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This thesis explores the utilization of a human perceptual model in video

compression, channel coding, error concealment and subjective image quality

measurement. The perceptual distortion model just-noticeable-distortion (JND) is

investigated. A video encoding/decoding scheme based on 3D wavelet decomposition

and the human perceptual model is implemented. It provides a prior compression

quality control which is distinct from the conventional video coding system. JND is

applied in quantizer design to improve the subjective quality of compressed video. The

3D wavelet decomposition helps to remove spatial and temporal redundancy and

provides scalability of video quality. In order to conceal the errors that may occur under

bad wireless channel conditions, a slicing method and a joint source channel coding

scenario, that combines RCPC with CRC and utilizes the distortion information to

allocate convolutional coding rates are proposed. A new subjective quality index based



on JND is proposed and used to evaluate the overall performance at different signal to

noise ratios (SNR) and at different compression ratios.

Due to the wide use of arithmetic coding (AC) in data compression, we consider

it as a readily available unit in the video codec system for broadcasting. A new scheme

for conditional access (CA) sub-system is designed based on the cryptographic property

of arithmetic coding. Its performance is analyzed along with its application in a multi-

resolution video compression system. This scheme simplifies the conditional access

sub-system and provides satisfactory system reliability.
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Chapter 1 Introduction

1.1 Backgrounds

The scale and power of computing and communication systems is keeping on

increasing. Meanwhile, the data required to represent the image and video signal in

digital form would continue to overwhelm the capacity of many communication and

storage systems. In particular, the growth of data-intensive digital video and image

applications and the increasing use of bandwidth-limited media such as radio and

satellite links have not only sustained the need for more efficient ways to encode analog

signals, but have made signal compression central to digital communication and signal-

storage technology. Furthermore, for some applications such as image/video database

browsing and multipoint video distribution over heterogeneous networks and display

devices, there is a growing need for other useful features such as video scalability.

Highly scalable video compression schemes [5][14][15] allow selective transmission of

different sub-bitstreams to different destinations, depending on their respective needs.

In this manner, each receiver can have the best possible quality session according to its

bandwidth.

The ultimate object of a video/image compression system is to minimize the

average number of bits used to represent the digital video/image signal while

maintaining subjective video/image quality as good as possible. Since the traditional

measures of image signal quality, mean square error (MSE), and signal-to-noise ratio

(PSNR), do not provide a satisfactory reflection of the human’s subjective perception

on the video/image quality, more satisfactory metrics should take advantage of the
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human perception model implicitly or explicitly. They give the encoder certain fidelity

to allocate more bits to signals that are more meaningful to the human visual system.

And they lead to better quantitative evaluation methods. A variety of schemes have

been proposed to incorporate certain psychovisual properties of the human visual

system (HVS) into image/video coding algorithms [16][17][18][20][42]. The frequency

sensitivity, brightness sensitivity, texture sensitivity and color sensitivity are considered

for the distortion sensitivity profiles, which leads to modern human visual models, such

as just-noticeable-distortion (JND) [16], visible differences predictor (VDP) [19] and

Ran’s perceptually motivated three-component image model [20]. Jayant’s JND model

provides each signal being coded with a threshold level of error visibility, below which

reconstruction errors are rendered imperceptible. The JND profile of a video sequence

is a function of local signal properties, such as brightness, background texture,

luminance changes between two frames, and frequency distribution.

To approach the goal of high compression ratio and scalability, subband coding

is widely explored in recent years. The signal is decomposed into frequency subbands

and these subbands are encoded independently or dependently. The structures in the

high frequency subbands usually appear as sparse edges and impulses corresponding to

the localized discontinuities in spatial or temporal domains. After carefully designed

quantization, these subbands lead to a large quantity of compression, provide spatial and

bitstream scalability naturally, and require less error protection in channel coding.

Earlier work on subband coding for image compression applies to the still image [1][2].

Tanabe and Farvardin [8] suggest a scheme using entropy-coded quantization to get the

optimal quantizer performance. Kwon and Chellappa [9] use adaptive entropy-
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constrained quantizers for different regions in images. The early work on subband

coding of video includes [3] and [4]. In recent years, the subband decomposition has

been extended to three dimensions. The codec of Taubman and Zakhor [5], which

employs a global motion compensation scheme accounting for camera panning motion,

generates a single embedded bit stream supporting a wide range of bit rates. Podichuk,

Jayant and Farvardin [6] combine a 3-D subband coder with geometric vector

quantization and obtain good compression performance at low bit rates. There are novel

wavelet-based video coding systems that take advantage of good features of other

components such as overlapped motion estimation. The video codec developed by

David Sarnoff Research Center [10] uses the technology of overlapped block motion

compensation and zero-tree entropy coding (ZTE), which is the extension of Shapiro’s

EZW [11] and Said & Pearlman’s SPIHT [12]. It outperforms the VM of MPEG-4 and

provides scalability. Cinkler [13] uses an edge-sensitive subband coding (ESSBC)

method and overlapped motion compensation. From an edge map combined with

motion vectors, the ESSBC technology generates areas of significance. These areas are

processed by a modified wavelet transform to concentrate the energy.

Even if a very high percentage of total signal energy is contained in the lowest

frequency subband, the truncation or undercoding of high-band signals will result in the

perception of  distortion due to aliasing effects. On the other hand, unless the significant

signals are cautiously encoded, the overcoding of high-band signals is the price to pay

for gaining good image quality. Consequently, the problem to be solved for optimizing

the subband coding scheme is how to locate perceptually important signals in each
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frequency subband, and how to encode these signals with the lowest possible bit rate

without exceeding the error visibility threshold.

As a critical (and often controlling) technology in the video broadcasting

industry, a conditional access sub-system comprises a combination of scrambling and

encryption to prevent unauthorized reception. Encryption is the process of protecting

the secret keys that are transmitted with a scrambled signal to enable the descrambler to

work. Way back in 1988, an attempt was made by France Telecom and others to

develop a standard encryption system for Europe. The result was Eurocrypt.

Unfortunately, in its early manifestations it was not particularly secure and multiplex

operators went their own way. Thus, in 1992 when the DVB started their consideration

of CA systems, they recognized that the time had passed when a single standard could

realistically be agreed upon and settled for the still difficult task of seeking a common

framework within which different systems could exist and compete. They therefore

defined an interface structure, the Common Interface, which would allow the set top

box (STB) to receive signals from several service providers operating different CA

systems. The common interface module contains the CA system, rather than the STB

itself, if necessary allowing multiple modules to be plugged into a single STB.

However, there were serious objections to the common interface module from many CA

suppliers on the grounds that the extra cost would be unacceptable. As a result, the

DVB stopped short of mandating the Common Interface, instead recommending it,

along with simulcrypt, which is one of the DVB recommended approaches for

conditional access.  These all bring up a diversified market of conditional access

system, which makes the exploration in this field so valuable.
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1.2 Contribution of This Thesis

We have implemented a video encoding/decoding scheme based on 3-D wavelet

decomposition and a human perceptual model. Jayant’s just-noticeable-distortion (JND)

model is adopted. The quantizers in different subbands are designed to approach

perceptual optimum. The source encoder has the global control on subjective distortion

of the compressed video quality ahead of time, which is distinct from the conventional

compression schemes. A new subjective distortion index for video is proposed and used

to evaluate the overall performance. Its fidelity is compared with the traditional quality

metric PSNR. From the result of simulation, we conclude that our distortion index

based on JND profile is more accurate than PSNR in the sense of measuring the human

subjective distortion. Using the new distortion index, the performance of our video

codec is compared with the coding of I frames in MPEG. At the same bit rate, our

encoder has performance comparable with MPEG encoder for I frames. Our simulation

shows that our encoder assigns more error energy to the perceptually less important

pixels in the frames. But due to the lack of motion estimation and run-length coding

technologies, the overall compression performance of our encoder is worse than MPEG.

To present its application more concretely, a practical transmission system over a

satellite channel using unequal error protection is discussed. Since in the satellite

broadcasting case, a feedback channel is not available, the transmitter has no

information about the receivers and their channel environments. It is difficult to

guarantee the average video qualities under diversified channel conditions without large

channel coding overhead. We derive a new slicing method to truncate the data from

each subband into small slices before arithmetic coding to confine the propagation of bit
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errors. Rate compatible punctured convolutional (RCPC) codes [27] are adopted in our

system to provide unequal error protection for different subbands. The bit rates of

RCPC for these subbands are finely chosen following the JND model to make the

unequal error protection perceptually sub-optimal. Simulations are done for different

combinations of RCPC coding and channel SNR, showing some characteristics of our

coding scheme.

