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Optimal Preview Control of Markovian Jump

Linear Systems

Kenneth D. Running and Nuno C. Martins

Abstract

In this paper, we investigate the design of controllers, for discrete-time Markovian jump linear

systems, that achieve optimal reference tracking in the presence of preview (reference look-ahead). For

a quadratic cost and given a reference sequence, we obtain the optimal solution for the full information

case. The optimal control policy consists of the additive contribution of two terms: a feedforward

term and a feedback term. We show that the feedback term is identical to the standard optimal linear

quadratic regulator for Markovian jump linear systems. We provide explicit formulas for computing the

feedforward term, including an analysis of convergence.

I. INTRODUCTION

This paper deals with the problem of designing control systems that achieve optimal reference

tracking in discrete-time. More specifically, we consider theservomechanismproblem, i.e., given

a reference, the objective is to design feedback and feedforward strategies so that the state of

the plant tracks the reference optimally, according to a quadratic cost. Here, we consider a plant

that is linear but varies in time according to a Markovian process that takes values in a finite

alphabet, such systems are calledMarkovian jump linear systems.

Basic notation: Throughout the paper, we adopt the following notation: (1) Boldface letters,

such asx, indicate (possibly vector valued) real random variables while the default font is used

to represent particular realizations of a random variable or deterministic quantities. (2) IfG is a

matrix then[G]i,j is the entry located at theith row andjth column. (3) ifG is a matrix then

G′ indicates its transpose. Further notation will be introduced as needed.

Nuno C Martins is with the ECE Department and the ISR, University of Maryland, College Park. Address: Room 2259 AV

Williams Bldg, University of Maryland, College Park, 20742 MD.(E-mail:nmartins@isr.umd.edu ) Kenneth D. Running is

with the Department of Aerospace Engineering, University of Maryland.
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Definition 1.1: (Markovian jump linear system: state space recursion) Let m̄, n andq be

given positive integers along with a matrix of conditional probabilitiesM ∈ [0, 1]m̄×m̄ satisfying
∑m̄

i=1[M ]ij = 1, for eachj in the set{1, . . . , m̄}. Consider also a given collection of matrices

{A(i)}m̄
i=1 and {B(i)}m̄

i=1, where for each integeri in the set{1, . . . , m̄} it holds thatA(i) ∈

R
n×n and B(i) ∈ R

n×q. In addition, consider two independent random variablesx0 and m0

taking values inRn and{1, . . . , m̄}, respectively. The following specifies the state recursion of

a discrete-time Markovian jump linear system:

xk+1 = A(mk)xk + B(mk)uk, k ≥ 0 (1)

where mk is a Markovian process taking values in the set{1, . . . , m̄} and whose statistical

behavior is governed byPr(mk+1 = i|mk = j) = [M ]ij , k ≥ 0. We also assume thatx0 has

a finite covariance matrix and thatmk has no transient states, i.e., lim infk→∞ Pr(mk = i) > 0

for all i ∈ {1, . . . , m̄}. In this description,uk takes values inRq and it represents the system’s

input. In addition, we assume that{ml}
∞
l=0 is independent ofx0. The overall state of the system

is denoted as follows:

sk
def
= (xk,mk)

A. Survey of related results

The problem of designing controllers, for Markovian jump linear systems, that achieve optimal

reference tracking has been discussed, for the continuous time case, in [15]. In this paper, we

formulate the problem in discrete-time, and we show that the optimal solution results from

the additive contribution of a feedforward and a feedback term. In addition, we give sufficient

conditions for the convergence of the feedforward term, and when it converges we provide an

explicit formula for its computation. In contrast to our work, where we assume that the reference

is deterministic and known for the entire future, the authors of [35], [36], [37] have investigated

tracking and the effects of perturbations, for the case where the reference or perturbation is a

Markov process subject to causal processing. Subsequently, we give a short survey, of the state

of the art in the design of optimal controllers of Markovian jump linear systems. This is followed

by a brief discussion of existing results in optimal reference tracking for deterministic systems.

