
ABSTRACT

Title of Dissertation: Change Detection in Stochastic Shape Dynamical Models
with Applications in Activity Modeling and Abnormality Detection

Namrata Vaswani, Doctor of Philosophy, 2004

Dissertation directed by: Professor Rama Chellappa
Department of Electrical and Computer Engineering

The goal of this research is to model an “activity” performed by a group of moving and

interacting objects (which can be people or cars or robots or different rigid components of

the human body) and use these models for abnormal activity detection, tracking and seg-

mentation. Previous approaches to modeling group activity include co-occurrence statistics

(individual and joint histograms) and Dynamic Bayesian Networks, neither of which is appli-

cable when the number of interacting objects is large. We treat the objects as point objects

(referred to as “landmarks”) and propose to model their changing configuration as a moving

and deforming “shape” using ideas from Kendall’s shape theory for discrete landmarks. A

continuous state HMM is defined for landmark shape dynamics in an “activity”. The con-

figuration of landmarks at a given time forms the observation vector and the corresponding

shape and scaled Euclidean motion parameters form the hidden state vector. The dynamical

model for shape is a linear Gauss-Markov model on shape “velocity”. The “shape velocity”



at a point on the shape manifold is defined in the tangent space to the manifold at that point.

Particle filters are used to track the HMM, i.e. estimate the hidden state given observations.

An abnormal activity is defined as a change in the shape activity model, which could be

slow or drastic and whose parameters are unknown. Drastic changes can be easily detected

using the increase in tracking error or the negative log of the likelihood of current observation

given past (OL). But slow changes usually get missed. We have proposed a statistic for

slow change detection called ELL (which is the Expectation of negative Log Likelihood of

state given past observations) and shown analytically and experimentally the complementary

behavior of ELL and OL for slow and drastic changes. We have established the stability

(monotonic decrease) of the errors in approximating the ELL for changed observations using

a particle filter that is optimal for the unchanged system. Asymptotic stability is shown

under stronger assumptions. Finally, it is shown that the upper bound on ELL error is an

increasing function of the “rate of change” with increasing derivatives of all orders, and its

implications are discussed.

Another contribution of the thesis is a linear subspace algorithm for pattern classification,

which we call Principal Components’ Null Space Analysis (PCNSA). PCNSA was motivated

by Principal Components’ Analysis (PCA) and it approximates the optimal Bayes classifier

for Gaussian distributions with unequal covariance matrices. We have derived classification

error probability expressions for PCNSA and compared its performance with that of subspace

Linear Discriminant Analysis (LDA) both analytically and experimentally. Applications to

abnormal activity detection, human action retrieval, object/face recognition are discussed.
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Chapter 1

Introduction

The goal of this research is to model an “activity” performed by a group of moving and in-

teracting objects (which can be people or cars or robots or different rigid components of the

human body) and use these models for abnormal activity detection, tracking and segmen-

tation. We treat the objects as point objects (referred to as “landmarks” in shape theory

literature). We model the changing configuration of objects as a moving and deforming

“shape”. A stochastic shape dynamical model is defined to represent a “normal activity”.

Abnormal activity is defined as a change in the shape dynamics learnt for the normal activity.

Previous approaches to modeling activity performed by groups of point objects include

co-occurrence statistics (e.g. [1]) and discrete state Dynamic Bayesian Networks (DBNs)

(e.g. [2]). Co-occurrence statistics involves learning individual and joint histograms of the

objects. Joint histograms for modeling interactions is feasible only when the number of

interacting objects is small. Stochastic shape dynamics on the other hand implicitly models

1



interactions and independent motion of a group of objects of any size i.e. it is scalable in

the number of interacting objects. DBNs define high level relations between different events

and typically use heuristics for event detection. Our algorithms can be used to provide a

more principled strategy for event detection. Another advantage of our framework is that

using shape and its dynamics makes the representation invariant to translation, in-plane

rotation or sensor zoom. The idea of using “shape” to model activities performed by groups

of moving objects is similar to recent work in literature on controlling formations of groups

of robots using shape (e.g. [3]).

We define a continuous state hidden Markov model (HMM)1 for modeling the dynamics

of the changing configuration of landmarks in an activity. The observed configuration of

landmarks at a given time forms the observation vector and the corresponding shape and

motion parameters form the hidden state vector. The HMM is nonlinear and hence we use a

particle filter [4] to track the state (estimate the hidden state given the noisy observations).

An abnormal activity is defined as a change in the shape dynamics, which could be slow

or drastic and whose parameters are unknown. The problem of abnormal activity detection

motivated our research on slow and drastic change detection in continuous state HMMs.

1A continuous state HMM is a partially observed state space model with a continuous state vector {Xt}

and a continuous observation vector {Yt} (In our work, the time instants t are discrete (but they can be

continuous in general). Yt is a noisy linear or nonlinear function of Xt and {Xt} is a Markov process

2



1.1 Organization of the Thesis

The thesis is organized into four parts, each forming one chapter. In the first part (chapter

2), we propose statistics for slow and drastic change detection in continuous state HMMs

and study the effect of approximation errors in estimating the statistics using a particle

filter optimal for the unchanged system. In the second part (chapter 3), we propose shape

dynamical models for landmarks shapes (stationary, non-stationary and piecewise station-

ary shape models). The third part of the thesis (chapter 4) is an application of the first

two parts (shape dynamical models and change detection statistics) to represent activities

performed by groups of moving and interacting objects and detecting abnormal activities.

We also discuss extensions to activity segmentation and tracking. In the last part of the

thesis (chapter 5), we discuss Principal Component Null Space Analysis (PCNSA) which is

a pattern classification algorithm motivated by PCA, evaluate its classification error proba-

bility and compare its performance with LDA. We present applications of this algorithm to

abnormal activity detection, action retrieval and to face and object recognition. Finally in

chapter 6, we summarize the entire thesis, discuss future directions and list the contributions

of the thesis. We now introduce each of the four parts and the main ideas and then discuss

related work.

3



1.2 Main Ideas

1.2.1 Change Detection in Continuous State HMMs

The problem of abnormal activity detection explained above motivated our research on

slow and drastic change detection in continuous state HMMs when change parameters are

unknown. Drastic changes can be detected easily using the increase in tracking error or the

negative log of observation likelihood (OL). But slow changes usually get missed. We use

a particle filter (PF) to estimate the posterior probability distribution of the state at time

t (Xt) given observations up to t (Y1:t), Pr(Xt ∈ dx|Y1:t)
4
= πt(dx). We propose here a

statistic called ELL (which stands for Expected Log-Likelihood) which is able to detect slow

changes. ELL is the conditional expectation of the negative log-likelihood of the state at

time t ([− log pt(Xt)]), given past observations, Y1:t. It is evaluated as the expectation under

πt of [− log pt(Xt)].

Now, the PF is optimal for the unchanged system and hence when estimating πt for the

changed system, there is modeling error. Also the particle filtering error (error due to finite

number of Monte Carlo samples or particles) is much larger. But using stability results

from [5], we are able to show that the approximation errors are eventually monotonically

decreasing (and hence stable) with time for large enough number of particles (in section 2.4).

We also show asymptotic stability under stronger assumptions. We show in section 2.5, that

the bound on the error is proportional to the rate of change. Thus for slow changes, the

estimation error in πt is small i.e. ELL is approximated correctly for such changes. Hence

4



the approximate value of ELL detects the slow change as soon as it becomes “detectable”

(defined in Definition 5 of section 2.3.2). ELL fails to detect drastic changes because of large

estimation error in evaluating πt. But large estimation error in evaluating πt also corresponds

to a large value of OL (or tracking error) which can be used for detecting such changes. We

discuss this in Section 2.6.

It is easy to see that ELL is equivalent to the Kerridge Inaccuracy [6] between the

posterior and prior state distributions. Averaging the log likelihood over a time sequence of

i.i.d. observations is often used in hypothesis testing and in [7] it is shown to be equivalent

to the Kerridge Inaccuracy between the empirical distribution of the i.i.d. observations and

their actual pdf. But to the best of our knowledge, ELL defined as the expectation of log

likelihood of state given past observations, in the context of Hidden Markov Models (and its

estimation using a PF) has not been used before.

ELL detects a slow change before the PF loses track. This is useful in any target(s)

tracking problem where the target(s)’ dynamics might change over time. If one can detect

the change, one can learn its parameters on the fly and use the changed system model (or

atleast increase the system noise variance to track the change), without losing track of the

target(s). We have used ELL to detect changes in landmark shape dynamical models (defined

in chapter 3) and this has applications in abnormal activity detection, medical image process-

ing (detecting motion disorders by tracking patients’ body parts) and activity segmentation

(segmenting a long activity sequence into piecewise stationary elementary activities). This is

discussed in chapter 4. Other applications of ELL are in neural signal processing (detecting

5



changes in response of animals’ brains to changes in stimuli provided to them) and medical

signal processing (detecting slow changes in disease progression). ELL can also potentially

be used for network congestion detection since congestion quite often starts as a slow change.

1.2.2 Landmark Shape Dynamics

We develop models for the configuration (shape+scaled Euclidean motion) dynamics of a

group of moving landmarks (here point objects) in shape space. The shape of a group

of discrete points (known as ‘landmarks’) is defined by Kendall [8] as all the geometric

information that remains when location, scale and rotational effects (we refer to these as

motion parameters) are filtered out. The original vector of landmark locations is known as

the “configuration” vector. The book by Dryden and Mardia on statistical shape analysis

[9] provides a good overview of the literature in this field. Statistical shape theory began in

the late 1970s and has evolved into viable statistical approaches for modeling the shape of a

single object with applications in object recognition and matching. In this work, we extend

the static approaches to defining dynamical models for landmark shape. Also, we use these

models for the dynamics of shape formed by a group of objects.

For a dataset of similar shapes, the shape variability can be modeled in the tangent

hyperplane to the shape space at the mean. The tangent hyperplane is a linearized version

of the shape space linearized at a particular point known as the pole of tangent projection.

Typically one uses the Procrustes mean [9] of the dataset as the pole. The tangent plane is

a vector space and hence techniques from linear multivariate statistics can be used to model
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shape variability in tangent space.

We use the term “shape activity” to denote a continuous state HMM for shape deforma-

tion and scaled Euclidean motion in the activity. A “stationary shape activity” is defined as

one for which the shape vector is stationary i.e. the expected value of shape (mean shape)

remains constant with time and the shape deformation model is stationary, while for a “non-

stationary shape activity”, the mean shape is time-varying (see figures 3.1(a) and (b)). For

a stationary shape activity, the dynamics on the shape manifold is approximated by linear

Gauss-Markov dynamics in a single tangent space at the mean shape. On the other hand,

for a non-stationary shape activity, the shape moves on the shape manifold2. Dynamics is

defined by a linear Gauss-Markov model on the shape “velocity” (time derivative of shape).

The “velocity” at a point on a manifold is defined in the tangent space to the manifold at

that point.

1.2.3 Application to Group Activity Modeling, Abnormal Activ-

ity Detection and Segmentation

The “shape activity” is a generic framework that can be used to model the dynamics of

moving configurations in many applications depending on what is treated as the landmark.

The “landmark” can be a person or a vehicle (in general any moving object) and one can

learn a shape dynamical model for an activity performed by a group of moving people or

2Note here this motion of the shape vector on the shape manifold should not be confused with scaled

Euclidean motion of the shape to obtain a configuration
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model the traffic flow and use it to detect abnormal (suspicious) behavior. We have modeled

the normal activity of passengers deplaning and moving towards the airport terminal (see

figure 4.1) [10]. We use a stationary shape activity (SSA) model for this case. SSA is good

for accurately modeling normal behavior and detecting abnormality when the mean shape

does not change much. It is very specific to the learnt activity and hence less robust to model

error and unable to track abnormality (except very slow ones). Abnormal activity can be a

slow or drastic change in the shape dynamics and hence we use a combination of ELL and

tracking error to detect it.

The landmarks could be the various parts of a human body (see figure 4.12(a)). Our

framework (nonstationary shape activity models required in this case) can be used to learn

models for the actions and detect and track abnormality in the action. This ability can

be useful to medical professionals trying to analyze motion disorders in their patients. It

would be useful, if software can detect the disorder and also provide its tracks to the medical

professional. We use a nonstationary shape activity (NSSA) model for this application since

it can track unmodeled shape changes. It is thus able to track a large class of abnormal

activities and yet detect them using ELL.

Also for slowly varying shapes, we define a piecewise stationary shape activity model for

which the mean shape is assumed to be piecewise constant. PSSA can be used in conjunction

with ELL for activity segmentation (segmenting a long activity sequence into a sequence of

stationary elementary activities). We discuss this in Section 4.4. Our approach is sensor

independent; the landmark observations could be obtained by tracking moving objects in
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low resolution video or using radar sensors for vehicles or acoustic or infra-red sensors; and

only the observation model changes.

1.2.4 Principal Component Null Space Analysis (PCNSA)

Another contribution of this thesis is a classification algorithm, PCNSA, which approximates

the optimal Bayes classifier for Gaussian class conditional distributions with unequal covari-

ance matrices. The abnormal activity detection problem(described above) can be viewed

as a sequential hypothesis testing problem. For abnormality detection in the fully observed

case, i.e. when the observation noise is negligible, we use the log-likelihood of the state to

detect abnormality (discussed in 4.1.1). PCNSA, which approximates the optimal LRT for

Gaussian distributions can also be used in this case and as discussed in section 5.6.4 (more

detailed discussion in [11]), it has certain advantages. PCNSA can also be used for data

retrieval. We show its application to human action retrieval in section 5.6.4.

The PCNSA algorithm was originally proposed by us for “apples from oranges” type

classification problems like object recognition or face recognition under large pose varia-

tions. During the last several years much progress has been made towards recognizing faces

under small variations in lighting and pose, for a detailed survey see [12], [13]. But reliable

techniques for more extreme variations and for the more difficult image classification prob-

lems like object recognition have proved elusive. Problems like face recognition under small

pose variations that involve discriminating similar objects can be categorized as “apples

from apples” type classification problems. More precisely, “apples from apples” type prob-
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lems are those in which different classes have similar class covariance matrices (in particular

similar directions of low and high intra-class variance) while for “apples from oranges” type

problems, different classes can have very different class covariance matrix structures. As an

extreme case, the minimum variance direction of one class could be a maximum variance

direction for another. We propose a linear classifier for this situation of unequal covariance

matrices, which actually approximates the optimal Bayesian solution.

We have evaluated bounds on PCNSA’s classification error probability (in Section 5.3)

and discussed conditions under which it would outperform Linear Discriminant Analysis

(LDA) and when it would fail (in Section 5.4). Applications of PCNSA to object recog-

nition (figure 5.4(a)), feature matching (see figure 5.4(b)), face recognition under large

pose/expression variations (see figure 5.5), abnormal group activity detection [11] (see figure

4.1) and video retrieval are discussed in Section 5.6. Feature matching is required for image

registration [14] which is a first step for any baseline stereo or structure from motion (SfM)

algorithm. Occlusion and new feature detection is an important issue in feature matching

for SfM algorithms and as has been demonstrated in Section 5.6, the PCNSA algorithm has

a very good ‘new’ (untrained) class detection ability. Also, since PCNSA defines a class spe-

cific metric, it is suitable for abnormality detection problems where only the “normal” class

is characterized. In fact abnormality detection is the most extreme example of an “apples

from oranges” type problem, since in this case the abnormal activity is not characterized at

all. Finally, we show the application of PCNSA for retrieving human action videos from a

database. Some other problems to which PCNSA can be applied are image retrieval; char-
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acter recognition and distinguishing moving vehicles from people in low resolution images.

1.3 Related Work

1.3.1 Change Detection

Online detection of changes for partially observed linear dynamical systems has been studied

extensively. For known changed system parameters, the CUSUM (cumulative sum) [15]

algorithm can be used directly. The CUSUM algorithm uses as change detection statistic,

the maximum (taken over all previous time instants, j) of the likelihood ratio assuming that

the change occurred at time j, i.e. CUSUMt
4
= max1≤j≤t LR(j), LR(j) =

pθ1
(yj ,yj+1...yt)

pθ0
(yj ,yj+1...yt)

.

For unknown changed system parameters, the Generalized Likelihood Ratio Test can be used

whose solution for linear systems in well known [15]. When a nonlinear system experiences a

change, linearization techniques like extended Kalman filters and change detection methods

for linear systems are used [15]. Linearization techniques are computationally efficient but

are not always applicable (require a good initial guess at each time step and hence are not

robust to noise spikes).

Approaches for sudden change detection using PFs are discussed in a recent survey article

[16]. [17] is an attempt to use a particle filtering approach for sudden change detection in

nonlinear systems without linearization. It assumes that the parameters of the changed

system are known and defines a modification of the CUSUM change detection statistic that

can be efficiently evaluated using PFs. It runs a sequence of PFs to evaluate LR(j) for
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1 ≤ j ≤ t. Both CUSUM and the statistic of [17] assume known change parameters and are

based on the likelihood ratio of the current (t− j) observations (LR(j)).

