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Abstract

Among the numerous problems which arise in the context of radar signal pro-
cessing is the problem of extraction of information from a noise corrupted signal.
In this application the signal is assumed to be the superposition of outputs from
multiple radar emitters. Associated with the output of each emitter is a unique set
of parameters which are in general unknown. Significant parameters associated with
each emitter are (i) the pulse repetition frequencies, (ii) the pulse durations (widths)
associated with pulse trains and (iii) the pulse amplitudes. A superposition of the
outputs of multiple emitters together with additive noise is observed at the receiver.
In this study we consider the problem of decomposing such a noise corrupted lin-
ear combination of emitter outputs into an underlying set of basis signals while also
identifying the parameters associated with each of the emitters involved. Foremost
among our objectives is to design a system capable of performing this decomposi-
tion/classification in a demanding real-time environment.

We present here a system composed of three cascaded neural-analog networks
which, in simulation, has demonstrated an ability to nominally perform the task of
decomposition and classification of superposed radar signals under extremely high
noise conditions.

1 Introduction

Addressed here is the problem of decomposing a linear combination (or superposition)
of basis signals into its underlying components under the constraint that the superposition
has been noise corrupted. We emphasize the fact that the basis functions need not be
known apriori. Clearly a problem of this nature has direct applications in practical radar
systems.

For instance, consider the scenario in which the radar environment is crowded with
signals from a multitude of radar emitters. Each emitter propagates its unique parametric
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representation of its characteristic signal through the environment independently of the
others. It is desirable to posseses the capability of determining both the number and
identity of the emitters present. This type of identification or classification is probably
most relevant in military applications where it is imperative to differentiate between
friendly and hostile radars.

For a system designed for such an application to be practical, it is clearly necessary
that intensive processing be performed. Hence, foremost among our objectives is the
design of a system capable of performing this decomposition in a demanding real-time
environment. In this respect, conventional digital hardware implementations are not
likely to succeed. For this reason, we focus attention on an analog neural network solution
instead. By exploiting the parallel nature of the neural network architecture, it is possible
to far exceed the speed of an equivalent digital implementation. Moreover, the neural
topology eliminates the need for an explicit algorithmic development.

Among the specifications for such a system are good estimation of the weights of the
underlying basis functions when the input signal has been severly degraded by noise.
It will be shown that the proposed system employs a non linear neural network noise
reduction network which performs demonstrably better than a simple linear low pass
filter. Non-linear noise reduction aides the classification process aiding satisfaction of the
aforementioned specifications.

2 Problem Statement

Figure 1 indicates the model for the Radar Decomposition System. For analytical
convenience this model is transformed by reflecting the sampling process all the way
back to the introduction of the basis functions (see Figure 2). Such a transformation has
the advantage of allowing the problem formulation to be carried out solely in discrete
time. Also, a realistic signal processing application dictates that only a window (a finite
number of samples) of a signal may be processed at any point in time. The number of
points in this window is assumed to be fixed and is denoted as n. Thus, the domain of

the signal can be defined as IN, = {0,1,...,n—1}.
Suppose there exits a finite set of linearly independent discrete time basis functions,
B ={ 10,00} P{1,.01}s " »ON-1,05_1} }- (2.1)

Here ¢(,0,3 : INs — R is a member of the basis set and O, e RM, k=0,1,...,N-1
is an M dimensional parameter vector indexing ¢. Unless otherwise indicated, N will for
the remainder of this paper refer to the number of basis functions in the basis set B.

A signall s, is generated as a linear combination of the basis set, where the corre-

sponding weight vector, a = (aop, a1, -+ , an_1)T € RY. That is,
N-1
s:N,m,Ros= Z AR Pir0,} = aT<I>(B) (2.2)
k=0

1Note that the signal s is actually the sampled signal obtained from the superposition of the continuous
basis functions, however, we have assumed that basis signals themselves have already been sampled.



OR

N-1
s(t) = > apppen(t), teNN (2.3)
k=0

®(B) is the N-dimensional vector formed by the basis functions given as
B(B) = (10,00} D101} ** +PN-1,05_11) - (2.4)

Note that the linear independence of the basis set, B, insures that the signal, s, has
an unambiguous (unique) representation with respect to the basis set. Formally, a finite
set B consisting of elements ¢,k = 0,1,..., N — 1, has linearly independent elements if
the following condition is satisfied:

N-1
Zak¢k=0 Pt ak=0,k—_—0,1,...,N~1 (25)
k=0

OR

alo(B)=0 & a=0 (2.6)

A second signal, 3, is produced by simply adding Gaussian noise of mean u and
variance 2. Thus 3 is the signal that is presented to the decomposition network, where

3(t) = s(t) + n(t), n(t) ~ M(u,0%), teNN, (2.7)

The process by which the input signal § comes about is represented pictorially in
Figure 1. We are now in a position to clearly state the problem which we would like to
solve.

Problem (P): Given the gaussian noise corrupted signal 3, along with a linearly inde-
pendent set, B, of basis functions for s, recover the vector, a, of weights.

3 Overview of the System

To solve the problem (P) above, we propose a cascaded three block architecture. As
depicted in Figure 2, the data flows from left to right and is processed serially by each
of the three main components of the system. The first block consists of a MEDN to
perform the task of noise reduction. Spectrum analysis of the output of the first block is
performed in the next block by a second analog neural network. Finally, decomposition
of the aggregate signal is performed in the third block by yet another analog neural
network. This final classification is based on the output spectrum of the previous block.