1) Results on Optimal Control of Markovian Jump Linear Systems:Motivated by a wide

spectrum of applications, for the last thirty years, there has been active research in the analysis [3],

[22] and in the design of controllers [10] for Markovian jump linear systems. More specifically,
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in the last fifteen years, the classical paradigms of optimal control have been re-visited for

Markovian jump linear systems, such as the ones defined byH2 and mixedH2/H∞ measures of

performance [13], [17], [15] (see [14] for a more detailed survey of existing work). The authors

of [16] also propose an elegant method to analyze and design controllers for Markovian jump

linear systems in continuous time. Other approaches aiming at the design of robust controllers

can be found in [5], [4]. Not only optimal solutions were characterized, but also the optimal cost

and its associated control law can be computed by means of solvinglinear matrix inequalities

(LMIs) [12].

2) Brief Survey of Results on the Theory of Optimal Reference Tracking for Deterministic

Systems (Optimal servomechanism design):Classical approaches guarantee asymptotic tracking

of certain periodic references via the internal model principle, at the expense ofstate augmen-

tation techniques1. In the late eighties, techniques based on operator theory were used to derive

control laws for linear and time-invariant systems that guarantee optimal reference tracking,

under the assumption of finite look-ahead and infinite look-ahead preview [26], [21]. The papers

[18], [32], [31] are also relevant contributions for the particular case where the reference is

available with no look-ahead (no preview). Examples of application can be found in [1], [28].

More recently, since the nineties, the theory of control leading to optimal reference tracking,

for deterministic systems, has a wide portfolio of interesting results. In particular, more general

performance metrics, such asH∞, have been considered [11], [24]. There is also a substantial

collection of results on fundamental limits of optimal reference tracking [25] for a variety of

metrics [30], constraints [9], [8], [7] and plant classes [29], [6], [20], [34]. All of these results,

in one way or another, conclude that reference look-ahead (preview) may lead to a substantial

increase in the tracking performance.

Paper Organization: This paper has five sections, besides the introduction: Section II gives

preliminary definitions and a review of the linear quadratic optimal control of Markovian jump

linear systems, while Section III focuses on the formulation of the optimal reference tracking

problem, in the presence of preview. The optimal solution is derived in Sections IV and V. The

paper ends with conclusions in Section VI.

1Notice that such state-augmentation techniques are impractical if the plant is a Markovian jump linear system with a large

number of modes, because all of theAi matrices will need augmentation leading to very high dimensional controllers.
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I I. PRELIMINARY DEFINITIONS AND REVIEW OF THE OPTIMAL LINEAR QUADRATIC

REGULATOR (LQR) FOR MARKOVIAN JUMP LINEAR SYSTEMS

The results reviewed in this section will be used as a base for the extensions in Section III.

Definition 2.1: (State filtration) Letsk = (xk,mk) be the state of a Markovian jump linear

system (MJLS). The filtration that is generated bysk is defined as:

Sk
def
= σ(st; 0 ≤ t ≤ k) (2)

whereσ(st; 0 ≤ t ≤ k) is the smallestσ-field [23] with respect to whichst is measurable for

t ∈ {0, . . . , k}.

Definition 2.2: (Regulator) Let sk = (xk,mk) be the state of ann dimensional Markovian

jump linear system (MJLS) with inputuk taking values inRq. The class of regulators consists

of all measurable feedback policiesRk with the following structure:

uk = Rk({sl}
k
l=0), k ≥ 0 (3)

Definition 2.3: (Expectation and conditional expectation) Let sk = (xk,mk) be the state of

an n dimensional Markovian jump linear system (MJLS) and assume that the inputuk, taking

values inR
q, is adapted to{Sk} (such as in (3)). Given a non-negative integerk and a stochastic

processzk adapted to{Sk}, throughout the paper we useEk[zk] to denote expectation ofzk.