An entirely different class of approaches (e.g. see [18]) used extensively with PFs uses

a discrete state variable to denote the mode that the system is operating in. A change is

detected by looking at the expected or most probable value of the mode variable. This is

typically used when the system can operate in multiple modes each associated with a different

and known system model. The mode variable’s transition between states is governed by the

mode that maximizes the likelihood of the observations.

When changed system parameters are not known, sudden changes can be detected using

tracking error [19] which is the distance (usually Euclidean distance) between the current

observation and its prediction based on past observations.

We have also studied the stability of errors in approximating the ELL for changed obser-

vations using a PF that is optimal for the unchanged system. There has been a lot of recent

research on studying the stability of the optimal nonlinear filter. Asymptotic stability re-

sults w.r.t. initial condition were first proved in [20]. The Hilbert projective metric has been

used to prove stability w.r.t. the initial condition and also w.r.t. the model [21, 22]. New

approaches have been proposed recently for noncompact state spaces [23, 24]. The results

for stability w.r.t. the model have been used to prove convergence of the PF estimate of the

posterior with number of particles, N → ∞ [5, 25]. We use results from [5] in which the

authors have replaced the mixing transition kernel assumption required for proving stability

with a much weaker mixing unnormalized filter kernel assumption.
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1.3.2 Landmark Shape Dynamics

Some of the commonly used representations for shape are Fourier descriptors [26], splines [27]

and deformable snakes all of which model the shape of continuous curves. But in our work

we are attempting to model the dynamics of a group of discrete landmarks (which could

be moving point objects or moving parts of an articulated object like the human body).

Since the data is inherently finite dimensional, using infinite dimensional representations of

a continuous curve is not necessary and hence we look only at the representation of shape

in <n (modulo Euclidean similarity transformations) which was first defined by Kendall

in 1977. There has been a lot of work on defining shape coordinates for Kendall’s shape,

some commonly used shape coordinates are due to Bookstein, Jacobi, Kendall, and tangent

shape representations by Dryden and Mardia (all of these are discussed in [9]). These

shape coordinates have been used frequently in control literature for satellite or aircraft or

robot formation control (e.g. see [28] and references therein). Probability distributions for

shape and preshape space and for the tangent to shape space at the mean are discussed

in chapter 6, 7, 11 of [9], and in [29], [30], [31]. In [32], Cootes and Taylor have proposed

‘Point Distribution Models’ which are principal component models for shape variation using

Procrustes residuals.

Active Shape Models [33] also considers the configuration of points in <n but they define

affine deformation models in configuration space. These are good for modeling deformation

of approximately rigid objects where the main source of nonrigidity is camera motion. But

we are trying to define models for the changing configuration of a group of objects and hence
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our approach which provides a number of degrees of freedom proportional to the number

of landmarks is useful. Other models for shape deformation of one shape into another have

been proposed which include thin plate splines, and principal and partial warps (discussed

in chapter 10 of [9]). These are good for studying shape change between two objects but are

computationally infeasible to define dynamical models on the shape manifold. Our idea of

defining “shape activity” models by separating scaled Euclidean motion and shape dynamics

is motivated by [34], where the authors split the deformation of a deforming and moving

shape into scaled translation, scale, rotation of a shape plus its non-rigid deformations.

We propose partially observed dynamical models (that also satisfy the Hidden Markov

Model property and hence we also refer to them as HMMs) for stationary and non-stationary

shape activities. Our model for non-stationary shape activities is similar in spirit to those

in [35] and [36] where the authors define dynamical models for motion on Lie groups and

Grassmann manifolds (for time-varying subspace estimation), respectively, using piecewise

geodesic priors and track them using particle filters. Also, in [37], the authors have discussed

how to define geodesic paths on shape spaces parametrized by direction functions. Another

work [38] defines principal geodesic analysis on Lie groups which is motivated by PCA in

Euclidean spaces and uses it for developing representations of geometry based on the medial

axis description.
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1.3.3 Activity Recognition and Tracking

There is a large body of work in computer vision on modeling and recognition of activities,

human actions and events. The work can be classified (based on the formalisms used)

as Bayesian networks (BNs) and Dynamic Bayesian networks (DBNs) [39, 2]; finite state

Hidden Markov models for representing an activity [40, 41] ; stochastic grammars [42]; and

factorization method based approaches [43, 44]. In [1], the authors perform clustering to learn

the co-occurrence statistics of individual objects and their interactions with other objects.

In [45], events are treated as long spatio-temporal objects and clustered based on their

behavioral content. [46] uses projective invariants to represent different human actions like

running, walking and climbing. In [47], action “objects” are represented using generalized

cylinders with time forming the cylinder axis.

Now, [1, 43, 44, 45, 47] present non-parametric approaches to activity/event recognition,

while HMMs, stochastic grammars, BNs and DBNs [39, 2] are model based approaches. Our

work also defines a parametric model for an activity performed by a group of objects, but it

is a continuous state HMM and there are some other differences: First, we treat objects as

point objects and hence we can get our observations from low resolution video or even from

other sensors like radar, acoustic or infra-red. Second, we provide a single global framework

for modeling the interactions and independent motion of multiple moving objects by treating

them as a deforming shape. The approach is scalable in the number of interacting objects.

This is in contrast to [1], where joint histograms are needed to model interactions between

objects, thus making the approach infeasible for large number of interacting objects. Also,
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using a deformable shape to represent a group activity or human actions makes the approach

invariant to motion of a camera or any other sensor (under scaled orthography assumption).

Another work which also models human motion using a dynamical model is [48]. They learn

a linear dynamical model for the gait of different subjects and define a “distance” between

dynamical models as a metric for gait recognition.

Particle Filters for Tracking Multiple Moving Objects: Particle filters [4] have been used ex-

tensively for tracking 3 a single moving object in conjunction with a measurement algorithm

to obtain observations [49, 50, 18, 51]. In [52], PFs are used to track multiple moving ob-

jects in 3D by simultaneously estimating their structure (3D location) and motion (velocity)

information. Joint Probability Data Association Filtering (JPDAF) is used along with a PF

in [53] to track multiple moving objects. It uses separate state vectors for each object and

defines data association events to associate the state and observation vectors. In this frame-

work, defining interactions between a large number of objects can become very complicated.

In our work, we represent the combined state of all the moving objects using the shape of its

configuration and define a dynamic model for it (the shape dynamical model implicitly mod-

els the interactions). We track using a PF to filter out the shape from noisy observations of

the object locations and use the filtered shape distribution for abnormal activity detection.

3“tracking” here refers to “tracking to obtain observations”
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1.3.4 Principal Component Null Space Analysis (PCNSA)

Existing linear classification algorithms like principal component analysis (PCA), linear dis-

criminant analysis (LDA) and subspace LDA are optimal for ‘apples from apples’ type of

problems. PCA [54] yields projection directions that maximize the total scatter but do not

minimize the within class variance of each class and also sometimes retains directions with

unwanted large variations due to variation in lighting etc. LDA [55] encodes discriminatory

information by finding directions that maximize the ratio of between class scatter to within-

class (or intra-class) scatter. In [56] , PCA and LDA are combined to yield a subspace

LDA (SLDA) based classification algorithm for face recognition which uses PCA first for

dimensionality reduction and then LDA. Subspace LDA is also used in [57] for view based

image retrieval from a database of real world objects. Also PCNSA is similar in spirit to an

algorithm called Multispace KL (MKL) which appeared in [58] around the same time as our

conference paper [59] on PCNSA. We discuss in Section 5.5 the connection between MKL

and our algorithm and how our error probability analysis can be extended to analyze MKL.

Several non-linear techniques exist in the literature that could be applied to the ‘apples

from oranges’ type classification problems. In [60], Murase and Nayar present such an

algorithm for object recognition. They propose a representation of object appearance in

the PCA space parameterized by pose and illumination. Each object class is represented

in the PCA space using a B-spline manifold. A query image is recognized based on the

manifold that it is closest to in the PCA space. The computational complexity of their

algorithm is much higher than any of the linear algorithms including ours. Kernel PCA [61]
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and Kernel Discriminant Analysis (KDA) [62] attempt to transform non-linearly separable

data into a higher dimensional space in which it becomes linearly separable. But projecting

a query along one dimension in KDA requires computation of n inner products (where n

is the number of training samples) which is n times that of any linear method. Mao and

Jain [63] describe neural network algorithms, Sammon’s nonlinear projection and nonlinear

discriminant analysis (NDA) for PCA and LDA. Neural network algorithms are suitable for

easy hardware implementation or for applications where distribution of patterns in feature

space is changing with time (non-stationary data) or for non-linearly separable data. [63] also

compares performance of linear (PCA,LDA) and nonlinear algorithms (NDA) for different

kinds of data. Two interesting examples of linearly non-separable data are shown, one in

which clusters of the two classes are non-convex and the other in which the two clusters are

spheres with almost coinciding centres but different radii and hence are not disjoint. For

both these data distributions, linear methods are shown to fail.
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Chapter 2

Change Detection in General HMMs

2.1 Problem Formulation

2.1.1 The General HMM Model

We assume a general HMM [5] with an <nx valued state process X = {Xt} and an <ny

valued observation process Y = {Yt}1. The system (or state) process {Xt} is a Markov

process with state transition kernel Qt(xt, dxt+1) and the observation process is a memoryless

function of the state given by Yt = ht(Xt) + wt where wt is an i.i.d. noise process and ht

is, in general, a nonlinear function. We denote the conditional distribution of observation

given state by Gt(dyt, xt). It is assumed to be absolutely continuous [64] and its pdf is given

by gt(Yt, x)
4
= ψt(x). The prior initial state distribution (denoted by p0(x)), the conditional

1We use the subscript ‘t’ (e.g. Xt, Yt) instead of ‘n’ for (discrete) time instants, to avoid confusion with

N used for the number of particles in Particle Filtering
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distribution of observation given state and the state transition kernel are known and assumed

to be absolutely continuous2. With this assumption, the prior distribution of the state at

any time t is also absolutely continuous and admits a density which we denote by pt(x).

2.1.2 Problem Definition

We study the problem of detecting slow and drastic changes in the system model of a general

HMM (described above) when the change parameters are unknown. We assume that the

normal (original/unchanged) system has state transition kernel Q0
t . A change in the system

model begins to occur at some time tc and lasts till a final time tf (change duration finite).

In the time interval, [tc, tf ], the state transition kernel is Qc
t and after tf it again becomes

Q0
t . Both Qc

t and the change start and end times tc, tf are assumed to be unknown. The

goal is to detect the change, with minimum delay. Note that although the change in system

model is assumed to last for a finite time, [tc, tf ], its effect on the prior state pdf pt(x) is

either permanent or it lasts for a much longer time (Q0
t is either not mixing or very slowly

mixing).

2.1.3 The Approach

We repeat from Section 1.2.1 a summary of our approach. Drastic changes can be detected

easily using the increase in tracking error or the negative log of observation likelihood (OL).

2Note that for ease of notation, we denote the pdf either by the same symbol or by the lowercase of the

probability distribution symbol
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But slow changes usually get missed. We use a PF to estimate the posterior probability

distribution of the state at time t (Xt) given observations up to t (Y1:t), Pr(Xt ∈ dx|Y1:t)
4
=

πt(dx). We propose a statistic called ELL (which stands for Expected Log-Likelihood)

which is able to detect slow changes. ELL is the conditional Expectation of the negative

Log-Likelihood of the state at time t ([− log pt(Xt)]), given past observations, Y1:t. It is

evaluated as the expectation under πt of [− log pt(Xt)].

The PF is optimal for the unchanged system and hence when estimating πt for the

changed system, an unspecified amount of modeling error exists. Also the particle filtering

error (error due to a finite number of Monte Carlo samples or particles) is much larger. But

using the stability results from [5], we are able to show that the approximation errors are

eventually monotonically decreasing (and hence stable) with time for large enough number

of particles (in section 2.4). We also show asymptotic stability under stronger assumptions.

We show in section 2.5, that the bound on the error is proportional to the rate of change.

Thus for slow changes, the estimation error in πt is small i.e. ELL is approximated correctly

for such changes. Hence the approximate value of ELL detects the slow change as soon as it

becomes “detectable” (defined in Definition 5 of section 2.3.2). ELL fails to detect drastic

changes because of large estimation error in evaluating πt. But a large estimation error in

evaluating πt also corresponds to a large value of OL (or tracking error) which can be used

for detecting such changes. We discuss this in Section 2.6.
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2.2 Preliminaries and Notation

We present below some notation and definitions of terms used in the rest of the chapter.

We then present in Section 2.2.2, the optimal nonlinear filter and its approximation using a

particle filter.

2.2.1 Notation and Definitions

We use H0 to denote the original or unchanged system hypothesis and Hc to denote the

changed system hypothesis. Also, the superscript c is used to denote any parameter related

to the changed system, 0 for the original system and c,0 for the case when the observations

of the changed system are filtered using a filter optimal for the original system3. Thus

the posteriors, π0,0
t (dx) = Pr(Xt ∈ dx|Y 0

1:t, H0) (also denoted by π0
t ), πc,c

t (dx) = Pr(Xt ∈

dx|Y c
1:t, Hc) (also denoted by πc

t ) and πc,0
t (dx) = Pr(Xt ∈ dx|Y c

1:t, H0) where

Y c
1:t = (Y 0

1:tc−1, Y
c
tc:t), ∀t ≤ tf

= (Y 0
1:tc−1, Y

c
tc:tf

, Y 0
tf+1:t), ∀t > tf . (2.1)

Also, for PF estimates of these distributions, we add the superscript N to denote the number

of particles, for e.g. π0,N
t , πc,N

t or πc,0,N
t . The (possibly unnormalized) conditional pdf of Yt

given state x is ψ0
t (x)

4
= gt(Y

0
t , x) and ψc

t (x)
4
= gt(Y

c
t , x).

With any nonnegative kernel, J , defined on the state space E, is associated a nonnegative

linear operator denoted by J and defined by Jµ(dx′)
4
=

∫
E µ(dx)J(x, dx′) for any nonnegative

3At most places 0,0 is replaced by 0 and c,c by c
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measure µ [5]. For any finite measure, µ, the normalized measure is denoted by µ̄
4
= µ/µ(E).

The normalized nonnegative nonlinear operator J̄ is defined by J̄(µ)
4
= Jµ

(Jµ)(E)
. Also, (., .) is

the inner product notation.

The prior state distribution at time t, (Q0
t , ...Q

0
1π0)(dx) has pdf pt(x) while the changed

system’s prior state distribution, (Q0
t , ...Q

c
tf

, ..Qc
tc ...Q

0
1π0)(dx) has pdf pc

t(x). In a lot of cases

(for example if the system model is linear Gaussian with Gaussian initial state pdf) it is

possible to define the pdfs pt(x) and pc
t(x) in a closed form. In cases where it cannot be

defined in a closed form, it can be approximated by a single or a mixture of Gaussians or by

any other parametric family of distributions (we discuss this in section 2.3.4).

Note that throughout the chapter, “event occurs a.s.” refers to the event occurring

almost surely w.r.t. the measure corresponding to the probability distribution of Y1:t. Also,

Eµ denotes expectation under the measure µ, for example Eπt is expectation under the

posterior state distribution. EY denotes expectation under the distribution of the random

variable Y , for example EY1:t denotes expectation under the distribution of the observation

sequences. Finally, Ξpf denotes averaging over different realizations of the PF each of which

produces a different realization of the random measure πN
t

4.

Now we would like to clarify here the difference between the terms “system model error”

and “modeling error” or “model error” as used in this work. We use “system model error”

to denote the error in the system model at a given time because of the change, i.e. it is the

4expectation under the probability distribution of the random measure πN
t or equivalently of the random

particles, {x(i)
t }N

i=1.
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“distance” between the changed and the unchanged model. We use “model error” to denote

the error in the posterior state distribution (and the error in ELL estimation because of this)

introduced because of the system model error. Model error is explained in section 2.4.

We now present some definitions of terms used in the chapter:

Definition 1 The unnormalized filter kernel [5] for a system with state transition kernel

Qt and probability of observation given state ψt, is given by Rt(x, dx′) = Qt(x, dx′)ψt(x
′). So

R0
t = Q0

t ψ
0
t is the unnormalized filter kernel for the original system observations estimated

using the original system model, Q0
t ; Rc

t = Qc
tψ

c
t is the unnormalized filter kernel for the

changed system observations using the changed system model, Qc
t ; while Rc,0

t = Q0
t ψ

c
t is

the unnormalized filter kernel for the changed system observations using the original system

transition kernel, Q0
t (this is what is used in practice since Qc

t is unknown).

Definition 2 [5] A nonnegative kernel J defined on E is mixing if there exists a constant,

0 < ε ≤ 1 and a nonnegative measure λ s.t. ελ(A) ≤ J(x,A) ≤ 1
ε
λ(A) ∀x ∈ E and for

any Borel subset A ⊂ E. A (time) sequence of mixing kernels {Jt} is said to be uniformly

mixing if ε = supt εt > 0.