Problem (P) comes about mainly from the physical realities of the radar application
motivating this paper. As such, it would be instructive to qualitatively discuss and jus-
tify the nature of the proposed system. Presented to the system is the noise corrupted
superposition of radar pulses as displayed in Figure 2. The objective of the system is
to decompose this noise corrupted superposition into its underlying components or basis
functions. Each basis function may be associated with a particular emitter. Since the
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presented signal is corrupted by noise, it is appropriate to attempt to reduce that noise
level in the hope that more reliable data will facilitate the ultimate goal of decompo-
sition. Hence, the MEDN noise reducer preprocessing is justified. Transformation of
the signal into the frequency domain is warranted by the combination of facts that (i)
the system should be insensitive to the relative phases of the basis components and (ii)
most of the important information is contained in lower order frequencies. Therefore,
only the low order components of a frequency transform such as the cosine transform
are required for the subsequent classification. These lower order terms are then fed into
the final stage of the system, the classifier. The classifier is configured as a feed forward
neural network whose weights are set by the well known back-propagation algorithm.
The implementation of the classifier as a feed-forward neural network is supported by
empirical observation that such networks exhibit an exceptional performance when cast
with the task of pattern association. See for example [1].

3.1 Noise Reduction

The MEDN noise reducer is described in detail in the next section. A summary of its
operation is as follows: A noise corrupted signal, 3(-), is input to the noise reducer. This
corrupted signal is then convolved with a known window function, g(-). Equation 4.1

(see next section) is then implemented to recover the noise reduced signal, syg(-) 2. A

3.2 Frequency Transform

Signals processed in a real system necessarily belong to the class of finite energy
signals. If z(+) is a discrete time real signal this property can be described mathematically
as x € {3, where

o0
a2 o} 2 Y <o | (3.)
k=—00

In fact, the signals in {3 represent a superset of those that would be found in a real
system since signals in a real system must be of finite length. Hence, it is clear that the
type of signals we would like to analyze in a physical discrete system are finite length
sequences. We will refer to this set of signals as ({3);. Furthermore we would like to
restrict ourselves to causal signals, i.e., those signals who are identically zero for all
negative time. We denote this set, the projection of the space (£3) 7 onto the space of all

causal signals, as C((£2);). These sets are defined precisely below as

(z2)fé{mezzzaNemam(k):OVka|k|>N} (3.2)

(L)) 2 { meﬁg:EINE]NBw(k):OVIce]N\{O,l,---,N—l}} (3.3)
and

C((f2)g) C (€2)5 C La. (3.4)

3.2.1 The Cosine Transform

An appropriate Fourier transform for signals in {2, and hence (£3) #, is the Discrete
Time Fourier Transform (DTFT). Assuming that the discrete signal, z € £;, is generated



by sampling an analog signal where the sampling period is given as T € IR, the continuous
parameter of the DTFT is defined as § = wT'. Here, w represents frequency.

If, however, only signals in C((£2);) are of interest, the simple Cosine Transform may
be employed. The continuous parameter of the Cosine Transform, 6, is defined as above
in the case of the DTFT. A Cosine Transform has the desirable property that it is a
mapping whose range is purely real. We will see that this property greatly facilitates
classification. The Cosine Transform is defined below.

[ | Property | Description l

1. | Linearity | C{az(-)+ by(-)} = aC{z(-)} + C{y()}

2. | Real range R{C{z("))}} =R

Table 1: Cosine Transform Properties

Suppose = € C((£2);), then the Cosine Transform of @(-), denoted C{z(-)}, is given
as

N-1
Cl{z()} & 3 a(k) cos(k0), (3.5)
k=0
where N is the finite length of the signal (). Some important properties of the Cosine
Transform are presented below in Table 1. Let z,y € C((£2)), and a,b € R. Property
twoin Table 1 suggests that the representation of signals in C(({2)) is greatly compacted
from those in £5. Since the DTFT has complex range complete knowledge of both the
phase and the magnitude of the transform is required; however, the Cosine Transform
requires only knowledge of which half plane it is that the phase resides.

3.2.2 Computation of the Cosine Transform

The objective of real-time performance requires that each of the three components of
the proposed system operate at comparable and fast speeds. At the rates of convergence
(around a microsecond) for the MEDN and classifier networks, conventional frequency
transformation methods are inadequate. For this reason, we again look to an analog
approach [2].

Especially tractable for such an approach is the Discrete Hartley Transform (DHT)
[3]. Defined in Equation 3.6, the DHT can be formulated as the matrix multiplication in
3.7. Let x € RY representing a discrete signal of length N and define the cas function

as cas(t) 2 sin(t) 4 cos(t). Then, the DHT of x, denoted X () is

N-1
Xu(9) 2 -;7 3 a(k) cas(kf), 0= 1" (3.6)
k=0
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OR

X =D"x (3.7)

where D = [D;;] and D;; = cas(zjﬂ\,-’i). Among the many ’nice’ properties of the matrix
D are the facts that first, its inverse is given simply as D™ = JLVD, and second, it has
condition number equal to one.

We would now like to relate the DHT and the CosineATransform. For notational
convenience let the Cosine Transform be denoted as X¢(0) = C{z(-)}. Noting that the
cas function obeys the property

cas(8) + cas(—6) = 2 cos(8), (3.8)

it is easy to see that the even part of the Hartley transform, £{Xy(0)}, gives the Cosine
Transform. That is

E(Xn(0)} & SXn(®) + Xn(-0)} = Xo(0). (39)

3.3 Classification

Classification as used here has the specific meaning of determining the vector, a, of
weights that solves the problem (P). Although, classification in the sense of identifying
an arbitrary parameter vector, ©, for some input signal can be achieved to any desired
accuracy by solving the problem (P). This is accomplished simply by partitioning the
parameter space to the desired resolution. A pictorial representation of a possible par-
titioning is presented in Figure 3 for the case of a two dimensional parameter space,
© = (61,62). Such a scheme, however, has the drawback that it dramatically increases
the number of basis functions in the basis set B.

