THE INSTITUTE FOR SYSTEMS RESEARCH

ISRTECHNICAL REPORT 2008-35

Optimal Preview Control of Markovian Jump
Linear Systems

Kenneth D. Running, Nuno C. Martins

ISR develops, applies and teaches advanced methodologies of design and

IIlStltl.lte fOl' analysis to solve complex, hierarchical, heterogeneous and dynamic prob-
Sys emS lems of engineering technology and systems for industry and government.
RebedrCh ISR is a permanent institute of the University of Maryland, within the
RS, A. James Clark School of Engineering. It is a graduated National Science
@& A. JAMES CLARK Foundation Engineering Research Center.
“1;;1,5 SCHOOL OF ENGINEERING

www.isr.umd.edu



Optimal Preview Control of Markovian Jump

Linear Systems

Kenneth D. Running and Nuno C. Martins

Abstract

In this paper, we investigate the design of controllers, for discrete-time Markovian jump linear
systems, that achieve optimal reference tracking in the presence of preview (reference look-ahead). For
a quadratic cost and given a reference sequence, we obtain the optimal solution for the full information
case. The optimal control policy consists of the additive contribution of two terms: a feedforward
term and a feedback term. We show that the feedback term is identical to the standard optimal linear
quadratic regulator for Markovian jump linear systems. We provide explicit formulas for computing the

feedforward term, including an analysis of convergence.

. INTRODUCTION

This paper deals with the problem of designing control systems that achieve optimal reference
tracking in discrete-time. More specifically, we consider$bevomechanismproblem, i.e., given
a reference, the objective is to design feedback and feedforward strategies so that the state of
the plant tracks the reference optimally, according to a quadratic cost. Here, we consider a plant
that is linear but varies in time according to a Markovian process that takes values in a finite
alphabet, such systems are calMdrkovian jump linear systems

Basic notation: Throughout the paper, we adopt the following notation: (1) Boldface letters,
such asx, indicate (possibly vector valued) real random variables while the default font is used
to represent particular realizations of a random variable or deterministic quantities(2% k
matrix then|[G]; ; is the entry located at th&h row and;jth column. (3) ifG is a matrix then

G' indicates its transpose. Further notation will be introduced as needed.

Nuno C Martins is with the ECE Department and the ISR, University of Maryland, College Park. Address: Room 2259 AV
Williams Bldg, University of Maryland, College Park, 20742 MB-:fnail:nmartins@isr.umd.edu ) Kenneth D. Running is

with the Department of Aerospace Engineering, University of Maryland.
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Definition 1.1: (Markovian jump linear system: state space recursioh Let m, n andq be
given positive integers along with a matrix of conditional probabilifiéss [0, 1]*™ satisfying
S ™ [M]);; = 1, for eachj in the set{1,...,m}. Consider also a given collection of matrices
{A(i)}, and {B(i)}™,, where for each integerin the set{1,...,m} it holds thatA(i) €
R™" and B(i) € R™*4. In addition, consider two independent random variabigsand m,
taking values inR™ and{1,...,m}, respectively. The following specifies the state recursion of

a discrete-time Markovian jump linear system:
Xpr1 = A(my)x + B(myg)ug, k>0 (1)

where m,, is a Markovian process taking values in the $&t... ,m} and whose statistical
behavior is governed by’r(my; = ijmy = j) = [M];;, £ > 0. We also assume thai, has

a finite covariance matrix and that, has no transient stateise., lim inf;_.., Pr(m; =1i) > 0

for all i € {1,...,m}. In this descriptionu,, takes values iR? and it represents the system’s
input. In addition, we assume théin,; }7°, is independent ok,. The overall state of the system
is denoted as follows:

d
Sk éf (Xk, mk)

A. Survey of related results

The problem of designing controllers, for Markovian jump linear systems, that achieve optimal
reference tracking has been discussed, for the continuous time case, in [15]. In this paper, we
formulate the problem in discrete-time, and we show that the optimal solution results from
the additive contribution of a feedforward and a feedback term. In addition, we give sufficient
conditions for the convergence of the feedforward term, and when it converges we provide an
explicit formula for its computation. In contrast to our work, where we assume that the reference
is deterministic and known for the entire future, the authors of [35], [36], [37] have investigated
tracking and the effects of perturbations, for the case where the reference or perturbation is a
Markov process subject to causal processing. Subsequently, we give a short survey, of the state
of the art in the design of optimal controllers of Markovian jump linear systems. This is followed
by a brief discussion of existing results in optimal reference tracking for deterministic systems.

