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Abstract

Title of Dissertation: Via Minimization for IC and PCB Layouts
Nicholas Joseph Naclerio, Doctor of Philosophy, 1987
Dissertation directed by: Kazuo Nakajima, Associate Professor, Electrical

Engineering Department

In the design of integrated circuits (ICs), it is important to minimize
the number of vias between conductors on different layers since excess vias
lead to decreased yield and degraded circuit performance. Similarly, in the
design of printed circuit boards (PCBs), it is important to minimize the
number of contact holes used to connect copper strips on opposite sides of
the board. Excess contact holes increase manufacturing cost and decrease
the board’s reliability.

Given a particular design of an IC (or PCB), the Constrained Via
Minimization Problem is to find a layer assignment that requires the fewest
possible vias (or contact holes). It is shown that this problem is NP-hard
for two-layer layouts and remains so when the layout is restricted to be
grid-based, vias are restricted to lie at previously existing junctions, and the
maximum number of wires which are joined at any particular junction does
not exceed six.

A new graph-theoretic formulation of the two-layer problem is then
presented along with an algorithm which yields optimum results when the
maximum junction degree is limited to three. The worst-case time complex-
ity of the algorithm is O(n®) where n is the number of routing segments in

the given layout. Unlike previous algorithms, this algorithm does not require



the layout to be grid based and places no constraints on the location of vias
or the number of wires that may be joined at a single junction. If there are
junctions with degree exceeding three, then our solution may be slightly less
then optimum. If vias are limited to a subset of all possible via sites such as
those allowable by a particular set of geometric design rules, then a further
speedup is possible.

This algorithm has been fully implemented. When tested on examples
from the literature, it was found to be faster than the existing heuristic
algorithms. A new heuristic is also suggested that is based on properties of

the optimum solutions which were generated by this algorithm.



Chapter I

Introduction

1. Motivation

During integrated circuit fabrication, interconnections between circuit
modules are formed by patterning conductive paths on one of two or more
layers. Because the layers are separated by a thin insulator, it is necessary to
etch holes, called vias, through the insulator in order to electrically connect
paths on different layers. Minimizing the number of these vias increases
the performance of the electrical circuit and the yield of the manufacturing
process and decreases the amount of area required for interconnections. In
the design of printed circuit boards, copper paths are patterned on two sides
of an insulating board. In order to electrically connect paths on opposite
sides of the board, contact holes must be drilled through the insulator and
plated with solder. Minimizing the number of contact holes, which we will
henceforth refer to as vias, decreases manufacturing cost and increases the

reliability of the board.
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2. Outline

In the remainder of this chapter, we will define the terminology as-
sociated with via minimization and give some formal problem definitions.
We will then summarize the previous work done on via minimization and
review the graph theoretical terminology that will be used throughout the
remainder of this work.

Chapter 2 deals with the complexity of the so-called Constrained Via
Minimization problem. Given an already routed circuit, the problem is to
find a minimum cardinality set of vias for which a valid layer assignment
exists using only two layers. The associated decision problem is first proven
to be NP-complete. It is then shown that the problem remains NP-complete
even if one or more of the following restrictions are imposed.

1) The input layout must conform to a rectangular grid.

2) Vias are restricted to lie at the endpoints of routing segments in the
input layout.

3) The maximum junction degree is limited to six or more.

Chapter 3 discusses polynomial time algorithms for the Constrained
Via Minimization problem. The basic algorithm presented gives optimum
results when there are no junctions in the input layout having degree greater
than three. Unlike previous algorithms, the algorithm does not require the
layout to be grid based and places no constraints on the location of vias.
The algorithm produces an approximate solution when there are junctions
having degree greater than three. Modifications are described which greatly

reduce the average time complexity for most problems.
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Chapter 4 discusses how the algorithms presented in Chapter 3 have
been implemented and gives the results of applying them to real problems.
Run times of different optimum and heuristic algorithms are compared.
Methods of increasing the average efficiency of the implemented algorithms
are also described. Based on empirical data, a heuristic is suggested and
demonstrated which further reduces the necessary computation time.

Chapter 5 summarizes the contributions of this work and mentions
some very recent results by other researchers. Future directions for research

in this area are also mentioned.

3. Routing Terminology

Often the physical design of printed circuit boards (PCB’s) or inte-
grated circuits (IC’s) is broken down into two steps called placement and
routting. In the first step, the location of circuit elements called modules are
determined according to certain criteria. In the second step, interconnec-
tions are made between the modules. A module is defined as a region of
the horizontal plane bounded by a closed curve. Electrical connections to
the modules are made at interface points called terminals located on their
boundary. A group of terminals which need to be electrically connected are
called a net. A set of nets is called a netlist. In the routing step, a set of wires
must be specified which interconnect the groups of terminals defined by the
netlist. These wires cannot pass through the modules and must lie within
a region called the routing area. The wires are implemented as a number

of straight line segments which are called routing segments and which are
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—_ Routing segments assigned to layer 1
....... Routing segments assigned to layer 2
L Junctions between routing segments

a Vias between routing segments

Modules

Figure 1.1. Example Layout

defined by unordered pairs of endpoints. Each endpoint consists of a pair of
x-y coordinates in the horizontal plane. A routing segment may be assigned
to one of £ horizontal planes called layers where £ is some positive integer.
We assume that all terminals and modules are available on all layers.

If two or more routing segments share an endpoint, then they are as-

sumed to be electrically connected. If the point that they share is not a
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\/
>

Routing Segments Routing Subsegments

Figure 1.2. Routing segments and subsegments

terminal, it is called a junction. If any two routing segments meeting at a
particular junction are assigned to different layers, the junction is called a
via. By definition, a routing segment never contains any junctions except at
its endpoints which are always either a terminal or a junction. The number of
routing segments joined at a particular junction is called the junction degree.
In Figure 1.1, the degree of junctions ji and j3 is two while the degree of j4
is three. A point where the vertical projections of two routing segments not
in the same net intersect is called a ¢rossing. A mapping a: R — {1,2,...,¢}
which assigns each routing segment to a layer in such a manner that no two
segments assigned to the same layer cross and no two routing segments as-
signed to different layers form a junction without a via is called a valid layer
assignment. A maximal length portion of a routing segment which does not
contain any crossings is called a routing subsegment. Figure 1.2 shows a set of

routing segments and the associated routing subsegments. Since it would be
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redundant to change layers more than once along any routing subsegment,
we will only allow one via to be placed on each routing subsegment. We say
that one set of routing segments R is functionally equivalent to another set
of routing segments R’, denoted by R ~ R/, if the vertical projections of the
segments in R and R’ cover the same set of points in the plane and realize
the same netlist. Figure 1.3 shows two sets of routing segments which are
functionally equivalent.

A valid topological layout is defined by a six-tuple £L = (M, T, W, R, V, a)
where M, T, and W are the sets of modules, terminals, and nets, respec-
tively. R is a set of routing segments which realizes the connections specified
in W. And, a is a mapping a: R — {1,2,...,£} which defines a valid layer
assignment for R given the set of vias V. M includes one special module m,
defined by the boundary of the routing area with the infinite area outside of
it as the module’s interior. Given a three-tuple P = (M, T, W) and a pos-
itive integer £, the topologtcal routing problem is to find a valid topological
layout £ = (M, T,W,R,V, a) which realizes the netlist W using at most £
layers.

A valid geometric layout differs from a topological layout in the fact
that the routing segments, vias, and modules all have finite size and must
meet additional constraints called geometric design rules. Given a three-
tuple P = (M, T, W), an integer £, and a set of geometric design rules GDR,
the geometric routing problem is to find a valid geometric layout £, =
(M, T,%,R,V, ) which realizes the netlist W using at most £ layers and

which satisfies the rules in GDR. If £ > 2, any topological routing problem
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Figure 1.3. Functionally equivalent sets of routing segments
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will have a solution, but a geometric routing problem may not. In the re-
mainder of this work, the term layout will mean a valid topological layout
unless otherwise noted. A layout which has all of its routing segments par-
allel to one of two perpendicular axes in the horizontal plane is called a grid
based layout. In the case of grid based geometric layouts, all parallel routing
segments are sometimes assumed to be separated by integer multiples of a
value called the grid pitch. In the case of topological layouts, that pitch is

assumed to be arbitrarily small.

4. Via Minimization Problems

There have been two approaches to minimizing the number of vias
used in a particular layout. In the first approach, via minimization is ac-
complished during the routing step as the main optimization criterion. We
call this Unconstrained Via Minimization and define the optimization prob-
lem, when £ > 1 layers are available for routing, as follows:

(¢-UVM) Given a routing problem P = (M, T, W), generate a layout £ =
(M, T,W,R,V,a) which uses at most £ layers and requires the
minimum number of vias.

The result of using this method is the fewest possible vias at any cost. Not
only is this a computationally difficult problem to solve but, the optimum
¢-UVM solution is usually a layout which is undesirable because of long wire
lengths and large area. Figure 1.4 shows an example of an optimum 2-UVM

solution from [24].
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Figure 1.4. An optimum 2-UVM solution

In the secqnd approach, via minimization is accomplished after the
routing step has been completed and without significantly altering the lay-
out generated by the router. We call this approach Constrained Via Min-
tmization and define the optimization problem for £ > 1 layer layouts as
follows:

(.-CVM ) Given an £-layer layout £ = (M, T,W,R,V,a) , generate an £-
layer layout £/ = (M, T,W,R',V’, ') such that R ~ R’ and V'
is a minimum cardinality set of vias.

For brevity, the 2-CVM problem will sometimes be referred to as simply
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CVM. Note that unless otherwise specified, an £-layer layout may utilize less
than £ layers. Unlike the £-UVM problem, in the £-CVM problem minimiz-
ing the number of vias is a secondary consideration since the placement of
the routing segments has already been determined by some other method.
This allows more important criteria such as area or path length to be given
preference. We will also consider the case when the maximum junction de-
gree in a layout is limited. The £-CVMj problem will be defined for positive
integers | and k as follows:
(6-CVMy ) Given an £-layer layout £L = (M, T,W,R,V, a) with no junction
having degree greater than k, generate an f-layer layout L' =
(M, T,W,R",V’,e) such that R ~ R’ and V' is a minimum
cardinality set of vias.

