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ABSTRACT
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In this thesis, risk-sensitive estimation for Hidden Markov Models is studied

from a dynamical systems point of view. We show that risk-sensitive estimators

belong to a broader class of product estimators in which risk-sensitivity will be

shown to be related to certain scaling functions. The product structure and the

scaling functions perspective give us new insights into the underlying mechanism of

risk-sensitive estimation. For the first time, in a series of theorems and examples,

we relate risk-sensitivity to the dynamics of the underlying process and expose

relations among the transition probabilities, risk-sensitivity and the decision re-

gions. We introduce the risk-sensitive Maximum A Posterior Probability (MAP)

criterion for HMM’s with discrete range observation. This criterion is the discrete



time finite dimensional version of the classic risk-sensitive estimation problem for

linear/quadratic partial observation case.

The risk-sensitive filters take into account the “higher order” moments of the

of the estimation error. In the context of risk-sensitive MAP for HMM’s, we clarify

and quantify the influence of risk-sensitivity on the behavior of the sample paths

of the estimator; the product structure representation will play an important role.
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Chapter 1

Introduction

The exponential (risk-sensitive) criterion of a quadratic function of the state and

control for full state control was first proposed by Jacobson [5]. Whittle [15]

produced the controller for the linear/quadratic partial observation case which re-

quired a state estimator separated from the control policy in a fashion analogous

to the policy separation for the partial observation in the risk-neutral case. Speyer

[9] treated the estimation problem for the linear/quadratic partial observation case

and showed that a linear estimator is optimal among all non-linear and linear esti-

mators. The non-linear discrete-time stochastic problem for the partially observed

control problem was solved by a change of measure technique [7]. This so called

reference probability approach was later used by Dey and Moore [10] to solve an

estimation problem for a partially observed Markov chain or, as it is commonly

referred to in signal processing literature, a Hidden Markov Model (HMM).

In its essence, our work can be traced back to the Speyer’s paper [9] nearly a

decade ago and is related to the Dey-Moore filter [10]. We are also interested in

the estimation problem with the exponential criterion for HMM’s. However, we

have a different perspective; we view the estimator as a dynamical system whose
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dynamics are inherited from the Markov chain through the partial observation and

an optimization criterion. We are not only interested in the computation of the

optimal estimator for an HMM and its properties for exponential criterion, but

also in the qualitative analysis of its sample paths. Under perfect observation the

dynamics of the estimator revert back to the Markov chain itself.

We show that risk-sensitive estimators belong to the broader class of product

estimators in which risk-sensitivity will be shown to be related to certain scaling

functions. The product structure and the scaling perspective will give us new

insights into the underlying mechanism of risk-sensitive estimators. For the first

time, in a series of theorems and examples, we relate risk-sensitivity to the dy-

namics of the underlying process and show that elegant relations exist among the

transition probabilities, risk-sensitivity and the decision regions. Several problems

for future research will be suggested.

In this chapter we will give a broad view of what this thesis is about and how it

fits in the context of the existing literature. Next we will present a brief background

of the problem starting with Speyer’s linear/quadratic Gaussian problem.

1.1 Background

1.1.1 Speyer’s problem

Consider the following linear stochastic discrete-time system

Xt+1 = AXt+1 + wt;

Yt = HXt + vt,

where all variables take their values in Rn, the initial distribution of the state
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X0 is zero-mean unit variance and {wt, vt} is assumed to be zero-mean jointly

Gaussian independent random variables. The objective is to find X̂i i = 0, 1, ..., N

(measurable functions of the observations Y0, ...Yi ) such that the following criterion

is minimized

J = E[exp(θ
N∑

t=0

(Xt − X̂t)
TQT (Xt − X̂t)],

where θ is a constant scalar, Q is a positive semi-definite matrix and the expectation

is over all underlying random variables.

Speyer showed that the estimator which minimizes the above is linear but not

a conditional mean estimator such as the Kalman filter, i.e., the information state

of the estimator which condenses the sequence of past observations and determines

the value of the estimates is not the conditional mean. Speyer showed that the

value functions, i.e., the optimal value of the cost function J(N) for all values of

N , can be calculated by backward dynamic programming. From this backward

dynamic programming, the optimal estimates were determined. Speyer used ideas

developed earlier by Whittle [15] to simplify these calculations.

1.1.2 Reference probability method and Dey-Moore filter

The reference probability method or the Girsanov change of measure technique

was first used to simplify the calculations of the non-linear filtering problem for

continuous time stochastic processes. The basic idea, as Marcus puts it in [4], is

that of defining a reference probability measure such that under this new measure

the observation process is transformed into a “simpler” process. A version of Bayes

formula shows that the conditional expectation under the original measure can be

computed easily from the conditional expectation under the new measure.
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These methods were developed for a finite dimensional state space in [6] and

were used in [7][3][16][17]. In parallel development to the continuous case, a new

measure was introduced under which the process could be “simplified”.

In [10] this change of measure technique was applied to the risk-sensitive HMM’s

with continuous range observation. We will give a brief description of the problem

formulation and its solution.

The objective is to find an estimator X̂t of the state Xt such that X̂t is a

function of the observation up to t and minimizes

Jt = E[exp(θΨ0,t)],

where

Ψ0,t = Ψ̂0,t−1 + 1/2(Xt − X̂t)
TQT (Xt − X̂t)

and

Ψ̂m,n := 1/2
n∑

i=m

(Xi − X̂i)
TQT (Xi − X̂i).

The difference with Speyer’s problem definition (aside from the obvious differ-

ence of discrete vs. continuous state space) is that the minimization is performed

over an incremented horizon. The estimates are defined recursively as we move

forward in time. This resembles the standard risk-neutral filtering for the Markov

chain where the filtering process does not involve dynamic programming and is

carried out forward in time. Dey-Moore filtering methodology is claimed, there-

fore, to be more “natural” than the Speyer’s approach [10]. We will see in this

thesis that both these filters are special cases of a more general filter and that both

are “natural” in different contexts. We will see that under certain conditions the

two coincide.
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Figure 1.1: The progressive nature of the metal cutting process is modeled at

several levels.

1.2 The objective and organization of the thesis

The theoretical development of this thesis was in part initiated by a basic question

posed by our collaborating colleagues from the University of Washington in Seattle

who were working on the problem of failure detection of certain cutting tools [1]

(See Figure 1.1). They had developed a left to right multi-scale HMM representing

the cutting process and were interested to know if a risk-sensitive estimator could

be constructed for which risk-sensitivity was “scale dependent” [2]. (In Figure 1.1,

the progressive nature of the metal cutting process is modeled at several levels.

Progressive wear is modeled as a left to right Markov process constrained to only

allow increasing levels of wear. The progress of a cutter through a single pass is

also modeled as a left to right process, composed of sequences of HMM states.)

In other words, they were interested in risk-sensitive estimators for which risk-

5



sensitivity is not controlled by a parameter but is a dynamic function of the

“scales”. This question is a special case of the broader theoretical problem of

constructing “state dependent” risk-sensitive estimators since the multi-scale rep-

resentation is nothing but the aggregation of the states of the Markov chain. After

constructing such state dependent risk-sensitive filters in the broader context of

product estimators and in attempting to understand their behavior, we realized

that an important problem had received little notice in the literature. How do the

underlying dynamics of the process interact with risk-sensitivity to determine the

dynamics of the estimated process? Perfect observation produces trivial results,

but partial observation produces non-trivial results.

We deliberately postponed the connection between the risk-sensitive and the

classic risk-neutral filters to this section. This connection is viewed differently in

this thesis from the existing literature.

It is often said that risk-sensitive filters take into account the “higher order”

moments of the of the estimation error. Roughly speaking, this follows from the

analytic property of the exponential ex =
∑∞

k=0 x
k/k! so that if Ψ stands for the

sum of the error functions over some time interval then

E[exp(θΨ] = E[1 + θΨ + (θ)2(Ψ)2/2 + ...].

Thus, higher order moments of the error are included in the minimization of the

expected cost. At the expense of the “mean error cost”, the variance and other

higher order moments are considered and minimized, reducing the “risk” of large

deviations and increasing our “confidence” in the estimator. The parameter θ > 0

controls the extent to which the higher order moments are included. In particular,

the first order approximation θ → 0 given by E[exp(θΨ] ∼= 1+ θEΨ indicates that
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the minimization of the sum criterion or the risk neutral problem is recovered as

the small risk limit of the exponential criterion. Thus, the exponential criterion is

a more general problem and includes the the risk-neutral one as a limiting result.1

There are also indications that risk-sensitive estimators have certain robustness

properties when uncertainties exist in the description of the underlying model.

The interested reader is referred to [20]-[23].

The exponential function, however, includes the higher order moments in a

special way, according to the expansion
∑∞

k=0 x
k/k!. This gives the exponential

function a unique algebraic property: the product of exponential components is

equal to the exponential of the sum of the exponents. What kind of estimators

can we construct which are in some sense a generalization of the sum criterion if

we begin with the algebraic property of the exponential?

In this thesis, we study these estimators in the context of HMM’s, and show

that once we begin with the product criterion, of the analytic property of the ex-

ponential, we only need the continuity to unity at zero and the strict monotonicity

of the exponential function. Then, the risk-sensitivity parameter is replaced by

certain scaling functions that scale the estimation metric along the sample paths

of the estimator. Also, as a special case, we will obtain the Dey-Moore filter with

the continuous range observation and quadratic criterion in Chapter 4.

In Chapter 3, we will consider discrete range observation with the Maximum

A Posterior Probability (MAP) criterion. Later on, we will see that this is the

“natural” criterion for the risk-sensitive HMM’s because of its symmetric charac-

teristics. In that chapter, the product estimators are studied in several examples.

1The case of θ < 0 corresponding to the risk-seeking estimators will not be considered in this

thesis.

7



We show that product estimators allow for dynamic risk-sensitivity and attempt to

understand the implication of this property. We study how risk-sensitivity param-

eter and the transition probabilities (which determine the underlying dynamics)

are coupled in the behavior of the estimator. We consider the multi-scale repre-

sentation of the Markov chains and how this representation is dependent on the

risk-sensitivity parameter. This, in turn, suggests a coupling of the risk-sensitivity

parameter, the underlying dynamics and the availability of information. These

examples will lead to several theorems and a proposition in Chapter 5.

In Chapter 5, only the exponential criterion is considered and the Speyer and

Dey-Moore filtering ideas are unified by the introduction of risk-sensitive filter

banks. The properties of the sample paths of these filter banks are described.

Several problems in that direction are suggested in Chapter 6.

In Chapter 2 (preliminaries), our notation and the Girsanov’s change of measure

for HMM’s for the zero delay model are established.
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Chapter 2

Preliminaries

In this chapter, our basic notation for the simplex representation of Markov chains

and the discrete-time Girsanov change of measure are established. We present a

zero delay model; i.e., as soon as a transition to a state is made, an observation

of that state becomes available. The sources for this chapter are [6][7][25]. For a

non-zero delay model, the reader is referred to [6].

In section 2.1, we begin with the simplex representation of Markov chains which

leads to a pair of discrete state space equations in (2.15). This is accomplished by

introducing the martingale increments (2.6) and (2.12) for the state and observa-

tion process of the Markov chain.

In section 2.2, the change of measure technique and the conditional Bayes

theorem (Theorem 2.2.4) are developed. The chapter ends with Lemma 2.2.10

where we prove the martingale increment property (2.64) under the new measure.

In proving Lemma 2.2.10, we show that the martingale property under the new

measure is directly inherited from the martingale property under the old.

9



2.1 The simplex representation of Markov chains

All time series below are defined on a common probability space (Ω,F ,P).Without

loss of generality, we assume that the discrete-time Markov process Xt takes its

values in the set of NX elements

SNX
= {e1, ..., eNX

},

where ei
′s are the unit vectors in RNX . (See Figure 2.1.)

Let F0
t = σ{X0, ..., Xt} be the σ-algebra generated by the sequence X0, ..., Xt

and Ft its completion. The Markov property implies

P (Xt+1 = ej|Ft) = P (Xt+1 = ej|Xt). (2.1)

Define the transition probability matrix A by

A = (aij), (2.2)

P (Xt+1 = ej |Xt = ei) = aij. (2.3)

Note that if X is a unit vector then

E[< X, ei >] =
NX∑
j=1

< ej , ei > P (X = ej) = P (X = ei). (2.4)

Therefore, we can write

E[Xt+1|Ft] = E[Xt+1|Xt] = ATXt, (2.5)

where AT denotes the transpose of A.

Definition 2.1.1

Zt+1 := Xt+1 −ATXt. (2.6)

10
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Figure 2.1: The simplex in three dimensions.

We have

Xt+1 = ATXt + Zt+1.

Next, we show that {Zt} is a sequence of martingale increments. First, note

that E[ATXt|Xt] = ATXt. It follows that

E[Zt+1|Ft] = E[Xt+1 −ATXt|Xt] = ATXt −ATXt = 0, (2.7)

which means {Zt} is a sequence of martingale increments.

Suppose that the observation space is finite dimensional and the observation

sequence is given by

Yt = c (Xt, wt+1),

where wt are i.i.d. random variables, with Zt and wt mutually independent. c(., .)

is a Borel measurable function. Let Yt be the completion of σ{Y0, ..., Yt}, and Gt

the completion of σ(X0, ...., Xt, Y1, ...Yt−1), the σ-algebra generated by the state

and observation processes up to time t and t-1 respectively. Clearly Gt ⊂ Gt+1...,

Yt ⊂ Yt+1... and so each σ-field forms an increasing family or a filteration. We say

a function f is Gt-measurable if it is a function of X0, ...., Xt, Y1, ...Yt−1.

11



The pair (Xt, Yt) is our basic example of a Hidden Markov Model or, as in

the control literature, a partially observed Markov chain. Both terminologies refer

to the indirect observation of the state. The observation is given by a zero delay

model, i.e., the observation Yt is gathered from the state Xt without delay. In

this thesis, we only consider the homogeneous HMM’s, i.e., the matrix A and the

function c(., .) do not depend on the time parameter t.

Suppose, without loss of generality, that c(., .) ∈ SNY
where SNY

= {e1, ..., eNY
}

and ei
′s are the unit vectors in RNY . We have

P (Yt = ej|X0, X1, ...Xt, Y0, ...Yt−1) = P (Yt = ej |Xt). (2.8)

Write

C = (cij) (2.9)

P (Yt = ej |Xt = ei) = cij ,
NY∑
i=1

cij = 1. (2.10)

Thus, we have

E[Yt|Xt] = CTXt. (2.11)

Define

Wt+1 := Yt − CTXt. (2.12)

First, note that E[CTXt|Xt] = CTXt. It follows that

E[Wt+1|Gt] = E[Yt − CTXt|Xt] = CTXt − CTXt = 0, (2.13)

so Wt is a Gt martingale increment and

Yt = CTXt −Wt+1.

Since wt are i.i.d. and mutually independent of Zt, the Wt are conditionally inde-

pendent of Zt given Gt.
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Definition 2.1.2 Y i
t :=< Yt, ei > and ct := (c1t , ..., c

NY
t )T where cit := E[Y i

t |Gt] =∑NX
j=1 cji < ej , Xt > . Then

ct = E[Yt|Gt] = CXt. (2.14)

NY∑
i=1

cit = 1
NY∑
i=1

Y i
t = 1

Lemma 2.1.3 Let diag(V ) be the diagonal matrix whose non-zero elements along

its diagonal are given by the elements of V, i.e., (diag(V ))ii = Zii. Then

Zt+1Zt+1
T = d iag(ATXt) + diag(Zt+1)−ATdiag(XtA)

− ATXtZt+1
T − Zt+1(ATXt)

T

and

< Zt+1 > := E[Zt+1(Zt+1)
T |Ft]

= E[Zt+1(Zt+1)
T |Xt]

= diag(ATXt)−ATdiag(Xt)A.

Proof:

By definition of Zt+1, we have

XtX
T
t = ATXt(ATXt)

T +ATXtZt+1
T + Zt+1(ATXt)

T + Zt+1(Zt+1)
T ,

but

XtX
T
t = diag(Xt) = diag(ATXt) + diag(Zt+1),

and the first equality follows. By the martingale increment property and condi-

tioning on Xt, we have

< Zt+1 >= E[Zt+1(Zt+1)
T |Xt] = diag(ATXt)−ATdiag(Xt)A.
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This finishes the proof of the lemma.

Similarly, we can show

< Wt+1 >:= E[Wt+1(Wt+1)
T |Gt] = diag(CTXt)− CTdiag(Xt)C.

