the Boltzmann distribution is formed an order of magnitude
faster than thermal switching.

mation times t̃ of the truncated Boltzmann distributions and is illustrated in Figure

4.12. In this figure, the ratio of the average switching time to the time it takes to

establish the Boltzmann distribution is shown for various energy barriers heights.

It is apparent that this ratio is close to 20 when the energy barrier is about 5 kT.

Thus, at energy barriers over 5kT, the Boltzmann distribution is established over

an order of magnitude faster than the switching occurs and so the Kramers-Brown

approximation can be regarded as sufficiently accurate.
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4.3.2 Low Temperature Magnetization Switching

Low temperature magnetization switching was also studied using the continu-

ous master equation in (4.18). The purpose of studying low temperature magnetiza-

tion switching is to analyze deviations of the switching rate from the classical Arrhe-

nius Law. In other words, deviations from the predictions from thermally activated

switching theory. It has been found that at very low temperatures, the magnetiza-

tion switching rate appreciably deviates from the Arrhenius Law and exhibits some

features that have been experimentally observed and are usually attributed to the

physical phenomenon of “macroscopic quantum tunneling” of magnetization36−39.

It is worthwhile to stress that in our theoretical study, this phenomenon emerges

solely from the use of a jump-noise process for the description of thermal bath ef-

fects. That is, the “macroscopic quantum tunneling” phenomenon appears without

the use of any quantum mechanical considerations. However, it is conceivable that

the jump-noise process in (3.1) may reflect discontinuous magnetization transitions

occurring at the microscopic quantum mechanical level.

The abrupt deviation from thermal activation theory that occurs at crossover

temperature Tc and the dependence of this crossover temperature on the height of

the energy barrier has been studied. The results are shown in Figure 4.13. The

units on the y-axis are chosen to reflect experimental results. It is plotted as the

negative inverse of the natural logarithm of the initial switching rate. The initial

switching rate at very low temperatures in the presence of applied DC magnetic fields

of opposite orientations, both parallel and anti-parallel to the easy axis, has been

68



Figure 4.13: At very low temperatures, ’crossover’ is experienced. The
crossover temperature Tc depends on the energy barrier height.

numerically simulated and studied. The results are displayed in Figure 4.14. These

numerical results are in qualitative agreement with previously reported experimental

results.
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Figure 4.14: The behavior at temperatures below crossover is highly
dependent on the applied magnetic field. Applied fields of opposite po-
larities show splitting of the switching rate.
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Chapter 5: Spin-Torque Effect in Magnetization Dynamics

5.1 Spin-Transfer Torque

When electrons flow across a ferromagnetic element, they exert a quantum-

mechanical torque to the element known as a spin-transfer torque. When the current

density is large enough, this spin-transfer torque phenomenon appears and can play

a large role in the magnetization dynamics of the ferromagnet1,6,41. The discovery

of this spin-transfer torque phenomenon has opened the field of spintronics and has

led to novel devices and discoveries such as Spin-Torque Nano-Oscillators (STNOs).

5.2 Magnetization Dynamics with Spin-Transfer Torque

Traditionally, spin-transfer torque is introduced to the Landau-Lifshitz-Gilbert

equation as an additional spin-torque term. This new equation was derived by Slon-

czewski and forms the Landau-Lifshitz-Slonczewski equation35. The normalized, di-

mensionless magnetization dynamics described by the Landau-Lifshitz-Slonczewski

equation is given as

dm

dt
= −m× heff + αm× dm

dt
+ β

m× (m× ep)

1 + cpm · ep
, (5.1)
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where β is a normalized injected spin-polarized current, cp is a constant that is

dependent on the spin-polarizing factor of the injected current, and ep is the unit

vector specifying the direction of spin polarization. The physical basis for this term

is a ‘damping-like’ effect that brings the magnetization in line with the spin-polarized

current direction from the term m× (m× ep).

5.3 Jump-Noise Driven Spin-Transfer Torque

When jump-noise driven magnetization dynamics is considered, how the tran-

sition probability rate S(M,M′) is modified in the presence of spin-polarized current

injection must be determined. When S(M,M′) was determined in chapter 3, the

assumption of an equilibrium state was made, but this spin-polarized injection is a

non-equilibrium process whose steady state may be quite different from the thermo-

dynamic equilibrium. This non-equilibrium condition leads to the breaking of the

symmetry of the function φ(M,M′).

To determine the form of the asymmetric function φ(M,M′), the way that

spin-polarized current injection changes the random scattering to favor the reduc-

tion of the exchange energy between the “free-layer” magnetization M and the mag-

netic moment carried by the injected polarized electrons must be considered. The

natural question is why does the spin-polarized current injection modify the ran-

dom scattering such that it only favors the reduction of the exchange energy rather

than the reduction of the total magnetic energy related to the effective field. First,

the favoring of the reduction of exchange energy is consistent with the semiclassi-
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cal (WKB) quantum-mechanical approach used for the derivation in the expression

for spin-torque. Second, the strong exchange interaction prevails in ferromagnets

over all other interactions at small spatial scales compatible with the continuum

hypothesis. For these two reasons, it is natural to conclude that the spin transfer

is mostly driven by the exchange interaction. It is worthwhile to point out that

a somewhat similar situation occurs in micromagnetics, where the exchange inter-

action constraint |M(t)| = Ms(T ) = const is taken into account before all other

interactions that favor the reduction of the total magnetic energy are accounted for.

The injected spin-polarized electrons have spin orientation parallel or anti-

parallel to ep, where ep is the magnetization orientation in the fixed layer. The

strength of the spin-polarized electrons is also proportional to the injected current

density J . Therefore, the exchange energy is proportional to JM · ep and is mini-

mized by random spin-transfer scattering. As a result, this spin-transfer scattering

favors a magnetization state for which M · ep = Ms when electrons flow from the

fixed layer to the free layer (J < 0) and M · ep = −Ms for the opposite flow (J > 0)

of electrons.