When comparing different approaches to a particular £-CVMj, problem,
it is important to note that different authors define the set of possible via
sites, called via candidates, differently. For example, one common set of via
candidates consists of the set of endpoints of the given routing segments in R.
However, a complete set of via candidates would include one via site on every
routing subsegment in £ for a total of O(|R1?) via candidates. It should
be clear that this simplification may result in a significant speedup at the
expense of optimality. Figure 1.5a shows a simple layout and Figures 1.5b
and 1.5¢ show two different “optimum” 2-CVM3 solutions. In Figure 1.5b,
vias have been restricted to the endpoints of the given routing segments. In
Figure 1.5¢c vias are placed at any geometrically allowable site. In the case
of geometric layouts, the number of via sites allowed by the design rules may

be significantly less than O(| R |?).
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b) 3 Vias c) 2 Vias

Figure 1.5. Input layout and two “optimum?” solutions
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5. Previous Work

Hashimoto and Stevens [17] first suggested the 2-CVM problem in 1971
as a way to reduce the number of vias generated by their channel routing
algorithm. In their formulation, they assume that the layout is grid based,
all nets contain exactly two terminals, and that vias are placed only at the
endpoints of the given routing segments. Their problem was thought to be
NP-hard? for nearly a decade, leading other researchers to develop heuristic
algorithms [29] or use integer programming with branch and bound tech-
niques to obtain an optimum solution [7]. In 1980, Kajitani [20] showed that
the problem posed by Hashimoto and Stevens [17] can be solved in polyno-
mial time using Hadlock’s maximum cut algorithm for planar graphs [16].
This encouraged other researchers to look for a polynomial time solution
for the more general case. In 1982, Pinter [27] obtained optimum results
for the case when the maximum junction degree is limited to three, but his
algorithm can not be applied to layouts which contain junctions with higher
degree. For reasons that will become clearer in Chapter 3, this is a serious
limitation even for grid based layouts.

In 1983, Chen, Kajitani, and Chan [4] presented a polynomial time
algorithm for grid based layouts which gives optimum results when the max-
imum junction degree is limited to three and approximate results otherwise.
However, they restrict vias to lie at the endpoints of the given set of routing

segments. Recently, Chang and Du [3] developed a heuristic algorithm which

t See [14] for complete definitions of NP-completeness and NP-hardness.
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can handle junctions of any degree, but which does not guarantee optimum
results for any case.

Hsu [18] first considered the 2-UVM problem in 1983 with the added
constraints that all terminals be placed on the boundary of the routing area,
all nets consist of exactly two terminals, and no two wires cross each other
more than once. Suspecting that the problem was NP-hard, he suggested a
heuristic algorithm. Later Marek-Sadowska [24] considered the same prob-
lem without the constraint on crossings and showed how it could be solved
optimally if a “maximum bipartite subgraph” of a particular graph could
be found. Although her particular node-deletion problem is likely to be

NP-hard, Marek-Sadowska failed to give a convincing proof.

6. Graph Theoretical Terminology and Notation

A graph is a pair G = (N, E), where N is a set of nodes and E is a
set of edges. Each edge consists of an unordered pair of nodes in N. Two
nodes z and y are said to be adjacent if (z,y) € E. The edge (z,y) € E
is said to be incident upon each of the nodes z and y which are called its
endpoints. If two edges share the same pair of endpoints, they are called
parallel edges. If both endpoints of an edge are the same, the edge is called
a self-loop. The number of edges incident upon a particular node is the
degree of the node. A path is a sequence of not necessarily distinct edges
(nigs iy )y (M) s iy )y (Rin s Mig)s e v oy (M y s iy, ). The length of the path be-
tween n;, and n;_ is m. A path is called a cycle if ny; = n;,. A cycle is

called a simple cycle if every node in the cycle is the endpoint of exactly two
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edges in the cycle. A graph is called connected if there is a path between
every two nodes. A graph is called complete if every two nodes are adja-
cent. A graph is called bipartite if N can be partitioned into two subsets N;
and N; such that no two nodes in the same subset are adjacent. A graph
H = (N',E') is called a subgraph of G if N' C N and E’' C E.

We will sometimes perform certain operations on a graph in order to
generate another graph. We will call the procedure of removing a given
set of nodes from N and all of their incident edges from E, node deletion.
We will call the procedure of removing a given set of edges from FE, edge
deletion. If N’ C N for some graph G = (N, E), then the subgraph (N', E’)
where E' = {(z,y) € Elz,y € N'} is said to be induced by N’ and will
be denoted by G(N’). If we partition the set of nodes N into a family of
subsets Ny, N2, N3,..., Ny, such that two nodes are in the same subset N;
if and only if there is a path between them in G, then we call the induced
subgraphs G(N1), G(N2),G(N3),...,G(Np) connected components. We will
define the procedure of contracting an edge (z,y) as follows. First (z,y) is
deleted from E. Second all edges (y,2) € E are replaced by (z, 2). Finally,
y is deleted from N. Given a connected graph G = (N, E), a cutset is a set
of edges whose deletion partitions N into two nonempty subsets N; and N,
such that no node in NV, is adjacent to any node in Nj.

A representation of a connected graph G = (N, E) consisting of a set
of points corresponding to the nodes in N and a set of curves connecting
exactly those pairs of points which correspond to adjacent nodes is called

an embedding. A particular graph can have many different embeddings. If
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all of the points lie in the plane and no two curves intersect except at their
endpoints, then we call the embedding a planar embedding. We will denote
a planar embedding of G by G. Any graph that has at least one planar
embedding is called a planar graph. A planar embedding of G in which each
edge is represented by a straight line segment is called a strarght line planar
embedding and will be denoted by G. Any planar graph can be represented
by a straight line planar embedding [11]. In a planar embedding of a graph,
any area which does not contain any edges and which is bounded by a cycle
is called a face. The infinite area surrounding the planar embedding is called
the exterior face. A cycle which defines a face in the embedding is called a
fundamental cycle.

For a particular planar embedding Gofa graph G = (N, E), we define
a unique graph G¢ = (N¢, E%) called a dual graph. There is a one-to-one
correspondence between faces in G and nodes in G¢ . There is also a one-
to-one mapping p: E¢ — E such that a set of edges S is a simple cycle
in E¢ if and only if p(S) is a cutset for G. An embedding of G¢ can be
superimposed on G so that nodes lie on the faces they correspond to and
each edge (r,y) € E is intersected by p(z,y). Two faces are said to be

adjacent faces if their corresponding nodes in the dual graph are adjacent.



Chapter II

Complexity

1. Overview

In this chapter, we will show for the first time that without restric-
tions on the maximum junction degree, the Constrained Via Minimization
problem is NP-hard. For clarity, we begin by showing a polynomial trans-
formation from the NP-complete Planar Node Cover problem [15] to the
general 2-CVM problem. We then refine our method to show a transfor-
mation from a restricted version of the Planar Node Cover problem [13] to
the 2-CVMg problem with the additional restrictions that the layout be grid
based and vias be placed at the endpoints of the given routing segments. In
this manner we prove that the 2-CVM problem is NP-hard even when one
or more of the following restrictions are made.

1) The input layout must be grid based.
2) Only endpoints of the given routing segments are considered via can-
didates.

3) The maximum junction degree is limited to six or more.

16
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2. The General 2-CVM Problem

Let us begin by considering the general 2-CVM problem. The input
to this problem is a layout £ = (M, T, W,R,V,a) such that M, T, W, R,
and V are the sets of modules, terminals, nets, routing segments, and vias,
respectively. a is a mapping a: R — {1,2,...,£} which defines the layer
assignment of each routing segment in R. The layout is not required to be
grid based and may take any form. There are no restrictions on the choice of
via candidates, or on the maximum junction degree. The decision problem
to be considered is defined as follows:
(cvm) Given a layout £ = (M, T,W,R,V,a) and a positive integer k,
does there exist a layout L' = (M, T,W,R’,V’,¢') such that
R~ R'and | V| < k?
Note that k£ may be bounded by |R1?, since no more than one via along
any routing subsegment is ever required. Thus, a solution with k or fewer
vias could easily be guessed non-deterministically in polynomial time. Since
it is easy to test if that solution is valid, we know that cvm € NP. In order
to show that the problem is NP-complete, we will show a polynomial trans-
formation from the Planar Node Cover problem(PNC) [15] whose decision
problem is defined as follows:
(pnc) Given a planar graph G = (N, E) and a positive integer k, does
there exist a node cover N/ for G satisfying IN'| < k?
A node cover for a graph G = (N, E) is a subset N’ C N such that for each
edge (ni,n;) € E, n; € N' or n; € N'. The pnc problem was shown to be

NP-complete in Theorem 2.7 of [15].
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In order to construct the transformation, we will use the sublayout H
shown in Figure 2.1. Note that H requires at least one via if it is to be
realized using only two layers. If that via is placed at either the junction
labeled v, or the junction labeled v¢, then a valid layer assignment will exist

for H.

Vs

Vi

Figure 2.1. Sublayout H

Lemma 2.1. If we create a layout L by joining one or more nonoverlapping
sublayouts identical to H together at either v, or v¢, and replacing either
v, or v; from each of the H’s with a via, then L will have a valid layer

assignment.
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/
/

f

Figure 2.2. Type 1 independent sublayout

Proof: We will define an sndependent sublayout I as a portion of a layout
whose routing segments intersect routing segments not belonging to I only
at vias. Because of this property, routing segments within a particular inde-
pendent sublayout I can be assigned to layers without considering the layer
assignment of any segments which do not belong to I. Any layout L con-
structed in the manner described above can be partitioned into two types of
independent sublayouts which are shown in Figures 2.2 and 2.3. The inde-
pendent sublayouts of Type 1 consist of a single H and have a via at both v,
and v;. The independent sublayouts of Type 2 are made up of one or more
H’s joined at a single junction j and have a via at whichever of v, or v; is
not coincident with 7. As shown in Figures 2.2 and 2.3, valid layer assign-
ments exist for both types of independent sublayouts. Since L is made up

of only two types of independent sublayouts and both types of independent
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Figure 2.3. Type 2 independent sublayouts

sublayouts have valid layer assignments, we know that the entire layout has

a valid layer assignment. .

We are now ready to construct a polynomial transformation from pnc
to cum. Given an instance of pnc consisting of a planar graph G = (N, E)
and a positive integer k, we will generate an instance of ¢vm consisting
of a layout L and the same integer k. Let G be a straight line planar
embedding of the graph G. There are several well known algorithms for
obtaining a planar embedding of a graph in polynomial time (for example
[5]). Fary [11] showed that any such embedding can be converted to a straight
line planar embedding in polynomial time. Rather than introducing any

additional notation, we will simply refer to the line segments and points
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in G by the edges and nodes that they correspond to in G. We will form
a small region around each edge (s,t) in G in such a manner that no two
regions overlap. This will always be possible since no two edges intersect in
the planar embedding. Next, we will replace each edge (s,t) with a sublayout
H in such a manner that H is completely within the region surrounding the
edge (s,t) and that v, and v; coincide with s and ¢, respectively. We call the
resulting layout L& . Figure 2.4 shows a straight line planar embedding for
a graph G, and the layout L, obtained from it.