1) Results on Optimal Control of Markovian Jump Linear SysteMstivated by a wide
spectrum of applications, for the last thirty years, there has been active research in the analysis [3],

[22] and in the design of controllers [10] for Markovian jump linear systems. More specifically,
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in the last fifteen years, the classical paradigms of optimal control have been re-visited for
Markovian jump linear systems, such as the ones definelbgnd mixedH,/H., measures of
performance [13], [17], [15] (see [14] for a more detailed survey of existing work). The authors
of [16] also propose an elegant method to analyze and design controllers for Markovian jump
linear systems in continuous time. Other approaches aiming at the design of robust controllers
can be found in [5], [4]. Not only optimal solutions were characterized, but also the optimal cost
and its associated control law can be computed by means of sdimgay matrix inequalities
(LMIs) [12].

2) Brief Survey of Results on the Theory of Optimal Reference Tracking for Deterministic
Systems (Optimal servomechanism desig@tiassical approaches guarantee asymptotic tracking
of certain periodic references via the internal model principle, at the expergatefaugmen-
tation techniques. In the late eighties, techniques based on operator theory were used to derive
control laws for linear and time-invariant systems that guarantee optimal reference tracking,
under the assumption of finite look-ahead and infinite look-ahead preview [26], [21]. The papers
[18], [32], [31] are also relevant contributions for the particular case where the reference is
available with no look-ahead (no preview). Examples of application can be found in [1], [28].
More recently, since the nineties, the theory of control leading to optimal reference tracking,
for deterministic systems, has a wide portfolio of interesting results. In particular, more general
performance metrics, such &s,,, have been considered [11], [24]. There is also a substantial
collection of results on fundamental limits of optimal reference tracking [25] for a variety of
metrics [30], constraints [9], [8], [7] and plant classes [29], [6], [20], [34]. All of these results,
in one way or another, conclude that reference look-ahead (preview) may lead to a substantial
increase in the tracking performance.

Paper Organization: This paper has five sections, besides the introduction: Section Il gives
preliminary definitions and a review of the linear quadratic optimal control of Markovian jump
linear systems, while Section IIl focuses on the formulation of the optimal reference tracking
problem, in the presence of preview. The optimal solution is derived in Sections IV and V. The

paper ends with conclusions in Section VI.

INotice that such state-augmentation techniques are impractical if the plant is a Markovian jump linear system with a large

number of modes, because all of tHe matrices will need augmentation leading to very high dimensional controllers.
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[I. PRELIMINARY DEFINITIONS AND REVIEW OF THE OPTIMAL LINEAR QUADRATIC

REGULATOR (LQR) FOR MARKOVIAN JUMP LINEAR SYSTEMS

The results reviewed in this section will be used as a base for the extensions in Section Ill.

Definition 2.1: (State filtration) Lets, = (xx, m;) be the state of a Markovian jump linear
system (MJLS). The filtration that is generated dqyis defined as:

de

S, o(s0<t < k) )

whereo(s;;0 < t < k) is the smallest-field [23] with respect to whicls; is measurable for
te{0,...,k}.

