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Majorana zero modes are emergent zero-energy quasiparticle excitations in certain su-

perconducting systems that can be viewed as fractionalized or “half” electrons. These

quasiparticles obey non-Abelian braiding statistics which is one manifestation of such

half-electron character. Due to such non-Abelian braiding property, Majorana zero

mode pairs hold promise as potential qubits for topological quantum computation.

It is somewhat surprising that, at least theoretically, ordinary one-dimensional semi-

conductor systems can be induced to host such esoteric Majorana modes as edge states

if some precise experimental conditions are satisfied. Because of the relative simplicity

of material and experimental requirements to host Majorana modes, there has been a

flurry of experimental effort to realize them in semiconductor nanowire systems. While

experimental efforts have produced preliminary evidence for the presence of Majorana

zero modes in these systems, a thorough confirmation is lacking. The experimental sig-

nature in question is the presence of a zero-bias conductance-peak that, while necessary,

is not a sufficient criteria to establish presence of underlying Majorana modes. Given



the importance of Majorana braiding for topological quantum computation and skepti-

cism over presence of Majorana modes in these experimental systems, it would seem

natural to attempt braiding these putative Majorana modes in the near future. In that

case an observation of non-Abelian statistics would provide the necessary and sufficient

condition in favor of Majorana presence in the studied experimental systems.

This thesis has three distinct parts. First we assume perfect Majorana modes as

given that can be successfully braided. In this case, we calculate the diabatic error due

to finite speed of braiding when the system is coupled to a Bosonic bath. Next, we

grant that the mechanism for zero-bias conductance-peak is indeed topological, albeit

the underlying Majorana modes may be imperfect (the modes are not precisely at zero

energy). We study the interplay of dissipation and finite energy splitting of the Majo-

rana modes and study its consequence regarding the probability of successful braiding.

Lastly, we propose studying correlation between independent left and right conductance

measurements as a means to distinguish between a topological versus a non-topological

mechanism underlying the observed zero-bias conductance-peak.
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Chapter 1: Introduction

1.1 Majorana Zero Modes

In 1937, in a seminal paper Ettore Majorana introduced the eponymous Majorana equa-

tion which describes spin-1/2 charge-neutral relativistic fermions [1]. Essentially, the

Majorana equation is a real representation of the Dirac equation and hence admit purely

real solutions. Particles described by such purely real solutions are dubbed as ’Majo-

rana fermions’. Since particle and anti-particle wavefunctions are related by complex

conjugation, Majorana fermions are said to be its own anti-particle. However, no such

elementary particle has been discovered that can be described as a Majorana fermion

with certainty. Within the family of all the fermions present in the Standard Model,

neutrino remains the only possible candidate that may or may not be a Majorana par-

ticle. However beyond Standard Model, the supersymmetric framework requires Ma-

jorana fermions as super-partners to spin-0 or spin-1 Bosonic fields. Thus, the search

for elementary Majorana fermions is likely to continue within the realm of experimen-

tal high-energy physics for conceivable future. More in-depth discussion on Majorana

fermions from high-energy physics perspective can be found in Refs. [2, 3].

While the search for mentary Majorana particle remains elusive, the potential to

realize an emergent quasiparticle excitation that behaves as a Majorana fermion, in con-

densed matter systems have generated great excitement in the field in roughly the last 20

years. Majorana quasiparticle excitation often dubbed as ’Majorana Mode’ is an emer-

gent quasiparticle state that is a linear supersposition of a particle and a hole excitation.

Early pioneering work [4–9], theoretically established the existence of such Majorana

modes in various model systems. A unifying property in all such model systems is the

1
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existence of p-wave pairing that leads to a ground state described by a condensate such

as in superconductors and superfluids. To see why superconductors provide an unique

laboratory to explore Majoranas, recall that in the mean-field BCS theory of supercon-

ductivity, a quasiparticle excitation (say of energy, E > 0) is a coherent superposition

of particle and hole excitations that in general have the form

γE =
∑
p

uEp cp + vEp c
†
p, (1.1)

where all the degrees of freedom such as spin, spatial etc are subsumed in the subscript

p. However, particle-hole symmetry manifest in BCS theory guarantees for every pos-

itive energy quasiparticle operator one can always find its negative energy partner γ−E

that satisfies,

γ†E = γ−E. (1.2)

A zero energy excitation described by γE=0 = γ†E=0 is Hermitian and thus can be viewed

as a Majorana mode because such quasiparticle is its own “anti-quaisparticle”. Hence

the study of Majorana modes is essentially equivalent to the study of zero-energy quasi-

particle states of superconductors. We now present more precise arguments demonstrat-

ing the emergence of such Majorana modes in one-dimensional superconductors.

1.2 Majorana modes in 1D ideal model systems

1.2.1 A heuristic argument for existence of Majorana modes

Before presenting a more structured argument for existence of Majorana modes in a

superconductor, let us indulge in a slightly imprecise but an extremely simple argument
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FIGURE 1.1: (Left) A schematic representation of N -site one dimensional
chain looped around magnetic flux Φ.The chain is described by the Hamilto-
nian in Eq. 1.3 where the nearest neighbor hopping amplitudes are represented
by ti’s. (Top Right) A schematic plot of band structure restricted to the Bril-
louin zone for zero magnetic flux. The band is partially filled upto the chemical
potential denoted by µ. First few low-energy k states are denoted by solid red
discs. (Bottom Left) Same as above but magnetic flux being Φ = π. Again,
first few low-energy k states are denoted by solid red discs. Note that ground
state parity is odd for Φ = 0 versus being even for Φ = π.

that points towards existence of Majorana modes in one-dimensional single-band super-

conductors. Consider a one dimensional chain modeled by a tight-binding Hamiltonian,

H1D = −tn
∑
n

c†n+1cn +H.c. (1.3)

We close this chain in a loop and introduce a magnetic flux Φ (in units of flux quantum

h/e) through the loop as shown in Fig. 1.1 (left panel). Assuming a uniform hopping

amplitude tn = t for all n, we solve this system for Φ = 0 and Φ = π. For both cases

Φ = 0, π, the eigenvalues Ek are given by Ek = −2t cos(k), however, the two cases
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differ in allowed values k,

k =


2n π

N
if Φ = 0

(2n+ 1) π
N

if Φ = π

n ∈ {0, . . . N − 1}. (1.4)

Restricting the Brillouin zone to [−π, π), the electronic band defined by Ek is shown

in Fig. 1.1 (right panel). If the band is partially filled (i.e. the chemical potential µ lies

in the range −2t < µ < 2t), in the ground state, the total number of single-particle

occupied states for Φ = 0 (Φ = π) is odd (even) as shown in Fig. 1.1 (right panel).

This is a simple consequence of k = 0 being allowed (disallowed) for Φ = 0 (Φ = π)

in the spectrum. We say the ground state has odd (even) parity when an odd (even)

number of states are occupied. A superconducting term of the form ∆
∑

n c
†
nc
†
n+1+H.c.

added to the Hamiltonian in Eq. 1.3 does not change this observation, i.e. the change

of ground state parity from odd to even upon flux insertion of π holds because parity

is a good quantum number even in presence of superconductivity. However, crucially,

the superconductivity term introduces a gap in the spectrum at energy E = µ. The

flux Φ can be introduced in a tight-binding Hamiltonian by a transformation tN →

tNe
iΦ. Therefore, tN → −tN ) as flux Φ = 0 → π). Now we can imagine tN being

relatively weak with respect to the bulk hopping amplitude t, tN/t→ 0. While in doing

so we explicitly break translation invariance, let us overlook such technical subtlety

for the time-being. All we have done by making tN relatively weak compared to the

bulk hopping is to ensure that the parity change that follows as tN → −tN (which is

equivalent to flux insertion of π) must be caused entirely by the modes at sites 1 and

N respectively. Let us call these boundary modes. We now show that such boundary

modes can not be Fermionic in nature.

To facilitate a parity change there must be a state that crosses the chemical potential
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as the infinitesimal amplitude changes sign, tN → −tN . Now we analyze the supercon-

ducting Hamiltonian in the first-quantized Bogoliubov-DeGennes (BdG) picture. The

zero energy in the BdG picture corresponds to the chemical potential. Furthermore,

corresponding to each excitation in the second-quantized Hamiltonian, there is a pair of

modes related by the particle-hole symmetry in the BdG picture. The state that crosses

the chemical potential corresponds to a pair of BdG modes with energy ±δ where δ

must be infinitesimal on the account of tN being infinitesimal. Moreover, since this

pair of modes exist in the superconducting gap, their wavefunctions must be localized.

Precisely at tN = 0, there must be two zero-energy modes in the system and there are

two possibilities, either one mode is localized at each end of the wire or both modes

are localized at an end. Let us denote the ground state when tN = 0 by |G〉. For small

but finite tN it follows from first-order perturbation, 〈G|tN(c†1cN + H.c.)|G〉 ≈ δ. To

ensure this finite correction to zero-energy upon switching a finite hopping amplitude

tN between the 1st and the N th site, there must be one mode localized at each of the

open chain when tN = 0. From particle-hole symmetry it follows that a non-degenerate

end-state, zero-energy mode must be a Majorana mode. Hence, a single-band super-

conducting chain hosts Majorana edge states, with one Majorana mode being at each

end of the wire.

1.2.2 Majorana modes in spinless p-wave 1D superconductors

In this section we will use a more standard and a slightly more rigorous approach to

demonstrate presence of Majorana end states in a p-wave superconductor following the

original work of Kitaev [4]. Consider a clean one dimensional p-wave superconductor

with the lattice Hamiltonian,

H = −µ
N∑
n=1

c†ncn −
N−1∑
n=1

(
tc†ncn+1 + ∆cncn+1 + H.c.

)
. (1.5)
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FIGURE 1.2: A schematic representation of a four site p-wave superconducting
wire for open boundary condition described Eq. 1.5. (Top) The p-wave wire in
the limit ∆ = t = 0. In this limit, Majorana pairs at each site are strongly
bounded and system in a trivial state. (Bottom) The p-wave wire in the limit
µ = 0 and ∆ = t. In this limit, each Majorana mode pairs with another
Majorana mode of the neighboring site, leaving a single localized Majorana
mode at each end of the wire (denoted by the picture of Ettore Majorana). The
system is said to be the topological phase due to presence of this unbounded
pair of Majorana mode.

On each site, perform a canonical transformation on the nth fermionic excitation oper-

ators defined by,

cn =
1

2
(γ2n + iγ2n−1) , (1.6)

where, the fermionic operators satisfy standard commutation relations,

{ci, cj} = {ci, cj} = 0, {c†i , cj} = δij (1.7)

and the real so-called Majorana operators γ satisfy

γi = γ†i ; {γi, γj} = 2δij. (1.8)

In terms of Majorana operators, the Hamiltonian can be re-expressed as

H = −µ
2

N∑
n=1

(1 + iγ2nγ2n−1)− i

2

N−1∑
n=1

[(∆ + t) γ2nγ2n+1 + (∆− t) γ2n−1γ2n+2] .

(1.9)
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Here we pause to note that it is clear from the canonical transformation given in Eq. 1.6

that Majorana modes always appear in pairs. In this case, each local fermionic operators

can be thought of as a bound state of two Majoranas. However, while the mathematical

transform to trade fermionic operators for Majorana operators can always be imple-

mented, a system is said to truly host a pair of Majorana modes when the two modes

can be physically separated so as to have no wavefunction overlap among them in the

thermodynamic limit. In such case Majorana modes describe zero energy excitation.

Now we will demonstrate how this can be achieved within a model of the one dimen-

sional p-wave superconductor given in Eq. 1.9 following the Kitaev’s original work [4].

Let us analyze the Hamiltonian in the following two limits. First, consider µp = 0

and t = ∆, in which case the Hamiltonian reduces to,

H = −it
N−1∑
n=1

γ2nγ2n+1. (1.10)

In this special limit there are two unpaired Majorana modes at the end of the wire chain

as shown in the Fig. 1.2. Since these Majorana modes do not enter the Hamiltonian there

is no energy cost in exciting such modes. The excitation is best understood in terms of

Fermionic operators that can be formed out of γ1 and γ2N using the transformation given

in Eq.. 1.6,

f =
1

2
(γ1 + iγ2N) . (1.11)

The degenerate ground state of the system is characterized by the occupation number

number of the non-local fermion f , f †f = 0, 1 and the system is said to be in a topo-

logical phase.
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Now consider the limit ∆ = t = 0,

H = −iµ
N∑
n=1

γ2n−1γ2n (1.12)

In this limit Majorana mode pairs at each site are strongly coupled. There are no un-

paired Majorana modes, and the system is said to be in the non-topological phase. The

above two limiting cases are schematically described in the Fig. 1.2.

We have seen thus far that in the limiting cases discussed above, ∆ = t = 0

(µp = 0 and t = ∆) lead to the absence (presence) of unpaired Majorana modes. In

presence of the unpaired Majorana modes, the ground state is doubly degenerate. This

degeneracy is protected by the superconducting gap (ground state degeneracy can only

change by closing the gap), i.e., even though we established two distinct phases at two

special points in the parameter space, the respective phases have a finite extent in the

parameter space where the phase boundary is marked by superconducting gap-closure.

In general, if two Hamiltonians can not be continuously deformed into each other in

the parameter space without going through a gap closure, the system represented by the

two Hamiltonians are said to be in two distinct topological phases. We compute the

superconducting gap below.

With the periodic boundary condition, Hamiltonian 1.9 can be expressed in mo-

mentum space as,

H =
∑
k

(−2t cos(k)− µ)c†kck + 2∆(i sin(k)ckc−k +H.c.) (1.13)

that can be represented in terms of so-called BdG HamiltonianHk,

H =
1

2

∑
k∈BZ

C†kHkCk, Hk =

εk ∆̃∗

∆̃ −εk

 (1.14)
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FIGURE 1.3: Two types of allowed trajectories that
−→
h (k) (assuming

‖−→h (k)‖ = 1) can sweep as k is varied from 0 to π. The right (left) panel
corresponds to a path for the system in the topological (non-topological) phase.

where εk = (−2t cos(k) − µ) and ∆̃ = −i2∆ sin(k) and C†k = [c†k, c−k]. Hk can be

diagonalized to get the quasi-particle energy spectrum

E(k) = ±
√

(2t cos(k) + µ)2 + (2∆ sin(k))2. (1.15)

We find that the superconducting gap closes at 2t = ±µ. Thus we conclude that the

system is in topological phase (with unpaired Majorana modes) when −2t < µ < 2t

and in non-topological phase otherwise. This is precisely the same conclusion we drew

from our heuristic argument where we deduced that as long as the chemical potential is

in the band, a single-band superconductor must be in the topological phase.

1.3 Topology and braiding of Majorana modes

In this section we hope to convey why Majoranas are intriguing. So far we have seen

topological phase as a ground state property in 1D systems where in the topological

phase, Majorana modes are protected by a superconducting gap. And the only way to

push the system out of this phase is to close the gap. We will see that this is closely
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related to the mathematical notion of topology where in 1D the topological classifica-

tion can be studied using homotopy of curves. Relatedly, we will also see that Majorana

modes obey non-Abelian statistics which is the reason why Majorana modes have po-

tential application for topological quantum computation. A more detailed discussion of

the topics discussed in this section can be found in Refs. [10–14].

Let us expand BdG Hamiltonian (see Eq. 1.14) as a linear combination of Pauli

matrices,

Hk = −→σ · −→h (k) (1.16)

where, −→σ = σxx̂+ σyŷ+ σz ẑ and
−→
h = hxx̂+ hyŷ+ hz ẑ, σi=x,y,z being the three Pauli

matrices. Note that particle-hole symmetry obeyed by the BdG Hamiltonian, Hk =

−σxH∗−kσx induces following constraints,

hx,y(k) = −hx,y(−k) hz(k) = hz(−k). (1.17)

This property guaranteed by particle-hole symmetry ensures h(k) need to be spec-

ified on just one half of the Brillouin zone. Let us restrict ourselves to k ∈ [0, π]. The

particle-hole symmetry constraints in Eq. 1.17 strongly restricts
−→
h at k = 0, π,

−→
h (k = 0, π) = h0,π

z ẑ. (1.18)

If we scale
−→
h such that ‖−→h (k)‖ = 1, we must have h0

z, h
π
z ∈ {−1, 1}. Thus there are

two distinct topological paths that
−→
h (k) is allowed to trace on the unit sphere as k is

varied from 0 to π in the Brillouin zone, as shown in Fig. 1.3. Either
−→
h maps to the

same pole for the two end points at k = 0 and k = π (h0
z = hπz ) or it maps to two

distinct (opposite) poles for each end point (h0
z = −hπz ). In the case h0

z = hπz ,
−→
h traces
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out a contractible path as opposed to h0
z = −hπz . These two topological distinct paths

can be characterized by a topological index,

QH = sgn(h0
z · hπz ). (1.19)

Physically, Majorana modes are absent(present) in the system when Q = 1(−1) and

such a phase is called topologically trivial(non-trivial). Also note this argument breaks

down if gap closes at some k (‖−→h (k)‖ = 0). Thus, this topological phase change must

be accompanied by gap closure consistent with our earlier arguments.

Now, we will study the exchange statistics of Majorana modes. In order to do

that, first we formally introduce Fermionic parity. We have seen that Majorana modes

are zero energy excitations of a superconductor. While the mean-field superconducting

Hamiltonian (which has been used to introduce Majorana modes so far) does not con-

serve the total number of electrons, the Fermionic parity, that distinguishes odd versus

even total electrons in the superconductor, is a well-defined quantum number. Ab-

stractly, consider a superconducting ground state with N pairs of Majorana-zero-modes

(MZMs) where the Majorana modes are denoted by γ1, γ2, . . . , γ2N−1, γ2N . These Ma-

jorana modes can be pairwise combined to form Fermionic operators cn’s using Eq. 1.6.

The eigenvalue 1(−1) of the operator Pn defined by Pn ≡ 1− 2c†ncn corresponds to nth

Fermionic state being unoccupied(occupied). Therefore, the ground-state parity can be

defined by,

P =
N∏
n=1

Pn = iN
N∏
n=1

γ2N−1γ2N . (1.20)

For 2N Majorana modes, the ground state is 2N degenerate. However, since parity must

be conserved the physical degeneracy is 2N−1.
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The notion of parity conservation is useful to understand Majorana exchange. Con-

sider Majorana modes γn, γm that are to be adiabatically exchanged. The exchange must

be represented by a unitary operator U , such that,

UγmU
† = s1γn; UγnU

† = s2γm (1.21)

where, s1, s2 are real numbers satisfying s2
1 = s2

2 = 1 (this follows from reality of

Majorana operator). Furthermore, U must commute with parity

iγmγn = −s1s2iγmγn, (1.22)

which implies s1s2 = −1. A unitary operator that satisfies these properties and only

depends on γm and γn is

Um,n = e
π
4
sγmγn =

1√
2

(1 + sγnγm) (1.23)

with s = ±1. Physically, the two s values distinguish clockwise versus counter-

clockwise braiding. Indeed, using this unitary Majorana exchange operator, one can

demonstrate the non-Abelian braiding statistics that are obeyed by Majorana modes. In

order to study non-Abelian braiding, the physical ground state must be at least dou-

bly degenerate. Therefore, we consider a set of four Majorana modes. The exchange

operator, U can be represented as,

U = ei
π
4
σz (1.24)

where the Pauli matrix σz acts on the Fermionic parity qubit formed by the Majoranas

being exchanged (this can be easily seen by representing the two Majoranas that are

exchanged by σx and σy, respectively). Let the subspace consisting of four Majorana
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FIGURE 1.4: A schematic description of time-dependence of the braiding
Hamiltonian given in Eq. 1.25. A specific protocol that exchanges γz and γy
is initialized by coupling γ0 and γx at t = 0 while γz and γy are free. We
denote the coupling by

−→
B . The braiding protocol involves three back-to-back

sequences, where each sequence is a rotation of the coupling field
−→
B by π/2

about an axis while ‖−→B ‖ = 1 is held fixed. The first, second and the third se-
quence rotations in

−→
B field are about z, x and y axes as denoted by the arrows.

In this example
−→
B points along x̂ initially and returns to this initial configura-

tion after three rotation sequences.

operators γ1−4 be represented in the Fermionic qubit basis |00〉, |01〉, |10〉, |11〉, where

the first (second) qubit is formed using γ1,2 (γ3,4). It can be checked using Eq. 1.24 that

U1,2U2,3 6= U2,3U1,2. In this example, this inequality highlights the non-Abelian nature

of Majorana braiding.

While the quantum information stored in the distinct topological states of MZMs is

topologically protected from decoherence, topological quantum computation relies on
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FIGURE 1.5: A schematic diagram for braiding a pair of Majoranas using a
tri-junction (also called Y-junction). The system is initialized (a) such that γ′1,
γ1, γ′2 and γ2 are four localized Majorana modes and (γ0,γ3) Majorana pair is
paired into a Dirac fermion. Paired Majorana modes are depicted as green discs
where the non-zero pairing strength Bk in Eq. 1.25 (subscript k here is denoted
by 1, 2, 3 instead of x, y, z) is represented by pink oval. At every move an
unpaired Majorana mode is moved from one position to another. The movement
of the Majorana resulting from the move resulting in each configuration (b-d)
is shown by a dashed arrow.

manipulating the quantum information by exchanging Majorana modes with each other.