Following the rapid expansion of the commercial broadcasting industry, a

conditional access sub-system is always included in the broadcasting system. It is used

to control which customer can get particular program services. Particular programs are

only accessible to customers who have satisfied the required payments. In this paper, a

brand new conditional access sub-system which takes advantage of the cryptographic

property of arithmetic coding is suggested. And a video broadcasting system based on

subband coding is described to present the application of this new condition access sub-

system. The performance analysis is provided. Compared to the traditional structures,

our scheme is quite simple and of low cost while provides reliable security.
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Chapter 2 The Human Perceptual Model of JND

2.1 Human Perceptual Models and Perceptual Coding

2.1.1 Human Perceptual Models

A common model of vision incorporates a low-pass filter, a logarithmic

nonlinear transformer, and a multi-channel signal-sharpening high-pass filter [26]. A

biologically correct and complete model of the human perceptual system would

incorporate descriptions of several physical phenomena including peripheral as well as

higher level effects, feedback from higher to lower levels in perception, interactions

between audio and visual channels, as well as elaborate descriptions of time-frequency

processing and nonlinear behavior. Some of the above effects are reflected in existing

coder algorithms, either by design or by accident. For example, certain forms of

adaptive quantization and prediction provide efficient performance in spite of

inadequate response time because of temporal noise masking. The basic time-frequency

analyzers in the human perceptual chain are described as bandpass filters. Bandpass

filters in perception are sometimes reflected in coder design and telecommunication

practice in the forms of “rules of thumb”.

A particularly interesting aspect of the signal processing model of the human

system is non-uniform frequency processing. The critical bands in vision are non-

uniform. It is necessary to use masking models with a non-uniform frequency support to

incorporate this in coder design. Here masking refers to the ability of one signal to

hinder the perception of another within a certain time or frequency range. It is also

necessary to recognize that high-frequency signals in visual information tend to have a
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short time or space support, while low-frequency signals tend to last longer. An

efficient perceptual coder therefore needs to not only exploit properties of distortion

masking in time and frequency, but also have a time-frequency analysis module that is

sufficiently flexible to incorporate the complex phenomena of distortion masking by

non-stationary input signals. All of this is in contrast to the classical redundancy-

removing coder, driven purely by considerations of minimum mean square error

(MMSE), MMSE bit allocation, or MMSE noise shaping matched to the input

spectrum.

Distortion sensitivity profiles of human perception are driven as functions of

frequency, brightness, texture, and temporal parameters. These four kinds of sensitivity

are under consideration for gray scale video/image [16][18][26]:

(1) Brightness sensitivity:

It was found that human visual perception is sensitive to luminance contrast

rather than absolute luminance values. The ability of human eyes to detect the

magnitude difference between an object and its background is dependent on the average

value of background luminance. According to Web’s Law [28], if the luminance of a

test stimulus is just noticeable from the surrounding luminance, the ratio of just

noticeable luminance difference to stimulus’s luminance (Weber fraction) is almost

constant. However, due to the ambient illumination falling on the display, the noise in

dark areas tends to be less perceptible than that occurring in regions of high luminance.

In general, high visibility thresholds will occur in either very dark or very bright

regions, and lower thresholds will occur in regions of gray levels close to the mid-gray

luminance, which is 127 for 8 bit sampling.
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(2) Texture sensitivity:

The reduction in the visibility of stimuli due to the increase in spatial

nonuniformity of the background luminance is known as texture masking. Several

efforts have been made to utilize some forms of texture making to improve coding

efficiency. In many approaches, visibility thresholds are defined as functions of the

amplitude of luminance edge in which perturbation is increased until it becomes just

discernible. The visibility threshold in this approach is associated with the masking

function defined at each pixel as the maximum prediction error from the four

neighboring pixels.

(3) Temporal sensitivity:

The masking of temporally changing stimuli is extremely important in

interframe coding. However, temporal masking is complicated by many factors, and its

application to video coding is still in its infancy. Many researches have attempted to

evaluate the losses of spatial resolution and magnitude resolution as an object moves in

a scene. If movement is drastic, such as scene change, the perceived spatial and

intensity resolution is significantly reduced immediately after the scene change. It was

found that the eye is noticeably more sensitive to flicker at high luminance than at low

luminance [28].

(4) Frequency sensitivity:

Many psychovisual studies have shown that the human perception of distortion

depends on its frequency distribution. The response of the HVS to sinewave gratings of

different frequencies has been experimentally measured as the so-called contrast

sensitivity function (CSF). Many models of spatial-domain CSF have been proposed,
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which indicate general bandpass characteristics. The spatial-domain CSF has been

widely used to improve the quality of the coded still images. There are only a few

models of spatio-temporal CSF reported in the literature, among which the most well

known model is proposed by Kelly [22]. The spatio-temporal CSF provides relative

sensitivities of the HVS to different spatio-temporal frequencies, or relative tolerance of

noises at different spatio-temporal frequencies. It can be used to allocate coding bits, or

distortion, by adjusting the quantizer stepsize of the target signal as inversely

proportional to the sensitivity of the corresponding frequency.

2.1.2 Perceptual Coding

There are two intrinsic operations to signal coding: removal of redundancy and

reduction of irrelevancy [16]. The removal of redundancy is the effect of predictive

coding or transform coding. Almost all sampled signals in coding are redundant because

Nyquist sampling typically tends to preserve some degree of inter-sample correlation.

This is reflected in the form of a nonflat power spectrum. Greater degrees of

nonflatness, as resulting from a low-pass function for signal energy versus frequency, or

from periodicities, lead to greater gains in redundancy removal. These gains are also

referred to as prediction gains or transform coding gains, depending on whether the

redundancy is processed in the spatial domain or in the frequency (or transform)

domain.

The reduction of irrelevancy is the result of amplitude quantization. In a signal

compression algorithm, the inputs of the quantizing system are typically sequences of

prediction errors or transform coefficients. The idea is to quantize the prediction error,

or the transform coefficients, just finely enough to render the resulting distortion
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imperceptible, although not mathematically zero. If the available bit rate is not

sufficient to realize this kind of perceptual transparency, the intent is to minimize the

perceptibility of the distortion by shaping it advantageously in space or frequency, so

that as many of its components as possible are masked by the input signal itself. The

term perceptual coding is used to signify the matching of the quantizer to the human

visual system, with the goal of either minimizing perceived distortion, or driving it to

zero where possible. These goals do not correspond to the maximization of signal-to-

noise ratio or the minimization of mean square error.

2.2 Just-noticeable-distortion (JND) Profile

To remove the redundancy due to spatial and temporal correlation and the

irrelevancy of perceptually insignificant components from video signals, the concept of

just-noticeable distortion profile introduced by Jayant [21] has been successfully

applied to perceptual coding of video and image. JND provides each signal to be coded

with a visibility threshold of distortion, below which reconstruction errors are rendered

imperceptible. The JND profile of a still image is a function of local signal properties,

such as the background luminance and the activity of luminance changes in the spatial

domain. For video sequences, the derivation of JND profiles must take both spatial and

temporal masking effects into consideration. For a successful estimation of JND

profiles, the subject should not be able to discern the difference between a video

sequence and its JND-contaminated version. Once JND profiles of video signals are

obtained, the perceptual redundancy can be quantitatively measured, and the perceptual

significance of each target signal can be evaluated.
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Whenever transparent coding cannot be attained due to a tight bit-rate budget,

the minimally-noticeable-distortion (MND) profile rather than the JND profile is

required. In MND the increased distortion can be uniformly distributed over the

reconstructed video signals and thus there is minimally perceptible. The perceptual

quality of the reconstructed video signals is expected to degrade gracefully if the

available bit rate is reduced.

The generation of a JND model consists of several steps [18]. First, the

perceptual redundancy inherent in the spatial domain is quantitatively measured as a 2D

profile by a perceptual model that incorporates the visibility thresholds due to average

background luminance and texture masking [17]. It is described by the following

expression [17]:
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where 0T , γ and λ are found to be 17, 3/128 and ½ through experiments [17].

The value of mg(x,y) across the pixel at (x,y) is determined by calculating the

weighted average of luminance changes around the pixel in four directions. Four

operators, ),( jiGk , for k=1,…4, and i, j=1,…5, are employed to perform the

calculation, where the weighting coefficient decreases as the distance away from the

central pixel increases.
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The average background luminance, bg(x,y), is calculated by a weighted

lowpass operator, B(i,j), i, j=1,…,5.
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At the second step of JND model generation, the JND profile representing the

error visibility threshold in the spatio-temporal domain is expressed as
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3
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where ),,( nyxild denotes the average interframe luminance difference between the n th

and )1( −n th frame. Thus, to calculate the spatio-temporal JND profile for each frame

in a video sequence, the spatio JND profile of itself and its previous reference frame are

required.

)]1,,(),,()1,,(),,([5.0),,( −−+−−⋅= nyxbgnyxbgnyxpnyxpnyxild

3f  represents the error visibility threshold due to motion. The empirical results of

measuring 3f  for all possible interframe luminance differences are shown in Figure 1.