Definition 2.2: (Regulator) Let s, = (x;, my) be the state of am dimensional Markovian
jump linear system (MJLS) with inpui, taking values inR?. The class of regulators consists

of all measurable feedback polici&s, with the following structure:

w, = Ri({s1}/o), k>0 3)
Definition 2.3: (Expectation and conditional expectation Let s, = (x, my) be the state of
ann dimensional Markovian jump linear system (MJLS) and assume that the inpuaking
values inR?, is adapted td S, } (such as in (3)). Given a non-negative integeand a stochastic
processz;, adapted to{S;}, throughout the paper we ud€,[z,] to denote expectation ofy.
Similarly, given two non-negative integefs and k£ satisfyingk < 7', we use the following

notation for conditional expectation [23]:

Erplzr] € Elzr|Si] (4)
Problem 2.1: (Optimal infinite horizon linear quadratic regulator (LQR): problem for-
mulation) Consider a Markovian jump linear system, as in Definition 1.1, and denotednd
q its order and dimension of the input, respectively. Given a regulgit®,, and symmetric
matricesS € R™*™ and @ € R?*?, which are symmetric and positive semi-definite and positive

definite, respectively, we adopt the following cost function:

L{Ri}iZo) = Jlim Er

T
> x)Sx+ u;Qul] (5)

=0
whereu, = Ry ({s;}F_,). The infinite horizon optimalinear quadratic regulatorparadigm is

defined by the following optimization problem:

{Ri}e ® arg min L({Ri}i) (6)

1S1=0
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subject toR, adapted taS;.
Definition 2.4: Coupled Algebraic Riccati Equations ( CARE ) Let all parameters needed
in the definition of a MJLS be given. The CARE associated with Problem 2.1 is given by the

following collection of matrix equations (s&§l4, (Definition 4.4)]):

-1

P(i) =S+ A(i)' P(i)A(i) — A(d) P(i)B(i) (Q + B(i) P(i)B(i))
P(i)y= Y [M];;P(j), P(i)=P@) >0, ic{l,....,m} (7)
e{1,...,m}

j
Definition 2.5: (Stabilizing solution) Let { P(i)}*, be a solution of the CARE (7). In addi-

tion, consider the collection of matricdd< (:)}", taking values inR?*" given by:

B(i)' P(i)A(i),

K(i)=-(Q+ B(i)’P(i)B(i))_l B(i)P(i)A(i), i € {1,...,m} (8)

A solution {P(i)}*, to the CARE (7) is qualified as stabilizing if the feedback lay =
K(my,)x; stabilizes the MJLS, in the sense thiaty, .., Fy[x} x;] = 0.

Remark 2.1:(Unicity and optimality properties of positive solutions to the CARE) From
[14, Lemma A.14] it follows that the CARE (7) has at most one stabilizing solution. General
conditions for the existence of a stabilizing solution are given in [14, Theorem A.15]. In
particular, if S is positive definite then, from [14, Proposition 3.42], it follows that the MJLS is
stabilizable if and only if the CARE (7) has a solution. As such, we conclude from [14, Theorem
A.15] that if S is positive definite then the CARE (7) has a solution if and only if such a solution
is unique and stabilizing. It is positive definite and the CARE (7) has a stabilizing solution
{P(i)}, then from [14, Theorem 4.5] it follows that the infinite horizon optimal regulator
problem has a unique optimal solution given &y = K (my)x;, where{K (i)}, is given by

(8), and that the optimal cost is given Wy = Ey[x} P (mg)xo).

IIl. OPTIMAL PREVIEW CONTROL PROBLEM FORMULATION

In this section, we formulate the optimal preview control paradigm, under full-state feedback.
We start by defining the following class of admissible preview controllers:

Definition 3.1: (Preview controller) Let s, = (x;, my) be the state of a Markovian jump
linear system (MJLS) with inputy, and continuous state; taking values inR? and R",

respectively. Given a time horizdfi € N|J{oo}, a reference sequende;}’, taking values in

%In order to match our notation with [14], sele€f C; = R, D; D; = Q, X; = P(i) and&;(X) = P(i).
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R", the class of preview (forecast) controllers consists of all feedback policies with the following
structure:
w, = Frr({si}izo, {11} icpsr) 9)
Problem 3.1: (Optimal preview control:problem statement) Consider a Markovian jump
linear system, as in Definition 1.1, and denoterbgind g its order and dimension of the input,
respectively. Given time horizoft’ € N, a sequencgr;}., taking values inR", a preview
controller policy{ F, r}L,, and symmetric matriceS € R"*" and@ € R?*4, which are positive

semi-definite and positive definite, respectively, we adopt the following cost function:
T