Proposed for the classification is a feed forward three-layer pattern association neural
network. Hence, the network consists of an input layer, an intermediate hidden layer and
finally an output layer (see Figure 4). Trained in a supervisory manner, the associator
network is presented with a training set of input/output patterns. Here the input pattern
is a linear combination of the frequency transformed basis functions and the output
pattern is the corresponding vector of weights. Training of the network is facilitated
through the well known back-propagation algorithm [4].

Such neural topologies have been previously employed by many authors for the task
of pattern association, e.g. [1] or [5]. For instance, Gorman and Sejnowski [1] in the
classification of sonar signals. Gorman and Sejnowski essentially observed that as the
number of hidden units was increased the performance of the classification was better
for a moderate (more than 150) number of presentations of the training set. Specifically
Corman and Sejnowski obtained 99.8 percent classification accuracy with the ratio of
hidden units to input units equal to % For this reason the classifier was chosen to have
the same number of hidden units as input units, i.e. a ratio of hidden units to input
units equal to 1. The number of output units is simply the number of basis functions,
N, in the basis set B. Each level of activation of the output units then represents the
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classifier’s estimation of the weight. For ease of discussion the term "network’ will now be
used in reference to this three layer topology just discussed unless otherwise indicated.

Simulations indicate that when the trained network is presented with an input outside
the training set the result is linear interpolated, i.e. the network finds a linear fit for the
data presented. Because of this linear interpolation property it is necessary that the
transformation process be linear. Otherwise, classification of signals not in the training
set will be unacceptable. Although the DTFT is linear, it has the drawback that its
range is complex; and hence, the representation of one sample of the DTFT requires two
real numbers. The Cosine Transform, which has purely real range, averts this drawback
nicely.

4 The Deconvolution Network

Important to the operation of the system is the analog maximum entropy deconvolu-
tion network (MEDN) suggested by Marrian and Peckerar [6]. As its name suggests, this
network’s primary function is the task of deconvolving or deblurring a signal assumed
previously convolved through some (perhaps physical) process. Because of this, it is not
at all obvious why such a scheme is relevant to the solution of the problem discussed
in Section 1. We defer motivation of the incorporation of the MEDN in the proposed
system in lieu of a brief overview of the operation of the MEDN.

4.1 Operation of the MEDN

A detailed analysis of the MEDN is treated by Pati et. al. in [7]. Deconvolution or
deblurring of signals in the presence of noise is in general ill-posed. Regularization is a
technique to solve ill-posed problems in which e priori knowledge of the solution space
is introduced into the solutions via a functional to be minimized (Poggio and Koch [8}).
Letting z) denote the regularized solution to the deconvolution problem, we have,

Ty = argmin {||y ~ Az|® + )\P(x)} (4.1)

Where it is assumed that the data has undergone a transformation of the form y = Az +-¢,
where A is a matrix representing the discretized convolution kernel, € is a n-vector of noise
components and z and y are both elements of n dimensional space.

In the particular case of the MEDN, the use of exponential amplifiers at the output
nodes results in the introduction of a regularizing principle which is the negative of the
Shannon entropy of the solution i.e. P(z) = }; #;log(z;). The constraints imposed by
the entropy regularizer are smoothness and non-negativity of the solution. Hence, the
entropy regularization ”smooths” the solution resulting in reduction of the noise, i.e. an
improvement in the signal to noise ratio.

By suitably adjusting the regularization weight A, an arbitrary degree of smoothing
can be achieved. However, if ) is allowed to be too large the resulting minimum will
hardly approximate the true solution z. Therefore, there exists some optimal value for
A. Then, how should the parameter A be chosen? Given that we would like the MEDN
solution to minimize the mean square error (MSE), defined as

MSE = ||(zx - @), (4.2)
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the use of optimization based design and the application of computer optimization soft-
ware such as CONSOLE (Fan et. ol [9]) seems appropriate.

4.2 Noise Reduction: Why the MEDN?

In the specific case of the radar return data as described earlier there is no convolution
present in the noise model (i.e. the convolution kernel A = I'). In fact, in general there
is no reason to associate the operations of convolution and noise reduction in any way.
This prompts the question of the appropriateness of a deconvolution network for the task
of noise reduction.

Measurement of the noise reduction is based on a squared error sum methodology.
Knowledge of the uncorrupted signal, s, is assumed for the computation. The magnitude
of the degradation of the signal is then measured in deterministic terms. Given the
degraded signal §, the degradation, d(3), of the signal is

N-1

LOEICOREOS (4.3)

Note that the relationship between the signal to noise ratio and d(-) is on the average
a monotonically increasing one. That is to say that on average the larger the signal to
noise ratio, the larger d(-) will be for a particular realization of s(-) through noise.

Noise reduction with respect to the MEDN is then simply given as the ratio of the
noise degradation functions of the signals present at the output and input of the MEDN
respectively. If sinpys and Soutpur represent the input and output of the MEDN, the noise
reduction, N R, is given as

d(soutput)
d(sinput) )
Clearly a value for NR < 1 is required of the MEDN.

NR= (4.4)

It is obvious, as alluded to above, that deconvolution per se is unwarranted in the
problem (P). What is of importance, however, is the regularizing principle employed
by the MEDN. Through exploitation of the regularizing properties of the network, it is
possible to achieve the desired end of noise reduction. This claim is supported through
the observations that the MEDN

1. exhibits non-linear reduction in the noise (see Figure 3)

2. is demonstrably better than simple low pass (see Figure 5).