Experimental demonstration of such non-Abelian statistics using Majorana modes is a

major milestone that lies ahead in the path towards practical topological quantum com-

putation. Several theoretical proposals have been put forward to exchange Majorana-

zero-modes emergent in one-dimensional systems [15–18]. We have already seen that

Majorana-zero-modes demonstrate non-Abelian braiding statistics upon exchange. The

exchange statistics is independent of details of the protocol of exchange, as seen from
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FIGURE 1.6: (Bottom) Tri-junction (also called Y-junction) of three Cooper-
pair boxes where three overlapping Majoranas effectively create a single zero
mode γ0 where γ0 = 1√

3
(γ′1 + γ′2 + γ′3). (Top) Schematic of representation

for Majorana exchange in three steps. Colored circles represent free Majorana
modes whereas strongly coupled Majorana modes are denoted by white circles.
The system is governed by Hamiltonian in Eq. 1.25. Non-zero values of Majo-
rana coupling Bk in Eq. 1.25 (the Majorana subscript here is denoted by 1, 2, 3

instead of x, y, z as in Eq. 1.25 ) is denoted by solid line. Intermediate con-
figuration is represented by smaller diagram above each arrow where a single
Majorana is delocalized over three coupled sites. Figure adapted from Ref. [15]
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Eq. 1.24. The dynamics of Majorana exchange can be studied using the prototypical Y-

junction (also called tri-junction) architecture of four Majorana modes that is governed

by the Hamiltonian,

H = iγ0(
−→
B (t).−→γ ), (1.25)

with −→γ = (γx, γy, γz).
−→
B describes coupling among Majoranas such that there is at

least one uncoupled Majorana γi for i ∈ {x, y, z} at all times. The braiding protocol is

based on the tunneling induced transport of MZMs [16] (see Fig. 1.5) where the splitting

between pairs of MZMs is used to exchange the decoupled MZMs γy,z (see Fig. 1.4)

that are used to store quantum information. Fig. 1.4 describes a particular example of a

braiding protocol that leads to exchange of γy and γz. Since the system is isolated (apart

from the Bosonic bath), the total Fermion parity of the system is conserved throughout

the braiding protocol. Using the fact that at least one of the MZMs γx,y,z are isolated

from the rest of the MZMs at any time in the protocol, it can be shown [19] that the

two Fermion parity states remain topologically degenerate. Both the initial and final

state leave γy,z decoupled from everything else. Therefore, the conservation of Fermion

parity equates the conservation of the MZM parity iγyγz, which is used to store quantum

information, to the conservation of the of the Fermion parity of the coupled pair γ0,x.

The latter is associated with excitations of the system, so that the bit-flip error is directly

related to the rate of exciting the system out of the ground state into the excited state.

The ground and excited states are the only states in a fixed Fermion parity sector.

It must be noted that while
−→
B in Eq. 1.25 describe tunnel coupling in the protocol

described in Fig. 1.5, it might as well describe Coulomb coupling [15] tunable through

a Josephson junction flux as described in Fig. 1.6.
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FIGURE 1.7: (Left) A schematic representation of Andreev reflection. An elec-
tron incident on the superconductor with energy E less than the superconduct-
ing gap ∆ is reflected as a hole with energy −E. Physically, it can be un-
derstood as two electrons with energy E and −E from the normal lead enter
the superconductor by forming a zero-energy Cooper pair. (Right) Schematic
representation of Andreev reflection understood as a transmission phenomenon
from the electron-channel to the hole-channel of the normal lead through a
double barrier. For ordinary superconductors probability of Andreev reflection
sensitively depends on the normal lead-superconductor-contact-barrier. How-
ever, a Majorana-zero-mode at the superconductor edge acts as a zero energy
bound state that between the two barriers and hence an electron is resonantly
transmitted as hole, i.e. it allows for perfect Andreev reflection.

1.4 Experimental signature of Majorana modes

Now we would want to understand the phenomenology of emergent Majorana modes in

1D especially with regards to quasiparticle transport. A defining characteristic property

of Majorana-zero-modes is perfect resonant Andreev reflection. First, let us understand

the phenomenon of Andreev reflection in ordinary superconductors. Consider a super-

conducting Hamiltonian,

Hcont
BdG =

(
p̂2

2m
− EF

)
σz + ∆σx (1.26)

where EF is the Fermi energy. Let the superconductor be a semi-infinite chain with

one end at x = 0 and extending over x > 0. To understand low-energy quasiparticle
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scattering we will consider scattering of a right moving electron at energyEF impinging

the superconductor at x = 0,

Ψin
x<0 = eikF x

1

0

 . (1.27)

Let the scattered wavefunction in superconductor be written as Ψout
x>0 = eikF xψ. Ap-

proximating the above Hamiltonian by linearizing the momentum close the right Fermi

point (with momentum along positive x axis), we solve for ψ that satisfies Hcont
BdG,Rψ =

0, where

Hcont
BdG,R ≈ vF

(
−i ∂
∂x

)
σz + ∆σx, (1.28)

to get

ψ(x) = e
∆
vF
xσyψ(0). (1.29)

Normalization of ψ restricts ψ(0) to be proportional to negative eigenvalue of σy and

thus,

Ψout
x>0 ∝ eikF xe

− ∆
vF
x

 1

−i

 . (1.30)

This dictates the reflected wave must be of the form,

Ψout
x<0 ' eikF x

 0

−i

 . (1.31)

We observe that an incident electron is reflected back as a hole with the same momen-

tum but opposite velocity. This phenomenon is known as Andreev reflection. It is easy
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to extrapolate that in general, when an incident electron energy is within the super-

conducting gap, due to absence of propagating states in the superconductor, Andreev

reflection must generically occur. In practice a normal lead is brought in proximity to

the superconductor separated by a tunnel barrier, and the Andreev process is physically

understood as extraction of two electron from the normal lead into the superconducting

condensate as shown in Fig. 1.7 (left panel).

The analytical description of Andreev reflection presented above is an idealization.

In practice, the potential barrier between the normal lead and the superconductor sen-

sitively affects the probability of Andreev reflection. This can be understood in the

following way: Andreev reflection is essentially a transmission process of a particle

from the electron channel to the hole channel in the normal lead through a potential

double barrier. In general the probability of transmission though potential barrier is

less than one and decreases with the increase in barrier potential strength. However, a

Majorana mode presents itself as a zero-energy bound state that allows resonance trans-

mission from the electron to the hole lead. In other words, a MZM facilitates perfect

Andreev reflection at zero energy. This argument is schematically depicted in Fig. 1.7

(right panel). This fact has been rigorously demonstrated in a number of theoretical

investigations such as [20–23].

Such resonant Andreev reflection can be used as probe to detect MZMs. Exper-

imentally, conductance spectroscopy is a powerful tool to measure and characterize

transport properties of one-dimensional superconductors. Typically, it involves mea-

suring differential conductance across a normal lead-nanowire tunnel junction. The

measured differential conductance is defined as

G =
∂I

∂V
, (1.32)
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where I is the current through the normal lead and V is the voltage bias of the normal-

lead with respect to the nanowire, respectively. A useful relation derived by Blonder,

Tinkham and Klapwijk [24] relates the differential conductance G to the reflection ma-

trix amplitudes for a single channel transport,

G =
[
1− |ree|2 + |reh|2

]
G0. (1.33)

where ree (reh) is normal (Andreev) reflection amplitudes andG0 = e2/h is the conduc-

tance quantum, respectively. This relation is extremely useful as particle-hole symmetry

of the Hamiltonian can be used to deduce quite general relation that must be satisfied

by reflection matrix amplitudes and thereby imposes certain universal constraints on G.

For voltage bias within the superconducting gap, the reflection matrix,

r =

ree reh

rhe rhh

 . (1.34)

is unitary on account of the absence of extended states in the superconductor. As an

aside, note that we have represented the reflection matrix in the so-called particle-hole

basis. Unitarity of the reflection matrix implies

(reer
∗
he + rehr

∗
hh) = 0. (1.35)

For finite voltage bias V , the particle-hole constraint on the voltage-dependent reflection

matrix r(V ) takes the form τxr(V )τx = r(−V )∗. For bias V = 0, we get

r =

r∗hh r∗he

r∗eh r∗ee

 . (1.36)
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FIGURE 1.8: Schematic representation of nanowire heterostructure to engineer
a spinless superconductor. Superconductivity in induced in a semiconductor
nanowire endowed with spin-orbit coupling by a proximate s-wave supercon-
ductor. Band degeneracy is broken by an applied magnetic field parallel to the
nanowire.

Combined with the unitarity condition we arrive at the relation,

reer
∗
eh = 0. (1.37)

Thus, at exactly zero voltage, a normal lead-superconductor junction exhibits either

perfect normal reflection or perfect Andreev reflection. We have already seen that per-

fect Andreev reflection is associated with the presence of Majorana modes, therefore,

the above criterion can be exploited to deduce a scattering matrix invariant to diagnose

topological phase. In fact a basis-independent formulation of Eq. 1.37 was suggested in

Ref. [25],

Q0 = sgn(det(r)) (1.38)

where, Q0 = −1 ( Q0 = 1) corresponds to topological (non-topological) phase.
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1.5 Majorana modes in nanowire heterostructure

Thus far we have explored the existence of Majorana modes in one-dimensional p-wave

superconductiors. The crucial property that allowed Majorana modes was the presence

of a single superconducting band at the Fermi level- a requirement easily satisfied by

model 1D spinless systems, However, progression from a theoretical demonstration to

a laboratory realization of Majorana modes is hampered by one practical and one fun-

damental problem. The practical problem is that one-dimensional superconductors are

hard to engineer. Secondly there is the fundamental fact that electrons are endowed with

spin. However, one-dimensional or rather quasi one-dimensional semiconductors can

be easily grown in a laboratory. Given this, the first problem can be overcome by in-

ducing superconductivity in a one-dimensional semiconductor wire using a proximate

s-wave (spinful) superconductor. Now given a one-dimensional spinful superconduc-

tor, one can effectively simulate spinless superconductivity by separating the two spin-

bands by some energy gap. In general, even when spin is not a good quantum number,

Kramers’s theorem guarantees that every eigenstate in a system endowed with time-

reversal symmetry is doubly degenerate. This problem can be overcome by introducing

a magnetic field. This so-called Zeeman (magnetic) field lifts the spin degeneracy (and

in general lifts the Kramer’s degeneracy since the introduced magnetic field breaks the

time-reversal symmetry). The resulting nanowire Hamiltonian can be expressed as

HNW
BdG(k) = (k2/2m− µ+ kασy)τz + Vzσz + ∆τx (1.39)

The topological transition can be understood by tracking gap closure in H(k = 0) as a

function of parameters. The four eigenenergies at k = 0 are E = ±Vz ±
√
µ2 + ∆2.

Since for Vz = 0 the system must be in the non-topological phase based on the above
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arguments, we conclude that the topological transition takes place when,

Vz >
√

∆2 + µ2. (1.40)

Indeed, the existence of Majorana modes were predicted in one-dimensional heterostruc-

tures schematically represented in Fig. 1.8, where spin-orbit-coupled nanowire in a

magnetic (Zeeman) field is endowed with proximity-induced superconductivity, by sev-

eral several groups [26–29]. Further details can be found in the reviews [14, 30].

1.5.1 Experimental status of Majorana modes in nanowire proposal

There has been tremendous experimental progress towards realization of Majorana modes

using nanowire heterostructure proposal in the last 6 years [31–38]. A watershed mo-

ment in this direction was the experimental results published by the Kouwenhoven

group at Delft in 2012. In the experiment differential conductance is measured across a

tunnel barrier separating a normal lead and a semiconductor nanowire. The (semicon-

ductor) nanowire-superconductor heterostructure (as shown in Fig. 1.8) is realized by

depositing indium-arsenide (InAs) on the surface of a niobium-titanium-nitride (NbTiN)

superconductor. The scanning electron microscope image of the experimental setup is

shown in Fig. 1.9a. The key result in the work is the differential conductance mea-

surement plot shown in Fig 1.9b. The plot shows a trace of dI
dV

as function of bias

voltage V for various values of Zeeman field strength. In accordance with the theoret-

ical expectation, a zero-bias-conductance-peak (ZBCP) appears as the Zeeman field is

increased beyond a critical value. While this is encouraging we immediately see that

there are several critical deviations from the ideal theoretical expectations. Some key

such deviations are as follows. First and foremost, the ZBCP peak is nowhere close

to the quantized value of 2e2/h expected from perfect Andreev reflection. In fact, the
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FIGURE 1.9: Experiment by Kouwenhoven group at Delft based on the
nanowire proposal. (a) Scanning electron microscope image of the experimen-
tal setup. An InAs semiconductor nanowire is placed in contact with normal-
metal (denoted by N) and superconducting (denoted by S) electrodes as shown.
The gates labelled 1-4 are used to tune chemical potential in the nanowire. The
tunnel-barrier is shown in green. (b) Differential conductance ( dI

dV
) as a func-

tion of bias voltage for varying magnetic field strengths (0-490 mT). The traces
for different magnetic fields are offset for clarity. (c) dI

dV
vs V as a function

of angle of the magnetic field where the magnetic field is perpendicular to the
spin-orbit-coupling (SOC) direction at angle=0, π and parallel to the SOC di-
rection at angle=π

2
, 3π

2
. (d) Differential conductance as a function of angle of

the magnetic field while magnetic field is restricted in the plane perpendicular
to the SOC direction. Figure adapted from Ref. [31]

.
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suppression is close to a factor of 10 from the expected value. Second, the induced

superconducting gap is not reflected in the conductance plot. This feature which is uni-

versally present in all subsequent experiments to some degree is commonly known as

the “soft gap” problem. Theoretically, when the voltage bias is within the supercon-

ducting gap, the conductance is expected to be extremely suppressed in the tunneling

regime and as the bias is increased further, the differential conductance attains finite

values once the bias voltage is within the bulk superconducting spectrum. This feature

is manifestly absent in the experimental result. Third, as a function of the Zeeman field,

the ZBCP disappears again as the magnetic field field is increased beyond 400 mT.

Various theoretical studies have connected the observed deviations from the ideal

expectations in the topological phase to certain practical imperfections of an experi-

mental setup [39–43]. The finite length of nanowire means that the Majorana modes are

separated over finite distance. The resulting wavefunction overlap splits the Majorana

modes away from ideal zero energy. Absence of such Majorana splitting signature in the

experimental results suggest that the dissipative broadening is greater than the Majorana

splitting. Indeed, in theoretical simulations, dissipative and thermal broadening effects

have been shown to affect the height and width of the ZBCP [41]. On the other hand,

the “soft gap” feature (“V” shaped region in Fig. 1.9b) can be understood by invoking

the fact that disorder (which must invariably be present in any realistic system) induces

subgap states. However, disorder alone can not be a satisfactory explanation because the

soft gap feature is present at zero magnetic field as well. Since time-reversal symmetry

is restored at zero magnetic field, Anderson’s theorem protects the clean gap against the

effects of disorder [44]. As an alternative, hybridization between the nanowire and the

metallic was posited as a mechanism for the soft gap feature in Ref. [42].

On the other hand, non-topological mechanisms have been put forward to explain

the appearance of ZBCP [45–50]. In the presence of strong disorder, it was shown in
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Ref [40] that a ZBCP can be induced even when the system is in the non-topological

regime. Another possible alternative candidate for producing zero bias conductance

peaks is conventional zero-energy Andreev states. In fact, in superconducting systems

where spin rotation symmetry is broken by spin-orbit coupling and time-reversal sym-

metry is broken by the magnetic field are in symmetry class D [51] and show a zero en-

ergy peak in the disorder-averaged density of states [49]. For superconducting systems

with a large number of channels in contact with a lead, this peak in the disorder aver-

aged density of states evolves into a weak anti-localization ZBCP [52, 53]. The states

that contribute to the zero-energy peak in class D [54] superconductors arise from the

absence of avoided crossings between Andreev states crossing each other at zero energy.

Such states split in energy linearly as a function of magnetic field, leading to an X-type

resonance as opposed to MZMs that remain at zero energy over a range of magnetic

field forming a Y-type resonance [55]. Unfortunately, coupling to a normal lead can

cause conventional Andreev states to show a Y-type behavior as a function of magnetic

field similar to the ZBCP from MZMs [55]. Liu et al [48] have used detailed transport

calculations for realistic parameters corresponding to disordered InSb nanowires to ar-

gue that a ZBCP, which is qualitatively as robust as the ZBCP seen in experiments [31],

can occur in the non-topological regime. In another study, by computing the topological

invariant in the presence of disorder Adagidelli et al [56] have shown that disorder can

transform non-topological regions of parameter space into topological regions. In the

wake of such competing mechanisms to interpret the experimental results, we require

an experimental protocol that can truly distinguish whether or not the experimental sig-

nature and particularly the zero-bias peak is due to presence of underlying Majorana

modes. We propose one such protocol in chapter 4.

If indeed the ZBCP signature in the nanowire heterostructure is associated with the
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topological phase, the underlying Majorana modes are expected to be imperfect (Majo-

rana modes may be split) because of various non-idealities in the system (e.g. disorder,

temperature, tunnel coupling to the environment, finite wire length, Majorana splitting,

etc.) and thus produce a ZBCP which is highly suppressed (and broadened) compared

to the canonically quantized value of 2e2/h [21, 42, 43, 57, 58]. Due to potential appli-

cation of non-Abelian braiding properties of Majorana modes in topological quantum

computation, the immediate question then is whether (or perhaps, to what extent) such

imperfect almost-MZMs would have intrinsic non-Abelian braiding properties possibly

showing up in a (future) experiment. In the absence of a braiding experiment to directly

observe non-Abelian statistics for Majorana exchange at present, we are left to spec-

ulate on the extent to which non-Abelian statistics would be observed when nanowire

MZMs are braided based on the only available experimental signal for their existence,

i.e., ZBCP. It is then prudent to ask if we can relate the observed (non-ideal) character-

istics of the ZBCP, i.e. height and width of the peak, to the topological content of the

approximate MZMs. We address this question in chapter 3.

1.6 Outline of the thesis

Majorana mode based topological qubits are potentially subject to diabatic errors that in

principle can limit the utility of topological quantum computation. In chapter 2, diabatic

errors in Majorana-based topological Y-junction that are coupled to a Bosonic bath are

studied in the Markovian approximation. From the study it is found analytically that in

the absence of a bath, the error rate can be made exponentially small in the braiding time

only for completely smooth pulse shapes. Thus, pristine topological systems can reach

exponentially small errors even for finite braid times. The presence of a Markovian

bath is found to eliminate this exponential scaling of error to a power-law scaling as

T−2 with T being the braiding time. Thus, coupling of topological systems to Bosonic
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baths can lead to powerlaw in braiding time diabatic errors that might limit the speed of

topologically protected operations.

In chapter 3, we consider a simple conceptual question with respect to Majorana

zero modes in semiconductor nanowires: Can the measured non-ideal values of the

zero-bias-conductance-peak in the tunneling experiments be used as a characteristic to

predict the underlying topological nature of the proximity induced nanowire supercon-

ductivity? In that chapter, we define and calculate the topological visibility, which is a

variation of the topological invariant associated with the scattering matrix of the system

as well as the zero-bias-conductance-peak heights in the tunneling measurements, in

the presence of dissipative broadening, using precisely the same realistic nanowire pa-

rameters to connect the topological invariants with the zero bias tunneling conductance

values. This dissipative broadening is present in both (the existing) tunneling measure-

ments and also (any future) braiding experiments as an inevitable consequence of a finite

braiding time. The connection between the topological visibility and the conductance

allows us to obtain the visibility of realistic braiding experiments in nanowires, and to

conclude that the current experimentally accessible systems with non-ideal zero bias

conductance peaks may indeed manifest (with rather low visibility) non-Abelian statis-

tics for the MZMs. It turns out that a large (small) superconducting gap (Majorana peak

splitting) is essential for the manifestation of the non-Abelian braiding statistics, and in

particular, a zero bias conductance value of around half the ideal quantized Majorana

value should be sufficient for the manifestation of non-Abelian statistics in experimental

nanowires. We will find that the topological transition associated with the emergence

of MZMs in finite nanowires is always a crossover (akin to a quantum phase transition

at finite temperature) requiring the presence of dissipative broadening (which must be

larger than the Majorana energy splitting in the system) in the system. For braiding, this

dissipation is supplied by the finite speed of the braiding process itself which must be
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diabatic in any real experiment.

We have already discussed that the mere presence of a zero bias conductance peak

in tunneling conductance experiments on nanowire heterostructure is not sufficient to

establish presence of Majorana modes even though it is a necessary signature for their

presence. However, in such experiments, the zero bias conductance peak, similar to that

predicted to arise from Majorana modes, appears above a critical strength of magnetic

field. It is shown in chapter 4 that the appearance of this zero bias peak from Majo-

rana modes should be correlated between the ends of the wire. Such correlation is not

likely to occur in non-topological one dimensional systems and can be used to distin-

guish Majorana modes from conventional zero energy peaks arising due non-topological

mechanisms.



Chapter 2: Diabatic errors in braiding with Bosonic bath

Most of the studies regarding the possibility of exponentially small error in topological

qubits realized from MZMs have been in the equilibrium phase. A less studied question

is the protection of quantum information stored in MZMs to diabatic errors resulting

from the finite speed of operations [59–62]. Specifically, one might worry that since the

topological phase of matter is a ground state property, finite gate speed might have an

effect of taking the system out of the ground state in a way that introduces errors. This

issue has been raised in some studies of the dynamics of braiding [62] that suggest the

use of a measurement based protocol as a possible way to avoid such diabatic errors. In

contrast key-board based braiding protocols [17] seem to reduce some of the diabatic

errors and find error rates that scale exponentially in the rate of the process [18, 63].

Another potentially critical ingredient in MZM braiding is the interaction of the MZMs

with a Bosonic bath. While the effects of a Bosonic bath on stationary MZMs have

been studied [64–67], its effect of diabatic braiding have been not been investigated until

recently [63] (also see Ref. [68]) where the combined effect of (Bosonic) environmental

noise and diabatic braiding is found to result in powerlaw scaling errors even for the

keyboard-like braiding schemes [63].

In this chapter we focus on the question of diabatic errors in nominally the sim-

plest braiding protocol in a Y-junction type Majorana architecture coupled to a Bosonic

bath. We introduced the Y-junction and the associated Majorana braiding Hamiltonian

in Sec. 1.3 (see Fig. 1.4). We will show that the system in Fig. 1.4 is topologically

protected against dephasing errors in the Fermion parity basis. Therefore the problem

30
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of bit-flip errors in the system in Fig. 1.4 can be mapped entirely to the relatively well-

studied problem of diabatic errors for a spin in a time-dependent magnetic field (see for

e.g. [69, 70]).