In summary then, we have developed the following state space representation

of the Hidden Markov Models

Xt+1 = ATXt + Zt+1

Yt = CTXt +Wt+1

(2.15)

Xt ∈ SNX
, Yt ∈ SY, t = 0, 1, ...,

which we will refer to as the discrete state space representation. The matrix entries

satisfy
NX∑
i=1

aij = 1,
NY∑
i=1

cij = 1.

Zt and Wt are martingale increments satisfying

E[Zt+1|Ft] = 0, E[Wt+1|Gt] = 0,

< Zt+1 >:= E[Zt+1(Zt+1)
T |Xt] = diag(ATXt)−ATdiag(Xt)A.

< Wt+1 >:= E[Wt+1(Wt+1)
T |Gt] = diag(CTXt)− CTdiag(Xt)C.

Note that Usually a Hidden Markov Model is defined as a four tuple< X,Y,A, C >
where A is the transition matrix, Y = {1, 2, ..., NY} is the set of observations,

X = {1, 2, ..., NX} is the finite set of the states and C := [ci,j] is the NX ×
NY state/observation matrix with P (Yt = j|Xt = i) = ci,j. We can project

X = {1, 2, ..., NX} onto SNX
= {e1, ..., eNX

} and Y = {1, 2, ..., NY} onto SNY
=

{e1, ..., eNY
}. Thus, without loss of generality, we can work in RNX and RNY and

utilize the results of this chapter to carry out our computations.
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2.2 Change of measure.

Throughout this dissertation, we will use a discrete-time version of Girsanov’s

theorem. For an accessible treatment of the continuous time Girsanov’s theorem,

the reader is referred to [4] and [6]. A detailed development of the discrete-time

version will be given below. The basic idea is to introduce a new measure P † such

that under P † the observations have certain i.i.d. properties. The computations

of the conditional expectations and their optimization will be greatly simplified

under the new measure. The results are then projected back to the old measure

by an inverse change of measure technique.

Define

λl =
NY∏
i=1

(
1

NYc
i
l

)Y i
l , (2.16)

Λt =
t∏

l=0

λl. (2.17)

Note that in general, with U one of the unit vectors in RN , any real valued function

f(U) = (f1, ..., fN) can be written as

f(U) =
N∑

i=1

f(ei)X
i =

N∑
i=1

fiU
i f(ei) = fi :=< f, ei > . (2.18)

Furthermore, Y i
l = 1 for only one i at each l, and Y i

l = 0 otherwise, so that λt is

the product of unity terms and non-unity terms, so that by (2.18) for f = λt, we

can write

λt = λt(Yt) =
NY∑
i=1

Y i
t /(NYc

i
t).

Lemma 2.2.1 With the above definitions,

E[λt|Gt] = 1. (2.19)
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Proof:

By the above,

E[λt|Gt] = E[
NY∏
i=1

(
1

NYcit
)Y i

t |Gt] (2.20)

= E[
NY∑
i=1

1

NYc
i
t

Y i
t |Gt] (2.21)

=
NY∑
i=1

1

NYcit
E[ Y i

t |Gt] (2.22)

= 1/NY

NY∑
i=1

1

cit
cit = 1. (2.23)

Definition 2.2.2 For a sequence of σ-algebras G0,G1, ..., denote by
∨∞

l=1 Gl the

σ-algebra generated by their union.

Define a new measure P † on (Ω,
∨∞

l=1 Gt) by setting the restriction of the Radon-

Nikodym derivative dP †
dP

to the sigma algebra Gt+1 equal to Λt

dP †

dP
| Gt+1 = Λt. (2.24)

In the integral representation, this means

P †(B) =
∫

B
ΛtdP B ∈ Gt+1. (2.25)

That P † is a measure on (Ω,
∨∞

l=1 Gl) follows from Kolmogorov’s extension theorem

(Appendix A). First, recall that {Gl} is a nested family. To apply the theorem,

we must show that the family of distributions defined by the above integral is

compatible [25] or equivalently

Lemma 2.2.3

∫
B

ΛtdP =
∫

B
Λt−1dP B ∈ Gt. (2.26)

Proof:

16



Let IS be the indicator function of a set S. Then∫
B

ΛtdP = E[IBΛt] (2.27)

= E{E[IBΛt|Gt]} (2.28)

= E{IBΛt−1E[λt|Gt]} (2.29)

= E[IBΛt−1] =
∫

B
Λt−1dP. (2.30)

Also note that ∫
Ω

ΛtdP = E[Λt]

= E[Λ0] = E[λ0] = 1

which implies P † is a probability measure. The other conditions for applying

Kolmogorov’s extension theorem are easily verified.

Note that for any Gt measurable function f

E†[f ] =
∫
fdP † =

∫
f
dP †

dP
dP =

∫
fΛt−1dP = E[Λt−1f ]. (2.31)

An important observation is that the change of measure defined by

Λt+l =
dP †

dP
| Gt+1 ⊂ Gt+1+l (2.32)

(for ∀l ≥ 1) is equivalent to the above change of measure (l = 0) because of the

property
∫
B ΛtdP =

∫
B Λt−1dP B ∈ Gt. This does not violate the uniqueness clause

of the Radon-Nikodym theorem since we are viewing Gt+1 as a subset of Gt+l and as

such the Radon-Nikodym derivative on Gt+1 is Λt+l. The uniqueness clause requires

that the Radon-Nikodym derivative be measurable; and, for Λt+l to be measurable

with respect to Gt+1, we must set l = 0. This instructive result demonstrates that

the uniqueness clause of the theorem should be applied with care. In chapter 5,

for computational reasons, we will let l=1.

Next, we state and prove the Conditional Bayes Theorem:
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Theorem 2.2.4 Suppose P † and P are probability measures on a measurable

space (Ω,M) with dP †
dP

= Λ and P † absolutely continuous with respect to P .

Suppose G ⊂ M is a sub-sigma algebra. Then, if f is is any dP † integrable

random variable

E†[f |Gt] = ψ

where

ψ =


E[Λf |G]
E[Λ|G]

if E[Λ|G] > 0;

0 otherwise.

Proof:

Define ψ = E[Λf |G]/E[Λ|G] if E[Λ|G] > 0 and ψ = 0 otherwise. We will show

E†[f |Gt] = ψ. This is equivalent to proving
∫
AE

†[f |Gt]dP
† =

∫
A ψdP

† for every set

A ∈ G. Define G = {ω : E[Λ|G] = 0}, so G ∈ G. Then
∫
GE[Λ|G]dP = 0 =

∫
G ΛdP

and Λ ≥ 0 a.s. So, either P(G)=0 or the restriction of Λ to G is 0 a.s. In either

case, Λ = 0 a.s. on G. Let Gc = {ω : E[Λ|G] > 0}. Suppose A ∈ G, then A = B∪C
where B = A ∩Gc and C = A ∩G. Furthermore,

∫
A
E†[f |Gt]dP

† =
∫

A
fdP † =

∫
A
fΛdP

=
∫

B
fΛdP +

∫
C
fΛdP.

But, Λ = 0 a.s. on C ⊂ G, so

∫
C
fΛdP = 0 =

∫
C
ψdP †

by definition.

We have

∫
B
ψdP † =

∫
B

E[Λf |G]

E[Λ|G]
dP † (2.33)

= E†{IBE[Λf |G]

E[Λ|G]
} (2.34)

18



= E{ΛIBE[Λf |G]

E[Λ|G]
} (2.35)

= E{E{ΛIBE[Λf |G]

E[Λ|G]
|G}} (2.36)

= E{IBE[Λ|G]
E[Λf |G]

E[Λ|G]
} (2.37)

= E[IBE[Λf |G]] (2.38)

= E[IBΛf ]. (2.39)

We have proved ∫
B

ΛfdP =
∫

B
ψdP †

Thus,

∫
C

ΛfdP +
∫

B
ΛfdP =

∫
A

ΛfdP

=
∫

A
E†[f |G]dP † =

∫
A
ψdP †

and the theorem follows.

Definition 2.2.5 A sequence {ft} is said to be G adapted if each ft is Gt mea-

surable. We have the following result:

Lemma 2.2.6 If {ft} is a G adapted sequence of random variables, then

E†[ft|Yt−1] =
E[Λt−1f |Yt−1]

E[Λt−1|Yt−1]
(2.40)

We now state and prove an important independence property of the sequence

of the observations under the new measure.

Theorem 2.2.7 Under P †

P †(Y j
t = 1|Gt) = 1/NY. (2.41)

This implies that Yt is a sequence of i.i.d. random variables, each with a uniform

distribution 1/NY.
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Proof:

P †(Y j
t = 1|Gt) = E†[< Yt, ej > |Gt] (2.42)

=
E[Λt < Yt, ej > |Gt]

E[Λt|Gt]
(2.43)

=
Λt−1E[λt < Yt, ej > |Gt]

Λt−1E[λt|Gt]
(2.44)

= E[λt < Yt, ej > |Gt] (2.45)

= E[
NY∏
i=1

(
1

NYc
i
t

)Y i
t < Yt, ej > |Gt] (2.46)

= E[
NY∑
i=1

(
1

NYcit
)Y i

t Y
j
t |Gt] (2.47)

=
1

NYc
j
t

E[Y j
t |Gt] (2.48)

=
1

NYc
j
t

cjt = 1/NY = P †(Y j
t = 1), (2.49)

which is a quantity independent of Gt.

Observe that E†[Xt+1|Gt] = E[ΛtXt+1|Gt]/E[Λt|Gt] = E[λtXt+1|Gt] = ATXt so

that under the new measure P †, the process Xt remains a Markov chain with the

transition matrix A.

We now begin with a probability measure P † on (Ω,
∨∞

n=1 Gn) such that

1) The process {Xt} is a finite-state Markov chain with transition matrix A and

2) {Yt} is sequence of i.i.d. random variables and

P †(Y j
t = 1|Gt) = P †(Y j

t = 1) = 1/NY.

Suppose C = (cij) is a matrix such that cij > 0 and
∑NY

j=1 cij = 1.

We will construct a new measure P ∗ on (Ω,
∨∞

n=1 Gn) such that underP ∗, the discrete

state space representation still holds and E[Yt|Gt] = CTXt. We again write

ct := CTXt
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and cit :=< ct, ei > which implies

NY∑
j=1

cit = 1.

Write

λ̄l =
NY∏
i=1

(NYc
i
l)

Y i
l , (2.50)

and

Λ̄t =
t∏

l=0

λ̄l. (2.51)

Lemma 2.2.8 With the above definitions

E†[λ̄t|Gt] = 1. (2.52)

Proof:

E†[λ̄t|Gt] = E†[
NY∏
i=1

(NYc
i
t)

Y i
t |Gt]

= NY

NY∑
i=1

citP
†(Y i

t = 1|Gt)

= NY

NY∑
i=1

(cit)/NY =
NY∑
i=1

cit = 1.

Next, define P ∗ by

dp∗

dp†
| Gt+1 = Λ̄t. (2.53)

Once again, P ∗ exists by Kolmogorov’s extension theorem.

If two measures are absolutely continuous with respect to each other, the Radon-

Nikodym derivative of one is the inverse of the other. Therefore,

dP †

dP
| Gt+1 = Λt, (2.54)
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implies

dP

dP † | Gt+1 = 1/Λt = Λ̄t. (2.55)

Thus,

dP ∗

dP † | Gt+1 =
dP

dP † | Gt+1 = Λ̄t, (2.56)

which implies that for every set B ∈ Gt

P ∗(B) =
∫

B
Λ̄t−1dP

† = P †(B).

Therefore, P ∗ = P .

Lemma 2.2.9 Under P,

E[Yt|Gt] = CTXt, (2.57)

and

E†[Zt+1|Gt] = 0. (2.58)

Proof:

Using the conditional Bayes theorem,

P (Y j
t |Gt) = E[< Yt, ej > |Gt] (2.59)

=
E†[Λ̄t < Yt, ej > |Gt]

E†[Λ̄t|Gt]
(2.60)

=
E†[λ̄t < Yt, ej > |Gt]

E†[λ̄t|Gt]
(2.61)

= E†[
NY∏
i=1

(NYc
i
t)

Y i
t < Yt, ej > |Gt] (2.62)

= NYE
†[cjt < Yt, ej > |Gt] = cjt , (2.63)

and writing in the matrix form gives the desired result.
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Recall that under the new measure P †

E†[Xt+1|Gt] = ATXt.

Therefore,

E†[Zt+1|Gt] = E†[Xt+1 −ATXt|Gt]

= E†[Xt+1|Gt]−ATE†[Xt|Gt]

= ATXt −ATXt = 0.

Lemma 2.2.10 With the above definitions

E†[Zt+1|Yt] = 0 (2.64)

Proof:

E†[Zt+1|Yt] = E†[E†[Zt+1|Gt,Yt]|Yt]

We will show E†[Zt+1|Gt,Yt] = 0 :

E†[Zt+1|Gt,Yt] =
E[ΛtZt+1|Gt,Yt]

E[Λt|Gt,Yt]
(2.65)

=
E[ΛtXt+1|Gt,Yt]

E[Λt|Gt,Yt]
− E[ΛtATXt|Gt,Yt]

E[Λt|Gt,Yt]
(2.66)

=
ΛtE[Xt+1|Gt,Yt]

Λt
− ΛtATXt

Λt
(2.67)

= E[Xt+1|Gt,Yt]−ATXt (2.68)

= E[Xt+1|Gt]−ATXt (2.69)

= E[Zt+1|Gt] = 0. (2.70)

Therefore, (2.64) follows.
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Chapter 3

Product estimators and

structured risk-sensitivity

It is often said that risk-sensitive filters take into account the “higher order” mo-

ments of the estimation error. Roughly speaking, this follows from the analytic

property of the exponential ex =
∑∞

k=0 x
k/k! so that if Ψ stands for the sum of the

error functions over some interval of time then

E[exp(γΨ)] = E[1 + γΨ + (γ)2(Ψ)2/2 + ...].

Thus, at the expense of the mean error cost, the higher order moments are included

in the minimization of the expected cost, reducing the “risk” of large deviations

and increasing our “confidence” in the estimator. The parameter γ > 0 controls

the extent to which the higher order moments are included. In particular, the first

order approximation, γ → 0, E[exp(γΨ] ∼= 1 + γEΨ, indicates that the original

minimization of the sum criterion or the risk-neutral problem is recovered as the

small risk limit of the exponential criterion.

The exponential function, however, has the unique algebraic property of con-
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verting a sum into a product. What if we consider a product criterion in the first

place? In other words, what kind of estimators can we construct which are in

some sense a generalization of the ones resulting from applying the sum criterion,

if we begin with an estimation criterion based on the algebraic property of the

exponential?

In this chapter, we will consider HMM’s with discrete range observation and

the Maximum A Posterior Probability (MAP) criterion. Later on, we will see

that this is the “natural” criterion for the risk-sensitive HMM’s because of its

symmetric characteristics. The product estimators are introduced and studied

in several examples. We show that product estimators allow for dynamic risk-

sensitivity and attempt to understand the implications of this property. We study

how risk-sensitivity parameter and the transition probabilities (which determine

the underlying dynamics) are coupled in the behavior of the estimator. We consider

the multi-scale representation of Markov chains and how this representation is

dependent upon the risk-sensitivity parameter. This in turn suggests a coupling

of the risk-sensitivity parameter, the underlying dynamics and the availability of

information.

3.1 The MAP estimator and the sequential error

accumulation

Consider a sequence of finite dimensional random variables Xt and observations Yt

defined on the probability space (Ω,F ,P). The Maximum A Posteriori Probability

(MAP) estimator X̂t is a Borel measurable function of the observations up to Yt

denoted by Yt which satisfies for ω ∈ Ω
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X̂t(ω) = argminζ∈SNX
E[ρ(Xt − ζ)| Yt = Yt(ω)] t = 0, 1, ... (3.1)

where ρ(·, ·) is the discrete metric

ρ(Xt, ζ) =

 0 if Xt = ζ ;

1 otherwise,
(3.2)

and SNX
of dimension NX is the discrete range of Xt. In general, under mild

conditions, one can show that almost surely such a measurable function exists. The

usual definition of MAP as the argument with the highest probability given the

observation follows from the above [8]. Because of the linearity of the expectation,

MAP also results from the following additive cost minimization:

(X̂0, ..., X̂M)(ω) = argminζ0...ζN∈S M
NX

E[
M∑
t=0

ρ(Xi − ζt)| Yt = Yt(ω)], (3.3)

where S M
NX

is the product space and each X̂t is Yt measurable.