In addition to the exchange interaction, there exist interface phenomena which

affect the polarization and scattering of the injected electrons and modify the portion

of spin-polarized electrons that play a role in the injected current. For this reason,

the energy of interaction JM·ep must be scaled by a function that takes into account

the interface processes. This function depends on the orientations of M and ep and

can therefore be written as a function η(M · ep). As a result, the effective energy of

interaction between injected electrons and free layer magnetization can be written
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as Jη(M · ep)M · ep or simply as Ψ(M · ep) where Ψ(u) = Jη(u)u. Putting this in

a similar form as the transition probability rate in (3.14) which describes thermal

scattering, the function φ(M,M′) can naturally be written in the following form

which reflects the nature of spin-transfer and interface scattering:

φ(M,M′) = A exp

(
−|m|

2

2σ2

)
exp

{
Ψ(M · ep)−Ψ (M′ · ep)

2kT

}
. (5.2)

By substituting (5.2) into (3.14), the transition probability rate becomes

S(M,M′) = A exp

{
−|m|

2

2σ2
+

Φ(M)− Φ (M′)

2kT

}
, (5.3)

where

Φ(M) = g(M) + Ψ(M · ep). (5.4)

In the case of small jump-noise processes where jumps in magnetization m of small

magnitude are the most probable, the following approximation can be used:

Φ(M)− Φ (M′) ' −m · ∇ΣΦ. (5.5)

This leads to the following expression for the transition probability rate:

S(M,M′) ' A exp

{
−|m|

2

2σ2
− m · ∇ΣΦ

2kT

}
. (5.6)

From (3.21) and (3.25), the expected value of the jump-noise process can be written

as

E[Tr(t)] =

∮
Σ

mS(M,M′)dm. (5.7)

By substituting (5.6) into equation (5.7), the expected value of the jump-noise pro-

cess is found to be

E[Tr(t)] ' A

∫
m · exp

{
−|m|

2

2σ2
− m · ∇ΣΦ

2kT

}
dm. (5.8)
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By completing the square in the power of the exponent in (5.8), the integral can be

reduced to a Gaussian integral which is easier to analyze. Solving this integral leads

to the following result:

E[Tr(t)] = −πAσ
4

kT
exp

{
1

2

(
σ |∇ΣΦ|

2kT

)2
}
∇ΣΦ, (5.9)

where

∇ΣΦ = ∇Σg +∇ΣΨ(M · ep). (5.10)

The first term in the right-hand side of (5.10) can be written in the form

∇Σg =
µ0V

M2
s

M× (M×Heff), (5.11)

where V is the volume of the free layer.

The second term in (5.10) can be transformed:

∇ΣΨ(M · ep) = −Ψ′(M · ep)
M2

s

M× (M× ep), (5.12)

where Ψ′ is the derivative of Ψ.

By introducing the the damping coefficient

α =
πµ0V Aσ

4

γM2
s kT

exp

{
1

2

(
σ |∇ΣΦ|

2kT

)2
}
, (5.13)

and using formulas (5.9)-(5.13), the expected value of the jump-noise process be-

comes

E[Tr(t)] = −αγM× (M×Heff)

+
αγ

µ0V
Ψ′(M · ep)M× (M× ep).

(5.14)
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The equation for the average stochastic magnetization dynamics equation in (3.1)

can now be considered:

dM

dt
= −γ(M×Heff ) + E[Tr(t)]. (5.15)

Substituting (5.14) into (5.15), the equation becomes

dM

dt
= −γ(M×Heff)− αγM× (M×Heff)

+
αγ

µ0V
Ψ′(M · ep)M× (M× ep).

(5.16)

This magnetization dynamics equation has a form which is mathematically similar

to the Slonczewski equation. The magnetization dynamics equation matches the

Landau-Lifshitz-Slonczewski equation in the case of the particular choice of function

Ψ:

Ψ(M · ep) =
bµ0V

c̃p
ln(1 + c̃pM · ep), (5.17)

where b is a parameter proportional to the spin-polarized current density, c̃p = cp/Ms

and cp depends only on polarizing factor P . Indeed, in this case

Ψ′(M · ep) =
bµ0V

1 + c̃pM · ep
(5.18)

and the dynamics equation (5.16) is reduced to

dM

dt
= −γ(M×Heff)− αγM× (M×Heff)

+ αγb
M× (M× ep)

1 + c̃pM · ep
.

(5.19)

In general, the factor Ψ′(M · ep) in (5.16) accounts for interface effects and should

be identified from experimental results.
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Next, an expression for the damping coefficient α in terms of the scattering

rate λ(M(t)) can be found. To do this, (5.6) is substituted into (3.21) to find

λ(M(t)) ' A

∫
exp

{
−|m|

2

2σ2
− m · ∇ΣΦ

2kT

}
dm. (5.20)

Evaluating the integral in (5.20) by completing the square, the scattering rate is

obtained:

λ(M) = 2πAσ2 exp

{
1

2

(
σ |∇ΣΦ|

2kT

)2
}
. (5.21)

Using this formula in (5.13), the damping coefficient is found to be

α = λ(M)
µ0V σ

2

2γkTM2
s

. (5.22)

Equations (5.21) and (5.22) clearly reveal the dependence of the damping coefficient

α on M and other properties of the jump-noise process. Equations (5.4), (5.21) and

(5.22) also suggest that the damping coefficient α is affected by the presence of spin-

polarized current injection. This is as expected based on physical intuition because

the spin-polarized current injection affects overall random thermal scattering which

is the mechanism that is ultimately responsible for damping.

Finally, the magnetization dynamics in (5.16) can be represented in the fol-

lowing equivalent form:

dM

dt
= −γM×Heff − λ(M)

σ2

2kT
∇ΣΦ. (5.23)

This equation describes the magnetization dynamics on the sphere Σ. According

to the Helmholtz decomposition theorem, any dynamics on a sphere can be fully

described in terms of two potentials:

dM

dt
= M×∇ΣΓ−∇ΣΩ. (5.24)

77



From (5.22) and (5.23) it can be seen that if the scattering rate λ is constant,

and thus independent of magnetization, the potentials Γ and Ω are merely scaled

versions of g and Φ, respectively. In the case when the scattering rate is dependent

on magnetization, the identification of potentials Γ and Ω is much harder.

It is interesting to note that in the specific case of uniaxial symmetry, the

magnetization-dependent scattering rate λ(M) does not affect the analysis of magne-

tization oscillations caused by spin-polarized current injection. According to (5.23),

these microwave magnetization oscillations, called self-oscillations, will occur along

precessional trajectories with the property that at each point in these trajectories

∇ΣΦ = 0. (5.25)

Using (5.25), the analysis of magnetization oscillations in uniaxial systems can be

performed in much the same way as described in literature and an analytical solution

can be obtained. For non-uniaxial systems, the analysis of magnetization oscillations

is based on the use of Melnikov functions and the frequency of oscillation may be

affected by the magnetization dependence of the scattering rate.

5.3.1 Magnetization Dynamics with Spin-Torque

The magnetization dynamics in (3.4) can be modified in a similar manner to

reflect the effects of the spin-transfer torque.

Starting from a generalized magnetization dynamics equation with jump-noise

and spin torque:

dM

dt
= −γ(M×Heff) + Tr(t) + β

M× (M× ep)

1 + c̃pM · ep
. (5.26)
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This equation can be seen on the level of transition probability densities by finding

∂w(M, t)

∂t
= ∇Σ ·

(
dM

dt

)
w. (5.27)

Inserting (5.26) into (5.27), this equation becomes

∂w(M, t)

∂t
= ∇Σ ·

(
−γ(M×Heff) + Tr(t) + β

M× (M× ep)

1 + c̃pM · ep

)
w. (5.28)

It is easy to see that there are three distinct components to this master equation:

∂w(M, t)

∂t
=∇Σ · (−γ(M×Heff)w)

+∇Σ · (Tr(t)w) +∇Σ ·
(
β
M× (M× ep)

1 + c̃pM · ep
w

)
. (5.29)

The first term corresponds to the precessional term, the second to the jump-noise,

and the last term corresponds to the spin-torque term.