To purposely minimize the allowable distortion in the nonmoving area, the scale factor

is switched to 0.8 as 5),,( <nyxild . It can be noted that the error visibility threshold is

increased with the increasing interframe luminance difference. This conforms the

research findings, that after a rapid scene change or large temporal difference, the
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sensitivity of the HVS to spatial details is decreased. Moreover, it can be found that

temporal masking due to high-to-low luminance changes is more prominent than that

due to low-to-high luminance changes.

Figure 1 Error visibility threshold in the spatio-temporal domain

From the spatio-temporal JND profile that quantitatively measures the

perceptual redundancy inherent in full-band video signals, the JND profiles for each

subband are set up with certain distortion allocation [22] for different subbands. The

JND for subband q is a function of spatio-temporal JND values at corresponding

locations multiplied by a weight that indicates the perceptual importance of this

subband. When each pair of video frames is decomposed into 11 spatio-temporal

subbands as in Figure 2 (the details of such a 3D wavelet decomposition is described in

Chapter 3), the relationship between the full-band JND profile and the component JND

profiles can then be obtained by the following equations:
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and

[ [
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The weighting function for distributing the full-band JND energy to a subband can be

derived as the relative sensitivity of the HVS to the frequency subband. For 11 spatio-

temporal subbands, the weighting function of the qth subband is obtained as

100,
10

0

1

1

≤≤=
∑

=

−

−

qfor
S

S

i
i

q
qω (9)

where qS  represents the average sensitivity of the HVS to the qth subband. qS  is

obtained from the spatio-temporal CSF presented by Kelly [22].

Figure 2 Subbands after 3D Wavelet Decomposition
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2.3 A Novel Human Perceptual Distortion Measure Based on JND

Based on the basic concept of the JND, the idea of minimally-noticeable-

distortion (MND) is developed for situations where the bit-rate budget is tight and the

distortion in the reconstructed image is perceptually minimal at the available bit-rate

and uniformly distributed over the whole image[26]. The perceptual quality of the

reconstructed image is accordingly expected to degrade evenly if bit-rate is reduced.

MND is expressed as:

),(),(),( yxdyxJNDyxMND ⋅≡            (10)

where Wx <≤0 , Hy <≤0 , W and H are the width and height of an image

respectively, ),( yxd   is the distortion index at point ),( yx .

The energy of JND can be understood as the minimum energy of quantization

error that will cause conceivable loss to the human visual system. So if the error is so

small in a small area that the error energy here is less than the JND energy, the

compression will be perceptually lossless. We define the energy of the MND of a small

area indexed by (i,j) as:

),(),(
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2),(
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2 jiyx

ij
ryx

JNDyx

ij
ryx

MND δ⋅∑
∈

≡∑
∈

            (11)

where 
ij

r  is a small block (typically 8 by 8 pixels), ),( jiδ  is the distortion index for

this block. We can define our global human perceptual distortion measure based on

evaluating ),( jiδ  as follows:
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where ),( lkε  is the distortion measure of a medium block indexed by ),( lk . We

decompose the whole image into K by L non-overlapped medium blocks (
kl

R ); each

medium block is divided into M by N small blocks ( ),( lk
ij

r ), i.e.,

),(
,1;,1

lk
ij

r
NjMi

kl
R U

==
= . 

),( lkε  is defined as:




 ≤≤≤≤∈≡ NjMi
kl

Rlk
ij

rjilk 1,1 ,),( ),(median),( δε  (13)

The larger 
G

∆  is, the larger the subjective perceptual distortion is. Compared

with PSNR or MSE, 
G

∆  has the same convenience to describe the picture quality with

one quantitative value. However, 
G

∆  takes the human visual model into account,

therefore it can reflect subjective visual quality better than PSNR or MSE. It is well

accepted that the value of MSE or PSNR is meaningless to video/image subjective

evaluation and when two images are compressed, the comparison of their MSE or

PSNR values cannot give a creditable psychovisual conclusion. On the other hand, the

distortion 
G

∆  can be explained as “ this image is compressed at a scale of 
G

∆  times

the perceptually noticeable distortion”. Generally speaking, if one image is coded with

G
∆  larger than another one, the former’s subjective quality is higher. Due to these

considerations, we will use 
G

∆  as our index of performance for our video compression

system. PSNR will be calculated at the same time as reference.
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Chapter 3 Video Coding/Decoding System

Figure 3 and Figure 4 show the JND model based video encoder and decoder

respectively. In the video encoder, the input video sequence is decomposed into eleven

spatio-temporal frequency subbands in the 3-D wavelet analysis module. The Frame

Counter & Motion Detector controls the renewing of the JND profiles from frame

counter and drastic movement detection. The JND Model Generators estimate the

spatio-temporal JND profile from analyzing local video signals and the distortion

allocation algorithm that determines the JND profile for each subband. The Perceptually

Tuned Quantizer implements quantization for the wavelet coefficients in each subbands

according to their JND profiles. The spatial LLLL temporal L subband will be encoded

by DPCM. Then the data from all subbands goes through the Slicer and Arithmetic

Coding part to do slicing and entropy coding. Afterward we get compressed video

signals in 11 bit streams. These bit streams are fed into the Unequal Error Protection

Channel Coder and an error protection indication from JND Model Generator is also

given to the channel coder. These modules will be discussed subsequently.

In the decoder, there are Arithmetic Decoding and Merging, Error Detection,

Error Concealment, Inverse Quantization and 3D Wavelet Synthesis modules. The

Arithmetic Decoding and Merging part decodes the bit streams back to slices of wavelet

coefficients, and gives them appropriate arrangements in the corresponding subbands.

CRC coding alarms the Error Detector for bit errors. The latter’s output information

about the location of error helps the Error Concealment Module to diminish the effects

of bad data from fault-causing noisy channel. Inverse Quantization and 3D Wavelet
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Synthesis parts implement the inverse operation of the quantization and 3D wavelet

decomposition in the video encoder. Finally the video signal is restored.

Figure 3 JND Based Video Encoder
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Figure 4 JND Based Video Decoder

3.1 3-D Wavelet Analysis

Wavelet multiresolution analysis techniques have been applied primarily to 1D

and 2D signals. These techniques project the signal onto a chain of embedded

approximation and detail spaces designed to represent the signal and its details at

various levels of resolution [29]. For practical purposes, the projection coefficients are

obtained using a discrete subband transform that employs a quadrature mirror filter pair

related to the type of wavelet used in the analysis. In conventional 2D wavelet

multiresolution analysis, the separable 2D approximation spaces are formed from the
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When extended to three dimensions, the multiresolution analysis is constructed from a

separable 3D analyzing, or “scaling”, function formed from the product of three

nonidentical 1D scaling functions, or two identical 1D spatial scaling functions and one

different 1D temporal scaling function. This brings a much richer set of orthonormal

basis vectors with which to represent 3D signals, and it produces filters that can be

easily tailored to more closely match the spatial and temporal frequency characteristics

of the 3D signal.

An )(2 ℜL  multiresolution analysis consists of a chain of closed, linear

“approximation” spaces jV  and a scaling function φ  which satisfy the following

properties for all )(2 ℜ∈ Lf .
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4) The set of functions },)2(2{ 2 ZnZjnxj
j

∈∈−φ  forms an orthonormal

basis for the approximation space jV .

As presented by Mallat, the purpose of multiresolution analysis is to create a

mathematical framework that facilitates the construction of a wavelet orthonormal basis

for the space for all finite energy signals )(2 ℜL . To this end, denote the orthogonal

complement of jV  in 1+jV  by jW  where

jjj WVV ⊕=+1
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and the symbol ⊕  indicates the direct sum. jW  is typically referred to as the jth detail

space, because it captures the difference in signal information between the

approximation spaces 1+jV  and jV .

Mallat has shown that one can create a mother wavelet )(xψ  such that the set of

functions })2(2{ 2 Znnxj
j

∈−ψ  forms an orthonormal basis for jW . The spaces jW ,

where Zj ∈ , are mutually orthogonal; thus, by the denseness property of the

multiresolution analysis, the set of scaled and dilated wavelets

},)2(2{ 2 ZnZjnxj
j

∈∈−ψ  forms an orthonormal basis for )(2 ℜL . The scaling

functions and the mother wavelet are related by the “two-scale” recursion relations

∑

∑
∞

−∞=

∞

−∞=

−=

−=

n
n

n
n

nxgx

nxhx

)2(2)(

)2(2)(

φψ

φφ
, (14)

where nh  and ng  are the coefficients of the QMF pair which is used to compute the

approximation and detail projection associated with jV  and jW  from the approximation

at the next higher scale 1+jV .