Assume that G has a node cover N; such that | Ny | < k. By definition,
N; must include at least one endpoint from each edge in E. Let V; be the
set of vias which is made up of exactly the junctions that correspond to the
nodes in N;. V; will include either v, or v; (or both) from every H and
[Vl = INy]. Thus, by Lemma 2.1, V; is a set of vias of size k or less for
which a valid layer assignment for L¢g exists.

Now assume that there is a set of vias V,, of size k or less, for Lo
for which a valid layer assignment exists. From our discussion, we know
that Vo must include at least one via located in every H. Although there
are no restrictions in cvm on the location of vias, we will assume that all
vias are placed at junctions which originally corresponded to either v, or v
for some H. This does not affect the generality of the solution, since a via
placed elsewhere could easily be moved to either v, or v¢, in the same H
without increasing the total number of vias or affecting the existence of a
valid layer assignment. Since the sublayouts overlap only at v, and v, there

would be no reason to place a via elsewhere. Thus, V, will include at least
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one via placed at either v, or vy (or both) for each H. Let N, be the set
of nodes which correspond to the vias in V;. N, will include at least one
endpoint of every edge in E and thus constitutes a node cover for G with
IN2| = 1V2| < k.

Since the transformation from pnc on G and k to cvm on Lg and k
described above only requires replacing each edge in the straight line planar
embedding of G with the sublayout H, it can easily be accomplished in
polynomial time with respect to the size of the input. Thus, we have the

following theorem:

Theorem 2.1. cvm is NP-complete . =

3. The Restricted 2-CVM,; Problem

In this section, we show that the decision problem associated with the
restricted version of the 2-CVM problem described by Chen, et al. [4] with
the further restriction that the maximum junction degree be limited to six
is NP-complete. This result will then be extended to show that for any
combination of the restrictions ennumerated below, the problem remains
NP-complete.

1) The input layout must be grid based.
2) Only endpoints of the given routing segments are considered via can-
didates.

3) The maximum junction degree is limited to six or more.
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We will distinguish between the various decision problems by using
a single subscript to denote the maximum junction degree allowed for an
instance and superscripts to denote any other restrictions imposed. Thus, we
will denote the most restricted decision problem as cvmé’2 which is defined
as follows:
(cvmé’z) Given a grid based layout £ = (M, T,W,R,V,a) with no junc-
tion having degree exceeding six and a positive integer k, does
there exist a layout £’ = (M, T, W,R', V', &') such that R ~ R’,
all of the vias in V' are located at endpoints of segments in R,
and |V'| <k.
By the same reasoning that was used for cvm, we know that cvmé’2 € NP.
In order to prove that it is also NP-complete, we will show a polynomial
transformation from a restricted version of the Planar Node Cover problem
which is described below.
(pncs) Given a planar graph G = (N, E) with no node having degree
greater than three and a positive integer k, does there exist a
node cover N' for G satisfying |N'| < k?
pncs was shown to be NP-complete in Lemma 2.1 of [13].
Suppose that we have a planar graph G = (N, E) and a positive integer
k as an instance of pncz. We will generate an instance of cvmé’2 consisting
of a layout L} and the same integer k. In order to accomplish this, we will
first embed the graph G on a planar rectangular grid. Tamassia [30] recently
presented a polynomial time algorithm to do this which generates O(| E)

straight line segments. We will denote such a planar grid embedding of G



Chapter II: Complezity 25

!
(

R

d »
Vi

Figure 2.5. Sublayout H*

by G. We then proceed in a manner similar to that used in the previous
section using a sublayout H* shown in Figure 2.5. H* also requires at least
one via if it is to have a valid layer assignment. Because H* is topologically
equivalent to H, Lemma 2.1 will hold for H*. We will replace each edge
(s,t) in G with an H* in such a manner that v} and v} coincide with s and
t, respectively, to obtain the layout L, . This is done by replacing the first
vertical or horizontal segment of each edge with the portion of H* nearest
v, and then adapting the remaining portion to follow the rest of the line
segments which make up the edge. If the H*’s are sufficiently narrow, then
no two H*’s will intersect except at v; or v{. Figure 2.6 shows a planar grid

embedding G, of G, and the corresponding layout L¢; . Since no node in
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G can have degree exceeding three and the junctions v} and v{ in H* have
degree two, no junction in L will have degree exceeding six.

Lz,

Assume that G has a node cover N; such that |N;| < k. Let V; be
defined as the set of junctions in L7 which correspond to the nodes in Nj.
We can show using Lemma 2.1 that if the junctions in V; are made vias,
then a layout is obtained for L} which requires k or fewer vias.

Now assume that there is a set of k or fewer vias V, which are all
located at the endpoints of the routing segments in £ and for which a valid
layer assignment exists. We know that Vs must include at least one via
located in every H*. Furthermore, we can assume that all of the vias are
placed at junctions corresponding to either v or v} since a via placed at a
junction corresponding to v}, in some H*, can be moved to either v, or v;
in the same H*. Thus, V; will include at least one via placed at either v}
or v (or both) for each H. Let N, be the set of nodes which correspond to
the vias in V3. Using the same argument as in the proof of Theorem 2.1, No
will be a node cover for G with k or fewer nodes.

As mentioned earlier, we can construct, in polynomial time, a planar
grid embedding G of G which has O(| E|) straight line segments [30]. We
then generate L7, by replacing each line segment with a portion of the sublay-
out H*. Thus, the entire transformation can be accomplished in polynomial

time and we have the following theorem:

Theorem 2.2. cvmé’2 is NP-complete . n
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It should be noted that the proof of this theorem does not have to take
advantage of Restriction 2 on via location. In fact, as stated in the proof of
Theorem 2.1, vias placed anywhere can always be moved to either v} or v}
in any H* without affecting the results. Thus, the NP-completeness result

will hold without Restriction 2 and we have:

Theorem 2.3. cvm} is NP-complete . n

Because Restrictions 1 and 3 affect only the class of valid instances
for the cvm problem, relaxing either or both of these constraints does not
affect our NP-completeness results. Thus, it follows from Theorem 2.2 that

cvmi, cvm;’z, and cvm? are all NP-complete for any j greater than six.

1

s CUMe, and cvm; are also

From Theorem 2.3, we can also deduce that cvm

NP-complete for all j greater than six. Thus, we have our strongest theorem.

Theorem 2.4. The cvm problem is NP-complete given one or more of the
following restrictions:
1) The input layout must be grid based.
2) Only endpoints of the given routing segments are considered via can-
didates.

3) The maximum junction degree is limited to six or more.
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4. Summary

In this chapter, we have shown that the general Constrained Via Min-
imization decision problem is NP-complete. We have also shown that this
result holds when the input layout is constrained to lie on a rectangular grid
and/or when vias are restricted to lie at junctions which existed in the input
layout. In addition, our result holds when the maximum junction degree is

limited to six or more with or without any of the other constraints listed

earlier.
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Algorithms

1. Overview

This chapter will describe a unified algorithmic approach to the 2-CVM
problem. Section 2 describes the basic 2-CVM3 algorithm for topological
layouts. Section 3 describes how to decrease the average time complexity
for the 2-CVMj; algorithm when it is applied to geometric layouts. Section
4 describes how to extend the algorithm to the general 2-CVM problem.
Section 5 discusses the applicability of the basic 2-CVM3; algorithm to a
particular curve coloring problem. Finally, Section 6 summarizes the results

of this chapter.

2. The 2-CVM; Problem for Topological Layouts

2.1. The basic 2-CVMj; algorithm

We begin by considering the case when two layers are available for routing,

vias may be placed anywhere, and no junction is permitted to have degree

30
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greater than three. We assume, without loss of generality, that each terminal
is the endpoint of exactly one routing segment. If a terminal was actually
the endpoint of more than one routing segment, it could be split into several
terminals each separated by some very small distance. We do not place
any other constraints on the topology of the layout except that it can be
represented by a set of straight line segments. We define a graph G, =

(N, E) based on a given layout L as follows:

N=CuJuT
where
C = {cz| ¢ corresponds to a unique crossing in £ located at
SITE(cc)},
J = {jz| jz corresponds to a unique junction in £ located at
SITE(5z)}s
T = {t;| t, corresponds to a unique terminal in £ located at
SITE(tz)},
and
E = {(ng,ny)| there is a unique subsegment SEG(n;,n,) in £ with
endpoints SITE(n;) and SITE(ny)}.

SITE(z) denotes the point in £ where the feature corresponding to node z is
located. SEG(z,y) denotes the subsegment in L corresponding to the edge
(z,y) in G . Clearly, G; cannot contain any self-loops or parallel edges.
Figure 3.1 shows an example layout L2 and the derived graph G,. We also
define VIA(z,y) to be some legal via site on SEG(z,y). In this section,
we assume that VIA(z,y) is never an endpoint of SEG(z,y) and thus all
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via candidates are distinct. This is possible because we limit the maximum
junction degree to three so that any via placed at a junction SITE(j) can
always be shifted slightly onto some subsegment SEG(z, ) [26] as shown in

Figure 3.2.