Thus, at each instant of time, our decision is not affected by our past or future

decisions. This makes the MAP estimation insensitive to the accumulation of

errors along sample paths. To see this, evaluate Xt and X̂t at some fixed value

of ω ∈ Ω to produce a sample path or a realization of the respective time series.

The sequence of decisions X̂t t = 0, 1, ...M partitions the sample space into

2M subsets according to a binary tree with the branching criterion Xt = X̂t or

Xt 6= X̂t. Each ω belongs to exactly to one of these subsets. Some sample paths

(See Figure 3.1) may end up on branches along which estimation errors accumulate

for long stretches of time. The following simple yet instructive example illuminates

the general case.

Consider a times series generated by a Markov chain depicted in Figure 3.2 with

a12 = 1/2 + ε, a13 = 1/2 − ε and a23 = a32 = 0. We assume that the initial state
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ω

 0X   = X     0 X   = X     0  0

X   = X    X   = X    X   = X    X   = X    1 1 1 1 1 1 1 1

Ω
X   = X     0  0 X   = X     0  0

 ω

Figure 3.1: The MAP estimation along the sample paths of a time series.

is known to be 1 and that states 2 and 3 produce exactly the same observation;

no useful observation is made. It is obvious that the MAP estimator will always

choose state 2 of the chain after a transition from state 1 occurs. In this case sate

3 is never chosen. As it was shown in the previous chapter, we can associate the

vertices of the unit simplex in R3 to the states of this Markov chain so that e1, e2

and e3 are associated with 1, 2 and 3 in that order. For t > 1 the following holds:

P (Xt+1 = e2|Xt = e2) = 1

P (Xt+1 = e3|Xt = e3) = 1.

Define St
2 := {w|Xt(ω) = e2} and St

3 := {w|Xt(ω) = e3}. Clearly for t > 1,

almost surely, St
2 = S2

2 := S2 , St
3 = S2

3 := S3 and St
2

⋃
St

3 = Ω. Thus, sample paths

associated with S3 are always estimated incorrectly while sample paths associated

with S2 are always estimated correctly.

Our aim is to develop an estimator that balances the objective of finding the

best estimate of the state in the sense of MAP at each instant of time, against

the conflicting objective of preventing sequential error accumulation along sample
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Figure 3.2: The MAP estimators sequential error accumulation.

paths. We shall develop a filter (generalized MAP or GMAP) that has the MAP

estimator as its limit in some sense (when the accumulation of errors are ignored)

and achieves this objective by a product cost structure that imposes higher costs

when errors accumulate. We will show that risk-sensitive MAP estimation is a

special case of GMAP.

3.2 Product estimators

Throughout this section and the subsequent ones, we will use the simplex repre-

sentation of the HMM’s developed in chapter 2.

Define X̂t as

X̂t(ω) = argminζ∈SNX
E[Γ0,t(ζ)| Yt = Yt(ω)] t = 0, 1, ... (3.4)

The cost function Γ0,t(ζ) is defined as

28



Γ0,t(ζ) = Γ̂0,t−1.gt(X̂0, ..., X̂t−1, ζ, Xt), (3.5)

where

Γ̂0,t−1 =
t−1∏
i=0

gi(X̂0, ..., X̂i, Xi). (3.6)

Each gi(ω) will determine an optimization or “cost” criterion at the time instant

t scaled by the factor Γ̂0,t−1(ω). In a sense, the product Γ̂0,t−1(ω) is a “bias”

which increases the estimation cost, at time t, for each sample path depending

on the error accumulation in that path up to that time. This discourages the

estimator to choose measurable functions of the observations that continue to

estimate incorrectly sample paths with higher error accumulation.

In other words, by an appropriate choice of each random variable gi(ω), the

product Γ̂0,t−1 contains a history of errors which have been made in the past along

each sample path. The more errors we make, the higher the value of the product

will be for that path. The product structure is not the only possible way to keep

track of the past errors but it will make the computation of X̂t recursive. Morever,

as we will show shortly, this product can be viewed as the dynamic generalization

of the estimator achieved by the exponentiation of the MAP estimator. Therefore,

we also solve the MAP risk-sensitive estimation problem as a special case of the

product filters.
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3.3 Generalized Maximum A Posteriori Proba-

bility estimator

Using the notation of chapter 2, define a new measure P † by setting the Radon-

Nikodym derivative equal to

dP

dP † | Gt+1 = Λ̄t,

Λ̄t =
t∏

l=1

λ̄l , λ̄l =
NY∏
i′=1

(NY Ci′
l )

Y i′
l ,

Ci′
t =

NX∑
j′=1

ci′j′ < ej′, Xt > .

We will need the following lemma [30]:

Lemma 3.3.1 Let (Ω,M, P ) be a probability space and let F1,F2, F3 be sub-

σ-algebras of M. Suppose also that F3 is independent of the σ-algebra F1
∨F2,

jointly generated by F1 and F2. Let f be measurable with respect to F1 then

E[f |F3,F2] = E[f |F2].

It can be shown, using Theorem 2.24, that under the new measure,

X̂t = argminζ∈SX
E†[Λ̄t

t−1∏
i=0

gi(X̂0, ..., X̂i, Xi).gt(X̂0, ..., X̂t−1, ζ, Xt)| Yt]. (3.7)

To solve (3.7), we first define the following information state:
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St := E†[Λ̄t−1

t−1∏
i=1

gi(X̂0, ..., X̂i, Xi). Xt| Yt−1]. (3.8)

Lemma 3.3.2 The information state can be computed according to

< St+1 , eh >=
NX∑
j=1

NY

NY∏
i′=1

(ci′j)
Y i′

t gt(X̂0, ..., X̂t, ej)ajh < St , ej > . (3.9)

Proof:

< St+1 , eh >= E†[Λ̄t

t∏
i=1

gi(X̂0, ..., X̂i, Xi) < Xt+1 , eh >| Yt]. (3.10)

But, Xt+1 = ATXt + Zt+1 and thus < Xt+1, eh >=< ATXt, eh > + < Zt+1, eh >.

Next, we will show that < Zt+1, eh > drops out of (3.10).

Let h = Λ̄t
∏t

i=1 gi(X̂0, ..., X̂i, Xi). Observe that

E†[h Zt+1|Yt] = E†[hE†[ Zt+1|Yt,Gt]|Yt],

but by (2.70), E†[ Zt+1|Yt,Gt] = 0. Thus,

E†[h Zt+1|Yt] = 0.

We can write

< St+1 , eh >

= E†[
NY∏
i′=1

(NYC
i′
t )

Y i′
t gt(X̂0, ..., X̂t, Xt) Λ̄t−1

t−1∏
i=0

gi(X̂0, ..., X̂i, Xi) < Xt, Aeh >|Yt]

=
NX∑
j=1

E†[
NY∏
i′=1

(NYC
i′
t )

Y i′
t gt(X̂0, ..., X̂t, Xt)Λ̄t−1ajh

t−1∏
i=0

gi(X̂0, ..., X̂i, Xi)< Xt, ej >|Yt]

=
NX∑
j=1

NY∏
i′=1

(NYci′j)
Y i′

t gt(X̂0, ..., X̂t, ej)ajh

· E†[Λ̄t−1

t−1∏
i=0

gi(X̂0, ..., X̂i, Xi)< Xt, ej >|Yt,Yt−1]. (3.11)

Applying Lemma 3.3.1 to (3.11) and by Theorem 2.2.7, (3.9) follows.
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Lemma 3.3.3 X̂t is calculated according to

X̂t = argminζ∈SX

NX∑
j=1

NY∏
i′=1

(NYci′j)
Y i′

t gt(X̂0, ..., X̂t−1, ζ, ej) < St , ej > (3.12)

Proof:

E†[Λ̄t

t−1∏
i=0

gi(X̂0, ..., X̂i, Xi).gt(X̂0, ..., X̂t−1, ζ, Xt)| Yt]

=E†[
NX∑
j=1

NY∏
i′=1

(NYC
i′
t )

Y i′
t gt(X̂0, ..., X̂t−1, ζ, Xt)Λ̄t−1

t−1∏
i=0

gi(X̂0, ..., X̂i, Xi) <Xt, ej>|Yt]

=
NX∑
j=1

NY∏
i′=1

(NYci′j)
Y i′

t gt(X̂0, ..., X̂t−1, ζ, ej)E
†[Λ̄t−1

t−1∏
i=0

gi(X̂0, ..., X̂i, Xi) <Xt, ej> |Yt]

=
NX∑
j=1

NY∏
i′=1

(NYci′j)
Y i′

t gt(X̂0, ..., X̂t−1, ζ, ej) < St , ej > . (3.13)

The proof follows in steps similar to the the previous lemma and by the property

NX∑
j=1

<Xt , ej>= 1.

Notation: The operation � in a(P �Q)b produces “the statement P is true”, if

a ≤ b, and “the statement Q is true”, if a ≥ b.

Theorem 3.3.4 (Generalized Maximum A Posteriori Probability Estimator) As-

sume that each gi has the following form1:

gi(X̂0, ..., X̂i, Xi) = gi(γi(X̂i−q, ..., X̂i−1), ρ(Xi, X̂i)), (3.14)

ρ(Xi, X̂i) =

 0 if Xi = X̂i;

1 otherwise,

1with a slight abuse of notation
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where each gi(., .) is strictly positive and monotone increasing in the second vari-

able. The functions γi(X̂i−q, ..., X̂i−1) are also strictly positive and q is a non-

negative integer.

Then the estimate X̂t is calculated according to (GMAP)

X̂t = argmax ζ∈SNX

NY∏
i′=1

(ci′ ind(ζ))
Y i′

t < St , ζ >, (3.15)

where ind(ei) = i and St evolves according to the following recursion:

St+1 = ATGtQt St (3.16)

A is the transition matrix and

Gt = Diag
{
...gt(γt(X̂t−q, ..., X̂t−1), ρ(X̂t, ej))...

}
(3.17)

Qt = Diag
{
...

NY∏
i′=1

(NY ci′j)
Y i′

t ...
}

(3.18)

j = 1, 2, ..., NX

Proof:

In the following, let “Ez” stand for the statement X̂t = ez.

The minimization developed in Lemma 3.3.2 is equivalent to a collection of

binary comparisons

NX∑
j=1

NY∏
i′=1

(NY ci′j)
Y i′

t gt(γt(X̂t−q, ..., X̂t−1), ρ(es − ej)) < St , ej >
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(Es �Eu)

NX∑
j=1

NY∏
i′=1

(NY ci′j)
Y i′

t gt(γt(X̂t−q, ..., X̂t−1), ρ(eu − ej)) < St , ej >

which simplifies to

NY∏
i′=1

(ci′u)
Y i′

t < St , eu > [gt(γt(X̂t−q, ..., X̂t−1), 1)− gt(γt(X̂t−q, ..., X̂t−1), 0)]

(Es �Eu)

NY∏
i′=1

(ci′s)
Y i′

t < St , es > [gt(γt(X̂t−q, ..., X̂t−1), 1)− gt(γt(X̂t−q, ..., X̂t−1), 0)].

Since each gi is positive and monotone increasing in the second variable, the above

reduces to

NY∏
i′=1

(ci′u)
Y i′

t < St, eu > (Es � Eu)
NY∏
i′=1

(ci′s)
Y i′

t < St, es > . (3.19)

Therefore, the above minimum test reduces to the following maximization (termed

generalized MAP because of a limiting result that will be stated in a corollary to

this theorem):

X̂t = argmax ζ∈SNX

NY∏
i′=1

(ci′ ind(ζ))
Y i′

t < St , ζ > . (3.20)

Writing the information state in the matrix form completes the proof.

Corollary 3.3.5 Suppose gi(0, ·) = lim u−−>0 gi(u, .) = 1 uniformly over all i.

Then MAP is recovered from GMAP when the functions γi(X̂i−q, ..., X̂i−1) converge

almost surely to zero.

Proof:
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The proof follows from the well known recursion formula for conditional expecta-

tion [26] and the following observation:

lim
γt(X̂t−q,...,X̂t−1)−−>0

Diag
{
...gt(γt(X̂t−q, ..., X̂t−1), ρ(Xt, ej))...

}
= I,

where I is the identity matrix of the appropriate dimension. This implies that the

information state converges to the unnormalized conditional expectation. Thus,

the maximization in (3.20) becomes a maximization over the components of the

conditional expectation which is precisely how MAP is defined [13].

Theorem 3.3.4 shows that the information state given by (3.8)

E†[Λ̄t−1

t−1∏
i=0

gi(X̂0, ..., X̂i, Xi). Xt| Yt−1]

is, in a sense, a generalized conditional expectation leading to a generalized notion

of MAP for the filtering of HMM’s. Motivated by (3.8), we could define a gen-

eralized conditional expectation for smoothing of HMM’s by conditioning over an

entire fixed time interval of size M, i.e., over the σ-algebra YM generated by all

future and past observations

Rt := E†[Λ̄M

M∏
i=0

gi(X̂0, ..., X̂i, Xi). Xt| YM ]. (3.21)

Using techniques similar to those used in the proof of Lemma 3.3.2, we can calculate

Rt recursively according to

Rt = Ut · St, (3.22)

where St is the information state and Ut is a diagonal matrix whose components

are calculated recursively backward in time according to

(Ut)jj =
NY∏
i′=1

(NY ci′j)
Y i′

t gt(γt(X̂t−q, ..., X̂t−1), ρ(X̂t − ej))
NX∑
h=1

ajh(Ut+1)hh (3.23)
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Figure 3.3: GMAP’s limiting behavior .

with (UM)jj =
∏NY

i′=1 (NY ci′j)
Y i′

MgM(γt(X̂M−q, ..., X̂M−1), ρ(X̂M , ej)).

(3.23) is similar in form to the risk-neutral smoothing results for HMM’s [26].

Next consider the Markov chain described earlier with Xt ∈ {e1, e2, e3}. As

before, assume no useful observation is made and that X0 = e1, a11 = 0, a12 =

a13 = 1/2 and a23 = a32 = 0.

An acceptable solution to MAP for t > 1 is given by X̂t = e2. Let gt =

1 + γ ∗ ρ(Xt, X̂t). It turns out that for γ > 0 the only acceptable solutions to

GMAP are oscillatory ones such as {e2, e1, e2, e1...} and {e1, e2, e1, e2, ...}. The

GMAP does not allow either of the states to be ignored. If we let a12 = 1/2 + ε

and a13 = 1/2 − ε then the only acceptable solution to MAP is X̂t = e2 while it

can be shown that for sufficiently large γ, GMAP still oscillates between e2 and e3

with a slight preference for e2. If we set a21 = 1/2−ε and a31 = 1/2+ε, then MAP

changes dramatically to Xt = e3 while GMAP still goes back and forth between e2

and e3 with a slight preference for e3.
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In the next section, we consider the Risk-sensitive Maximum A Posterior Proba-

bility (RMAP) and the Stochastic Risk-sensitive Maximum A Posterior Probability

estimators (SRMAP) with the incremented-horizon, as special cases of GMAP and

study their behavior.

3.4 RMAP, SRMAP and the behavior of their

sample paths

3.4.1 RMAP, risk-sensitivity, information and the transi-

tion probabilities

Definition 3.4.1 SRMAP is defined as a special case of GMAP by setting

gi = exp(γ(X̂i−q, ..., X̂i−1)ρ(Xi, X̂i)) (3.24)

in (3.14) for every i.

Definition 3.4.2 RMAP is defined as a special case of SRMAP by setting

gi = exp(γρ(Xi, X̂i)) (3.25)

in (3.14) for every i.

Obviously, every true statement for GMAP is also true for for SRMAP and

RMAP including Theorem 3.3.4 and Corollary 3.3.5 proved in the previous section.

In particular, we have shown that RMAP is obtained by a maximization criterion

given by (3.20).

Let us first consider RMAP. The exponential function turns the sum of the

error functions into a product whose value up to the last decision made for each
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fixed ω is eγ·m, where m counts the number of times an error has been made in

estimation of that particular sample path. This product is then multiplied by

either 1 or eγ > 1 depending on the next decision made based on minimizing the

measure of the error set at the present time and taking note of the errors made in

the past. Thus, the errors made in the past become more uniformly distributed

over all sample paths. The information state condenses this error history and

makes the computation recursive. Therefore, the MAP’s additive cost structure is

converted to RMAP’s multiplicative one:

∑
:

{
0 if Xt = ζ ;

1 otherwise.
→ ∏

:

{
1 if Xt = ζ ;

eγ otherwise.

How does the “product count” of errors manifest itself in the behavior of the

RMAP estimator of an HMM? Let us begin with a basic example.