Approximation and detail signals are created by orthogonally projecting the

input signal  f  onto the appropriate approximation or detail space. Since each space is

spanned by an orthonormal basis set, the signal projection onto a given approximation

or detail space at the jth resolution, is equivalent to the sequence of projection

coefficients obtained by the inner product operations
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where nja ,  and njd ,  represent the jth approximation and detail coefficients respectively.

Figure 5 shows the block diagram of the heterogeneous 3D wavelet

decomposition.

Figure 5 Heterogeneous 3D Wavelet Decomposition
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In our video codec system, the wavelet transform performs decomposition of

video frames into a multi-resolution subband representation. Each pair of incoming

video frames is decomposed into 11 subbands as shown in Figure 6.

Figure 6 Subbands after 3D Wavelet Decomposition

We use the simple two-tap Haar filter, which essentially separates the signal into

temporal low frequency and high frequency parts. Then, the low frequency part is

decomposed for two levels with the spatial 2-D wavelet decomposition, while the high

frequency part is decomposed for one level. The Antonini (7,9)-filter [21] is used here.

The Haar and Antonini filters work together to achieve a satisfying balance between

complexity and performance.

The coefficients for the Antonini (7,9) wavelet filter are:

For the LPF, the nh  are given by {0.0378284555, 0.0238494650, 0.1106244044,

0.3774028556, 0.852698679, 0.3774028556, 0.1106244044, 0.0238494650,

0.0378284555}.

For the HPF, the ng  are given by {0.0645388826, 0.0406894176,

0.4180922732, 0.788485616, 0.4180922732, 0.0406894176, 0.0645388826}.
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3.2 Frame Counting & Motion Detection

The computation of the JND model is resource consuming for the real-time

video system. Even if it is implemented with dedicated hardware, the reconstruction of

the JND profile for each pair of incoming video frames is expensive and unnecessary.

The Frame Counter & Motion Detector is designed to control the renew process of the

JND. The frame counter is used to count the number of frames being coded. After a

certain number of frames (typically 10 or 20 frames) have been coded with the current

JND model, this model is refreshed with the updated signal. Our assumption is that the

scene in frames remains almost the same so the original JND model becomes effective

before the update.

If, however, drastic movement or scene cut happens, the scene changes greatly.

So the original JND has to be refreshed right away to follow the change. This is why a

motion detector is necessary.

In our system, a simple motion detection scheme is adopted at the current time

and stage of development. It considers two factors relative to picture contents change,

which are scene cut and drastic movement. Initially, after the 3D wavelet

decomposition, the energy in the spatial-LLLL temporal-L subband (i.e. subband 0 in

Figure 6) is calculated for each group of two frames and stored as oldΕ . It is then

compared with the new generated energy newΕ  for subband 0. If their difference exceeds

the threshold, we assume a scene cut has occurred.  That threshold can be obtained from

experiments. As for detecting drastic movement, the energy in the spatial-LL temporal-

H subband (i.e. subband 7 in Figure 6) is also calculated after the wavelet
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decomposition. If it exceeds a given threshold, a drastic motion is assumed to be

happening.

With each detection event from the Frame Counter & Motion Detector, the JND

model is reconstructed.

3.3 JND Model Generation

The JND provides each signal a threshold of visible distortion, below which

reconstruction errors are rendered imperceptible. In this part, the spatial-temporal JND

profile for each group of two frames in a video sequence and the JND profiles for

subbands are generated sequentially. The details are as described in Chapter 2.

Since the generation of the spatial-temporal JND profile for each frame requires

one previous frame as reference, when a video sequence is being coded, the encoder has

to assign the first frame a reference frame. In our implementation, the first frame in the

video sequence will use itself as reference to generate each renewed JND profile.

3.4 Perceptually Tuned Quantization

The perceptually tuned quantizer is the core of the source encoder. With the

JND profiles for each subband at hand, the most important task is to allocate the

available bits to certain coefficients obtained from the wavelet decomposition as

efficiently as possible.

The beauty of JND is that it provides a quantitative measure of the error

sensitivity threshold with spatial and frequency localization. In schemes using DCT like
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MPEG-2, the DCT coefficients are quantized using a quantization table that assigns

more bits to the more important lower frequency coefficients in one 8 by 8 block.

Although such a table is designed according to the HVS response based on

psychovisual theory and experiments, its wide use all over the whole picture brings

shortcomings, because different parts in a picture can have different visual importance

at different scenes. On the other hand of the quantization table based on JND, which can

adapt itself to local scenes results in less perceptual distortion.

At the beginning of our video coding, a parameter is requested for by the

encoder. It is the object global distortion index 
G

∆  that will control the overall video

quality during the coding procedure. The same symbol 
G

∆  is used here as the symbol

we used in Chapter 2 to indicate our new human perceptual distortion measure based on

JND, since these two have the same psychological meaning. Ideally, the coding

procedure controlled by the object global distortion index 
G

∆ = d will produce a

compressed video sequence whose average perceptual distortion index 
G

∆  value is d’

=f( d). This powerful functionality to control the compressed video quality ahead of

time makes our scheme so distinct from conventional video coding systems. In addition

the coding distortion is perceptually evenly distributed across the whole image, as our

scheme will show.

3.4.1 Uniform Quantization

A mid-rising uniform quantizer is used as our basic quantizer due to its

simplicity of error analysis and its sound performance under certain conditions for
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optimality [24]. First, a global distortion index 
G

∆  is given for the quantization

procedure. It usually ranges from 1.0 to 10.0, where 1.0 stands for just noticeable

distortion. Second, each subband is partitioned into non-overlapped blocks ( ),( lk
ij

r ).

These blocks are set up with the size of 8x8 or 16x16. For each block ),( lk
ij
r , the step

size of the mid-rising uniform quantizer is maximized under the condition that

quantization error energy is less than or equal to the MND energy in this block that has

the distortion index ),( jiδ equal to 
G

∆ , i.e.,
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(16)

where the energy of MND defined as (11), ),( yxw  is the wavelet coefficient, ),(ˆ yxw  is

the quantized wavelet coefficient, ),( lk
ij

τ  is the quantization step size of ),( lk
ij

r .

Therefore, one quantization table that leads to the uniform error energy

distribution over all subbands is set up for each subband. It is transmitted in the header

of the bit stream for this subband. If after quantization the proportion of zero signals in

a block is larger than 7/8 or 15/16, this block is assumed to be unimportant. Its stepsize

is recorded as 0, and in the decoder, all values in this block are recovered as 0’s. So the

coefficients in such an unimportant block need not be transmitted.
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When the bandwidth is dynamically assigned to this source encoder, 
G

∆  can be

kept constant to maintain the video quality at the same level. If the bandwidth is fixed,

i.e., the bit rate is limited for this source encoder, a bunch of 
G

∆  values should be tried

and the corresponding bit rates are compared with the available channel capacity. One

G
∆  value that provides proper bit rate will be chosen finally. And this procedure of

refreshing of the quantization table and 
G

∆  value choice is repeated when the Frame

Counter reaches a certain number or a drastic movement happens resulting to the need

to update the JND model.

3.4.2 Lloyd-Max Quantizer

An optimum mean square error quantizer is also tried in our scheme. This

quantizer minimizes the mean square error for a given number of quantization levels.

For a random variable u, the reconstruction levels ka  are calculated with [31]
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where )(upu  is the continuous probability density function of the random variable u,

and kt  is the transition level

2

)( 1++
= kk

k

aa
t . (18)

To design an appropriate quantizer, the distribution of the subband samples

needs to be known. It has been suggested that the probability density function of the
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subband values and their prediction errors is Laplacian [32]. Although more accurate

probability distribution of the subband values, i.e., generalized Gaussian distribution,

has been suggested and its shape parameters estimation method is explored [33], the

resulting overhead for the calculation and transmission of the parameters is too large. So

we still use the Laplacian distribution as a reasonable approximation.

In the procedure of quantization, first, a global object distortion index 
G

∆  is

selected. Second, the variance of the wavelet coefficients for each subband is calculated.

And all the coefficients are normalized. Third, each subband is partitioned into blocks

( ),( lk
ij

r ) with size of 8 by 8 or 16 by 16. For each block ),( lk
ij
r , the levels of Lloyd-Max

quantizer are minimized under the condition that the quantization error energy is less

than or equal to the MND energy in this block that has the distortion index ),( jiδ  equal

to 
G

∆ , i.e.,
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where the energy of MND is defined as in equation (11), ),( yxw  is the wavelet

coefficient, n is the number of quantizer levels with n=3,5,…2N+1, 2N+1 is the

maximal number of quantization levels, m indicates the interval in which ),( yxw  is

located, and ),()( yxa n
m  is the quantized wavelet coefficient for a quantizer with n levels.

Here a look-up table is set up for the )(n
mt  and )(n

ma , since the wavelet coefficients for
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quantization have been normalized. The index of levels for the optimum quantizer is

transmitted in the header of the bit stream of this subband.