Similarly, given two non-negative integersT and k satisfying k < T , we use the following

notation for conditional expectation [23]:

ET |k[zT ]
def
= E[zT |Sk] (4)

Problem 2.1: (Optimal infinite horizon linear quadratic regulator (LQR): problem for-

mulation) Consider a Markovian jump linear system, as in Definition 1.1, and denote byn and

q its order and dimension of the input, respectively. Given a regulator{Rl}
∞
l=0, and symmetric

matricesS ∈ R
n×n andQ ∈ R

q×q, which are symmetric and positive semi-definite and positive

definite, respectively, we adopt the following cost function:

L ({Rl}
∞
l=0) = lim

T→∞
ET

[
T∑

l=0

x
′
lSxl + u

′
lQul

]

(5)

whereuk = Rk({sl}
k
l=0). The infinite horizon optimallinear quadratic regulatorparadigm is

defined by the following optimization problem:

{R∗
l }

∞
l=0

def
= arg min

{Rl}
∞

l=0

L ({Rl}
∞
l=0) (6)
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subject toRl adapted toSl.

Definition 2.4: Coupled Algebraic Riccati Equations ( CARE ) Let all parameters needed

in the definition of a MJLS be given. The CARE associated with Problem 2.1 is given by the

following collection of matrix equations (see2 [14, (Definition 4.4)]):

P (i) = S + A(i)′P̄ (i)A(i) − A(i)′P̄ (i)B(i)
(
Q + B(i)′P̄ (i)B(i)

)−1
B(i)′P̄ (i)A(i),

P̄ (i) =
∑

j∈{1,...,m̄}

[M ]j,iP (j), P (i) = P (i)′ ≥ 0, i ∈ {1, . . . , m̄} (7)

Definition 2.5: (Stabilizing solution) Let {P (i)}m̄
i=1 be a solution of the CARE (7). In addi-

tion, consider the collection of matrices{K(i)}m̄
i=1 taking values inRq×n given by:

K(i) = −
(
Q + B(i)′P̄ (i)B(i)

)−1
B(i)′P̄ (i)A(i), i ∈ {1, . . . , m̄} (8)

A solution {P (i)}m̄
i=1 to the CARE (7) is qualified as stabilizing if the feedback lawuk =

K(mk)xk stabilizes the MJLS, in the sense thatlimk→∞ Ek[x
T
k xk] = 0.

Remark 2.1:(Unicity and optimality properties of positive solutions to the CARE) From

[14, Lemma A.14] it follows that the CARE (7) has at most one stabilizing solution. General

conditions for the existence of a stabilizing solution are given in [14, Theorem A.15]. In

particular, ifS is positive definite then, from [14, Proposition 3.42], it follows that the MJLS is

stabilizable if and only if the CARE (7) has a solution. As such, we conclude from [14, Theorem

A.15] that if S is positive definite then the CARE (7) has a solution if and only if such a solution

is unique and stabilizing. IfS is positive definite and the CARE (7) has a stabilizing solution

{P (i)}m̄
i=1 then from [14, Theorem 4.5] it follows that the infinite horizon optimal regulator

problem has a unique optimal solution given byu
∗
k = K(mk)xk, where{K(i)}m̄

i=1 is given by

(8), and that the optimal cost is given byL∗ = E0[x
′
0P (m0)x0].

III. OPTIMAL PREVIEW CONTROL: PROBLEM FORMULATION

In this section, we formulate the optimal preview control paradigm, under full-state feedback.

We start by defining the following class of admissible preview controllers:

Definition 3.1: (Preview controller) Let sk = (xk,mk) be the state of a Markovian jump

linear system (MJLS) with inputuk and continuous statexk taking values inR
q and R

n,

respectively. Given a time horizonT ∈ N
⋃
{∞}, a reference sequence{rl}

T
l=0 taking values in

2In order to match our notation with [14], selectC∗

i Ci = R, D∗

i Di = Q, Xi = P (i) andEi(X) = P̄ (i).
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R
n, the class of preview (forecast) controllers consists of all feedback policies with the following

structure:

uk = Fk,T ({sl}
k
l=0, {rl}

T
l=k+1) (9)

Problem 3.1: (Optimal preview control:problem statement) Consider a Markovian jump

linear system, as in Definition 1.1, and denote byn andq its order and dimension of the input,

respectively. Given time horizonT ∈ N, a sequence{rl}
T
l=0 taking values inR

n, a preview

controller policy{Fl,T}
T
l=0, and symmetric matricesS ∈ R

n×n andQ ∈ R
q×q, which are positive

semi-definite and positive definite, respectively, we adopt the following cost function:

JT

(
{Fl,T , rl}

T
l=0

) def
=

1

T + 1
ET

[
T∑

l=0

(xl − rl)
′S(xl − rl) + u

′
lQul

]

(10)

whereuk = Fk,T ({sl}
k
l=0, {rl}

T
l=k+1). The optimalpreview controlparadigm is defined by the

following optimization problem:

{F∗
l,T}

T
l=k+1

def
= arg min

{Fl,T }T
l=0

JT

(
{Fl,T , rl}

T
l=k+1

)
(11)

subject toFk,T (·, {rl}
T
l=k+1) adapted toSk. The infinite horizon optimal preview control paradigm

is defined via the minimization of the limit supremum of the cost (10), whenT tends to infinity.

Optimal solutions to the infinite horizon optimal preview control paradigm are written asuk =

F∗
k,∞({sl}

k
l=0, {rl}

∞
l=k+1), whereF∗

k,∞ denotes an optimal control policy.

IV. OPTIMAL SOLUTION TO THE INFINITE HORIZON (T = ∞) OPTIMAL PREVIEW CONTROL

PARADIGM

In this Section, we solve the infinite horizon optimal preview control problem for Markovian

jump linear systems. The main result is given in Theorem 4.1.

Theorem 4.1:Consider Problem 3.1 withS positive definite and the following two conditions:

(Condition 1) The CARE (7) has a positive definite solution. (Condition 2) The reference

sequence{rl}
∞
l=0 is such that the following limits exist for allk ≥ 0 (Note: A proof of

convergence, in the presence of bounded reference sequences, is provided in Section V):

B(i)′Lk,∞(i, {rl}
∞
l=k)

def
= lim

T→∞
B(i)′Lk,T (i, {rl}

T
l=k), i ∈ {1, . . . , m̄} (12)
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where {Lk,T (1, {rl}
T
l=k)}

T
k=0 through {Lk,T (m̄, {rl}

T
l=k)}

T
k=0 are sequences of vectors taking

values inR
n defined via the following backward recursion:

Lk,T (i, {rl}
T
l=k)

def
=







(A(i) − B(i)K(i))′
[
P̄ (i)(A(i)rk − rk+1) + L̄k,T (i, {rl}

T
l=k+1)

]
k < T

0 k = T

(13)

L̄k,T (i, {rl}
T
l=k+1)

def
=

∑

j∈{1,...,m̄}

[M ]j,iLk+1,T (j, {rl}
T
l=k+1) (14)

If the two conditions above hold then the optimal solution to Problem 3.1, withS positive

definite, exists and is given by:

F∗
k,∞({sl}

k
l=0, {rl}

∞
l=k+1) = K(mk)xk

︸ ︷︷ ︸

feedback

+
(
Q + B(mk)

′P̄ (mk)B(mk)
)−1

B(mk)
′
(
P̄ (mk)rk+1 − L̄k,∞(mk, {rl}

T
l=k+1)

)

︸ ︷︷ ︸

feedforward

, k ≥ 0 (15)

whereK(1) throughK(m̄) are matrices inRq×n given by the optimal LQR solution (8).

Proof: This proof has three parts. (Part 1: Definitions) We start by defining the following

cost-to-go for any two non-negative integersk andT satisfyingk ≤ T :

Gk,T

(
{Fl,T , rl}

T
l=k, {sl}

k
l=0

) def
=







x̃
′
kSx̃k + u

′
kQuk + ET |k

[
∑T

l=k+1 x̃
′
lSx̃l + u

′
lQul

]

k < T

x̃
′
T Sx̃T + u

′
T QuT k = T

(16)

whereuk must be of the formuk = Fk,T ({sl}
k
l=0, {rl}

T
l=k+1) and x̃k is defined as:

x̃k
def
= xk − rk

Notice that sincesk is Markov, the conditional expectation in (16) does not change if we condition

with respect to{sl}
k
l=0 or just sk. In addition,Gk,T as defined above satisfies:

JT

(
{Fl,T , rl}

T
l=0

)
=

1

T + 1
E0

[

ET |0

[
T∑

l=0

(xl − rl)
′S(xl − rl) + u

′
lQul

]]