Example 3.4.3 Let NY = NX = 2 , c11 = c22 = q. (See Figure 3.4.) Also,

assume that the chain has an initial distribution p = (p1, p2) with p1 + p2 = 1. q

controls the amount of the available information, in particular q = 1/2 implies that

no information is available, (the case of pure “prediction”) and q=1 corresponds

to the case of “perfect observation”.

Let q = 1/2, a12 = a21 = 0 and allow γ to vary. Figure 3.5 and Table 3.1 show the

behavior of the estimator. We have stacked up the sample paths starting at e1 for

a range of values of eγ; on each path the lower value indicates e1 and the higher

value corresponds to e2.

When p1 = p2, the oscillatory behavior appears only after one step. As we increase

p1, the onset of this behavior is delayed, but it is inevitable, unless p2 = 0.

Now let a12 = 0.1 and a21 = 0.15 with everything else kept the same (Figure

3.6). The oscillatory behavior is delayed and relatively suppressed. This appears
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Figure 3.4: Example 3.4.3.
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Figure 3.5: p1=0.6, a12 = a21 = 0, q = 1/2, 1.02 ≤ eγ ≤ 1.22
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eγ |t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1.02 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1.04 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 2 1 2 1

1.06 1 1 1 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1

1.08 1 1 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1.10 1 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1

1.12 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1.14 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1.16 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1

1.18 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1

1.20 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1

1.22 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1

Table 3.1: Example 3.4.3 with p1=0.6, a12 = a21 = 0, q = 1/2, 1.02 ≤ eγ ≤ 1.22
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Figure 3.6: p1=0.6, a21 = 0.15, a12 = 0.1, q = 1/2, 1.02 ≤ eγ ≤ 1.22

counter intutative: the initial setting (a12 = a21 = 0) does not allow any transition

between the states, but the RMAP estimator is oscillatory. The second set of

parameters (a12 = 0.1 and a21 = 0.15) allows transitions between the states, yet the

estimator’s behavior is less oscillatory and more similar to to that of MAP’. Why

is this behavior altered by a modest change in the value of transition probabilities?

Now let p1=0.6, a12 = a21 = 0, but q = 0.6. Figure 3.7 shows a series of sample

paths with the state initialized at e1 and 1.02 ≤ eγ ≤ 1.22 as before.

Once again, the oscillatations are supressed. It is evident that the transition

probabilites representing the underlying dynamics, the risk-sensitivity parameter

and the availability of information are coupled in the behavior of the sample paths.

The difficulty, however, is that we cannot look at all sample paths at once. We

must study these relations indirectly by looking at their influence on the properties

of appropriately defined “averages” and “clusters” that represent the collective
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Figure 3.7: p1=0.6, a12 = a21 = 0, q = 0.6, 1.02 ≤ eγ ≤ 1.22

properties of the sample paths. One view of conditional expectation comes from the

notion of averaging or “smoothing” over the “atoms” of the conditioning σ-algebra

[25]. Perhaps by computing the conditional expectation of appropriate random

variables over various σ-algebras, these relations will come to light. In chapter

5, we will see how this idea follows naturally from certain dynamic programming

equations for appropriately defined cost functions.

The second idea of considering “clusters” is demonstrated in the multi-scale

represenations of the states in the next section.

3.4.2 Multi-scale represenation and risk-sensitivity

By a Multi-scale representaion of a Markov chain, we mean a partition of the states

of that chain. Each element of the partition will be called a “scale” or a “cluster”.
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Figure 3.8: The multi-scale representation of example 3.3.4.
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Example 3.4.4 Consider the Markov chain given by Figure 3.8. Consider the

observation matrices Cu and Cl:

Cu =



991 1 1 1 1 1 1 1 1 1

1 991 1 1 1 1 1 1 1 1

1 1 701 291 1 1 1 1 1 1

1 1 291 701 1 1 1 1 1 1

1 1 1 1 991 1 1 1 1 1

1 1 1 1 1 496 496 1 1 1

1 1 1 1 1 496 496 1 1 1

1 1 1 1 1 496 496 1 1 1



× 10−3

Cl =



991 1 1 1 1 1 1 1 1 1

1 991 1 1 1 1 1 1 1 1

1 1 496 496 1 1 1 1 1 1

1 1 496 496 1 1 1 1 1 1

1 1 1 1 991 1 1 1 1 1

1 1 1 1 1 991 1 1 1 1

1 1 1 1 1 1 991 1 1 1

1 1 1 1 1 1 1 991 1 1



× 10−3

We say that a “cluster” of states is resolved if it is possible from the observa-

tions to determine whether or not a sample path has assumed any of the states

within that cluster. Examining Cu and Cl shows that both provide nearly perfect

observation at the scales shown in the Figure 3.8 (M1 to M5). Within the clusters,

Cu provides partial observation for the components of M1, e3 and e4 while keeping

M5 “unresolved” so that it remains impossible to distinguish between the states e6,

e7 and e8. Cl leaves M1 unresolved while nearly resolving M5 into its components.
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Figure 3.9: The cost difference vs. u, t = 1, ..., 50.

Which one of these matrices should we choose to “better” observe our Markov

chain and is this choice invariant under risk-sensitivity?

Cl provides nearly perfect observation for the less likely path while Cu provides

only partial observation but for the more likely path. Our simulations presented

in Graph 3.9 (D is the cost under Cu subtracted from the cost under Cl via Monte

Carlo simulation for the cost function (3.4) averaged over 10,000 sample paths)

show that the choice depends on the amount of risk considered and is not invariant

under risk-sensitivity. (On the x-axis, the parameter u is eγ − 1.) Let us look at
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the example and the simulations closely to understand why. For MAP and RMAP

with small values of γ, Cu, as the graph shows, is a better option but as γ increases

choosing Cl quickly becomes the better option. The switch happens at a value

of u∗ between u = 0.14 and u = 0.15 ( See Graph 3.9); changing the transition

probabilities among the states of M1 and among those of M2 may change the value

of u at which we switch from Cu to Cl. For example, when we set a34 = a43 = 0.1

and a33 = a44 = .9, the value of u∗ is less than half the previous value.

Do we want to see the “details” of M1 or M5? A more “conservative” estimator

prefers to resolve M5 because M5 contains more branches (e6 to e8). The estimator

can choose one branch at a time and will return to it only after it has visited the

other branches. If we provide no information and leave M5 completely unresolved

then, as γ increases, the estimator is forced to visit each state of M5 successively

and thus each branch of M5 is ignored for two successive steps. This turns out to

be costly as the value of γ is increased. If we increase the number of the branches

in M5, the value of u∗ at which the switch happens quickly decreases.

3.4.3 SRMAP and scale-dependent risk-sensitivity

Recall that SRMAP is defined as a special case of GMAP (3.14) by setting

gi = exp(γ(X̂i−q, ..., X̂i−1)ρ(Xi, X̂i))

for every i.

We will study two examples of structured risk-sensitivity. First, consider the

Markov chain shown in Figure 3.10 with the following transition and observation

matrices:
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A =



0.3 0.3 0.3 0.1 0.0 0.0

0.3 0.4 0.3 0.0 0.0 0.0

0.3 0.3 0.4 0.0 0.0 0.0

0.1 0.0 0.0 0.3 0.3 0.3

0.0 0.0 0.0 0.3 0.4 0.3

0.0 0.0 0.0 0.3 0.3 0.4

0.5 0.0 0.0 0.5 0.0 0.0



C =



201 101 101 131 231 231 1 1 1 1

101 201 101 231 131 231 1 1 1 1

101 101 201 231 231 131 1 1 1 1

131 231 231 201 101 101 1 1 1 1

231 131 231 101 201 101 1 1 1 1

231 231 131 101 101 201 1 1 1 1

1 1 1 1 1 1 991 1 1 1



× 10−3

For t = 1 to 100, let

γ(x) =

{
γ if ind(x) ≥ 5;

10−18 otherwise.

Graph 3.11 shows the average percentage of the time that the estimator resides in

M2 vs. u = eγ −1. It is clear that applying higher risk within only one scale tends

to “repel ” the estimator toward the other cluster.
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Now let the transition matrix be given by

A =



0.4 0.3 0.3 0.0 0.0 0.0

0.3 0.4 0.3 0.0 0.0 0.0

0.3 0.3 0.4 0.0 0.0 0.0

0.0 0.0 0.0 0.4 0.3 0.3

0.0 0.0 0.0 0.3 0.4 0.3

0.0 0.0 0.0 0.3 0.3 0.4

0.5 0.0 0.0 0.5 0.0 0.0


and let the observations provide no information about the process. Then, for a

constant risk of eγ = 2 for both clusters, the sequence of predictions appears as

follows: 4, 1, 3, 2, 1, 4, 3, 6, 2, 5, 1, 4, 3, 6, 2, 5, 1, 4, 3, 6, 2, 5, 1, .... But, if we

rewrite this sequence at the higher scales M1 and M2, we get M2, M1, M1, M1,

M1, M2, M1, M2, M1, M2, M1, M2, M1, M2, M1, M2, M1, M2, M1, M2, M1, M2,

M1,.... Therefore, we see that after four steps an oscillatory behavior emerges at

the higher scales.

In the previous example, the risk is made dependent on the scales in a “parallel”

structure. This is because M1 and M2 communicate; i.e., it is possible to make

transitions between them. Next, we will consider a “cascade” or “left-to-right”

structure in which the risk depends on the scales which do not communicate (See
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Figure 3.12) Consider the Markov chain with the following transition matrix:

A =



0.4 0.3 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.4 0.2 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0

0.2 0.0 0.2 0.0 0.6 0.0 0.0 0.0 0.0 0.0

0.0 0.4 0.0 0.5 0.0 0.1 0.0 0.0 0.0 0.0

0.0 0.0 0.4 0.0 0.5 0.1 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0

0.0 0.0 0.0 .02 0.0 0.0 .08 0.9 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.1

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0


and observation matrix:

CT =



71 1 1 1 1 1 1 1 1 1

11 91 1 1 1 1 1 1 1 1

11 1 91 1 1 1 1 1 1 1

1 1 1 41 41 1 1 1 1 1

1 1 1 51 51 1 1 1 1 1

1 1 1 1 1 1 91 1 1 1

1 1 1 1 1 1 1 91 1 1

1 1 1 1 1 91 1 1 1 1

1 1 1 1 1 1 1 1 51 41

1 1 1 1 1 1 1 1 41 51



× 10−2
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Let the transition matrix used in the model be

M =



0.4 0.3 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.4 0.2 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0

0.2 0.0 0.2 0.0 0.6 0.0 0.0 0.0 0.0 0.0

0.0 0.4 0.0 0.5 0.0 0.1 0.0 0.0 0.0 0.0

0.0 0.0 0.4 0.0 0.5 0.1 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0

0.0 0.0 0.0 .02 0.0 0.0 .08 0.9 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.1

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.1

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.9


For large values of γ, we expect the limiting behavior of M2 (based on the model

M) to become oscillatory for reasons presented in the previous sections. Therefore,

by applying a “high risk” to the entire chain we may be able to force our model to

behave roughly like the actual process which is by construction oscillatory within

M2. But, within M1, the model M and the transition matrix A are exactly

the same. We consider the behavior of the whole chain under structured risk-

sensitivity when the risk-sensitivity is stochastic and dependent upon the estimate

of the state, and compare it to the constant risk-sensitive case. Which approach

will create sample paths, on the average, closer to the actual process?

Let

γ(x) =

{
γ if ind(x) ≥ 7;

10−7 otherwise.

The value 10−7 is sufficiently small so that the behaviors of SRMAP and MAP

are identical within M1. As shown in the Graph 3.13 (the dashed curve), the

prediction error decreases for sufficiently large values of γ to about 0.11. The solid

curve shows what happens when γ is is applied uniformly to the whole model,
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Figure 3.13: The error cost vs. eγ − 1.
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meaning γ is taken to be a constant function rather than a stochastic one. The

error is considerably larger. By applying a constant γ to the whole model, we have

perturbed the entire model (at both scales) while our model within M1 should not

have been perturbed.
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Chapter 4

Product estimators with

continuous range observation

In this chapter, we consider product estimators of HMM’s with observation

under continuous range additive noise. As a special case, we will derive the Dey-

Moore filter with the quadratic cost [10].

4.1 The state space model

The product estimators of the previous chapter can also be constructed for the

estimation of HMM’s with observation under continuous range additive noise. We

let SX = {e1, ..., eNX
} be the range of the values of the process defined on the

probability space (Ω,F ,P) and let F0
t be defined as in chapter 2. The state space

model is given by

Xt+1 = ATXt + Zt+1

Yt+1 = C(Xt) +Wt+1

,

where the process Wt is i.i.d. with a strictly positive density Φ taking values in
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RNY . The transition matrixA is defined as before and C(·) is a real valued function

in RNY . Although the results of this chapter hold for all strictly positive densi-

ties, for easing our presentation we assume that Wt is a zero mean unit variance

Gaussian noise N(0, 1).

The Girsanov change of measure can also be carried out for the continuous

range observation, yielding a new measure under which the observation sequence

is i.i.d. and distributed according to N(0, 1) density. The development is similar

to the one in chapter 2 for the discrete range observation; we will only state the

results. As previously defined, Yt is generated by the sequence of observations up

to time t and Gt is the filtration generated by the process Xt up to time t and the

observations up to time t-1.

It turns out that the right choice for the Radon-Nikodym derivative is

dP †

dP
| Gt+1 = Λt

Λt =
t∏

l=0

λl , λt =
φ(Yt)

φ(Yt − C(Xt))

and as shown in chapter 2; this implies that dP
dP † |Gt+1 = Λ̄t where Λ̄t = 1/Λt.

4.2 The product estimator

Define X̂t as

X̂t = argminζ∈SX
E[Γ0,t(ζ)| Yt] t = 0, 1, ....

The cost function Γ0,t(ζ) is defined as
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Γ0,t(ζ) = Γ̂0,t(ζ).gt(X̂0, ..., X̂t−1, ζ, Xt)

where

Γ̂0,t =
t−1∏
i=0

gi(X̂0, ..., X̂i, Xi)

As in the previous chapter,

E[Γ0,t(ζ)| Yt] =
E†[Λ̄t Γ0,t(ζ)| Yt]

E†[Λ̄t| Yt]

Therefore, an equivalent problem is to find X̂t such that

X̂t = argminζ∈SX
E†[Λ̄t Γ0,t(ζ)| Yt].

Definition 4.2.1 As in the discrete case, we define the information state

St = E†[Λ̄t−1 Γ̂0,t−1 Xt| Yt−1]

Lemma 4.2.2 The information state St evolves according to

< Sk+1 , ei >=
NX∑
j=1

φ(Yt − C(ej))

φ(Yt)
gt(X̂0, ..., X̂t, ej)aji < St , ej > .

Proof:

< Sk+1 , ei >= E†[Λ̄t Γ0,t < Xt+1 , ei >| Yt]

= E†[
φ(Yt − C(Xt))

φ(Yt)
gt(X̂0, ..., X̂t, Xt) Λ̄t−1Γ̂0,t−1 < Xt , Aei >| Yt]

=
NX∑
j=1

E†[
φ(Yt − C(Xt))

φ(Yt)
gt(X̂0, ..., X̂t, Xt) Λ̄t−1Γ̂0,t−1aji < Xt , ej >| Yt]

=
NX∑
j=1

φ(Yt − C(ej))

φ(Yt)
gt(X̂0, ..., X̂t, ej)ajiE

†[Λ̄t−1 Γ̂0,t−1 < Xt , ej >|Yt, Yt−1]
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=
NX∑
j=1

φ(Yt − C(ej))

φ(Yt)
gt(X̂0, ..., X̂t, ej)ajiE

†[Λ̄t−1 Γ̂0,t−1 < Xt , ej >|Yt−1]

=
NX∑
j=1

φ(Yt − C(ej))

φ(Yt)
gt(X̂0, ..., X̂t, ej)aji < St , ej >

It can be shown that under the new measure

X̂t = argminζ∈SX
E†[Λ̄t Γ̂0,t−1 .gt(X̂0, ..., X̂t−1, ζ, Xt)| Yt].