In (4.1), the master equation was shown with just the precessional and jump-

noise terms to be

∂w

∂t
=− γ∇Σ · [(M×∇ΣgL)w]

+

∫
Σ

[S(M′,M)w(M′)− S(M,M′)w(M)]dΣM′ . (5.30)

Therefore, taking the divergence of the spin-torque term, it is shown to be:

∇Σ ·
(
β
M× (M× ep)

1 + c̃pM · ep
w

)
= ∇Σ

[(
β

c̃p
∇Σ ln(1 + c̃pM · ep)

)
w

]
. (5.31)

Adding this to (5.30) gives the master equation with spin-torque:

∂w

∂t
=− γ∇Σ · [(M×∇ΣgL)w]

+

∫
Σ

[S(M′,M)w(M′)− S(M,M′)w(M)]dΣM′

+∇Σ

[(
β

c̃p
∇Σ ln(1 + c̃pM · ep)

)
w

]
. (5.32)
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5.4 Spin-Transfer Torque on Energy Graphs

In chapter 4, an averaging technique was used to efficiently model stochastic

magnetization dynamics driven by a jump-noise process under small thermal noise

conditions. This method can be generalized to the case when the magnetization dy-

namics are also driven by spin-polarized current injection. This generalized equation

has the same form as (4.18) but with an additional term to account for spin-transfer

torque.

To derive the equation with spin-transfer torque on energy graphs, the mag-

netization dynamics equation with spin-transfer torque in (5.32) is used:

∂w

∂t
=− γ∇Σ · [(M×∇ΣgL)w]

+

∫
Σ

[S(M′,M)w(M′)− S(M,M′)w(M)]dΣM′

−∇Σ

[(
β

c̃p
∇Σ ln(1 + c̃pM · ep)

)
w

]
. (5.33)

Integrating this equation along precessional trajectories gives:

∮
Ck(g)

1

|∇ΣgL|
∂w

∂t
dmψ =

∮
Ck(g)

1

|∇ΣgL|

[
− γ∇Σ · [(M×∇ΣgL)w]

+

∫
Σ

[S(M′,M)w(M′)− S(M,M′)w(M)]dΣM′

+∇Σ

[(
β

c̃p
∇Σ ln(1 + c̃pM · ep)

)
w

] ]
dmψ. (5.34)

Following the steps in chapter 4,

∮
Ck(g)

1

|∇ΣgL|
∂w

∂t
dmψ =

∂ρk(g, t)

∂t
, (5.35)
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The first term in the integral evaluates to 0,

−
∮
Ck(g)

1

|∇Σg|
γ∇Σ · [(M×∇ΣgL)w]dlM = 0, (5.36)

and the second term becomes a collision integral on energy graphs.

Therefore, the equation becomes:

dρk(g, t)

dt
=
∑
n

∫
Ln

[Kn,k(g
′, g)ρn(g′, t)−Kk,n(g, g′)ρk(g, t)]dg

′

+

∮
Ck(g)

1

|∇ΣgL|

[
∇Σ

[(
β

c̃p
∇Σ ln(1 + c̃pM · ep)

)
w

] ]
dmψ,

(k = 1, 2, ...N). (5.37)

Looking at only the second term, specifically the term inside the gradient:

A(M, t) = (∇Σ ln(1 + c̃pM · ep))w(M, t). (5.38)

Writing this term as a function of energy gives

A(g, ψ, t) = (∇Σ ln(1 + c̃pM(g, ψ) · ep))wk(g, ψ, t). (5.39)

Since the coordinate system of interest is eg and eψ, the term in (5.39) can be

decomposed:

A(g, ψ, t) = [(∇Σ ln(1 + c̃pM(g, ψ) · ep))wk(g, ψ, t)] · eg

+ [(∇Σ ln(1 + c̃pM(g, ψ) · ep))wk(g, ψ, t)] · eψ. (5.40)

Using the definitions in (4.2) and (4.7), this term becomes:

A(g,ψ, t) =

[
(∇Σ ln(1 + c̃pM(g, ψ) · ep))

ρk(g, t)

τk(g)

]
·
(
∇ΣgL
|∇ΣgL|

)
+

[
(∇Σ ln(1 + c̃pM(g, ψ) · ep))

ρk(g, t)

τk(g)

]
·
(
M(g, ψ)× ∇ΣgL

|∇ΣgL|

)
. (5.41)
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For temporary notational simplicity, let

B(g, ψ, t) = (∇Σ ln(1 + c̃pM(g, ψ) · ep))
ρk(g, t)

τk(g)
. (5.42)

Thus,

A(g, ψ, t) = B(g, ψ, t) ·
(
∇ΣgL
|∇ΣgL|

)
+B(g, ψ, t) ·

(
M(g, ψ)× ∇ΣgL

|∇ΣgL|

)
. (5.43)

Applying the gradient from the master equation in (5.37) gives

∇ΣA(g, ψ, t) =∇Σ

[
B(g, ψ, t) ·

(
∇ΣgL
|∇ΣgL|

)
+B(g, ψ, t) ·

(
M(g, ψ)× ∇ΣgL

|∇ΣgL|

)]
. (5.44)

This in turn can be expanded in terms of mg and mψ:

∇ΣA(g, ψ, t) =

d

dmg

[
B(g, ψ, t) ·

(
∇ΣgL
|∇ΣgL|

)
+B(g, ψ, t) ·

(
M(g, ψ)× ∇ΣgL

|∇ΣgL|

)]
+

d

dmψ

[
B(g, ψ, t) ·

(
∇ΣgL
|∇ΣgL|

)
+B(g, ψ, t) ·

(
M(g, ψ)× ∇ΣgL

|∇ΣgL|

)]
. (5.45)

It is evident that the second term in the first derivative lies solely along the eψ

direction and first term in the second derivative lies solely along the eg direction.