=

1

T + 1
E0

[
G0,T

(
{Fl,T , rl}

T
l=0, s0

)]
(17)

At a later stage, we proceed to determine the control lawuk = Fk,T ({sl}
k
l=0, {rl}

T
l=0), with

k ∈ {0, . . . , T}, that minimizesG0,T

(
{Fl,T , rl}

T
l=0, s0

)
for any givens0 in R

n. The optimal
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cost-to-go is represented as:

G∗
k,T

(
{rl}

T
l=k, {sl}

k
l=0

) def
= min

{Fl,T }T
l=k

Gk,T

(
{Fl,T , rl}

T
l=k, {sl}

k
l=0

)
(18)

We also define symmetric and positive-definite matricesPk,T (1) through Pk,T (m̄), with k ∈

{0, . . . , T}, via the following backward recursion:

Pk,T (i)
def
=







S if k = T

S + A(i)′P̄k,T (i)A(i) − Kk,T (i)′
(
Q + B(i)′P̄k,T (i)B(i)

)
Kk,T (i) if k < T

(19)

P̄k,T (i)
def
=

m̄∑

j=1

[M ]j,iPk+1,T (j), k < T (20)

where

Kk,T (i)
def
= −

(
Q + B(i)′P̄k,T (i)B(i)

)−1
B(i)′P̄k,T (i)A(i), k ≤ T, i ∈ {1, . . . , m̄} (21)

Similarly, we need to define functions℘k,T (i, {rl}
T
l=k) 7→ R with i ∈ {1, . . . , m̄} and k ∈

{0, . . . , T}, according to the following backward recursion:

℘T,T (i, rT )
∆
= 0 (22)

℘k,T (i, {rl}
T
l=k)

def
= ℘̄k,T (i, {rl}

T
l=k+1) + z′kP̄k,T (i)zk + 2z′kL̄k,T (i, {rl}

T
l=k+1)

−
(
P̄k,T (i)zk + L̄k,T (i, {rl}

T
l=k+1)

)′ (
Q + B(i)′P̄k,T (i)B(i)

)−1 (
P̄k,T (i)zk + L̄k,T (i, {rl}

T
l=k+1)

)
,

k < T (23)

℘̄k,T (i, {rl}
T
l=k+1)

def
=

m̄∑

j=1

[M ]j,i℘k+1,T (j, {rl}
T
l=k+1), k < T (24)

where then dimensional real vectorsLk,T (1, {rl}
T
l=k) throughLk,T (m̄, {rl}

T
l=k) are computed

from (13)-(14), whilezk is given by:

zk
def
= Amk

rk − rk+1 (25)

(Part 2: optimal solution for finite T ) The following fact is key in our proof of Theorem 4.1:

Fact 1: Given integersk andT satisfyingk ≤ T andk ≥ 1, and a reference sequence{rl}
T
l=0,

if (26) holds then (27 ) is true.

G∗
k,T

(
{rl}

T
l=k, {sl}

k
l=0

)
= x̃′

kPk,T (mk)x̃k + 2x̃′
kLk,T (mk, {rl}

T
l=k) + ℘k,T (mk, {rl}

T
l=k) (26)
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G∗
k−1,T

(
{rl}

T
l=k−1, {sl}

k−1
l=0

)
=

x̃′
k−1Pk−1,T (mk−1)x̃k−1 + 2x̃′

k−1Lk−1,T (mk−1, {rl}
T
l=k−1) + ℘k−1,T (mk−1, {rl}

T
l=k−1) (27)

(Proof of Fact 1) Notice that for any integersk and T satisfyingk ≤ T and k ≥ 1, we can

express the optimal cost-to-go as:

G∗
k−1,T

(
{rl}

T
l=k−1, {sl}

k−1
l=0

)
=

min
Fk−1,T

[

x̃
′
k−1Sx̃k−1 + u

′
k−1Quk−1 + min

{Fl,T }T
l=k

ET |k−1

[
T∑

l=k

x̃
′
lRx̃l + u

′
lQul

]]