Figure 3.2. Equivalent Via Locations

For any G, , we define a straight line planar embedding, denoted by
G , in which each node n € N is located at SITE(n). If a face in G is
bounded by a cycle (ni,,n,), (ni, sR4z)s- - -5 (Ri,._,» i) such that

{ni,€eC|lo<k<m-1}
is odd, then we call it an odd face; otherwise we call it an even face.
Lemma 3.1. Given a valid topological layout £L = (M, T, W,R,V,a), there

exists a valid topological layout £’ = (M, T, W,R,V',a') such that V' = ¢

if and only if G is free of odd faces.
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Proof: Assume that there exists a valid topological layout £’ = (M, T, W, R,
V', a') such that V' = ¢. Each face is bounded by a sequence of edges
(Rigsmiy)s (Miy s Tin)s oo (ni,,_,»mi,). For each pair of edges (ni_,,ni,) and
(ni,,niy,,) such that n;, € C, SEG(ni,_,,nq,) and SEG(ni,,ni,,,) cross
at SITE(n;,) in £ and thus must be assigned to different layers. For each
pair of edges (ni,_,,n:,) and (ni,,ni,,,) such that ny, € J, SEG(ni_,,ni,)
and SEG(n;,,ni,,,) form a junction at SITE(n;,) in L . Since SITE(n;,)
cannot be a via in L', SEG(ni_,,ni,) and SEG(n;,,n;,,,) must be as-
signed to the same layer. Thus, layer changes occur only at crossings in L’
and since the number of such changes must be even for any cycle, all faces
in G, are even. Conversely, if we assume that all faces in G are even, then
all layer changes can take place at crossings in L and there exists a valid

topological layout £’ = (M, T, W, R, V', o) such that V= ¢. u

If we insert a via v on a particular subsegment SEG(z, y), then we can
“cut” the corresponding edge (z,y) in G by deleting (z,y) and adding two
new nodes a and b to J and two new edges (z,a) and (b,y) to E as shown
in Figure 3.3. Both SITE(a) and SITE(b) refer to v. The routing segment
in R which includes the subsegment SEG(z, y) is now partitioned into two
routing segments at v. The two fundamental cycles which shared (z,y) now
become one cycle with a length equal to the sum of the lengths of the two
constituent cycles. A set of edges whose cutting leaves G 1 free of odd faces
is called an Odd Face Cover (OFC). An OFC of minimum cardinality is
called a Minimum Odd Face Cover (MOFC). Figure 3.4 shows an MOFC for
G,. Since there is a one-to-one correspondence between edges in G and

via candidates in £ , we have the following lemma:
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Figure 3.3. Inserting a via in [

Lemma 3.2. Given some valid topological layout £L = (M, T,W,R,V,a),
if P is an MOFC for G , then there exists a valid topological layout L' =
(M, T, W,R",V',a’) such that R’ ~ R and V' = {VIA(z,y)|(z,y) € P} is

of minimum cardinality.

n

We use a method similar to that of Hadlock [1,16] to obtain an MOFC

for the planar graph G, . Without loss of generality, we assume that G,
is connected. It is not difficult to see that the number of odd faces in G
must always be even. Furthermore, eliminating an odd face can only be
accomplished by merging it with another odd face. If a particular odd face

does not share an edge with another odd face, it may be necessary to first
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Figure 3.4. An MOFC for G,

merge it with several even faces. Thus, the problem of finding an MOFC
reduces the problem of finding a pairing of odd faces such that the total
number of edges which must be cut to merge all pairs is minimized. To
simplify the bookkeeping necessary to do this, we generate the dual of G,
denoted by G"fz = (Nd, E%). In G‘jz, one node corresponds to each face in G
and one edge (z,y) € E? to each edge (r,s) € E. Those edges which form self
loops in G‘}: can be deleted since they correspond to edges in G, which are
not in any cycle. We define a mapping p: E¢ — E such that p(z,y) = (r, s).
Those nodes which correspond to odd faces, as we have defined them, are
called odd nodes. Contracting an edge in G‘E corresponds to cutting an edge

in G, . When two nodes in G’% are merged by contracting the edge between
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Figure 3.5. An MONP for G¢_

them, the new node is an odd node if and only if an odd and an even node
are merged. The problem of finding an MOFC for G can now be solved by
finding a minimum cardinality set of edges in G‘é whose contraction leaves
G‘z free of odd nodes. We call such a set of edges a Minitmum Odd Node
Pairing (MONP). Figure 3.5 shows the MONP for G%Q corresponding to
the MOFC for G, shown in Figure 3.4. It has been shown that an MONP
is made up of a set of edge disjoint paths between pairs of odd nodes with
each node being the endpoint of exactly one such path [16]. Because of this
property, an MONP can be obtained by finding a maximum weight matching
on the complete graph M = (N,44, Eprr), where Noygq is the set of odd nodes

in G% and Enm = {(z,v) |z, y € Noga and = # y}.



Chapter III: Algorithms 38

Figure 3.6. The graph M for G,

For each pair of nodes z, y € Noad4, we define a path p,_, between z

and y such that

pz—y = {(r,8) | (r,5) is an edge along the shortest path between

z and y in G"z }
We also define a set of via candidates
Veoy = {VIA(e(r, s))I(r,s) € P:—y}-

For each edge in M we assign a weight WEIGHT(z,y) = T — | V.|
where I' is some large constant. Figure 3.6 shows the graph M for G‘zz. A

maximum weight matching for M is a set of edges X C Ejs such that no
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node is the endpoint of more than one edge in X and

Y WEIGHT(z,y)

(z,y)EX

is a maximum. Since M is complete and | Nygq! is always even, each node
in M is the endpoint of exactly one edge in X. The maximum weight
matching problem can be solved using Edmonds’ algorithm [8] which can
be implemented in O(| Nogq|®) [12,22]. Once X has been found, an MONP
is uniquely determined by

P = U Pz—y

(z,y)eX

and a minimum cardinality set of vias is given by

V= U Veoy

(z,y)EX

Figure 3.7a shows a maximum weight matching for the graph M, shown in
Figure 3.6, which corresponds to the MONP for G"L, shown in Figure 3.5,
and the MOFC for G, shown in Figure 3.4. The remaining problem is to
find a layer assignment o' for £' = (M, T, W,R',V',a') given R’ and V’.
This can easily be accomplished in linear time with respect to the number
of routing subsegments. Figure 3.7b shows a solution layout L} resulting
from the maximum matching in Figure 3.7a. Summarizing our discussion,

we have the following algorithm:
Algorithm 1 - The Basic 2-CVM3 Algorithm

Step 1: Generate the graph Gy = (N, E). Label each edge (z,y) € E

with a pointer VIA(z,y) to a via site on SEG(z,y).
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Figure 3.7 A maximum weight matching for the graph M and the

resulting layout £}
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Step 2:

a

Step 3:

Find an MOFC P for G .
Generate the dual graph G4 = (N¢, E?). Identify the set of odd

nodes Nogq C N¢.

: Generate the complete graph M = (Noaq, Err) where

Enm = {(z,y) | z, y € Noagq and = # y}.
Assign a weight WEIGHT (z,y) to each edge (z,y) € Ep such
that

WEIGHT(z,y) =T — 1Vyey|

where T' is some very large constant and V._, is the set of vias

associated with merging the two odd faces corresponding to z

and y.

: Find a maximum weight matching X on M. This gives an MONP

P for G"g which is given by:

P= U Pz—y

(z=y)eX

and an MOFC P’ for _Cﬁ given by

"= {o(z,9)(z,y) € P}.

Determine a minimum cardinality set of vias from

V= |J VIA(zy)

(zy)eP!

or directly from

V= |J Ve-y

(z,y)EX
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Generate the set of routing segments R’ from R by introducing
a junction at each site in V’.

Step 4: Find a valid layer assignment o’ for the layout £’ = (M, T, W, R/,
V', a).

The following theorem follows directly from our discussion:

Theorem 3.1. Algorithm 1 finds an optimum solution for the 2-CVMs3

problem.

2.2. Complexity

All of the steps in Algorithm 1 can be carried out in polynomial time.
The first step requires locating all of the crossings between routing segments
and can easily be implemented in O(| R |?) time where R is the set of routing
segments in £ . In Step 2a, the dual graph can be found in linear time with
respect to the number of edges in G, which is at most O(IR1?). Step
3 is linear in time with respect to the number of vias determined by the
algorithm, which cannot exceed the number of junctions in the given layout
and is thus bounded by |R!. In Step 4, layer assignment can be carried
out in O(|R|?) using a Breadth-First-Search [10] type approach. The only
steps that are computationally more difficult are Steps 2b and 2c.

The computation of edge weights in Step 2b, requires finding a shortest

path from each odd node in G% to all other odd nodes in G} . This can
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be done using Breadth-First-Search [10] in O(|E¢} - | Nogq!) time where
E? and N,gq are the sets of edges and odd nodes in G"é , Tespectively, and
|E4l = O(I1R1?).

The second computationally expensive step is finding a maximum weight
matching on the graph M. Several authors [12,22] have shown that Ed-
monds’ algorithm can be implemented in as little as O(n?) time t, where in
this case n = | Nogql.

Since, at first glance, it may appear that | Nyq41 is only bounded by the
number of faces in G¢ , it would seem that increasing the number of edges
in Gz from O(1R1) to O(| R 1?) by considering all possible via sites, instead
of only one per segment as other authors have done [4,17,20], would increase
the complexity of Steps 2b and 2c to O(I1R|*) and O(IR1®), respectively.

However, this is not the case.

Lemma 3.3. For any valid topological layout £ = (M, T,W,R,V,a),

| Nogal < 2-1RI.

Proof: Let V' be the set of vias found by Algorithm 1. Since each path
between two odd nodes must have a length of at least one and all such
paths are disjoint, | V| > | Nygq1/2. Since Algorithm 1 finds the minimum
number of vias considering all possible sites, | V/| < |V | for any layout £
and hence | Noggl < 2-{V{. Since any via is, by definition, the endpoint of

at least two routing segments, | V| < |R| and thus | Noggl < 2:1R|. =

t Note that Pinter [27] incorrectly states that an O(n?-5) maximum weight matching
algorithm has been reported by Micali and Vazirani {25]. That algorithm is in fact
a maximum cardinality matching algorithm.
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Thus, we have the following theorem:

Theorem 3.2. Algorithm 1 generates an optimum solution for the 2-CVM3
problem with input layout (M, T,W,R,V,e) in O(IR13) time.

3. The 2-CVM; Problem for Geometric Layouts

3.1. Application of the basic algorithm

Algorithm 1 can be applied to geometric layouts with only one slight mod-
ification. In the geometric case, there are likely to be routing subsegments
along which there is no allowable via site. To handle this situation, we define
VIA(z,y) = A if there is no allowable via site on SEG(z,y). The definition

of p;—, must also be modified as follows to reflect this change:

—y = {(r, s) | (r,s) is an edge along the shortest path between
z and y in Gd not containing any edges (r’,s’) for which

VIA(p =A}.

This is necessary to assure that all of the edges in

P=|J pey

(z,y)eX

actually correspond to allowable via sites. If all of the edges (z,y) € E 4 for
which VIA(p(z,y)) = A are deleted, then finding an MONP, say P, on G4
yields an optimum 2-CVM3 solution for £ given by {VIA(p(z,y))!(z,y) €
P}. A solution always exists under any set of design rules which are met by

the input layout L .
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3.2. Improved 2-CVM; algorithm

Algorithm 1 produces optimum results and is very efficient when considering
via candidates on all or most routing segments. However, it is not very
well suited for dense geometric layouts where the number of allowable via
candidates is much smaller than |R|%. For that case we will extend the
basic approach to take advantage of the limited number of via sites. To
simplify our discussion and illustrations, we assume that input layouts are
grid based and that vias are allowed at any intersection of two grid lines
where a crossing is not located.