3.5 Arithmetic Coding and Slicing

The arithmetic coding scheme developed by Witten, Neal and Cleary [25] is

widely used in video codecs due to its superior performance. It easily accommodates

adaptive models and is computationally very efficient. The arithmetic coding scheme

provides efficient compression, however the decoding result of one coefficient depends

on the decoding result of the previous one because of the adaptive coding procedure

employed.

In the environment of a noisy channel, in order to prevent decoding errors from

spreading, a slicing algorithm is derived to truncate the whole subband into short bit

streams before arithmetic coding. The idea is to make each such small bit stream carry

the same amount of “distortion sensitivity ”. If we want to segment the subband 
l

S  into

I short bit streams, we can define I sets iG  of the point (x,y), such that for each set iG

( Ii ,...,1= ):
i

G
i
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So every time when such a short bit stream is being encoded, a new adaptive statistical

model is set up for it. Before the arithmetic encoded output data of these short bit

streams are merged into one bit stream, header and trailer symbols are added so they
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can be selected out from the received bit stream at the decoder side. The slicing

information is transmitted along with the data stream.

3.6 Perceptual Channel Coding

In our practical video transmission system over a satellite channel, rate

compatible punctured convolutional (RCPC) codes [27] are adopted. The advantage of

using RCPC codes is that the high rate codes are embedded into the lower rate codes of

the family and the same Viterbi decoder can be used for all codes of a family. Reed-

Solomon code and Ramsay interleaver plus RCPC is used to protect the data from

spatial LLLL temporal L subband. Cyclic redundancy check (CRC) codes are combined

with RCPC for other less significant subbands to assure acceptable video quality even

under bad channel conditions. [34]

In order to optimize the overall subjective video quality at a reasonable coding

cost, a rate allocation scheme based on JND distortion is proposed. We define the

average JND distortion of subband l (l=0,…,10) as follows:

∑
∈

=
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Syx

yxJND
l

W
l

Hl
D
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1

(21)

where 
l

S  is the set of pixels of subband l, 
l

H  and 
l

W  are height and weight of it

separately. 
l

D  is an indication of the robustness of 
l

S  to errors. The larger 
l

D is, the

more robust it is to errors, the higher coding rate we choose. Table 1 shows the 
l

D  for

the video sequence “ Calendar-Train”.
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L
l

D l
l

D L
l

D

0 4.5 4 7.5 8 27.6
1 7.6 5 7.5 9 27.6
2 7.6 6 8.7 10 42.8
3 8.8 7 7.4

Table 1 Average Distortion 
l

D  for Each Subband

From simulations we can see that 
l

D  divides 
l

S  into four categories, }
0

{S ,

}
7

,
5

,
4

,
3

,
2

,
1

{ SSSSSS , }
9

,
8

{ SS , }
10

{S , which is intuitive for RCPC unequal error

protection. According to their different importance, the subbands are assigned different

RCPC coding rates correspondingly.

3.7 Video Decoder and Error Concealment

In the video decoder, the functionality of most modules is straightforward. In the

error concealment, when errors are detected via CRC decoding in the slices in subband

l
S , these slices are discarded. If no error is detected, but there are some errors in the

received slice, the arithmetic decoder can detect some conflicts during decoding

sometimes, therefore can find some errors and discard this slice. In this case,

coefficients in this slice are retrieved from its DPCM reference if it belongs to the

spatio-LLLL temporal-L subband. And the coefficients are set to zero’s if the slice

belongs to other subbands of higher frequency. The error effect is trivial and will be

confined within the slice. In the worst case where errors are not detected, they will not

spread to the whole subband due to slicing.
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In the MPEG system, decoding error is also confined within slices. But the

corruption of data will destroy the whole slice thoroughly. In our wavelet-based system,

even if slices in one subband are corrupted, slices in other subbands will contribute to

the same area of the frame. And more flexible concealment schemes can be

implemented to improve the quality.



36

Chapter 4 Simulation Results

A C/C++ program was written to simulate the performance of our video codec

system. For simulation of a video system, C code is better than Matlab due to the large

volume of data and the consideration of speed. It is easy to be transplanted between PCs

and Sun Workstations to match the requirements of other application software.

After the input video is decomposed into 11 subbands, each of them is treated as

one object variable of class Subband. So they can be operated separately for fine

adjustment of parameters if necessary. The class Subband provides corresponding

methods to deal with the data in subbands, such as:

void Quantize( ); //uniform quantization

void adjustStepSize( ); //stepsize adjustment for each block from JND profile

void LQuantize( ); //optimum quantization for Laplacian distribution

void adjustLapQIndex( ); //index of levels adjustment for each block from JND

void AC_put_Qvalue( ); //arithmetic encoding

void AC_get_Qvalue( ); //arithmetic decoding

We use the video sequences of “Calendar-Train” and “Claire” downloaded from

http://www.ipl.rpi.edu. They are resized to 512x384 and 352x288 for easy

manipulation.
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4.1 Spatio-temporal JND Profiles and JND Profiles for Subbands

Original frame #1 of “Calendar-Train” and its JND subband profiles are shown

in Figure 7 and Figure 8. This JND model is calculated from the signal of this frame

and its reference frame. It reflects the visual just-noticeable distortion for video at a

speed of 30 frames/sec.

Figure 7 Frame #1 of "Calendar-Train"

From the JND subband profile we can tell the difference of the perceptual

importance of different subbands. The JND subband profile for spatial LLLL temporal

L subband (subband 0) has smaller values of JND (displayed as smaller gray scale

values in Figure 8) than other subbands. It means that the threshold of just noticeable

Figure 7-a Frame #1 of
"Calendar-Train"

Figure 7-b JND Subband
Profile for Subband 0 to 6
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distortion is lower, i.e., a small distortion in this subband will be captured by the human

visual system while it won’t be noticed if it happens in other subbands. We can also see

the perceptual importance of different parts in this frame. For example, the calendar

part, while comprised of many fine lines and digits, has smaller values of JND,

therefore the distortion there is more sensible to human eyes. However, human eyes

have more tolerance of the distortion at the moving train, whose body is almost evenly

dark.

Figure 8 JND Subband Profile for Subband 0 to 6
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4.2 Human Perceptual Distortion Measure vs. PSNR

Figure 9 Decoded Frame of "Claire",  
G

∆ =2.38, PSNR=30.80dB

Figure 10 Decoded Frame of "Claire", 
G

∆ =3.07, PSNR=30.15dB
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Figure 9 and Figure 10 show that our distortion measure (equation (12)) is

better than PSNR in the sense that it reflects the subjective visual quality of image/video

better. Figure 9 and Figure 10 show frame #1 in the decoded sequence of “Claire”.

The PSNR of these two frames are almost the same, but the 
G

∆  values indicate that the

distortion of Figure 9 is smaller than that of Figure 10 as we can tell from direct

observation (e.g. shoulder, hair and cheek).

4.3 Video Transmission over Satellite Channels

In Chapter 3 we discussed the design of a channel coding scheme using RCPC

code, Reed-Solomn Coding, CRC Code and Ramsay interleaver. OQPSK modulation is

in our simulation. The human vision model based rate allocation for RCPC is also

described. The average JND energy for each subband is calculated as shown in Table 2.

Because the difference between 
10

S  and 
9

,
8

SS  is relatively small, we finally assign 11

subbands into three error protection groups: }
0

{S , }
7

,
5

,
4

,
3

,
2

,
1

{ SSSSSS ,

}
10

,
9

,
8

{ SSS .

Index 4 5 6 7 8 9

Rate 8/18 8/16 8/14 8/12 8/10 8/9

Table 2 Rate Index of RCPC

Table 2 shows the coding rate index. The sequence of “Calendar-Train” is

coded and transmitted over AWGN channel at different SNR. Figure 11 and Figure 12

show the distortion index of the first 10 decoded frames with different protection
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schemes at different SNR (In Figure 11 and Figure 12, the legend 3dB (4,7,8) means

that the 
o

N
b

E /  is 3dB and we use channel coding rate 8/18 for subband 0, rate 8/12

for subband 1 to 7, and rate 8/10 for subband 8 to 10).

Figure 11 Distortion   of the Decoded Frames over Noisy Channel with

Object Distortion Index=1

In Figure 11 the original frames are encoded with the object distortion measure

G
∆ =1, which means the compression brings just noticeable distortion in the pictures.