(28)

where each realizationuk must be of the formuk = Fk,T ({sl}
k
l=0, {rl}

T
l=k+1). Now notice that

the following holds:

min
{Fl,T }T

l=k

ET |k−1

[
T∑

l=k

x̃
′
lSx̃l + u

′
lQul

]

= min
{Fl,T }T

l=k

Ek|k−1

[

ET |k

[
T∑

l=k

x̃
′
lSx̃l + u

′
lQul

]]

=

Ek|k−1

[

min
{Fl,T }T

l=k

ET |k

[
T∑

l=k

x̃
′
lSx̃l + u

′
lQul

]]

= Ek|k−1

[
G∗

k,T

(
{rl}

T
l=k, {sl}

k
l=0

)]
(29)

From (28)-(29), we can write the following backward (Bellman’s) equation [33] for the optimal

cost-to-go as:

G∗
k−1,T

(
{rl}

T
l=k−1, {sl}

k−1
l=0

)
=

min
uk−1

x̃
′
k−1Sx̃k−1 + u

′
k−1Quk−1 + Ek|k−1

[
G∗

k,T

(
{rl}

T
l=k, {sl}

k
l=0

)]
(30)

Now notice that under (26), we have:

Ek|k−1

[
G∗

k,T

(
{rl}

T
l=k, {sl}

k
l=0

)]
=

x̃
′
kP̄k−1,T (mk−1)x̃k + 2x̃′

k−1L̄k−1,T (mk−1, {rl}
T
l=k) + ℘̄k−1,T (mk−1, {rl}

T
l=k) (31)

where we also used the fact thatx̃k = A(mk−1)x̃k + B(mk−1)uk−1 + zk−1. Theproof of Fact 1

follows by substituting (31) in (30) and completing the squares to arrive at (27) and to conclude

that the optimal controlu∗
k is given by the following:

u
∗
k = F∗

k,T ({sl}
k
l=0, {rl}

T
l=k+1) = Kk,T (mk)xk

︸ ︷︷ ︸

feedback

+
(
Q + B(mk)

′P̄k,T (mk)B(mk)
)−1

B(mk)
′
(
P̄k,T (mk)rk+1 − L̄k,T (mk, {rl}

T
l=k+1)

)

︸ ︷︷ ︸

feedforward

(32)
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Now notice that since (26) holds fork = T , by repeated application of Fact 1, we can conclude

that (32) is the optimal solution to the finite horizon problem of minimizingJT

(
{Fl,T , rl}

T
l=0

)
.

(Part 3: optimal solution for the infinite horizon case: ) The infinite horizon solution (15) will

be well defined provided that the feedback and the feedforward terms in (32) converge, for every

k, asT tends to infinity. As such, we proceed to proving the convergence of the feedback and

feedforward terms.(Convergence of the feedback term): We start by noticing, from (19)-(20),

that {P0,T (i)}m̄
i=1 converges to some{P∞(i)}m̄

i=1 as T tends to infinity if and only if, for all

k, {Pk,T (i)}m̄
i=1 also converges{P∞(i)}m̄

i=1 asT tends to infinity. Hence it suffices to study the

convergence of{P0,T (i)}m̄
i=1 and{K0,T (i)}m̄

i=1. Recall that the CARE (7) characterize the solution

of the infinite horizon optimal LQR for MJLS (see Remark 2.1). In particular, if condition 1

holds, i.e., (7) has a positive definite solution{P0,T (i)}m̄
i=1, then the infinite horizon optimal LQR

cost is finite (see Remark 2.1) and the following holds for any choice of independent random

variablesm0 andx0 (with finite second moment):

E0

[
G∗

0,T (0, s0)
]

= E0 [x′
0P0,T (m0)x0] ≤ L∗ < ∞, T ≥ 0 (33)

whereL∗ denotes the optimal infinite horizon LQR cost. In (33) we adopt an abuse of notation,

whereG∗
0,T (0, s0) represents the cost to go whenrk = 0, for k ∈ {0, . . . , T}. The equality

in (33) follows from Fact 1, i.e.,G∗
0,T (0, s0) = x′

0P0,T (m0)x0 results from (27), where we

also use the fact that{L0,T (i, 0)}m̄
i=1 = 0 and {℘0,T (i, 0)}m̄

i=1 = 0. The equalityG∗
0,T (0, s0) =

x′
0P0,T (m0)x0 also implies that the sequenceE0 [x′

0P0,T (m0)x0] is non-decreasing inT , and since

it is bounded it must converge. In addition,E0 [x′
0P0,T (m0)x0] must converge toL∗, otherwise

this would contradict the optimality ofL∗. Moreover, from [14, Theorem 4.5] we know that