Lemma 4.2.3 The estimate X̂t is calculated according to

X̂t = argminζ∈SX

N∑
j=1

φ(Yt − C(ej))

φ(Yt)
gt(X̂0, ..., X̂t−1, ζ, ej) < St , ej >

Proof:

E† [Λ̄t Γ̂0,t−1 .gt(X̂0, ..., X̂t−1, ζ, Xt)| Yt]

= E†[
N∑

j=1

φ(Yt − C(Xt))

φ(Yt)
gt(X̂0, ..., X̂t−1, ζ, Xt) Λ̄t−1 Γ̂0,t−1 < Xt , ej >| Yt]

=
N∑

j=1

φ(Yt − C(ej))

φ(Yt)
gt(X̂0, ..., X̂t−1, ζ, ej)E

†[Λ̄t−1 Γ̂0,t−1 . < Xt , ej > | Yt−1]

=
N∑

j=1

φ(Yt − C(ej))

φ(Yt)
gt(X̂0, ..., X̂t−1, ζ, ej) < St , ej > .

4.3 Generalized Maximum A Posteriori Proba-

bility Estimator

Theorem 4.3.1 Assume that each gi has the following form:
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gi(X̂0, ..., X̂i, Xi) = gi(γi(X̂i−q, ..., X̂i−1), ρ(Xi, X̂i))

ρ(Xi, X̂i) =

 0 if Xi = X̂i;

1 otherwise,

where each gi(., .) is positive and monotone increasing in the second variable and

where functions γi(X̂i−q, ..., X̂i−1) are strictly positive and q is a non-negative in-

teger. Then X̂t is calculated according to (GMAP)

X̂t = argmax ζ∈SX

φ(Yt − C(ζ))

φ(Yt)
< St , ζ >,

where St evolves according to the following recursion:

St+1 = ATGtQt St

A is the transition matrix and

Gt = Diag
{
...gt(γt(X̂t−q, ..., X̂t−1), ρ(X̂t − ej))...

}

Qt = Diag
{
...
φ(Yt − C(ej))

φ(Yt)
...

}
j = 1, 2, ..., NX

Proof:

The proof is similar to that of Theorem 3.3.4 and will be skipped.

Corollary 4.3.2 Suppose gt(0, .) = lim u−−>0 gt(u, .) = 1 uniformly over all i.

Then MAP is recovered from GMAP when the functions γt(X̂t−q, ..., X̂t−1) converge

almost surely to zero.

Proof:

The proof is similar to that of Corollary 3.3.5 and will be skipped.
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4.4 Quadratic cost risk-sensitive estimators

We will next derive the results in [10] as a special case of our product estimator.

The quadratic cost risk-sensitive problem is defined as

X̂t = argminζ∈SX
E[exp( γΨ0,k(ζ) )| Yt] t = 0, 1, ...

Ψ0,t(ζ) = Ψ̂0,t(ζ) + (Xt − ζ)TU(Xt − ζ)

where the matrix U ≥ 0 is and

Ψ̂m,n(ζ) =
n∑

i= m

(Xi − X̂i)
TU(Xi − X̂i).

Theorem 4.4.1 The estimate X̂k is calculated according to

X̂k = argmin ζ∈SX

N∑
j=1

φ(Yt − C(ej))

φ(Yt)
exp [γ(ej − ζ)TU(ej − ζ)] < Sk , ej >,

where the information state St evolves according to the following recursion:

St+1 = ATDtBt St, (4.1)

A is the transition matrix and

Dt = diag
{
exp [γ(e1 − X̂t)

TU(e1 − X̂t)], ..., exp [γ(e1 − X̂t)
TU(en − X̂t)]

}
(4.2)

Bt = diag
{
φ(Yt − C(e1))

φ(Yt)
, ... ,

φ(Yt − C(en))

φ(Yt)

}
(4.3)

Proof:

Let gi(·, ·) = g(·, ·) = exp(γ(Xt − ζ)TU(Xt − ζ)),

and the proof follows from the Lemma 4.2.3.
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4.5 Normalized information state and asymptotic

periodicity

It is well known that under mild conditions [27] [19] the distribution of the states of

a Markov chain is asymptotically stationary; i.e., any initial probability distribu-

tion of the states is transformed in the limit to a stationary probability distribution

p∗ which satisfies ATp∗ = p∗. Note that if no information is available other than

the initial probability distribution, the probability distribution of the chain is the

information state for MAP, the so called “prediction” case. Therefore, the infor-

mation state for the prediction case is asymptotically stationary.

As in chapter 3, RMAP is obtained by letting

gi = exp(γρ(Xi, X̂i)) (4.4)

for every i.

We would like to know if there is a similar asymptotic behavior for the infor-

mation state of RMAP in the prediction case. We know that for small risk RMAP

reduces to MAP. Inspired by this, we define the generalized probability distribu-

tion of the RMAP by simply normalizing the information state. Our calculations

show that the generalized probability has the remarkable property of the asymp-

totic periodicity which can be considered as a generalization of the asymptotic

stationarity.

But first, we consider the asymptotic stationarity of Markov chains.

Definition 4.5.1 A Markov chain is called primitive if there exists an integer N

such that all the elements of An are strictly positive for every n ≥ N .

We state the following without proof [27]:
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Theorem 4.5.2 (Perron) Let A be a primitive m×m real matrix. Then, there

exists an eigenvalue λ of A with the following properties: (i) λ > 0, (ii) λ is a

simple eigenvalue, (iii) λ has a positive eigenvector, (iv) any other eigenvalue of A
has modulus less than λ, (v) any other nonnegative eigenvector of A is a positive

multiple of v.

Corollary 4.5.3 Let A be a primitive stochastic matrix. Then 1 is a simple

eigenvalue of A, both A and AT have positive eigenvectors with eigenvalue 1 and

any other eigenvalue of A has a modulus strictly less than 1.

It follows from the above that if our transition matrix A is primitive, then the

dynamical system defined by

pn+1 = ATpn, (4.5)

for every choice of the initial probability distribution p0, converges to p∗ which

satisfies ATp∗ = p∗.

Next, note that when no observation is available Qt becomes the identity matrix for

both the discrete range and the continuous range RMAP (For the continuous range

observation, let C(·) = 0 which implies φ(Yt−C(ei))
φ(Yt)

= 1; a similar calculation holds

for the prediction case with discrete range observation). Therefore, the information

state St in Theorem 4.3.1 evolves according to the following recursion:

St+1 = ATGt St. (4.6)

The above can be written explicitly:
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St+1 = AT · diag ( exp(γ < eargmax
i

Si
t
, ej >) ) · St (4.7)

j = 1, 2, ..., NX, i = 1, 2, ..., NX.

Unlike (4.5), the above is a non-linear dynamical system.

The generalized probability distribution Ut evolves according to

Ut+1 = F (Ut) := H(ATGt Ut), (4.8)

where H(X) = X∑
i
(Xi)

and U0 = p0. Finally, because AT is stochastic, the above

can be written as

Ut+1 = AT ·H(diag ( exp(γ < eargmax
i

U i
t
, ej >) ) · Ut). (4.9)

Definition 4.5.4 A Cycle of Generalized Probabilities ( CGP ) is a finite set of

probabilities {v1, ..., vm} such that F (vi) = vi+1 with F (vm) = v1.

Conjecture 4.5.1 Let the stochastic matrix A be primitive; then, for every

choice of the initial probability distribution p0, the dynamical system

Ut+1 = AT ·H(diag ( exp(γ < eargmax
i

U i
t
, ej >) ) · Ut) (4.10)

is asymptotically periodic, i.e., Ut approaches a CGP as t→∞.

Example 4.5.5 Let A be given by

A =

 0.8 0.2

0.4 0.6

 eγ = 1.078.
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Figure 4.1: Example 4.5.7

We can write u1

u2

 =

 0.8 0.4

0.2 0.6

  1 0

0 1.078

 u1

u2

 .
u1 =

0.8u1 + 0.4312u2

u1 + 1.078u2
u1 + u2 = 1

0.078u1
2 − 0.7092u1 + 0.4312 = 0

u1 = 0.65522 u2 = 0.34477

Our simulations show that (4.10), for every initial condition, approaches (0.65522,

0.34477) and so its CGP has only one element. The fixed point of (4.5) is

ATp∗ = p∗

p1 + p2 = 1

p1 = 0.66666 p2 = 0.33333.

Next consider

A =

 0.8 0.2

0.4 0.6

 eγ →∞
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The CGP, for every initial condition, turns out to be

CGP : (v1, v2) F (v1) = v2 F (v2) = v1.

v1 =

 0.8

0.2

 v2 =

 0.4

0.6

 .
Example 4.5.6 Next consider

A =

 0.2 0.8

0.6 0.4

 eγ →∞.

The CGP’s turn out to be made of two cycles

F (u) = u =

 0.6

0.4

 if u1 ≥ u2

F (v) = v =

 0.2

0.8

 if u2 ≥ u1.

Thus, (4.10) unlike (4.5) could depend on the initial conditions.

Example 4.5.7 Consider the Markov chain given by Figure 4.1 with

A =


0.3 0.5 0.2

0.2 0.5 0.3

0.2 0.2 0.6

 ,

and u0 = (0.3 0.2 0.5). Let eγ = 2. It turns out that (4.10) approaches the following

CGP: {(0.2287 0.4243 0.3470), (0.2290 0.3679 0.4031)} as t → ∞. (4.5), on the

other hand, approaches the stationary distribution (0.2222 0.3810 0.3968). If we

let eγ →∞ the CGP becomes {(0.2484 0.3451 0.4065), (0.2418 0.5000 0.2582)}.
The period of CGP, in general, appears to increase with γ and approach a

limiting CGP as eγ →∞. If the CGP has only one element (m=1), the generalized

probability is asymptotically stationary. This seems to be the case for small values

of γ.
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Asymptotic periodicity has been reported in the study of Markov operators of

coupled map lattices [28]. Although the Markov operator in that context is linear

and ours is not, the approach in [29] might provide us with insights as to how to

prove Conjecture 4.5.1.

It is possible to give a “flow” interpretation of the non-linearity in (4.10). In

two dimensions consider

(u1 > u2), H(

 1 0

0 eγ

 u1

u2

) ⇒

 u1

eγu2

 →
 u1

eγu2+u1

eγu2

eγu2+u1

 .

u1 − u1

eγu2 + u1
=
eγu1u2 − u1(1− u1)

eγu2 + u1

=
(eγ − 1)u1u2

eγu2 + u1
= β,

β can be considered as a “back-flow” from the first state with the higher probability

to the state with the lower one. Note that, as expected, γ → 0 ⇒ β → 0 and

γ →∞⇒ β → u1. It turns out that the flow out of p1 is maximized when

u1 =
eγ/2

eγ/2 + 1
.

Similar calculations can be carried in higher dimensions. Assume u1 > ui, i 6=
1. Then

β =
(eγ − 1)u1

∑
i6=1 ui

eγ
∑

i6=1 ui + u1
.

The back-flow is then distributed among the states according to

βi = β · ui∑
i6=1 ui
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Figure 4.2: The back-flow.

ε 0.1 0.01 0.008 0.006 0.004 0.002 0.001 0.0002

Period 4 4 29 21 17 78 430 682

Table 4.1: Example 4.5.8

67



β =
∑
i6=1

βi.

See Figure 4.2.

Example 4.5.8 The period’s dependence on the transition probabilities could

be strong. Let

A =


0.9− ε 0.1 ε

0.4 0.6 0.0

0.0 ε 1.0− ε

 ,

and eγ = 101. The CGP’s appear to be independent of the initial conditions but

the period could depend strongly on ε as Table 4.1 shows. Graph 4.3 shows the

values of the first component of the generalized probability vs. time for ε = 0.001.

(There are 10,000 data points and hence some apparent overlaps) Graph 4.4 shows

the values of the second component of the generalized probability vs. time for

ε = 0.0002.
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Figure 4.3: The first component of generalized probability vs. time for ε = 0.001.
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Figure 4.4: The second component of generalized probability vs. time for ε =

0.0002.
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Chapter 5

Risk sensitive filter banks and the

qualitative analysis of their

sample paths

In this chapter, a risk-sensitive generalization of the Maximum A Posterior Proba-

bility (MAP) estimation for partially observed Markov chains is presented. Using

a change of measure technique, a sequential filtering scheme for the risk-sensitive

state estimation is introduced. Structural results, the influence of the availability

of information, mixing and non-mixing dynamics, and the connection with other

risk-sensitive estimation methods are considered. A qualitative analysis of the

sample paths clarifies the underlying mechanism. As in the previous chapters,

we use the change of measure introduced in Chapter 2; however, the simplex is

reserved for the information state and so to avoid confusion, the use of the sim-

plex representation of the Markov chains will be implicit. We will use the simplex

representation to carry out our proofs but sate the results without it.
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5.1 Risk sensitive filter banks

5.1.1 The estimation of Hidden Markov Models

We define an estimated Hidden Markov Model as a five tuple < X,Y,X,A, C > ;

here A is the transition matrix, Y = {1, 2, ..., NY} is the set of observations and

X = {1, 2, ..., NX} is the finite set of (internal) states as well as the set of estimates

or decisions. In addition, we have that C := [ci,j] is the NX×NY state/observation

matrix, i.e., ci,j is the probability of observing y=j when the state is x=i. We

consider the following information pattern. At decision epoch t, the system is

in the (unobservable) state Xt = i and the corresponding observation Yt = j is

gathered, such that

P (Yt = j|Xt = i) = ci,j (5.1)

The estimators Vt are functions of observations (Y0, .....Yt) and are chosen according

to some specified criterion. Through out this paper, we use upper case letters to

denote estimators and script upper case letters to denote “estimation maps ” from

observations to the set X. If Yt is an observation and Vt an estimator: Vt = Vt ◦Yt.

When it causes no confusion, we may use upper case letters for both.

5.1.2 Maximum A Posterior Probability Estimator

Consider a sequence of finite dimensional random variables Xt and the correspond-

ing observations Yt defined on the common probability space (Ω,F ,P). The Max-

imum A Posteriori Probability (MAP) estimator X̂t is a Borel measurable function

of the filtration generated by observations up to Yt denoted by Yt which satisfies

for ω ∈ Ω:
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X̂t(ω) = argminζ∈X E[ρ(Xt, ζ) | Yt = Yt(ω)] t = 0, 1, ... (5.2)

where

ρ(Xt, ζ) =

{
0 if Xt = ζ ;

1 otherwise.

The usual definition of MAP as the argument with the greatest probability given

the observation follows from the above [13]. As in chapter 3, we will need the

following Lemma:

Lemma 2.2.1: MAP also results from the additive cost minimization

(X̂0, ..., X̂N )(ω) = argminζ0...ζN∈XN E[
N∑

i=0

ρ(Xi, ζ) )| Yi = Yi(ω)] (5.3)

where XN is the product space and each X̂i is Yi measurable.

5.1.3 Change of measure

To carry out the computations, we will apply a change of measure technique in-

troduced in chapter 2 and used in previous chapters. But this time, we let l=1 in

(2.32) and use a slightly different notation for the Radon-Nikodym derivative. As

before, let (Ω,F ,P) be the canonical probability space on which all of our time

series are defined. Let Yt be the filtration generated by the available observations

up to decision epoch t, and let Gt be the filtration generated by the sequence of

states and observations up to that time. Then the new probability measure P† is

defined by the restriction of the Radon-Nikodym derivative on Gt to

dP
dP† |Gt = Λ̄t := N t

Y · Πt
k=0qXk,Yk

(5.4)
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where the function qXk,Yk
is a random variable defined by qXk=i,Yk=j = cij .

A little thought should convince the reader that the right hand side of the above

is equal to (2.51) and hence under the new measure {Yt} is independently and

identically distributed (i.i.d.). Each distribution is uniform over the set Y and

{Yt} is independent of {Xt}.
Before we can introduce our filter, we need an optimization result. Let Vt be

measurable functions of observations up to t taking values in {Xt} and ρ(·, ·) as

above. Fix V0, ..., Vk−1. We would like to find V̂k, ..., V̂H−1 such that the following

criterion is minimized :

Sγ(V0, ..., VH−1) := E[exp(γ · CH)], (5.5)

where

CH :=
H−1∑
t=0

ρ(Xt, Vt) (5.6)

and γ is a strictly positive parameter. The minimum value will be denoted by

S̄γ(V̂k, ..., V̂H−1).

This optimization problem can be solved via dynamic programming. A detailed

analysis will be given shortly in Lemma 2.3.1. We need to define recursively an

information state

σγ
t+1 = NY ·Q(Yt+1)DT (Vt) · σγ

t , (5.7)

where Q(y) := diag(qi,y), AT denotes the transpose of the matrix A and the matrix

D is defined by
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[D(v)]i,j := ai,j · exp(γρ(i, v)). (5.8)

σγ
0 is set equal to NY ·Q(Y0)p0, where p0 is the initial distribution of the state and

is assumed to be known. In the context of the risk-sensitive estimation of Markov

chains, the meaning of σγ
t will become clear.