Even if the channel is ideal, the distortion 
G

∆  goes larger gradually (
G

∆ =1.19 for

Frame 0 and 1.77 for Frame 5) in the following frames. The reason is that the JND

model was initially constructed from the first two frames and is not renewed for the

subsequent frames, which brings bias in the encoding. The larger the frame number is,

the more the bias accumulates.
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Figure 12  Distortion of the Decoded Frames over Noisy Channel with

Object Distortion Index=5

In Figure 12 the original frames are encoded with the object distortion measure

G
∆ =5, which means the perceptual distortion is 5 times of the just noticeable

distortion. Intuitively, one would accept that the distortion in Figure 11 should be less

than that in Figure 12; however this is not correct. The reason is that the slices

generated by the source encoder are longer when 
G

∆ =1 (finer step size is chosen and

more data is transmitted), and therefore the probability that a slice is corrupted by errors

increases as the number of bits in this slice increases at the same bit error rate (BER).

So if a video service requires better quality, the corresponding better channel protection

scheme should be chosen.

Figure 13 shows frame No. 3 in a recovered sequence of “Calendar-Train”.

Some areas corrupted by the channel noise can be observed.
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Figure 13 Decoded Frame #3 of “Calendar-Train” with  dB
o

N
b

E 3/ =   (4,7, 8)

Protection

4.4 Comparison with MPEG

The performance of our JND based video codec is compared with the MPEG-1

system. Due to the fidelity of our JND distortion index 
G

∆ , it will be used as the major

performance indicator. Because the focus of our system is the subjective quality, more

powerful compression schemes (e.g. zero-tree, motion estimation and run-length

coding) are not applied in our system. Therefore, our system will be compared with the

performance of I frames of MPEG.

There are two MPEG-1 encoders used in our experiments. The performance of

these two encoders, say, MPEG A and MPEG B, is a little bit different. MPEG-A has a
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higher compression ratio and MPEG-B has a higher PSNR at the same quantization

scale. But basically, their output bit streams all follow the MPEG-1 standard and the

key features of MPEG like DCT, zig-zag scanning, Huffman coding and run-length

coding are implemented in the encoder.

Figure 14 Performance Comparison between the MPEG Coder (MPEG A)

and the JND Based Coder

In Figure 14 the original sequence “Claire” is encoded according to MPEG-1 at

different scales. It gives different compression ratios for the I frames. The distortion

indexes of these I frames are calculated using spatial-temporal JND profiles. At the

same perceptual distortion level, the JND based encoder provides higher compression

ratio than the MPEG-1 encoder for I frames. It also turns out that the subjective video

quality of JND based compression is better than the subjective quality of I frames from

MPEG-1 at the same compression ratio.

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
15

20

25

30

35

40

45

Distortion index

C
om

pr
es

si
on

 r
at

io

MPEG coder     
JND Based Coder



45

Figure 15 “Claire” from the JND based coder, 
G

∆ =0.85, PSNR=36.3dB,

compression ratio=27.0:1

Figure 16 “Claire” I frame from the MPEG-1 coder, 
G

∆ =1.3, PSNR=37.5dB,

compression ratio=26.7:1
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Generally, the PSNR of decompressed frames from the MPEG-1 coder is 1-2 dB

larger than that from the JND based coder at the same compression ratio. This is a

natural result for the JND based compression scheme. Since with the consideration of

JND profile, the irrelevant information for perception is removed, it renders more

compression at the same perceptual quality. Ant it renders more numerical error which

means less PSNR at the same compression ratio, while keeping the subjective quality

superior.

Figure 15 and Figure 16 show the decompressed “Claire” of the JND based

coder and the MPEG-1 coder (MPEG A). The compression ratio is almost the same.

MPEG-1 provides better PSNR and the JND based coder provides better 
G

∆ . From

direct observation we can tell that the subjective quality of Figure 15 is better than that

of Figure 16.

Figure 17 and Figure 18 show the decompressed “Claire” of the JND base

coder and MPEG-1 coder (MPEG B). At a higher compression ratio (35:1), their

distortion can be seen clearly. But it is proper for us to describe the characteristics of

our JND based encoder. The MPEG-1 encoder keeps the quality of the contour of her

body, the texture of her hair, and even the glare on her ear ring, while it brings smear to

the lady’s face, which is the focus of a viewer. The JND based coder assigns the

distortion mainly to the moving edges of the body, the moving mouth, and the texture of

hair, while it makes the face seem more comfortable. That is the objective of our

perceptual optimal coding.
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Figure 17 "Claire" from the JND based coder, PSNR=34.5dB, CR is 35.0:1

Figure 18 "Claire" from the MPEG-1 coder, PSNR=37.6dB, CR is 35.5:1
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The video sequence “Calendar-Train” is more difficult to compress due to the

complex contents of this sequence. The performance of the JND based coder is very

close to that of the MPEG-1 coder on I frames. Figure 19 and Figure 20 show the

result.

Figure 19
“Calendar-Train”
from the JND based
encoder, 

G
∆ =3.03,

PSNR=32.6dB,
compression ratio
8.93:1

Figure 20
“Calendar-Train”
from the MPEG-1
encoder
(quantization
scale=7), 

G
∆ =3.11,

PSNR=34.0dB,
compression ratio
9.06:1
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4.5 Quantization Schemes Comparison

The performance of uniform quantization and mixed optimum quantization for

Laplacian distribution is shown in Figure 21. Here the mixed optimum quantizer

implements optimum quantization for subbands 4,5,6,7 and uniform quantization for

subbands 0,1,2,3,8,9,10. This scheme is based on experimental adjustment for getting

the best performance. But as shown in Figure 21, the optimum quantization is not better

than the uniform quantization, which is contrary to our expectation. It can be explained

by the observation that the application of entropy coding following quantization

diminishes the benefits of bit-constrained optimal quantization. Further research leads

to the topic of entropy-constrained quantization. In our other simulation experiments,

actually uniform quantization is adopted.

Figure 21 Performance Comparison between Uniform Quantization and Mixed
Optimum Quantization
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Chapter 5 CONDITIONAL ACCESS WITH ARITHMETIC CODING

The conditional access sub-system is being deployed extensively to follow the

rapid expansion of the commercial broadcasting industry. It is used to control which

customer can get particular program services. Particular programs are only accessible to

customers who have satisfied prepayment required.

Current digital broadcasting systems, e.g., DVB, uses a scrambler unit to

implement encryption [35]. The bit stream out of the MPEG-2 encoder/multiplexer is

fed into the scrambler unit along with the scrambler key, called the Control Word (CW).

The CWs are sent to the receiver in encrypted form as an entitlement control message

(ECM). The CA subsystem in the receiver will decrypt the control word only when

authorized to do so; that authority is sent to the receiver in the form of an entitlement

management message (EMM). The subscribers’ information necessary for authority is

maintained in the RSMS-TAM (Resource and Subscriber Management System –

Transmitter Access Management) unit. Scrambling is performed with an ASIC due to

the high bit rate.

The benefits of applying data compression prior to transmission are well known

and widely exploited. In situations where both data compression and data encryption are

desired, such as in commercial video broadcasting, the system will be quite simplified if

we combine these two techniques efficiently. The idea of using data compression

schemes for encryption dates back to 13th century. After the suggestion of Huffman

coding, Fraenkel and Klein [36] have shown that the problem of finding the encoding

rule given both a sample of the source and the corresponding sample of the encoded file

is NP-complete. Gillman et al. [37] have discussed the information-theoretic
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impossibility of cryptanalyzing a Huffman code. Witten and Cleary [38] initially

suggest the idea of combining data compression together with encryption using adaptive

arithmetic coding. In their scheme, the key of the cryptosystem is adopted as the starting

point of the model, i.e., taking the encryption key as a specific starting probability

distribution for the symbols in the adaptive arithmetic coding model. Boyd [40] gives

cryptanalysis for this scheme with the acclamation that there exists an order preserving

property that allows a known plaintext attack in the case of a binary alphabet.

Since entropy coding is the indispensable part in all practical video compression

systems, in this chapter, we investigate the problem of realizing scrambling by utilizing

the cryptographic properties of arithmetic coding. A new scheme of low cost and

reliable conditional access is the result.

5.1 Introduction to Arithmetic Coding

Theoretically, arithmetic coding encodes a message as a number in the unit

interval [0,1]. Unlike most schemes, including Huffman Coding, there is no specific

code word defined for any specific symbol, but how each symbol is encoded depends,

in general, on the previous symbols of the string. For the source sequence xn, let us

denote its probability mass function as p(xn) and its cumulative distribution function as

F(xn). We can use a number in the interval (F(xn)-p(xn), F(xn)] as the code for xn. For

example, expressing F(xn) to an accuracy of -log p(xn) will give us a uniquely

decodable code for the source [39]. However this is equal to the entropy of the message

encoded, so that by Shannon’s theory we have achieved the theoretical bound. There are

two reasons why the theoretical bound cannot usually be achieved in practice [40]:
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(1) For a message of unbounded length, arithmetic of unbounded precision is

required for maintaining the value of the current interval. In practice this is overcome

by scaling procedures which add to the average encoded word length by decreasing the

size of the actual interval calculated.