4.3 Implementation of the MEDN Noise Reducer

Since there is no convolution present in the signal, 3(-), it is necessary to convolve
the noisy data with a non-trivial convolution kernel. The reason for this is that if the
convolution kernel were trivial, the MEDN would become decoupled. That is, the solution
given by the vector equation 4.1 for a given element would become independent of the

11
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Figure 5: Noise reduction using MEDN as compared to simple low pass

value of its neighboring elements. Or equivalently, the vector equation 4.1 becomes n
independent scalar equations and there is no hope of smoothing the data. To avert
this problem, the incoming data is preconvolved with a non-trivial convolution kernel or
window function, denoted by g(-) and given in Equation 4.5.

g(t):{ h, if|t| < Nk (4.5)

0, otherwise

Thus, the pulse width of the kernel, 2N, — 1, is an added dimension to the space of
parameters over which the minimization of 4.2 will range.

5 System Simulation

Extensive computer simulations of the proposed system have been performed. As a
test case, the value N = 2 for the number of basis functions in the basis set, B was chosen
in the simulations. Presented in Table 2 below are other choices for system parameters.

The first block of the proposed architecture, the MEDN noise reducer, has been simu-
lated using the interactive simulation package SIMNON (Lund Institute Of Technology).
Appendix A contains typical simulation results. The dash lined functions represent the
respective noise functions in both the Squared Error, and Noisy Reconstruction graphs
and the solid line represents the spectrum of the uncorrupted data in the Transform
graph. Parameter nn in the figures indicates the standard deviation of the noise which
is added to the normalized input signal. This value of nn is obtained by multiplying
the standard deviation by a factor of 100 followed by truncation, i.e., nn = int(1000).

12



| Symbol | Parameter | Value |

Convolver
ho | kernel height | 1
MEDN
R Resistance 10 Q
C Capacitance 10 uF°
S Feedback Gain 10
N Kernel Width 5
Classifier
4 Number of input units | 11
np, Number of hidden units | 11
Mo Number of output units | 2

Table 2: System Parameters

Inspection of the Squared Error graphs indicates that substantial noise reduction has
been achieved as defined by equation 4.4.

As discussed earlier, the transform stage of the system is implemented as a sim-
ple Cosine Transform. This simply entails evaluating equation 3.5 for § = Tk, k =
0,1,...,m; — 1 (=10) where n is the length of the input signal. Typical transforms can
be seen in Appendix A.

Simulation of the back-propagation classification network is supported by the neural
network software package written by Rumelhart and McClelland [4]. Normalization of
the elements of the training set greatly reduces its size since only parameter vectors
whose elements add to one need be included. This effectively reduces the output space
to a dimension one less than the original space. For the simulations in Appendix A, the
network was trained on a set of only size ten.

A summary of the performance of the simulation of the system is presented in Table
3. The table consists of five sets of runs; each run is associated with a different signal to
noise ratio, S/N. Each run set consists of five sets of parameters from the training set and
five outside the training set. The values a; and a; represent the respective weights of the
basis functions composing the deterministic portion of the input signal. Classification
results are displayed in the following two columns as @; and @y corresponding to the two
respective estimates of the basis weights, a; and ag. The final four columns of the table
present various percent error statistics: 7, and 7z are the respective percent error in the
estimates of a; and ag, 7 is the average percent error estimate for both a; and a3, and
finally 57 is the total average error estimate for all runs in the test set.

This simulation data seems to suggest an inverse relationship between the average
total error, 7 and the signal to noise ratio, S/N. That is the average total error is a
monotonically decreasing function of the signal to noise ratio. Moreover, we have fitted

a curve of the form
flz)=b+ et | 2 €[0,00) (5.1)

13



LS/N JaiJaz| @ [d | mn | 7 ¥ r
0208015 |08|2696| 6.72 | 16.84
0406030070 23991 15.96 | 19.97
0.5105 1042 ) 0.58 | 16.23 | 16.22 | 16.23
0.6 1041054)|046 ] 9.53 | 14.31 | 11.92
0.8]102]0.76| 024 5.13 ] 20.61 | 12.87

0.0dB | 0.1 | 0.5 ] 0.08 | 0.52 | 22.62 | 4.51 | 13.57 | 14.43
04 ({05032} 058 20.63 16.48 | 18.55
0503|046 )034 | 827 ]| 13.82 | 11.05
08104075045 | 6.60 | 13.25 | 9.93
091070791081} 11.73 | 15.09 | 13.41
0.2 108 0.16|0.84}21.20| 5.25| 13.23
0.4]106]0.32]0.68 19.80 | 13.20 | 16.54
0.5]1051]0.44 | 0.56 | 12.77 | 12.77 | 12.77
0604056044 6.90| 10.40 | 8.65
08102077023 | 3.87| 1559 | 9.73

1.0dB [ 0.1 {05008 |052]16.27 3.21 9.74 | 11.04
04105 ]0.33)057) 16.83 | 13.42 | 15.13
05(03(047 (033 582| 976 | 7.79
08104076 044 444 897} 6.71
091071082078 881 ]11.36 | 10.09
02081017 { 0.83 | 16.52 | 4.07 | 10.30
04106 033|067 | 16.71 | 11.09 | 13.90
0.5 105|045 055 10.13 | 10.14 | 10.13
0.6 040571043 484 ) 7.34 ) 6.09
0810210781022 292|11.79| 7.36