Despite the mapping of the system in Fig. 1.4 to a spin in a magnetic field, the

topological nature of the set-up leads to certain unique features when considering in-

teractions of the system with a Bosonic bath. Microscopically, we assume the Bosonic

bath couples to the spin as a magnetic field noise similar to the classic spin-Boson

model [71, 72]. To simplify our treatment, we assume that the coupling to the Bosonic

bath is weak compared to temperature (much smaller than the gap) so that the bath can

be modeled within the Markovian approximation using the Davies prescription [73, 74].

However, unlike a conventional spin, the vanishing of a component of the magnetic field

also implies a vanishing of the noise. This is because such a vanishing of a component

of the magnetic field is assumed to occur because of isolation of one of the MZMs

from the rest of the system. This leads to conservation of the associated MZM opera-

tor, which in turn leads to conservation of the associated excitation. Specifically, this

means that for the setup in Fig. 1.4, the Bosonic bath is forced to decouple from the

topologically protected quantum information at the end of the process. However, this

also means that any excitation generated during the dynamics of the effective magnetic

field cannot relax away at the end of the process. This is in contrast to the dynamics

in the spin-Boson model, where the system in contact with a zero-temperature Bosonic

bath would always relax back to the ground state once the magnetic field becomes static

at the end of the process. The absence of such relaxation leads to the a finite excitation

probability in the braiding set-up in Fig. 1.4, which leads to the possibility of the bit-flip

error.

Motivated by the mapping of the set-up of Fig. 1.4 to a spin in a magnetic field,

in this chapter we study the probability of excitation of a spin in a time-dependent
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magnetic field that is coupled to a Bosonic bath. The coupling to the Bosonic bath is

assumed to be small enough so that it can be studied within the Markovian approxi-

mation using the Davies prescription [73, 74]. This leads to a time-dependent master

equation which is further reduced to a Bloch equation describing spin-1/2 particles with

relaxation and dephasing [74, 75]. To simplify the parameter space of possibilities, we

assume that the temperature is low enough so that thermal excitation can be ignored. We

show analytically that the excitation probability in such as spin-system (corresponding

to the error rate in Fig. 1.4) vanishes only polynomially as the time, T , within which the

braid in completed.

2.1 Braiding Hamiltonian and Bosonic bath

Given a system coupled to heat bath, the master equation relates time evolution of

the system density matrix to the system Hamiltonian and a set of operators commonly

known as jump operators [75]. We begin this section with the description of the Majo-

rana braiding Hamiltonian followed by an outline of the master equation that describes

the dynamics of the Majorana (braiding) system coupled to a bath. We conclude this

section by writing the master equation in its equivalent Bloch equation form that simul-

taneously describes dynamics of a spin-1/2 system coupled to thermal bath.

2.1.1 Braiding Hamiltonian

Let us rewrite the braiding Hamiltonian introduced in Eq. 1.25,

H = iγ0(
−→
B (t).−→γ ), (2.1)
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where, −→γ = (γx, γy, γz).
−→
B describes coupling among Majoranas such that there is at

least one uncoupled Majorana γi for i ∈ {x, y, z} at all times.

It is convenient to express Majorana operators in terms of Pauli matrices. Using

the definitions,

γx = σxτx ; γy = σyτx

γz = σzτx ; γ0 = τy, (2.2)

(where τ and σ are two sets of Pauli matrices) the Hamiltonian in Eq. 2.1 can be rewrit-

ten as,

H =
−→
B (t).−→σ τz. (2.3)

The Hamiltonian commutes with the fermionic parity operator P̂ , [H, P̂ ] = 0 with

P̂ = γ0γxγyγz = τz. If some component Ba of
−→
B is zero, then σaτx commutes with

the Hamiltonian but anti-commutes with P̂ , which in turn commutes with H . Therefore

there is a two-fold degeneracy for the two values of P̂ . Since parity is conserved,

the closed-system Hamiltonian dynamics is effectively captured by the reduced 2-level

Hamiltonian,

H2Level =
−→
B (t).−→σ . (2.4)

The general time-dependence is visualized in Fig. 1.4. The geometric arrangement

of the Majoranas depicted in the cartoon is solely for elucidation and has no bearing on

actual arrangement of Majoranas in a braiding experiment. The time evolution involves
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a series of three back-to-back sequences with ‖−→B ‖ = 1 throughout. Initially,
−→
B points

along positive-x axis,
−→
B (t = 0) = (1, 0, 0). In the first sequence

−→
B is rotated about

the z-axis until
−→
B points along positive y-axis at time t = T ,

−→
B (t = T ) = (0, 1, 0).

In the second sequence
−→
B is rotated about the x-axis until time t = 2T such that,

−→
B (t = 2T ) = (0, 0, 1). and finally

−→
B is rotated about the y-axis until time t = 3T

such that,
−→
B (t = 3T ) = (1, 0, 0). A time-cycle represented by these three sequences,

H(t = 0) = H(t = 3T ), results in exchange of Majoranas γy and γz. Note that

γz, γx and γy commute with the Hamiltonian during first, second and the third sequence,

respectively.

For each sequence, the diabatic drive must be slow to prevent undesired excitations

in the system. If the diabatic drive is infinitely slow, the adiabatic theorem ensures

that system remains in the ground state. For a diabatic drive over a finite T , typically,

these undesirable excitations are small as long as T is much greater than the ground

state energy gap. However, for fixed T , the deviation from the adiabatic result or the

diabatic correction depends on precise time-dependence of the diabatic drive. A sensible

requirement for the diabatic drive is the absence of discontinuities as a function of time.

In other words, we require the diabatic drive to be completely smooth as a function of

time (known as C∞ function in the mathematics literature). To be specific, let us focus

on the diabatic drive of the first sequence of the braiding protocol as discussed above.

The
−→
B field rotates about z-axis, from pointing along x-axis to ending along y-axis in

time, t ∈ [0, T ]. The C∞ conditions impose all derivatives of
−→
B (t) to vanish at end

points, i.e. at t = 0, T . Since the time dependence just involves rotation of the
−→
B field,

it can be captured by an angular variable. Specifically, consider

θ(s) =
π
∫ s

0
ds′e−1/[s′(1−s′)]

2
∫ 1

0
ds′e−1/[s′(1−s′)]

, s ∈ [0, 1] (2.5)
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where s is the dimensionless time parameter,

s ≡ t/T. (2.6)

The coupling field is given by

Bx =


cos(θ(s)), 0 ≤ s < 1

0, 1 ≤ s < 2

sin(θ(s− 2)), 2 ≤ s ≤ 3

By =


sin(θ(s)), 0 ≤ s < 1

cos(θ(s− 1)), 1 ≤ s < 2

0, 2 ≤ s ≤ 3

Bz =


0, 0 ≤ s < 1

sin(θ(s− 1)), 1 ≤ s < 2

cos(θ(s− 2)), 2 ≤ s ≤ 3.

(2.7)

The three components of the coupling
−→
B (t) (i.e. Bx, By and Bz) are plotted as a

function scaled-time for s in the Fig. 2.1. Note that for each drive-sequence all time-

derivatives of
−→
B vanish at the end points owing to functional form of θ given in Eq. 2.5.

Next, we couple our system to a Bosonic bath and introduce the master equation

governing the dynamics of density matrix of the system.
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FIGURE 2.1: Plot of different components of Majorana coupling field (Bi ; i ∈
{x, y, z}) appearing in Eq. 2.1 as a function of scaled-time for s = t/T as
described by Eq. 2.7

2.1.2 Master Equation

We couple the system to a thermal Bosonic bath and allow for the most general parity-

conserving system-bath interaction. In the previous section we showed that as a conse-

quence of parity conservation, the dynamics under the influence of the braiding Hamil-

tonian (Eq. 2.3) is captured by a two-level Hamiltonian (Eq. 2.4). We expect a similar

simplification to hold for the master equation provided the system, the bath and system-

bath interaction preserves parity. This is indeed the case as discussed in Appendix A.

Therefore, henceforth in the manuscript we solely use on Eq. 2.4 to describe the system

Hamiltonian in lieu of Eq. 2.3.

Following the prescription introduced by Davies [73] we assume weak system-bath
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coupling (Born approximation) and that the bath is memory-less (Markov approxima-

tion). The memory-less assumption means that the time scales of interest are much

larger than time scales over which bath correlations decay. With the above assump-

tions, the master equation can be expressed in the Lindblad form, i.e. as a time-local

differential equation that preserves positivity of the density matrix [73, 74]. Let the total

Hamiltonian describing a system interacting with a Bosonic bath be written as,

HT = H2level +HSB +HB, (2.8)

whereH2level, HB, HSB are system Hamiltonian, Bosonic-bath Hamiltonian and Hamil-

tonian describing system-bath coupling, respectively. Let the system-bath Hamiltonian

be given by,

HSB =
∑
k

ÂkΓ̂k, (2.9)

where Âk and Γ̂k are system and bath operators, respectively, satisfying Â†k = Âk and

Γ̂†k = Γ̂k. Represent the projection operator to an eigenspace spanned by eigenstates of

HS with eigenvalues e by Π(e). Define

Jk(ν) ≡
∑

e′−e=ν

Π(e)ÂkΠ(e′), (2.10)

where, the sum runs over all energy eigenvalues e and e′. With this definition it follows

that

[H2level, Jk(ν)] = −νJk(ν); [H2level, J
†
k(ν)] = νJk(ν)

[H2level, J
†
k(ν)Jk(ν)] = 0; J†k(ν) = Jk(−ν) (2.11)



Chapter 2 38

and

∑
ν

Jk(ν) = Âk

=⇒ HSB =
∑
k,ν

Jk(ν)Γ̂k. (2.12)

Clearly, the jump-operators induce transitions among the energy levels of the system

Hamiltonian. For a two-level system the jump operators generically act as agents of

• Excitation: transitioning the system from the ground state to the excited state.

• Relaxation: transitioning the system from the excited state to the ground state.

• Dephasing: system decoheres neither gaining nor loosing energy.

Note that the jump operators are time dependent, where the time dependence is inher-

ited from the time-dependence of Π(e) (projection operator is time-dependent because

H2level is time-dependent) and Âk operators in Eq. 2.10. Thus, let us denote the jump

operators by Jνk (t), where time dependence is shown explicitly. Using Eq. 2.12, the

master equation within the Born-Markov approximation reduces to,

ρ̇S(t) = −i[H2level, ρS(t)] +D(ρS(t)), (2.13)

where,

D(ρS(t)) =
∑
ν,i

Jνi (t)ρ(t)Jν†i (t)ηi(ν)− 1

2
ηi(ν){Jνi (t)†Jνi (t), ρS(t)}, (2.14)

with ηk(ν) = Re
∫∞
−∞ dse

−iνs
〈

Γ̂†k(s)Γ̂k(0)
〉
, where, 〈· · · 〉 stand for trB(· · · ρB).
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Now we specify the system-bath coupling. Let Âi = siBiσi in Eq. 2.9, where,

si, Bi, σi is the coupling-strength, ith component of
−→
B and the ith Pauli matrix, respec-

tively for i ∈ {x, y, z}. This form of system-bath coupling ensures that the bath-induced

relaxation and excitation vanish whenever two Majoranas are decoupled in the braiding

scheme (this happens whenever
−→
B is parallel to either x, y or z axis, e.g. when

−→
B = x̂,

γy and γz are free). Using Eq. 2.10, jump operators are expressed as ,

Jνi (t) = siai(t)Bi(t)|1(t)〉〈0(t)|; J−νi = Jν†i

Jν=0
i = siBi(t)(a

0
i (t)|0(t)〉〈0(t)|+ a1

i (t)|1(t)〉〈1(t)|), (2.15)

where

ai(t) = 〈1(t)|σi|0(t)〉

a0
i (t) = 〈0(t)|σi|0(t)〉

a1
i (t) = 〈1(t)|σi|1(t)〉, (2.16)

si being the time-independent system-bath coupling strength with i ∈ {x, y, z} and |0〉

and |1〉 denote the ground and the excited state, respectively.

We wish to focus on only those bath effects that arise due to time dependence of

the Hamiltonian. In other words we want to explicitly avoid any bath-induced effect

that does not vanish in the adiabatic limit, provided the system is initialized in the

ground state. The only such environmental effect is thermal excitation associated with

Jν=2 (energy gap above ground state is 2 for ‖−→B ‖ = 1) operator. We explicitly set

temperature to zero to completely suppress these thermal excitations or equivalently set
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the jump operator coefficient η (see Eq. 2.14) with excitation energy ν = 2,

η(ν = 2) = 0.

(2.17)

Since the braiding process involves a sequence of three identical clockwise π/2

rotations of
−→
B along ẑ, x̂ and ŷ, axes respectively, as shown in Fig. 1.4, we focus on

the first sequence, where
−→
B is restricted to XY plane without loss of generality, setting

Bz = 0. The influence of the bath is captured by the strength of the system-bath cou-

plings (captured by sx and sy), the relaxation strength governed by η(ν = −2) (since

the gap in the system is 2) and dephasing strength governed by η(ν = 0). Since the

time-dependence of the Hamiltonian does not affect the gap in the system η(ν = −2)

and η(ν = 0) are fixed parameters determined by entirely by the microscopic properties

of the bath Hamiltonian. Henceforth, for the sake of brevity, we relabel the relax-

ation strength, η(ν = −2) and the dephasing strength, η(ν = 0) with new symbols,

η(ν = −2) ≡ η and η(ν = 0) ≡ η0.

2.1.3 Bloch equation

The master equation (Eq. 2.13) describing the time evolution of ρS (which is a den-

sity matrix of a two-level system) can be exchanged in favor of a differential equation

describing time evolution of the vector R ≡ (rx, ry, rz) defined by

ρS(t) =
1

2
[rx(t)σx + ry(t)σy + rz(t)σz + 1)] (2.18)
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The resulting Bloch equation, in terms of the scaled time parameter (Eq. 2.6), is

given by,

ε
−̇→
R = 2[

−→
B ×−→R + (α− β)

−→
B × (

−→
B ×−→R )− 2β(

−→
B +

−→
R )] (2.19)

where,

β(s) =
1

4
F (s)η; (effective relaxation)

α(s) = F 0(s)η0; (effective dephasing) (2.20)

with,

F = s2
xB

2
y(s)B

2
x(s) + s2

yB
2
x(s)B

2
y(s)

F 0 = s2
xB

4
x(s) + s2

yB
4
y(s) (2.21)

and ε = 1/T . Equivalently, the Bloch equation can be expressed as,

ε
d

ds
R = MR + 4β(R0 −R) (2.22)

with, R0(s) ≡ −−→B (s) being a null vector of M , M = 2(A + S) and S = (α − β)A2,

where

A =


0 0 By

0 0 −Bx

−By Bx 0

 (2.23)
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2.2 Adiabatic expansion for Bloch Equation

We focus on the first sequence of the braiding process and calculate the diabatic error

incurred in the process which involves rotating
−→
B along ẑ axis by π/2 in the clockwise

direction from the initial orientation along x̂ to final orientation along ŷ. The system

is initialized in the ground state of H2Level to which the corresponding Bloch vector is

R(s = 0) = −−→B (s = 0) = (−1, 0, 0). For ε = 0,

R(s) = R0(s) (2.24)

is the solution to the Bloch equation consistent with the initial condition. Clearly, for

small but finite ε, the solution to the Bloch equation can be expressed as an ε-dependent

correction to R0. Since the system is initialized with R(0) = R0(0), let us call its

time-evolutionR(s) (satisfying the Bloch equation), the time-evolved Bloch zero-vector

(TBZV). Given that R(0) = R0(0), the diabatic error E is defined as the deviation of

TBZV, R from the vector R0 corresponding to the instantaneous ground state of H2Level

at the end of the diabatic drive at s = 1,

E ≡ ‖R(1)−R0(1)‖. (2.25)

We now show that the Bloch vector R(s), can be solved perturbatively in powers

of ε in the absence of relaxation (Eq. 2.20), η = 0. We defer our analysis for finite

relaxation to Sec. 2.4. The equation of motion for R in absence of relaxation (but

potentially finite dephasing) is written as

εṘ = MR. (2.26)
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This equation can be solved by a power series ansatz,

R(s) = R0(s) + εR1(s) + ε2R2(s) . . . (2.27)

Substituting the above ansatz in Eq. 2.26 and equating both sides of the equation at each

order in ε, we formally solve for jth order correction to R0(s) for R(s) (see App. B for

details),

Rj = fj−1R0 +M−1Ṙj−1, (2.28)

with fj−1(s) given by

fj−1(s) =

∫ s

0

ds ṘT
0M

−1Ṙj−1. (2.29)

The convergence of the series for Rj is shown in App. B.

Before discussing the solution to Bloch’s equation in presence of system-bath cou-

pling contributing finite dephasing, we pause to study a limiting case. We study our

system in absence of system-bath coupling, η = η0 = 0 (consequently α = β = 0), de-

scribed by the the Bloch equation (Eq. 2.22). Note that in this limit, Eq. 2.26 reduces to

εṘ = 2AR. Therefore, in this limit we use Eq. 2.27 and 2.28 to compute a convergent

power-series of R provided we set M = 2A. By considering the power-series to any

power of epsilon, we can show an error bound related to the residual terms (Eq. B.16 in

App. B),

E ≡ ‖R(1)−R0(1)‖ ≤ 2εM
∫ 1

0

ds′
∥∥∥ṘM

∥∥∥
=⇒ E(ε)/εn = 0 as ε→ 0∀n ∈ N. (2.30)
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This result suggests an exponential dependence of E on total diabatic time T . In Fig. 2.2,

we obtain E as a function T by numerically solving Eq. 2.22 for η = η0 = 0. Further-

more, the numerical result obtained here illustrates the precise dependence of E on T ,

E = ‖R(1)−R0(1)‖ ∼ e−
√
T . (2.31)

This is completely consistent with the analytical result in Eq. 2.30, originally derived

in Ref. [76], which suggests an exponential-like dependence of diabatic error E on T .

In the remaining sections we consider how this error E is modified in the presence of a

bath.

2.3 Purely decohering system-bath coupling

Consider the case of vanishing relaxation, η = 0 (consequently β = 0) but finite dephas-

ing η0 6= 0. The Bloch vectorR(s) is solved using the identificationM = 2(A+αA2) in

Eq. 2.28. As shown in App. B, the smoothness criterion on the diabatic drive that trans-

lates to all derivatives of M vanishing at s = 1 can be exploited to show R(1) ‖ R0(1)

up to exponentially small deviations of the order e−
√
T (this precise exponential depen-

dence follows from the numerical result of the previous section). This together with

unitarity was sufficient to constrain the result for the isolated system. However, in the

presence of decoherence one needs to consider the change in magnitude of R(1). Pro-

jecting R(1) on R0(1) (see Eq. 2.28) gives

R(1) = fβ=0(1)R0(1) (2.32)
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FIGURE 2.2: Numerical plot of log of norm of difference between time evolved
and instantaneous Bloch zero-vector at scaled time s = 1 as a function of

√
T

for strength sx = sy = 0 obtained using Eq. 2.22. The system is initialized in
the ground state of H2Level or equivalently the initial value of R(s = 0) in the
Bloch equation is set as R0(0) = −−→B (0). The plot shows exponential decay
in E as a function of total time T when system-bath coupling is zero consistent
with the result derived in Appendix B. Specifically, E = ‖R(1) − R0(1)‖ ∼
e−
√
T .

where fβ=0(1) ≡ f(s = 1)|β=0 is given by a series expansion

f(s) = 1 + εf0(s) + ε2f1(s) + . . . , (2.33)

and fj(s) is evaluated using Eq. 2.29 assuming β = 0. We now compute the diabatic

error:

E = ‖R0(1)‖
∣∣(1− fβ=0)

∣∣ ≈ −εfβ=0
0 (1), (2.34)
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FIGURE 2.3: Plot of E as a function of time T for different values of effective
dephasing strength α characterized by values of sx = sy and absence of effec-
tive relaxation, β = 0 (see Eq. 2.20). Relaxation and dephasing parameters, η
and η0, that solely depend on bath Hamiltonian are both set to η = η0 = 1. The
solid line is obtained by solving the Bloch equation (Eq. 2.26) and is compared
against (dashed curve) theoretical bound given by Eq. 2.34,2.35, i.e., dashed
curve is calculated value of log[(1/T )fβ=0

0 (1)] using the expression given in
Eq. 2.35. The low-T region characterized by the oscillatory section of the
curves are independent of system-bath coupling strength and follows closely
the numerical values obtained by solving the Bloch equation (Eq. 2.22) in ab-
sence of bath denoted by the dashed-brown-colored curve.

where using Eq. 2.29 one can calculate

fβ=0
0 (1) = −

∫ 1

0

αω2

2(1 + α2)
(2.35)

Note that this term (as well as the other powers of ε) would vanish in the absence of a

bath (α = 0), restoring the exponential estimate in the previous section.

In Fig. 2.3, we plot log ε|fβ=0
0 (1)| as a function of log(T ) for different system-bath

coupling strengths and compare it to the numerical curve obtained by solving Eq. 2.26.
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We find that numerically exact calculation of E is well captured (in the asymptotic

limit of large T) by the approximate diabatic error (Eq. 2.34) obtained for truncation at

first-order in ε, as Fig. 2.3 clearly shows. The small-T region is marked by the highly

oscillatory section of the curves, where E appears to be independent of the system-bath

coupling strength, as evidenced by complete overlap of the curves in the oscillatory

region. Indeed, this is precisely the exponential behavior obtained in the absence of a

thermal bath. For a given system-bath coupling strength, the transition from an expo-

nential behavior to a power-law occurs rather abruptly at the intersection of the curve

representing log E calculated in absence of bath (using Eq. 2.31) and the curve repre-

senting analytically calculated diabatic error for purely decohering bath given by the

logarithm of the formula in Eq. 2.34.

2.4 General system-bath coupling

We now consider the error E in the presence of finite relaxation. In order to solve for R

in Eq. 2.19 for the case of finite β, we switch to a new vector-variable
−→
Π ,

R(s) = U0(s)(−x̂+
−→
Π(s)) (2.36)

where U0(s) is the rotation matrix such that R0(s) = U0R0(0) (R0(0) = −x̂ being the

initial condition on R) given by

U0 =


cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 . (2.37)
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From Eq. 2.36 it follows, the initial condition on Π(s) is Π(0) = (0, 0, 0). Since R0(s)

is the solution to the Bloch equation in ε→ 0 limit, Π(s) must have perturbatively small

norm in ε.