(2) The decoding is not unique unless the length of the message is known, since

a single point may represent any interval of which it is a member. Without knowledge

of the message length, decoding can proceed indefinitely. This may be overcome in

practice either by sending a length indicator or by using an end-of-message symbol.

Both of these add overheads to the encoding.

In the sequential encoding procedure, each symbol in the message is assigned a

half-open subinterval of the unit interval of length equal to its probability. We call this

the coding interval for that symbol. As encoding proceeds a nesting of subintervals is

defined. Each successive subinterval is defined by reducing the previous subinterval in

proportion to the length of the current symbol’s coding interval. This process continues

until all symbols have been encoded.

In some cases that a precise probability distribution for the source is unavailable,

a dynamical procedure of updating the symbol frequency model, which renders removal

of the redundancy quite efficiently, will be used to adapt to the source. This is the basic

idea of adaptive arithmetic coding.

5.2 Dependency of Arithmetic Coding

In arithmetic coding, the source sequence xn is represented by its cumulative

distribution function F(xn). The encoding output of the current symbol depends on the
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previous one due to the tree-structured encoding procedure. So basically, it is a

polyalphabetic cryptosystem. With the knowledge of a source symbol frequency model,

the decoder restores the source symbol one by one with successive dependency. We will

show this dependency with the following examples. Due to the popularity of the

arithmetic coding implementation in C of Witten et al. [25], we will base our discussion

on it. In this implementation, a binary bit stream is obtained as the encoding output.

Example 1:

We assume the source symbol frequency model is 







4.03.03.0

210
, which

indicates that Prob(symbol=0) is 0.3, Prob(symbol=1) is 0.3, Prob(symbol=2) is 0.4.

The source sequence for AC encoding is

1 1 1 2 0 2 0 1 0 1 0 1 2 2 1 0 0 2 1 0

The encoded binary bit stream is

10010000 10010001 01000110 11100100 11 (34 bits)

Note: Here the frequency model doesn’t match the distribution of source sequence. But

it only decreases the compression ratio and doesn’t change the characteristics of AC.

If the third symbol 1 is replaced by 2 and 0 respectively, the encoder will give

out the corresponding binary bit stream

10001000 00011000 10011011 01000101 1 (33 bits)

and

10010111 01111010 11010100 01100011 00 (34 bits)

Only a few bits in the front are the same in these three cases, and the numbers of

output bits are also different, i.e., the change of the previous symbol changes the

encoding of the following symbols completely.
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The loss of source symbol also diversifies the encoding of the following

symbols. If the sequence of source symbols is

1 1 2 0 2 0 1 0 1 0 1 2 2 1 0 0 2 1 0

(with the first symbol lost), it’s encoded to

10001100 10010000 10000101 01101111 (32 bits)

Example 2:

We assume the same symbol frequency model as that in the previous case. The

sequence of symbols for encoding is

1 2 2 0 2 0 1 0 1 0 1 2 2 1 0 0 2 1 0 1

The encoding output is

01110000 01010011 10110001 11110010 01 (34 bits)

Suppose there is one bit (7th bit) error in the bit stream, which turns it into

01110010 01010011 10110001 11110010 01.

Then the decoded symbol sequence is

1 2 2 0 0 1 0 0 2 2 1 0 2 0 2 2 2 0 2 0

The symbols after the 3rd one are totally different from the original symbols.

If the decoder erroneously locates the start bit position in the bit stream, the

following symbols cannot be decoded correctly also, since in both cases the decoding

path in the tree structure is misled.

Input symbol sequence:

1 2 2 0 2 0 1 0 1 0 1 2 2 1 0 0 2 1 0 1

Output bit stream after encoding:

01110000 01010011 10110001 11110010 01 (34 bits)
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1 bit left shift:

11100000 10100111 01100011 11100100 1

Output symbol sequence after decoding:

0 1 1 0 2 0 1 2 2 2 2 1 1 2 0 1 2 1 2 1

1 bit right shift:

00111000 00101001 11011000 11111001 001

Output symbol sequence after decoding:

2 1 1 2 0 2 0 2 1 2 0 0 1 0 2 1 2 1 1 2

From these examples we can see that even with a fixed frequency model, the

correctness of encoding/decoding of the previous symbol dominantly decides the

correctness of the following one.

5.3 Conditional Access with Arithmetic Coding

Because the precise location of the start bit of an AC encoded bit stream is

uniquely important, we propose a conditional access sub-system based on this property

and we will basically identify the start bit locations of the bit streams to our scrambler

key κ.

First, the data frame which will be transmitted is broken into slices {s1, s2, …

sM}. The locations of breaking points are decided by a randomly generated vector v.

This vector v is updated after a short time interval. Each slice is AC encoded

respectively into bit stream {b1, b2, … bM}. Then, these bit streams are concatenated

into one bit stream btotal. We assign function l(b) to represent the length of bit stream b.
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So the value ∑
−

=

1

1

)(
i

k

l kb  determines the start bit positions of bi, i=1, 2, …M, in btotal. Only

the values of l(bi) (i.e. the scrambler key κ) are encrypted into ECM using any available

encryption algorithm, and inserted into the header of this data frame and transmitted.

This is shown in Figure 22.

Figure 22 Arithmetic Coding Based Conditional Access Sub-system

As an example of its application, let us implement this scheme in a video

broadcasting system adopting subband coding. The system is shown in Figure 23. The

input video is decomposed into several subbands using wavelets. The wavelet

coefficients in the lowest frequency subband (LFS) are encoded with DPCM before

quantization. Since this subband contains the most important information, the

encryption of this part is enough for video broadcasting (only the sparse edges and

impulses in the high frequency subbands have no meaning to the program viewers). So

LFS is fed into our CA sub-system. And the other subbands of high frequency (HFS)

are simply sliced at fixed locations and arithmetic encoded. Slicing here has two

functions: (1) randomly breaking the LFS into slices to generate the scrambler key κ;
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(2) determinedly slicing the HFS and doing arithmetic coding for each slice to confine

the propagation of error due to the noisy channel within short data units, i.e., slices.

For the illegal user, cryptanalysis of  such a bit stream will be almost

computationally impossible in the broadcasting case, even if the only thing unknown to

him is the l(bi) values. Let’s assume that the frame size as 352x288. If each frame is

wavelet decomposed in 2 levels, the most important subband LLLL (LFS), which

actually needs encryption, has the size of 88x72. These coefficients are quantized and

organized into 8x8 non-overlapped blocks. So we have 11x9 blocks totally. Suppose

these 99 blocks are broken into 11 slices for AC randomly as shown in Figure 24.
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There will be 





10

98
= 13104.1 ×  schemes to choose. Only if the illegal user decides these

slice lengths in the procedure of decoding, he can know when he has got enough

symbols for the current slice, and he should stop the current AC decoding process and

start a new procedure for the next slice. But the large amount of possibilities in deciding

slice locations eliminates the feasibility of the method of “making mistakes and trying”,

i.e., the key space is large enough to stop the real-time decryption of the data in

commercial broadcasting.

Figure 24 Slicing of Subband

The real conditional access scheme will certainly be made more complicated for

the illegal user. First and most important, an adaptive source symbol frequency model

will be used. No fixed source symbol frequency model is available and the frequency

model is dynamically updated along with the coding procedure. Thus the AC encoding /

decoding of the symbol depends more tightly on the previous ones. Even if the illegal

user gets the correct start position of bi, i=1,2,…,M, he cannot decode it without

knowing the NoS (number of symbols), which is vital for setting up the adaptive model

and variable in different slices. And this NoS will also be encrypted and transmitted in

the frame header. For the wavelet coefficients in the video coding system, the data

           Slice i

8x8
Block
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range differs frame by frame, so the illegal user cannot know it a priori. Example 3

shows the effect of NoS.

Example 3:

The symbol sequence for adaptive AC encoding is

1 2 2 0 2 0 1 0 1 0 1 2 2 1 0 0 2 1 0 1

If we adaptively encode with NoS of 3, and decode with NoS of 4, the decoded output

symbols are

2 2 2 0 2 0 3 0 0 0 3 0 1 0 3 0 3 2 1 2

which turns out to be a total loss.

Second, the start position of b1 in btotal is variable. Stuffing bits with random

length is added ahead of it, and the length of stuffing bits is encrypted along with the

scrambler key κ.

The third trick played in a practical CA sub-system is that some slices will be

picked out randomly for secondary encryption. The mingling of encrypted and

unencrypted slices brings more difficulties to the breaking of the arithmetic code.

Fourth, because of the low computation load for scrambling, we can adapt more

complicated encryption algorithms for scrambler keys at will and alternate them at

different time intervals (with index given before the change).