A cluster is a set of crossings in £ which are mutually connected by
routing subsegments not containing any via sites. The assignment of any
one routing subsegment which has an endpoint in a particular cluster to a
particular layer determines the layer assignment of the remaining routing
subsegments which have at least one endpoint in that cluster. A cluster
which is not included in any other cluster will be called a mazimal cluster.
In the case of topological layouts, each maximal cluster will consist of a
single crossing since every routing subsegment contains a possible via site.
In the case of geometric layouts, however, an entire layout may be composed
of only a few maximal clusters. In that case, a significant speedup can be
attained by identifying those clusters. Figure 3.8 shows a grid based layout
L3. The hashed curves show the borders of all maximal clusters. Note that
our definition of clusters differs from that of Chen, et al. [4] because of our

less restrictive problem definition.
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Figure 3.8. Clusters and via candidate zones in layout L3

A group of one or more via candidates in £ which are mutually con-
nected by routing subsegments which do not contain any crossings will be
called a via candidate zone. As we have defined it, a via candidate zone may
consist of only a single via candidate. We say that a via candidate zone z is
a mazimal via candidate zone if there is no other via candidate zone which
includes all of the via candidates in z. Chen, et al. [4] suggested that at
most one via is ever needed in a via candidate zone if all of the routing sub-

segments in the zone can be assigned to both layers. If this is allowed, the
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minimum number of vias required for a particular layout may be reduced.
Some slight speedup may also be obtained since fewer possible via sites must
be considered by the algorithm. Figure 3.8 shows all via candidate zones in
L3 consisting of more than one via candidate.

Since merging via candidates into via candidate zones can change the
number of vias in an optimum CVM solution and may require assigning some
routing segments to both layers, we define a slightly different via minimiza-
tion problem which allows both of these things. The new class of problems
are denoted by £-CVM; or simply £-CVM* when k = oo. The £-CVMj
problem is defined for positive integers ! and k as follows:

(e-CVM}) Given an f-layer layout £ = (M, T,W,R,V, a)with no junction
having degree greater than k, generate an £-layer layout £/ =
(M, T, W,R",V',B) such that R = R’ and V' is a minimum car-
dinality set of vias,

where § is a one-to-many mapping 8: R — {1,2,...,£}. It should be pointed

out that an optimum solution to the 2-CVMj problem may require fewer vias

than an optimum solution to the 2-CVMg problem, but will never require

more.

In order to modify Algorithm 1 to take advantage of clusters and via
candidate zones, we need to change the definition of G, slightly. We add a
label denoted by TY PE(z,y) to each edge (z,y) in G where TY PE(z,y)
is given by the layer assignment of the routing segment which included
SEG(z,y) in L . We also define a graph G, = (N’,E’) based on the

layout L as follows:
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Chapter III:

N =cCc'uJ

where
C' = {c:| ¢ corresponds to a unique maximal cluster in £}

J' = {jz| jz corresponds to a unique maximal via candidate zone in L}
and
E'={(cz,Jy)lcz € C', 3, € J', and there is a unique subsegment
SEG(cz,Jy) in £ with endpoints in the cluster corresponding to

c; and the via candidate zone corresponding to jy}.

® Node inJ'
O Node in C’
--- TYPE1 Edge

—— TYPE 2 Edge

Figure 3.9. The graph G’

Figure 3.9 shows the graph G’ . It is easy to see that G'; is always planar
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and is bipartite such that each edge (¢,7) € E’ has endpoints such that
¢ € C' and 5 € J'. We specify that for each edge (c,j) € E’

VIA(c,j) = SITE())

where SITE(j) now corresponds to some junction in the via candidate zone
corresponding to j. Likewise SITFE(c) for any ¢ € C' corresponds to a
particular crossing in the cluster corresponding to ¢. Note that there may
be two edges (c1,7) and (c2,7) in E’ such that VIA(cy1,5) = VIA(cz,j).
However, there is a one-to-one correspondence between the nodes in J’ and
the maximal via candidate zones in £ . G/, = (N’, E’) can be derived from

Gr = (N, E) as follows:

procedure main

J'=J
c'=cC
E'=E

for each edge (z,y) € E'
if z € J' and y € J’ then contract (z,y)
if z € T then E’' = E' — (z,y)
if z € C' and y € C’ then
if VIA(z,y) = A then
contract (z,y)
else
E'=E'—{(z,9)} U{(z,w), (w,y)}
where w is a new node and SITE(w)
is a legal via site along SEG(z,y)
J'=J U {w}
N =c'uJ’

end
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The procedure contract (z,y) is defined for an ordered pair of nodes z and

y in G as follows:

contract (z,y)

for each edge (a,y) € E’
E'=E"'-{(a,y)} U{(a,z)}
ifye J then J' = J' — {y}
else if y € C' then C' = C' — {y}

return

Since each node in C' no longer corresponds to a single node as it did

in C, we must reconsider the conditions for a valid layer assignment.

Lemma 3.4. For any two edges (c,J1),(¢,72) € E' such that ¢ € C’ and
J1,32 € J', SEG(c, 1) should be assigned to the same layer as SEG(c, j2) if
and only if TY PE(c,j1) = TY PE(c, j2).

Proof: Since (c,71) and (c,j2) are both incident on ¢, SEG(c,7;) and
SEG(c,J2) are incident upon the same maximal cluster. If TY PE(c, 1) =
TY PE(c, j2), they were assigned to the same layer in £ . Thus, they must
be assigned to the same layer in any layout. Likewise, if TY PE(c,j1) #
TY PE(c,jz2), then SEG(c,5;) and SEG(c,j2) were assigned to different

layers in £ . Thus, they must be assigned to different layers in any layout. =
We say a cycle (nig,ni,), (R, iy )y oo vy (Ri_1, M) in G is odd if

{ni, € C'| TYPE(ni,_,,ni,) # TY PE(ny,ni,,,), 0< k<m-—1}
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is odd; otherwise it is even. We say a face f in G’, is odd if and only if the
fundamental cycle in G/, which defines that face is odd; otherwise the face

is even.

Lemma 3.5. Given a valid geometric layout £ = (M, T, W,R,V, a), there
exists a valid geometric layout L' = (M, T, W, R,V',a') such that V' = ¢ if

and only if G’ is free of odd cycles.

Proof: Assume that there exists a valid geometric layout £’ = (M, T, W, R,
V’,e') such that V' = ¢. Consider some cycle (ni,ni,),(ni,ni,),
eeuy (R, _y,n4i,) in G, . For each pair of edges (ni,_,,n:,) and (ni,,ni.,)
such that n,, € C', SEG(n;,_,,ns,) and SEG(n;,,n;,,,) must be assigned
to different layers if and only if TY PE(n;,_,,n:,) # TY PE(n;,,n,,.,) by
Lemma 3.4. For each pair of edges (n;,_,,n;) and (n;,,ni,,,) such that
n;, € J',SEG(n,,_,,ni ) and SEG(ni,,ni,.,) meet at a via candidate zone
in £ . Since there are no vias in £’ , SEG(ny,_,,n,) and SEG(n,,,n,,,,)
must be assigned to the same layer. Thus, layer changes in £ occur only when
n;, € C' and TY PE(n;,_,,n:,) # TY PE(n;,,ni.,,). Since the number of
layer changes in £ must be even around any cycle, all cycles in G, are even.
Conversely, if we assume that all cycles in G', are even, then all layer changes
can take place when n;, € C' and TYPE(n;,_,,ni.) # TYPE(ni,,ni,,),
and there exists a valid geometric layout £/ = (M, T, W, R, V’, &') such that

V'=¢, ]

If we insert a via v at a particular junction SITE(s), then we can

delete 7 from G’, since there is no longer a requirement that the routing



Chapter III: Algorithms 52

segments which share an endpoint at v be assigned to the same layer. A
set of nodes whose deletion leaves G’;, free of odd cycles is called an Odd
Cycle Node Cover (OCNC). An OCNC of minimum cardinality will be called
a Minimum Odd Cycle Node Cover(MOCNC). Since there is a one-to-one
correspondence between the nodes in J’ and the via candidate zones in £ ,

we have the following lemma:

Lemma 3.6. Given some valid geometric layout L = (M, T, W,R,V, ), if
Q is an MOCNC for G/, , then there exists a valid geometric layout L' =
(M, T,W,R",V',B) such that B: R’ — {1,2,both}, R' ~ R and V' =

{SITE(j)1j € Q} is of minimum cardinality.

Figure 3.10 shows an MONC for the graph G, and the corresponding so-
lution layout £’ .

In general, the problem of deleting the minimum number of nodes
which leave a graph free of odd cycles is NP-hard even when restricted to
planar 23] or bipartite graphs [31]. However, if we delete nodes only from
J' and no node in J’ has a degree greater than three, then the problem is

solvable in polynomial time as stated in the following lemma:

Lemma 3.7. If P is an MOFC for G', and no node in J' has degree ex-
ceeding three, then @ = {jl(c,5) € P} is an MOCNC for G, .

Proof: Asshown earlier, it is never necessary to locate a via on a junction of

degree less than or equal to three since that junction could always be moved
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Figure 3.10. An MOCNC for the graph G  and the layout L3
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slightly onto one of the routing subsegments which shares an endpoint with
that junction. The same is true of locating a via in a via candidate zone
z when there are three or less routing subsegrpents incident upon z. Thus,
a minimum cardinality set of vias located at sites in via candidate zones,
such as SITE(y), corresponding to an MOCNC for G, , can always be
replaced by a set of vias located on routing subsegments, such as SEG(c, j),
which correspond to an MOFC for _é’_‘c- . Clearly, the converse is also true.
Therefore, if P is an MOFC for G/, and no node in J’ has degree exceeding
three, then Q = {j|(c,J) € P} is an MOCNC for G/, . Lemma 3.9 given in
the following section can also be used to prove this lemma in a more direct

manner. ]

If we assume that all of the nodes in J’ have degree three or less,
then by Lemma 3.7 we can find an MOCNC in polynomial time and obtain
an optimum 2-CVMj; solution. Given a layout £ = (M, T,W,R,V,a), an

outline of the algorithm would be as follows:
Algorithm 2 - The Improved Algorithm

Step 1: Generate the graph Gy = (N, E). Label each edge (z,y) with
a pointer VIA(z,y) to a via site on SEG(z,y). If none exists,
VIA(z,y) = A.

Step 2: Generate the graph G, = (N',E’) from Gy = (N,E). R'is
obtained from R by adding the junctions {SITE(5)1j € J' —J}.

Step $: Compute an MOCNC Q.

a: Generate the dual graph G% = (N9, E?). Identify the set of odd

nodes Nygg C Nd,
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b:

Step 4:

Step 5:

Generate the complete graph M = (N,44, Epg). Compute the

weights for the edges in Eas as described.

: Find a maximum weight matching X on M. This gives an MONP

P for G’g which is given by:

P = U Pz—y

(z.9)EX

and an MOFC P’ for _G—’c_ given by
Pl - {p(z,y)l(z,y) € P}

and an MOCNC
Q={jeJi(cj) e P}

Mark the vias given by V' = {SITE(j)|j € Q}. Note that
SITE(j) may be only one of several via candidates in a via can-
didate zone.