L∗ = E0 [x′
0P (m0)x0], where{P (i)}m̄

i=1 is the positive definite solution to the CARE (see also

Remark 2.1). Hence, we conclude thatE0 [x′
0 (P (m0) − P0,T (m0))x0] converges to zero asT

goes to infinity, and since the choice ofm0 andx0 was arbitrary, we conclude that{P0,T (i)}m̄
i=1

must converge to{P (i)}m̄
i=1. Hence{Kk,T (i)}m̄

i=1 also converges to{K(i)}m̄
i=1. Theconvergence

of the feedforward term follows from condition 2.� (End of Proof of Theorem 4.1)Notice

that if rl is such thatA(i)rl = rl+1 then (15) reduces toF∗
k,∞({sl}

k
l=0, {rl}

∞
l=k) = K(mk)(rk−xk),

which is the solution we would obtain from the well known internal model principle [19].

Remark 4.1:Dealing with positive semi-definiteS: Notice that our proof of Theorem 4.1

requires that the matrixS is positive definite, which guarantees that the CARE (7) has a unique

positive definite solution (see Remark 2.1). IfS is only positive semi-definite then the CARE
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(7) may have multiple solutions. In particular, ifS is positive semi-definite then the iteration

(19) converges to a minimal solution, which might not be stabilizing (see [15, Chapter V] for a

discussion of this issue for the continuous time case). Our proof remains valid, forS positive

semi-definite, provided that we impose that the MJLS is stochastically detectable with respect

to S1/2 (see [14, Remark A.22]). Indeed, in the presence of stochastic detectability, the CARE

(7) has only one solution, which is positive definite, and the recursion (19) will converge to it.

V. COMPUTATION OF THE FEEDFORWARD TERM

The main result of this Section is given in Theorem 5.1, where we give an explicit formula for

computing{Lk,∞(i, {rl}
∞
l=k)}

m̄
i=1, which is a central quantity in (15), in the presence of bounded

reference sequences.

Notation: Given a collection of matrices (or vectors)W (1) throughW (m̄), we denote the

corresponding block diagonal matrix as:

D ({W (i)}m̄
i=1)

def
=










W (1) 0 · · · 0

0 W (2) · · · 0
...

. . .
...

0 · · · 0 W (m̄)










(34)

Given vectorsv(1) throughv(m̄), we use the following notation to denote vectorization:

V({v(i)}m̄
i=1)

def
=








v(1)
...

v(m̄)








(35)

The Kronecker product between two matricesX andY ∈ R
n1×n2 is denoted as:

X ⊗ Y
def
=










X [Y ]1,1 X [Y ]1,2 · · · X [Y ]1,n2

X [Y ]2,1 · · · · · · X [Y ]2,n2

...
...

...
...

X [Y ]n1,1 X [Y ]n1,2 · · · X [Y ]n1,n2










(36)
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Theorem 5.1:Given a Markovian jump linear system, as in Definition 1.1, select a reference

sequence{rl}
∞
l=0 and consider the optimal preview control paradigm of Problem 3.1 withS

positive definite. If the CARE (7) have a stabilizing solution{P (i)}m̄
i=1 and the reference

sequence is bounded, thenLk,∞(1, {rl}
∞
l=k) throughLk,∞(m̄, {rl}

∞
l=k), defined in (12)-(14), can

be computed via the following general formula:

V({Lk,∞(i, {rl}
∞
l=k)}

m̄
i=1) =

∞∑

j=k

F j−k
V

(
{(A(i) − B(i)K(i))′P̄ (i)(A(i)rj − rj+1)}

m̄
i=1

)
(37)

whereK(1) throughK(m̄) are the gains (8) andF ∈ R
nm̄×nm̄ is a stable matrix (spectral radius

less than one) given by:

F
def
= D ({(A(i) − B(i)K(i))′}m̄

i=1) (In×n ⊗ M ′) (38)

If the reference sequence is constant, i.e.,rk = r for somen dimensional real vectorr, then

the sequencesLk,∞(1, {rl}
∞
l=k) throughLk,∞(m̄, {rl}

∞
l=k) are constant with respect tok and they

can be computed as:

V({Lk,∞(i, {rl}
∞
l=k)}

m̄
i=1) =

(

I − F
)−1

V
(
{(A(i) − B(i)K(i))′P̄ (i)(A(i) − I)r}m̄

i=1

)
, k ≥ 0

(39)

Proof: We start by representing the backward equations (13)-(14) in the following equivalent

form, which will immediately lead to (37):

V({Lk,T (i, {rl}
T
l=k)}

m̄
i=1) = F V({Lk+1,T (i, {rl}

T
l=k+1)}

m̄
i=1)+

V
(
{(A(i) − B(i)K(i))′P̄ (i)(A(i)rk − rk+1)}

m̄
i=1

)
, k < T (40)

This type of vectorization technique has been used in [27] to obtain a forward recursion for the

state covariance of a linear and time-invariant plant, under a networked control formulation. Ifrl

is constant and equal tor then we use (37) to arrive at (39). In order to finish this proof, below

we show that̺ (F ), the spectral radius ofF , is strictly less than one. Let̄w(1) throughw̄(m̄)

be arbitrarily selected vectors taking values inR
n. Further, definew0 = w̄(m0). Now consider

a stochastic process{wl}
∞
l=0 specified by the following forward recursion:

wk+1 = (A(mk) − B(mk)K(mk))wk, k ≥ 0 (41)

SinceK(1) throughK(m̄) are the optimal LQR gains withS positive definite then the second

moment ofwk will converge to zero (see Remark 2.1), in particular, the following also holds
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for all i ∈ {1, . . . , m̄}:

lim
k→∞

m̄∑

j=1

Ek[(wk)
2 |mk = j]Pr(mk = j)

︸ ︷︷ ︸

Ek[(wk)2]

= 0 =⇒ lim
k→∞

Ek[wk|mk = i] = 0 (42)

We continue by defining sequences{vl(1)}∞l=0 through{vl(m̄)}∞l=0 as:

vk(i)
def
= Ek[wk|mk = i]Pr(mk = i), i ∈ {1, . . . , m̄} (43)

In addition, selectm0 uniformly distributed, i.e.,Pr(m0 = i) = 1
m̄

, with i ∈ {1, . . . , m̄}. Now

notice that the following holds:

vk(i) =







∑m̄
j=1[M ]i,j(A(j) − B(j)K(j))vk−1(j) if k ≥ 1

w̄(i) 1
m̄

if k = 0
(44)

which can be equivalently expressed as:

V({vk(i)}
m̄
i=1) = (F ′)k

V({v0(i)}
m̄
i=1), k ≥ 0 (45)

From (42) we know thatvk(1) throughvk(m̄) will also converge to zero, ask goes to infinity.

Sincew̄(1) throughw̄(m̄) can be selected arbitrarily, convergence ofV({vk(i)}
m̄
i=1) to zero and

(45) imply that̺(F ) < 1. �

VI. CONCLUSIONS

We obtain the solution to the infinite horizon optimal preview control problem, for Markovian

jump linear systems, in the presence of infinite look-ahead. The optimal control policy comprises

a feedback term and a feedforward term. The feedback term can be obtained via an immediate

adaptation of the standard linear quadratic regulator for Markovian jump linear systems. However,

this paper is the first to provide an explicit characterization of the feedforward term via efficiently

computable quantities. Notice that, in the infinite horizon optimal preview control of linear and

time-invariant plants, the convergence of the feedforward term follows immediately from the

stability of the closed loop state-space representation [33, (pp. 68, Corollary 4.1)]. However,

this convergence result cannot be extended to Markovian jump linear systems. In Theorem 5.1,

we solve such a problem by providing a convergence analysis for the Markovian jump linear

systems case.
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