Definition 3 [5] The Birkhoff’s contraction coefficient of any kernel J is, τ(J) =

sup0≤h(µ,µ′)<∞
h(Jµ,Jµ′)

h(µ,µ′) = tanh[1
4
supµ,µ′ h(Jµ, Jµ′)]. h here denotes the Hilbert metric which

is defined and explained in [5]. τ(J) ≤ 1 always and if J is mixing, τ(J) ≤ τ̃(J) < 1 where

τ̃(J)
4
= 1−ε2

1+ε2
< 1.

We denote τ(Rt) by τt and ε(Rt) by εt. Note that Rt depends on Yt and hence τt and εt
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are, in general, random variables. So a correct statement would be that Rt is a.s. mixing

(εt > 0, a.s. and τt < 1, a.s.).

2.2.2 Approximate Non-linear Filtering Using a Particle Filter

The problem of nonlinear filtering is to compute at each time t, the conditional probability

distribution, of the state Xt given the observation sequence Y1:t = (Y1, Y2, ...Yt), πt(dx) =

Pr(Xt ∈ dx|Y1:t). The transition from πt−1 to πt is defined using the Bayes recursion as

follows:

πt−1 —-> πt|t−1 = Qtπt−1 —-> πt =
ψtπt|t−1

(πt|t−1, ψt)

Now if the system and observation models are linear Gaussian, the posteriors would also

be Gaussian and can be evaluated in closed form using a Kalman filter. For nonlinear or

nonGaussian system or observation model, except in very special cases, the filter is infinite

dimensional. Particle Filtering [25] is a sequential monte carlo technique for approximate

nonlinear filtering which was first introduced in [4] as Bayesian Bootstrap Filtering.

A particle filter is a recursive algorithm which produces at each time t, a cloud of N

particles {x(i)
t } whose empirical measure, πN

t (which is a random measure), closely “follows”

πt. It starts with sampling N times from π0 to approximate it by πN
0 (dx)

4
= 1

N

∑N
i=1 δ

x
(i)
0

(dx).

Then for each time step it runs the Bayes recursion which can be summarized as follows:

πN
t−1

4
=

1

N

N∑

i=1

δ
x
(i)
t−1

(dx) —–> πN
t|t−1

4
=

1

N

N∑

i=1

δ
x̄
(i)
t

(dx)

—–> π̄N
t

4
=

1

N

N∑

i=1

w
(i)
t δ

x̄
(i)
t

(dx) —–> πN
t

4
=

N∑

i=1

δ
x
(i)
t

(dx)
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where x̄
(i)
t ∼ Qt(x

(i)
t−1, dx),

x
(i)
t ∼ Multinomial({x̄(i)

t , w
(i)
t }N

i=1)

w
(i)
t

4
=

ψt(x̄
(i)
t )

(πN
t|t−1, ψt(x̄

(i)
t ))

(2.2)

Note that both π̄N
t and πN

t approximate πt but the last step is aimed at reducing the

degeneracy of the particles. The samples {x̄(i)
t } are sampled according to a multinomial

distribution proportional to their weights, w
(i)
t , so that particles with very low weights get

eliminated while those with higher weights get repeated in proportion to their weights.

2.3 Change Detection Statistics

2.3.1 The ELL statistic

“Expected (negative) Log Likelihood” or ELL at time t, is the conditional expectation of the

negative log of the prior likelihood of the state at time t, under the no change hypothesis

(H0), given observations till time t, i.e.

ELL(Y1:t)
4
= E[− log p0

t (x)|Y1:t] = Eπt [− log p0
t (x)]. (2.3)

The second equality follows from the definition of πt, πt(dx) = Pr(Xt ∈ dx|Y1:t). For systems

where exact filters do not exist and a PF is used to estimate πt, the estimate of ELL using

the empirical distribution πN
t becomes

ELLN =
1

N

N∑

i=1

[− log p0
t (x

(i)
t )]. (2.4)
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It is interesting to note that ELL as defined above is equal to the Kerridge Inaccuracy

[6] between the posterior and prior state pdf.

Definition 4 The Kerridge Inaccuracy between two pdfs p, q is defined as K(p : q) =

∫
p(x)[− log q(x)]dx. It is used in statistics as a measure of inaccuracy between distributions

and was first defined by Kerridge in [6].

We have ELL(Y1:t)
4
= Eπt [− log p0

t (x)] = K(πt : p0
t )

5. Henceforth, we denote

ELL(Y 0
1:t) = K(π0

t : p0
t )

4
= K0

t and ELL(Y c
1:t) = K(πc

t : p0
t )

4
= Kc

t . (2.5)

Motivation for ELL

The use of ELL (or equivalently Kerridge Inaccuracy) for partially observed systems is moti-

vated by the use of log likelihood for hypothesis testing in the fully observed case. For a fully

observed system (ht invertible and zero observation noise), one can evaluate Xt = h−1
t (Yt)

from the observation Yt and then log pt(Xt) would be the log likelihood of state taking value

Xt under H0 (this is proportional to likelihood of Yt under H0). Thus if Yt = Y 0
t , then its

likelihood, (and also the likelihood of the state Xt) under H0 will be larger than if Yt = Y c
t

6.

But for partially observed systems, Xt is not a deterministic function of Y1:t. It is a random

variable with distribution πt. Hence we propose to replace the log likelihood of the state by

its expectation under πt which is the ELL. Note that ELL can also be interpreted as the

5it is actually K(dπt

dx : p0
t ) but as mentioned earlier, we denote the density dπt

dx by the same symbol as the

distribution

6Note that here observation likelihood and state likelihood (=ELL) differ only by a constant.
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MMSE estimate of log likelihood of state obtained from the noisy observations.

2.3.2 When does ELL work: A Kerridge Inaccuracy perspective

Taking expectation of ELL(Y 0
1:t) = K(π0

t : p0
t ) over normal observation sequences, we get

EY 0
1:t

[ELL(Y 0
1:t)] = EY 0

1:t
Eπ0

t
[− log p0

t (x)]

= Ep0
t
[− log p0

t (x)] = H(p0
t ) = K(p0

t : p0
t )

4
= EK0

t

where H(.) denotes entropy. Similarly, for the changed system observations, EY c
1:t

[ELL(Y c
1:t)] =

K(pc
t : p0

t )
4
= EKc

t , i.e. the expectation of ELL of changed system observations is actually

the Kerridge Inaccuracy between the changed system prior, pc
t , and the original system prior,

p0
t , which will be larger than the Kerridge Inaccuracy between p0

t and p0
t (entropy of p0

t ) [7].

Now, ELL will detect the change when EKc
t is “significantly” larger than EK0

t . Setting

the change threshold to

κt
4
= EK0

t + 3
√

V K0
t , where V K0

t = V arY1:t(K
0
t ), (2.6)

will ensure a false alarm probability less than 0.11 (0.05 if unimodal)7. By the same logic,

if EKc
t − 3

√
V Kc

t > κt then the miss probability [65] (probability of missing the change)

will also be less than 0.11 (0.05 if unimodal). Now evaluating V K0
t or V Kc

t analytically is

not possible without having an analytical expression for π0
t or πc

t . But we can use Jensen’s

inequality [66] to bound V K0
t (and similarly V Kc

t ) as follows (by applying Jensen’s inequality

70.11 follows from the Chebyshev inequality [65]. But if the pdf of K0
t (Y1:t) is unimodal, Gauss’s inequality

[65] can be applied to show that the probability is less than 0.05
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on z2, which is a convex function, with z = [− log pt(x)]):

K0
t
2

= (Eπt [− log pt(x)])2 ≤ Eπt [[− log pt(x)]2]

So, V K0
t = V arY 0

1:t
(K0

t ) = EY1:t [K
0
t
2
]− (EK0

t )2

≤ EY1:t [Eπt [[− log pt(x)]2]]− (EK0
t )2

= Ep0
t
[[− log p0

t (x)]2]− (EK0
t )2 (2.7)

Definition 5 We define a change to be “detectable” by ELL (with false alarm and miss

probabilities less than 0.11) if

EKc
t − 3

√
V Kc

t > κt, where κt
4
= EK0

t + 3
√

V K0
t (2.8)

2.3.3 When ELL fails: The OL Statistic

The above analysis assumed no estimation errors in evaluating ELL. But, the PF is optimal

for the unchanged system. Hence when estimating πt (required to evaluate ELL) for the

changed system, there is modeling error. Also the particle filtering error is much larger in

this case. The approximation error in estimating the ELL is proportional to the “rate of

change” (discussed in section 2.5). Hence the ELL is approximated accurately for a slow

change and thus detects such a change when it becomes “detectable” (see definition 5 above

in Section 2.3.2). But ELL fails to detect drastic changes because of large estimation error

in evaluating πt.
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But large estimation error in evaluating πt also corresponds to a large value of OL (or

tracking error) which can be used for detecting such changes (discussed in section 2.6). OL is

the negative log likelihood of current observation conditioned on past observations under the

no change hypothesis, i.e. OL = − log Pr(Yt|Y1:t−1, H0). A change is declared if OL exceeds

a threshold. OL is evaluated as OLN
t = − log(Q0

t π
N
t−1, ψt). Thus for changed observations,

OLc,0,N
t = − log(Q0

t π
c,0,N
t−1 , ψc

t ) (notation defined in section 2.2.1).

On the other hand, OL takes longer to detect a slow change (or does not detect it at all)

because of the following reason: Assuming that πc,0,N
t−1 correctly approximates πc

t−1 (which is

true for a slow change), OL uses only the change magnitude at the current time step, DQ,t

(defined in Definition 6 of section 2.5), to detect the change. For a slow change, DQ,t is also

small. This intuitive idea becomes clearer in Theorem 3 of section 2.5. OL starts detecting

the slow change only when the approximation error in πc,0,N
t−1 becomes large enough, but ELL

detects it faster (see figure 2.2).

2.3.4 Practical Issues

Defining pt(x)

The ELL is given by Eπt [− log pt(X)] for which we need to know the state prior pt(x) (note we

denote p0
t (x) by pt(x) in the rest of this chapter) at each time instant. If the state dynamics

(or the part of the state dynamics used for detecting change) is linear with Gaussian system

noise and Gaussian initial state distribution and for some other cases, this can be easily

defined in closed form.
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If the prior probability (likelihood) of the part of the state vector used to detect the change

cannot be defined in closed form for each t, then one solution is to use prior knowledge to

define pt(x) as coming from a certain parametric family such as a mixture of Gaussians. Its

parameters can be learnt using training data sequences. If pt(x) is assumed to be piecewise

constant in time, one can use a single observation noise-free training sequence to learn its

parameters. Both these ideas are demonstrated in section 4.1.3 of chapter 4 when defining

the abnormal activity detection problem for nonstationary shape activities.

Time Averaging

A second practical issue is that single time instant estimates of ELL or OL may be noisy.

Hence in practice, we average the statistic over a set of past time frames. Averaging OL

over past p frames gives aOL(p) = 1
p
[− log Pr(Yt−p+1:t|Y1:t−p)]. Averaging ELL over past

frames is given by aELL(p) = 1
p

∑t
k=t−p+1 ELL(Y1:k) but this cannot be justified unless

we can show that ELL(Y1:t) is ergodic. But one can evaluate joint ELL as jELL(p) =

1
p
E[− log pt−p+1:t(Xt−p+1:t)|Y1:t] which is the Kerridge Inaccuracy between the joint posterior

distribution of Xt−p+1:t given Y1:t and their joint prior. If using aELL(p, t), the threshold

Th(p, t) will depend on the sum of individual entropies of Xt−p+1:t. If using jELL(p), the

threshold, Th(p, t), will depend on the joint entropy of Xt−p+1:t.

Now the value of p can either be set heuristically or one can modify the CUSUM algorithm

[15] to deal with unknown change parameters: Declare a change if

max
1≤p≤t

[Statistic(p)− Th(p, t)]) > λ. (2.9)
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The change time is estimated as t−p∗+1 where p∗ is the argument maximizing [Statistic(p)−

Th(p, t)].

2.4 Errors in ELL Approximation

Now the above analysis for ELL assumes that there are no errors in estimating ELL(Y 0
1:t) =

K(π0
t : pt)

4
= K0

t and ELL(Y c
1:t

4
= Kc

t which is true only if exact finite dimensional filters

exist for a problem and correct models for the transition kernel and conditional probability

of observation given state are used. The estimation of K0
t in the linear Gaussian case using a

Kalman filter is an example of this condition. But in all other cases there are three kinds of

errors: When we are trying to estimate Kc
t using the transition kernel for the original system,

what we are really evaluating is Kc,0
t

4
= Eπc,0

t
[− log p0

t (x)] instead of Kc
t (model error). Note

that πc,0
t is the posterior state distribution for the changed observations estimated using a PF

optimal for the unchanged system. We can use stability results from [5] to show under certain

assumptions, that the model error goes to zero for large time instants, for posterior expec-

tations of bounded functions of the state. Under weaker assumptions, we can show that the

error is eventually monotonically decreasing and hence stable. But Kc,0
t = Eπc,0

t
[− log p0

t (x)]

and [− log p0
t (x)] is an unbounded function. Considering its bounded approximation intro-

duces bounding errors which go to zero as the bound goes to infinity. We need a bounded

approximation because the stability results hold only for bounded functions of the state.

Also, when we use a PF with a finite number of particles to approximate the optimal filter,

the PF approximation error is introduced. This error goes to zero as the number of
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particles goes to infinity. For a given finite number of particles, the PF approximation error

increases with increasing system model error (We show this in Section 2.5).

Now, we quantify our claims. Our aim is to either show a result of the type

limM→∞(limN→∞ Ξpf [|K(π0
t : pt)−K(π0,N

t : pM
t )|]) = 0 and

limM→∞(limt→∞(limN→∞ Ξpf [|K(πc
t : pt) − K(πc,0,N

t : pM
t )|])) = 0, a.s., where pM

t (x)
4
=

max {pt(x), e−M}8 or show that [− log pt(x)] is uniformly bounded for all t, so that the

outermost convergence with M trivially follows. Under weaker assumptions, we show that

even though the error does not converge to zero with time, it is eventually monotonically

decreasing with time and hence stable. We use the following two results from [5]:

Lemma 1 (Model Error bound, Theorem 4.8 of [5]): If for all k, the kernel Rk is

a.s. mixing (⇒ εk > 0, a.s. & Birkhoff’s contraction coefficient τk ≤ τ̃k(εk) < 1, a.s.), then

the weak norm between the correct optimal filter density µt and the incorrect one µ′t is upper

bounded as follows:

sup
φ:||φ||∞≤1

|(µt − µ′t, φ)| ≤ δt +
2δt−1

ε2
t

+
4

log 3

t−2∑

k=1

τ̃t:k+3
δk

ε2
k+1ε

2
k+2

(2.10)

4
= θt(δk, εk, 0 ≤ k ≤ n), a.s. (2.11)

where δk
4
= sup

φ:||φ||∞≤1
|(µ′k − R̄kµ

′
k−1, φ)| ≤ 2 (2.12)

Lemma 2 (PF error bound) :

8Note pM
t is not a pdf.
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1. (Theorem 5.7 of [5]) If for all k, the kernel Rk is a.s. mixing (εk > 0, a.s. &

τk ≤ τ̃k(εk) < 1, a.s.), and supx∈Ex,y
ψk(x) < ∞, a.s., then the weak norm between the

correct optimal filter density µt and the approximation µN
t (evaluated using the PF) is

upper bounded as follows:

sup
φ:||φ||∞≤1

Ξpf [|(µt − µN
t , φ)|] ≤

2(ρt + 2ρt−1

ε2t
+ 4

log 3

∑t−2
k=1 τ̃t:k+3

ρk

ε2k+1ε2k+2
)

√
N

(2.13)

4
=

βt(ρk, εk, 0 ≤ k ≤ n)√
N

, a.s. (2.14)

where ρk
4
=

supx∈E ψk(x)

infµ∈P(E)(Qkµ, ψk)
< ∞, a.s. (2.15)

2. (Corollary 5.11 of [5]) If the sequence of kernels Rt is uniformly a.s. mixing with t

i.e. εk > ε > 0, then convergence averaged over observations sequences holds uniformly

in t, i.e. there exists a β∗ < ∞ s.t. supφ:||φ||∞≤1 EY1:t [Ξpf [|(µt − µN
t , φ)|]] < β∗√

N
.