Find a layer assignment [ for the layout L' =
(M, T,W,R",V',B). All routing subsegments contained in a via
candidate zone which has been assigned a via are assigned to both

layers. .

This algorithm has only one more step than Algorithm 1, namely Step 2.

Step 2 can easily be accomplished in O(|El) time. Thus, the total time

required for Algorithm 2 is still O(| R 1) although the average time will be

much less as demonstrated in Chapter IV.
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Figure 3.11. Equivalent via sites.

It is important to recall that although the maximum degree of nodes
in J was three, the maximum degree of the nodes in J' may be more. If that
is the case, then an MOFC may not lead to an MOCNC for G/, . In terms
of the 2-CVM problem, this is because a via placed at a junction cannot
always be replaced by a single via not on the junction. In fact, a via at a
junction with degree d may be equivalent to as many as d/2 vias placed on
routing subsegments which meet at that junction as shown in Figure 3.11.
In terms of the graph G, , an MOFC P, will lead to a less than optimum
MOCNC whenever there exists another MOFC P, such that | P,| = | Py |

and

’{jl(c,j) € P}| > '{jl(c,j) € Py}

Thus, the solution generated by Algorithm 2 may not be optimal for

the 2-CVMj problem, however:
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Lemma 3.8. The number of vias produced by Algorithm 2 for the 2-CVMj
problem on some layout L will be no greater the number of vias produced

by Algorithm 1 for the same layout.

Proof: An MOFC for G, will have the same cardinality as an MOFC for
Ez since both give a minimum cardinality set of vias for £’ without locating
any vias at junctions. An OCNC for G/, may have smaller cardinality than
an MOFC for G_,[: since one via placed at a junction may be equivalent to
several on routing segments, but never greater cardinality. Thus, Algorithm

2 will produce at most the same number of vias as Algorithm 1 which does

not consider via candidates. =

Thus, since we have shown Algorithm 1 to be optimal, we have:

Theorem 3.3. Algorithm 2 produces optimum results for the

2-CVMj problem with input layout £ = (M, T, W, R, V,a) in O(| R |3) time.

3.3. Essential vias

In the previous section, we showed that solving the 2-CVMg3; problem re-
quired breaking all odd cycles and gave an algorithm for doing so. However,
in geometric layouts there may exist some odd cycles which pass through
only one node n,; € J' as shown in Figure 3.12. In this case, we call
SITE(ness) an essential via since deleting n.,, is the only way to break
that cycle. Chen, et al. [4] first suggested the idea of essential vias under

their more restricted model. Later, Chang and Du [3] suggested a heuristic
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ess

Figure 3.12. Essential Vias

algorithm which locates a restricted subset of all essential vias. Using our
formulation, we can locate all essential vias by scanning the edge list of each
node in J' to see if there are two parallel edges of different types. If there
are, then each essential via is added to the set of vias and all of the edges'
incident upon n.,, deleted. It will be shown in the next chapter that es-
sential vias account the vast majority of the necessary vias in certain types
of layouts. In such cases, this step greatly reduces necessary computation
time without changing the results. Given a layout £ = (M, T, W,R,V,a),

we modify our algorithm as follows:
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Algorithm 2A

Step 1: Generate the graph Gy = (N, E). Label each edge (z,y) with
a pointer VIA(z,y) to a via site on SEG(z,y). If none exists,
VIA(z,y) = A.

Step 2: Generate the graph G, = (N',E’) from Gy = (N,E). R’ is
obtained from R by adding the junctions in {SITE(5)|j € J' —
J}.

Step 2a Locate all essential vias in V.,, and delete the corresponding
nodes and edges from G/, .

Step 8: Compute an MOCNC @Q using the same method as in Algorithm
2

Step 4: Mark the vias given by V' = {SITE(j)|j € @}.

Step 5: Find a layer assignment [ for the layout [’ =
(M, T, W, RN,V U Veos, B).

Again, the additional procedure, Step 2a, can be accomplished in O(| E'|)

time and hence the overall time complexity of the algorithm remains O(| R |3).

4. The 2-CVM Problem

The algorithms described in the previous two sections always give op-
timum results for the 2-CVMj3; problem. In fact, Algorithm 2A gives a good
first order approximation for the 2-CVM problem. There are several things

which we can do, however, to improve on that approximation. Using our
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maximum matching approach, we choose a set of edges which lie on dis-
joint shortest paths between pairs of odd nodes in the dual graph G’ﬂd .
When there are junctions with degree greater than three, it is possible to
have two edges (n;,,ni,) and (n,,,n;,) along the same shortest path such
that VIA(n;, ,ni,) = VIA(ni,,ni,). Thus the cardinality of p,_, might be
greater than that of V,_, for some shortest paths between z and y in G'Bd .
Since we choose p;., as a path containing the fewest edges, we may not be
getting the path which really corresponds to the fewest vias. To avoid this,

we redefine p,_y as the set of edges

Pz—y = {(r,s) | (r,s) is an edge along a shortest path between

z and y in G4 }

where the length of a path is defined as the number of distinct via labels
VIA(p(r,s)) on edges (r,s) making up the path. Although this assures that
the shortest path corresponds to the fewest vias, it does not assure that the
smallest sum of path lengths corresponds to the fewest vias. This is because
the sets of via candidates V,_,, and V.,_,, associated with two shortest
path edge sets p;, —y, and pg,_y, may not be disjoint. Thus minimizing the
sum of path lengths, may not always give us the minimum possible number

of vias. To examine when this occurs, we consider the following lemma:

Lemma 3.9. If S is an MONP for G’¢ and j € J', then the maximum
number of edges (z,y) € S for which VIA(p(z,y)) = SITE(j) is |deg(5) /2],
where deg(j) denotes the degree of the node j € J' in G, and |k| denotes

the smallest integer not less than k.
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Proof: All of the edges (z,y) € E for which VIA(p(z,y)) = SITE(j) form
a fundamental cycle W in G'¢ consisting of deg(s) edges. Assume that there
are two paths p(a,b) = [p{a,r),p(r,s),p(s,b)] and p(c,d) = [p{c,t),p(t,u),
p(u,c)] whose edges are part of an MONP S where p(a,b) denotes some
particular path between a and b. Furthermore assume that r, s, ¢, and
are all part of the cycle W. Thus, the shortest path length between any pair
of them is defined to be one. We prove, by contradiction, that s # ¢.

Assume that s = ¢ as shown in Figure 3.13a. Notice that if we replace
p(r,s) and p(t,u) with p(r,u), as shown in Figure 3.13b, we have a different
pairing of the nodes a,b,c, and d given by the paths of edges p(a,d) =
[pla,r),p(r,u),p(u,d)] and p(b,c) = [p(b,s),p(s,c)]. If we replaced the edges
in S which occur in p(a,d) and p(b,c) with the edges in p(a,b) and p{c,d),
then we would have an ONP for G”g with cardinality of one less than S.
Thus, s # t.

Since there are exactly deg(j) faces in G adjacent to node j, there

can be at most |deg(s)/2] edges (z,y) in any MONP for G'¢ for which

VIA(p(z,y)) = SITE(;). .

From Lemma 3.9 it is easy to see why the MONP for G"ﬁd always leads
to an MOCNC for G’, whenever there are no junctions with degree greater
than three. Since an MONP for G'g gives an MOFC for —éz , Lemma 3.7
must be true. When junction degree exceeds three, we would like to choose
an MONP for G’[:i in which as many edges as possible correspond to common
via candidate zones. Since that would correspond to finding an MOCNC,

we know that we cannot do it optimally. However, as a final refinement of
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our approximation method, we will choose an MONP S which maximizes

Z deg(j) where VIA(p(:v,y)) = SITE(j).
(z,y)es

This can be accomplished by adding a weight to each node 5 € J’ defined
by:

W (i) = 10— - deg(5)
where € is some very small constant. Among all possible sets of edges p._,
in G”g , we choose one which minimizes

Yo w()

SITE(§)EVaey

and weights on the edges in M would be defined as

WEIGHT(z,y) =T - Y.  W(j)
SITE(j)EVeey

By choosing such an MONC, we maximize the probability that the OCNC
we derive be minimal without affecting the time complexity of the algorithm.
Thus, we have our final algorithm which differs from Algorithm 2A in the

extra bookkeeping that goes on in Step 4.
Algorithm 3 - The Most General Algorithm

Step 1: Generate the graph G, = (N, E).
Step 2: Generate the graph G, = (N, E’) from Gy = (N, E). Assign
weights to nodes according to their degree.
Step 8: Locate all essential vias in Vs,.
Step 4: Compute an MOCNC Q.
a: Generate the dual graph G¢ = (N4, E?).
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b: Generate the complete graph M = (Noq44, Eprr). Find all sets of

edges

Pz—y = {(r,5) | (r,s) is an edge along a path between z and y

in G‘z containing the fewest distinct via labels.}

such that

> W)

SITE(j)€Vzmy

is minimized. Assign a weight

WEIGHT (z,y) =T — > W (5)
SITE(j)€EVz—y
to each edge (z,y) € En.
¢: Find a maximum weight matching X on M. This gives an MONP
P for G’g which maximizes
Z deg(5) where VIA(p(z,y)) = SITE(j)
(z,y)EP

and an MOFC P’ for _C;‘_’Z given by
P' ={p(z,y)l(z,y) € P}

and an approzximate MOCNC
Q={ieJI(c,j) € P'}.

Step 5: Mark the vias given by V' = {SITE(5) 15 € Q}.
Step 6: Find a layer assignment [ for the layout L' =
(M, T, W, R,V U Vess, B).
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The maximum amount that this algorithm may differ from the optimum

solution is given by:

Theorem 3.4. The solution obtained by Algorithm 3 does not differ from

the optimum 2-CVM" solution by more than:

> L(deg(s) - 2)/2].
deg(5)>3
jeJ
Proof: It follows directly from Lemma 3.9 that this is the maximum differ-

ence between the cardinality of an MOFC for —C—JE and an MOCNC for G'; .

I

Since the number of via candidate zones with degree significantly greater
than three is likely to be quite small, this approximate algorithm is likely to

yield very good results.

5. The Curve Coloring Problem

We defined the input to the 2-CVM problem as a set of straight line
segments called routing segments. This seemed logical since layouts are
generally made up of straight line segments and in fact any layout has a
piecewise linear approximation. However, it is of some theoretical interest
to remove this restriction and consider the following curve coloring problem
[21].