The equation of motion for Π(s) is found to be

ε

(−̇→
Π + θ̇ẑ ×−→Π − θ̇ŷ

)
= 2x̂×−→Π + 2(α− β)x̂× (x̂×−→Π)− 4β

−→
Π . (2.38)

On the right hand side of the equation, the operator acting on Π can be diagonalized

along the basis unit vectors {x̂, ĵ+, ĵ−} with {−4β, 2λ+, 2λ−} being the corresponding

eigenvalues where we have defined,

ĵ± =
1√
2

(ŷ ± iẑ) (2.39)

λ± = ∓i− (α + β). (2.40)

Representing
−→
Π in this basis set,

−→
Π = πxx̂+ π+ĵ+ + π−ĵ− (2.41)

leads to the following coupled-differential-equation,

ε

[
π̇x −

θ̇√
2

(π+ + π−)

]
= −4βπx (2.42a)

ε

[
π̇± +

θ̇√
2
πx −

θ̇√
2

]
= 2λ±π± (2.42b)

Now, to lowest order in ε,

π± ≈ −
θ̇ε

2
√

2λ±
. (2.43)
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This implies π+(1) = π−(1) ≈ 0 as θ̇|s=1 = 0 (see Eq. 2.5). Therefore, we conclude

E = ‖R(1) − R0(1)‖ ≈ πx(1). Substituting π± expressions in Eq. 2.42a, it can be

solved for πx resulting in

E ' πx(1) = −ε
∫ 1

0

ḟ0e
− 4
ε

∫ 1
s βds

′
ds. (2.44)

where we have defined

f0(s) = −
∫ s

0

(α + β)θ̇2

2(1 + (α + β)2)
. (2.45)

The behavior of E in the large-T limit is analyzed using the saddle-point method detailed

in the App. C to obtain the following asymptotic form for the diabatic error,

E ∼ e4T−2. (2.46)

Note that Eq. 2.44 reduces to Eq. 2.34 in absence of relaxation, i.e. β → 0, showing

that the approach in this section is not inconsistent with that in the previous section for

the case without relaxation. An examination of the exponential factor in Eq. 2.44 tells

us that for the case where relaxation is weak compared to dissipation (i.e. β . α), we

should expect an intermediate regime of ε where β might still be ignored so that the

error would scale as E(T ) ∼ T as concluded in the previous section.

Therefore as T is increased we expect the error rate E to crossover from the isolated

system limit (Eq. 2.31) to the dominantly dissipative system(Eq. 2.34) to the asymp-

totics with relaxation (Eq. 2.46). The numerical plot of the error rate E in the general

case, Fig. 2.4 indeed shows this expected pattern of crossovers. These expectations turn

out to be quite accurate as seen from the numerical simulations in Fig. 2.4, which shows

the numerical estimate of E vs total time T in log-log scale for dephasing strength η0,
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and relaxation strength η, both set equal to 1. It is interesting that the crossover be-

havior expected for the limit η0 � η seems to apply even to η0 = η = 1 chosen for

Fig. 2.4. Finally, we see in Fig. 2.4 that as we decrease the bath coupling strength

sx ∼ sy, the crossover scale modes to higher T as expected. While Eq. 2.45 predicts the

correct crossover behavior, it turns out to be off by a T -independent scale factor in the

pre-asymptotic dissipation dominated regime. We have remedied this by adapting the

analysis in Sec. 2.2 to finite (but small η) as described in App. C. This analysis leads to

a somewhat different approximation for f0(s) which is written as

f0(s) = −
∫ s

0

(α− β)θ̇2

2(1 + (α− β)2)
. (2.47)

This more exact theoretical form, which is the analytic approximation used in the dashed

lines in Fig. 2.4, can be seen from the figure to fit the numerical results very well in both

the dissipative and relaxation dominated regimes.

2.5 Summary

In this chapter we have studied the diabatic error rate E(T ) as a function of braiding

time T (in units of inverse gap) of the Y-junction braiding protocol (shown in Fig. 1.4)

by mapping it to the problem of excitation probability of a spin in a time-dependent

magnetic field. Consistent with previous work [76] we find (see Eq. 2.31) that one

can reduce diabatic errors [62] to be exponentially (scaling as E(T ) ∼ e−
√
T ) small in

the braiding time T (in units of inverse gap) by choosing the time-dependence of the

Hamiltonian to be completely smooth (including the beginning and end of the proto-

col). This analytic result can be considered an explanation of recent obeservation of

exponentially suppressed diabatic errors apparent from numerical simulation of some
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FIGURE 2.4: (Top left) Plot of E as a function of total-time taken by the diabatic
drive T for different values of effective dephasing, α and relaxation strength, β
characterized by the shown values of sx = sy (see Eq. 2.22-2.21). Relaxation
and dephasing parameters, η and η0, that solely depend on bath Hamiltonian
are both set to η = η0 = 1. for all panels in this figure. For each set of param-
eters, the analytical curve (dashed line) is obtained by plotting the expression
in Eq. 2.44 with f0 given by Eq. 2.47 and the numerical curve (solid line) is
obtained by numerically solving the Bloch equation in Eq. 2.22. The slope mN

(given in legend) is calculated using the data in the neighborhood of log(T) =
29.5 on the X axis for each curve. The asymptotic dependence on T is given
by e4T−2 (Eq. 2.46), represented in the figure by the solid (thick) brown curve.
(Top right) Magnified view of the top left panel in the small-T-region. The
values obtained for the special case of zero dephasing and relaxation is plotted
using (thick) brown dashed curve. For each coupling strength and sufficiently
small values of T, the E = log(R(1)x) behavior is independent of system bath
coupling strength and is well captured by the exponential dependence on T (see
Fig.2.2). The abrupt change from the exponential to a polynomial dependence
on T occurs when the analytic estimate of E coincides with its value under zero
system-bath coupling assumption. (Bottom panels) Similar to the top panels,
log norm of difference between time evolved and instantaneous Bloch vector
at scaled time s = 1 (t/T mod 3 = 1)as a function of log of total time T .
However, unlike the top panels sx = 2sy and sy = 2sx for bottom left and right
panels respectively. The qualitative behavior is similar to ones observed in the
top panels.



Chapter 2 52

braiding protocols [18]. In fact, while the requirement of a completely smooth time-

dependent Hamiltonian of the form of Eq. 2.3 (also see Eq. 2.7) seems fine-tuned as

we demanded the diabatic drive to be perfectly smooth, it is quite natural in a topoog-

ical system where MZM splitting is tuned either by chemical potential [17, 18, 77] or

by Coulomb energy through tunable Josephson junctions [78, 79]. In both these cases,

the tunneling is exponentially suppressed as one tunes the Majorana wire deep into the

topological phase or introduces a strong Josephson coupling between the Majorana wire

and a bulk superconductor. The main focus in this chapter is to consider the effect of a

Fermion parity conserving Bosonic bath, such as phonons or plasmons on the diabatic

error rate for braiding. Similar to previous work [63], we assume the bath to be weakly

coupled so that we can treat the bath within the Markovian approximation. We describe

the dynamics of this system within the Markovian approximation by a Bloch equation.

We find that the coupling to such a Bosonic bath generically changes the asymptotic of

the diabatic error from exponential in the braiding time T to power law (i.e. error scal-

ing as E(T ) ∼ e4T−2 (see Eq. 2.46). More specifically the analytic derivation of this

result (see Sec. 2.4) applies in the limit of weak relaxation. Interestingly, as expected,

the general result including relaxation leads to much lower excited state state probabil-

ity then in the absence of relaxation. We find from a controlled analytic solution that

the error rates in the presence of dephasing from the bath but no relaxation decreases

the slowest scaling as E(T ) ∼ T−1.

In addition to the asymptotic forms we study the dependence of the diabatic error

rate on the system-bath coupling strength through direct numerical simulations. For

purely dephasing bath (i.e. no relaxation), we find (see Fig. 2.3) that the dephasing

strength determines the cross-over from the e−
√
T scaling error rate that is expected in

the absence of a bath to the T−1 scaling of the error rate expected for a purely dephasing
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bath. Increasing the dephasing strength leads to the crossover occuring at shorter braid-

ing time T , in turn leading to error rates that increase with increasing dephasing. As

seen from our results in Fig. 2.4, adding weak relaxation in addition to dephasing leads

to an additional relaxation strength dependent cross-over time-scale beyond which the

error rate E(T ) changes its scaling from T−1 to E(T ) ∼ e4T−2.



Chapter 3: Non-Abelian statistics and topological invariants from

tunneling conductance properties.

In this chapter we study the interplay of Majorana splitting present in the topological

regime due to the finite size of the nanowire and dissipation that must invariably be

present in any realistic Majorana nanowire experiment. We define a quantity- ’topolog-

ical visibility’ (TV) to diagnose the topological nature of such split Majorana modes in

presence of dissipation. We explore the connection between conductance and the TV

and calculate their dependence on the Majorana splitting and the energy gap. We posit

that TV is a measure of the success of observing non-Abelian statistics in a braiding

experiment using such split Majorana modes where the speed of the braiding plays the

role of phenomenological dissipation that we introduce. We connect the outcome of

a braiding experiment in relation to the measurement of the tunneling conductance in

the same sample, answering the question whether a given value of a measured (in our

case, numerically) ZBCP value is consistent or not with a topological value for the (nu-

merically calculated) TV. In general, the non-Abelian character in a Majorana braiding

experiment will be observed for fast enough braiding operation so that the energy uncer-

tainty associated with the braiding time is larger than the Majorana splitting, which will

entail approximate Majorana modes to appear to be roughly degenerate (as opposed to

being well-split). However the experiment must distinguish the Majorana modes from

the continuum set of (above-gap) bulk states. Therefore, the braiding operation should

be slow with respect to the inverse topological gap, but fast compared with the Majo-

rana splitting. We argue that this is in complete analogy to how dissipative broadening,

which is likely present in a tunneling conductance set-up, must be larger than Majorana

splitting but smaller than the topological gap to realize a nearly quantized conductance

54
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FIGURE 3.1: A schematic diagram for measuring the tunneling conductance.
One end of the Rashba nanowire is shown attached to a normal lead. The lead
is connected to the nanowire through a potential barrier. The magnetic field is
parallel to the nanowire. A proximate s-wave superconductor is responsible for
the superconducting order parameter in the nanowire.

peak and also a topologically non-trivial value for the TV. These effects are studied for a

specific Majorana hosting semiconductor Rashba nanowire (e.g. InSb or InAs nanowire

with strong Rashba spin-orbit coupling) model proposed by Lutchyn et al. and Oreg

et. al. [26, 29]. We study the competition between the strength of dissipation and the

finite size splitting of Majorana modes. First, we establish the quantitative connection

between having a ZBCP strongly suppressed from the quantized 2e2/h value and the

topological content of the associated almost-MZMs. Second, we investigate the dele-

terious effects of MZM splitting on the braiding properties (or more precisely, on the

value of the TV which distinguishes topological and trivial phases).
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3.1 Model Hamiltonian

A schematic representation for an experimental setup to measure tunneling conductance

is shown in Fig. 3.1. A semiconductor nanowire with Rashba spin-orbit coupling (SOC)

is attached to a normal lead through a potential barrier localized at the end. A magnetic

field is applied parallel to the wire (perpendicular to the SOC direction) and an s-wave

superconductor is placed in proximity to the nanowire to facilitate Cooper pair tunnel-

ing into the semiconductor effectively endowing the nanowire with an s-wave supercon-

ducting order parameter through proximity coupling. A voltage bias V is applied to the

lead, and the tunneling current I is measured to obtain the differential conductance

G = dI/dV. (3.1)

As discussed in more detail in the App. D, for N conducting channels in the lead, the

conductance G can be computed from the normal reflection matrix ree and the Andreev

reflection matrix reh through the relation,

G = N − Tr(reer
†
ee − rehr†eh) (3.2)

To characterize the topological phase we can not use the usual definition of the

topological invariant (TI) Q0 = sgn[det(r)], where r is the reflection matrix from the

end, because it requires us to ignore transmission of quasiparticles in-between the ends

of the wire [25, 56, 80]. Such transmission of quasiparticles always exist for the finite

wires we consider in this chapter. In fact, as we will discuss in more detail, for finite

wires the TI Q0 is always trivial when one uses the exact reflection matrix (as opposed

to the effectively semi-infinite approximation used in Refs. [25, 56]). Instead of ignor-

ing transmission across the wire, we circumvent this problem by introducing dissipation
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into the system. While some form of dissipation has been important in previous calcu-

lations of the scattering matrix TI [56, 80], dissipation for our purpose here represents

the finite rate of braiding. As pointed out in previous works [53, 81] dissipation can

change the qualitative behavior of Majorana modes and the TI. The standard scattering

TI Q0 is not sensitive to imperfections of the topological phase such as transmission

of quasiparticles through the wire. Such transmission through the wire would interfere

with topological signatures of Majorana modes such as conductance quantization and

non-Abelian statistics. To remedy this, we define a variant of the TI,Q = det(r), which

we refer to as topological visibility (TV), as a measure of the topological character of

the system. Thus, TV is better suited to determining the visibility of signatures of the

Majorana fermion such as quantized conductance peak and non-Abelian statistics than

the TI, which is just the sign of the TV. In the limit that we ignore transmission through

the wire so that r is unitary, which is the case considered in Refs. [25, 56, 80], this

quantity is identical to Q0. One might be concerned that the topological visibility, Q, is

not quantized as Q0. However, Q is quantized as long as the system is properly gapped

so that r is unitary. Whenever Q is not quantized, which is near a topological phase

transition, whether Q0 is trivial or not depends on non-universal details of the system

which determine whether det(r) is slightly positive or slightly negative. To keep our

terminology consistent with previous works [25, 56, 80], we will refer to Q < 0 to be

topological (i.e. Q0 = sgn(Q) = −1) and Q > 0 to be non-topological. The presence

of dissipation eliminates the discreteness of the topological visibility Q by relaxing the

unitarity of the theory, leading to the possibility of the TV being any number between

+1 and -1 instead of having a magnitude precisely equal to unity. Only when Q is close

to it’s extreme values ±1 can Q0 be reliably determined to be topological or not. The

TV can be computed from the zero-frequency reflection matrices [25] as
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Q = Det[reer
∗
ee − reerehr−1

ee r
∗
eh]. (3.3)

The reflection matrices can be computed given the system and lead Hamiltonian,

which we discuss in the remainder of the section.

Let us consider a particular semiconductor Rashba nanowire model introduced by

Lutchyn et. al. [26]— see also Refs. Sau et al. [27] and Oreg et al. [29]— which was

shown to support MZMs at the two ends in the clean limit. These theoretical works

directly motivated the nanowire Majorana experiments of Refs. [31–35, 82, 83]. The

BdG Hamiltonian describing the 1D nanowire in the presence of Rashba SOC, Zeeman

splitting, and superconducting proximity effect, is given by

Hsys =

(
− 1

2m∗
∂2
x + iαRσy∂x − µ

)
τz + µ0Bσx + ∆0τx, (3.4)

where, m∗, αR, µ and ∆0 are the effective mass, the strength of Rashba SOC, the chem-

ical potential and the proximity induced superconducting gap, respectively. Throughout

this chapter we set ~ = 1. Here and henceforth τx,y,z and σx,y,z are Pauli matrices acting

on particle-hole and spin space, respectively. µ0 = gµB is the usual gyromagnetic ratio

times the Bohr magneton defining the Zeeman field strength µ0B. To make it amenable

to numerical techniques, we discretize the continuum Hamiltonian as

Hdis
sys =

∑
nnn

[−t (|n+ 1〉〈n|+ H.c.) τz + iα (|n+ 1〉〈n| − H.c.)σyτz + ∆0|n〉〈n|τx

+ (−µ+ 2t)|n〉〈n|τz + VZ |n〉〈n|σx], (3.5)
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where t = 1
2m∗a2 with a being the lattice constant for the discretized tight-binding model

in Eq. (3.5). The length of the nanowire is given by L = aN where N is the number

of unit cells in the wire, the SOC strength is given by α = αR
2a

, and we have defined

the Zeeman field strength, VZ ≡ µ0B giving the spin splitting. The nondiagonal terms

in the site index arise from nearest neighbor hopping. This system has been shown to

support MZMs [26, 29]. In fact, for a clean nanowire it is now well-known that MZMs

exist as stable localized zero energy excitations at the ends of the nanowire whenever

VZ >
√

∆2
0 + µ2.

Before we describe the normal leads that attach to the nanowire to create the

normal-superconductor (NS) junction (see Fig. 3.1) for tunneling measurements, we

first comment on an important quantity that can be calculated from the system Hamil-

tonian. It is known that MZMs contribute a local density of states (LDOS) zero bias

peak in the topological phase [40]. LDOS not only probes the presence of zero energy

modes, but also whether the zero energy mode is localized close to the edge of the wire.

In fact, computing or measuring the LDOS is the simplest probe to test the presence or

absence of MZMs in the system. LDOS at a given energy ε and site i is given by

LDOS(ε, i) =
∑
n

(
|un↑(i)|2 + |un↓(i)|2 + |vn↑(i)|2 + |vn↓(i)|2

)
δ(ε− εn), (3.6)

where ψn(i) = (un↑(i), un↓(i), vn↑(i), vn↓(i))
T is the i-th component of eigenvector ψn

of the Hamiltonian matrix Hdis
sys with eigenvalue εn. u’s and v’s are eigenvector compo-

nents in particle and hole space, respectively. To calculate the tunneling conductance,

we must attach leads to the Rashba nanowire. We assume the leads to be translationally

invariant semi-infinite normal leads. The lead Hamiltonian is given by

Hlead =

(
− 1

2m∗
∂2
x + iαRσy∂x − µlead

)
τz + µ0Bleadσx. (3.7)
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The above lead Hamiltonian is discretized as

H lead
sys =

NNN∑
n=0n=0n=0

[−t (|n+ 1〉〈n|+ H.c.) τz + iα (|n+ 1〉〈n| − H.c.)σyτz

+ (2t− µlead)|n〉〈n|τz + µ0Blead|n〉〈n|σx]. (3.8)

Following the Delft experiment [31], a finite applied magnetic field Blead is as-

sumed to exist so as to have two non- degenerate conducting channels because of the

spin splitting induced byBlead. Having a finite magnetic field in the lead also helps us to

avoid the numerical challenge to identify and separate various channels to compute the

S-matrix. We emphasize, however, that our keeping a finite Blead is actually consistent

with the experimental situation (and not just a matter of computational convenience).

The potential barrier defining the NS junction at the lead-nanowire interface (see

Fig. 3.1) is simulated by modulating the hopping amplitude t′ between the nanowire and

the lead. For higher(lower) tunnel barrier, the hopping amplitude t′ is lower(higher).

The new system Hamiltonian Hdis
sys −→ H

′dis
sys has the form,

H
′dis
sys =

NNN∑
nnn=2

[−t (|n+ 1〉〈n|+ H.c.) τz + iα (|n+ 1〉〈n| − H.c.)σyτz + (−µ+ 2t)|n〉〈n|τz

+ VZ |n〉〈n|σx + ∆0|n〉〈n|τx]− (t′|2〉〈1|+ H.c.) τz + iα′ (|2〉〈1| − H.c.)σyτz

+ (2t− µlead)|1〉〈1|τz + µ0Blead|1〉〈1|σx. (3.9)

In this setup, t′ << t would correspond to a high tunnel barrier or weak lead-nanowire

coupling. When t′ ∼ t, the tunnel barrier is low or equivalently, the lead-nanowire

coupling is strong (i.e. the barrier is almost transparent). The lead-nanowire tunneling

t′ introduces a broadening (ΓL) to be discussed later in this chapter (cf. Eq. (3.11)).

A strongly coupled (i.e. large t′) lead-nanowire system will have strongly broadened
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conductance peaks, whereas a weakly coupled lead-nanowire system will have weakly

broadened sharp peaks. Narrow resonances appearing from states that are weakly cou-

pled to the lead (as a result of being localized far away from the end) are removed

by broadening the energy eigenstates by introducing an on-site imaginary term in the

Hamiltonian, i.e., H ′dissys −→ H
′dis
sys + b where

b =
NNN∑
nnn=2

(−Ji)|n〉〈n|. (3.10)

Here J is the parameter controlling the intrinsic broadening, Γ, in the conductance

profile. The two are related by Γ = 2J . We note that this intrinsic broadening is

again incorporated in the theory to be consistent with the experimental situation (and

not just for computational efficacy) since the measured tunneling conductance spectra

do not reflect sharp resonant structures even at the lowest temperatures. Obviously, an

environment-induced dissipative broadening (parametrized by Γ in our theory) plays a

role in the experiment. We emphasize that broadening plays a key role in our theory,

converting the topological quantum phase transition into a crossover and providing a

visibility for the braiding measurements.

LDOS is calculated by numerically diagonalizing the system Hamiltonian. Through-

out all our calculations, the following set of parameters (unless specified otherwise) is

used: α = 1.79K, µ = 0K, t = 12.5K, ∆0 = 3K, L = 1.5µm, a = 54 nm. For reasons

motivating the choice of the parameter set, we refer the reader to Ref. [40]. We believe

these parameters to be a reasonably realistic description of the experimental situation in

Ref. [31], at least at a qualitative level. As discussed in Appendix D, the conductance

and TV are calculated from the scattering matrix that is obtained using ’KWANT’—a
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quantum transport and simulations package in Python developed principally by Groth

et al. [84].

3.2 Results: Conductance and topological visibility

3.2.1 Role of broadening versus splitting

While the TV and conductance will be determined by all the microscopic parameters

discussed in the last section, we now argue that the qualitative behavior can be under-

stood in terms of a few effective parameters, which in turn are determined by the full

set of microscopic parameters in a simple way. For example, as seen from the calcu-

lated local density of states plotted in Fig. 3.2, one of the relevant scales that affects

the topological properties, the splitting of the MZMs (δ), is relatively independent of

the other scales such as lead coupling, but sensitively determined by small variations in

the microscopic Zeeman field VZ in an oscillatory fashion [85–88]. We note that δ is a

key parameter determining the topological content of the system in the sense that when

this quantity is (exponentially) small, the system is by definition non-Abelian, whereas

by contrast, when δ is comparable to the superconducting energy gap, the system is

manifestly not topological.