Therefore, those derivatives both evaluate to 0 leaving:

∇ΣA(g, ψ, t) =
d

dmg

[
B(g, ψ, t) ·

(
∇ΣgL
|∇ΣgL|

)]
+

d

dmψ

[
B(g, ψ, t) ·

(
M(g, ψ)× ∇ΣgL

|∇ΣgL|

)]
. (5.46)

Changing the variables from dmg to dg and dmψ to dψ using (4.3) gives:

∇ΣA(g, ψ, t) =
d

dg

[
B(g, ψ, t) · ∇ΣgL

]
+

d

dψ

[
B(g, ψ, t) · (M(g, ψ)×∇ΣgL)

]
. (5.47)
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Returning to the equation in (5.37), the gradient in (5.47) is integrated along pre-

cessional trajectories. But, since the second term in (5.47) lies perpendicular to the

path of integration, the term evaluates to 0. Thus,∮
Ck(g)

1

|∇ΣgL|

[
β

c̃p
∇Σ [A(g, ψ, t)]

]
dmψ

=

∮
Ck(g)

1

|∇ΣgL|

[
β

c̃p

d

dg

[
B(g, ψ, t) · ∇ΣgL

]]
dmψ. (5.48)

Changing the order of integration and differentiation,∮
Ck(g)

1

|∇ΣgL|

[
β

c̃p
∇Σ [A(g, ψ, t)]

]
dmψ

=
d

dg

∮
Ck(g)

1

|∇ΣgL|

[
β

c̃p

[
B(g, ψ, t) · ∇ΣgL

]]
dmψ. (5.49)

Replacing B(g, ψ, t) gives:∮
Ck(g)

1

|∇ΣgL|

[
β

c̃p
∇Σ [A(g, ψ, t)]

]
dmψ

=
d

dg

∮
Ck(g)

[
β

c̃p

[
(∇Σ ln(1 + c̃pM(g, ψ) · ep))

ρk(g, t)

τk(g)
· ∇ΣgL
|∇ΣgL|

] ]
dmψ. (5.50)

Defining a function

Φk(g) =
β

c̃pτk(g)

∮
Ck(g)

∇Σ ln[1 + cpM · ep] · ∇ΣgL
|∇ΣgL|

dmψ, (5.51)

the modified magnetization dynamics equation from (5.37) can be written as

∂

∂t
ρk(g, t) =

∂

∂g
[Φk(g)ρk(g, t)] (5.52)

+
∑
n

∫
Ln

[Kn,k(g
′, g)ρn(g′, t)−Kk,n(g, g′)ρk(g, t)]dg

′,

(k = 1, 2, ...N).

It is interesting to point out that the stochastic differential equation for micro-

magnetic energy g corresponding to equation (5.52) can be written in a form similar
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to the jump-noise driven magnetization dynamics equation (3.1). If the effects of

thermal fluctuations are small enough that they can be neglected, then (5.52) results

in the following deterministic equation for energy

dgk
dt

= −Φk(gk) + E(T (k)
r (g)), (5.53)

where E(T
(k)
r (g)) is the expected value of a jump-noise process T

(k)
r (g) for energy

on graphs.

Similar to in (3.25), the expected value of the jump-noise process on graphs

can be given as

E[Tr(g)] = λ(g)E(∆g) (5.54)

where λ(g) is the scattering rate of graphs given by

λ(g) =

∫
Ln

K(g, g′)dg′. (5.55)

E(∆g) is the expected value of the jump in energy ∆g and is defined by

E(∆g) =

∫
Ln

(∆g)χ(∆g, g)d(∆g), (5.56)

where χ(∆g, g) is the conditional probability density on graphs given by

χ(∆g, g) =
K(g, g + ∆g)

λ(g)
. (5.57)

As can be seen, this jump-noise process is fully defined by the transition prob-

ability rate Kk,n(g, g′) = Kk,n(g, g+ ∆g). In this way, the semi-analytical averaging

approach first introduced in chapter 4 can be used to quickly and accurately analyze

the complex dynamics of spin-torque driven magnetization dynamics.
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5.5 Self-Oscillations

With the addition of the spin-transfer torque, it is possible to have periodic so-

lutions of the magnetization dynamics32,33. These solutions are known as limit cycles

or “self-oscillations” of the magnetization. The formation of these self-oscillations is

due to the balance of competing forces when thermal effects are perfectly balanced

against the effects of spin-transfer torque. As the spin torque term in the magne-

tization dynamics equation is dependent on the magnetization, the balance points

where self-oscillations appear are also magnetization-dependent.

By solving the spin-torque driven magnetization dynamics equation, the self-

oscillations are seen to be located at the extrema of the micromagnetic energy g,

like energy wells or peaks. Like other energy artifacts, these self-oscillations can be

stable or unstable. This means that for stable self-oscillations, the limit cycles act

as energy wells and will attract precessional magnetization trajectories to their own

stable periodic trajectory.

The approach outlined in section 5.2 was used to numerically study stable

self-oscillations in uniaxial magnetic nanosystems caused by the injection of spin-

polarized currents. Using the spin-torque driven magnetization dynamics equa-

tions on graphs, the self-oscillation phenomenon was studied in two ways. The first

method was to observe stationary equilibrium distributions that occur when

∂

∂t
ρk(g, t) = 0. (5.58)
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From (5.53), this equilibrium condition produces the equality

∂

∂t
[Φk(g)ρ

(0)
k (g)] =

∑
n

∫
Ln

[Kk,n(g, g′)ρ
(0)
k (g)−Kn,k(g

′, g)ρ(0)
n (g′)]dg′. (5.59)

Solving for ρ
(0)
k (g) for k = 1, 2, ...N produces the stationary equilibrium distribution

under spin-polarized current injection.

The second method to study the self-oscillation phenomenon solves for extrema

in the micromagnetic energy equation. As stable self-oscillations behave as energy

wells, they satisfy the equation

dgk
dt

= 0. (5.60)

Using (5.28), this condition is seen to be satisfied when

Φk(gk) = E(T (k)
r (g)), (5.61)

which is when the jump-noise process is balanced by the spin-torque effect.

The numerical results of these two studies are shown in Figures 5.1, 5.2, and

5.3. These figures represent the stationary distributions of ρ(g) (dashed lines) for

various values of spin-polarized current injection as well as graphs of the function

F (g) = −Φ(g) + E(Tr(g)) (5.62)

represented by continuous lines.

It is apparent from these figures that the location of the maximum ρ(g) prac-

tically coincides with the zero of F (g). In other words, this maximum of ρ(g) and

self-oscillations occur along specific precessional trajectories that are defined by the

zeros of function F (g).

86



Figure 5.1: F (g) and ρ(g) for Dx = Dy = 0, Dz = 1, Haz = 1.6,
epz = −1, cp = 0.5, β = 2× 108.
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Figure 5.2: F (g) and ρ(g) for Dx = Dy = 0, Dz = 1, Haz = 1.6,
epz = −1, cp = 0.5, β = 4× 108.
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Figure 5.3: F (g) and ρ(g) for Dx = Dy = 0, Dz = 1, Haz = 1.6,
epz = −1, cp = 0.5, β = 5× 108.
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Chapter 6: Power Spectral Density of Magnetization Dynamics

6.1 Power Spectral Density

The previously outlined analytical approach and numerical simulations in this

dissertation provide a good theoretical basis for the jump-noise process driven mag-

netization dynamics. Yet, most of the numerical simulations are hard to quantita-

tively verify with experimental setups. A quantity that can more easily be measured

in laboratories is the power spectral density of a magnetic particle4,16. Therefore,

an analytical derivation for power spectral density would provide a good connection

between the theoretical analytical approach outlined in this dissertation and any

experimentally obtained results obtained in the future.