20dB 0.1 {05009 051|11.02{ 215} 6.59 | 8.38
0405|034 ] 056 | 13.88 | 11.07 | 12.48
0503(0481032] 392 6.61| 5.27
0804 (0781042 | 2.78 | 5.67 | 4.22
09071084 |076| 654 | 846 | 7.50
0.2 1080170831278 | 3.14| 7.96
041061034066 |14.15| 9.38 | 11.77
0505|046 )|054| 803 | 805| 8.04
0.6 | 04| 0.58 | 0.42 324 495 4.09
0.8102(0.78]022] 219 889 | 5.54

30dB | 0105009051 68| 1.32| 4.09| 6.29
0.4105|035]055(1152] 9.19 | 10.36
0.5]0310.49] 031 243 | 4.16 ] 3.29
081041079041 149 | 3.10 ) 2.30
0907086074 479 6.22| 5.51
0208 (021079 257] 069 1.63
04106|038)|062| 429 2.85| 3.b7
0.51051050|050) 034 0.39]| 0.37
061041061039 243 | 3.53| 298
0.8]02]0.791]0.21 091 ] 349 2.20

codB | 0.1 |05 (011|049 1040 2.12]| 6.26 2.93
0.41]051]0.39] 051 256 | 2.06] 231
051031051029 ] 281 | 453 | 3.67
08104082038 | 298| 579 | 4.39
0910710911069 160} 196 1.78

Table 3: Simulation Summary
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Figure 6: The average total error of parameter estimation as a function of the signal to
noise ratio.

to the experimental data. Figure 6 displays the experimental and fitted (analytical)
curves obtained. The values obtained for the parameters are b = 2.93, 4 = 2.44, and
a = 0.372. .

{

¢

6 VLSI Implementation

In order to realize the full computational power of neural networks it is important to
consider implementation of neural networks as analog electrical circuits. Although the
current state of VLSI technology does not allow for implementation of extremely large
networks, there is still a class of useful networks that can be implemented. The networks
we consider here are among those for which currently implementable sizes are sufficient
to prove useful. As discussed earlier, foremost amongst our objectives, is the design
and implementation of a system suitable for practical applications. Essential to the
practicality of such a system are:

1. The ability to perform the desired decomposition and classification within the con-
straints of a demanding real-time environment.

2. Physical compactness and modest power consumption, so as to satisfy constraints
of the physical environment (e.g. in missile guidance applications).

In this section we discuss analog VLSI implementation of the proposed system for
radar signal decomposition and classification. As we shall show, analog VLSI implemen-
tation results in a system capable of satisfying the desired performance criteria.
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6.1 The Convolution Subnetwork

Given a vector ¢ € R" of sampled data, convolution with a given convolution kernel
is described by the system of equations, y = Tz, where y,z € R", and T € R"*"
is the matrix representation of the discretized convolution kernel. Convolution is easily
implemented in analog circuitry by the network shown in Figure 7. Inputs to the network
in Figure 7 are the voltages z1,...,2,. Connections within the network are made by
resistors with values R;; = 1/t;;. Thus the contribution to the current at the jth output

y; due to z; is given by Ohm’s Law to be z;/R;;. Hence the output currents are given

by
N

N
Ty .
Y = R; = E ;s ji=1..,N. (6.1)

i=1 "t i=1

Which implements the desired convolution.

For the particular ‘boxcar’ convolution kernel given by Equation 4.5, the matrix
T = [ti;] is a band-diagonal matrix given by,

b ={ h if i~ j] < (Ne = 1)/2 (6.2)

0 otherwise

Thus the number of nonzero connections required is n + 2255{‘_1)/ *(n — i). Fabrica-
tion of the required network interconnections is thus facilitated by choice of the boxcar
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convolution kernel, since

1. only a small number of connections are required in comparison to the number of
possible connections (n?) for an arbitrary choice of the convolution kernel, and

2. since the weights (resistance values) for the connections are all identical, errors due
to processing induced variations in the circuit are minimized.

6.2 The Deconvolution Subnetwork

As discussed earlier, regularized deconvolution is performed by the maximum entropy
deconvolution network (MEDN) shown schematically in Figure 8. Inputs to the MEDN
(¥1,...,Yn) are currents which are provided by the outputs of the convolution network
just described. An initial attempt at integrated circuit implementation of the deconvo-
lution network has been completed, but remains untested. In addition, two prototype
breadboard networks have been constructed and have been used to study performance
of the deconvolution network in terms of speed of convergence and accuracy of solutions.

17



Accurate assessments of convergence time for the network are not easily made using
digital computer simulations. Also, in analysis of the deconvolution network (see [7]) it
was assumed that any dynamics associated with the constraint plane could be ignored
provided that the signal plane amplifiers are sufficiently slower in response. In practical
implementations of such a network, it is necessary to understand what effects delays in
the constraint plane response may have upon the network. It is ultimately the constraint
plane dynamics which limit the speed of convergence which is achievable. A formal
treatment of this subject is to be found in Marcus and Westervelt [10].

6.2.1 Breadboard Prototype Deconvolution Network

A prototype breadboard model of the deconvolution network was constructed using ‘off-
the-shelf’ operational amplifiers, resistors and capacitors. The network was constructed
with seven signal plane nodes and seven constraint plane nodes. Since the purpose of
constructing the breadboard prototype was to estimate the speed of convergence achiev-
able by such a network, exponential amplifiers in the signal plane were replaced by unity
gain linear amplifiers to simplify the circuit ?. Replacing the exponential amplifiers by
linear amplifiers results in the entropy regularizer being replaced by a regularizer of the
form,

AM(v) = % }: v?. (6.3)

In Figure 9 a circuit diagram of a single signal plane node is shown. Each signal plane
node consists of two stages of amplification. Associated with the first stage is the feedback
capacitor C', which introduces the relevant network dynamics, and the feedback resistor
R, which introduces and weights (A = 1/R) the regularizing term in the energy function.
The second stage of each signal plane node is configured as an analog inverter. Negative
connection weights are implemented simply by using the inverted output of the node.
Although negative connection weights are not required in the particular application we
consider here, they were necessary for the tactile sensing application (see [7]) in which
the network was tested. Figure 10 shows a single constraint plane node. Each constraint
plane node also consists of two stages. The first stage is configured as a virtual ground
transimpedance amplifier, which provides the feedback gain for signals fed back to the
signal plane. As in the signal plane, the second stage of each constraint plane node is an
analog inverter.