Taking advantage of the cryptographic properties of arithmetic coding, we

considerably decrease the amount of data that need to be processed for scrambling. To

compare with the current CA sub-systems, we list the advantages of our scheme as

follows: With relative small amount of information in the frame headers for encryption,

the computational load of the encryption unit is light. A low cost processor can afford
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the task. And the FIFO, timing unit, transfer stream mux/demux unit in the traditional

conditional access system can be simplified considerably. The encryption algorithm

used to protect the scrambler key information is independent from this scheme. So this

system is flexible and more sophisticated algorithms can be easily designed and

implemented. Furthermore, since arithmetic coding can be looked as the existing

module for compression in a digital video broadcasting system, and breaking the data

into slices is naturally necessary to constrain the propagation of error from noisy

channels, there is no requirement for the cost of extra devices.

5.4 Summary

Arithmetic coding is a powerful entropy coding scheme for data compression. It

is a promising replacement to Huffman coding in video broadcasting systems because

of its superior performance. Our scheme combines it with the conditional access sub-

system to provide encryption solution at low cost. The illegal user who tries to break

that AC based conditional access system faces these problems: (1) The positions of

slices {b1, b2, … bM} in the concatenated bit stream are unknown. So they cannot be

picked out for decoding. (2) The number of symbols in the adaptive source symbol

frequency model is unknown. So it brings ambiguity in decoding. (3) Certain bi,

i=1,2,…,M, in the concatenated bit stream are encrypted with probability p<1. Such a

mixture of cipherdata and plaindata brings more difficulties to cryptanalysis.

 According to Shannon’s theory on secrecy systems [41], the strength of a

cryptosystem is inversely proportional to the source redundancy. Arithmetic coding
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diminishes the information redundancy efficiently, so the random appearance of its

output bit stream brings a good performance for encryption purposes.
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Chapter 6 CONCLUSIONS AND OPEN ISSUES

6.1 Video Codec with JND

In this thesis, we explored the application of a human visual model in video

compression, channel coding, error concealment and subjective quality measurement.

The 3-D subband video coding scheme is optimized by exploiting the psychovisual

properties of the human visual system, so that high perceptual quality of the compressed

video can be maintained at a reasonable bit rate. In order to reach the optimality where

the coding error is invisible or minimally noticeable at a given viewing distance, the

human visual model of JND/MND profiles in subbands are calculated.  This model

renders a perceptually optimal procedure to quantize the wavelet coefficients in these

subbands. The estimation of JND profiles is performed in the spatial domain through

analyzing local properties of the video signals. Then in the analysis, in the frequency

domain, the JND profile is accordingly decomposed by the modulation transfer function

of the HVS into subband profiles.

Taking advantage of the JND profiles, the source encoder has the global control

for subjective distortion of the compressed video quality through deciding the coding

parameter 
G

∆  at the beginning of the coding process. It provides a powerful

functionality to control the coding quality ahead of time, which is distinct from the

conventional compression schemes.

We developed a new perceptual distortion index based on the JND profile to

measure the subjective quality of the compressed video. With this numerical metric, we

can have a more general and meaningful judgement on the perceptual distortion of
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compression.  Its performance is compared with the traditional quality measure PSNR.

While PSNR can be used to compare the quality of several compression schemes for the

same image sequence, heuristically, our distortion index can be used to describe the

distortion extent for different image sequences.

In the scenario of a noisy channel, the functionality of error correction, detection

and concealment is jointly realized by the channel coding and source coding. A slicing

scheme based on JND is suggested to provide a reasonable information packaging

according to its importance to human perception, which is the final destination of video

information. The objective of the channel coding scheme selection is to approach the

compromise of high error protection ability and low bit rate. The energy of JND is

computed for each subband as guidance to the choice of RCPC coding rate. Those

subbands of more perceptual importance get better error protection.

6.2 Conditional Access using Arithmetic Coding

Arithmetic coding is an efficient entropy coding method. It operates by

dispensing with the requirement that each symbol translates into a fixed code. Instead,

the code for one symbol in the message merges into that for the next symbol, with no

identifiable boundary between. Arithmetic coding is guaranteed to transmit a message

in a number of bits that can be made arbitrarily close to its entropy with respect to the

model which is used. The probability distribution can change completely from one

symbol to another without incurring any penalty in compression efficiency.

The cryptographic property of arithmetic coding is valuable in the design of

conditional access sub-systems for commercial broadcasting. Without the knowledge of
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start position in the transmitted bit stream for decoding, it is very difficult for the

decoder to get synchronization. This contrasts with Huffman coding, where each

symbol has its unique corresponding code. Our conditional access sub-system is

constructed on the basis of arithmetic coding. The task of the scrambler unit is

simplified to break the data into slices. The protection of the information in these slices

is provided by the cryptographic feature of the arithmetic coding.

Due to the slicing method also used in our video source coding scheme for error

protection, detection and concealment as described previously, to make it consistent

with our conditional access sub-system, some variations are necessary. For example, the

generation of slicing positions in scrambler cannot be totally random. Taking the JND

profile into consideration, the slicing position is basically generated corresponding to

the distribution of JND energy as in Chapter 3. Then, for the scrambler, it will modify

the position to some extent according to its scrambling key. Since the JND profile is not

fixed during the video sequence, it is not easy to figure it out to compute the basis of

slicing position (The JND profile data is sliced also). This modification decreases the

strength of encryption, but the cryptanalysis for it remains complicated.

6.3 Video Codec with Motion Estimation

Our current video codec is based on subband coding and no motion estimation

scheme is used. Actually, lots of explorations have been done in this field. To improve

the compression performance, overlapped or multi-scale motion estimation can be

adopted along with subband coding. The JND profile can be used for the quantization of

the residues after motion compensation. The perceptual distortion energy is still
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assigned to proper coefficients in this way. Similar to the technology of P and B frame

in MPEG, the distortion energy assigned to these motion predicted frames can be larger

while the interframe coded frames have small perceptual distortion to provide a stable

basis for motion estimation.

6.4 Joint Source-Channel Coding Based on Human Visual Model

In Chapter 3, in order to constrain the error from noisy channels, we have

developed a heuristic way (equation (19)) to segment the data of each subband into

slices based on JND profiles. The length of the slice is proportional to its JND energy.

Arithmetic coding is applied on each slice with a new adaptive statistical model. As a

result, any corrupted slice carries almost the same amount of perceptual importance

measured using JND.

Our future work is to develop a route to optimize this slicing process and

combine it with the choice of RCPC coding rate for different subbands. Since the

statistical expectation of wavelet coefficients in each subbands is close to zero in video

coding, whenever a transmission error happens, the corresponding corrupted slice value

will be restored as zeros if no other correlative information is available. So the possible

error equals the wavelet coefficient value w(x,y). The distortion index for block ijr  is

defined as:
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∈
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where w(x,y) is the wavelet coefficient at (x,y), and ijr  is the block (usually 8 by 8

pixels). The distortion index ijδ  is also referred as relative distortion for block ijr .

At the beginning of the slicing procedure for the kth subband (k=0,1,…,K-1, and

K is the number of subbands), the amount of relative distortion in each slice is

determined as kξ . The slice is composed of successive blocks, such that in each slice

lkS ,  (l=1,2,…, kL , and kL  is the total number of slices in kth subband), heuristically,

there holds

∑
∈

≅

lkij Sr
ji

kji

,

),(

),( ξδ (23)

As a prior, we have the knowledge about the noisy channel, channel coding and

modulation in the form of bit error rate nmP ,  which corresponds to mth RCPC coding

scheme and channel SNR at ndB. We also assume each slice will be coded using

arithmetic coding into a bit stream with the length of c bits with small variance. Because

any slice with one bit error after channel decoding will not be correctly restored in

arithmetic decoding, the probability of the corruption of each slice in the kth subband is

calculated as:

c
nmk PP )1(1 ,−−= (24)

The relative distortion for the kth subband is calculated as

kkkk PL ξ=Ξ (25)

The relative distortion for the whole image is

∑
−

=

Ξ=Ξ
1

0

*
K

k
kkω (26)
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where K is the number of subbands and kω  the perceptual weight of the kth subband, as

defined in equation (9).

Equations (22 ) to (26) show the relationship between the global relative

distortion of the video and the RCPC coding schemes. Through the adoption of different

RCPC coding rate for different subbands, we get channel coding schemes

corresponding to certain relative distortion indexes, which reflect the video quality

perceptually. This leads to a reasonable control over the channel coding schemes to

render the best available video quality, i.e. when the transmission system knows the

channel SNR, it can configure the RCPC coding rates for different subbands through a

look-up-table, and gets the least relative distortion on video quality. Since the distortion

based on the human visual model is assigned to source coding through the selection of

quantization stepsize and to the channel coding through the selection of RCPC coding

rate, we can adjust the distribution jointly. Essentially, the whole system realizes the

joint source-channel coding.
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