(CC) Given a set of curves, find the minimum number of cuts which must

be made so that the remaining curves are two-colorable.
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Figure 3.14. Curve coloring problem and optimum solution

In this context, we say that a family of curves are two colorable if and only
if each continuous curve is assigned to one of two colors and no two curves
assigned to the same color intersect each other. Representing an arbitrary
set of curves efficiently and determining all of their intersections is not a
simple task. If however, we assume that we are given a set of curves and a
list of intersections, then we can apply our algorithm directly to determine
the locations of the required cuts. In this case, there are no junctions, so

we are guaranteed to get optimum results. Figure 3.14 shows an example
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problem and an optimum solution.

6. Summary

In this chapter we have presented three algorithms for the 2-CVM prob-
lem. First we presented Algorithm 1 which optimally solves the 2-CVMs3
problem in O(] R 13) time. It overcomes the limitations of previous 2-CVM,
algorithms by allowing vias to be placed anywhere along routing segments
and not restricting the input layout to be grid based. It has the same time
complexity as the previous algorithms [4,27] and is simpler to implement.
Second, we showed how to improve the efficiency of the first algorithm when
it is applied to geometric layouts. Without adding any additional restric-
tions, we modified the algorithm to take advantage of the fact that geometric
design rules greatly limit the number of possible solutions. We also described
the notion of via candidate zones and show how they can be used to further
reduce the number of vias required for a particular layout. Although, in the
worst case, Algorithm 2A is no faster than Algorithm 1, we will show in the
next chapter that it is, on average, O(| R |) times faster for certain problems.
In the case when the geometric design rules do not limit the placement of
vias, Algorithm 2A degenerates to Algorithm 1. Third, we extended Algo-
rithm 2A to handle the general 2-CVM problem. Although this problem is
NP-hard, we described an algorithm which is optimum to within a known
amount. If there are no junctions with degree greater than three in the input
layout, then this algorithm is equivalent to Algorithm 2A. Finally, we dis-

cussed the possible application of Algorithm 1 to a curve coloring problem.
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Thus, we have a family of algorithms that can be applied to a wide variety of
problems and which produce optimum results in polynomial time whenever

possible.
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Implementation

1. Overview

This chapter will deal with the implementation of the algorithms de-
scribed in Chapter III. Section 2 describes a system which implements those
algorithms and compares its performance with existing algorithms. Section
3 discusses how the average efficiency of the implementation might be im-
proved using techniques from Computational Geometry. Section 4 describes
practical extensions which could be made to adapt to real-world situations.
Section 5 describes a heuristic derived from our experimentation with real

examples. Finally, Section 6 summarizes the results of this chapter.

69
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2. MINIMIZER

2.1. The program

The combined algorithms of Chapter III have been fully implemented in a
via minimization system called MINIMIZER. It is the first such system that
has been reported using an optimum algorithm. MINIMIZER consists of
two main programs called MIN1 and MIN2 and several ancillary programs.
All have been written in the C programming language and are residing on
a Sun-3/160 minicomputer running the UNIX operating system. Together
they consist of over 5000 lines of C-code. A brief outline of the programs

included in MINIMIZER is as follows:

MIN1 - Implements Algorithm 1 described in Chapter III. It
takes as input a file containing a layout description and
generates as output another file containing a description

of a via-minimized layout.

MIN2 - Same as MIN1, but with the extensions of Algorithms

2 and 3 described in Chapter III.

DRAW - Displays a layout file on either a color or black-and-
white Sun.
PLOT - Converts a layout file to a format suitable for printing

on an IMAGEN laser printer.
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CONYV - Converts a file generated by Rim and Nakajima’s chan-
nel router [28] to a layout file compatible with this sys-

tem.

INPUT - A simple graphics utility which allows the user to create

a layout on the Sun using mouse input.

The layout files are simple, human readable ASCII files. A layout is specified
in terms of lines, boxes, and points which correspond to routing segments,
modules, and vias, respectively. Limited text annotation is also supported.
All of the programs except DRAW and INPUT are portable to any other
UNIX system without modification and to any other C-language environ-
ment with only minor modifications. DRAW and INPUT utilize the SunCGI
graphics libraries and may be portable to other systems supporting the still
developing ANSI CGI standard. The remainder of this section will describe
MIN2.

When executed, MIN2 is given the name of an input file and several
options. These options determine, among other things, what locations in
the input layout will be considered via candidates. The default assumption
is that the layout is based on a unity grid and that vias should be placed
only at open grid points. The other options which are available are to treat
the input as a topological layout in which vias may be placed anywhere or
to restrict vias to the endpoints of the given routing segments. The later
can be used to speed up the algorithm or to obtain results comparable to
what the previous optimum algorithms [4,20] might have generated. Other

options select whether via candidate zones should be allowed or whether any
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heuristics (Section 4.5) should be employed. A list of the major modules in

MIN2 is as follows:

main -

getwlist -

graph _geh -

merge_junctions -

merge_crossings -

find_essential_vias -

interprets the command options, opens and closes the
necessary files, calls the routines below in the order that

they are listed and calculates run statistics.

reads the input file and generates an internal list of rout-

ing segments.

generates the derived graph G as described in Section
2.1 of Chapter III. from the list of routing segments.
Crossings are located using the straight-forward method

of comparing all pairs of routing segments.

merges junction nodes in G into nodes corresponding
to maximal via candidate zones as described in Section

3.2 of Chapter III.

merges crossing nodes in G ¢ into nodes corresponding
to maximal clusters as described in Section 3.2 of Chap-

ter I11.

locates all essential vias as described in Section 3.3 of

Chapter III and simplifies the graph accordingly.
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dual _graph -

remove_self_loops -

graph M -

matching N4

matching N3 -

mark _vias -

assign_layers -

output_graphics -

Implementation 73

generates the dual graph G'ﬂd from the graph G’, which

was created by the last three routines.

simplifies G”g by removing all edges corresponding to

edges in G, which are not in any cycles.

generates the graph M. This includes finding the short-
est path between every pair of odd nodes as described in
Section 3.4 of Chapter III. This is accomplished using a
modified Breadth-First-Search which takes into account

via labels.

implement the O(n*) and O(n®) maximum matching al-
gorithms described in Lawler [22] which are both based
on Edmonds’ method [8,9]. Both have been modified be-
cause of mistakes or omissions in Lawler’s description.
Each is over 1000 lines of code although many of their
routines are very similar. Only one of them is linked
to MIN2 at a time. For the problems we considered,

matching N3 was not any faster than matching N4.

modifies G’ to reflect the location of the vias identified

by the maximum matching algorithm.

traverses the edges in G’ assigning the corresponding

subsegments to layers.

generates the final layout file.
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MINT consists of all of the same modules as MIN2 except merge_junctions,

merge_crossings, and find _essential_vias.

. [
Input file = kajitani.in

Number of Wire Segments = 23
Number of Original Vias = 11
Number of Vias = 2

user time: 0.10 sec
sys time: 0.10 sec

Figure 4.1. Layout example 1

2.2. Results

The MINIMIZER system has been tested on a number of examples from
the literature, generated by hand, and generated using a channel router [28].

Figure 4.1 shows the input layout for a problem taken from [20] and the
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corresponding computer generated output. Figure 4.2 shows the time used

by MIN1 to obtain optimum layer assignments for a series of real channel

routing problems that were first routed using the efficient channel routing

algorithm described by Rim and Nakajima [28]. The three lower curves

correspond to considering only the endpoints of routing segments, only open

grid points, and all possible via locations as via candidates. The top curve

represents the worst case bound of ¢n®, where ¢ is found empirically to be

approximately 10~°® seconds when the program is executed on a Sun3/160
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computer. It is easy to see that in all cases the time required is less then
the upper bound of O(n®) and that increasing the maximum number of
via candidates from O(n) to O(n?) only increases the execution time by a
constant factor.

The number of vias required for these examples were reduced by be-
tween 14% and 41% from the number required by the original layer assign-
ment which placed all vertical routing segments on one layer and all hori-
zontal routing segments on the other. In several cases, the number of tracks
could be reduced by overlapping horizontal segments that were assigned to
different layers by this algorithm. Figure 4.3 shows the actual input and
graphical output generated by this program for one of the channel routing
problems mentioned.

Figure 4.4 shows the amount of computer time required by MIN2 to
solve the same problems. Not only has the time been drastically reduced,
but the actual time dependency has been reduced from O(n3®) to O(n?)
indicating that most of the time is being consumed by the steps preceding
the maximum matching step. Figure 4.5 shows the output generated by
MIN2 for the same example as shown in Figure 4.3. Notice that the number
of vias has been further reduced from 66 to 63 through the introduction of
via candidate zones. Subsegments assigned to both layers are indicated by
bold lines.

Chang and Du [3] recently published a heuristic via minimization al-
gorithm and claimed some speedup over a previous method. Although their

algorithm is much simpler than ours, it has a worst-case time complexity
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Input file = 3aYK2t.in

Number of Wire Segments = 136
Number of Original Vias = 91
Number of Vias = 66

user time: 22.00 sec
sys time: 1.36 sec

Figure 4.3. Channel routing example

77
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which is much worse. Although they did not publish any run times for large
examples, we were able to compare our algorithm with theirs on a number
of small examples taken from [32]. Figure 4.6 shows a comparison of our
run times on a Sun-3/160 with theirs on a VAX 11/780. Curve 1 is their
main heuristic algorithm. Curve 2 is their algorithm for identifying a subset
of the essential vias. Curve 3 is our optimum algorithm MIN2. Note that
MIN?2 is significantly faster than their main algorithm for all of the problems

considered. MIN2 is also faster than their essential via algorithm for all but
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Input file = 3aYK2t.in

Number of Wire Segments = 136
Number of Original Vias = 91
Number of Vias = 63

user time: 2.70 sec
sys time: 0.62 sec

Figure 4.5. Channel routing example with via candidate zones

the biggest problem considered. For that case, however, their essential via
algorithm does not locate all of the necessary vias so their slower algorithm

would also have to be applied to generate a complete solution.
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3. Efficiency Considerations

When using MIN2 on the channel routing examples mentioned above,
it was found that the number of odd nodes in G‘}_ was reduced so drastically
that the time required to generate Gy and G, and to locate all essential
vias became significant. In this section, we will consider how to implement
those first three steps of the algorithm more efficiently. To begin with, we

will consider the problem of generating the graph G from a set of routing
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segments R. Using the brute force approach, this requires O(|R | 2) time to
compare each routing segment with all of the others. Bently and Ottoman
[2] showed how to find all crossings between pairs of line segments in O(IRI-
log [R|+c-log | R1) time or in O(1 R | -log | R | +¢) time if all of the segments
are parallel to one of two perpendicular axes, where ¢ denotes the number of
crossings located. Using the algorithm described in Section 3.2 of Chapter
III, G, can be obtained from G in O(1E1) = O(IR| + ¢) time. Once we
have G, , the essential vias can be found in O(1E’'|) = O(IR| + ¢) time.
Thus when ¢ < |R|?%, locating all of the crossings may be the most time
consuming part of the first three steps.