The topological properties of a one dimensional superconductor such as a semi-

conductor nanowire crucially depend on the various relevant sources of broadening,

such as the lead coupling and inelastic scattering, of the quasiparticle excitations. The

width of the ZBCP, which is a key signature of topological superconductivity, depends

on the broadening, ΓL, which is controlled by tuning the lead tunneling t′ discussed

in the previous section. Furthermore, the TV, Q, [25], which characterizes the topol-

ogy of nanowires with open boundary conditions, is necessarily non-topological (i.e.

Q = 1) [25] because any calculation of TV in the presence of finite δ (which must
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always be true in any finite wire) and no broadening must necessarily give Q=1 (i.e. a

non-topological trivial system) since the MZM is not located precisely at zero energy

for any finite length wire! Typically, this is circumvented by computing the TI at an

energy arbitrarily shifted slightly away from zero by the splitting of the MZM, δ. A

similar behavior is noticed [43] in the low-bias conductance G(V ) = dI/dV , which

characterizes MZMs through a quantized value G(V → 0) = G0 = 2e2/h [9, 20–

22]. For a finite system, the conductance G(V & δ) approaches the quantized value

G(ΓL � V & δ)→ G0. On the other hand, as V truly approaches zero (i.e. |V | � δ),

the conductance in the tunneling limit approaches zero [43], giving a vanishing ZBCP

(since the Majorana is not located precisely at zero energy in a finite length wire).

Therefore, both the TV (Q) and the zero-bias conductance (G) cannot be evaluated

strictly at zero energy for a finite wire to determine the topological phase of the wire.

Motivated by the goal of understanding finite rate dynamical processes such as braiding,

we avoid this problem by introducing an intrinsic quasiparticle decay rate (i.e. dissipa-

tive broadening), Γ, which we believe to be the realistic experimental situation. The

broadening Γ is controlled in our calculations by choosing the parameter J discussed

in Sec. 3.1. The introduction of such a scale allows us to discuss the conductance (G)

and TV (Q) in a meaningful way at exactly zero energy. The intrinsic decay rate, Γ,

apart from representing the uncertainty in energy resulting from the finite braiding rate,

likely also exists in semiconductor wires from interactions and phonons (and unknown

dissipative coupling to the environment invariably present in all solid state systems).

Moreover, since the conductance and the TV are determined by the scattering proper-

ties of electrons from an external lead, the coupling to the lead, which is parametrized

by the broadening ΓL, quantitatively affects these topological properties. Finally, the

superconducting gap ∆ that protects topological properties themselves must play a role

in determining the topological properties. In the following subsections, we will study



Chapter 3 64

a b

c d

FIGURE 3.2: LDOS for clean nanowire with L = 1.5µm and Zeeman field
strengths (a-d), VZ = 4.2, 4.3, 4.5 and 5.0 K. The corresponding Majorana
splitting (a-d) are δ = 0.012, 0.036, 0.094 and 0.18 K respectively clearly vary
strongly with VZ .

the inter-dependence of the conductance and the TV on these energy-scales namely

δ,Γ,ΓL and ∆. We emphasize that the problem is highly complex because these are

four completely independent energy scales (and in real experimental systems there are

at least two additional energy scales associated with finite temperature and disorder, that

we neglect here).
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a b

c d

FIGURE 3.3: Conductance plot corresponding to the LDOS splittings for ΓL/Γ
= 10 (blue solid curve) and ΓL/Γ = 0.25 (red dashed curve). The parameter δ/Γ
(a-d) = 0.27 , 0.71 , 1.74 and 3.27 respectively. The TV (Q) values (a-d) are
(-0.80,-0.75,-0.46,0.12) and (0.44,0.58,0.82,0.93) for blue solid curve and red
dashed curve, respectively. The conductance peaks split for large δ/Γ and the
conductance decreases for small ΓL/Γ.

3.2.2 Topological phase

We start by discussing the zero-bias conductance and TV deep in the topological phase

where the intrinsic quasiparticle broadening Γ is much smaller than the topological gap

∆ � Γ so that the gap ∆ is well-defined. We choose the nanowire to be sufficiently

long, in this subsection, so that the Majorana splitting δ and the broadening of the

MZMs from the lead are much smaller than the gap (i.e. δ,ΓL � ∆).
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Since the topological gap ∆ is much larger than the parameters relevant to the

MZMs namely, the splitting δ, the broadening of the MZM due to coupling to the lead,

ΓL, and the (intrinsic) broadening of the far end MZM (away from the lead), Γ, both the

zero-bias conductance G(V = 0) and the TV Q, is a function only of δ,ΓL and Γ. Note

that the broadening of the MZM at the far end is the same as the intrinsic quasiparticle

broadening Γ, since it is not coupled to the lead. Since the absolute energy scale cannot

matter, the conductance G(V = 0) and the TV, Q, can be studied as a function of

dimensionless parameters ΓL/Γ and δ/Γ (in this large ∆ limit).

Consider first the limit where δ/Γ � 1, i.e., the broadening is much smaller than

the Majorana splitting. As seen from the conductance plot in Fig. 3.3(c,d) (red dashed

curve), if the lead coupling also weak i.e. ΓL � δ, the conductance profile G(V ) shows

a pair of resonances at energies E = ±δ/2 with broadening of order (Γ + ΓL). The

height of these peaks would be substantially below the quantized value. As seen from

the solid blue curve in Fig. 3.3(c,d) and consistent with previous work [43], increasing

the lead coupling so that ΓL � δ, increases the height of the zero energy peak so as to

approach the quantized value G(V ∼ 0) ∼ G0. However the splitting δ now appears as

a dip in the conductance which reduces the conductance G(V = 0) at strictly zero-bias.

Thus, the zero-bias conductance G(V = 0) is suppressed from the quantized value, and

as expected from the connection between conductance and TV [22] , we find the TV Q

to be non-topological (i.e. positive in this parameter regime).

The conductanceG(V ) in the opposite limit, where δ/Γ� 1, is shown in Fig. 3.3(a,b)

and shows an unsplit ZBCP. The conductance in the ΓL � Γ (blue curve) shows a nearly

quantized conductance, while the conductance is suppressed in the opposite limit. How-

ever, this limit (i.e. ΓL � Γ) (red dashed curve) still shows a ZBCP, albeit substantially

smaller than the quantized value even though the corresponding TV is non-topological.

On a technical note, varying the Zeeman field between the different panels in Fig. 3.3
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FIGURE 3.4: TV for δ/Γ values corresponding to Fig. 3.3 for coupling pa-
rameter ΓL/Γ = 10 (blue dots) and ΓL/Γ = 0.25 (red plus). The TV is an
increasing function of δ/Γ, i.e., the system tends to become non-topological as
δ/Γ increases.

changes ∆. To mitigate any parametric dependence of the calculated ZBCP and TV on

∆, in this subsection the broadening Γ is adjusted in each case to hold ∆/Γ = 52 fixed

(remembering that the gap ∆ depends on the Zeeman field). The lead broadening ΓL is

varied through varying t′ (see Eq. (3.11) below) to keep the ratio ΓL/Γ fixed.

The TV is strongly affected by the splitting of the MZMs δ relative to the broaden-

ing Γ. In Fig. 3.4, we find that the TV is an increasing function of δ/Γ. The nanowire

effectively becomes non-topological if the MZM splitting δ exceeds the broadening Γ,

even when the wire parameters and the strong lead coupling ΓL favor the topologically

non-trivial phase. Furthermore, consistent with the conclusion in Fig. 3.3, the small
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FIGURE 3.5: (Top) Plot of the TV as a function of ZBCP for δ/Γ = 0.16

(blue dot) and δ/Γ = 2.43 (red plus). Conductance is varied by varying ΓL/Γ.
(Bottom) TV vs ZBCP for ΓL/Γ = 10 (blue dot) and ΓL/Γ = 0.25 (red plus).
Conductance is varied by varying δ/Γ. The TV is a decreasing function of the
ZBCP.
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values of ΓL/Γ lead to non-topological values for the TV.

The combination of Figs. 3.3, 3.4 suggests a correlation between the presence of a

quantized ZBCP and a topologically non-trivial value of the TV close to Q = −1. This

correlation between TV and conductance suggested by Figs. 3.3,3.4 is made explicit

in Fig. 3.5. We find that TV is a decreasing function of the ZBCP value. The TV

approaches -1(+1) as ZBCP approaches 2e2/h(0). Note that the decreasing behavior of

TV with increasing ZBCP is independent of the tuning parameter chosen to vary the

zero bias conductance, evidenced by the fact that both top and bottom plots in Fig. 3.5

manifest a decreasing behavior for the TV as a function of ZBCP regardless of whether

ΓL/Γ (top subfigure Fig. 3.5) or δ/Γ (bottom subfigure Fig. 3.5) is tuned to vary ZBCP.

3.2.3 Topological phase transition

Let us now consider the behavior of conductance and TV as we approach the TPT by

tuning the Zeeman field VZ . In this case, when the intrinsic broadening Γ and the lead-

induced broadening ΓL are small, sufficiently close to the phase transition, the topolog-

ical gap ∆ will become smaller than ∆ � Γ (since at the TPT, the gap must vanish).

Therefore, for infinite length systems, the ratio ∆/Γ can be used to determine the dis-

tance to the quantum critical point. For conventional quantum critical points [89], there

are two dimensionless parameters that characterize the distance to a quantum critical

point, which are L/ξ and ∆/T characterizing spatial and imaginary time correlations

in the system. Here ξ is the coherence length of the system, ∆ is an energy scale, T

is the temperature and L is the length of the system. In our discussion, Γ is analogous

to temperature T in the quantum critical phase (although we are actually at T = 0

throughout). Since Γ is always finite in our system, the TPT is always a crossover even

at zero temperature! The fact that our calculated TV value in Figs. 3.4 and 3.5 is con-

tinuous between Q = +1 (trivial phase) and Q = −1 (topological phase) is a clear
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indication that the presence of dissipative broadening in the theory (and the associated

non-unitarity) has rendered the TPT into a crossover with Q > (<)0 defining the non-

topological (topological) phase with finite visibility. The presence of dissipation makes

some additional changes to the topological transition that we mention in passing. Tra-

ditionally in disordered systems the topological transition is often accompanied by a

Griffiths like phase populated by weakly split low-energy Majorana modes [90]. The

presence of dissipation could change some of these weakly split Majorana modes into

poles of the now non-unitary S-matrix with exactly zero energy but different imaginary

parts [53]. Such physics, which is exactly included in our theory, would alter the nature

of the low-energy density of states near the transition.

The relationship between ΓL and ∆ is not straightforward because as the system

approaches the TPT, the bound states become delocalized away from the lead due to the

diverging coherence length ξ. In the limit of small lead-tunneling, t′, the broadening ΓL

induced by the lead is related to the imaginary part of the lead self-energy [91] and can

be written as

ΓL ∼ t′2|ψ(0)|2, (3.11)

where ψ(0) is the value of the nanowire wavefunction at the lead-nanowire NS contact at

the given tunneling energy. The localized Majorana wavefunction can be approximated

by,

ψ(x) ≈ 1√
ξ
e−x/ξ, (3.12)

where ξ is the superconducting coherence length. This implies,

ΓL ∼ t′2∆. (3.13)
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Therefore, in the vicinity TPT, ∆/ΓL ∝ t′2 (with the proportionality factor related to the

normal phase density of states) approaches a constant and can be used as a parameter

to characterize the TPT. Note that although ΓL is in some sense proportional to the gap

∆, the two quantities are still independent parameters of the theory by virtue of the lead

tunneling matrix element t′.

As seen in Fig. 3.6, the TPT is approached by tuning the Zeeman field VZ , which

leads to the variation of both the Majorana splitting δ (lowest Andreev bound state en-

ergy) in the upper panel and the bulk gap ∆ (next highest Andreev boundstate energy) in

the lower panel. The minimum in the gap ∆ occurs at VZ = 3K indicating a transition at

this value of the Zeeman potential. For a finite system, the minimum gap is determined

by the length of the system L. In the case where the wires are shorter than the dephasing

length lϕ ∼ vF/Γ (for the chosen Γ), where vF is the Fermi velocity of the system, the

MZMs split before entering the TPT region ∆ . Γ. As a result, the system enters a

non-topological phase with a TV close to Q = 1 similar to the δ & Γ case discussed in

the last subsection. Therefore, in this section we focus on a broadening Γ that is larger

than the finite size gap, i.e. Γ & v/L.

Let us now consider the conductance shown in Fig. 3.7 as the Zeeman field is

varied towards the topological transition. Fig. 3.7(a) shows a nearly quantized peak

(blue solid) deep in the topological phase where the MZM splitting δ is also small

relative to the broadening Γ. The corresponding TV is also seen to be nearly topological

in Fig. 3.8 as expected. As the Zeeman field is decreased, the height of the ZBCP

(above the background) decreases as one approaches the topological transition where

∆/Γ → δ/Γ becomes small in Fig. 3.7(c). However, it should be noted that the peak

remains unsplit in contrast to the short wire case with L . lϕ. Despite the presence

of a small zero bias peak in Fig. 3.8(b,c), the corresponding TV values in Fig. 3.8 are

positive (non-topological). This is consistent with Figs. 3.3 and 3.4 from the previous
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FIGURE 3.6: Plot of Lowest Andreev bound state energy (top) and bulk quasi-
particle energy gap (bottom) as a function of Zeeman field strength for different
physical lengths of Majorana nanowire. The bulk TPT is at VZ = 3K. In the
topological phase, (VZ > 3K), lowest Andreev bound state energy is the Majo-
rana splitting.
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a b

c d

FIGURE 3.7: Conductance plot for ΓL/∆ = 0.20 (blue solid curve) and ΓL/∆
= 0.005 (red dashed curve). Broadening Γ is chosen so that δ/Γ= 0.16 is held
fixed for all panels with ∆/Γ (a-d) being 19.33, 0.90, 0.28, -12.1, respectively.
The TV (Q) values (a-d) are (-0.75,0.34,0.56,0.98) and (0.51,0.95,0.97,1.0) for
blue solid curve and red dashed curve, respectively.

subsection where a small coupling ΓL � Γ led to small non-topological ZBCP. Finally,

as one crosses over to the non-topological regime, a non-topological gap appears in the

conductance. As mentioned before, the TPT is parameterized by ΓL/∆, which remains

relatively constant near the phase transition. The red dashed plots in Fig. 3.7 show

that the conductance is systematically suppressed in the regime of small ΓL/∆. The

corresponding TVs are seen to be positive (non-topological) in Fig. 3.8.

Before concluding this section, we comment on an obvious point which might con-

fuse a non-alert reader. One may think that the TV can have only unit magnitude with
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FIGURE 3.8: TV for ∆/Γ values corresponding to Fig. 3.7 for coupling pa-
rameters near TPT with ΓL/∆ = 0.20 (blue dots) and 0.005 (red plus), respec-
tively. δ/Γ = 0.16 is held fixed. The TV is an decreasing function of ∆/Γ

with Q −→ 1 as ∆/Γ −→ 0, i.e., the system tends to become non-topological
(topological) as the system tends to small (large) topological gap and the TV
tends to +1 as the gap completely closes (system approaches TPT).

Q=-1 (+1) characterizing the topological (trivial) phase. This is indeed so in the infinite

system as originally introduced by Kitaev [4]. But our finite system must have a broad-

ening (otherwise the TV calculated at zero energy is always +1 because of Majorana

splitting), and this broadening allows the TV (i.e. Q) to be a continuous function of

system parameters going from +1 deep in the trivial phase to -1 deep in the topological

phase. This continuous evolution of Q between +1 and -1 is the finite system crossover

transition whereas the corresponding infinite system would have a sharp transition from
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+1 to -1 precisely at the TPT (with the ZBCP value changing from zero to 2e2/h sharply

at the TPT too). We connect this crossover transition to braiding experiments with the

claim that our finding a value of Q < 0 corresponds to a topological phase with the

visibility of the braiding measurements being large (small) depending on whether the

magnitude of Q is close to unity (zero). We believe that our finding a negative (posi-

tive) value of Q corresponds to the corresponding braiding experiment manifesting (not

manifesting) non-Abelian statistics.

3.3 Braiding and tunneling conductance

Consider a specific braiding protocol described in Sec. 1.3 illustrated by Fig. 1.5 where

the dynamics is governed by the Hamiltonian in Eq. 1.25. There, we assumed ideal

Majorana modes at precisely zero energy being exchanged with each other under uni-

tary adiabatic time-evolution. However, any realistic braiding experiment must take

into account a few prominent departures from the idealized set of implicit assumptions

made above in our schematic description of perfect Majorana braiding. First, any finite

system hosting MZMs will have a finite Majorana wavefunction overlap, splitting the

Majorana modes by an energy δ, away from zero energy due to the hybridization be-

tween the two MZM wavefunctions from the two wire ends [43]. Obviously, a large

overlap (as would happen in shorter nanowires or in systems with small superconduct-

ing gaps leading to large coherence lengths) would completely destroy all non-Abelian

topological properties since the Majorana excitations in that situation are simply the

electron-hole quasiparticle excitations of the superconducting nanowire with the Ma-

jorana splitting being comparable to the superconducting energy gap. Including this

Majorana splitting in the formalism is an important ingredient of our theory. Second,

“adiabatic” braiding process takes place over a finite time scale δtB i.e. with a finite

braiding velocity) , which is associated with the energy uncertainty of the system δEB
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estimated by

δtBδEB ∼ ~. (3.14)

We note that this braiding-induced energy uncertainty δEB must be much larger (smaller)

than the Majorana splitting (superconducting gap) for the braiding operation to manifest

any topological non-Abelian behavior. One can loosely identify this energy uncertainty

as an effective dissipation term arising from the finite velocity braiding process. Includ-

ing an energy broadening or a dissipative term is a key ingredient of our theory. Such

dissipation could arise from the energy uncertainty associated with braiding as discussed

above, but in the specific context of the tunneling conductance measurements, it arises

from intrinsic dissipation of strength Γ, which might be present in the experimental

situation.

While one might argue that braiding experiments differ fundamentally from con-

ductance experiments since the latter depends on ΓL and the former doesn’t, the braid-

ing proposals [15–17, 77, 78, 92–101] to date require the presence of Majorana fermion

tunneling in a key way. The Majorana tunneling enters the through the tri-junctions

in the Majorana braiding proposals. In fact, the magnitude of the gap generated be-

tween Majorana modes at the tri-junction limits the speed of braiding. Analogous to the

tunneling case, the proper topological movement of MZMs requires that the velocity-

induced broadening of Majoranas satisfies δ � Γ since any braiding must involve an

actual physical movement of MZMs around each other. Furthermore, to ensure the

presence of MZMs at the ends of the topological set-up, the spurious finite-size Majo-

rana splitting δ must be smaller than ΓL � δ. Thus, inclusion of energy broadening

δEB ∼ Γ (to represent finite braiding velocity), tunneling broadening ΓL, and Majorana

splitting δ are essential ingredients of the braiding process as much as they are in the

tunnel conductance and the TV calculations discussed in the last section. We therefore
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see a one-to-one correspondence between braiding and tunneling measurements with

the TV showing up in both measurements as the key quantity determining the topologi-

cal behavior of the circuit.

The braiding properties of a system might be quantified by Pbraid, which we define

to be the probability of success of non-Abelian braiding. The probability of successful

non-Abelian braiding, similar to the TV discussed in the last section, is a function of

the amount of non-universal broadening Γ present in the braiding experiment (i.e. the

sum of the energy uncertainty δEB and the intrinsic broadening due to coupling to the

environment Γ′), the Majorana splitting (δ), the tunnel coupling ΓL and the topological

gap (∆). Furthermore, since braiding is presumably a topological property, we expect

the probability of success of braiding to be related to the TV. Based on this argument

we conjecture that the success rate of non-Abelian braiding for a given braiding speed

in an experiment (Pbraid) is related to the probability of TV being −1, i.e.,

Pbraid(δEB + Γ′,ΓL, δ,∆) ∼ 1− 〈Q(Γ,ΓL, δ,∆)〉
2

, (3.15)

where 〈Q〉 is the average of TV over disorder realizations for a given disorder strength,

where Γ′ is the environment-induced intrinsic broadening in the braiding experiment.

ΓL in a tunneling conductance experiment represented in the RHS of Eq. (3.15) is the

lead broadening as discussed in the previous sections. However, ΓL appearing in the

LHS of Eq. (3.15) represents the induced tunnel gap as a result of strongly coupled

adjacent Majorana modes forming a Dirac fermion (strong Majorana pairing regions

depicted by pink ovals in Fig. 1.5). The fundamental role played by lead induced broad-

ening for conductance experiment is same as that of gap induced by coupling adjacent

nanowire edge modes forming a Dirac fermion in a braiding experiment and therefore

for the sake of brevity we have chosen to represent it with the same symbol ΓL on both

sides of Eq. (3.15).
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From the previous section, we know that whether the average TV 〈Q〉 is nearly

topological, which (according to our conjecture Eq. (3.15)) would correspond to suc-

cessful braiding, is directly correlated with the presence of a ZBCP value close to the

topological value G(V ∼ 0) ∼ G0. Such a nearly quantized ZBCP, which can be

tested for through existing experimental set-ups [31, 33–35, 82, 83], can only occur in

much smaller parameter regime ∆ � ΓL � Γ � δ. Furthermore, temperature, which

provides a fifth independent energy scale through the thermal energy kBT (which we

take to be zero— in principle, one could assume that kBT is included in the intrinsic

broadening term Γ) must be small as well. It is only in this parameter regime that one

expects braiding to be reasonably successful. We believe that this parameter regime can

be diagnosed from the much simpler conductance quantization measurements.