In Figure 11 photographs of the 7-Channel breadboard prototype of the deconvolution
net work and the experimental setup used for testing it are shown. Input currents to
the network are clocked using a 1 kHz relaxation oscillator so as observe transients
(as the network evolves) using an oscilloscope. Outputs of the network are captured
by a MetaResearch data acquisition board used in conjunction with a Macintosh Plus
computer and the resultant reconstruction is plotted on the Macintosh display.

The rise time of the constraint plane amplifiers was measured to be approximately 1
psec. Actual response time of the constraint plane would be longer than this since the
parallel combination of all resistors connected to the input of any node contribute to the
RC time constant. It was observed that for choices of the signal plane capacitors C for

2 A second breadboard prototype was also constructed which contained the exponential amplifiers, but
was used to solve a different problem (see [11]).
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Figure 11: Top: Photograph of 7-Channel breadboard prototype of deconvolution network
Bottom: Photograph of experimental setup used to test the deconvolution network.
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which the rise time of the outputs of the network would be below 10 usec, the outputs
would oscillate i.e. the network was unstable. For C=10 pF the rise time of the outputs
of the network was measured to be 10 usec (see Figure 12). It is clear that the use of
faster operational amplifiers would result in an increase in achievable speed since this
would decrease the constraint plane response time and thereby permit a decrease in the
time constant of the signal plane.

Settling time and overshoot of the outputs of the network are controlled by the gain
of the constraint plane nodes. CONSOLE, a CAD tool for parametric optimization of
dynamical systems, (see [9]) was used to choose a value for the gain so as to minimize
overshoot and settling time.

6.2.2 Integrated Circuit Prototype of Deconvolution Network

A prototype analog integrated circuit implementation of the deconvolution network de-
scribed here has been fabricated, but remains to be tested. A hierarchical design phi-
losophy is practiced in this initial implementation. The deconvolution network may be
thought of as composed of two sections: (i) Active components of the network including
signal and constraint plane amplifiers and (ii) The functionally passive® resistive inter-
connection matrix. These two sections may also be thought of in the following manner.
Once the size of the deconvolution network (number of inputs and outputs) has been
decided, the amplifiers of the network are determined. However, the resistive matrix
may be a variable entity. Thus the network may be thought of as being composed of a
fixed part and a variable part.

If fixed resistors are to be used to implement the interconnect matrix, then some
provision should be made to change this matrix without having to refabricate the rest of
the network. In order to provide some flexibility in the choice of the interconnect matrix
and to permit the use of two different fabrication technologies, the deconvolution network
was fabricated as two separate integrated circuits.

The amplifier chip is designed to serve as the ‘motherboard’ for the network on top
of which the resistive connection matrix chip is placed (see Figure 13). Connections
between the two chips are made by local wire bonds between bonding pads provided for
this purpose on both chips. This approach also facilitates experimentation with different
types of connection matrices such as those with programmable connections.

The Amplifier Chip Figure 14 shows the layout of the amplifier section of the decon-
volution network. This chip provides the signal plane and constraint plane amplifiers for
a deconvolution network with eleven input nodes and eleven output nodes. Fabrication
of the amplifier section of the deconvolution network was undertaken through the MOSIS
facility, using a two metal layer CMOS p-well technology with a minimum feature size of
3um. The size of the amplifier chip is approximately 6300um X 8800um. In the center
of the amplifier chip, a 4000um X 3200um space has been provided for placement of the
second chip containing the resistive connection matrix. It is actually not necessary to

3The term ‘“functionally passive’ here is used to describe the fact that in some sitnations it is desirable
to use active circuit components configured to look like a passive resistor from an input/output standpoint.
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Figure 12: Photographs of oscilloscope traces showing, Top: time evolution of a single
output of the signal plane, and Bottom: time evolution of a single output of the constraint
plane, for the 7-channel breadboard prototype. deconvolution network.
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Figure 13: Resistive matriz chip is placed directly atop the amplifier chip and connected
to it using local bonding

leave this space since the chip is passivated, but for an initial implementation, it was
provided.

A total of forty four operational amplifiers are implemented on this chip; twenty two
for the signal plane and twenty two for the constraint plane. Each signal plane node and
constraint plane node is identical in structure to the signal and constraint plane nodes
used for the breadboard prototype. Both the inverted and noninverted outputs of the
signal and constraint plane nodes are connected to bonding pads adjacent to the area
where the resistive matrix is to be placed. Thus provision is made for the implementation
of positive and negative connection weights. Outputs and inputs of both the signal plane
nodes and constraint plane nodes are connected to bonding pads located on the periphery
of the die to permit access to these nodes after the chip has been packaged. Packaging
of the chip requires a package with a minimum of fifty pins, if the inputs and outputs all
nodes are to be accessible.

The basic building block of the amplifier chip is the operational amplifier. Figure 16
shows a circuit schematic of the operational amplifier designed for this purpose. Design
of the amplifier takes into consideration the current driving requirements for use in the
deconvolution network. Inputs on each amplifier are diode protected against spikes.
A source follower output stage is used on every amplifier so as to meet the current
driving requirements while maintaining relatively low circuit complexity (compared to,
for example a push-pull output stage).