6.1.1 Calculating Power Spectral Density

One thing to point out is that the power spectral density can only be calculated

for linear, time-invariant stochastic processes that are square-integrable. Since the

Landau-Lifshitz equation driven by a jump-noise process in equation (3.1) is not

linear, the magnetization dynamics on the level of transition probability densities

given in (3.4) can be used. Furthermore, a steady-state solution is assumed such
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that the process is stationary. From these assumptions, the power spectral density

can be calculated.

The first step for calculating the power spectral density is to find the autocor-

relation function. The autocorrelation function for an arbitrary function f defined

on the magnetization sphere is given by:

Ĉf (τ) = 〈[f(m(t0 − τ))− 〈f(m)〉][f(m(t0))− 〈f(m)〉]〉. (6.1)

Once the autocorrelation function is found, the power spectral density can be found

as the Fourier transform of the autocorrelation function:

Ŝf (ω) =

∫ ∞
−∞

Ĉf (τ)e−jωτdτ. (6.2)

6.1.2 Power Spectral Density on Energy Graphs

The power spectral density as defined on energy graphs can be found using

a similar line of reasoning. The autocorrelation function on energy graphs for a

function f is given by

Ĉf (τ) = 〈[f(g(t0 − τ))− 〈f(g)〉][f(g(t0))− 〈f(g)〉]〉. (6.3)

This autocorrelation function can be expanded to:

Ĉf (τ) =〈f(g(t0 − τ))f(g(t0))− f(g(t0 − τ))〈f(g)〉

− 〈f(g)〉f(g(t0)) + 〈f(g)〉〈f(g)〉〉. (6.4)

Taking the expected value of the expression gives:

Ĉf (τ) =〈f(g(t0 − τ))f(g(t0))〉 − 〈f(g(t0 − τ))〈f(g)〉〉

− 〈〈f(g)〉f(g(t0))〉+ 〈〈f(g)〉〈f(g)〉〉. (6.5)
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Simplifying the expression gives:

Ĉf (τ) = 〈f(g(t0− τ))f(g(t0))〉 − 〈f(g)〉〈f(g)〉 − 〈f(g)〉〈f(g)〉+ 〈f(g)〉〈f(g)〉. (6.6)

Canceling the terms gives the expression:

Ĉf (τ) = 〈f(g(t0 − τ))f(g(t0))〉 − 〈f(g)〉〈f(g)〉. (6.7)

The expected value operator used in the previous expressions is defined by

〈f(g)〉 =

∫
L

f(g)ρeq(g)dg. (6.8)

The expression can be simplified by defining g = g(t0) and g′ = g(t0− τ). Using the

definition for expected value and the new notation gives:

Ĉf (τ) =

∫
L

∫
L

f(g)f(g′)ρ(g, t0; g′, t0 − τ)dg′dg

−
∫
L

∫
L

f(g)f(g′)ρeq(g)ρeq(g′)dg′dg. (6.9)

The probability distribution function is a stationary function so it can be written

as a conditional probability:

ρ(g, t0; g′, t0 − τ) = ρ(g, τ |g′, 0)ρeq(g′). (6.10)

Using this definition for probability distribution, the autocorrelation function can

be written:

Ĉf (τ) =

∫
L

∫
L

f(g)f(g′)ρ(g, τ |g′, 0)ρeq(g′)dg′dg

−
∫
L

∫
L

f(g)f(g′)ρeq(g)ρeq(g′)dg′dg. (6.11)
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Combining the two integrals gives:

Ĉf (τ) =

∫
L

∫
L

f(g)f(g′)[ρ(g, τ |g′, 0)− ρeq(g)]ρeq(g′)dg′dg. (6.12)

This integral can be rewritten as:

Ĉf (τ) =

∫
L

f(g)

[∫
L

f(g′)[ρ(g, τ |g′, 0)− ρeq(g)]ρeq(g′)dg′
]
dg (6.13)

The equation within the brackets can be redefined as a separate equation:

ψf (g, τ) =

∫
L

f(g′)[ρ(g, τ |g′, 0)− ρeq(g)]ρeq(g′)dg′. (6.14)

Therefore, the autocorrelation function is:

Ĉf (τ) =

∫
L

f(g)ψf (g, τ)dg. (6.15)

The power spectral density is then the Fourier transform of the autocorrelation

function:

Ŝf (ω) =

∫ ∞
−∞

Ĉf (τ)e−jωτdτ (6.16)

Since the autocorrelation function is an even function, the power spectral density

can be written:

Ŝf (ω) = 2R
{∫ ∞

0

Ĉf (τ)e−jωτdτ

}
(6.17)

Inserting the definition of the autocorrelation function from (6.15), the power spec-

tral density is:

Ŝf (ω) = 2R
{∫ ∞

0

[∫
L

f(g)ψf (g, τ)dg

]
e−jωτdτ

}
. (6.18)

The order of the two integrals can be interchanged

Ŝf (ω) = 2R
{∫

L

f(g)

[∫ ∞
0

ψf (g, τ)e−jωτdτ

]
dg

}
(6.19)
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The function in the inner bracket can be defined as the Fourier Transform of the

previously defined function ψ(g, τ):

Ψf (g, ω) =

∫ ∞
0

ψf (g, τ)e−jωτdτ. (6.20)

Therefore, the power spectral density can be found by solving the equation:

Ŝf (ω) = 2R
{∫

L

f(g)Ψf (g, ω)dg

}
. (6.21)

6.2 Analytical Approach

The previously outlined approach solves for the power spectral density in the

case of an arbitrary function f(g). To analyze the power spectral density for free

energy, the function to consider is for f(g) = g.

6.2.1 Deriving the Free Energy Power Spectral Density

Considering the function f(g) = g, the initial autocorrelation function be-

comes:

Ĉg(τ) = 〈[g − 〈g〉][g′ − 〈g〉]〉. (6.22)

This autocorrelation function can be equivalently written as:

Ĉg(τ) = 〈gg′〉 − 〈g〉〈g〉. (6.23)

Using the definition for expected value to be:

〈g〉 =

∫
L

gρeq(g)dg, (6.24)
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the autocorrelation function can be written as

Ĉg(τ) =

∫
L

∫
L

gg′ρ(g, t0; g′, t0 − τ)dg′dg −
∫
L

∫
L

gg′ρeq(g)ρeq(g′)dg′dg. (6.25)

Again, using the fact that the probability distribution function is a stationary func-

tion, the probability distribution function can be written

ρ(g, t0; g′, t0 − τ) = ρ(g, τ |g′, 0)ρeq(g′). (6.26)

The autocorrelation function becomes

Ĉg(τ) =

∫
L

∫
L

gg′ρ(g, τ |g′, 0)ρeq(g′)dg′dg −
∫
L

∫
L

gg′ρeq(g)ρeq(g′)dg′dg. (6.27)

These integrals can be combined to become

Ĉg(τ) =

∫
L

∫
L

gg′[ρ(g, τ |g′, 0)− ρeq(g)]ρeq(g′)dg′dg. (6.28)

Rearranging the integrals gives:

Ĉg(τ) =

∫
L

g

[∫
L

g′[ρ(g, τ |g′, 0)− ρeq(g)]ρeq(g′)dg′
]
dg. (6.29)

Defining the function inside the brackets as ψ, the autocorrelation function becomes

Ĉg(τ) =

∫
L

gψg(g, τ)dg, (6.30)

where

ψg(g, τ) =

∫
L

g′[ρ(g, τ |g′, 0)− ρeq(g)]ρeq(g′)dg′. (6.31)

Using this definition for the autocorrelation function, the power spectral density is

given as the Fourier transform:

Ŝg(ω) =

∫ ∞
−∞

Ĉg(τ)e−jωτdτ. (6.32)
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The autocorrelation function is an even function so the power spectral density can

be written as:

Ŝg(ω) = 2R
{∫ ∞

0

Ĉg(τ)e−jωτdτ

}
. (6.33)

Plugging in the equation for the autocorrelation function gives:

Ŝg(ω) = 2R
{∫ ∞

0

[∫
L

gψg(g, τ)dg

]
e−jωτdτ

}
. (6.34)

Rearranging the integrals, the power spectral density can be defined as

Ŝg(ω) = 2R
{∫

L

gΨg(g, ω)dg

}
, (6.35)

where

Ψg(g, ω) =

∫ ∞
0

ψg(g, τ)e−jωτdτ. (6.36)

6.2.2 Solving for Free Energy Power Spectral Density

Now that there is an equation to describe the power spectral density on energy

graphs, it is clear from (6.35), (6.36) and (6.31) that the power spectral density can

be found from the probability distribution function. To find an analytical solution

to the power spectral density, the equation for magnetization dynamics on grpah

can be manipulated to find solutions to Ψ(g, ω). Starting from the general form of

the equation for magnetization dynamics on graphs that includes the spin-torque

term:

∂

∂t
ρk(g, t) =

∂

∂g
[Φk(g)ρk(g, t)]

+
∑
n

∫
Ln

[Kn,k(g
′, g)ρn(g′, t)−Kk,n(g, g′)ρk(g, t)]dg

′. (6.37)
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In this equation, ρ(g, t) was notationally simplified to only include the last magne-

tization state in the Markov process. The full expression is ρ(g0, t0; g, t0 + τ), which

describes the initial state g0 at time t0 and the current state g at later time t0 + τ .

∂

∂t
ρk(g0, t0; g, t0 + τ) =

∂

∂g
[Φk(g)ρk(g0, t0; g, t0 + τ)]

+
∑
n

∫
Ln

[Kn,k(g
′, g)ρn(g0, t0; g′, t0 + τ)

−Kk,n(g, g′)ρk(g0, t0; g, t0 + τ)]dg′ (6.38)

Since the probability distribution is a stationary process, it can be viewed as a

probability distribution starting at time t and ending at time τ :

ρ(g0, t0; g, t0 + τ) = ρ(g0, 0; g, τ) (6.39)

Using this probability distribution, the equation becomes:

∂

∂t
ρk(g0, 0; g, τ) =

∂

∂g
[Φk(g)ρk(g0, 0; g, τ)]

+
∑
n

∫
Ln

[Kn,k(g
′, g)ρn(g0, 0; g′, τ)−Kk,n(g, g′)ρk(g0, 0; g, τ)]dg′ (6.40)

It in important to look at the behavior at time t = 0. At that time, the initial

boundary condition can be described as the magnetization starting at g = g0:

ρ(g0, 0; g, τ)|τ=0 = δ(g − g0) (6.41)

This initial boundary condition implies that the probability distribution can be

defined as a conditional probability dependent on the starting magnetization:

ρ(g, τ |g0, 0) ≡ ρ(g0, 0; g, τ) (6.42)
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The equation then becomes:

∂

∂t
ρk(g, τ |g0, 0) =

∂

∂g
[Φk(g)ρk(g, τ |g0, 0)]

+
∑
n

∫
Ln

[Kn,k(g
′, g)ρn(g′, τ |g0, 0)−Kk,n(g, g′)ρk(g, τ |g0, 0)]dg′ (6.43)

At equilibrium the probability distribution ρeq is stationary and satisfies:

∂

∂g
[Φk(g)ρeqk (g)]+

∑
n

∫
Ln

[Kn,k(g
′, g)ρeqn (g′)−Kk,n(g, g′)ρeqk (g)]dg′

=
∂

∂t
ρeqk = 0 (6.44)

(6.44) can be subtracted from (6.43) to obtain:

∂

∂t
ρk(g, τ |g0, 0)− ∂

∂t
ρeqk =

∂

∂g
[Φk(g)ρk(g, τ |g0, 0)]− ∂

∂g
[Φk(g)ρeqk (g)]

+
∑
n

∫
Ln

[Kn,k(g
′, g)ρn(g′, τ |g0, 0)−Kk,n(g, g′)ρk(g, τ |g0, 0)]dg′

−
∑
n

∫
Ln

[Kn,k(g
′, g)ρeqn (g′)−Kk,n(g, g′)ρeqk (g)]dg′ (6.45)

This expression can be simplified to:

∂

∂t
[ρk(g, τ |g0, 0)− ρeqk (g)] =

∂

∂g
[Φk(g)[ρk(g, τ |g0, 0)− ρeqk (g)]]

+
∑
n

∫
Ln

[Kn,k(g
′, g)[ρn(g, τ |g0, 0)

− ρeqn (g)]−Kk,n(g, g′)[ρk(g, τ |g0, 0)− ρeqk (g)]]dg′ (6.46)

The difference between the probability distribution and the equilibrium distribution

can be defined as:

ζk(g, τ |g0, 0) ≡ ρk(g, τ |g0, 0)− ρeqk (g) (6.47)

The initial boundary condition for this new function is:

ζk(g, τ |g0, 0)|τ=0 = ρk(g, τ |g0, 0)|τ=0 − ρeqk (g) = δ(g − g0)− ρeqk (g) (6.48)
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Using this function ζ, the equation is shown to satisfy:

∂

∂t
ζk(g, τ |g0, 0) =

∂

∂g
[Φk(g)ζk(g, τ |g0, 0)]

+
∑
n

∫
Ln

[Kn,k(g
′, g)ζn(g′, τ |g0, 0)−Kk,n(g, g′)ζk(g, τ |g0, 0)]dg′ (6.49)

From ζ, the function ψg defined in (6.31) can be obtained. To do this, a new function

is defined:

ψk(g, τ) ≡
∫
L

g′ρeqk (g′)ζk(g, τ |g′, 0)dg′ (6.50)

Applying the same integration to the equation (6.49) gives:

∫
L

g′′ρeqk (g′′)[
∂

∂t
ζk(g, τ |g′′, 0)]dg′′ =∫

L

g′′ρeqk (g′′)[
∂

∂g
[Φk(g)ζk(g, τ |g′′, 0)]]dg′′

+

∫
L

g′′ρeqk (g′′)[
∑
n

∫
Ln

[Kn,k(g
′, g)ζn(g′, τ |g′′, 0)