ET Z<Xl — Tl)/S(Xl — Tl) —+ uEQul (10)

=0

1

Ir ((Firm¥ieo) © 55

whereu, = Fir({si}}_o. {ri}iirs1)- The optimalpreview controlparadigm is defined by the
following optimization problem:
% def .
{Firtipn = arg A TIr ({Frs i) (11)
LTS =0

subject taFy, (-, {Tl}zT:kH) adapted ta&;.. The infinite horizon optimal preview control paradigm
is defined via the minimization of the limit supremum of the cost (10), wheands to infinity.
Optimal solutions to the infinite horizon optimal preview control paradigm are written), as

Fir s {siHg: {ri}24 1), WhereF . denotes an optimal control policy.

IV. OPTIMAL SOLUTION TO THE INFINITE HORIZON (7 = 0c0) OPTIMAL PREVIEW CONTROL

PARADIGM

In this Section, we solve the infinite horizon optimal preview control problem for Markovian
jump linear systems. The main result is given in Theorem 4.1.

Theorem 4.1:Consider Problem 3.1 with positive definite and the following two conditions:
(Condition 1) The CARE (7) has a positive definite solutiorfCdndition 2) The reference
sequence{r;}°, is such that the following limits exist for alk > 0 (Note: A proof of

convergence, in the presence of bounded reference sequences, is provided in Section V):

B Lo (i, {ri}i2) < Jim BGY Lir(i, {rd), i € {1, m} (12)
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where {Ly 7(1,{r;}1.)}f_, through {L;(m,{r;}_,)}}_, are sequences of vectors taking

values inR"™ defined via the following backward recursion:

Loali {1 k) ref (A(i) = B())K (1)) [P(i)(A(i)r — resr) + Lir (i, {r} )] k<T

0 k=T
(13)
= . def .
Lir(iArdg) = D IM)jiLepar( {rid i) (14)
je{1,...,m}

If the two conditions above hold then the optimal solution to Problem 3.1, Withositive

definite, exists and is given by:

T sodsi} oy {r}2hi) = K (my)xy,
—_———
feedback

+ \(Q + B(mk)'P(mk)B(mk))_l B(mk)' (P(mk)mH — I_Lkpo(mk, {Tl}lT:k—i—l))j k Z 0 (15)

~
feedforward

where K (1) through K (m) are matrices irR?*" given by the optimal LQR solution (8).

Proof: This proof has three partsPért 1: Definitions) We start by defining the following

cost-to-go for any two non-negative integérand 7" satisfyingk < T

S Q3 / T S Q3 /

def | XpSXk + W Qui + Epp | D0, XS% +uQu| k<T

G ({Forsridbg {sidiy) < -

ilTSiT + uifQuT k=T

(16)

wherew;, must be of the formu, = F r({si}_o, {ri}iis.1) @and @y is defined as:

~ def
T = T —Tg

Notice that since,, is Markov, the conditional expectation in (16) does not change if we condition

with respect tofs; };_, or justs;. In addition,G,. + as defined above satisfies:

T

ZXJ—TJ Xz—Tz)+u§Qul” =

=0

1
T+

1 Fo

Jr ({Fir,riding) = Erjo

1
T+1

At a later stage, we proceed to determine the control daw= Fi ({s:}5_y, {r:1}), With

Eq [QO,T ({]:l,T,Tl}lT:o,SO)] (17)

k € {0,...,T}, that minimizesGyr ({Fi.r,m}L,, 50) for any givens, in R". The optimal

November 17, 2008 DRAFT



cost-to-go is represented as:

gZ,T ({Tl}szka {Sl}f:o) = {leﬂ Orr ({fl T 7’1}1 ks {Sl}l o) (18)

lle

We also define symmetric and positive-definite matri¢gs (1) through P, r(m), with k& €