We define the matrix

L(v, y) := NY ·Q(y)DT (v). (5.9)

We will show that

Sγ(V0, ..., VH−1) = E[exp(γ · CH)] = E†[
NX∑
i=1

σγ
H(i)], (5.10)

where E† is the expectation with respect to the new measure. Define the value

functions Jγ(·, H − j) : RNX
+ → R, j = H, ..., H − k, as follows:

Jγ(σ,H − j) := min
VH−j ...VH−1

{
E†{

NX∑
i=1

σγ
H(i) | σγ

H−j = σ}
}
. (5.11)

Lemma 5.1.1 Let V0, ..., Vk−1 be given. Then the value functions defined above

are obtained from the following dynamic programming equations:


J̄γ(σ,H) =

∑NX
i=1 σ(i);

J̄γ(σ,H − j) = minv∈X{E†[J̄γ(L(v, YH−j+1) · σ,H − j + 1)]},
(5.12)

j = 1, 2, . . . . . . , H − k

The estimation maps V̂k, ..., V̂H−1 obtained from (2.11) are risk optimal; i.e.,

V̂k(σ
γ
k), ..., V̂H−1(σ

γ
H−1) achieve the minimum in (2.5).

Proof:
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We have

Sγ(V0, ..., VH−1) = E†[
NX∑
i=1

σγ
H(i)]= E†E†{[

NX∑
i=1

σγ
H(i)]|σγ

k}.

Thus, to obtain S̄γ(V̂k, ..., V̂H−1), it is sufficient to minimize the expectation

E†{[
NX∑
i=1

σγ
M(i)]|σγ

k}

which will show is given by the above dynamic programming equation.

We use the simplex representation of Markov chains developed in Chapter 2 by

mapping the states of the chain onto the unit vectors of RNX
denoted by e1....eNX

.

First, we define an information state and show that it evolves according to (2.7):

< σt, eh >:= E†[Λ̄texp{γ
t−1∑
i=0

ρ(Xi, Vi)} <Xt, eh> |Yt]. (5.13)

Therefore,

< σt+1, eh > = E†[ Λ̄t+1 exp{γ
t∑

i=0

ρ(Xi, Vi)} <Xt+1, eh> |Yt+1]

= NYE
†[qXt+1,Yt+1 Λ̄texp{γ

t∑
i=0

ρ(Xi, Vi)} <ATXt + Zt+1, eh> |Yt+1],

where Zt+1 is a martingale increment defined by Zt+1 := ATXt+1 −Xt. Using the

linearity of the inner-product and the expectation and the i.i.d. properties of the

observations under the new measure, it can be shown that Zt+1 drops out of the

above expression to give

< σt+1, eh >= NYE
†[qeh,Yt+1 Λ̄t exp{γ

t∑
i=0

ρ(Xi, Vi)} < Xt,A.eh > |Yt+1]
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= NYE
†[

NX∑
j=1

qeh,Yt+1 Λ̄t exp{γ
t∑

i=0

ρ(Xi, Vi)}ajh < Xt, ej > |Yt+1]

= NY

NX∑
j=1

qeh,Yt+1E
†[ Λ̄t exp{γ

t∑
i=0

ρ(Xi, Vi)}ajh < Xt, ej > |Yt+1]

= NY

NX∑
j=1

qeh,Yt+1exp{ρ(ej , Vt)}ajh

E†[ Λ̄t exp{γ
t−1∑
i=0

exp{ρ(Xi, Vi)} < Xt, ej > |Yt, Yt+1].

But since Yt+1 is independent of the σ-algebra generated jointly by Yt and all the

random variables within the expectation, it too drops out to give

NY

NX∑
j=1

qeh,Yt+1exp{γρ(ej , Vt)}ajh < σt, ej >

which results in (2.7) when put in the matrix form. The initial condition is given

by

< σ0, eh > := E†[Λ̄0 < X0, eh > |Y0]

= NYE
†[qX0,Y0 < X0, eh > |Y0]

= NYqeh,Y0E
†[ < X0, eh > |Y0]

= NYqeh,Y0E
†[ < X0, eh >].

It is not hard to show that E†[ < X0, eh >] = E[ < X0, eh >] =< p0, eh > where

p0 is the initial distribution of the state and so

σ0 = NY ·Q(Y0)p0.

The information state is all we need to determine the optimal cost because of the

following equality:
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E[exp(γ · CH)] = E†[Λ̄Hexp(γ · CH)] = E†[
NX∑
i=1

σγ
H(i)].

The first equality is an application of discrete-time Girsanov Theorem ([see Theo-

rem 3.2 in [6]]); the second follows directly from the definition of the information

state as a conditional expectation and the observation that
∑NX

i=1 < Xt, ei >= 1

since in the simplex representation Xt ∈ {e1, ...eNX
}.

Let Wi,j denote the set of estimates Vi, ...., Vj where each Vi is Yi measurable.

With the notation and definitions of section 2.3 write

Ŝγ(t) := inf Wt,H−1
E†{[

NX∑
i=1

σγ
H(i)]|Yt}. (∗)

Define recursively the functions


J̄γ(σ,H) =

∑NX
i=1 σ(i);

J̄γ(σ, t) = minv∈X{E†[J̄γ(L(Vt, Yt+1) · σt, t+ 1)|σt = σ, Vt = v]}.
(∗∗)

t = k, k + 1, . . . , H − 1

Now assume that for t+1,..., H-1, (∗) satisfies the above dynamic programming

equation; i.e., assume that inf Wt+1,H−1
E†{[ ∑NX

i=1 σ
γ
H(i)]|Yt+1} = J̄(σγ

t+1(Yt+1), t+

1) with a choice of minimizing estimates V̂t+1(σ
γ
t+1)....V̂H−1(σ

γ
H−1) obtained from

(∗∗). We will show that the same statement holds true for t,...H-1.

Ŝγ(t) = inf Wt,H−1
E†{[

NX∑
i=1

σγ
H(i)]|Yt}

= inf Wt,H−1
E†{E†{[

NX∑
i=1

σγ
H(i)]|Yt+1}|Yt}

= inf Wt,tE
†inf Wt+1,H−1

E†{{[
NX∑
i=1

σγ
H(i)]|Yt+1}|Yt}

= inf Wt,tE
†{J̄(σγ

t+1(Yt+1), t+ 1)|Yt}
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= inf Wt,tE
†{J̄(L(Vt, Yt+1)σ

γ
t (Yt), t+ 1)|σγ

t (Yt), Vt}
= J̄(σγ

t (Yt), t).

The interchange of the expectation and the infimum follows from the lattice prop-

erty (Appendix C). The next two steps are true by the induction hypothesis and

by the integral characterization of the conditional expectation from which one can

show that in general E[f(W, g(Z))|Z = z] = E[f(W, g(z))] = E[f(W, g(Z))|g(Z) =

g(z)] if random vectors Z and W are independent (Appendix B). The last step is

by (∗∗). The case t=H-1 is easily verified. Thus, by induction, the claim holds for

k,...H-1. Showing that each minimizing Vt is σγ
t measurable can be done explicitly.

The pair (σγ
t , Vt) is measurable with respect to Yt which is independent of Yt+1

with a uniform distribution for Yt+1. Thus (∗∗) reduces to the minimization of the

following sum:

1
NY

∑NY
y=1[J̄

γ(L(Vt, y) · σγ
t , t+ 1)].

It is now obvious that the minimizing Vt must be a function of σt.

The above shows that the minimizing sequence of the estimates depend only

on the information state. We can write

inf Wt,H−1
E†{[

NX∑
i=1

σγ
H(i)]|σt} = E†{inf Wt,H−1

E†{[
NX∑
i=1

σγ
H(i)]|Yt}|σt}

= E†{J̄(σγ
t (Yt), t)|σt} = J̄(σγ

t (Yt))

which shows

inf Wt,H−1
E†{[

NX∑
i=1

σγ
H(i)]|σt} = inf Wt,H−1

E†{[
NX∑
i=1

σγ
H(i)]|Yt}.

It is straightforward to verify that the estimators, V̂k(σ
γ
k ), ..., V̂H−1(σ

γ
H−1) are risk

optimal, i.e., they achieve the minimum in (2.5).
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Changing the index of the dynamic programming according to t= H-j ( for

easing our notation in the later sections) finishes the proof of the Lemma.

5.1.4 The T-step MAP risk-sensitive estimator (TMAP)

The T-step MAP risk-sensitive estimator (TMAP) is defined by the following cri-

terion:

V̂NT , ..., V̂(N+1)T−1 = argminVt∈X, t=NT,...,(N+1)T−1

E{exp(γ · [
NT−1∑
t=0

ρ(Xt, V̂t) +
(N+1)T−1∑

t=NT

ρ(Xt, Vt)])}, (5.14)

where Vt is Yt measurable, T is the size of the filter and N = 0, 1, ..., is the index

of filtering segments. This exponential criterion is a generalization of the risk-

sensitive filtering idea introduced in [10] for the quadratic cost with the filtering

performed in single steps, i.e., for T=1; we will look at this special case for TMAP

in sections 3 and 4 and show that it is essentially a “greedy algorithm”.

Theorem 5.1.2 The TMAP can be computed recursively by the following pro-

cedure:

1) Set σ0 = NY ·Q(Y0)p0.

2) Given that σNT , use the minimizing sequence of the value functions obtained

from the following dynamic programming equations


J̄γ(σ, T ) =

∑NX
i=1 σ(i);

J̄γ(σ, T − j) = minv∈X{E†[J̄γ(L(v, YNT+T−j+1) · σ, T − j + 1)]}
(5.15)

j = 1, 2, . . . , T
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Figure 5.1: The T-step risk sensitive filter banks.

to determine the value of the optimum estimates V̂NT , ..., V̂(N+1)T−1 as a function

of the information state σNT , ..., σ(N+1)T−1 obtained by (2.7).

3) Apply (2.7) once more to obtain σ(N+1)T and repeat steps (2) and (3) starting

at (N+1)T.

Furthermore, for any given N as γ → 0, TMAP (i.e. the above algorithm) reduces

to MAP.

Proof:

The proof follows from repeated applications of Lemma 2.3.1. We will skip

the details. The limiting result follows from the first order approximation of the

exponential function and the observation that as γ → 0 , the matrix D(v) → A
element wise. This implies that in the limit the input to each filtering step is

the unnormalized conditional distribution and thus by Lemma 2.2.1 the filtering

process reduces to the well known MAP estimation of HMM’s.

Note that although the size of the sum
∑NT−1

i=0 ρ(Xt, V̂t) increases with N , all we

need to track is the information state, computed recursively. The optimal estimates

V̂NT (σNT ), ..., V̂(N+1)T−1(σ(N+1)T−1) are measurable functions of the information

state alone. Since our Markov chain is homogeneous and under the new measure

the observations are i.i.d, (2.13) depends only on T and not on N. This justifies
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the sequential filter banks representation of Figure 1.

We point out that theorem 5.1.2 has no control counterpart. In this case, the

estimators {Vt} have no influence on the dynamics and thus estimation can be

broken down into separate segments with the information state reinitialized. The

same cannot be said for a controlled Markov chain due to the influence of the

controller on the dynamics; the separate segments cannot be joined to represent

the entire process in the above limiting sense as the “decoupling” Lemma 2.2.1 no

longer holds. Note also that controlled Markov chains are not homogeneous.

5.2 Structural results: the filter banks and the

information state

It is clear from the above that to describe the behavior of TMAP we must under-

stand the operation of each filtering segment and understand the meaning of the

information state. The key in understanding the filter’s operation is the analysis

of the value functions which are obtained via dynamic programming.

Lemma 5.2.1 The value functions are continuous and concave functions of the

information state σ ∈ RNX
+ .

Proof:

Both statements are proved by induction. The continuity when j=0 is obvious.

Since {Yi} is i.i.d., uniformly distributed and finite dimensional, then (5.15) is

taking a minimum over the average of composition of functions, each of which is

continuous by the continuity of the linear functions and the induction hypothesis,

and is therefore continuous. For the second statement, once again the case j=0

is trivially verified. Assume concavity for j-1. Let 0 ≤ λ ≤ 1 and σ1, σ2 ∈ RNX
+ ;
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define σ̃ := λσ1 + (1 − λ)σ2. Then by the induction hypothesis and by (5.15) we

have

J̄γ(σ̃, T − j) = min
v∈X

{ 1

NY

NY∑
y=1

J̄γ(L(v, y) · σ̃, T − j + 1)
}

≥ min
v∈X

{ 1

NY

NY∑
y=1

[λJ̄γ(L(v, y) · σ1, T − j + 1)

+ (1− λ)J̄γ(L(v, y) · σ2, T − j + 1)]
}

≥ λJ̄γ(σ1, T − j) + (1− λ)J̄γ(σ2, T − j).

Next, for P a finite set of vectors in RNX
+ , denote by O(P ) the set

O(P ) :=
{ 1

NY

NY∑
y=1

αy · L(v, y) | αy ∈ P, v ∈ X
}
. (5.16)

Note that if P is finite so is O(P ), since |O(P )| ≤ |P |NY ·NX.

Lemma 5.2.2 The value functions given by (5.1.2) are piecewise linear functions

(hyper-planes through the origin) of σ ∈ RNX
+ , such that if Pj−1 indicates the

vectors in RNX
+ which specify the set of hyper planes for J̄γ(σ, T − j + 1) then

J̄γ(σ, T − j + 1) = min
α∈Pj−1

{α · σ} J̄γ(σ, T − j) = min
α∈O(Pj−1)

{α · σ}, (5.17)

where P0 = 1̄ := (
∑NX

k=1 ek)
T and {ek} are the unit vectors in RNx .

Proof:

The statement of the Lemma is readily verified for j = 0. Assume the Lemma

holds for j-1 then piecewise linearity implies that for each vector α0 in Pj−1 there is

a point σ∗ ∈ RNx and a disk d(σ∗, r) such that on this disk J̄γ(σ, T−j+1) = α0 ·σ.
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Consider a different point σ and 0 < t ≤ 1 small enough so that t(σ − σ∗) + σ∗ ∈
d(σ∗, r). Then by the concavity shown above

J̄γ(σ∗ + t(σ − σ∗), T − j + 1) = J̄γ((1− t)σ∗ + tσ, T − j + 1)

≥ (1− t)J̄γ(σ∗, T − j + 1) + tJ̄γ(σ, T − j + 1). (5.18)

Since J̄γ(σ∗ + t(σ − σ∗), T − j + 1) = α0 · σ∗ + t(σ − σ∗), after substitution and

cancellations, we get

J̄γ(σ, T − j + 1) ≤ α0 · σ.

But α0 was arbitrary and so we have the first equality. To prove the second equality,

note that

J̄γ(σ, T − j) = min
v∈X

{ 1

NY

NY∑
y=1

min
α∈Pj−1

{α · L(v, y) · σ}
}

= min
v∈X

{[ 1

NY

NY∑
y=1

α̃(v, y, σ) · L(v, y)
]
· σ

}
= min

α∈O(Pj−1)
{α · σ}, (5.19)

where α̃(v, y, σ) ∈ Pj−1 minimizes α · L(v, y) · σ in the first equality, and the last

equality follows since α ·L(u, y) ·σ > α̃(v, y, σ) ·L(u, y) ·σ, for all α ∈ Pj−1, v ∈ X,

y ∈ Y, σ ∈ R+
NX

.

Lemma 5.2.3 The optimal estimates {V̂t} are constant along rays through the

origin, i.e., let σ ∈ RNX
+ then V̂t(σ

′) = V̂t(σ), for all σ′ = λσ, λ > 0.

Proof:

From Lemma 5.2.2, we see that J̄γ(σ′, T − j) = λJ̄γ(σ, T − j). The result

follows from Theorem 5.1.2.

Definition 5.2.4 A cone in RNX
+ is a set defined by CS := {σ|σ = λx, x ∈ S ⊂

RNX
+ , λ > 0}.
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Definition 5.2.5 For j=1,2, ..., T and v ∈ X, let

J̄γ
v (σ, T − j) := E†[J̄γ(L(v, YT−j+1) · σ, T − j + 1)]

=
1

NY

NY∑
y=1

[J̄γ(L(v, y) · σ, T − j + 1)]. (5.20)

Definition 5.2.6 The decision region DRj
v ⊂ RNX

+ for the estimate v ∈ X, at

the T − j decision epoch, is defined as

DRj
v := {σ | σ ∈ RNX

+ , J̄γ(σ, T − j) = J̄γ
v (σ, T − j)}. (5.21)

It follows from the definition of V̂NT+T−j(σ) that

DRj
v := {σ | σ ∈ RNX

+ , V̂NT+T−j(σ) = v}. (5.22)

We say a decision is made “strictly”, if it is the only possible decision.