If vias are restricted to the endpoints of routing segments in R, then it is
not necessary to partition the routing segments into subsegments and we can
avoid locating all crossings between pairs of routing segments. Instead we can
locate all maximal clusters directly from R and generate G, without using
Gp . If the layout is grid based, then we can use the geometric graph search
algorithm of Imai and Asano [19] to locate all clusters in O(1R| -log | R 1)

time.

4. Practical Considerations

4.1. Critical nets

Often, a designer may want to designate that certain nets not be assigned any
vias. These could be power and ground nets or nets that have very critical

timing requirements. This is easily accommodated by the same mechanism
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as used for the geometric constraints. In this case, VIA(z,y) = A for all
edges (z,y) in G for which SEG(z,y) is part of a critical net. This will not
affect the time complexity of the algorithm or the existence of an optimum

solution if the input layout meets the same constraints.

4.2. Crux zones

In printed circuit boards and in some integrated circuit processes, it is al-
lowable to have two parallel routing segments overlap for some distance.
Clearly, the two overlapping segments must be assigned to different layers
and additionally, no vias can be placed on either segment where they are
overlapping. Chen, et al. [4] named such overlap regions cruz zones and
gave them special attention in their algorithm. In our formulation, crux
zones may simply be treated as clusters. Figure 4.7 shows a layout with

crux zones and the resulting derived graph.
4.3. Unequal layers

In most technologies, some layers are more preferable for routing than others.
This may be due to the fact that routing segments assigned to a particular
layer may have lower resistance, greater thickness, or take up less area than
routing segments assigned to other layers. In the 2-CVM algorithm we have
described and implemented, layer assignment is done independently of via
placement and, as such, can only be given secondary consideration. However,
given a particular set of vias, it is easy to choose a layer assignment which
maximizes the number of routing segments assigned to a particular layer.

This is due to the fact that each maximal cluster has only two possible layer
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Figure 4.7. Example with crux zones
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assignments. After via placement, those clusters which intersect at a junction
that has not been assigned a via can be merged into a supercluster. After
merging all possible clusters, each supercluster is given the layer assignment
that maximizes the number of routing segments assigned to the desired layer.
This can all be accomplished without increasing the time complexity of the
layer assignment step.

A second consideration related to layer assignment is that the mini-
mum spacing between wires assigned to different layers may be different.
For example, in some technology routing segments assigned to Layer 1 are
realized as metal strips 3\ wide separated by at least 3, while routing seg-
ments assigned to Layer 2 are of the same width, but must be separated by
at least 4). Thus, if two routing segments are separated by only 3, they
cannot both be assigned to Layer 2. Such constraints can be taken into con-
sideration when forming clusters. If this results in certain clusters having
only one possible layer assignment, then the remainder of the algorithm will
also have to be modified. A simpler solution would be to use a router which
spaces all wires equally. After via minimization, the number of wires on the

narrower layer could be maximized and then the layout compacted.
4.4. Fixed layer terminals

It is very common to assume that all terminals are available on both layers in
theoretical discussions of routing and via minimization. In practice, however,
it is at least as common for terminals to only be available on one layer. In
such cases, all terminals may have to be vias to satisfy the assumption of the

router. In order to avoid adding an excessive number of vias at the terminals,
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we can adapt our algorithm to handle fixed layer terminals. Consider the
case when all terminals lie on the boundary of the routing area as in the case
of channel and switchbox routing. When we form G’; , we simply treat the
area outside the routing area, denoted by my, as a single cluster as shown in
Figure 4.8. This will assure that all of the segments incident upon my which
have the same type will be assigned to the same layer. When we assign
segments to layers, we should begin with segments that have terminals as
endpoints.

For the more general case when all terminals are not located on my, we
can extend this basic approach. We begin by generating a cluster in G’, for
each module m; to express the relative layer assignments between segments
incident upon that module. However, in order to assure that terminals on
different modules are assigned to the correct relative layer, it is necessary
to link the nodes corresponding to modules together by introducing some

dummy edges and nodes in G’ .

5. Heuristics

Despite all of our improvements in the basic algorithm, for very large
problems the most time consuming steps will be the computation of the edge
weights for the graph M = (No44, Epr) and the maximum weight matching
step. In order to reduce the time required for those two steps we suggest
a heuristic method based on empirical data gathered from real examples.
Recall that computing the edge weights for the complete graph M requires

finding a shortest path between each odd vertex in G% and every other odd
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vertex. Since all of the edges have a weight of approximately one, this
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step

requires O(| E d |} time for each of the vertices in Nog4. The weight on each

edge in M corresponds to the cost, in vias, of merging a particular pair of

odd faces in Gy . Figure 4.9 shows a histogram of the weights on the edges

in M actually chosen by Algorithm 1 as part of a maximum weight matching

for a sequence of channel routing problems of various sizes. Note that most

of the path lengths are very small and that the median path length does

not change significantly with increasing problem size. In fact, for all of the
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examples we tested, with sizes of up to 1000 routing segments, we never
encountered a path in a solution with length greater than 10. More than
95% had length of 2 or less. This is very significant, since it means that
had we limited our search to paths of length 10 or less, we would still have
obtained an optimum solution for all of the examples we tested. We call this
limit on search depth the mazimum search depth and denoted it by sdyqz.
Edges in M which would have weights greater than I' — sd,,,, are omitted.
Some care must be taken to assure that this does not result in any maximal
connected components in M which contain an odd number of nodes. If this
occurs, sdmq; may have to be increased for vertices in those components.
As mentioned, these results were obtained using Algorithm 1. When
using Algorithm 2A or 3, the number of nodes in M is reduced so drastically
that the computation of the edge weights and the maximum matéhing for M
are not the most time consuming steps for problems of the size considered
thus far. However, if the problem size were increased in size by an order of
magnitude or more, or the efficiency of the first steps was improved, similar

results could be expected.

6. Summary

In this chapter, we have described the first implementation of an op-
timum polynomial time algorithm for via minimization. Furthermore, we
have shown that it is faster than the existing heuristic algorithm. We have
discussed how to reduce the average time complexity even further using

techniques from computational geometry. We have also discussed practical
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considerations for applying this algorithm to real-world problems and de-
scribe some extensions to handle them. For very large problems our system
may not be fast enough. For that case we suggest a heuristic approach which
is based on a common characteristic of the optimum solutions we generated

with MIN2.
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Conclusion

1. Summary

In this paper, we have discussed the constrained via minimization prob-
lem in great detail. In Chapter II, we showed that the general 2-CVM prob-
lem is NP-hard and it remains so even when the maximum junction degree
is limited to six or more, the input layout is constrained to be grid based,
and vias are placed only at the endpoints of the given routing segments. In
Chapter III, we presented a family of polynomial time algorithms which do
not place any constraints on the input layout or the placement of vias and
which give optimum results when the maximum junction degree is limited
to three. If there are junctions with degree greater than three, then all of
the algorithms give approximate results.

Algorithm 1 is the basic algorithm. It is the simplest to implement,
yet gives optimum results to the 2-CVM3 problem and near optimum results

for the 2-CVMj, problem. The time complexity of Algorithm 1 is O(|R 13),
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where | R | is the number of routing segments in the input layout. Algorithm
2 is designed for geometric layouts. It adds a step in which the basic graph
derived from the input layout is simplified to take advantage of the limited
number of geometrically allowable via sites. In the worst case Algorithm
2 has the same time complexity as Algorithm 1. Algorithm 2 also has the
capability to merge adjacent via sites into a single via candidate zone by
assigning some routing segments to both layers. Essential vias are defined to
be those vias in the input layout which must be present in any output layout.
Algorithm 2A adds a step in which all such vias are efficiently located, thus
reducing the number of via candidates which must be considered by the
remainder of the algorithm. Algorithm 3 adds a weighting function which
increases the statistical likelihood of obtaining an optimum solution when
the maximum junction degree exceeds three. For topological layouts with no
junction degree exceeding three, all of the algorithms reduce to Algorithm 1.

In Chapter IV, we described how we have implemented the algorithms
of Chapter III. Ours is the first implementation of an optimum 2-CVMj3; al-
gorithm reported. We have proven that it will generate at least as few vias
as any other algorithm and surprisingly found that it does so significantly
faster than the existing heuristic algorithms. Traditionally, optimum algo-
rithms are difficult to adapt to other constraints. However, we described
how to adapt our algorithm to handle a wide variety of real life constraints
such as critical nets, fixed layer terminals, crux zones, and unequal layers.
In addition, we suggest a heuristic based on data gathered from the solu-

tions generated by our optimum algorithm. Using the heuristic, it should be
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possible to significantly reduce the computation time needed for very large

layouts and still generate optimum results most of the time.

2. Recent Results

We were the first to show that the 2-CVMj, problem is NP-hard for all
k > 6. Very recently, Choi, Nakajima, and Rim [6] extended this result to
layouts with no junction degree exceeding four. This leaves open only those
cases for which we have developed polynomial time algorithms. Molitor [26]
recently showed that the £-CVM problem is NP-hard for all £ > 3 even when
the maximum junction degree is limited to four or more.

Molitor [26] also suggested an approach similar to our Algorithm 1 for

layouts with no junction having degree exceeding three.

3. Future Work

The ¢-CVMj problem has been shown to be NP-hard for all £ > 2
when k > 4. We have developed and implemented several efficient optimum
algorithms for the case when £ = 2 and k < 3 and approximate algorithms
for the case when £ = 2 and k > 4. This leaves open the cases when £ > 3 and
k < 3. Since integrated circuit manufacturing technology already permits
the use of three or more layers, this would be an important area of research.

Another future direction might be to consider some more restricted
cases of the 2-CVM problem such as channel routing where all of the termi-

nals lie on the boundary of the routing area. For that particular case, the
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polynomial transformation used to show that cvm is NP-complete cannot be
applied and and it is not known if the problem is polynomially solvable. A
more interesting direction would be to consider a less constrained via mini-
mization technique where minor changes to the layout would be allowed.
As mentioned in Chapter I, it is not known whether a polynomial time
algorithm exists for the UVM problem, although it seems likely that the
general case is NP-hard. It would be primarily of theoretical interest to see
that proven. As seen in Figure 1.4, a UVM solution is not likely to be a
practical layout for a real circuit because of excess wire length and area.
Instead, more attention should probably be focused on developing practical
routers which can optimize a weighted sum of factors such as wire length,
number of vias, and total area while working within geometric and electrical

constraints.
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