Now we can claim the following results under progressively weaker assumptions. The

proofs are given in the Appendix

Theorem 1 : Asymptotic Stability Results

1. Assuming (i) Change occurs for only a finite time period [tc : tf ] and starting time tc ≤

T ∗ < ∞; (ii) supx∈Ex,y
ψk(x) < ∞, a.s., ∀k; (iii) Rc

k, R0
k and Rc,0

k

4
= Q0

k(x, dx′)ψc
k(x

′)

are a.s. uniformly mixing with time (i.e. there exists an ε > 0 s.t. the mixing parameter
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εt > ε ∀t, a.s.) and (iv) The posterior state space, Ex,Yt

4
= {x ∈ Et : ψt,Yt(x) > 0} ,

is a uniformly compact and proper subset of Et
4
= {x : pt(x) > 0}, then the following

result holds:

lim
N→∞

EY1:t [Ξpf [|K(π0
t : pt)−K(π0,N

t : pt)|]] = 0, a.s., uniformly in t

lim
t,N→∞

EY1:t [Ξpf [|K(πc
t : pt)−K(πc,0,N

t : pt)|]] = 0, a.s. (2.16)

i.e. errorc(t, N)
4
= |K(πc,c

t : pt) − K(πc,0,N
t : pt)| averaged over PF realizations and

observation sequences is asymptotically stable with t for large N 9.

2. Assuming (i), (ii), (iii) as above, and a weaker assumption (iv)′: Convergence of the

error EY1:t [|K(πc
t : pM

t )−K(πc
t : pt)|] to zero as M →∞ is uniform in t, then we have

lim
M→∞

( lim
N→∞

EY1:t [Ξpf [|K(π0
t : pt)−K(π0,N

t : pM
t )|]]) = 0, a.s., uniformly in t

lim
M→∞

( lim
t,N→∞

EY1:t [Ξpf [|K(πc
t : pt)−K(πc,0,N

t : pM
t )|]]) = 0 (2.17)

It is easy to show that this implies that the errorc(t, N, M)
4
= |K(πc,c

t : pt)−K(πc,0,N
t :

pM
t )| averaged over PF realizations and observation sequences is asymptotically stable

with t for large N, M .

3. Assuming (i), (ii), (iii) and a weaker assumption (iv)′′: The posterior state space,

Ex,Yt

4
= {x ∈ Et : ψt,Yt(x) > 0} , is a compact and proper subset of Et

4
= {x : pt(x) > 0},

9This means the following: For every ε > 0, there exists an N∗ and a T ∗ (N∗ does not depend on T ∗)

s.t. ∀N > N∗ and ∀t > T ∗, EY1:t [Ξpf [errorc(t,N)]] < ε. Also note that for normal observations, the model

error is itself zero (hence asymptotic stability with t is meaningless)
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and (v) increase of Mt
4
= maxx∈Ex,Yt

[− log pt(x)] with t is atmost polynomial, then 10

we have

lim
t→∞( lim

N→∞
Ξpf [|K(πc

t : pt)−K(πc,0,N
t : pt)|]) = 0, a.s. (2.18)

i.e. limN→∞(errorc(t, N)) averaged over PF realizations is asymptotically stable with

t 11.

Proof: See Appendix

The assumption (iv) in Theorem 1.1 implies that [− log pt(x)] is uniformly bounded ∀x in

the support set of πt, πc
t , ∀t, so that lemmas 1 and 2 can be directly applied to prove the result.

But one can relax this assumption (in Theorem 1.2) by defining a sequence of functions

{[− log pM
t (x)]} with pM

t (x) = max {pt(x), e−M}, s.t. limM→∞[− log pM
t (x)] = [− log pt(x)].

Then by a simple extension of Monotone Convergence Theorem ([64], page 87) to functions

which could be negative but are bounded from below, we have limM→∞ K(πc
t : pM

t ) = K(πc
t :

pt). We then get Theorem 1.2 which requires the assumption that the above convergence

is uniform in t. It is difficult to show the convergence with M holding uniformly for all t,

almost surely over all observation sequences since πt is not known in closed form. But it

is easy to find examples of nonlinear systems where one can show that the assumption is

10Result for normal observations is same as in (2.17)

11This means the following: For every ε > 0, there exists a T ∗ s.t. ∀t > T ∗, limN→∞(Ξpf [error(t,N)] < ε

(or that for every t > T ∗, there exists an N∗ which depends on t and ε, s.t. for all N > N∗, error(t,N) < 2ε)
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satisfied in mean over observation sequences (see the example of Section 2.7.1). Using this

assumption, the convergence result in Theorem 1.2 is also a ‘convergence in the mean’ result.

One can also relax the assumption (iv) of Theorem 1.1 in a different way, as in Theorem

1.3. Here we assume that the posterior state space is compact for each t and assume that the

increase of Mt (the bound on [− log pt(x)]) is atmost polynomial. Under this assumption,

one can show asymptotic stability of the errors, but in this case a different N is required for

each t (convergence with N is not uniform in t).

If the unnormalized filter kernels, Rc
k, R0

k and Rc,0
k , are mixing (but not uniformly mixing),

convergence of the error to zero (asymptotic stability with time) will not hold. But we

can still claim eventual monotonic decrease (and hence stability) of the error with time.

We have the following results for changed observations (Note that even under this weaker

assumption, the results for normal observations remain the same as in Theorem 1, except

that the convergence with N is not uniform for all t):

Theorem 2 : Stability Results

1. Assuming (i), (ii), a weaker assumption (iii)′: Rc
k, R0

k and Rc,0
k are mixing and (iv)′:

Convergence of the error EY1:t [|K(πc
t : pM

t )−K(πc
t : pt)|] to zero as M →∞ is uniform

in t (as in Theorem 1.2), we have the following result: Given any ∆ > 0, there exists

an M∆ s.t.

lim
N→∞

EY1:t [Ξpf [|K(πc
t : pt)−K(πc,0,N

t : pM∆
t )|]] ≤ ∆ + M∆EY1:t [θ

c,0
t ] (2.19)
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where θc,0
t

4
= θt(δ

c,0
k , εc

k, tc ≤ k ≤ t) (θt defined in (2.11)). θc,0
t and hence also EY1:t [θ

c,0
t ]

is eventually monotonically decreasing with time. It is easy to see that this implies

that limN→∞ EY1:t [Ξpf [error]] is eventually monotonically decreasing with t and hence

stable.

2. Assuming (i), (ii), (iii)′ and (iv)′′: The posterior state space, Ex,Yt

4
= {x ∈ Et :

ψt,Yt(x) > 0} , is a compact and proper subset of Et
4
= {x : pt(x) > 0} (as in Theorem

1.3), we have

lim
N→∞

Ξpf [|K(πc
t : pt)−K(πc,0,N

t : pt)|] ≤ Mtθ
c,0
t (2.20)

where θc,0
t eventually monotonically decreases with time. It is easy to see that this

implies that
limN→∞ Ξpf [error]

Mt
is eventually monotonically decreasing with t and hence

stable.

3. If only (i), (ii) and (iii)′ hold, then we have the following result: Given any ∆ > 0,

there exists an Mt,∆ s.t.

lim
N→∞

Ξpf [|K(πc
t : pt)−K(πc,0,N

t : p
Mt,∆

t )|] < ∆ + Mt,∆θc,0
t , a.s. (2.21)

where θc,0
t monotonically decreases with time. But we cannot claim eventual monotonic

decrease of the error in this case.

Proof: See Appendix
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Note that the above analysis generalizes to evaluation of posterior expectation of function

of the state under the changed system model, when evaluated using a PF optimal for the

unchanged system model.

2.5 Effect of Increasing Rate of Change on Approxi-

mation Errors

The aim is to detect a change as soon as possible and with a given finite number of particles.

Hence we need to study the finite time, finite number of particles behavior of the bounds

obtained in the previous section. ELL will detect the change, if its approximation exceeds

the detection threshold (inspite of the errors). Applying theorem 2.2 (we show an example

in section 2.7.1 for which the assumptions of this theorem hold), we have

Ξpf [|K0
t −K0,M,N

t |] <
Mtβ

0
t√

N

Ξpf [|Kc
t −Kc,0,M,N

t |] <
Mtβ

c,0
t√

N
+ Mtθ

c,0
t

4
= ec,0,N

t (2.22)

where β0
t = βt(ρ

0
k, ε

0
k, 0 ≤ k ≤ t), θc,0

t = θt(δ
c,0
k , εc

k, tc ≤ k ≤ t), and βc,0
t = βt(ρ

0
k, ε

0
k, 0 ≤ k ≤

tc, ρ
c,0
k , εc,0

k , tc ≤ k ≤ t) and θt, βt defined in (2.11), (2.14) respectively. Thus for ELL to

detect a change, we need to show that Kc
t −Mtθ

c,0
t − Mtβ

c,0
t√

N
exceeds the detection threshold.

We show in this section that the model error bound, θc,0
t , and the PF error bound coeffi-

cient, βc,0
t (and hence also the total error, ec,0,N

t ) are upper bounded by increasing functions

of the “distance” between the changed and unchanged transition kernels (which is a metric

for “rate of change”) with increasing derivatives of all orders. We also show that the obser-
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vation likelihood, OL, is upper bounded by an increasing function of the “rate of change”

metric.

Note that although we prove the above result for the change detection problem, it can

directly generalize to bounding the error between the true posterior expectation of any func-

tion of the state and its posterior expectation estimated by a PF with incorrect system

model assumptions. Also, the distance between the changed and unchanged transition ker-

nels (defined below as a “rate of change” metric) can be generalized to a metric for system

model error per time step. We first give below some definitions and then state a sequence

of lemmas required to prove the main result. All lemmas requiring long proofs are proved in

the Appendix.

Definition 6 We define a distance metric between state transition kernels Qc
t and

Q0
t (a metric for the rate of change), for a given observation Yt, DQ,Yt(Q

c
t , Q

0
t ), as the

following distance between Rc
t,Yt

, R0
t,Yt

:

DQ,Yt(Q
c
t , Q

0
t )

4
= DR(Rc

t,Yt
, R0

t,Yt
)

4
= sup

x

∫

E
|Rc

t,Yt
(x, x′)−R0

t,Yt
(x, x′)|dx′

= sup
x

∫

E
ψt,Yt(x

′)|Qc
t(x, x′)−Q0

t (x, x′)|dx′

It is easy to show that, for a given observation Yt, DR and hence DQ satisfy the properties

of a metric over the space of transition kernels. We use DQ,t in the rest of the chapter, to

denote DQ,Y c
t
(Qc

t , Q
0
t ) for ease of notation.
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Definition 7 We define the vector of rates of change, DQ as

DQ
4
= [DQ,tc , ...DQ,k, ...DQ,tf ] (2.23)

Definition 8 The total model error in the posterior is defined as the total variation

norm of the difference between the posteriors evaluated using the correct and the incorrect

model, scaled by λc
k,Y c

k
(E) where λc

k,Y c
k

is the invariant measure [5] corresponding to Rc
k,Y c

k

12:

D̃t,Y0:t

4
= λc

k,Y c
k
(E)||πc,0

t − πc,c
t || (2.24)

D̃t,Y0:t is a temporary variable used to write the lemmas more clearly. We show that D̃t
4
=

D̃t,Y0:t is also upper bounded by an “Alpha function” (defined below) of DQ and use this to

prove that the total error ec,0,N
t is upper bounded by an Alpha function of DQ.

Definition 9 We say that a function α(z) belongs to the “Alpha functions’ class” if it

is an increasing function of z and its derivatives w.r.t. z of all orders are also increasing

functions. Note z can be a scalar or a vector but α(z) is a scalar.

We state here a lemma for the Alpha functions’ class13 which we use to prove later lemmas

Lemma 3 (Composition Lemma): The composition of two Alpha functions is also an

Alpha function, i.e. if α1(x, z), α2(y) are Alpha functions of their arguments, then their

composition function α1(x, α2(y)) is also an Alpha function of [x, y].

12We scale by λc
k,Y c

k
(E) only for ease of notation in stating theorems

13We are not sure if this class of functions the composition lemma given below already exist in literature
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Proof: See Appendix

Now, we need to show that θt, βt are upper bounded by Alpha functions of DQ. This will

follow if we can show a similar result for δk, ρk, ∀k ≥ tc. We first show in lemma 4 that

δk, ρk are upper bounded by Alpha functions of [DQ,k, D̃k−1]. Then in lemma 5, we use a

mathematical induction argument and the composition lemma (lemma 3) to show that D̃k−1

and δk are upper bounded by an Alpha function of DQ for all k. The Alpha function bound

on ρk (in lemma 5) follows from the Alpha function bound on D̃k−1 and the composition

lemma.

Lemma 4 Defining

Ak
4
= Rc

k,Y c
k
(πc,0

k−1)(E), and

C
4
= Rc

k,Y c
k
(πc,c

k−1)(E) (2.25)

and assuming

C >
(D̃k−1)

εc
k

+ DQ,k, ∀k (2.26)

the following hold:

δk ≤ 2DQ,k

Ak

≤ 2DQ,k

C − D̃k−1

εc
k

4
= α̃δ,k([DQ,k, D̃k−1]) (2.27)

ρk ≤ supx ψk,Yk
(x)

εc,0
k

2
(Ak −DQ,k)

≤ supx ψk,Yk
(x)

εc,0
k

2
(C − D̃k−1

εc
k
−DQ,k)

4
= α̃ρ,k([DQ,k, D̃k−1,

1

εc,0
k

]), a.s. (2.28)

42



i.e. δk and ρk are upper bounded by Alpha functions of [DQ,k, D̃k−1,
1

εc,0
k

]14.

Proof: See Appendix

Lemma 5 Assuming the inequality in (2.26), the following hold:

D̃t ≤ αD̃,t(DQ), ∀t ≥ tc (2.29)

δt ≤ αδ,t(DQ), ∀t ≥ tc (2.30)

ρt ≤ αρ,t(DQ,
1

εc,0
t

), ∀t ≥ tc (2.31)

i.e. D̃t and also δt, ρt are upper bounded by Alpha functions of DQ.

Proof: We use mathematical induction to prove (2.29) and (2.30). (2.31) then follows from

(2.28), (2.29) and Lemma 3. First note that D̃t = 0 = δt, ∀t < tc. The base case, t = tc, is

true since

δtc ≤
2DQ,tc

C

4
= αδ,tc(DQ) (2.32)

D̃tc = ||πc,0
tc − R̄c

tcπ
0
tc−1|| = ||πc,0

tc − R̄c
tcπ

c,0
tc−1|| ≤

2DQ,tc

C

4
= αD̃,tc

(DQ) (2.33)

Inequality (2.32) follows from (2.27) by putting D̃tc−1 = 0. The last inequality of (2.33)

follows by applying (7.22) from Appendix with D̃tc−1 = 0

Now, assume that (2.29) and (2.30) hold for tc ≤ k ≤ (t− 1), i.e. assume that

D̃t−1 ≤ αD̃,t−1(DQ) (2.34)

δk ≤ αδ,k(DQ), ∀tc ≤ k ≤ (t− 1). (2.35)

14Note that εc
k is not a function of the rate of change and hence we treat it as a constant in this entire

analysis
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By (2.27) of lemma 4, this implies that

δt ≤ 2DQ,t

C − αD̃,t−1(DQ)

εt

4
= f(DQ) (2.36)

Now it is easy to see that f(DQ) = α1(DQ,t, α2(DQ
t−1)) is a composition of two Alpha

functions, α1(DQ,t, z) =
2DQ,t

C−z
15 and α2(DQ

t−1) = αD̃,t−1(DQ
t−1). Using Lemma 3 (Com-

position lemma), the composition of two Alpha functions is also an Alpha function. Thus,

f(DQ) = αδ,t(DQ). Now, by Theorem 4.6 of [5], we have that

D̃t ≤ δt +
δt−1

εc
t
2 +

t−2∑

k=tc

τ̃t:k+2
δk

εc
k+1

2 (2.37)

Also, we have from (2.35) and (2.36) that each of the δk, k = tc, ..t is upper bounded by an

Alpha function. Hence it is easy to see that D̃t is also upper bounded by an Alpha function,

αD̃,t

4
= αδ,t +

αδ,t−1

εc
t
2 +

∑t−2
k=tc

τ̃t:k+2
αδ,k

εc
k+1

2 . Thus we have proved that (2.29) and (2.30) hold for t

given that they hold for all tc ≤ k ≤ (t− 1). We showed the base case, t = tc, in (2.32) and

(2.33). Hence by Mathematical Induction, (2.29) and (2.30) hold for all t ≥ tc.

The third equation, (2.31), follows directly by combining (2.28), (2.29) and the compo-

sition lemma (lemma 3).

The main result of this section given below follows as a corollary of the above lemmas.

Theorem 3 (“Rate of Change” bound)

Assuming the inequality (2.26), the following results hold:

1. Both the modeling error, θt(δk, ε
c
k, tc ≤ k ≤ t), and the PF approximation error,

βt(ρk, ε
c,0
k , 0 ≤ k ≤ t), are upper bounded by Alpha functions of the vector of rates

15It is easy to see that 2
(C−z) is an Alpha function
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of change, DQ, and consequently the total error ec,0,N
t = Mtθt + Mtβt√

N
is also upper

bounded by an Alpha function of DQ. Also ec,0,N
t increases with t as long as the change

persists.