Theorem 5.2.7 For each v = i ∈ {1, 2, ...,NX} and for every j = 1, 2, ..., T , the

decision region DRj
i is always non-empty and includes a cone about the σi axis

within which the decision made is (strictly) V̂NT+T−j(σ) = i.

Proof:

We state the proof for NX = 2, from which the proof for the general case will

become evident for the reader. On the σ1 axis, we have by definition

J̄γ
1 (σ, T − j) =

1

NY

NY∑
y=1

[J̄γ(NY ·Q(y)AT

 1 0

0 eγ

 σ1

0

 , T − j + 1)].

J̄γ
2 (σ, T − j) =

1

NY

NY∑
y=1

[J̄γ(NY ·Q(y)AT

 eγ 0

0 1

 σ1

0

 , T − j + 1)].
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J̄γ
1 (σ, T − j) =

1

NY

NY∑
y=1

[J̄γ(NY ·Q(y)AT

σ1

0

 , T − j + 1)].

J̄γ
2 (σ, T − j) =

1

NY

NY∑
y=1

[J̄γ(NY ·Q(y)AT

 eγσ1

0

 , T − j + 1)].

Applying Lemma 5.2.2 to each term of the summation on the right-hand side of

J̄γ
2 (σ, T − j), we get

J̄γ
2 (σ, T − j) =

eγ

NY

NY∑
y=1

[J̄γ(NY ·Q(y)AT

σ1

0

 , T − j + 1)].

Therefore, we can write

J̄γ
2 (σ, T − j)− J̄γ

1 (σ, T − j) = (eγ −1){ 1

NY

NY∑
y=1

[J̄γ(NY ·Q(y)AT

σ1

0

 , T − j+1)]}.

But eγ > 1 since γ > 0 and for every j, the value functions are strictly positive

being integrals of the exponential functions. Thus from the above on the σ1 axis

we have the strict inequality

J̄γ
1 (σ, T − j) < J̄γ

2 (σ, T − j)

which implies DRj
1 includes the σ1 axis; fix σ on that axis, then by Lemma 3.1.1

and because sums and compositions of continuous functions are continuous, there

exists a disk of positive radius in the R2
+ metric, i.e., d(r, σ)

⋂
R2

+, r > 0 such

that J̄γ
1 (σ, T − j) < J̄γ

2 (σ, T − j) for every x ∈ d(r, σ)
⋂
R2

+. Therefore, Lemma

5.2.3 implies that on the cone Cd(r,σ)∩R2
+
⊂ DRj

1 the decision is strictly v = 1.

The same proof works in higher dimensions by fixing an axis σl and making pairwise

comparisons between J̄γ
l (σ, T − j) and J̄γ

k (σ, T − j), k 6= l along the σl axis. The

86



“strict” cone around the σl axis will be the intersection of all cones obtained from

pairwise comparisons.

In general, the boundaries among the decision regions are not of “threshold

type” (unlike MAP). We give a two dimensional example. We consider the TMAP

with NX = 2.

Remark: The transition cone DRj
1

⋂
DRj

2 is not, in general, of threshold type,

i.e., the cone DRj
1

⋂
DRj

2 does not degenerate to a line; we give a simple counter

example.

Let a11 = a22 = 1 and qxy = 1/2; then it can be shown (by straightforward

induction) that the transition cones are not degenerate.

Let’s look at the counter example more closely (Figure 5.2). The cone where

the decision is strictly v=1, i.e., R2
+ ∩ (DRj

2)
c is given by σ1 > σ2 · exp(γ(j −

1)) and by symmetry R2
+ ∩ (DRj

1)
c is given by σ2 > σ1 · exp(γ(j − 1)). The

transition cone (where either decision is acceptable) is given by the complement

of the union of these two regions (the colored area). The value functions are

given by j + 1 hyper-planes: σ1 + exp(γ(j))σ2, σ1exp(γ(1)) + exp(γ(j − 1))σ2,

σ1exp(γ(2)) + exp(γ(j − 2))σ2 ..., σ2 + exp(γ(j))σ1 on the j + 1 cones beginning

with σ1 > σ2 · exp(γ(j − 1)) and ending with σ2 > σ1 · exp(γ(j − 1)). The

transition cone between them is the union of j−1 cones whose boundaries are lines:

exp(−(j − 1)γ)σ1 = σ2, exp(−(j − 2)γ)σ1 = σ2,..., σ1 = σ2,..., exp(−(j − 2)γ)σ2 =

σ1, ..., exp(−(j − 1)γ)σ2 = σ1. When j is odd, the line σ1 = σ2 is a boundary

(boundary in the sense of slope change in the cost and not decision); when j is even,

it is not. (The solid cone which includes σ1 = σ2 for even values of j is meant to

emphasize this). On the transition cone either decision is allowed. We can interpret

this region as the zone of uncertainty. For MAP and TMAP with T=1 (we’ll show
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Figure 5.2: Decision cones for a11 = a22 = 1, qxy = 1/2.

88



this later) this region is the threshold σ1 = σ2, but as the above example shows,

for TMAP with T > 1, it may be a non-degenerate cone. We could interpret this

as reflecting the “conservative” nature of the risk-sensitive estimation. We are

expanding the zone of “uncertainty” at the expense of the region of “certainty”.

We will show in the subsequent sections that this is not always the manner in which

risk-sensitivity manifests itself in the structure of decision regions. It is possible

that the the transition cone remains degenerate and either of the two other cones

expands at the expense of the other or the decision regions are not affected by risk

sensitivity at all, i.e., they remain identical to that of MAP. In two dimensions for

example, DRj
1 = {σ|σ1 > σ2} and DRj

2 = {σ|σ2 > σ1}.
The above theorem only guarantees the existence of of non-degenerate cones

around the σl axis but says nothing about their size. In fact, observe that in the

above example the size of these cones becomes arbitrarily small as γ → ∞ since

the slopes of the lines exp(−(j−1)γ)σ1 = σ2 and exp(−(j−1)γ)σ2 = σ1, for every

j > 1, converge to zero and infinity respectively.

Two special cases (N=0, T=M) and (T=1, N=0,..., M-1) are of interest. In both

cases, the index t ranges from t=0 to t=M-1. In the first case, TMAP reduces to

the exponential/sum criterion for HMM’s which is the discrete and finite dimen-

sional version of the risk-sensitive L2 filter introduced by Speyer and others. The

second case would be the MAP version of the quadratic cost risk-sensitive filtering

introduced first to our best knowledge by Dey and Moore in [10]. Obviously, the

structural results obtained so far apply to these special cases.

Theorem 5.2.8 Let EX (v) be the diagonal matrix diag[exp(γρ(i, v))], i =

1, ..., NX. Then the one step TMAP decision regions are given by V̂t(σ) = i if σi ≥
σj , ∀j 6= i.
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Proof:

From the definition, we have: DT (v) = ATEX (v) and that J̄γ(σ, T ) =< σ, 1̄ >

and thus

J̄γ
v (σ, T − 1) =

1

NY

NY∑
y=1

[J̄γ(L(v, y) · σ, T )]

=
1

NY

NY∑
y=1

[J̄γ(NY ·Q(y)ATEX (v) · σ, T )]

=
NY∑
y=1

< Q(y)(ATEX (v) · σ), 1̄ >

= < (
NY∑
y=1

Q(y))(ATEX (v) · σ), 1̄ >

= < IATEX (v) · σ, 1̄ >
= < EX (v) · σ,A1̄ > = < EX (v) · σ, 1̄ > . (5.23)

A little calculation shows that given σ the above is minimized, if we set v equal

to the index of the largest component of σ, i.e., if σl is the largest component of σ

then v = l. This is precisely how the decision regions for MAP are defined.

Note that TMAP for T=1 is not reduced to MAP; although the decision regions

are the same, the information states are different. In the case of MAP, the in-

formation state is the conditional distribution, while in the case of TMAP the

information state is given by (5.7). The conditional distribution has no memory

of decisions made in the past while the TMAP’s information state does depend on

these decisions. On the other hand, when γ is very small, (5.7) becomes the un-

normalized conditional distribution. We can think of TMAP’s information state as

the conditional distribution modified by the sequence of the decisions made in the

past. This modified information state is then put through the next decision region

which itself is calculated to minimize a certain cost structure based on the aver-

aged behavior of the future sample paths: (E†[J̄γ(L(v, YNT+T−j+1) ·σ, T − j+1)]).
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How far we look into the “averaged future” is determined by T. The information

from the past is encapsulated in the information state. These ideas will become

quantified in the next sections.

Theorem 5.2.9 The value function J̄γ(σ, T − j) when ∀(x, y), qyx = 1/NY is

given by

J̄γ(σ, T − j) =

min
vT−j ,...,vT−1

<σ, EX (vT−j) ·A ·EX (vT−j+1) ·A ·EX (vT−j+2)...A ·EX (vT−1) ·1̄> .

(5.24)

Proof:

The proof is based on the same technique used in the previous theorem and

will be skipped.

In the above counter example when A = I2×2 and qyx = 1/2, by the above theorem,

we have

J̄γ(σ, T − j) = min
vT−j ,...,vT−1

< σ, EX (vT−j) · ...EX (vT−j) · 1̄ > .

If we let the number of times we choose x = 2 be n2, and likewise for x = 1,

n1 = T − n2, a little algebra will show that the total cost J̄γ(σ, 0) is given by

σ1exp{γn2}+ σ2exp{γ(T − n2)}.

By differentiation with respect to n2, a few rearrangements and taking logarithms,

the minimum cost is obtained when (modulo the integer parts)

T/2− 1

2γ
log(σ1/σ2) = n2; 0 ≤ n2 ≤ T. (5.25)
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This suggests that for large values of γ regardless of σ, we choose the two states an

approximately equal number of times. To see why this limiting behavior occurs first

let σ1 = σ2 = 1/2, then according to the decision regions, we could choose either

1 or 2. Suppose we choose 1, then the information state evolves to (σ1, σ2e
γ) =

(1/2, eγ/2). We could continue to choose v=1 and “move up” on the information

state (successive) 2-dimensional planes. Note that the upper boundary of the

transition cone is given by σ2exp(γ)+exp(γ(j−1))σ1. Thus, going forward in time,

the information state moves up while the upper boundary, σ2exp(γ) + exp(γ(j −
1))σ1, “moves down” since going forward, j−1 in the above changes to (j−1)−1 =

j − 2. Therefore, at about j/2 the information state moves out of the transition

cone and enters the upper cone where we will have to choose 2 as our estimate.

A similar argument shows that from that point on, the information state “moves

forward” on the information state (successive) 2-dimensional planes and as the

upper boundary σ2exp(γ) + exp(γ(j − 1))σ1 continues to decrease in slope, the

information state σ remains on the decision region of the state 2. Hence, the

decision sequence {1, 1, 1, ....2, 2, 2} with about the same number of 1’s and 2’s

(exactly if j is even) is a possible solution. When γ is large, every point not on the

axes falls into the transition cone and a similar argument shows that it follows the

same decision pattern.

Now consider the case T=1. In this case the transition cone is reduced for all

values of j, to the line σ1 = σ2 and a similar argument shows that for large values

of γ the decision is {1, 2, 1, 2, 1, 2...}. This simple example provides insight as to

how the two special cases differ. The decision regions for T = M > 1 are more

complex but it appears that this allows for a “smoother” solution. We will return

to this subject in section 4.
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Definition 5.2.10 A completely symmetric HMM is defined as an HMM whose

transition probability matrix is symmetric in the sense that aii = 1 − ε, aji =

ε/(NX − 1) for all j 6= i, NX = NY (so that Q is a square matrix) and qyx = q for

x = y and otherwise qyx = (1− q)/(NY − 1).

Note that the discrete metric which induces MAP (and in turn TMAP) is sym-

metric in the sense that d(x1, y1) = d(x2, y2) ∀xi 6= yi. Therefore, for a completely

symmetric HMM, all criteria upon which the determination of the value functions

at a particular σ depend are symmetrically defined and thus the value functions

are unchanged under the permutation of components of σ.

In two dimensions, a completely symmetric HMM is given by

A =

 1− ε ε

ε 1− ε

 Q =

 q 1− q

1− q q

 . (5.26)

In the above example we have set ε = 0 and q = 1/2.

Theorem 5.2.11 For a completely symmetric HMM, the value functions J̄γ(σ, T−
j)} restricted to the simplex (the set {σ|σ1 + σ2.... + σNX

= 1}) have their global

maximum at the center of the simplex, i.e., at σ1 = σ2 = ... = σNX
.

Proof:

The restriction of a concave function to a convex region is certainly concave.

The simplex is a compact set, and so the value function restricted to the simplex

is concave and has a maximum point. Let’s begin with the 1-simplex. By the

complete symmetry of the system, a value function will be symmetric with respect

to the center of the simplex, namely around the point σ1 = σ2 = 1/2. To see this

let σ = (σ1, σ2) , σ1 + σ2 = 1 be an arbitrary point on the simplex. Consider

this point and its mirror image σ
′

= (σ2, σ1) obtained from σ by a permutation
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of its components (σ1 → σ2, σ2 → σ1) which leaves the value function unchanged.

Because the value functions are concave we can write

J̄γ(1/2, T−j)=J((σ+σ
′
)/2, T−j)≥1/2{J̄γ(σ, T−j)+J̄γ(σ

′
, T−j)} = J̄γ(σ, T−j).

σ

σ

1/2σ σ

max

σ

σ2

1

σi

σi

Figure 5.3: The value functions’ global maximum under complete symmetry.

Therefore, the center of the simplex is the global maximum.

In general, for an (NX − 1)-simplex, consider NX permutations of σ

σ1 → σ2, σ2 → σ3..., σi → σi+1, σNX
→ σ1
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repeated NX times and generatingNX points σk k = 1, ..., NX. Then by symmetry

and by Jensen’s inequality:

J̄γ([σ1 + .... + σNX]/NX, T − j) ≥
1/NX · J̄γ(σ1, T − j) + ...+ 1/NX · J̄γ(σNX , T − j) = J̄γ(σ, T − j).

Let σ∗ = [σ1 + .... + σNX]/NX. Then σ∗i = 1/NX
∑l=NX

l=1 σl = 1/NX since σ is a

point of the simplex. Therefore, σ∗ is the center of the simplex and by the above

the maximal point. This completes the proof of the theorem.

In fact a stronger version of the theorem holds. We will only outline the proof.

Consider the 2-simplex which is bounded by three 1-simplices. Complete symmetry

of system implies that along these simplices and all the line segments parallel to

them, the value function has its maximum at the middle of such lines. Thus the

maximum on the whole simplex can be found by considering only the values on the

set of the mid-points of all these line segments joined at the center of the simplex.

Similarly, a (NX − 1)-simplex is bounded by NX, (NX− 2)-simplices. Along these

sub-simplices and hyper-planes parallel to them and restricted to the simplex, the

value functions have their maximum at the central points, reaching their global

maximum at the center of the (NX − 1)-simplex. Note that the maximum point

need not be unique. In fact, in the above example for even values of j the maximum

point is not unique.

If the assumption of complete symmetry is removed, Theorem 5.2.10 no longer

holds. We will show this shortly.
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5.3 Qualitative analysis of the sample paths and

the information state

5.3.1 Sample path error smoothing

It is often said that risk sensitive estimators take into account “the higher order

moments” of the cost. How do higher order moments manifest themselves in the

behavior of the estimator? To understand what risk sensitivity take into account,

we first explain what MAP does not.

Given a single observation and a single random variable, the MAP estimation is a

reasonable thing to do: minimize the measure of the set where the estimate and

the random variable disagree. But a problem arises when we consider a stochastic

process (in our case a time series). The obvious thing to do then is to minimize

the expected summation of the error functions for the whole time series. As shown

before, this reduces back to finding the MAP estimate at each instant of time.