As can be seen from Figure 16, an internal compensation capacitor of 5pf is required
for every operational amplifier. In addition to this, external feedback capacitors of about
10pF are required at the first stage of every signal plane node. Since the technology

23



pogog ganaan 183EF

N TR
bR

. .qu

T Z.a .
J3onvanesandiecn

SN
i .éz ’

ﬁ[ ay///V//,;ﬂ/,a

2 e »6:-

Y P

SN

misw e s n.l..mu.ﬁtu D

__wm
B ddab

Ipr nl cfiaial

Ll L
Gd kil
g

Layout of integrated circuit chip containing all amplifiers for an eleven channel
24

deconvolution network

Figure 14



S0 1 ou .% : ARRRARAY g (REARRAR

Layout of constraint plane

25

Layout of signal plane amplifier; Right

Left

Figure 15
amplifier.



3
>
© ©
2 I
(V] N
L_ [
3 ©
« =3
| I |
Y 1
e UL,
Q.
uwn

12/8
|
v

+ C
(o] ==
ke, r___l_ 8
o 0 $—o
o
bl
[e0]
S ol —
(=]

12— ©
= &
Q L._..l
G I S 0—:]
o) I
Q —
e 0]
[Te)
S~
Q
o
==
|
o]
o - -
@ e 7 ©
S B S
< a [4p]

Figure 16: Circuit diagram of operational amplifiers designed for integrated circuit im-
plementation of deconvolution network

26



available did not include an additional electrode layer (i.e. a second layer of polysilicon
to be used in forming capacitors), all capacitors in the network are formed as parallel
plate capacitors with polysilicon as one electrode and the first metal layer as the second
electrode. Capacitance between the first metal layer and polysilicon is approximately a
factor of eight less than the capacitance between polysilicon and an electrode layer. Hence
about eight times as much area is used to form the capacitors, compared to capacitors
formed using an electrode layer. Since about half of the area used by constraint plane
nodes and two thirds of the area used by the signal plane nodes is used to form the
capacitors, about seven twelfths of the total area used by the amplifiers is taken up by
capacitors. Hence the use of a separate electrode layer would result in about a 50%
reduction in space utilization. Therefore a network with twenty two inputs and twenty
two outputs is a trivial extension of the current structure (which includes the space
provided for the resistive matrix) using a comparable 3um technology.

The Resistive Interconnection Matrix Chip In any implementation of a matrix
of resistive elements, it is necessary to consider the effects of process induced variations
on the performance of the network with which it is to be used. Current integrated circuit
process technology may introduce variations in the value of any given resistor as large as
20%. It must either be established that degradation in performance of the network due
to such variations is irrelevant, or an approach to implementation must be taken which
preserves the essential characteristics of the interconnection matrix in the face of process
induced variations. The latter approach was taken in this implementation.

Since in the case of the deconvolution network, the resistive interconnection matrix
is a discretization of a convolution kernel, it is reasonable to try to preserve the shape
of the connectivity profile. That is, it is the ratiometric relationship of the connective
weights that is truely important since any other variations correspond to a simple scaling
of the inputs or outputs. For the boxcar convolution kernel considered here preservation
of the shape of the connectivity profile corresponds to the requirement that all nonzero
connections should be equal. In an attempt to preserve the shape of the connectivity
profile in the face of processing induced variations, the connective weights are quantized
into quanta of discrete resistive elements. Figure 18 shows the layout of the resistive
matrix. A discrete resistive element is formed by etching a 5um X 5um opening in the
oxide layer between two metal wires and then evaporating silicon into the opening (see
Figure 17). Amorphous silicon, therefore forms the resistive material. Each such discrete
resistor has a resistance value that depends on the thickness of the oxide layer and the
area of the opening. For the oxide thickness used (and 5um X 5um openings) the value of
a single discrete resistor was measured to be approximately 35KQ. A wire grid is formed
using the first metal layer to construct parallel wires in one direction and the second
metal layer to construct wires in a direction orthogonal to the wires formed in the first
metal layer. At each point on the grid, a connective weight is defined by placing a number
of discrete resistors of the type described at that point. The strength of connection at
any point on the grid is determined by the number of discrete resistors placed there.
Ratiometric relationships between elements of the connection matrix should for the most
part be preserved in this approach since the ratio of two connective weights is primarily
determined by the ratio of the number of discrete resistors forming each connection Any
variations in the ratios are the effects of phenomena such as nonuniform oxide thickness
over the area of the die, nonuniform deposition of amorphous silicon which are relatively
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Figure 17: A discrete resistive element as used in the resistive matriz chip.

small effects.

6.3 Cosine Transformation in VLSI

As discussed earlier, the Cosine Transform of the sampled signal is nécéssary in order to
perform the task of classification. It is observed that that the Discrete Hartley Transform
(DHT) of a vector z of samples of a signal may be obtained as the result of multiplication
by the inverse of the self-adjoint matrix D, i.e.
X=D'z= -l—D:v (6.4
= = Dz, 4)
where X is the Discrete Hartley transform of z. It is also observed that the Cosine
Transform may be obtained by a simple average of the components of the DHT (see
equation 3.9).