Our results (see Fig. 3.5) in section 3.3 indicate that a ZBCP value around half of

the quantized value (i.e. ZBCP ∼ e2/h) should be adequate to produce a negative TV

value. The negative TV would correpond to the topologically non-trivial phase with a

TI of -1. Based on this we conclude that braiding experiments would succeed (perhaps

with rather low visibility) as long as the corresponding ZBCP is around e2/h in the

same nanowire sample with identical system parameters. We believe that for systems

with ZBCP much lower than e2/h, the braiding experiments are unlikely to succeed

in manifesting a purely topological phase with a TV value of -1. This is an important

predicted experimental consequence of our theory.

3.4 Summary

We establish a theoretical connection between the tunneling conductance and the topo-

logical visibility of realistic spin-orbit coupled semiconductor nanowires. The new im-

portant concept introduced in this chapter is topological visibility, which is essentially
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the ’nonunitary’ version of the well-known ’topological invariant’ extensively used to

characterize topological superconductivity. Whereas the topological invariant is a topo-

logical index, being +1 or -1 corresponding to trivial and topological superconductors,

respectively, the topological visibility by contrast corresponds to a continuous variable

(varying between +1 and -1) relevant for finite systems where a naive computation of

the topological invariant will always indicate a trivial phase by virtue of the Majorana

energy splitting always being finite in finite systems. The topological visibility is a

physical (and practical) generalization of the mathematical concept of topological in-

variant to realistic finite nanowires in the laboratory, where some Majorana splitting is

inevitable because of the wavefunction overlap between the Majorana zero modes local-

ized at the two ends of the finite wire. The physical mechanism enabling the existence

of topological visibility is dissipation or level broadening invariably present in all real

systems. In particular, this broadening must exceed the Majorana energy splitting for

the system to behave ’topologically’ (i.e. for the topological visibility to be negative).

But this dissipative broadening also suppresses the value of ZBCP below the canoni-

cally quantized value of 2e2/h in the topological phase and reduces the magnitude of

the topological visibility below unity. For braiding experiments of the future, a part

of this dissipation arises from the finite speed of braiding itself which gives rise to an

energy broadening, and this broadening must exceed the Majorana splitting energy for

the system to behave as a non-Abelian system.

We have also shown that the topological quantum phase transition separating the

trivial phase (a TV value of 1 and a ZBCP value of zero) from the topological phase

(a TV value of -1 and a ZBCP value of 2e2/h) is a crossover in real systems (even

at zero temperature) because of the presence of the broadening terms Γ, tunneling ΓL

and the Majorana splitting (δ). The inclusion of the dissipative broadening processes,

which must invariably be present in real systems, is a key ingredient of our theory— in
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fact, without any broadening, the ZBCP is always zero at zero energy by virtue of the

Majorana splitting in all finite wires. We find that the ZBCP evolves from a quantized

peak deep in the topological phase into a much smaller peak on a large background

near the transition, quite similar to some of the experimental results [31, 33–35, 82, 83].

We find that it is possible for the system to be topological (i.e. negative value for

the TV) even when the corresponding zero bias conductance value is suppressed from

2e2/h— in particular, a factor of 2 suppression of the ZBCP would still lead to the

existence of non-Abelian braiding statistics (with somewhat low visibility). On the

other hand, we believe that systems with ZBCP values suppressed by factors of 10 (or

more) from 2e2/h are unlikely to ever manifest non-Abelian statistics, and such systems

are better considered as non-topological systems because of the very large Majorana

splitting in spite of there being a small ZBCP peak. Our most important qualitative

conclusion is the finding that it is indeed possible for a finite wire with split MZMs

(and a correspondingly suppressed ZBCP value compared with 2e2/h) to manifest non-

Abelian braiding statistics with the visibility of braiding (averaged over many runs)

decreasing with decreasing value of the corresponding ZBCP.



Chapter 4: Correlated zero bias conductance as Majorana signa-

ture

In this chapter we propose to use the fact that the zero-bias-conductance-peak (ZBCP)

associated with a topological phase must appear at both ends at the same value of mag-

netic field to propose that ZBCP can serve as a probe for topological superconductivity.

The appearance of the ZBCP is a property associated with the topological phase tran-

sition from the conventional superconducting phase to the topological superconduct-

ing phase [5]. Our model system is a quasi-1D weakly disordered Majorana nanowire

model. Several proposals [102–104] for detecting topological superconductivity in the

one dimensional nanowire systems already involve detecting the topological phase.

4.1 Model Hamiltonian

A schematic representation of an experimental setup to measure left and right tunnel-

ing conductance (denoted by GL and GR) at a bias voltage V is shown in Fig. 4.1. A

semiconductor nanowire with Rashba spin-orbit coupling is connected to the leads at

the two ends of the nanowire through a potential barrier. A magnetic field is applied

parallel to the nanowire and the proximate s-wave superconductor induces a supercon-

ducting order parameter in the nanowire. Experimentally, the conductance for a lead at

a given voltage V is calculated by measuring the differential conductance, G = dI/dV

(Eq. 1.32).

81
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FIGURE 4.1: A schematic representation of an experimental setup for mea-
surement of tunneling conductance at the two ends of the nanowire for voltage
bias V. The normal leads are attached to the nanowire system through a potential
barrier region shown in black. Magnetic field is applied parallel to the nanowire
and S-wave superconducting order parameter is induced in the nanowire by the
proximate superconductor.

Theoretically, conductance through a junction separating a normal lead and a class

D superconductor [51, 54] is expressed as (see Appendix E for details)

G = N − Tr(rMτyr
†
Mτy), (4.1)

with N being the number of conducting channels for electrons in the lead and rM being

the reflection matrix of the system in the Majorana representation (see Appendix E).

In terms of zero-frequency reflection matrices, topological visibility (TV) is expressed

as [105]

Q = det(rM). (4.2)

A spin-orbit coupled semiconductor nanowire in proximity to S-wave supercon-

ductor has been theoretically shown to support MZMs in the presence of magnetic field
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FIGURE 4.2: (top) Plot of tunneling conductance as a function of voltage bias
through the left and the right lead as shown in the key, for length L = 3µm

and width W = 0.4µm nanowire obtained for a typical disorder realization
corresponding to mean free path Lmf = 1.1µm at VZ = 4.4K. The value of Vz
corresponds to the nanowire being the topological phase in the corresponding
clean system. For a typical disorder realization fluctuation in left and right con-
ductance is manifest, however the expectation values of left conductance, GL

and the right conductance, GR are same upon averaging over disorder realiza-
tions. (bottom) Plot of disorder-averaged conductance for the system parame-
ters used for the top panel as a function of Zeeman field strength at different
voltage biases shown in the key. The zero voltage conductance transitions from
0 to 2 e2/~ over 3.8-4.3 K Zeeman field strength pointing to a topological phase
transition in the vicinity of Vz = 4K. The low and high Zeeman field zero-bias-
conductance saturation values are consistent with non-topological and topolog-
ical phase zero-bias-conductance values in a clean system. The appearance
of large difference in conductance values between zero voltage and the rest
at higher Zeeman field strength values establishes appearance of a zero-bias-
conductance-peak.
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parallel to the wire [26, 29]. The nanowire is effectively described by the Hamiltonian

Hsys =

(
− 1

2m∗
∂2
x + iαRσy∂x − µ

)
τz + VZσx + ∆0τx (4.3)

where, m∗, αR, µ, VZ and ∆0 are the effective mass, the strength of Rashba SOC, the

chemical potential, Zeeman field strength and the proximity-induced superconducting

gap, respectively. The Hamiltonian in Eq. (4.3) describes an idealized, clean single

subband system. However, the semiconductor nanowire samples that are used to ex-

perimentally detect and study the MZMs are known to possess multiple subbands and

disorder [31, 35]. Further theoretical studies have established the presence of MZMs in

disordered multi-subband systems [40, 43, 57, 106, 107]. For disordered multi-subband

system, the Hamiltonian is given by,

Hsys =

(
− 1

2m∗
∇2 + iαRσy∂x + iβRσx∂y − µ+ Vdis(rrr)

)
τz + VZσx + ∆0τx, (4.4)

where αR and βR are Rashba coupling constants. The Hamiltonian acts on 2-dimensional

real space and belongs to symmetry class D. We assume independent and identical dis-

tribution of disorder potential Vdis in position space. We model the distribution of disor-

der strength by a Gaussian where its variance (σ) is related to disorder strength through

mean scattering rate τ−1 ≈ 2π σ
2D(µ)
Nc

whereD(µ) is the density of states at the chemical

potential and Nc is the number of fully occupied subbands.

A key signature of MZMs is tunneling conductance quantization at zero bias at

a value of 2e2/h [9, 20–22]. Experimentally tunneling conductance is measured by

coupling the system to a normal lead through a tunnel barrier. The normal lead is

modeled by the Hamiltonian,

Hlead =

(
− 1

2m∗
∇2 − µlead + iαRσy∂x

)
τz + V lead

Z σx. (4.5)
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To compute conductance numerically, we discretize Hlead and Hsys and couple the lead

to the system system through a tunable hopping amplitude to simulate the barrier poten-

tial. Furthermore, for simplicity we assume the limiting case βR → 0. While when βR

is strictly zero, the symmetry classification for the Hamiltonian changes from class D to

class BDI [108] where the systems in class BDI could have multiple Majorana modes at

each end of the nanowire as opposed to class D systems where only a single Majorana

mode can exist at each end of the nanowire. However, this subtle distinction within their

respective topological phases is unimportant for our purpose as we restrict our analysis

in the vicinity of the topological phase transition where only a single Majorana mode

pair exists in the topological phase.

The tight binding form of lead and system Hamiltonian is given by

HTB
lead =

∑
i

Ny∑
j=1

[−t (|i+ 1, j〉〈i, j|+ |i, j + 1〉〈i, j|+ H.c.) τz

+ iα (|i+ 1, j〉〈i, j| − H.c.)σxτz + (2t− µlead)|i, j〉〈i, j|τz + V lead
Z |i, j〉〈i, j|σz

(4.6)

HTB
sys =

Nx∑
i=2

Ny∑
j=1

[−t (|i+ 1, j〉〈i, j|+ |i, j + 1〉〈i, j|+ H.c.) τz

+ iα (|i+ 1, j〉〈i, j| − H.c.)σxτz + (−µ+ 2t)|i, j〉〈i, j|τz + VZ |i, j〉〈i, j|σz

+ ∆0|i, j〉〈i, j|τx]− (t′|2, j〉〈1, j|+ H.c.) τz + iα′ (|2, j〉〈1, j| − H.c.)σxτz

(4.7)

where, i, j run along x,y directions respectively. V dis
n is the random onsite disorder

whose strength (value) is chosen from a Gaussian distribution having σ standard devi-

ation. The tight binding parameters σ, α, total sites in x and y directions Nx,Ny are
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chosen to match estimates for mean free path, spin-orbit splitting, length of wire and

number of participating channels. The parameter t′ controls the strength of hopping

between the lead and the system. The left and the right leads have identical Hamilto-

nians and are coupled to the two ends of the nanowire as shown in the Fig. 4.1. When

concerned with transport characteristics involving the left(right) lead, the right(left) act

as an dissipative bath. This lead dissipation broadens the conductance profile. To fine-

tune dissipative broadening, we introduce a parameter J that controls the strength of an

on-site imaginary term to the system Hamiltonian, i.e. HTB
sys → HTB

sys + b with

b =
N∑
n=2

(−Ji)|i, j〉〈i, j|. (4.8)

The experiments on Majorana nanowires [31, 109] estimate the effective mass of

electron m∗ = 0.015me, ∆ = 250µeV and Eso = 50µeV, where me , Eso are the mass

of the electron and the energy of spin orbit coupling, respectively. The tight binding

parameters can be expressed in terms of measurable quantities t = 1/(2m∗a) in the

units ~ = 1 and α =
√

(tEso). For εn being the energy of the nth conducting channel,

the density of states at the chemical potential µ is given by D(µ) =
∑

εn
1

πt
√

1−( εn2t )
2

where, the sum runs over all the states occupied below the chemical potential µ. Then,

the standard deviation of the disorder potential can be estimated by the Born approxi-

mation σ =
√
Ncvf/(2πD(µ)Lmf ) [48]. Throughout this chapter we have chosen the

following tight binding parameters: t = 12.5K, α = 1.79K, ∆0 = 3K, Nc = 4, lattice

constant a = 50nm and µ = 8K and disorder strength that corresponds to the mean free

path Lmf = 1.1µm. . The lead-nanowire hopping amplitude, t′ = 2.5K and dissipa-

tion broadening parameter, J = 0.001K. The conductance and the TV are numerically

calculated using ’KWANT’ [84]

For a system with a typical disorder realization, Fig. 4.2(top) is a plot of left and
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FIGURE 4.3: The conductance, G ≡ GL = GR (in units of e2/h) (red curve)
and TV (blue curve) plotted for a clean nanowire of length 3µm as a function of
Zeeman field strength to demonstrate 3 distinct regions in the phase diagram.

right conductance in the vicinity of zero bias. Fig. 4.2 (bottom) establishes the existence

of a zero-bias peak across the TPT. The topological nature of the transition ensures that

at zero bias left and right conductance peaks appear simultaneously as the system enters

the topological regime. This is the result of highly correlated zero-bias fluctuations of

left and right conductance.
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a

b

c

FIGURE 4.4: Plot of certain transport characteristics for the semiconductor
nanowire system across TPT for L = 1.5 and 3 µm nanowire with disor-
der strength corresponding to mean free path Lmf = 1.1µm. Deep in the
topological(non-topological) phase, the conductance and the TV saturate to
2e2/h(0) and -1(+1) respectively. The CC (χ) exhibits a peak in the crossover
region. For the longer nanowire, the crossover region is narrower compared to
the shorter nanowire.
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FIGURE 4.5: ZBPC between left and right conductance peaks as a function
of VZ for the same system parameters used to obtain Fig. 4.4 for varying volt-
ages, V. The peak in ZBPC at the TPT shows that Majorana peaks appear in a
correlated way.

4.2 Conductance fluctuations in superconductor

In the previous section we showed that for a typical disordered system left and right

zero-bias conductance peaks appear simultaneously. One way to quantify such corre-

lated appearance of the zero-bias peak is by calculating the statistical covariance of the

left and right conductance over random disordered samples of a given disorder strength.

Let us introduce such a measure to quantify conductance correlation(CC) between left
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and right conductance,

χ =
√
〈GLGR〉 − 〈GL〉〈GR〉. (4.9)

The angular brackets represent the average over disorder configurations, andGL andGR

are calculated zero-frequency left and right conductance values respectively. An experi-

mental signature of the existence of Majorana zero modes is presence of a ZBCP. While

the CC defined above quantifies the correlation between left and right conductance, it

does not necessarily capture the simultaneous appearance of a conductance peak as-

sociated with the Majorana modes at the boundary of the nanowire in the topological

phase. Thus, we define a quantity that captures the extent of conductance correlation as

well as the existence of ZBCP associated with the MZMs as zero-bias-peak-correlation

(ZBPC),

κ(V) = 1− 〈(GL(0)−GL(V))〉〈(GR(0)−GR(V))〉
〈(GL(0)−GL(V))(GR(0)−GR(V))〉 . (4.10)

The disorder average is denoted by angular brackets. The ZBPC (κ) as defined depends

on the voltage V. Notice, κ ∼ 0 as V → 0. On the other hand, V � ∆ must be

satisfied to ensure ZBPC is sensitive only to correlation present in ZBCPs and has no

contribution from the continuum set of states present at energies & ∆ where ∆ is the

induced superconducting gap. Hence an appropriate choice for V is V ∼ Γ, where Γ is

the conductance broadening.

A finite clean nanowire system endowed with dissipative broadening has three dis-

tinct regions in the parameter space: a topological phase, a trivial phase and a crossover

region intermediate between the topological and the trivial phase as shown in Fig. 4.3.

For sufficiently high barrier in the lead-nanowire junction, the conductance deep in the

topological phase is 2e2/h, whereas deep in the trivial phase it is 0. For every point in
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parameter space in the crossover region, the conductance evaluates to an intermediate

value between 0 and 2e2/h.

Disorder introduces sample-to-sample conductance fluctuation. In Fig. 4.4 we have

plotted the TV, the disordered averaged conductance and CC for nanowires with two dif-

ferent physical lengths. We observe that for weak disorder (mean-free-path ∼ 1.1µm)

the phase diagram is only weakly different from the clean case. Upon disorder averag-

ing, three distinct regions namely, topological, trivial and crossover can be identified in

weakly disordered systems as well. Deep in the topological phase the disorder averaged

conductance saturates to 2e2/h, whereas deep in the trivial phase, the disorder averaged

result saturates to 0. This can be understood based on the fact that, since for every dis-

order configuration only a slight modification of the phase diagram is allowed, weak

disorder does not affect either the deep topological or the trivial region. However, the

crossover region is prone to disorder fluctuations. Moreover, notice that a nanowire with

a longer physical length has a smaller crossover region. In Fig. 4.5 we plot ZBPC (κ)

against Zeeman field for varying voltages V of the order of ZBCP broadening. Observe

that ZBPC shows a peak in the crossover region and saturates to 0 in both the trivial and

the topological phase. It can be concluded from Fig. 4.4 and 4.5 that the appearance of

MZMs at the TPT is linked to the appearance of correlated ZBCPs.

Conductance correlation at the TPT can be understood in terms of statistical prop-

erties tunneling conductance of disordered system undergoing a TPT. The reflection

matrix appearing at the two ends of the nanowire can be expressed as (see Appendix E)

rmaj = O1 tanh ΛO3

r′maj = −O2 tanh ΛO4 (4.11)

where Oi ∈ SO(2N) with N being the number of conducting electron channels in the
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lead at zero energy and Λ is a real diagonal 2N × 2N matrix. The eigenvalues λn of

Λ matrix are called Lyapunov exponents. For a disordered system, O′is are random

matrices and the Lyapunov exponents perform a random walk with probability distribu-

tion [110]

P (λ) =
1√

2πL̃σ
e−

(λ−ξL)2

2σ2L̃ (4.12)

where L̃ is some dimensionless parameter proportional to the physical length of the

nanowire and ξ is some dimensionless parameter which encodes all physical parameters

which can drive the topological phase transition viz. if all parameters in Eq. 4.4 are

fixed but only the magnetic field is varied then to drive topological transition then ξ ∼

(VZ − V c
Z)/V c

Z , where V c
Z is the critical Zeeman field where the phase transition takes

place. Unless otherwise stated we fix the constant parameter controlling the width of

the distribution as σ = 1. A minimal model to understand TPT in the nanowire could

begin by the assuming all but at-most one Lyapunov exponents are positive and they

can be expected to be much larger than zero. This implies that the λn’s can be ordered

as |λ1| < λ2 < ..... < λ2N . Thus all but one transmission eigenvalues are close to zero.

The crossover of the smallest Lyapunov exponent λ1 from negative to positive is the

signature of phase transition as the topological invariant given by sgn(det(r)) is solely

dependent on sgn(λ1).

Substituting the expression (4.11) in the Eq. (4.1), the left conductance GL is ob-

tained in terms of the elements of Λ matrix,

GL = N − 1

2
Tr[rMτyr

T
Mτy]

= N − 1

2
Tr[tanh ΛO3τyO

T
3 tanh ΛOT

1 τyO1] (4.13)

= N − 1

2

∑
i<j

ζi,jR
(1,3)
i,j .
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where, ζi,j = tanh Λi tanh Λj and R(1,3)
i,j = [O3(iτy)O

T
3 ]i,j[O

T
1 (iτy)O1]i,j are random

variables independent of Λi. Similarly GR = N −∑i<j tanh Λi tanh ΛjR
(2,4)
i,j . Since

O1,3 andO2,4 perform random walks in a compact space they can be expected to become

uncorrelated at long lengths L̃ >> 1. In this limitR1,3
i,j andR2,4

i,j are uncorrelated random

variables and the correlated function of the end conductance can be written as

∆GL,R = 〈GLGR〉 − 〈GL〉〈GR〉 (4.14)

=
1

4

∑
[〈ζi,jζk,l〉 − 〈ζi,j〉〈ζk,l〉]〈R(1,3)

i,j 〉〈R(2,4)
k,l 〉. (4.15)

Assuming all Lyapunov exponents λi are large positive numbers except at-most one, λ1.

Near the phase transition λ1 fluctuates near 0 and the conductance becomes correlated

as

χ̃ ≡
√

∆GL,R =
1

2

√∑
i,j

(〈tanhλ2
1〉 − 〈tanhλ1〉2)R1,3

i,1R
2,4
j,1 . (4.16)

And the TV can be written as,

Q̃ ≡ det(rM) = det(r′M) = tanh(λ1). (4.17)

4.3 Conductance correlation and topological visibility using random matrix model

Plot of average conductance and CC of the composite barrier-nanowire-barrier (see

App. E.1 for computing composite S-matrix) as a function of Lyapunov exponent is

shown in Fig. 4.6. The average conductance and conductance correlation is obtained

by averaging over random orthogonal matrices, O′is appearing in Eq. (4.14). As the

Lyapunov exponent transitions across 0, the find our model calculations show similar

trend as exhibited by the nanowire transitioning through the TPT presented in Fig. 4.4.
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FIGURE 4.6: Average conductance, 〈G〉 ≡ 〈GL〉 = 〈GR〉 (top panel) and
average CC, χ̃ (bottom panel) as a function of Lyapunov exponent. Average
is calculated over ensemble of random orthogonal matrices (Eq. 4.11). Con-
ductance correlation (χ̃) peak is associated with the sign change of λ with
topological(non-topological) conductance quantization associated with λ < 0

(λ < 0).
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Specifically, observe that the conductance falls to 0 from 2e2/h as the Lyapunov ex-

ponent changes sign. This is consistent with the discussion in Sec. 4.2, where we had

concluded that system transitions from topological phase to a trivial phase as the sign

of Lyapunov exponent changes from negative to positive.