Thus, at each instant of time our decision is not affected by our past or future

decisions. This makes the MAP estimation insensitive to the accumulation of

errors along sample paths. To see this evaluate Xk and the estimate X̂k at some

fixed value of ω ∈ Ω to produce a sample path or a realization of the respective time

series and its estimate. The sequence of decisions X̂k k = 0, 1, ...N partitions the

sample space into 2N subsets according to a binary tree with the branching criterion

Xk = X̂k or Xk 6= X̂k. Each ω belongs to exactly to one of these subsets. Some

sample paths may end up on branches along which estimation errors accumulate

for long stretches of time. Now consider TMAP with T=1 (which is the Dey-Moore

filter equivalent for MAP). The exponential function turns the sum of the error

functions into a product, the value of this product up to the last decision made for
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each fixed ω is eγ·m, where m counts the number of times an error has been made

in estimation of that particular sample path. This product is then multiplied by

either 1 or eγ > 1 depending on the next decision made based on minimizing the

measure of the error set at the present time and taking note of the errors made in

the past. Thus the errors made in the past become more uniformly distributed over

all sample paths. The information state condenses this error history and makes

the computation recursive. For this reason perhaps sample path error smoothing

estimators could be an alternative name for the risk-sensitive estimators. Dey-

Moore filter is (in a sense) a greedy algorithm which does not consider (on the

average) the accumulation of errors in the future but has the important benefit of

computational simplicity. The exponential/sum filter does so for the entire path

and in general TMAP looks into the future for T steps. In Figure 5.4, observe that

a particular sample path of our familiar example becomes more oscillatory as T

is made smaller. Our simulations show that this is a general behavior no matter

how complicated the chain: the smaller the filter size T, the bigger is the burden

of error smoothing on the T next estimates. But making T large comes at the cost

of increased computational complexity.

The underlying mechanism of all these estimators is the coupling of the estimation

errors in the product form.

5.3.2 Risk-sensitivity, information and mixing

Through the sample path perspective, we can explain the behavior of the risk-

sensitive estimators. In HMM’s all sample paths pass through a finite number of

states. We can think of the transition probabilities as determining a flow in the

system. So far the only example we have considered was a non-mixing dynamical
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σ

σ

1

2

(1/2 , 1/2 )

T=1T=8 T=4

Figure 5.4: Sample paths for a11 = a22 = 1, qxy = 1/2 starting from (1/2,1/2).
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system. The transition probabilities were set to be zero and there was no flow

between the states. This is important from the error smoothing point of view, for

as the flow passes through the states, so does the history of the errors. If sample

paths that have accumulated estimation error remain in a particular state, the

estimator will be “attracted” to the state in order to relieve the error accumulated

there. This explains the oscillatory behavior of our two state example in which

no flow between the states was allowed. On the other hand, if the transition

probabilities are non-zero this “attraction” is somewhat relieved; we have verified

through simulations that mixing indeed inhibits the oscillatory behavior. This

will also have an effect on the decision regions as we will see shortly. But if

we go through a state “too quickly”, we cannot use that state to smoothen the

error accumulated in the path effectively. Both these cases lead to certain type of

singularities in the decision regions.

The second issue is the role of information. If we expect to receive good information

about the system in the future, which will in turn reduce the error accumulation,

we are likely to be less conservative at the present about our decisions. This means

that we expect TMAP’s decision regions to become less conservative and look more

like MAP’s under increased availability of information. This too will be shown in

the following example.

We will study the decision regions for T=2 TMAP for an HMM with NX = NY = 2

and

A =

 1/2 1/2

δ 1− δ

 ; Q =

 1/2 + I 1/2− I

1/2− I 1/2 + I

 . (5.27)

The parameter I controls the availability of information. When I = 0, no informa-

tion is available (the case of pure prediction) and as I → 1/2, the HMM becomes
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perfectly observable. The parameter δ determines the transition probabilities of

the second state and in particular δ = 0 will make the Markov chain non-mixing.

As shown before for T=1, the decision regions are identical to those of MAP. First

let I = 0, then it can be shown that for T=2, the decision regions of j=2 ( the first

stage of the two step filter) are of the threshold type determined by a transition

line L with the slope m(δ) followed by the equi-partition decision regions (identical

to the decisions regions of MAP). The decision regions of the first stage are given

by σ2 < m(δ)σ1 choose 1 and if σ2 > m(δ)σ1 choose 2. The slope m(δ) is given by

m(δ) =



eγ+1
2
· 1

δeγ+1−δ
δ < 1/2;

eγ+1
2
· 1

(1−δ)eγ+δ
δ > 1/2.

Simple calculations show that the slope is always greater than or equal to 1 (only

when δ = 1/2), so that the decision region of the first state is enlarged at the

expense of the second. As expected when γ → 0, the decision regions equalize.

When γ →∞, the slope is given by

m(δ) =



1
2δ

δ < 1/2;

1
2(1−δ)

δ > 1/2.

When either δ = 0 or δ = 1, the slope becomes infinite. These are the singularities

that we mentioned earlier. The equalization of the two regions at δ = 1/2 is a

general property which holds true even when no constraint is put on the available

information as the following theorem demonstrates:

Theorem 5.3.1 Consider the HMM described by (5.1). The risk-sensitive deci-

sion regions are equalized under uniform flow: aij = 1/NX ∀(i, j). Furthermore,

TMAP reduces to MAP for every choice of T and γ.
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Proof:

Fix T and γ. Consider the calculations of the decision regions according to

(5.15). For j=1, we already saw that the decision regions are equalized. For j > 1

we can write

J̄γ(σ, T − j) = min
v∈X

{E[J̄γ(L(v, YT−j+1) · σ, T − j + 1)]}

= min
v∈X

{ 1

NY

NY∑
y=1

[J̄γ(NY ·Q(y)ATEX (v) · σ, T − j + 1)]}

= min
v∈X

{ 1

NY

NY∑
y=1

[J̄γ(NY ·Q(y){< EX (v) · σ, 1̄ >}AT · 1̄, T − j + 1)]}

= min
v∈X

{< EX (v) · σ, 1̄ > 1

NY

NY∑
y=1

[J̄γ(NY ·Q(y)AT · 1̄, T − j + 1)]}

= min
v∈X

{< EX (v) · σ, 1̄ >}{ 1

NY

NY∑
y=1

[J̄γ(NY ·Q(y)AT · 1̄, T − j + 1)]}.

The second term does not depend on v and so the minimization reduces to

min
v∈X

{< EX (v) · σ, 1̄ >}.

This shows that the decision regions are equalized. Similar techniques applied to

the evolution of the information state show that TMAP’s and MAP’s information

states, under uniform flow, are multiples of each other. This fact together with

Lemma 3.1.3 and the above result regarding the decision regions completes the

proof.

In the above result, the observation matrix Q(y) plays no role under the assump-

tion of uniform flow in the determination of the decision regions. But this is the

exception. In general, the availability of information appears to have an elegant

relation to the structure of the decision regions as the following shows.
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Proposition 5.3.2 In 4.1, let δ = 0 and I ≥ 1
2(1+e−γ )

; then the decision regions

for TMAP, T=2 are equalized.

Proof:

The proof follows from the solution of a system of simultaneous inequalities

defined by (5.15) with the constraints δ = 0 and I ≥ 1
2(1+e−γ )

. We skip the tedious

algebra.

As we mentioned earlier, this does not imply that TMAP for T=2 reduces to

MAP because the recursions governing the evolution of the information states for

the two cases are different. But if for some T the decision regions are equalized

then TMAP with filter size T does reduce to the TMAP with filter size T=1. This

would be significant both conceptually and computationally if we could determine

conditions under which the decision regions are equalized. Note in the above for

computational reasons, we had constrained the observation matrix to be symmet-

ric. This produces only a sufficient condition as stated in Proposition 5.3.2. The

right measure of the minimum quantity of information needed must be free of such

constraints ( for example, Shannon’s mutual information among the states and the

observations). Observe that in the above example, the amount of needed infor-

mation grows with increasing γ. Clearly 1
2(1+e−γ)

→ 1/2 as γ → ∞ which implies

under infinite risk, we need perfect observation to equalize the decision regions.

We proved earlier that the maximum expected error “cost to go” for a com-

pletely symmetric HMM occurs at the center of the simplex. This is not true in

general. It can be shown that the maximum cost in the first case of the above

example (I=0) occurs along the transition line L, with slope m(δ), which does not

cross the center of the simplex σ = (1/2, 1/2) unless δ = 1/2, a special case of

complete symmetry with q = ε = 1/2. When δ = 0 as γ → ∞, this maximum
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point is moved arbitrarily closer to σ = (0, 1). This is another example of what we

termed a singularity under infinite risk.

We saw that under the condition of uniform flow TMAP reduces to MAP; i.e.,

the estimated process based on the discrete metric with the assumption of uniform

flow is invariant under risk-sensitivity. We may be led to believe that perhaps for

large values of γ, risk-sensitivity tends to move the estimator toward this stable

invariance, making the estimator look more and more “uniform”. One has to be

careful about what this means. In fact, risk-sensitivity tends to increase oscillatory

behavior and not relieve it. A more conservative estimator tends to move around

the state space more rapidly from sample path to sample path and not for too long

“trust” the correctness of the sample path it may be following. It is in this sense

that the estimates are made more “uniform”.

Finally, we point out that many of the results of this chapter depend on the

properties of the discrete metric (used to define MAP) which is not the natural

metric for Rn. Therefore, our structural results do not directly illuminate the

linear-Gaussian risk-sensitive estimation case. However, the intuition gained in

the discrete finite dimensional setting about the behavior of the sample paths may

lead to a better understanding of the linear-Gaussian risk-sensitive estimator as

well.
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Chapter 6

Conclusions and future research

problems

We set out to study the risk-sensitive estimation of HMM’s from a dynamical

systems point of view. We did so by first generalizing the risk-sensitive estima-

tors to the broader class of product estimators in which risk-sensitivity parameter

was replaced by state dependent scaling functions. From this point of view, risk-

sensitive estimators are a special case of dynamic sample path error smoothing

estimators. Our theorems and examples demonstrated that this error smoothing

action manifests itself in relations among transition probabilities, risk-sensitivity

and the behavior of risk-sensitive sample paths. In chapter 3 and 4, we looked

at these relations from the perspective of the “forward dynamics”; in chapter 5,

we studied them by looking at the structure of the decision regions that in some

average sense capture the dynamics in the “backward” direction.

In chapter 5, we unified the ideas of Speyer and Dey-Moore risk-sensitive fil-

tering in the context of risk-sensitive filter banks and showed how and why the

two may coincide. The sample path error smoothing perspective enabled us to
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understand and explain the meaning of the information state in both cases and

how the “burden” of error smoothing depends on the size of the filter banks. It is

likely that interesting problems remain.

The first set of problems are the “classification” ones. For example, we conjec-

ture that if a Markov-chain is ergodic with non-zero self-transitions, the decision

regions are of the threshold type. Furthermore, the characterization of the decision

regions in terms of the coupling of information, risk-sensitivity and the transition

probabilities is incomplete and Conjecture 4.5.1 requires a proof. Going further and

deeper in these directions, in our opinion, will prove fruitful to future researchers.

A less tangible idea was demonstrated in example 3.4.4 (and there are other

similar examples we have not included for the sake of brevity): information and

“how much” of it we have depends on how “risk-conscious” and “conservative”

we are. We have not been able to formulate this problem. Roughly speaking, a

generalized notion of information is needed here which in the limit (for small risk)

must correspond to the notion of information in the sense of Shanon’s. Perhaps

solving the classification problems can show us the way.
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Appendix A

Kolmogrov’s Extension Theorem

and the change of measure

Kolmogrov’s Extension Theorem together with the Radon-Nikodym Derivative

were used to define the Girsanov’s measure in chapter 2.

Theorem A.1: (Kolmogrov’s Extension Theorem) For all τ1, ..., τk, k ∈ N and τ

the time index, let Pτ1,...,τk
be probability measures on Rnk such that

Pτσ(1),...,τσ(k)(F1 × ...× Fk) = Pτ1,...,τk
(Fσ−1(1) × ...× Fσ−1(k))

for all permutations σ on {1, 2, ..., k} and

Pτ1,...,τk
(F1 × ...× Fk) = Pτ1,...,τk,...,τk+m

(F1 × ...× Fk ×Rn × ...×Rn)

for all m ∈ N, and the set on the right-hand side has a total of k + m factors.

Then there exists a probability space (Ω,F , P ) and a stochastic process {Xτ} on

Ω into Rn such that
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Pτ1,...,τk
(F1 × ...× Fk) = P [Xτ1 ∈ F1, ..., Xτk

∈ Fk],

for all τi in the time set k ∈ N and all Borel sets Fi.

Theorem A.2: (Radon-Nikodym) If P and P † are two probability measures on a

measurable space (Ω,M) such that for each B ∈M, P (B) = 0 implies P †(B) = 0,

then there exists a nonnegative random variable Λ, such that P †(C) =
∫
C ΛdP for

all C ∈M. We write

dp†

dP
|M = Λ.

Λ is the Radon-Nikodym derivative of P † with respect to P .

Furthermore, if for each B ∈M, P †(B) = 0 implies P (B) = 0 then

dP

dp†
|M = (Λ)−1.

In Chapter 2, we let dP †
dP
| Gt+1 = Λt.A little thought should convince the reader that

the conditions of the Kolmogrov’s Extension Theorem applied to this construction

require that

∫
B

ΛtdP =
∫

B
Λt−1dP B ∈ Gt.

Also since we had assumed cij > 0 for every i and j in the observation matrix

C, the measures P † and P are absolutely continuous with respect to each other;

therefore,

dP

dp†
= (

dp†

dP
)−1

by the above.
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Appendix B

The integral characterization of

the conditional expectation and

the independence property.

The integral characterization of the conditional expectation [19] together with

Fubini’s theorem [24] can be used to show the following Theorem:

Theorem: If random variables Z and W are independent

E[f(X, g(Y ))|Y ] = E[f(X, g(Y ))] = E[f(X, g(Y ))|g(Y )].

Proof:

We will give a formal proof using Dirac’s delta function. The proof can be made

rigorous and is equivalent to the use of Fubini’s theorem.

By the integral characterization of the conditional expectation

E[f(X, g(Y ))|Y ] =
∫
f(x, g(y))dP (x, y|Y ),
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where P (x, y|Y ) is the measure defined by the indicator functions.

P (x, y|Y ) = E[IX<x,Y <y|Y ] = E[IX<x · IY <y|Y ]

= IY <yE[IX<x|Y ]

Note that IY <y as a function of y is a step function at Y, and E[IX<x|Y ] is nothing

but P (x|Y ). Therefore,

∫
f(x, g(y))dP (x, y|Y ) =

∫ ∫
f(x, g(y))δ(Y − y)dP (x|Y )

=
∫
f(x, g(Y )))dP (x|Y ).

But, if X and Y are independent

∫
f(x, g(Y ))dP (x|Y ) =

∫
f(x, g(Y ))dP (x).

This proves the first equality. The second equality follows from the fact that

functions of independent random variables are themselves independent.
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Appendix C

The Lattice Property

The lattice property is used to show that conditional expectation and the essential

infimum commute. The result is due to Striebel. We will only quote the lemma

and the results leading to it; the proofs can be found in [18].

Let (Ω,F ,P ) be a probability space and {φγ : γ ∈ Γ} a subset of L1(Ω,F ,P ) such

that φγ(ω) ≥ 0 a.s. for each γ ∈ Γ. Write

φ =
∧
γ

φγ

for the lattice infimum and θγ for the measure defined by

dθγ

dP
= φγ.

Lemma: For A ∈ F define

θ(A) = inf
n∑

i=1

θγi
(Ai),

where the infimum is taken over n, γ1, ..., γn ∈ Γ, and finite disjoint partitions

A1, ..., An of A. Then θ is a finite nonnegative measure on F .
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Lemma: Suppose, as above, that {φγ : γ ∈ Γ} is a subset of L1(Ω,F ,P ) and that

φγ(ω) ≥ 0 a.s. for each γ ∈ Γ. Then

dθ

dP
= φ =

∧
γ

φγ .

Definition: The set {φγ} ⊂ L1(Ω,F ,P ) has the ε−lattice property for ε > 0 if,

given γ1, γ2 ∈ Γ there is a γ3 ∈ Γ such that

φγ3 ≤ φγ1 ∧ φγ2 + ε a.s.

Lemma: Suppose the set {φγ : γ ∈ Γ} ⊂ L1(Ω,F ,P ) of nonnegative functions has

the ε−lattice property for every ε > 0. If θ is a measured defined above then, for

every A ∈ F ,

θ(A) = infγ θγ(A).

We can now state the lattice property:

Lemma: Suppose that G is a sub-σ-algebra of F and the set {φγ : γ ∈ Γ} ⊂
L1(Ω,F ,P ) of nonnegative functions has the ε−lattice property for every ε > 0.

Then

E[
∧
γ

φγ |G] =
∧
γ

E[φγ|G] a.s.
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