2. The observation likelihood is upper bounded by an increasing function (note, it is

not an Alpha function of DQ) of the vector of rates of change, DQ, i.e.

OLc,0
t ≤ − log(At −DQ,t) ≤ − log(C − D̃t−1

εc
t

−DQ,t) ≤ − log(C − αD̃,t−1(DQ)−DQ,t)

(2.38)

Proof: Part 1 follows from the definitions of θt, βt (equations (2.11) and (2.14)), lemma 5

and the following two facts: (a) εc
k is independent of DQ,k and (b) εc,0

k is a decreasing function

of the rate of change (We do not have a proof for this in the general case). The intuition is

that with increasing rate of change, the overlap between Y c
k and the spread of Q0

k decreases

and so the kernel Rc,0
k becomes less mixing (εc,0

k decreases)

For part 2, the first inequality of (2.38) follows by applying (7.20) (in Appendix), the

second one follows by (7.21) (in Appendix) and the third inequality follows from (2.29).

Thus we have shown that a small rate of change implies that OLc,0 is small (hence does

not detect the change). But it also implies that ELL estimation error, ec,0,N
t , is small, which

implies that ELL will detect the change as soon as it becomes “detectable” (defined in

Definition 5).
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The Alpha function nature of the bound on ELL approximation error implies that ELL

is approximated accurately for slow changes, and for some time (until total change magnitude

is small) but the error blows up quickly to infinity with increasing rate of change (DQ,k) or

increasing total change magnitude D̃k−1. We discuss the implications of this fact in section

2.7.4.

2.6 Complementary behavior of ELL and OL

We quantify the complementary behavior of ELL and OL by bounding the ELL approxima-

tion error by an increasing function of OL. First consider the PF error coefficient, βc,0
t . It

depends on past values of ρc,0
k and on εc,0

k . Using Remark 5.10 of [5], we have the following

upper and lower bounds on ρk which can be expressed in terms of OLc,0
k :

supx∈Ex,Yt
ψc

k(x)

(Q0
kπ

c,0
k−1, ψ

c
k)

≤ ρc,0
k ≤

supx∈Ex,Yt
ψc

k(x)

(εc,0
k )2(Q0

kπ
c,0
k−1, ψ

c
k)

⇒
supx∈Ex,Yt

ψc
k(x)

e−OLc,0
k

≤ ρc,0
k ≤

supx∈Ex,Yt
ψc

k(x)

(εc,0
k )2e−OLc,0

k

(2.39)

Now consider the model error, θc,0
t . It depends on past values of δc,0

k and εc
k. We use inequality

(6) of [5] which states that

|µ̄− µ̄′| ≤ ||µ− µ′||
µ(E)

+
|µ(E)− µ′(E)|

µ(E)
. (2.40)

Taking µ̄ = R̄c,0
k (πc,0

k−1) and µ̄′ = R̄c,c
k (πc,0

k−1) and using inequalities (7.19) and (7.20) from the

Appendix, we can bound δc,0
k in terms of OLc,0

k :

δc,0
k ≤ 2DQ,k

e−OLc,0
k

(2.41)

46



where DQ,k is defined in the previous section (Definition 6) as a metric for the rate of change.

Thus we have the following theorem:

Theorem 4 (ELL-OL Complementariness)

1. The ELL approximation error at time t, ec,0,N
t

4
= MT θc,0

t +
Mtβ

c,0
t√

N
is upper bounded by

an increasing function of past values of OLc,0
k and past values of DQ,k,

1

εc,0
k

, i.e.

ec,0,N
t ≤

t∑

k=tc

eOLc,0
k ω(

1

εc,0
k

, DQ,k) (2.42)

where ω is an increasing function of its arguments and is defined by upper bounding

θc,0
t and βc,0

t using the bounds given in (2.39) and (2.41) respectively.

2. The PF error in ELL approximation is lower bounded by an increasing function of

OLc,0
k , i.e.

βc,0
t ≥

t∑

k=tc

eOLc,0
k ( sup

x∈Ex,Yk

ψc
k(x))ω̃(

1

εc,0
k

) (2.43)

Proof: The proof of part 1 follows directly by combining the definitions of θc,0
t and βc,0

t

given in (2.11) and (2.14) with (2.39) and (2.41). Proof of part 2 follows directly from (2.39).

Now, if a certain change is not detected by OL until time t, it means that all values of

OL, OLc,0
tc , ...OLc,0

k , ...OLc,0
t are small (below threshold). This implies, by the above theorem,

that the bound on the ELL approximation error is also small or that ELL is approximated

accurately. Thus the change will get detected by ELL once its magnitude becomes large
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enough to satisfy the “detectability” condition (definition 5 in Section 2.3). Conversely, if

ELL does not detect a change that is “detectable”, it means that the ELL approximation

error is large. By the above theorem this implies that at least one of OLc,0
tc , ...OLc,0

k , ...OLc,0
t

is large and hence OL will detect the change. Thus, we propose to use a combination of ELL

and OL to detect a change when the rate of change can be slow or fast and change parameters

are unknown. A change should be declared when either ELL or OL exceed their respective

threshold.

Theorem 4.2 implies that if any of OLc,0
k is large, the PF error in ELL approximation (and

hence also the total error) is large. Thus large values of OLc,0
k indicate that the ELL estimates

obtained are unreliable. As an example, when OL values become very large (infinity due to

computer overflow), ELL completely fails to detect the change (see the r=5 plot in figure

2.1(a) and (b)).

2.7 Discussion

2.7.1 An Example

We first discuss a simple example of a nonlinear HMM which illustrates all the points made

in this chapter. Consider the case where Q0
t , Q

c
t and π0 are linear Gaussian, so that p0

t and

pc
t are also Gaussian. Assume scalar state and observation and let π0 be zero mean with zero

variance. Let the pdf of Qt(x, dx′) is N (x, σ2
sys) and pdf of Qc

t(x, dx′) is N (x + ∆a, σc
sys

2)

with σc
sys = 0.25σsys. Also assume that the changed system model lasts for a finite time
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[tc, tf ]. Thus p0
t (x) is N (0, σ2

t ) with σ2
t = tσ2

sys and pc
t(x) is N (at, σ

c
t
2) with at = 0, σc

t
2 =

tσ2
sys, ∀t < tc, at = (t − tc + 1)∆a, σc

t
2 = tcσ

2
sys + (t − tc + 1)σc

sys
2, ∀tc ≤ t ≤ tf and

at = atf , σc
t
2 = tcσ

2
sys +(tf − tc +1)σc

sys
2 +(t− tf )σ

2
sys ∀t > tf . Thus even though the change

lasts for a finite time, its effect on pt(x) is permanent (pc
t(x) has mean atf ∀t > tf ).

We consider a simple observation model Yt = h(Xt) + wt with h(x) = x3. We let

wt be truncated Gaussian observation noise with variance σ2
obs and truncation parameter,

B < ∞. A truncated Gaussian observation noise, and the fact that h−1 is continuous, makes

the support set of ψk(x) compact (a continuous function maps a compact set into another

compact set [64]). By the argument given in Example 3.10 of [5] (explained in Section 2.7.2),

this along with the fact that π0 has finite (zero) support makes the unnormalized filter

kernels, R0
t , R

c,0
t , Rc

t , mixing, even though the state transition kernels Q0
t , Q

c
t are not mixing.

Also, supx∈Ex,Yt
ψk(x) = 1√

2πσobs
< ∞ and change lasts for a finite time. For this example, we

have Mt = supx∈Ex,Yt
[− log pt(x)] = supx∈h−1([Yt−B,Yt+B])[− log pt(x)] = − log pt((|Yt|+B)1/3).

Thus we satisfy all assumptions for Theorem 2.2.

Also, we can show that this example satisfies assumption (iv)′ and hence Theorem 2.1

also holds. This is shown as follows: Consider EY1:t [|K(πc
t : pt)−K(πc

t : pM
t )|]. By definition

of pM
t , K(πc

t : pt) > K(πc
t : pM

t ) ∀Y1:t and so

EY1:t [|K(πc
t : pt)−K(πc

t : pM
t )|] = EY1:t [K(πc

t : pt)−K(πc
t : pM

t )]

= EY1:t [K(πc
t : pt)]− EY1:t [K(πc

t : pM
t )]

= K(pc
t : pt)−K(pc

t : pM
t )

4
= err(M, t) (2.44)

Now for this example, pc
t and pt are both Gaussian and hence err(M, t) simplifies to (w.l.o.g.
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assume at > 0)

err(M, t) = K(pc
t : pt)−K(pc

t : pM
t ) = 2

∫ ∞
√

Mσc
t

x2

2σ2
t

1√
2πσc

t

e
− (x−at)

2σc
t
2

dx (2.45)

Set y = x−at

σc
t

. Now in this example, σt ≥ σc
t ∀t and hence we have

err(M, t) ≤
∫ ∞
√

M− at
σc

t

1√
2π

e−y2/2(y +
at

σc
t

)2dy

≤
∫ ∞
√

M

1√
2π

e−y2/2(y +
at

σc
t

)2dy

=
∫ ∞
√

M

1√
2π

e−y2/2(y2 +
a2

t

σc
t
2 + 2

aty

σc
t

)dy (2.46)

Now the above is an increasing function of at and a decreasing function of σc
t . Also, we know

that at = atf ∀t > tf . Thus at ≤ atf ∀t. Also, σc
t ≥ σc

1 = σsys ∀t. Thus we have

err(M, t) ≤ 2
∫ ∞
√

M

1√
2π

e−y2/2(y2 +
a2

tf

σsys
2

+ 2
atf y

σsys

)dy
4
= err∗(M) (2.47)

and err∗(M) is independent of t. Also limM→∞ err∗(M) = 0 i.e. for any error ∆, we can

find an M∆ s.t. err∗(M) < ∆ ∀M ≥ M∆ and ∀t. This proves that assumption (iv)′ holds.

Now to analyze the performance, first assume that no errors are present and do the

analysis of Section 2.3.2. Assume tc ≈ 0 to simplify expressions. Then we get

EK0
t = K(p0

t : p0
t ) = 0.5 log 2πσ2

t + 0.5

EKc
t = K(pc

t : p0
t ) = 0.5 log 2πσ2

t + 0.5
σc

t
2 + a2

t

σ2
t

≈ 0.5 log 2πσ2
t + 0.031 + 0.5

a2
t

tσ2
sys

, ∀t ≤ tf

≈ 0.5 log 2πσ2
t + 0.5[0.062

tf + 1

t
+

t− tf − 1

t
] + 0.5

a2
tf

tσ2
sys

∀t > tf

V K0
t ≤ Ep0

t
[[− log p0

t (x)]2]− (EK0
t )2 = 0.5
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V Kc
t ≤ Epc

t
[[− log p0

t (x)]2]− (EKc
t )

2

= 0.5
σc

t
4

σ4
t

+
σc

t
2a2

t

σ4
t

≈ 0.002 +
0.062a2

t

tσ2
sys

∀t ≤ tf

≈ 0.5[0.062
tf + 1

t
+

t− tf − 1

t
]2 + [0.062

tf + 1

t
+

t− tf − 1

t
]

a2
tf

tσ2
sys

The threshold κt = EK0
t + 3

√
V K0

t ≤ 2.62. We set κt = 2. The mean distance of Kc
t from

the threshold is then:

γt
4
= EKc

t − κt = 0.5
a2

t

σ2
t

+ 0.031− 2 ≈ 0.5
a2

t

σ2
t

− 2 (2.48)

Now consider t ≤ tf . We can then apply definition 5 (first assuming no approximating

errors) to infer the following: The miss probability at time t will surely be less than 0.11

(0.05 if unimodal) if γt > 3
√

V Kc
t which simplifies to 0.5r2 − 2 > .75r with r = at/σt. It

is easy to see that this equation is satisfied for r ≥ 3. Now tc ≈ 0, and so r ≈
√

t∆a
σsys

. This

implies that if the rate of change is of the order of system noise, ∆a ≈ σsys, then with

probability greater than 0.89, the change will get detected in (3)2 = 9 time units or more.

This of course is obtained using loose bounds (loose variance bound and the loose Chebyshev

or Gauss’s inequality bound) and in practice changes can get detected much faster if there

are no approximation errors. Infact even with approximation errors, we see in simulations

that the change gets detected faster than this (see figure 2.2(a)). Approximation errors tend

to reduce the value of ELL16.

16In the extreme case (for drastic changes) the PF completely loses track, i.e. the unnormalized filter

kernel starts following the system model, Rc,0
t ≈ Q0

t causing ELL to not increase above the normal value

(see figure 2.1(a),r=5).
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Now we analyze the effect of approximation errors. Applying definition 5 while taking

into account the approximation errors, we get: A change will get detected w.p. greater than

(1 − 0.11) = 0.89, if γt − Mtθ
c,0
t > 3

√
V Kc

t (assuming Mtβt√
N

can be made small enough by

taking N large enough). Now, assuming as before that tc ≈ 0, we have

γt = 0.5t
(∆a)2

σsys
2

+ 0.0031− 2 ∀ tc ≤ t ≤ tf

γt >
0.5(atf )

2

tσsys
2
− 2 ∀ t > tf (2.49)

Also, δk = 0,∀ k < tc, k > tf . For simplicity, assume δk = δ,∀ tc ≤ k ≤ tf , then we have

θt = δ +
δ

(εt)2
+

t−2∑

k=tc

(τk)
(t−k−2) δ

(εk)
4 (2.50)

From the above two equations, we see that both γt and θt increase till tf . γt has an approx-

imately linear increase (for small tc), ∆γt ≈ 0.5(∆a)2

σsys
2 = 0.5, while θt increases at decreasing

rates of increase17, ∆θt = τt∆θt−1. Now, if the change is slow enough so that Mtδ
ε4

< 0.5, then

γt −Mtθt will increase with time until tf and the change will get detected when γt −Mtθt

exceeds zero.

After tf +1, both start decreasing but γt decreases as ∆γt ≈ −0.5(atf
)2

t2σ2
sys

(See blue solid line

in figure 2.1 (c)) while θt decreases as θt = τtθt−1 so that ∆θt = −(1−τt)θt−1 (large decreases

for large current value). The initial decrease in θt is usually faster than the decrease in γt in

which case γt −Mtθt increases with time even after tf + 1 and in some cases the change can

get detected even after tf .

In practice, the assumption of PF error being negligible may not hold when tracking

17θt goes as δ, δ + δ/ε2, δ + δ/ε2 + δ/ε4, δ + δ/ε2 + δ/ε4 + τδ/ε4, δ + δ/ε2 + δ/ε4 + τδ/ε4 + τ2δ/ε4...
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changed system observations, using a PF optimal for the original system, since N has been

fixed for the original system’s observations and with increasing rate of change or increasing

total change, the PF error coefficient blows up very quickly (shown in Section 2.5).

2.7.2 Sufficient Conditions for Mixing Unnormalized Filter Ker-

nels

From Example 3.10 of [5], we can get the following sufficient conditions for Rt to be mixing:

1. π0 has compact support

2. and ψt(x) has compact support. A sufficient condition for this to hold is that wt has

finite support, say [−B,B] (e.g. truncated Gaussian noise) and Ex,Yt

4
= h−1

t ([Yt −

B, Yt + B]) is compact. A sufficient condition for this is that ht is invertible and h−1
t

is continuous (ht is a homeomorphism) [64].

3. and given that the state transition kernel has the form Xt = ft(Xt−1) + nt, f−1
t (Ex,Yt)

is a compact set. A sufficient condition for this is that ft is a homeomorphism [64].

Now condition 2 is equivalent to assumption (iv)′′ in Theorem 2 (posterior state space is

compact). Thus if the above three conditions hold, the change lasts for a finite time and

Ex,Yt has a nonzero measure (implies assumption (ii) holds) then Theorem 2.2 holds.

Sufficient conditions for Theorem 2.1 are all the three conditions above and the fact

that pc
t and pt are Gaussian,

σc
t

σ0
t

is bounded away from zero and the change is an additive

53



bias lasting for a finite time (atf is finite). These sufficient conditions follow directly by

generalizing the example in Section 2.7.1.

2.7.3 Generalizations

The results proved in this chapter for ELL approximation errors can be generalized at two

levels. First, all results of Sections 2.4 and 2.5 and 2.6 are true for any function of the state,

i.e. [− log pt(x)] can be replaced by any other function f(x). Second, DQ,t which measures

the “rate of change” here can in general be a metric for system model error per time step

(the error being introduced due to any reason). As long as the system model error lasts for

a finite time, the results of this chapter will apply directly.

Thus Theorems 1 and 2 can be applied to errors in approximating the posterior estimate

of any function of state given past observations, when using a PF with system model error.

Note that the posterior estimate of a function of state conditioned on past observations is

an MMSE (Minimum Mean Square Error) estimate of the function evaluated based on past

observations.