In this section, we obtain CC, average conductance and the TV using the random

matrix model discussed in the previous section. To make comparisons to the numerical

results obtained for the nanowire in Sec. 4.1, we keep the number of channels the same,

i.e. Nc = 4. Accordingly, Oi ∈ SO(8) appearing in the Eq. (4.11) and Λ is a real

diagonal matrix with eigenvalues (λ, 1, 1, 1, 1, 1, 1, 1), where λ is sampled according to

the probability distribution appearing in Eq. (4.12). For all the obtained results, σ = 1

(Eq. (4.12)) is held fixed. Next, we consider a barrier region at the two ends of the

nanowire and form a composite barrier-nanowire-barrier system. The corresponding

composite S-matrix, Scom is calculated following the recipe outlined in Appendix E,

which is used to obtain the corresponding composite reflection matrix, rcom to calculate

conductance and CC.

Fig. 4.7 is a plot of conductance and CC (χ̃) of the composite barrier-nanowire-

barrier system as a function of drift for different L̃. Since the probability distribution

of λ is centered around ξ (Eq. 4.12), qualitative behavior of conductance and CC as

a function of ξ and λ are similar. However, unlike λ, ξ is a tunable parameter in an

experiment that can drive a system in and out of the topological phase. The width and

the height of the correlation peak tend to decrease as a function L̃. This is consistent

with the narrower and shorter CC peak observed in Fig. 4.4 for the longer nanowire.

In other words, the longer system has a narrower crossover region (Fig. 4.3) at the

phase transition. We find that the theoretical model described in Sec. 4.2 captures the

qualitative behavior of transport properties across TPT quite well.
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FIGURE 4.7: CC, χ̃ (top panel) and conductance, G (bottom panel) of the
composite barrier-nanowire-barrier system as a function of drift, ξ for various
length parameter L̃. This result is obtained by averaging CC and conductance
(Fig. 4.6) over Lyapunov exponents sampled from the probability distribution
given by Eq. (4.12) for a given ξ and σ = 1. The width and the height of
conductance correlation peak is a decreasing function of L̃.
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FIGURE 4.8: Probability of distribution of tanh(λ) for λ sampled from the
distribution in Eq. (4.12) for various drift (ξ) and length (L̃) parameters. In the
theoretical model discussed in Sec. 4.2 tanh(λ) equals TV. For fixed set of drift
parameter values, ξ, as the system size decreases (panel a-c), the distribution of
TV de-localizes. The distribution of TV close to TPT is bimodal for L̃ = 2 and
unimodal for L̃ = 0.1

The characteristics of a topological phase transition in a finite disordered nanowire

can be understood by studying the probability distribution of topological visibility Q =

tanh(λ) across the phase transition for varying nanowire length (L̃) and drift (ξ) param-

eters.

Probability distribution of tanh(λ), where the Lyapunov exponent λ follows the

probability distribution in Eq. 4.12, is plotted in Fig. 4.8 for various drift (ξ) and length

(L̃) parameters. In each panel of Fig. 4.8 the probability distribution is studied for a
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fixed length parameter L̃ across the TPT as ξ changing sign (tanh(λ) equals TV in our

model). In Fig. 4.8a, for ξ = −0.5(ξ = 0.5), tanh(λ) is sharply localized at -1(+1)

suggesting the ξ = −0.5(ξ = 0.5) corresponds to a well-defined (non-)topological

phase. As ξ ∼ 0 the transition from sharp localization at -1 to sharp localization +1

occurs through the formation of a bimodal distribution peaked at±1. As L̃ is reduced in

Fig. 4.8b, the localized peaks of the distribution broadens leading to complete vanishing

of distinctions between the two phases for L̃ = 0.1 in Fig. 4.8c. This implies that the

size of the cross-over region (Fig. 4.3) increases as L̃ (which is proportional to physical

length L) decreases. Notice, as L̃ decreases in Fig. 4.3a-c, the bimodal distribution of

tanh(λ) at ξ ∼ 0 in Fig. 4.3a turns into a unimodal distribution centered at 0 in Fig. 4.3c.

The sharply localized distribution of tanh(λ) is recovered L̃ = 0.1 when |ξ| � 0 shown

in Fig. 4.3d.

4.4 Summary

The topological transition in nanowire heterostructures discussed in this thesis is asso-

ciated with simultaneous appearance of a pair of Majorana zero modes. Thus, both left

and right conductance should show signatures of perfect Andreev reflection associated

with the Majorana modes, simultaneously. We propose that measurement of such con-

ductance correlation can be used as a general diagnostic tool to detect topological phase

transition in nanowire systems. By considering a realistic system within experimentally

relevant parameters- a disordered quasi one-dimensional nanowire, we quantitatively

established that an appropriately defined conductance correlation shows a peak in the

crossover region of the phase transition, where the phase transition itself was monitored

by calculating topological visibility.
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Theoretically, within a very general minimal model that respects the symmetry

properties of a multi-channel disordered nanowire system (class D), we were able to

qualitatively demonstrate that indeed conductance correlation can be used as a probe to

detect topological phase transitions. Our model was able to reproduce the qualitative

features of the nature of the topological phase transition in detail.



Chapter 5: Discussion

In chapter 2 we found that while a Bosonic bath does not directly interfere with topo-

logical protection of quantum information, Bosonic baths can lead to powerlaw in time

diabatic errors that might limit the speed of topologically protected operations. We ig-

nored finite temperature effects despite the fact that a finite temperature is needed to

justify the Markovian approximation. Such finite temperature effects can be expected

to be negligible for temperatures substantially below the gap. Moreover, such finite

temperature excitations are expected to only increase the excitation probability and thus

the error rate.

In chapter 3 we quantitatively related the observed non-ideal characteristics of a

zero-bias conductance-peak, in terms of height and width of the peak controlled by Ma-

jorana splitting and dissipation, to topological visibility. This connection shed light on

the possibility of observing the topological nature of MZMs (in terms of non-Abelian

exchange statistics) in future braiding experiments carried out in the same (or similar)

samples as the ones currently manifesting non-ideal ZBCPs. This takes on special sig-

nificance because direct braiding experiments, which are typically very hard, establish-

ing the non-Abelian nature of MZMs have not yet been carried out in semiconductor

nanowires (such experiments do exist in the fractional quantum Hall context, but the

results are difficult to interpret and have remained controversial (see Ref. [111] and ref-

erences therein). Note that we have neglected finite temperature and disorder effects

in our theory, assuming clean nanowires at zero temperature. However, our conclusion

remains completely unaffected by finite temperature and disorder. Finite temperature

only reduces the visibility, thus further reducing the magnitude of the ZBCP and the TV.

Thus, the braiding experiment should be performed at the lowest possible temperatures

100
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to maximize the visibility. Disorder complicates matters only because it shifts the con-

dition for obtaining the topological phase (i.e. the TPT point), but it cannot affect the

basic physics at all since the induced topological superconductivity arises from an inter-

play among the s-wave superconductivity, spin-orbit coupling, and Zeeman splitting—

all of which are immune to disorder. The situation with very strong disorder is, however,

disastrous for the manifestation of topological properties since the strongly disordered

nanowire will manifest Griffiths phase physics with many MZMs localized randomly

along the wire [90, 112], and this situation must obviously be avoided at all costs for all

braiding experiments. Similarly, multisubband occupancy of the nanowire [106, 113]

does not change any of our conclusions either as long as an odd number of spin-split

subbands are occupied in the system, and the appropriate microscopic parameters (i.e.

δ, Γ, ΓL, ∆, chemical potential) are all modified to take into account the multisubband

occupancy in the nanowire. Of course, the relative values of the various parameters may

be modified by multi-subband occupancy, which must be incorporated in the theory ap-

propriately, but the theory itself remains exactly the same as long as an odd number of

subbands are occupied in the nanowire and various parameters are appropriately modi-

fied to reflect the multi-subband occupancy of the system.

In chapter 4, we demonstrated that correlation calculated between independent left

and right tunneling conductance measurement shows a peak in the vicinity of topo-

logical phase transition associated with simultaneous appearance of Majorana mode at

each edge of the nanowire. Therefore, such a measurement of correlation can be used

as a tool diagnose topological phase transition and thereby decide whether or not the

observed zero-bias conductance-peak in the experimental measurements are due to un-

derlying Majorana modes.



Appendix A: Reduced master equation from parity conservation

In this section we discuss the consequence of parity conservation on the master equa-

tion(Eq. 2.13). Using Eq. 2.2, Fermionic parity operator, P̂ = iγ0γxγyγz can be written

as,

P̂ = τz. (A.1)

Clearly, [P,H] = 0. Therefore, in absence of system-bath coupling, the system dynam-

ics is entirely governed by the effective Hamiltonian,

H2Level = B(t).σ.

Hence, the Hamiltonian is reduced to a matrix in SU(2) space from SU(2) ⊗ SU(2).

However, it is not obvious if such dimensional reduction is well-defined for the master

equation in presence of a bath even if the thermal bath conserves parity (i.e. HSB and

HB commute with the parity operator, P ). In what follows, we show that indeed the sys-

tem dynamics can be studied solely in SU(2) space rather that SU(2)⊗SU(2). Without

loss of generality we focus on the first step, i.e. t ∈ [0, T ].To proceed we use the stan-

dard stochastic wavefunction interpretation of the master equation. We refer the reader

to literature [114, 115] for a detailed exposition while we outline the basic idea here. Ex-

panding the density matrix as an ensemble of pure states, ρS(t) =
∑

j pj|ψj(t)〉〈ψj(t)|,
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the master equation can be expressed as

ρ̇S(t) =
∑
j

pj

[
−i(Heff |ψj〉〈ψj| − |ψj〉〈ψj|H†eff )

+
∑
k,ν

ηk(ν)Jk(ν)|ψj〉〈ψj|Jk(ν)†

]
,

where Heff = H − i∑k,ν
ηk(ν)

2
J†k(ν)Jk(ν). Thus, ρ can constructed from an ensemble

average of pure states |ψj(t)〉 evolving under the influence of an effective non-unitary

Hamiltonian Heff , while at each time t, there is a probability proportional to ηk(ν) to

jump to a different state Jk(ν)|ψj(t)〉. Diagonalize the Hamiltonian in the parity basis

such that the degenerate ground states are given by |0〉 and |0′〉 and the degenerate

excited states be given by |1〉 and |1′〉, with,

P̂ |0〉 = 1 ; P̂ |0′〉 = −1

P̂ |1〉 = 1 ; P̂ |1′〉 = −1. (A.2)

Let any two arbitrary ground states be given by,

|G〉 = α|0′〉+ β|0〉

|G′〉 = α′|0′〉+ β′|0〉 (A.3)

We show that there is no sequence of jump operators that lead to |G〉 → |G′〉 transition.

Since a similar result extends to excited states, combined with 〈G|Heff |G′〉 = 0, the

condition implies that the system can be effectively studied in SU(2) space as a two-

level system.
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H commutes with the Majorana operator, γz. In the Pauli matrix notation, it can be

expressed as,

γz = σzτx. (A.4)

Notice,

{P̂ , γz} = 0. (A.5)

Let the system-bath Hamiltonian given by Hsb =
∑

i ÂiΓ̂i with Âi and Γ̂i being the

system and bath operators respectively, such that

[H, P̂ ] = [H, γz] = 0

[Âi, P̂ ] = [Âi, γz] = 0 ∀i. (A.6)

Consider zero energy jump operators,

Ji(0) = ΠgÂiΠg + ΠeÂiΠe (A.7)

where, Πg and Πe are projection operators to ground and excited state eigenspace, re-

spectively. Note that 〈G′|Âi|G〉 = 0 is sufficient to show that 〈G′|Ji(0)|G〉 = 0.

〈G′|Âi|G〉 = (α′)∗α〈0|Âi|0〉+ (α′)∗β〈0|Âi|0′〉

+ (β′)∗α〈0′|Âi|0〉+ (β′)∗β〈0′|Âi|0′〉. (A.8)

Using {P̂ , γz} = 0 and [γz, H] = 0, we conclude γz|0〉 = |0′〉. Hence, sum of first and

the last term of the above equation reduce to (α′)∗α + (β′)∗β = 0 (using 〈G′|G〉 = 0).

Now consider 〈0′|Âi|0〉 = 〈0′|ÂiP̂ |0〉 = 〈0′|P̂ Âi|0〉 = −〈0′|Âi|0〉. Thus 〈0′|Âi|0〉 =
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〈0|Âi|0′〉 = 0. Therefore,

|G〉 Ji(0)−−→ |G〉 ∀i. (A.9)

Similarly we can show,

|E〉 Ji(0)−−→ |E〉 ∀i, (A.10)

where |E〉 is some excited state.

Consider a positive energy jump operator that takes the system from ground state

eigenspace to excited eigenspace,

Ji = ΠeÂiΠg. (A.11)

Consider the process,

|G〉 Ji−→
J†j−→ (A.12)

for any two i and j possibly being the same. In general these operators can be expressed

as,

Ji = A′i|1′〉〈0′|+ Ai|1〉〈0|

Jj = A′j|1′〉〈0′|+ Aj|1〉〈0|, (A.13)

with

Ai ≡ 〈1|Âi|0〉 ; A′i ≡ 〈1′|Âi|0′〉

Aj ≡ 〈1|Âj|0〉 ; A′j ≡ 〈1′|Âj|0′〉. (A.14)
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Then the process is described by the operator,

J†j Ji = A∗jAi|0〉〈0|+ (A′j)
∗A′i|0′〉〈0′|. (A.15)

However, using γz|0〉 = |0′〉 and γz|1〉 = |1′〉 we find Ai = A′i and Aj = A′j . Thus,

J†j Ji ∝ Πg. (A.16)

Thus we have shown that there is no sequence of jump processes that mix orthogonal

states in an energy eigenspace.



Appendix B: Diabatic expansion of Bloch vector

Expanding the Bloch vector R(s) in powers of ε = 1/T ,

R(s) = R0(s) + εR1(s) + . . . (B.1)

we seek solution to

εṘ = MR (B.2)

for initial condiction R(0) = R0(0) ≡ B(0) where, M = 2(A+S) and S = (α−β)A2

(A being the matrix representation of B× operation) with α and β being the time-

dependent functions defined by Eq. 2.20. The presentation here follows the work of

Hagedorn et. al. in Ref. [76].

A, being the anti-symmetric matrix representation of B× operator has eigenvalues

0, i,−i. Consequently, the instantaneous eigenvalues of M are given by 0, λ1andλ2

with,

λ1 = 2(i− (α− β))

λ2 = 2(−i− (α− β)). (B.3)

Denote R0(s) = −B(s) and thereby, R0(s) is the zero eigenvector with 0 eigenvalue.

M can be inverted in the eigenvector subspace with non-zero eigenvalues,

M−1 =
1

2(1 + (α− β)2)
(−A− (α− β)1). (B.4)

107
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Expanding R = R0 + εR1 + . . . and substituting in εṘ = MR, we get,

MRj = Ṙj−1

=⇒ Rj = fj−1R0 +M−1Ṙj−1 (B.5)

with fj−1(s) evaluated using the condition RT
0 Ṙj = 0 which follows from MRj =

Ṙj−1,

fj−1(s) =

∫ s

0

ds ṘT
0M

−1Ṙj−1. (B.6)

Now we show that the series expansion is well-defined in small epsilon limit. Con-

sider the partial sum of the series expansion,

RN(s) =
N∑
j=0

εjRj. (B.7)

If the series expansion is well-defined, the partial sum (as defined above) must converge

to the actual solution R. Let the actual solution R(s) = V (s)R(0). Consider,

∥∥RN(s)−R(s)
∥∥ =

∥∥RN(s)− V (s)R(0)
∥∥

= ‖V (s)‖
∥∥V (s)−1RN(s)−R(0)

∥∥
= ‖V (s)‖

∥∥∥∥∫ s

0

ds′
d

ds′
V −1(s′)RN(s′)

∥∥∥∥, (B.8)
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where we have used V̇ −1(0) = 0 which follows from Ḃ(0) = 0. Now,

ṘN(s) =
N∑
j=0

εjṘj =
N∑
j=0

εjMRj+1

=⇒ εṘN(s) = M
N∑
j=0

εj+1Rj+1 +MR0 −MR0

= MRN+1 = MRN + εN+1ṘN , (B.9)

where we simply used the definition given in Eq. B.7 and the relation given in Eq. B.5

to arrive at the second line above. Using the above relation we get,

d

ds′
(V −1(s′)RN(s′)) = V̇ −1RN + V −1ṘN = εN ṘN . (B.10)

Therefore it follows from Eq. B.8,

∥∥RN(s)−R(s)
∥∥ = ‖V (s)‖

∥∥∥∥∫ s

0

ds′εN ṘN

∥∥∥∥
≤ εN‖V (s)‖

∫ s

0

ds′
∥∥∥ṘN

∥∥∥. (B.11)

We conclude that RN converges to the actual solution R provided
∥∥∥ṘN

∥∥∥ and ‖V (s)‖

are bounded. We refer the reader to Ref. [76] for the proof of boundedness of
∥∥∥ṘN

∥∥∥
in absence of bath. It seems likely that a similar proof holds for boundedness of

∥∥∥ṘN

∥∥∥
in presence of bath. In the limiting α(s) = β(s) = 0, V (s) is unitary, so clearly when

for α(s) > β(s)∀s, ‖V (s)‖ is bounded by 1. Without speculating about α(s) < β(s)

case, we restrict our following discussion to α(s) > β(s) that corresponds to η0 ≥ η

provided sx ∼ sy.
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Our goal now is to arrive at a bound for the diabatic error defined by,

E = ‖R(1)−R0(1)‖, (B.12)

where R0(s = 1) = −B(s = 1) is the Bloch vector that corresponds to instantaneous

zero eigenvector of M at s = 1. Note as consistency check that R(1) → R0(1) when

ε = 1/T → 0 follows from the series expansion of R, Eq. 2.29. Since we have shown

that the series expansion of R is well defined, we can replace R in ‖R(1) − R0(1)‖

by its corresponding series expansion. However to make progress towards arriving at a

bound for E we need a useful result stated and proved below.

We how that if all derivative of M (kth derivative denoted by M (k)), M (k)(s0) =

0∀ k for some s0 then (R⊥0 )TR
(k)
j = 0∀ k, j whereR⊥0 is any vector such that (R⊥0 )TR0 =

0. The proof follows in three steps:

• We first show that (R⊥0 )TR
(k)
0 = 0∀ k.

Let k be a positive integer. MR0 = 0 =⇒ (MR0)(k) =
∑k

j=0

(
k
j

)
M (j)R

(k−j)
0 =

MRk
0 = 0. Therefore, it must be (R⊥0 )TR

(k)
0 = 0∀ k.

• Next we show that [M−1](k)(s0) = 0∀ k.

Again, let k be a positive integer. M−1M = 1 =⇒ (M−1M)(k) =
∑k

j=0

(
k
j

)
[M−1](j)A(k−j) =

[M−1](k)M = 0. Therefore, it must be [M−1](k)(s0) = 0∀ k.

• Finally we prove our original assertion, (R⊥0 )TR
(k)
j = 0∀ k, j.

We will prove this assertion by induction. Assume (R⊥0 )TR
(k)
j−1 = 0∀ k. Now,

Rj = fj−1R0 +M−1Ṙj−1

=⇒ R
(k)
j = (fj−1R0)(k) + (M−1Ṙj−1)(k)

= M−1Ṙ
(k)
j−1 = M−1R

(k+1)
j−1 .
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Using the the induction hypothesis it follows, (R⊥0 )TR
(k)
j = 0∀ k, j.

Since M (k)(s0) = 0; s0 ∈ {0, 1}∀k on account of dk

dsk
B(s0) = 0; s0 ∈

{0, 1}∀k, the above result implies R(1)||R0(1) and R(0)||R0(0). Armed with this re-

sult, we use to Eq. B.11 to arrive at a bound for E for two different cases, i.e, in absence

and in presence of a thermal bath.

B.0.1 Absence of thermal bath

In absence of thermal bath M is anti-symmetric and consequently V is unitary. Thus,

Eq. B.11 reduces to

∥∥RM(s)−R(s)
∥∥ ≤ εM

∫ s

0

ds′
∥∥∥ṘM

∥∥∥. (B.13)

Consider the expression ‖R(1)−R0(1)‖, using triangle inequality we can express,

‖R(1)−R0(1)‖ ≤ ‖R(1)−RM(1)‖+ ‖RM(1)−R0(1)‖.

(B.14)

Using RM(1) ‖R0(1) on account of all derivatives of M(s) vanishing at s = 1,

‖RM(1)−R0(1)‖ = ‖R0‖RM(1)‖ −R0(1)‖

= |‖RM(1)‖ − 1|

≤ ‖RM(1)−R(1)‖, (B.15)

where crucially, we have used ‖R(1)‖ = 1 as time-evolution is unitary for anti-symmetric

M to go from the second to the last line on the LHS above.
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Using Eq. B.13 we get,

‖R(1)−R0(1)‖ ≤ 2εM
∫ 1

0

ds′
∥∥∥ṘM

∥∥∥. (B.16)

B.0.2 Presence of thermal bath

Again, using triangle inequality,

‖R(1)−R0(1)‖ ≤ ‖R(1)−RN(1)‖+ ‖RN(1)−R0(1)‖.

(B.17)

Using RN(1) ‖R0(1) on account of all derivatives of M(s) vanishing at s = 1,

‖RN(1)−R0(1)‖ = ‖R0(1)‖RN(1)‖ −R0(1)‖

= |‖RN(1)‖ − 1|

= |εf0(1) + ε2f1(1) + . . . |

' ε|f0(1)|

=⇒ ‖R(1)−R0(1)‖ ' ε|f0(1)|. (B.18)



Appendix C: Asymptotic behavior of diabatic error

We consider the error E in the presence of small but finite relaxation. To proceed it is

useful to consider a matrix V (s) with initial condition V (0) = 1, that satisfies

V̇ =
1

ε
MV, (C.1)

where M is the matrix appearing in Bloch equation (Eq. 2.22). Using V we change to

change to a new variable ξ,

ξ(s) = V −1(s)R(s), (C.2)

that satisfies,

εξ̇ = −4βξ + 4βV −1R0. (C.3)

The solution to this equation is written as,

ξ(s) = e−
1
ε

∫ s
0 4β(s′)ds′(∫ s

0

4β(s′)

ε
e

1
ε

∫ s′
0 4β(s′′)ds′′V −1(s′)R0(s′)ds′ +R(0)

)
(C.4)

which in conjunction with Eq. C.2, formally (i.e. contingent on having a solution for

V (s) in Eq. C.1) solves the Bloch equation (Eq. 2.22). Note that Eq. C.4 is completely

consistent with our discussion in the previous sections since setting β = 0 in Eq. C.4
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and using Eq. C.2 leads to the solution R(s) = V (s)R(0) where using Eq. C.1 we find

that R satisfies the same Bloch equation, Eq. 2.26 as used in previous section.