{0,...,T}, via the following backward recursion:

s |8 if k=T
P&T(Z) = B B (19)
S+ A() Ppr(i) A1) — Kr(i) (Q + B(i) Por(i)B(i)) Kyp(i) if k<T
Por(i) Z[M]j,z-PHI,T(j), k<T (20)

where

Kr(i) ® = (Q+ B Por()B(i)) " B(i) Por()AG), k<T,ie{l,...,m}  (21)

Similarly, we need to define functions, r(i,{r;}/_,) — R with i € {1,...,m} andk €

{0,...,T}, according to the following backward recursion:
. A
pT’T(’L, TT) =0 (22)

orr (i () S G (i, Y ) + 2P (i) 2 + 224 L (i {rid )

— (Pur(i)z + Ly (i, {rd i) (@ + BGY Por()B(0) ™ (o) + Lir (i, fridp))

k<T (23)

S |

o (i ) < Z Liorarr (s {rdiepg), k< T (24)

where then dimensional real vectoré (1, {r;},) through L; v(m, {r;}_,) are computed
from (13)-(14), whilez; is given by:

Zk déf Akak — Tk+1 (25)

(Part 2: optimal solution for finite 7) The following fact is key in our proof of Theorem 4.1.:
Fact 1: Given integers: andT satisfyingk < T"andk > 1, and a reference sequenpe}’_,
if (26) holds then (27 ) is true.

Grr ({rit e {sitio0) = TP (mu)Ey, + 28, Ly (mu, {ri}i=y,) + orr(mi, {ri}ly)  (26)
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Grr ({Tl}gfzk—p {Sl}fz_ol) =
Ty Py r(my—1)Ep—1 + 285 L1 (mu—, {rid esy) + 10 (mu—r, {rite_y)  (27)
(Proof of Fact 1) Notice that for any integers and 7T satisfyingk < 7" andk > 1, we can

express the optimal cost-to-go as:

Gi v (e (s =

T
min [i;_ISik_l + W Quy o+ min Erp [Z X R¥ +u;Qul” (28)
=k

kal,T FL,T =k

where each realization,, must be of the formu, = Fj, r({si}, {r:1}_.1)- Now notice that

the following holds:

T T
min  Erp_i | Y %S% +wQu | = min Eyy |Erp | Y XS% +wQu || =
{Fl,T}[T:k L 1=k {Fl,T}LT:k 1=k
B T
Eyjk—1 {fmi}g Ep, ZfiESiz +wQu | | = Byt [Grr ({nidiw {si}ino)]  (29)
[T =k I=k

From (28)-(29), we can write the following backward (Bellman’s) equation [33] for the optimal

cost-to-go as:

Grr ({Tl}zT:k—p {Sl}fz_ol) =

min X, SXy -1 + w_; Qui—1 + By [Gir ({ri}iss {s1}120)]  (30)

Ug—1

Now notice that under (26), we have:

Eje-1 [Q;T ({Tl}f:m {Sl}f:o)] =
%), Pe—1r(my_1)Xg + 2%, L1 7 (my1, {ri}2)) + @r—1r (g1, {ri}_,) (31)

where we also used the fact that = A(my_1)Zx + B(myg_1)ur—1 + 2x—1. Theproof of Fact 1
follows by substituting (31) in (30) and completing the squares to arrive at (27) and to conclude

that the optimal controli; is given by the following:

uj, = T r({sitico: {ri}tiess) = Ker(my)x,

feedback

+(Q+ B(mk)'pk,T(mk)B(mk))_l B(my)' (Pyr(my)ree — Lr(my, {r}t)) (32)

- -

feedforward
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10

Now notice that since (26) holds far= T, by repeated application of Fact 1, we can conclude
that (32) is the optimal solution to the finite horizon problem of minimizifg({F, r, . }{,).