Also, Theorem 3 can be generalized to prove that the ELL approximation error (or

approximation error in MMSE estimate of any function f of the state) is upper bounded by

an Alpha function of the vector of system model errors per time step, DQ. The implication

of this is that in situations where slow changes might occur in the system model, using a

more “general” system model introduces less total error. More “general” means that instead

of using Qpf
k = Q0

k (making the filter optimal for the original system model), one can use
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a Qpf
k with a much larger system noise variance than Q0

k. The effect of doing this is that

the distance of Qpf
k from Qc

k decreases, even though its distance from Q0
k is no longer 0. We

discuss below in Section 2.7.4 that doing this results in less total error.

The results of Theorem 4.2 can be used as follows: The error in MMSE estimate of any

function of the state cannot be measured but because of the result in Theorem 4.2, we can

use an estimate of OL to decide when the errors are large.

2.7.4 Implications of “rate of change” bound on error

Theorem 3 given in Section 2.5 has many interesting implications. The most obvious one is

that a small rate of change implies that OLc,0 is small (hence does not detect the change).

But it also implies that the ELL estimation error, ec,0,N
t , is small, which implies that ELL

will detect the change as soon as it becomes “detectable”. Also, the Alpha function nature

of the bound on the ELL approximation error implies that ELL is approximated accurately

for slow changes, and for some time (until total change magnitude is small) but the error

blows up quickly to infinity with increasing rate of change (DQ,k) or increasing total change

magnitude D̃k−1. This has the following implications:

1. For change detection to work best (detect change with minimum delay and minimum

false alarms), the error in approximating ELL should be small for approximating both

ELL(Y c
0:t) and ELL(Y 0

0:t). Now in the current framework, error in ELL(Y 0
0:t), e0,N

t is

quite small (for N chosen large enough) since there is no system model error (Qpf
k = Q0

k)

55



which implies that θ0
t = δ0

t = 0 and the bound on ρt is also small, i.e.

θ0
t = δ0

t = 0 ∀t, and ρ0
t ≤

supx ψt,Yt(x)

ε2
t C

. (2.51)

But the error in ELL(Y c
0:t), ec,0,N

t , depends on the smallness of the system model

error, DQ. The nonlinearity of the error bounds as a function of DQ, suggests that if

the system model error DQ,t was divided equally between the unchanged and changed

systems, (i.e. the Qt used by the particle filter was not equal to Q0
t , but chosen so

that its distance from changed and unchanged system was equal), the bound on the

total error ec,0,N
t + e0,N

t would be smaller. For example, consider the first change time

instant, t = tc, in the current framework. For the changed system, δc,0
tc ≤ 2DQ,tc

C
and

ρc,0
tc ≤ supx ψk,Yk

(x)

ε2tc(C−DQ,tc)
. Thus

δc,0
tc + δ0

tc ≤ 2DQ,tc

C
, ρc,0

tc + ρ0
tc ≤

supx ψtc,Ytc
(x)

ε2
tc(C −DQ,tc)

+
supx ψtc,Ytc

(x)

ε2
tcC

. (2.52)

On the other hand, if the system model error DQ,tc was divided equally between the

unchanged and changed systems (i.e. D0,pf
Q,tc = Dc,pf

Q,tc =
DQ,tc

2
), the bound on δc,0

tc + δ0
tc

would be the same (bound is linear in DQ) but that on ρc,0
tc + ρ0

tc would be smaller. In

this case we have18,

δc,0
tc + δ0

tc ≤ 2DQ,tc

C
, ρc,0

tc + ρ0
tc ≤

2 supx ψk,Yk
(x)

ε2
tc(C − DQ,tc

2
)

(2.53)

The above example indicates that instead of using Q0
k as the transition kernel in particle

filtering (Qpf
k = Q0

k), using a Qpf
k that is closer to Qc

k (even if its distance from Q0
k

18It is easy to see that the RHS of (2.53) is smaller than that of (2.52)
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is not zero) will be a better idea (Note here though that this inference is based on

comparing upper bounds with upper bounds). If Qc
k is known, one could attempt

to use a mixture of Q0
k and Qc

k as Qpf
k . For unknown Qc

k, one could use Q0
k with a

larger system noise variance as Qpf
k . Both these ideas have been used in past works on

tracking using a particle filter [67, 4]; we have in this chapter provided a justification

for using them.

2. Another implication of Theorem 3 is that a sequence of small changes would introduce

less total error than one drastic change of the same magnitude. The most general case

of this statement is difficult to prove because of the many free variables involved. But

we demonstrate here a simpler case: At t = tc, consider the case where DQ,tc = C. In

this case, the bound on ρtc is S

εc,0
tc

2
(C−C)

= ∞. But if the same change was spread over

two time instants, i.e. DQ,tc = DQ,tc+1 = C
2
, then (assuming C > 2

εc,0
tc

)

ρtc + ρtc+1 ≤ S

εc,0
tc

2
(C −DQ,tc)

+
S

εc,0
tc+1

2
(C − D̃tc

εc,0
tc

−DQ,tc+1)
(2.54)

≤ S

εc,0
tc

2 C
2

+
S

εc,0
tc+1

2
(C

2
− 1

εc,0
tc

)
< ∞ (2.55)

(2.55) follows by applying (2.33) and the fact that
2DQ,tc

C
= 1 in this case. This is

observed in simulations also. See figure 2.1(a). The change is introduced at tc = 5 in

all cases. For r = 5 (drastic change), the PF loses track immediately (bound goes to

infinity) and the posterior starts following the prior, causing ELL to be very close to

that of the normal system (ELL cannot detect this change). For r = 2 (slow change),

within 3 time instants the total change magnitude is larger than that of r = 5 for one
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time unit. But still the PF does not completely lose track ever and ELL is able to

detect this change.

2.7.5 OL and Tracking Error

The OL is approximately equal to tracking error (TE), when the observation noise is white

Gaussian and hence either can be used to detect a sudden change. The TE is the square of

the Euclidean distance between the current observation Yt and its prediction based on past

observations, Ŷt = Eπt|t−1
[h(Xt)], i.e.

TE = ||Yt − Ŷt||2 ≈ Eπt|t−1
[||Yt − h(Xt)||2] (2.56)

The approximation follows from the first order Taylor series expansion of Eπt|t−1
[||Yt −

h(Xt)||2] about Xt = h−1[Ŷt]. Now for white Gaussian observation noise with covariance

Σobs = σ2
obsI, OL can be written as

OL(Y1:t) = − log Eπt|t−1
[ψt(Xt)] = − log Eπt|t−1

[e
− ||Yt−h(Xt)||2

2σ2
obs ] + K (2.57)

Writing the series expansion of the exponential,

OL(Y1:t) = − log Eπt|t−1
[1− ||Yt − h(Xt)||2

2σ2
obs

+ O(||Yt − h(Xt)||4) + K (2.58)

≈ − log(1− TE

2σ2
obs

+ Eπt|t−1
[O(||Yt − h(Xt)||4)]) (2.59)

=
TE

2σ2
obs

+ O(Eπt|t−1
[O(||Yt − h(Xt)||4)]2) (2.60)

(2.59) follows from (2.56) and (2.60) follows from the series expansion of log(1 + z). We

show results for drastic abnormality detection using the tracking error in chapter 4. As can

be seen from figure 4.2, the plots of OL and TE look very similar.
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2.8 Simulation Results

We simulated the example given in Section 2.7.1 with truncated Gaussian observation noise

with truncation parameter, B=10. We tested for increasing magnitudes of ∆a, ∆a = rσnoise

with r = 0 (no change) and r = 1, 2, 5. We show in figure 2.1, plots for detecting the

changes using ELL and OL averaged over 20 realizations of The example given in Section

2.7.1. Change was introduced in the system model at t = 5 and lasted till t = 15 (but as

discussed earlier, its effect on state prior was permanent). As can be seen from these graphs

all changes are detected by either OL or ELL. The slow change r=1 gets detected by ELL

at t=7 but the OL detects it only at t=14. The r=2 (“faster change”) gets detected at t=6

using ELL and at t=8 using OL. Also note that when OL takes the value infinity (shown as

OL=50 in the plot), due to computer overflow, ELL starts to fail. The r = 5 ELL plot in

figure 2.1(a) almost coincides with that of r = 0 (normal system). This is because when the

PF loses track, the posterior starts following the normal system model, i.e. Rc
t ≈ Q0

t . But

as discussed in earlier sections, the OL detects such a change immediately.

We also show the ROC (Receiver Operating Characteristic) plots in figure 2.2 for the

slow, faster and drastic changes which quantify the above discussion. The ROC for a change

detection problem [15] plots the average detection delay against the mean time between false

alarms by varying the detection threshold. As can be seen from the figure, the ELL works

better for r = 0.5 and r = 1, OL and ELL have comparable performance for r = 2 and ELL

completely fails but OL works best for r = 5.

Now as discussed in section 2.7.4, setting the system noise variance in particle filtering
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to a larger value than that for the unchanged system helps reduce the ELL approximation

error and hence improve its detection performance. We experimented with this idea and

show results in figure 2.3. We compare the performance of ELL estimated using PFs with

increasing σpf by plotting the ROC curves. As can be seen from the figure, σpf = 10σsys

works best for detecting the “drastic change” and also for the “faster change” but it is too

large for the slow change, which is intuitive. σpf = 3σsys has best average performance for

all the three rates of change.

The application of ELL and OL (or equivalently Tracking Error) to the real problem

of abnormal activity detection is discussed in chapter 4. We discuss examples of both the

strategies for defining p0
t (x) (discussed in section 2.3.4) in section 4.1.3.
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Figure 2.1: Simulated example: In (a) and (b), we show ELL and OL (negative log of observation
likelihood) plots for the no change case (blue -o), and for changes with ∆a = rσnoise for r=1 (red-*),
r=2 (green -4) and r=5 (black -square). In all cases change was introduced at time tc = 5 and
lasted till tf = 15. The plots are averaged over 20 realizations of observation sequences. For the case
r = 5 (drastic change) and r = 2, the OL plot goes to infinity at or after t = 5 (computer overflow)
and hence the change is detected immediately using OL while ELL completely fails for it. In (c),
we plot 0.5a2

t /σ2
t , its simulation average calculated using 20 realizations of the observation sequence

and its spread (average plus and minus the standard deviation) for a change with ∆a = σnoise. We
also plot the theoretical bound on the standard deviation obtained in The example given in Section
2.7.1.
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Figure 2.2: ROC curves for comparing performance of ELL and OL for slow and drastic changes
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Figure 2.3: Effect of increasing the system noise variance of the particle filter on performance of
ELL
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Chapter 3

Landmark Shape Dynamics

3.1 Problem Formulation

We define here dynamical models for representing the changing configurations of landmarks.

The distinction between motion and deformation of a deforming and moving configuration

is not clear. We separate the dynamics of a deforming configuration into scaled Euclidean

motion (translation, rotation, uniform scaling) and non-rigid shape deformations. This idea

was inspired by [34]. We define a continuous state HMM for the changing configuration of

a group of moving landmarks (point objects) with the shape and motion being the hidden

state variables and the noisy configuration vector forming the observation. We refer to it as

“shape activity”. A “stationary shape activity” is defined as one for which the shape vector

is stationary i.e. the mean (expected value of) shape remains constant with time and the

deformation model is stationary while in a “non-stationary shape activity”, the mean shape
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changes with time (see figure 3.1(a) and (b)).

We discuss in this chapter the stationary, nonstationary and piecewise stationary shape

activity models. The entire discussion assumes a fixed number of landmarks. But in certain

applications like the airport example with people deplaning (figure 4.1), the number of

landmarks varies with time. We currently deal with this by resampling the curve formed by

joining the landmarks to a fixed number of points. This is discussed in section 3.7. Also,

note that in this representation of shape, the correspondence between landmarks is assumed

to be known across frames. Since the number of landmarks is usually small (k = 8 in this

case), this is easy to ensure. We begin the chapter with a brief review of the definitions and

tools for statistical shape analysis and clarifying some notation.

3.2 Preliminaries and Notation

We would first like to clarify that the terms partially observed dynamical model and HMM

are used interchangeably for “shape activity” models since the partially observed dynamic

model that we define is also an HMM. We use “arg” to denote the angle of a complex scalar

as well as in “arg min” for the argument minimizing a function, but the meaning is clear from

the context. ∗ is used to denote conjugate transpose. ||.|| is used for the Euclidean norm

of a complex or real vector and |.| for the absolute value of a complex scalar. Ik denotes

the k × k identity matrix and 1k denotes a k dimensional vector of ones. Also note that to

simplify notation we do not distinguish between a random process and its realization. We

review below the tools for statistical shape analysis as described in [9].
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Definition 10 [9] Configuration is a k-tuple (ordered set) of landmarks (which in our

case is the k-tuple of point object locations). The configuration matrix is the k × m

matrix of Cartesian coordinates of the k landmarks in m dimensions. For 2D data (m = 2),

a more compact representation is a k dimensional complex vector with x and y coordinates

forming the real and imaginary parts. The configuration space is the space of all k-tuples

of landmarks i.e. <km.

Translation Normalization: The complex vector of the configuration (Yraw) can be

centered by subtracting out the centroid of the vector yielding a centered configuration,

i.e.

Y = CYraw where C = Ik − 1k1k
T

k
. (3.1)

Definition 11 [9] The pre-shape of a configuration matrix (or complex vector), Yraw, is all

the geometric information about Yraw that is invariant under location and isotropic scaling.

The pre-shape space, Sk
m, is the space of all possible pre-shapes. Sk

m is a hyper-sphere of

unit radius in <(k−1)m and hence its dimension is (k − 1)m − 1 (a unit hyper-sphere in <P

has dimension P − 1).

Scale Normalization: The pre-shape is obtained by normalizing the centered configu-

ration, Y , by its Euclidean norm, s(Y ) = ||Y || (known as scale or size of the configuration),

i.e. w(Y ) = Y/s(Y ).

Definition 12 [9] The shape of a configuration matrix (or complex vector), Yraw, is all

the geometric information about Yraw that is invariant under location, isotropic scaling and
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rotation (Euclidean similarity transformations) i.e. [z] = {sYrawR + 1kα
T : s ∈ <+, R ∈

SO(m), α ∈ <m}. The shape space is the set of all possible shapes. Formally, the shape

space, Σk
m, is the orbit space of the non-coincident k point set configurations in <m under

the action of Euclidean similarity transformations. The dimension of shape space is M =

(k− 1)m− 1−m(m− 1)/2. It is easy to see that Σk
m = Sk

m/SO(m), i.e. Σk
m is the quotient

space of Sk
m under the action of the special orthogonal group of rotations, SO(m).

Rotation Normalization: Shape, z, is obtained from a pre-shape, w, by rotating

it in order to align it to a reference pre-shape γ. The optimal rotation angle is given by

θ(Y, γ) = arg(w∗γ) = arg(Y ∗γ), and the shape, z(Y, γ) = wejθ(Y,γ) = Y
s(Y )

ejθ(Y,γ).

In this work we deal with m = 2 dimensional shapes and hence the configuration vector

is represented as a k dimensional complex vector and the shape space dimension is (2k− 4).

Distance between shapes: A concept of distance between shapes is required to

fully define the non-Euclidean shape metric space. We use the Procrustes distance which is

defined below.

Definition 13 [9] The full Procrustes fit of w onto y is

wP (y) = β̂ejθ̂w + â + jb̂ where

β̂, θ̂, â, b̂ = arg min
(β,θ,a,b)

D(y, w), D(y, w) = ||y − (βeiθw + a + jb)||.

If y and w are preshapes, it is easy to see that the matching parameters are (result 3.1 of

[9])

â + jb̂ = 0, θ̂ = arg(w∗y), β̂ = |w∗y| = (y∗ww∗y)1/2
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Definition 14 [9] The full Procrustes distance between preshapes w and y is the Eu-

clidean distance between the Procrustes fit of w onto y, i.e.

DF (w, y) = inf
β,θ,a,b

D(y, w) = ||y − wP (y)||

=
√

1− y∗ww∗y (3.2)

Definition 15 [9] The full Procrustes estimate of mean shape (commonly referred to

as full Procrustes mean), of a set of preshapes {wi} is the minimizer of the sum of squares

of full Procrustes distances from each wi to an unknown unit size mean configuration µ, i.e.

[µ̂] = arg min
µ:||µ||=1

n∑

i=1

min
βi,θi,ai,bi

D2(wi, µ)

= arg min
µ:||µ||=1

n∑

i=1

D2
F (wi, µ)

= arg min
µ:||µ||=1

n∑

i=1

(1− µ∗wiw
∗
i µ)

= arg max
µ:||µ||=1

µ∗[
n∑

i=1

wiw
∗
i ]µ (3.3)

i.e. [µ̂] is given by set of complex eigenvectors corresponding to the largest eigenvalue of

S
4
=

∑n
i=1 wiw

∗
i (Result 3.2 of [9]).