−Kk,n(g, g′)ζk(g, τ |g′′, 0)]dg′]dg′′ (6.51)

Using the definition of ψ from (6.50), the equation can be written:

∂

∂t
ψk(g, τ |g0, 0) =

∂

∂g
[Φk(g)ψk(g, τ |g0, 0)]

+
∑
n

∫
Ln

[Kn,k(g
′, g)ψn(g′, τ |g0, 0)−Kk,n(g, g′)ψk(g, τ |g0, 0)]dg′ (6.52)

Using (6.50), the initial boundary condition for ψk is seen to satisfy:

ψk(g, τ |g0, 0)|τ=0 =

∫
L

g′′ρeqk [δ(g − g0)− ρeqk (g)]dg′′ (6.53)

This simplifies to the expression:

ψk(g, τ |g0, 0)|τ=0 = ρeqk [g − 〈g〉] (6.54)
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From (6.36), the next step in finding the power spectral density is to take the Fourier

transform of ψk to find Ψk by using the equation:

Ψk(g, ω|g0) =

∫ ∞
0

ψk(g, τ |g0, 0)e−jωτdτ (6.55)

Applying this same Fourier transform to equation (6.52) gives:∫ ∞
0

∂

∂t
ψk(g, τ |g0, 0)e−jωτdτ =

∫ ∞
0

∂

∂g
[Φk(g)ψk(g, τ |g0, 0)]e−jωτdτ

+

∫ ∞
0

∑
n

∫
Ln

[Kn,k(g
′, g)ψn(g′, τ |g0, 0)

−Kk,n(g, g′)ψk(g, τ |g0, 0)]dg′e−jωτdτ (6.56)

Performing this one-sided integration gives:

jωΨk(g, ω|g0)− ψ(g, τ |g0, 0)|τ=0 =
∂

∂g
[Φk(g)Ψk(g, ω|g0)]

+
∑
n

∫
Ln

[Kn,k(g
′, g)Ψn(g′, ω|g0)−Kk,n(g, g′)Ψk(g, ω|g0)]dg′ (6.57)

This final equation can now be used to solve for Ψk. The power spectral density can

then be found from Ψk by integrating:

Ŝ(ω) = 2R
{∫

L

gΨ(g, ω)dg

}
(6.58)

6.2.3 Alternative Eigenvalue approach

In the case of no applied spin-torque where the spin-torque term can be ne-

glected, the equation for the power spectral density in (6.57) can be simplified to:

jωΨk(g, ω|g0)− ψk(g, τ |g0, 0)|τ=0

=
∑
n

∫
Ln

[Kn,k(g
′, g)Ψn(g′, ω|g0)−Kk,n(g, g′)Ψk(g, ω|g0)]dg′ (6.59)
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The right side of the equation takes the same form as the collision integral in (4.18)

and so can be solved using the same eigenvalue approach.

Writing the right side of the equation in matrix form K̂, the eigenvalue solu-

tions will take the form:

K̂φi = λiφi (6.60)

for some eigenvector φi.

Using the eigenvectors from K̂, Ψk(g, ω) can be decomposed to take the form:

Ψk(g, ω) =
∑
i

λiai(ω)φi(g) (6.61)

On the left side of equation (6.59), the second term can be expressed as an

orthogonal mapping of the initial boundary condition onto the eigenvectors such

that:

ψk(g, τ |g0, 0)|τ=0 = ρeqk [g − 〈g〉] =
∑
i

biφi(g), (6.62)

where

bi = 〈ρeqk [g − 〈g〉], φi(g)〉. (6.63)

Using this decomposition method, the master equation can be expressed in

terms of eigenvectors such that:

jωai(ω)φi(g)− biφi(g) = λiai(ω)φi(g) (6.64)

Solving for this expression, ai is found to be:

ai =
bi

jω − λi
(6.65)

Therefore, Ψk(g, ω) can be found to satisfy:

Ψ(g, ω) =
∑
i

λi〈ρeqk [g − 〈g〉], φi(g)〉
jω − λi

φi(g) (6.66)
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This eigenvalue approach allows for a very fast calculation of power spectral

density. Rather than having to solve for each value of ω in (6.57) or (6.59), Ψ can

be expressed as a function of ω in (6.66). In fact, the power spectral density can be

expressed:

Ŝ(ω) = 2R

{∫
L

g
∑
i

λi〈ρeqk [g − 〈g〉], φi(g)〉
jω − λi

φi(g)dg

}
. (6.67)

This equation can be rearranged to give a succinct expression for PSD:

Ŝ(ω) = 2R

{∑
i

λi
jω − λi

∫
L

g〈ρeqk [g − 〈g〉], φi(g)〉φi(g)dg

}
. (6.68)

6.3 Numerical Results and Discussion

The techniques described in the previous sections have been numerically im-

plemented for the case of uniaxial particles with and without the spin-torque effect.

Since the probability distribution function on energy graphs is a stationary distri-

bution, the power spectral density is expected to only reflect the stochastic noise

that appears in the magnetization dynamics without peaks due to precessional tra-

jectories.

As seen in Figures 6.1, 6.2, and 6.3, the power spectral density starts with

a flat intensity response at lower frequencies then achieves a ‘knee’ and decreases

on the log-scale as the frequency increases. The placement of the ‘knee’ illustrates

the effect of thermal noise and shows how the nature of the thermal noise can

influence the placement of the ‘knee’. The roll-off in intensity appears to follow a

1/f 2 dependence and is the same in each of the figures.

From comparing figures 6.1 and 6.2 where the intensity of the noise is in-
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Figure 6.1: Uniaxial particle with Keff = 0.5, Haz = −0.7, σ2 = 0.001, B = 1012.
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Figure 6.2: Uniaxial particle with Keff = 0.5, Haz = −0.7, σ2 = 0.001, B = 1015.
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Figure 6.3: Uniaxial particle with Keff = 0.5, Haz = −0.7, σ2 = 0.01, B = 1012.
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creased from B = 1012 to B = 1015, the placement of the knee is shifted to higher

frequencies. This makes some physical sense as thermal noise with higher intensity

correlates with more frequent jumps and therefore the noise is present in more fre-

quencies. Likewise, from comparing figures 6.1 and 6.3 where the distribution of the

noise is increased from σ2 = 0.001 to σ2 = 0.01, the placement of the knee is also

shifted to higher frequencies. This also makes physical sense as larger σ2 allows for

larger jumps in magnetization and therefore an overall larger transition probability

rate and scattering rate. This again leads to more thermal noise present at higher

frequencies. This phenomenon can be analytically seen in (3.18) and (4.17) as an

increase in the noise parameters leads to an increase in the transition probability

rate.