(Part 3: optimal solution for the infinite horizon case: ) The infinite horizon solution (15) will

be well defined provided that the feedback and the feedforward terms in (32) converge, for every
k, asT tends to infinity. As such, we proceed to proving the convergence of the feedback and
feedforward terms(Convergence of the feedback term)We start by noticing, from (19)-(20),

that { P, r(i)}7, converges to soméP.. (i)}, asT tends to infinity if and only if, for all

k, {P.r(i)}7, also convergeg P, (i)}, asT tends to infinity. Hence it suffices to study the
convergence of Py r(7) }i*, and{ K, r(i)}7,. Recall that the CARE (7) characterize the solution

of the infinite horizon optimal LQR for MILS (see Remark 2.1). In particular, if condition 1
holds, i.e., (7) has a positive definite solutiph, 7(¢)}7,, then the infinite horizon optimal LOQR

cost is finite (see Remark 2.1) and the following holds for any choice of independent random

variablesm, andx, (with finite second moment):
EQ [QS,T(()? SQ)} = EQ [X6P07T(mQ)XQ] < L' < o0, T>0 (33)

where £* denotes the optimal infinite horizon LQR cost. In (33) we adopt an abuse of notation,

where G; (0, s0) represents the cost to go whep = 0, for & € {0,...,7}. The equality

in (33) follows from Fact 1, i.e.ggvT(O, so) = xyPor(mo)zy results from (27), where we

also use the fact thatLor(i,0)}2, = 0 and {por(i,0)}i2, = 0. The equalityGg (0, s0) =

xyPo.r(mg)zo also implies that the sequengg [x) Py (my)x,] is non-decreasing iY, and since

it is bounded it must converge. In additioR, [x{, P r(mg)x,] must converge taC*, otherwise

this would contradict the optimality of*. Moreover, from [14, Theorem 4.5] we know that

L* = Ey [x(,P(mo)xo], where{P (i)}, is the positive definite solution to the CARE (see also

Remark 2.1). Hence, we conclude thaf [x{ (P (mo) — Py r(my)) x| converges to zero &b

goes to infinity, and since the choice of, andx, was arbitrary, we conclude th&#, (i)},

must converge t§ P(i)}7,. Hence{ K} r(¢)}/*, also converges t¢K (i)} ,. Theconvergence

of the feedforward term follows from condition 2.C] (End of Proof of Theorem 4.1)Notice

that if r, is such thatd (i)r; = 7,4, then (15) reduces t&; . ({si}{_q, {r:}i2) = K (my) (rp—xx),

which is the solution we would obtain from the well known internal model principle [19].
Remark 4.1:Dealing with positive semi-definite S: Notice that our proof of Theorem 4.1

requires that the matri% is positive definite, which guarantees that the CARE (7) has a unique

positive definite solution (see Remark 2.1).9fis only positive semi-definite then the CARE
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11

(7) may have multiple solutions. In particular, $f is positive semi-definite then the iteration
(19) converges to a minimal solution, which might not be stabilizing (see [15, Chapter V] for a
discussion of this issue for the continuous time case). Our proof remains valid, gositive
semi-definite, provided that we impose that the MJLS is stochastically detectable with respect
to S1/2 (see [14, Remark A.22]). Indeed, in the presence of stochastic detectability, the CARE

(7) has only one solution, which is positive definite, and the recursion (19) will converge to it.

V. COMPUTATION OF THE FEEDFORWARD TERM

The main result of this Section is given in Theorem 5.1, where we give an explicit formula for
computing{ Ly (¢, {1 }72,) }7*,, which is a central quantity in (15), in the presence of bounded
reference sequences.