Shape Variability in Tangent to Shape Space: The structure of shape variability of

a dataset of similar shapes can be studied in the tangent hyperplane to shape space at the

Procrustes mean of the dataset. The tangent space is a linearized local approximation of

shape space at a particular point in shape space which is called the pole of tangent projec-

tion. We shall consider the tangent projections to the preshape sphere after normalizing for

rotation (w.r.t. the pole), which form a suitable tangent coordinate system for shape. The
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tangent space to shape space is a vector space and the Euclidean distance in tangent space

is a good approximation to Procrustes distance in the vicinity of the pole. (See chapter 4 of

[9] for more details).

Definition 16 [9] The Procrustes tangent coordinates of a centered configuration, Y ,

taking µ as the pole, are obtained by projecting z(Y, µ) (the shape of Y aligned to µ) into the

tangent space at µ, i.e.

v(Y, µ) = [Ik − µµ∗]z(Y, µ) = [Ik − µµ∗]
Y

s(Y )
ejθ(Y,µ). (3.4)

The inverse of the above mapping (tangent space to centered configuration space) is

Y (v, θ, s, µ) = [(1− v∗v)1/2µ + v]se−jθ. (3.5)

The shape space is a non-linear manifold in Ck−1 and hence its dimension is k− 2. Thus the

tangent plane at any point of the shape space is a k − 2 dimensional hyperplane in Ck (or

equivalently, a (2k − 4)-dim hyperplane in <2k) [9].

3.3 Stationary Shape Activity

3.3.1 Shape Deformation Model in Tangent Space

A sequence of point configurations from a stationary shape activity (SSA), with small system

noise variance, would lie close to each other and to their mean shape (see figure 3.1(a)).

Hence a single tangent space at the mean is a good approximate linear space to learn the

shape deformation dynamics for a SSA. We represent a configuration of landmarks by a
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complex vector with the x and y coordinates of a landmark forming the real and imaginary

parts1. We first discuss the training algorithm i.e. how to learn the shape dynamics given a

single training sequence of configurations. Given a sequence of configurations with negligible

observation noise, {Yraw,t}, we learn its Procrustes mean and evaluate the tangent coordinates

of shape (using the Procrustes mean as the pole), as

Yt = CYraw,t,

st
4
= s(Yt) = ||Yt||, wt = Yt/st,

µ = arg max
µ:||µ||=1

µ∗[
T∑

t=1

wtw
∗
t ]µ

θt
4
= θ(Yt, µ) = arg(w∗

t µ), zt = wte
jθt (3.6)

vt
4
= v(Yt, µ) = [Ik − µµ∗]zt = [Ik − µµ∗]

Yte
jθt

st

(3.7)

Since the tangent coordinates are evaluated w.r.t. the mean shape of the data, assuming

that they have zero mean is a valid assumption. We string the complex tangent vector as

a 2k dimensional real vector and then define a linear Gauss Markov model in the tangent

space to model the shape deformation dynamics. Note that since we are assuming small

variations about a mean shape, a first order Gauss Markov model is sufficient to model the

shape dynamics in this case, i.e.

vt = Atvt−1 + nt

1Note that all transformations between the configuration space to shape space and tangent to shape space

are defined in Ck (k-dim complex space) but the dynamical model on tangent coordinates is defined in <2k

by vectorizing the complex vector. This is done only for compactness of representation. The entire analysis

could instead have been done in <2k.
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v0 ∼ N (0, Σv,0), nt ∼ N (0, Σn,t) (3.8)

The deformation process is assumed to be stationary and ergodic. Under this assumption the

above is a first order autoregressive model. Thus, Σv,0 = Σv,t = Σv, Σn,t = Σn and At = A

is the autoregression matrix with A < I. {nt} is i.i.d. Gaussian system noise. Thus all the

three parameters can be learnt using a single training sequence of tangent coordinates, {vt},

as follows [68]

A = Rv(1)Σ−1
v where

Σv =
1

T

T∑

t=1

vtv
T
t and Rv(1) =

1

T − 1

T∑

t=2

vtv
T
t−1

Σn =
1

T

T∑

t=1

(vt − Avt−1)(vt − Avt−1)
T (3.9)

and the joint pdf of vt is given by

p(vt) = N (0, Σv), ∀t

p(vt|vt−1) = N (Avt−1, Σn), ∀t. (3.10)

Note that the asymptotically stationary case where A < I but Σv,0 6= Σv so that Σv,t → Σv

only for large time instants (t → ∞), can also be dealt with in the above framework. In

that case Σv,0 is defined using a-priori knowledge, Σn can be learnt exactly as in (3.9), and

Σv, Rv(1) can also be learnt as in (3.9) but by excluding the summation over the initial

(transient) time instants.

Now, the tangent coordinates obtained in (3.7) lie on a (k − 2)-dim hyperplane of Ck

and hence they have only (k− 2) degrees of freedom in complex coordinates (or equivalently
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(2k − 4) degrees of freedom in real coordinates). We can evaluate an orthogonal basis,

U(µ), for the tangent space at µ by evaluating the Singular Value Decomposition [68] of the

tangent projection matrix, [Ik − µµ∗]C and retaining the (k − 2) directions with nonzero

singular values. The (k − 2) independent coefficients of the tangent coordinate are then

given by ct = U(µ)∗vt. Now since this is a linear transformation, (3.8) implies a linear

Gauss-Markov model on ct as well. We use this tangent coefficient representation while

defining nonstationary and piecewise stationary models.

3.3.2 Partially Observed (Hidden) Shape Dynamics

In the previous subsection we defined a dynamic model on the shape of a configuration

of moving points. We assumed that the observation sequence used for learning the shape

dynamics has zero (negligible) observation noise associated with it (e.g. if it were hand-

picked). But a test sequence of point configurations, {Yraw,t}, will usually be obtained

automatically using a measurement algorithm (e.g. a motion detection algorithm [69]). It

will thus have large observation noise associated with it, i.e. Yraw,t = Y actual
raw,t + ζraw,t where

ζraw,t is zero mean Gaussian noise, ζraw,t ∼ N (0, Σobs,raw,t). If the different landmarks are far

apart, the noise can be assumed to be i.i.d. over the different landmarks as well (i.e. white

Σobs,raw,t). Now translation normalization is a linear process and hence Yt = CYraw,t is also
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Gaussian2 with observation noise, ζt, given by

Σobs,t = CΣobs,raw,tC
T (3.11)

(C is the centering matrix defined in (3.1)). But the mapping from centered configuration

space to the tangent space is nonlinear (scaling by ||Yt|| followed by rotation to align with

mean) and hence it is not possible to obtain a closed form expression for the pdf of noise

in the tangent coordinates due to observation noise in the configuration vector. To deal

with this, one has to define a partially observed dynamical model (which is a continuous

state HMM), which can then be tracked using a PF to estimate the shape from the noisy

observations. The observed centered configuration, Yt, forms the observation vector and the

shape, scale and rotation form the hidden state vector.

We discuss the advantage of a PF over an Extended Kalman Filter in section 3.6.

Now, we have the following observation model for a “stationary shape activity” with the

observation vector Yt being the centered configuration vector and the state vector Xt =

[vt, st, θt]:

Yt = h(Xt) + ζt, ζt ∼ N (0, Σobs,t)

h(Xt) = ztste
−jθt , where zt = (1− vt ∗ vt)

1/2]µ + vt

(3.12)

2Note that here we have assumed Gaussian observation noise, ζraw,t, but in general a PF can track with

any kind of noise. But for non-Gaussian ζraw,t, it is in general not possible to define a distribution for ζt

and one would have to treat the translation as part of the state vector.
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Defining scale and rotation (motion parameters) as part of the state vector implies that we

need to define prior dynamic models for them (motion model). The motion model can be

defined based on either the motion of the shape if it is a moving configuration or based

on motion of the measurement sensor if the sensor is moving (for e.g. a moving camera or

just an unstable camera undergoing a slight random motion) or a combined effect of both.

A camera on an unstable platform, like an unmanned air vehicle (UAV), will have small

random x-y motion (translation), motion in z direction (scale change) and rotation about

the z axis (rotation angle change). The translation gets removed when centering Yraw,t. The

scale and rotation can be modeled in this case by using a linear Gauss-Markov model (AR

model) both for log of scale and for the unwrapped rotation angle3, i.e.,

log st = αs log st−1 + (1− αs)µs + ns,t

log s0 ∼ N (µs, σ
2
s), ns,t ∼ N (0, σ2

r)

θt = αθθt−1 + (1− αθ)µθ + nθ,t

θ0 ∼ N (0, σ2
θ), nθ,t ∼ N (µθ, σ

2
θ) (3.13)

The motion model parameters can be learnt using the training sequence values of {st}T
t=1 and

{θt}T
t=1 given by (3.6). {θt}T

t=1 will have to be the unwrapped value of the rotation angle to

learn a Gaussian model. Also, one can either assume wide sense stationarity, in which case

µs, σ
2
s , σ

2
r , αs and µθ, σ

2
θ , σ

2
u, αθ can be learnt using Yule-Walker equations [68], or assume a

random walk motion model(set αs = 1 and αθ = 1), depending on the application.

3Since we are modeling only random motion of a camera, a first order linear Markov model for log of

scale and rotation is sufficient in this case
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The shape deformation dynamics (equation (3.8) in section 3.3.1) and the motion model

defined above (equation (3.13)) form the system model while equation (3.12) defines the

observation model. Thus we have defined a a continuous state HMM (partially observed

dynamic model) for a “stationary shape activity”. The model is non-linear since the mapping

h(Xt) is nonlinear.

3.4 Non-Stationary Shape Dynamics

For a “non-stationary shape activity” model, the mean shape is time-varying and hence

modeling the shape dynamics requires a time-varying tangent space (see figure 3.1(b)) defined

with the current shape as the pole. Note that, modulo reflections, there is a one to one

mapping between the tangent space at any point on the shape manifold and the shape

manifold. But the distance between two points on a tangent plane is a good approximation

to the distance on the shape manifold only for points close to the pole of the tangent plane.

Hence the assumption of i.i.d. system noise to go from shape at t to shape at t + 1 is valid

only for shapes in the vicinity of the pole. Thus when the shape variation is large (for NSSA),

there is a need to define a tangent space with the current shape being the pole.

The state space now consists of the mean shape at time t, zt, the “shape velocity co-

efficients” vector, ct, and the motion parameters (scale st, rotation θt) i.e. state Xt =

[zt, ct, st, θt]. Denote the tangent space at zt by Tzt . We then have the following dynamics:

The tangent coordinate of zt in Tzt−1 (denoted by vt(zt, zt−1)) defines a “shape velocity” (time

derivative of shape) vector. We perform a Singular Value Decomposition [68] of the tangent
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projection matrix, [Ik−zt−1z
∗
t−1]C, to obtain an orthogonal basis for the (k−2)-dim tangent

hyperplane Tzt−1 . Denote the orthogonal basis matrix for Tzt−1 by U(zt−1)
4. The (k − 2)-

dim vector of coefficients along these basis directions, denoted by ct(zt, zt−1), is a coefficients

vector for the “shape velocity”, vt, i.e. vt = U(zt−1)ct. The shape at t, zt is obtained by

“moving” zt−1 on the shape manifold as follows: Move an amount vt (from origin) in Tzt−1

and then project back onto shape space. Thus zt is evaluated as zt = (1− v∗t vt)
1/2zt−1 + vt.

We assume a linear Gauss-Markov model on shape velocity vt which corresponds to a

linear Gauss Markov model for ct. We can then summarize the shape dynamics as follows:

ct = Ac,2,tct−1 + nt, nt ∼ N (0, Σn,c,2,t)

vt = U(zt−1)ct, U(zt−1) = orthogonal basis(Tzt−1)

zt = (1− v∗t vt)
1/2zt−1 + vt. (3.14)

If we assume a time invariant AR model on {vt}, i.e. vt = Av,2vt−1 + nv,t then we have have

a time varying Gauss-Markov model on ct with

Ac,2,t = U(zt−1)
∗Av,2U(zt−2), and Σn,c,2,t = U(zt−1)

∗Σn,v,2U(zt−2). (3.15)

Note that a Markov model on the shape velocity corresponds to a second order Markov model

on shape, zt (hence the subscript ‘2’ on the parameters). Some special cases are Av,2 = 0

or i.i.d. velocity (first order Markov model on shape); Av,2 = I which corresponds to i.i.d.

shape acceleration and Av,2 = AAR or stationary shape velocity.

4The basis vectors, {ut,i}k−2
i=1 , are arranged as column vectors of a matrix, U(zt−1), i.e. Ut

k×(k−2) =

[ut,1, ut,2...ut,k−2]. U
k×(k−2)
t = orthogonal basis(Tzt−1) is evaluated as : Ut = Ufull,tQ where

Ufull,tSU∗
full,t = [Ik − zt−1z

∗
t−1]C, and Q = [I(k−2)×(k−2), 0(k−2)×2]T
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The motion model (model on st, θt) can be defined exactly as in equation (3.13) but now

θt is the rotation angle of current configuration w.r.t. the current mean shape µt = zt−1

and hence is a measure of rotation speed. As before, one can assume the motion model to

be stationary or non-stationary. The shape and motion model, (3.14) and (3.13)), form the

system model. The observation model is as follows:

Yt = h̃(Xt) + ζt, where h̃(Xt) = ztste
−jθt . (3.16)

Training

Given a training sequence of centered (translation normalized) configurations, {Yt}T
t=1, we

first evaluate {ct, vt, st, θt}T
t=1 as follows 5 :

st = ||Yt||, wt = Yt/st,

θt(Yt, zt−1) = arg(w∗
t zt−1), zt(Yt, zt−1) = wte

jθt ,

vt(Yt, zt−1) = [Ik − zt−1z
∗
t−1]zt,

ct(Yt, zt−1) = U(zt−1)
∗zt. (3.17)

Assuming a time invariant AR model on shape velocity, vt, one can learn its parameters

(Av,2, Σn,v,2) as in (3.9) and then define the time-varying Markov model for ct using (3.15).

5Note, the last equation, ct = Ut
∗zt, holds because ct = Ut

∗vt = Ut
∗[I − zt−1z

∗
t−1]zt = Ut

∗[I −

zt−1z
∗
t−1]Czt = Ut

∗UtUt
∗zt = Ut

∗zt.
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3.5 Piecewise Stationary Shape Dynamics

When the shape is not stationary but is slowly varying, one could model the mean shape

as being piecewise constant. Now in SSA, the mean shape is constant i.e. µt = µ for all t

and hence all the dynamics can be described in a single tangent space while in NSSA, the

tangent space changes at each time instant: µt = zt−1 is the pole of the tangent space at

time t. But for PSSA we let the mean µt (and hence also the tangent space) be piecewise

constant.

Let the mean shape change times be t1, t2, t3, ... and the corresponding means be µ1, µ2, µ3, ....

Then we have the following dynamics: Between tj−1 < t < tj, µt = µt−1 and so ct−1(zt−1, µt) =

ct−1(zt−1, µt−1). Hence in this interval, the dynamics is similar to that for an SSA6, i.e.

ct(zt, µt) = Ac,1,tct−1(zt−1, µt) + nt,

vt = U(µt)ct,

zt = (1− v∗t vt)
1/2µt + vt. (3.18)

At the change time instant, t = tj, µt = µj and so the tangent coefficient ct−1 needs to be

recalculated in the new tangent space w.r.t. µt = µj. This is achieved as follows:

ct−1(zt−1, µt) = U(µt)
∗zt−1e

jθ(zt−1,µt)

ct(zt, µt) = Ac,1,tct−1(zt−1, µt) + nt,

vt = U(µt)ct,

6Now we have defined SSA dynamics on vt, but we can equivalently define it on ct there as well, with a

constant transformation, ct = U(µ)∗vt
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zt = (1− v∗t vt)
1/2µt + vt. (3.19)

Note that in NSSA, vt is a tangent coordinate w.r.t. µt = zt−1 and hence it measures shape

velocity while in this case, vt (and hence also ct) is a tangent shape coordinate w.r.t. the

current mean shape µt. Hence like in SSA, here also we have a first order Markov model on

shape. Hence the subscript ‘1’ on Ac,1,t.

Now the times at which the changes occur and the changed means could both be unknown

or known or one of them could be unknown. When both change times and the corresponding

means are known, PSSA can be used for tracking a sequence of stationary shape activities

(each with its known shape mean and known transition times) and detecting abnormality.

Abnormality can be defined as ELL w.r.t. the current mean shape exceeding a threshold.

When times at which the changes occur are unknown, one can use ELL (discussed in

chapter 2) w.r.t. the current mean shape to detect a change. This is useful for activity

sequence identification (figuring out when one activity ends and the next one starts) and

tracking.