Figures 6.4, 6.5, and 6.6 represent the same power spectral densities as in

Figures 6.1, 6.2, and 6.3 but calculated using the eigenvalue approach described in

section 6.2.3. As seen from these figures, the power spectral densities exactly match

their respective plots in Figures 6.1, 6.2, and 6.3.

Figures 6.7, 6.8, and 6.9 show the effect of spin-torque on the power spectral

density. Since the addition of spin-torque changes the nature of the eigenvalue

equation and the operator may no longer be self-adjoint, the eigenvalue approach

cannot be used to solve for the spin-torque case. Therefore, the results shown

here are from numerically solving (6.57) and (6.58). As seen from these figures,

the addition of spin-torque modifies the power spectral density. Discounting the

asymptotic dip that results from numerical errors, the power spectral density is seen

to have two separate knees. By comparing figure 6.7 with figures 6.2 and 6.5, the
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Figure 6.4: Uniaxial particle with Keff = 0.5, Haz = −0.7, σ2 = 0.001, B = 1012.
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Figure 6.5: Uniaxial particle with Keff = 0.5, Haz = −0.7, σ2 = 0.001, B = 1015.
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Figure 6.6: Uniaxial particle with Keff = 0.5, Haz = −0.7, σ2 = 0.01, B = 1012.
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Figure 6.7: Uniaxial particle with Keff = 0.5, Haz = −0.7, σ2 =
0.001, B = 1015 and spin-torque characterized by epz = −1, cp = 0.5, β =
107.

second knee is seen to correspond with the knee due to thermal noise, whereas the

first knee is a result of the spin-torque effect. This is also illustrated by comparing

figures 6.7, 6.8, and 6.9 where the strength of the spin torque (β) is increased from

β = 107 to β = 109 and β = 1012. This increase in the spin-torque shifts the

location of the first knee to higher frequencies and in the case of β = 1012, the first

and second knees are almost equivalent.

This change in the power spectral density due to spin-torque can be viewed as

an increase in the noise from a noise source separate from that of the thermal bath.

The appearance of the second ‘knee’ can be seen as a direct result of equations (5.3),
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Figure 6.8: Uniaxial particle with Keff = 0.5, Haz = −0.7, σ2 =
0.001, B = 1015 and spin-torque characterized by epz = −1, cp = 0.5, β =
109.
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Figure 6.9: Uniaxial particle with Keff = 0.5, Haz = −0.7, σ2 =
0.001, B = 1015 and spin-torque characterized by epz = −1, cp = 0.5, β =
1012.
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(5.4), and (5.17) where the transition probability rate has an additional exponential

dependence on the spin-torque term.
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Chapter 7: Discussion and Future Directions

7.1 Discussion

In this dissertation, a stochastic model to describe thermal fluctuation effects

for jump-noise driven magnetization dynamics is developed. The motivation behind

this new approach is to simplify the dynamic equations and combine the separate

noise-induced terms in the traditional approach to a single jump-noise process. It

has been shown in this dissertation that this jump-noise approach is qualitatively

consistent with experimentally observed physical phenomena and has been shown

to be mathematically equivalent to the traditional approach as both the damping

and fluctuation effects emerge from elements of the jump-noise process. Details

of a Monte Carlo numerical simulation method of modeling this jump-noise driven

magnetization dynamics is presented in this dissertation as well as the benefits and

drawbacks of this approach.

To overcome the drawbacks of using a Monte-Carlo approach, an averaging

technique is introduced that reduces magnetization dynamics on a sphere to mag-

netization dynamics on a coordinate system defined by the free energy. Addition-

ally, an eigenvalue-based method of solving magnetization dynamics on graphs that

drastically reduces the needed computational usage is presented. Verification of the
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accuracy of these approaches is obtained by comparing the Monte Carlo approach

and the presented techniques in the study of magnetization switching at very low

temperatures as well an exploration of the necessary conditions required for the

Kramers-Brown approximation.

Another area of interest that is studied in this dissertation is the phenomenon

of spin-transfer torque induced by spin-polarized current injection. An approach

for magnetization dynamics driven by a jump-noise process that accounts for spin-

torque is derived as well as an equivalent approach on energy graphs. These equa-

tions are used to analyze the spin-transfer torque effect and in particular, self-

oscillations resulting from a balance between spin torque and damping are exam-

ined.

Additionally, the power spectral density for magnetization dynamics driven

by a jump-noise process is derived and explored. The study of the power spectral

density provides a link between the theoretical research outlined in this dissertation

with potential experimental results obtainable in the laboratory setting. This link

can potentially provide a substantive argument for the use of the jump-noise driven

magnetization dynamics model. If this jump-noise driven magnetization dynam-

ics model is supplemented by experimental results, it may open a new chapter of

understanding the behavior of magnetization dynamics.

Finally, there are several more areas where this jump-noise driven magneti-

zation dynamics and jump-noise driven magnetization dynamics on graphs can be

applied. The following topics are a few possible directions for the future application

of the techniques described in this dissertation.
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7.2 Energy Graphs with Multiple Branches

In chapter 4, an averaging technique was introduced and used to explore the

simple case of magnetization switching between the two energy wells of a uniaxial

particle. In chapter 5, this problem was complicated slightly with the addition of

a spin-transfer torque term and an externally applied magnetic field, but both of

these fields were applied either parallel or anti-parallel to the easy axis. This led to a

problem that has at most two energy wells and an associated energy graph that also

has at most two branches. The situation of a uniaxial particle with fields applied

parallel or anti-parallel to the easy axis is a very limiting case as it is easy to see that

energy graphs with multiple branches can result from the change in many separate

factors. One easy way to create a system with multiple branches is to remove the

constraint of a uniaxial particle. Systems with a bi-axial structure can exhibit three

energy branches by applying an effective field parallel to an easy axis. This creates

a situation where there are three energy minima with their own associated energy

wells. Therefore, to further explore stochastic magnetization dynamics on graphs,

the techniques advanced in this dissertation, specifically the averaging technique,

can be applied to more complicated micromagnetic scenarios such as energy graphs

with multiple branches.
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7.3 Magnetization Bifurcation

Extending the concepts discussed in the previous section regarding multiple

branches, there can be interesting and complex behaviors in magnetization dynamics

that arise under various conditions. As seen in chapter 5 and discussed in the in-

troduction, magnetization dynamics is subject to damping and applied fields and is

influenced by other phenomena such as the spin-transfer torque and magneto-optical

effects. Under these different applied conditions, magnetization dynamics can ex-

hibit a wide range of interesting effects such as self-oscillations, node-splitting, and

the formation and dissolution of saddle-points. In the interest of exploring these

effects, bifurcation diagrams that map the changes in magnetization dynamics be-

haviors as a function of various parameters can be quickly and accurately created

and analyzed using the averaging techniques presented in chapter 4. These bifurca-

tion diagrams can be used for many applications, such as to pinpoint the parameters

necessary for node splitting between 2-branch energy graphs and 3-branch energy

graphs. These diagrams may also be able to shed light on new and interesting

phenomena that have yet to be discovered.
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