Notation: Given a collection of matrices (or vectorsy (1) throughW (m), we denote the

corresponding block diagonal matrix as:

W) 0 0
oqwayzy? | L " Y 34)
0 . 0 W(m)

Given vectorsv(1) throughv(m), we use the following notation to denote vectorization:
v(1)
N1m N def .
B({v(i)},) = : (35)
v(m)

The Kronecker product between two matricésandY € R™*"2 js denoted as:

X[Yhy X[V - X [Y]in

S| XY v X Yo,
Xy | F R A (36)

X [Y]nhl X [Y]m,? e X [Y]m,m
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12

Theorem 5.1:Given a Markovian jump linear system, as in Definition 1.1, select a reference
sequence{r; }7°, and consider the optimal preview control paradigm of Problem 3.1 With
positive definite. If the CARE (7) have a stabilizing soluti¢® (i)}, and the reference
sequence is bounded, thén .. (1, {r;};°,) through Ly . (m, {r;};°,), defined in (12)-(14), can

be computed via the following general formula:
B({ Lo (i, {i}2) Hiz) = ZFHQ? ({(A() = BG)K(2)) P(i)(A(i)r; — rj) }y) - (87)

whereK (1) throughK (m) are the gains (8) anfl € R"™*"" js a stable matrix (spectral radius
less than one) given by:

F = ({(A@) = BGK®) V) (Inxn © M) (38)

If the reference sequence is constant, irg.= r for somen dimensional real vector, then
the sequences;, (1, {r;};°,) throughL; . (m, {r;};°,) are constant with respect toand they

can be computed as:

_ -1 _ _
B({Lioo (i, {ri}iZe) Yi2) = (I - F) T ({(A(d) — B(i)K (1)) P(i)(A() — D)r}y), k>0

(39)
Proof: We start by representing the backward equations (13)-(14) in the following equivalent

form, which will immediately lead to (37):

B({ L (i b)) = F B a6 {rid ) )+

D ({(A(i) — B)K (i) P@)(A@)rk —res) Fly) . k< T (40)

This type of vectorization technique has been used in [27] to obtain a forward recursion for the
state covariance of a linear and time-invariant plant, under a networked control formulation. If

is constant and equal tothen we use (37) to arrive at (39). In order to finish this proof, below
we show thato(F'), the spectral radius of', is strictly less than one. Let(1) throughw(m)

be arbitrarily selected vectors taking valuesih. Further, definew, = w(m,). Now consider

a stochastic processw; };°, specified by the following forward recursion:

Since K (1) through K (m) are the optimal LQR gains witli' positive definite then the second

moment ofw, will converge to zero (see Remark 2.1), in particular, the following also holds
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13

forallie {1,...,m}:

lim D El(wi)’ g = j1Pr(my = j) =0 = lim Eyfwime =i =0 (42)

7

v~

Erl(w)?]
We continue by defining sequencés(1)}2, through{uv,(m)}°, as:

ue(i) Y By wimy = i|Pr(my =), i€ {1,...,m)} (43)

In addition, selecim, uniformly distributed, i.e.,Pr(my = i) = 1, with i € {1,...,m}. Now

m

notice that the following holds:

S M) (A(G) = BU)K(5)) v () if k> 1

(i) = (44)
w(i)= if k=0
which can be equivalently expressed as:
B({on(0)}i21) = (F)* B({vo(i)}y), k>0 (45)

From (42) we know thaty (1) throughw,(m) will also converge to zero, as goes to infinity.
Sincew(1) throughw(m) can be selected arbitrarily, convergenceXtif{ v, (i)} ,) to zero and
(45) imply thato(F) < 1. O

VI. CONCLUSIONS

We obtain the solution to the infinite horizon optimal preview control problem, for Markovian
jump linear systems, in the presence of infinite look-ahead. The optimal control policy comprises
a feedback term and a feedforward term. The feedback term can be obtained via an immediate
adaptation of the standard linear quadratic regulator for Markovian jump linear systems. However,
this paper is the first to provide an explicit characterization of the feedforward term via efficiently
computable quantities. Notice that, in the infinite horizon optimal preview control of linear and
time-invariant plants, the convergence of the feedforward term follows immediately from the
stability of the closed loop state-space representation [33, (pp. 68, Corollary 4.1)]. However,
this convergence result cannot be extended to Markovian jump linear systems. In Theorem 5.1,
we solve such a problem by providing a convergence analysis for the Markovian jump linear

systems case.
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