For finite relaxation, the first term in the parenthesis in Eq. C.4 is non-zero and

hence the matrix V (s) (or equivalently V −1(s)) must be known to calculateR(1). How-

ever, V (s) satisfying Eq. C.1 with initial condition V (0) = 1 does not lend itself to a

power series expansion in ε parallel to Eq. 2.27, invalidating the method used to obtain

analytical solution for the Bloch vector in the previous section. Though there is no clear

way to calculate the matrix V (s) by solving Eq. C.1, computing R̄, the action of matrix

V (s) on the initial Bloch vector R0(0),

R̄ = V R0(0) (C.5)

is analytically tractable. The solution for the vector R̄ through Eq. 2.26 allows us to

make an ansatz for V (s) that leads to results consistent with numerics.

While a direct solution of V in Eq. C.1 is difficult, we observe that the introduction

of a finite relaxation does not change the solution for R̄ in Eq. 2.26 except replacing

α → α − β. Therefore generalizing Eq. 2.32 we get, R̄(1) = f(s)R0(1) where f(s) is

given by Eq. 2.33 but unlike previous section β is no longer assumed to be zero. Using

Eq. C.5, this relation can be used to constrain V (s) according to the relation

V (1)R0(0) = f(1)U0(1)R0(0) (C.6)

where we have used the relationR0(s) = U0(s)R0(0) whereU0 is defined in Eq. 2.37.This

motivates our anstaz

V (s) ≈ f(s)U0(s) (C.7)
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in Eq. C.4 which interpolates correctly, satisfying the initial condition V (0) = 1 at

s = 0 as well as Eq. C.6 at s = 1. Note that, the above approximation satisfies V (s)→

U0(s) as T →∞.

FIGURE C.1: Plot of effective dephasing (α) and relaxation (β) as a function
of scaled time, s for system-bath coupling strength sx = 0.5 and sy given in
the key. The dashed curve corresponds to effective relaxation, β and the solid
curve corresponds to effective dephasing, α. The dephasing parameter, η0 and
the relaxation parameter η are chosen equal to each other and set to 1.

Substituting Eq. C.7 in Eq. C.4, we make the the following ansatz,

R(1) = U0f(1)e−
4
ε

∫ 1
0 β

(
4

ε

∫ 1

0

βe
4
ε

∫ s
0 βf−1(s) + 1

)
R(0)

=

(
1 + f(1)

∫ 1

0

(
d

ds
f−1

)
e−

4
ε

∫ 1
s βds

)
R0(1). (C.8)
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Restricting f and f−1 in the above formula to lowest order in ε , we get ‖R(1)‖ =

1 +
∫ 1

0

(
d
ds
f−1

0

)
e−

4
ε

∫ 1
s βds where

f0(s) = −
∫ s

0

(α− β)ω2

2(1 + (α− β)2)
. (C.9)

As a consistency check note that Eq.C.8 reduces to Eq, 2.32 in the limit β → 0. More-

over, since R must be bounded in norm ‖R(1)‖ ≤ 1, (α−β)ω2

2(1+(α−β)2)
> 0 must hold. This

condition suggests the requirement α > β for the ansatz offered in Eq. C.8 to hold. We

point out that α > β condition can be satisfied provided the two system-bath coupling

parameters have same order of magnitude, sx ∼ sy and dephasing strength is stronger

than relaxation, η0 ≥ η. This is clear from the Fig. C.1, where we plot effective relax-

ation and effective dephasing as defined in Eq. 2.20. The dephasing parameter, η0 and

the relaxation parameter, η are chosen as, η0 = η = 1. For all the curves, sx = 0.5. We

have chosen to vary just sy because both α and β are invariant under combined effect of

reflection about s = 0.5 and sx � sy exchange. We see that for wide-ranging values of

sy, α(s) > β(s)∀s ∈ [0, 1]. Thus we conclude, for comparable values of system-bath

coupling strengths, sx ∼ sy, η0 > η is a good criterion to ensure α(s) > β(s)∀s ∈ [0, 1].

Using Eq. C.8, the error may be computed as

E(T ) = ‖R(1)−R0(1)‖ ≈ − 1

T

∫ 1

0

ḟ0e
−4T

∫ 1
s βds, (C.10)

with ḟ0 = (α−β)ω2

2(1+(α−β)2)
and α,β being defined according to Eq. 2.20.

Now, we estimate the exponent of T which governs the power-law dependence of

‖R(1)− R0(1)‖ = E for large T . For our convenience we will restrict ourselves to the

special case sx = sy, (see Eq. 2.22-2.21) essentially allowing the system bath coupling
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FIGURE C.2: (Panel a) Plot of ρ (Eq.C.13) for different values of time T. Peak-
height and the width of the probability density ρ is an increasing and a decreases
function of T, respectively. The probability densities look identical at this scale
for values of sx = sy varied from 0.005 to 0.5. (Panels b and c) Comparison of〈∫ 1

s
β
〉
ρ

(defined by Eq. C.14) , plotted in solid curves, versus its approximate

estimate given by values of
∫ 1

smax
β as a function of total time T , plotted in

dashed curves, for different values of dephasing, α and relaxation strength, β
characterized by the shown values of sx = sy (see Eq. 2.22-2.21). Relaxation
and dephasing parameters, η and η0 are both set to η = η0 = 1. There exists a
region, for small values of T , over which T dependence of

〈∫ 1

s
β
〉
ρ

vanishes

(panel c). This region is well captured by the approximate formula
∫ 1

smax
β,

however the value of
〈∫ 1

s
β
〉
ρ

itself is underestimated by the formula. For

large values of T ,
〈∫ 1

s
β
〉
ρ

values tend to oscillate, however, the average slope

is again well captured by the approximate formula
∫ 1

smax
β (panel b).

(Panels d and e) Plot of 1 − smax as a function of log T (bottom right panel)
and the same plot in log-log scale is shown in bottom left panel. Notice that T
independent region of

〈∫ 1

s
β
〉
ρ

corresponds to smax ≈ 0.5. This region ends in

a kink beyond which 1− smax decreases zero, asymptotically approaching 1
log T

.
This asymptotic dependence is verified by the log-log plot in the panel e.
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to be governed by a single parameter. Using Eq. C.10,

E(T ) = f(1)

∫ 1

0

˙(f−1)e−4T
∫ 1
s βds

≈ − 1

T

∫ 1

0

ḟ0e
−4T

∫ 1
s βds. (C.11)

Taking the derivative of log(E)with respect to T , (let ′ denotes derivative with respect

to scaled time parameter s ),

d

dT
log(E) ≈ − 1

T
− 4

∫ 1

0
dsḟ0e

−4T
∫ 1
s β
∫ 1

s
β∫ 1

0
dsḟ0e

−4T
∫ 1
s β

. (C.12)

Defining,

ρ ≡ ḟ0e
−4T

∫ 1
s β∫ 1

0
ḟ0e
−4T

∫ 1
s β

(C.13)

as a probability density defined over [0, 1], the second term in the equation above is

interpreted as

〈
4

∫ 1

s

β

〉
ρ

≡ 4
∫ 1

0
dsḟ0e

−4T
∫ 1
s β
∫ 1

s
β∫ 1

0
dsḟ0e

−4T
∫ 1
s β

. (C.14)

The function f ′0(s) = − (α−β)ω2

2(1+(α−β)2)
(Eq. C.9), is symmetric about s = 0.5 (when sx =

sy) and exponentially goes to zero at s = 1, while, the function e−4T
∫ 1
s β is an increasing

function over [0, 1] where, it decreases exponentially from the value 1 at s = 1 to the

value e−4T
∫ 1
0 β at s = 0 with exponent being proportional to T . These properties imply

that ρ is a sharply peaked (see Fig. C.2a) distribution for large T (defining large T

when 1/T �
∫ 1

0
β holds) with the maximum value ρmax = ρ(smax) for smax ∈

(
0.5, 1

)
.

Moreover, smax → 1 as T → ∞. Hence for large value of T , we approximate (see
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Fig. C.2),

〈∫ 1

s

β

〉
ρ

'
∫ 1

smax

β. (C.15)

smax is the solution to the equation ρ′(s)|smax = 0,

0 =
Ω′

Ω
+ 2

ω′

ω
+ 4Tβ

∣∣∣∣
smax

(C.16)

where, we defined Ω ≡ (α−β)
2(1+(α−β)2)

and ω = θ̇ (see Eq. 2.5) for brevity. Since Ω(s →

1) 6= 0 and Ω′(s → 1) = 0, we conclude
∣∣Ω′

Ω

∣∣ � ∣∣∣ω′ω = − 2s−1
s2(1−s)2

∣∣∣ for s → 1. Thus,

neglecting Ω′

Ω
term in the Eq. C.16, the equation for smax in the T →∞ limit is given by

2smax − 1

4T
' 1

2
s2

max(1− smax)
2β(smax). (C.17)

This result immediately leads to two conclusions. First, using the asymptotic form of β,

β
s→1' η

( π

4C

)2

(s2
x + s2

y)s
4(1− s)4e−

2
1−s , (C.18)

where C ≡
∫ 1

0
ds′e−1/s′(1−s′), one finds log(T ) ∼ 2

1−smax
+O(log(1− smax)), and thus,

smax ∼ 1− 2

log(T )
. (C.19)

Second, using asymptotic dependence of
∫ 1

s
β on s given by,

∫ 1

s

βds
s→1' 1

2
s2(1− s)2β(s). (C.20)
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Taken together with Eq. C.17, we get

2smax − 1

4T
'
∫ 1

smax

βds. (C.21)

Thus,

Ė
E ≈ −

1

T
−
〈

4

∫ 1

s

βds

〉
' − 1

T
− 4

∫ 1

smax

βds

' −2smax

T
. (C.22)

In conclusion, ‖R(1)−R0(1)‖ is given by

‖R(1)−R0(1)‖ ∼ T−2smax . (C.23)

Defining the exponent at time T as

m(T ) ≡ −2smax ∼ −2 +
4

log T
, (C.24)

where we have used the asymptotic dependence of smax on T (see Eq. C.19). Since

smax(T ) ∈ (0.5, 1), the exponent m(T ) ∈ (1, 2) with m(T →∞) = 2. All assumptions

leading upto this result are verified against exact numerical results in Fig. C.2.



Appendix D: Tunneling conductance and topological visibility from

S-matrix

Tunneling conductance is a local measurement at the normal lead -superconducting

nanowire (see Fig. 1.4) junction, and one may calculate it theoretically by assuming

both the lead and nanowire to extend semi-infinitely and coupled together at the so-

called Normal metal-Superconductor (NS) junction via a tunnel barrier.

The knowledge of the reflection matrix at the NS junction is sufficient to calculate

the tunneling conductance. The reflection matrix has the form

r =

ree reh

rhe rhh

 , (D.1)

where ree and reh are the normal and Andreev reflection amplitudes, respectively. Here,

the reflection matrix is expressed in the basis of electron and hole scattering channels,

which is called the particle-hole basis. Such a convenient decomposition in normal

and Andreev reflection amplitudes is possible whenever the lead Hamiltonian, Hlead

(see Eq. (3.7)) is diagonal in the particle hole basis- i.e. [Hlead, τz] = 0. For a single

conducting channel, the tunneling conductance to a superconductor in the NS junction

is given by the Blonder-Tinkham-Klapwijk (BTK) formula [24] (in the units of e2/h)

G = 1− |ree|2 + |reh|2. (D.2)
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With N conducting modes in the lead, ree and reh acquire a matrix structure and the

BTK formula is generalized to,

G = N − Tr(reer
†
ee − rehr†eh)

For a periodic translationally invariant spinless p-wave superconductor described

by a Hamiltonian H(k) in k-space, Kitaev [4] defined the TI as

QKitaev = sgn(Pf(iH(0))Pf(iH(π))), (D.3)

where Pf denotes Pfaffian operation on a matrix. QKitaev is completely equivalent TI

introduced in the Eq. 1.19 when calculated for 1-D spinless p-wave superconductor.

superconductor in the introduction is QKitaev = −1 implies that the system is in a

topological phase i.e. if the same Hamiltonian were to describe a finite chain with

an open boundary condition, the system edges will host non-Abelian Majorana zero

modes. For an open finite wire geometry, Akhmerov et. al. [25] provided the following

generalization for the TI in terms of the reflection matrix:

Q0 = sgn(det(r)). (D.4)

It was argued in the main body of the chapter that in presence of dissipation, a more

useful quantity to characterize topological properties of the system is TV– a quantity

closely related to scattering matrix TI (D.4), defined as

Q = det(r). (D.5)
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To justify this expression for the TV, which we use in our numerical work, con-

sider the particle-hole symmetry of the superconducting Bogoliubov-de Gennes (BdG)

Hamiltonian i.e.,

ΠHBdGΠ−1 = −HBdG, (D.6)

where Π = τxC with C being the complex conjugation operator. This leads to the

following constraint on the reflection matrix,

τxrτx = r∗, (D.7)

which implies

det(r) = det(r)∗. (D.8)

Note that we have implicitly assumed the voltage bias, V , to be zero. For finite V ,

the particle-hole constraint on the voltage-dependent reflection matrix r(V ) takes the

form τxr(V )τx = r(−V )∗. When the voltage bias is less than the superconducting gap

(eV < ∆), the transmission through the nanowire is zero as there are no extended states.

Therefore the reflection matrix r is unitary i.e., rr† = 1. This implies

Tr(reer
†
ee + rehr

†
ee) = Tr(rhhr

†
hh + rher

†
he) = N (D.9)

and that the absolute value of the determinant of reflection matrix satisfies

| det(r)| = 1. (D.10)

Combined with the particle-hole symmetry constraint of r, we get det(r) = ±1. In
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other words we have shown that whenever reflection matrix r respects unitarity and

particle-hole symmetry, the TI (defined as sgn(det(r))) is equal to TV (defined as

det(r)), i.e. Q0 = Q. An ideal system with MZMs is characterized by det(r) = −1

(and non-topological trivial phase is characterized by det(r) = 1) and also is associ-

ated with quantized ZBCP at 2e2/h. The only way to change the value of det(r) is to

break the unitarity by closing the topological gap. Note that by substituting Eq. (D.9)

in Eq. (E.6) and using the unitarity of the reflection matrix one can show,

G = 2Tr(rehr
†
eh), (D.11)

Tr(rehr
†
eh) = Tr(rher

†
he). (D.12)

Moreover, particle-hole symmetry of r implies

reh(V ) = r†he(−V ). (D.13)

Finally, using Eqs. (D.13) and (D.12) we arrive at

G(V ) = G(−V ). (D.14)

So the unitarity and particle-hole symmetry of r guarantee that the in-gap conductance

is symmetric about zero bias. For a finite system, any MZM would be split in energy

by δ because of the inevitable MZM overlap from the two ends (which could be ex-

ponentially small, but never zero for a finite wire). Strictly at zero energy there would

be no BdG eigenstate in the nanowire rendering an incoming electron to be totally re-

flected with det(r) = 1. We would infer, based on this argument, that all finite systems

irrespective of whether they host MZMs or not are non-topological. This is similar

to the statement in an entirely different context that no finite system can have a phase
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transition, which is only a property of the infinite volume thermodynamic limit. In re-

ality, other (nonuniversal) cut-offs in energy and length scales of the problem become

important as the system size increases, and eventually finite and infinite systems be-

have in the same manner. For the nanowire MZM problem, this arises from the energy

broadening inherent in any realistic system, which renders the split hybridized nonzero

energy peaks into a broadened midgap peak with a finite weight at zero energy. Thus,

the split resonances at sharp nonzero energies become a broad peak around zero energy

with a finite width. Without such a dissipative broadening process, the splitting of the

MZMs invariably present in any real system with finite wire length will always lead to

precisely zero conductance at zero energy since the MZMs are now always shifted from

zero energy due to Majorana splitting.

We account for finite lifetime of the quasiparticle due to various inelastic scattering

mechanisms such as phonons and magnetic moments through an onsite imaginary term

in the Hamiltonian. We emphasize that without this broadening, a finite wire can never

have a true zero energy mode, and the system is by definition always in the trivial phase!

The resultant broadening due to the onsite imaginary term in the Hamiltonian is given

by Γ.



Appendix E: S matrix in Majorana representation

The S-matrix of the nanowire can be written in terms of reflection and transmission

matrices as

S =

r t′

t r′

 (E.1)

where, r, r′ are 2N × 2N reflection matrices at the two wire ends and t, t′ are trans-

mission 2N × 2N matrices for N conducting channels in the nanowire. The system

Hamiltonian 4.4 endows particle-hole symmetry to the S matrix of the system, which

at zero-bias reads

τxSτx = S∗

τx

r t′

t r′

 τx =

r∗ t′∗

t∗ r′∗

 (E.2)

Specifically, the reflection matrix obeys the constraint

τxrτx = r∗. (E.3)

Particle-hole symmetric reflection matrix r can be expanded into conventional and An-

dreev reflection amplitudes,

r =

ree reh

rhe rhh

 . (E.4)
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Such a representation is said to be in particle-hole basis. For brevity we label r as rph

whenever it is expressed in particle-hole representation. The particle-hole symmetry

relates particle and hole components of rph, ree = r∗hh and reh = r∗he.

Tunneling conductance through a single channel normal lead-superconductor junc-

tion in given by Blonder-Tinkham-Klapwijk (BTK) formula [24] (in the units of e2/h)

G = 1− |ree|2 + |reh|2. (E.5)

Generalizing BTK conductance formula (Eq. (E.5)) for multichannel transport, we ar-

rive at

G = N − Tr[reer
†
ee − rehr†eh]

= N − Tr[rτzr
†τz]. (E.6)

One can perform an unitary transformation on reflection and transmission matrices

rmaj = UrphU
† (E.7)

such that rmaj = r∗maj . This real representation of S matrix is called majorana repre-

sentation. The U is given by

U =

−i i

1 1

 . (E.8)

In majorana representation the expression for the conductance becomes

G = N − Tr[rmajτyr
†
majτy]. (E.9)
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E.1 Polar decomposition of S-matrix and S-matrix of the composite system

Let Ssys be the S-matrix of a class D [51, 54] system at zero energy. Then, Ssys admits

a polar decomposition, [80]

Ssys =

O1 0

0 O2


 tanh Λ cosh Λ−1

cosh Λ−1 − tanh Λ


O3 0

0 O4

 (E.10)

where Oi ∈ SO(2N) with N being the number of conducting electron channels in the

lead at zero energy and Λ is a real diagonal 2N × 2N matrix. Comparing it to Eq. E.1,

the reflection and the transmission matrices can be read off as,

r = O1 tanh ΛO3

r′ = −O2 tanh ΛO4

t = O2 cosh Λ−1O3

t′ = O1 cosh Λ−1O4. (E.11)

As discussed in the main body of the chapter, our system of interest has a class D

superconductor coupled to the left(right) lead through left(right) barrier. The compos-

ite S-matrix of system+barrier can evaluated in terms of transfer matrix (T-matrix) of

the composite system. Let TLbar, T
R
bar, Tsys denote the T-matrix of the left barrier, right

barrier and the system, respectively. The composite T-matrix of the coupled system is

given by,

Tcom = TLbarTsysT
R
bar. (E.12)
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Let

t1 t2

t3 t4

 denote a generic T-matrix. Comparing the defining equations of S-matrix

and the T-matrix,

Ro

Lo

 =

r t′

t r′


Ri

Li


Lo
Li

 =

t1 t2

t3 t4


Ri

Ro

 (E.13)

where, R(L) denote the amplitude in right(left) lead and subscripts i(o) denote the in-

coming(out-going) modes, elements of S-matrix can be expressed in terms of T-matrix

and vice-versa using,

t1 = t− r′t′−1r; t2 = r′t′−1

t3 = −t′−1r; t4 = t′−1

r = −t−1
4 t3; t′ = t−1

4

t = t1 − t2t−1
4 t3; r′ = t2t

−1
4 (E.14)

For our calculations in chapter 4 we use symmetric barrier such that TLbar = TRbar ≡

Tbar. The S-matrix of the barrier Sbar (which is related to Tbar through Eq. E.14) was

chosen in a generic fashion. The particular choice for barrier S-matrix Sbar in the

particle-hole basis used in our calculations is as follows. Sbar =

R T

T −R

, T is as-

sumed to be diagonal with (0.15,0.15,0.075,0.075,0.15,0.15,0.075,0.075) as its eigen-

values. The eigenvalues r′is of R are related to eigenvalues t′is of T by the relation,

ri =
√

1− t2i .



Bibliography

[1] E. Majorana. Nuovo Cimento, 5:171, 1937.

[2] Steven R Elliott and Marcel Franz. Colloquium: Majorana fermions in nuclear,

particle, and solid-state physics. Reviews of Modern Physics, 87(1):137, 2015.

[3] Palash B Pal. Dirac, majorana, and weyl fermions. American Journal of Physics,

79(5):485–498, 2011.

[4] A Yu Kitaev. Unpaired majorana fermions in quantum wires. Phys. Usp., 44

(10S):131, 2001.

[5] N. Read and Dmitry Green. Paired states of fermions in two dimensions with

breaking of parity and time-reversal symmetries and the fractional quantum hall

effect. Phys. Rev. B, 61:10267–10297, Apr 2000.

[6] D. A. Ivanov. Non-abelian statistics of half-quantum vortices in p-wave super-

conductors. Phys. Rev. Lett., 86:268–271, Jan 2001.

[7] N. B. Kopnin and M. M. Salomaa. Mutual friction in superfluid 3He: Effects of

bound states in the vortex core. Phys. Rev. B, 44:9667–9677, Nov 1991.

[8] G. E. Volovik. Fermion zero modes on vortices in chiral superconductors. Jour-

nal of Experimental and Theoretical Physics Letters, 70(9):609–614, 1999.
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