In [2] one approach to implementing the DHT using an analog network is discussed.
However, the approach taken in [2] involves a recurrent network in which dynamics govern
the speed of convergence as in the MEDN. Also the implementation in [2] requires the
implementation of a large number of amplifiers. We consider a simpler approach here
in which we perform the vector matrix multiplication required for the DHT as in the
convolution network described earlier. As observed in [2], symmetry of the cas function
requires the fabrication of only n/4 distinct values of conductance in order to implement
the matrix D. An approach similar to the one described earlier may be used to fabricate
the resistive array in a quantized manner. Once the DHT has been obtained, the Cosine
Transform may be derived from this by using an array of summing amplifiers (see equation
(3.9)). This approach results in an implementation with minimal time delay involved in
computing the transform.

6.4 Analog VLSI Circuit Implementation Of The Classifier Network

The network which we consider here for the final classification of the input signal is one
which conforms to the standard model for a pattern classifier feedforward neural network
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(see [4]). Analog VLSI implementation of such layered, feedforward neural networks is
a topic of interest to great many researchers in the field and a number of successful
implementations of varying complexity have been designed and fabricated (see e.g. [12],
[13], [14], and [15]).

Essential to the implementation of an adaptive feedforward neural network is the de-
sign and fabrication of programmable synapses. We use the term programmable synapse
to describe a connection between two nodes in which the connection weight can be varied.
In terms of analog circuitry, a programmable synapse may be described as a transcon-
ductance amplifier with variable gain. It is also essential that circuit complexity of a pro-
grammable synapse be minimal. In [16] a hybrid digital-analog array of programmable
synapses is described which has been fabricated and is currently being tested at the
Naval Research Laboratories in Washington D.C.. As will be discussed later, the partic-
ular digital-analog design in [16] is amenable to the overall network configuration which
we consider.

One major obstacle in VLST implementation of a feedforward neural network is that
as the network grows in size (number of nodes and layers), full interlayer connectivity *
is intractable in terms of both allocation of silicon real estate and routing of the wires
required to implement connections. In this section we discuss a VLSI design strategy
and architecture which permits a great deal of flexibility with respect to the number
of layers in the network while maintaining full connectivity and programmability of the
connections. We call the architecture which we describe here STAACNNET for STackable
Adaptive Analog Circuit Neural NETwork .

6.4.1 STAACNNET

Among the more appealing attributes of neural network architectures is that the networks
are composed of a large number of essentially identical elements. In the case of the clas-
sifier network which we consider here, the network is composed of a number of identical
layers®. Each layer is composed of a number of identical nodes followed by a complete
set of connections to the next layer of nodes. In VLSI implementation of multilayer,
feedforward neural networks, this uniformity may be exploited to allow implementation
of large networks as a cascade of less complex elements.

For implementation of the classifier network , we propose an architecture of the form
depicted in Figure 19. In this architecture, a single layer of nodes, together with a
complete set of connections to the next layer, is implemented on a single chip. Hence if
Ky is the number of nodes in a layer, a single chip would incorporate Ky nodes (with
inputs provided to each of these nodes), K% programmable connections, and Ky outputs
to be connected to the inputs of the next layer. Each chip would be packaged individually
and fitted with a connector which connects to the pins on the package and also provides
a socket into which can be placed a second such chip. Since the connections weights are
programmable it is necessary to be able to select a particular connection whose weight is
to be modified. If K; is the maximum number of layers we are to implement in a single

4Pyl interlayer connectivity in this case refers to the fact that every node in a layer is connected to
every node in the layer preceding and the layer following it.

5A layer with a smaller number of nodes may be implemented by simply setting appropriate connec-
tions to zero.
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Figure 19: Implementation architecture for classifier network
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network, we require log, K; address lines to select a layer, and 2log,(Kn) address lines
to select a connection within a selected layer. Hence the total number of pins required
on a package is®

2K +logy(K%) + logy(K)) + 4.

For example if we would like to use 20 nodes in a layer and allow up to four layers in
the network, 55 pins are required per chip. Note that the physical stacking of the chips
is just a convenient feature and not a necessity of this architecture, since an equivalent
configuration may be obtained by simply externally connecting the appropriate pins.

Training algorithms such as the backpropagation algorithm would be implemented in
a microprocessor environment from which individual connection weights could be selected
and updated.

The advantages of this structure are the following: (i)reduced density requirements
for individual chips, (ii)experimentation with number of layers and number of nodes in
different layers is facilitated, and (iii)full programmability of the connection patterns and
flexibility with learning rules since training algorithms are microprocessor controlled.

7 Discussion and Conclusions

We have proposed an analog neural network model of a real-time system for the
decomposition of superposed radar returns in the presence of noise. This system consists
of three distinctly identifiable processes which correspond to the operations of noise
reduction, data transformation, and classification respectively. Noise reduction via a
non-linear neural network model exhibits highly robust performance against noise level
(signal to noise ratio) in the input. It has further been shown that the neural network
nonlinear noise filtering is far superior to a simple low pass filter implementation.

Preliminary simulations favorably indicate the success of the proposed architecture.
Furthermore, the invocation of existing optimization based design tools promises to im-
prove the performance of such a system. Most applications of neural networks for clas-
sification tasks have been previously restricted to binary decision regions (simple yes/no
answers to an arbitrary number of hypotheses). Here, we have demonstrated a neural
architecture capable of performing classification on a continuous decision space. Such
classification has been demonstrated to perform to a high degree of accuracy.

Some of the most significant benefits of the proposed system are a result of imple-
mentation of the system as an analog VLSI circuit. Foremost among these benefits is
processing speed. A breadboard prototype of the MEDN (7] has demonstrated the net-
works capability to converge to solutions in under 10usec. VLSI implementation of the
MEDN is underway at the Naval Research Lab in Washington D.C.

5The additional 4 pins are required for power supply, ground, and programming voltage for the
connection weights.
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APPENDIX A: Simulation Runs
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