When both change times and changed system means are not known, one can detect the

change using ELL. The “best” estimate of the shape at the t based on observations Y1:t

can be used as the new shape mean. Now since the shape space is nonlinear, the expected

value of shape given observations, EπN
t
[zt] (the MMSE estimate), may not lie in the shape

space at all. But we can instead estimate a Procrustes mean [9] of the shape which is

the minimum mean Procrustes distance square estimator. This is discussed in section 3.2,

definition 15. As explained there, the Procrustes mean can be evaluated as the largest

78



eigenvector of the matrix S
4
= EπN

t
[ztz

∗
t ] = 1

N

∑N
i=1 zi

tz
i
t
∗
. Note that the Procrustes mean

is an intrinsic mean for the shape manifold. One can also evaluate the extrinsic mean [37]

which is the projection of the data mean of tangent coordinates, EπN
t
[vt], onto the shape

space, i.e. µextrinsic
t = (1− EπN

t
[vt]

∗EπN
t
[vt])

1/2µt−1 + EπN
t
[vt].

Now setting the mean this way will be valid as long as the tracking error (or equiva-

lently the observation likelihood, OL, discussed in chapter 2) is still below the tracking error

threshold (the posterior πN
t is estimated correctly). This follows from theorem 4 of chapter 2.

Now this form of PSSA can be used for activity sequence segmentation and tracking by using

the change times detected using ELL as segmentation boundaries to split a long sequence

into piecewise stationary pieces. We discuss the algorithm for segmentation in more detail

in section 4.4.

3.6 Particle Filtering and Extended Kalman Filtering

We have discussed stationary, nonstationary and piecewise stationary shape models in the

above three subsections all of which are tracked using a particle filter. We discuss here the

need for a PFr and why it is better than an extended Kalman filter.

An Extended Kalman Filter (EKF) [70] linearizes the non-linear system at each time

instant using Taylor series and runs a Kalman filter for the linearized system. For the Taylor

series approximation to be accurate, one requires the initial guess (point about which you

linearize) to be close to the actual value at every time instant. Typically linearization is

done about the predicted state. This means that one poorly estimated state will cause
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more error in the linearization matrices for the next prediction and this error will propagate

(thus an EKF cannot recover once it loses track). Loss of track can occur due to an outlier

observation, modeling error, large system noise or large linearization error. A PF on the

other hand is stable under mild assumptions [71, 5] and hence it gets back in track more

easily after losing track.

An EKF is unable to track non-Gaussian systems, in particular systems with multi-modal

priors or posteriors, while a PF can. Multi-modal system models are required to model

a sequence of activities or multiple simultaneous activities. Also in particle filtering, the

number of particles, N , required to achieve a certain performance guarantee on estimation

error, does not increase with increasing dimension of the state space [49], it depends only on

the total randomness in the system. So for a system which is more random (larger system

noise or observation noise), the PF performance can be improved by increasing N .

3.7 Time-Varying Number of Landmarks

All the analysis until now assumes that a configuration of points is represented as an element

of <2k where k is a fixed number of landmarks. Now we consider what happens when the

number of landmarks (here the point objects) is time-varying even though the curve formed

by joining their locations remains similar. For example, a group of people (or also a group of

vehicles) moving on a certain path with fixed initial and final points but number of people on

the path decreases by one when a person leaves and increases by one when someone enters. In

such a case, we linearly interpolate the curve by joining the landmark points in a predefined
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order and then re-sample the interpolated curve to get a fixed number of landmarks. The

interpolation depends on the parametrization of the curve, which is an ill-posed problem

when the data is inherently discrete. We have attempted to use two different schemes which

exist in the literature - “arc-length re-sampling” (also known as “equidistant sampling”) and

“uniform re-sampling” which use two different parameterizations.

In “arc-length resampling”, one looks at the curve formed by joining the landmarks

in a predefined order, and parameterizes the x and y coordinates by the length, l, of the

curve, upto that landmark. Let [xt(l), yt(l)] be one-dimensional functions of the curve length

and seen this way the discrete landmarks xt,j = xt(lj), yt,j = yt(lj), j = 0, 1, ..kt − 1 are

non-uniformly sampled points from the function [xt(l), yt(l)] with l0 = 0, l2j = l2j−1 + (xt,j −

xt,j−1)
2 + (yt,j − yt,j−1)

2. We linearly interpolate using these discrete points to estimate the

function [x̂t(l), ŷt(l)] and then re-sample it uniformly at points l̃j = (j−1)L/k, j = 0, 1, ..k−1

(L is the total length, L2 =
∑

j l2j ) to get a fixed number, k, of uniformly spaced landmarks.

Thus, for every configuration of kt landmarks, we get a new configuration of uniformly

sampled (and hence uniformly spaced) k landmarks. The linear interpolation and resampling

stages can be approximated as a linear transformation, Bt (a kt × k matrix), applied to

the original points. The covariance of observation noise in the re-sampled points becomes

Σk
obs,t = BtΣ

kt
obs,tB

T
t = BtC

ktΣkt
obs,raw,tC

kt
T
BT

t .

“Uniform resampling”, on the other hand, assumes that the observed points are uni-

formly sampled from some process, [xt(s), yt(s)], i.e. it assumes that the observed points are

parameterized as xt,j = xt(sj), yt,j = yt(sj) with sj = (j − 1)/kt. We linearly interpolate
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to estimate [x̂t(s), ŷt(s)] and re-sample it uniformly at points s̃j = (j − 1)/k, to get a fixed

number of landmarks, k. Assuming the observed points to be uniformly sampled makes this

scheme very sensitive to the changing number of landmarks. Whenever the number of land-

marks changes, there is a large change in the re-sampled points’ configuration. This leads

to more false alarms while performing abnormal activity detection. But unlike “arc-length

resampling”, this scheme gives equal importance to all observed points irrespective of the

distance between consecutive points and so is more quick to detect abnormalities in shape

caused even by two closely spaced points. We discuss an example in section 4.5.2.
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M

(a) Stationary Shape Activity (SSA) (b) Nonstationary Shape Activity (NSSA)

Figure 3.1: SSA & NSSA on the shape manifold which is depicted using a circle (M), instead of

a complex Ck−1 sphere. In (a), we show a sequence of shapes from a SSA; at all times the shapes

are close to the mean shape and hence the dynamics can be approximated in Tµ (tangent space at

µ). In (b), we show a sequence of shapes from an NSSA, the shapes move on the shape manifold

and hence we need to define a new tangent space at every time instant.
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Chapter 4

Applications to Abnormal Activity

Detection, Tracking and Segmentation

4.1 Abnormal Activity Detection

An abnormal activity (suspicious behavior in our case) is defined as a change in the system

model, which could be slow or drastic, and whose parameters are unknown. Given a test

sequence of observations and a “shape activity” model, we use the change detection statistics

defined in chapter 2 to detect a change (i.e. detect when observations stop following the given

shape activity model). We first consider stationary shape activities. The cases of negligible

observation noise (Fully Observed) and non-negligible observation noise (Partially observed)

are discussed separately. In section 4.1.3, we formulate the abnormality detection problem

for nonstationary shape activities.
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4.1.1 Stationary Shape Activity: Fully Observed Case

The system is said to be fully observed when the function h(.) is invertible and the observation

noise is zero (negligible compared to the system noise, nt). For such a test sequence, the

shape dynamics of section 3.3.1 fully defines the “shape activity model”. We can evaluate

the tangent coordinates of shape (vt) directly from the observations using (3.7). We use log-

likelihood to test for abnormality. A given test sequence is said to be generated by a normal

activity iff the probability of occurrence of its tangent coordinates using the pdf defined by

(5.2) is large (greater than a certain threshold). Thus the distance to activity statistic for an

‘L + 1’ length observation sequence ending at time t, dL+1(t), is the negative log likelihood

of the sequence of tangent coordinates of the shape of the observations (first used by us in

[11]). We can test for abnormality at any time t by evaluating dL+1(t) for the past L + 1

frames. dL+1(t) is defined as follows: (K is a constant defined in equation (4.3))

dL+1(t) = −2 log p(vt−L, vt−L+1, ...vt)

= vT
t−LΣ−1

v vt−L

+
t∑

τ=t−L+1

(vτ − Avτ−1)
T Σ−1

n (vτ − Avτ−1) + K (4.1)

Note here that, Σv is always rank deficient since {vt} lie in a (2k− 4)-dim hyperplane of <2k

and hence the inverse defined above actually represents the pseudo-inverse.

Some results using this statistic combined with our PCNSA classification algorithm are

shown in section 5.6.4 of chapter 5.

85



4.1.2 Stationary Shape Activity: Partially Observed Case

In a partially observed system, the observation noise in the configuration landmarks’ mea-

surements is non-negligible and it is defined by the observation model discussed in section

3.3.2. The PF is used to estimate the posterior distribution of shape at time t given obser-

vations upto t− 1 (prediction) and upto t (filtering). We use the change detection strategy

described in chapter 2.

1. If the abnormality is a drastic one it will cause the PF, with N large enough to

accurately track only normal activities, to lose track. This is because under the normal

activity model (equations (3.8) and (3.13)), the abnormal activity observations (which

do not follow this model) would appear to have a very large observation noise. Thus

the tracking error will increase for an abnormal activity (very quickly for a drastic one)

and this can be used to detect it. This intuitive idea is discussed in more detail in

chapter 2. The tracking error or prediction error is the distance between the current

observation and its prediction based on past observations, i.e.

Tracking error
4
= ||Yt − Ŷt||2 = ||Yt − E[Yt|Y0:t−1]||2

= ||Yt − Eπt|t−1
[h(Xt)]||2

Also, instead of tracking error, OL can also be used and as discussed in chapter 2,

OL ≈ TE for white Gaussian noise.

2. For the case when the abnormality is a slow change (say a person walking away slowly

in a wrong direction), the PF does not lose track very quickly (the tracking error
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increases slowly) or if it is a short duration change it may not lose track at all. The

tracking error will thus take longer to detect the change or it may not detect it at all.

For such a case, we use the expected (negative) log likelihood (ELL) [10, 72].

ELL = Eπt|t [−logf(vt)] (4.2)

Note that the ELL is a posterior expectation of the right hand side of (4.1) with L = 0.

In general, one could use a sequence of past shapes (L > 0) in this case as well. The

expression for ELL is approximated by ELLN as follows

ELLN 4
= EπN

t
[−logp(vt)] =

1

N

N∑

i=1

v
(i)
t

T
Σ−1

v v
(i)
t + K,

where K
4
= − log

√
(2π)2k−4|Σv|. (4.3)

Now since the PF loses track slowly, the estimated posterior πc,0,N
t remains a good ap-

proximation of πc,c
t until the PF has lost track. But a slowly changing shape introduces

a systematically increasing bias in the tangent coordinates of shape (they no longer

remain zero mean) and hence ELL would increase.

Thus to detect any kind of abnormality (slow or drastic) without knowing its rate of change,

we use a combination of ELL and tracking error. We declare a sequence of observations to

be abnormal when either ELL or tracking error exceeds its corresponding threshold.

4.1.3 Nonstationary Shape Activity: Abnormality Detection

A change being drastic or slow depends on the system model used in particle filtering. A

more general system model can track a lot more changes and hence the nonstationary shape
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activity model does a better job of tracking abnormal observations than the stationary one.

Whenever changed observations get tracked correctly, the ELL detects the change while if

the PF loses track, the tracking error detects the change.

Now for abnormality detection, the normal activity needs to be characterized first. We

can either use shape velocity or shape or both to represent normalcy depending on the prac-

tical problem being dealt with. To use shape to detect abnormality, we represent a normal

activity by a stationary shape activity model or by a PSSA model (whichever is appropriate

for a given problem). First, assume an SSA normal activity. Then the normal prior is a

time invariant Gaussian distribution of the tangent coordinates w.r.t. the normal activity

mean (µ0), N (0, Σv,0). Now for a Gaussian prior, the discriminating term of ELL reduces

to expectation, under the posterior, of the Mahalonobis distance from the prior’s mean. We

evaluate it as follows: We project the filtered shape of the observations at time t into Tµ0

to obtain v(zt, µ0) and evaluate Eπt [v(zt, µ0)
T Σ−1

v,0v(zt, µ0)]. Thus given the particle filtered

shape distribution πN
t (dzt)

4
=

∑N
i=1

1
N

δ
z
(i)
t

(dzt) (which approximates πt(dzt)), we evaluate

πN
t (dvt,µ0)

4
=

N∑

i=1

1

N
δ
v
(i)
t,µ0

(dvt,µ0), where

v
(i)
t,µ0

4
= v(z

(i)
t , µ0) = [Ik − µ0µ

∗
0]z

(i)
t ejθ(z

(i)
t ,µ0). (4.4)

The ELL, henceforth referred to as ELL (Shape) is then approximated by

ELLN(Shape) =
1

N

N∑

i=1

v
(i)
t,µ0

T
Σ−1

v,0v
(i)
t,µ0

(4.5)

If PSSA is used to define a normal activity, the prior is a Gaussian distribution on the

tangent coordinates in the tangent space of the current mean µt.
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Depending on the practical problem, one might want to use shape velocity (directions

and magnitude of rate of change of shape) to define normalcy. In this case, assume that a

stationary Gauss Markov model has been defined for the shape velocity, vt, with parameters

Σv,2, Av,2, Σn,v,2. The change detection statistic in this case will simplify to EπN
t
[vT

t Σ−1
v,2vt]

where vt = v(zt, zt−1)
1. We refer to this statistic as “ELL (Shape Velocity)”.

Now, the above two cases correspond to the two ideas proposed in section 2.3.4 to define

the normal prior. Using ELL (Shape Velocity) as described above is an example of using

a part of the state vector which has linear Gaussian dynamics for change detection. Using

ELL (Shape) by first defining an SSA or PSSA model for the normal activity and learning its

parameters, is an example of the second idea discussed in section 2.3.4 with the parametric

model for normal activity being defined by SSA or PSSA respectively.

4.2 Tracking to Obtain Observations

In the entire discussion till now, we used a PF in the filtering mode to estimate the prob-

ability distribution of shape from noisy observations and used this distribution for abnor-

mality detection. But the PF also provides at each time instant the prediction distribution,

πt(Xt|Y1:t−1), which can be used to predict the expected configuration at the next time

instant using past observations, i.e. Ŷt
4
= E[Yt|Y0:t−1] = Eπt|t−1

[h(Xt)]. We can use this

information to improve the measurement algorithm used for obtaining the observations (a

1Note that v(zt, µ0) denotes the tangent shape coordinate of zt w.r.t. µ0 while vt = v(zt, zt−1) denotes

the shape velocity
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motion detector [69] in our case). Its computational complexity can be reduced and its abil-

ity to ignore outliers can be improved by using the predicted configuration and searching

only locally around it for the current observation2. As we show in section 4.5.3, the observed

configuration is close to its prediction when there is no abnormality or change and hence the

prediction can be used to obtain the observation. An SSA model can track a normal activity

while the SSA is able to track abnormality as well.

If used in this “tracking observations and filtering” framework, a lot of drastic abnormal-

ities can be detected at the measurement stage itself because no observations will be found

in the “vicinity” (region of search defined using observation noise variance) of the predicted

position. But an outlier might get confused with a drastic abnormality since even for an

outlier we will not find any observation in the “vicinity”. The difference is that outliers

would be temporary (one or two time instants and then the PF comes back in track), while

a drastic abnormality will appear to be an outlier for a sequence of frames. Thus by aver-

aging the number of detects over a sequence of past time instants, we can separate outliers

from real abnormalities.

Also, if the configuration is a moving one, then the predicted motion information can

be used to translate, zoom or rotate the camera (or any other sensor) to better capture the

scene but in this case, one would have to alter the motion model to include a control input.

2One thing to note here is that in certain cases (for example, if the posterior of any state variable

is multimodal), evaluating the posterior expectation as a prediction of the current observation is not the

correct thing to do. In such a case, one can track the observations using the CONDENSATION algorithm

[50] which searches for the current observation around each of the possible h(x̄i
t), i = 1, 2...N .
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4.3 Activity Sequence Identification and Tracking

Consider two possible situations for tracking a sequence of activities. Assume each activity

is represented by an SSA so that the sequence of activities is characterized by a PSSA. The

mean shape of each SSA component is known but the transition times are unknown.

1. First consider the simple case when there are just two possible activities and their order

of occurrence is known, only the change time is unknown. In this case, one can detect

the change using ELL (before the particle filter loses track) and then start tracking it

with the second activity’s transition model.

2. Now consider the general case when a sequence of activities occur, and we do not know

the order in which they occur. In this case, we can use a discrete mode variable as part

of the state vector to denote each activity type. We make the state transition model a

mixture distribution and keep the mode variable as a state. Whenever a change occurs,

it takes the mode variable a few time instants to stabilize to the correct mode. One

could replace the multimodal dynamics with that of the detected mode once the mode

variable has stabilized. Also, in this case we can declare an activity to be abnormal

(i.e. neither of the known activity types) if the ELL w.r.t all known models exceeds a

threshold.
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4.4 Shape Activity Sequence Segmentation

The PSSA model with unknown mean shapes and unknown change times can be used along

with ELL for activity sequence segmentation as follows:

- Track observations using PSSA, until the ELL of tangent coordinates w.r.t. the current µt,

ELL(µt) = Eπt [v
T
t Σ−1

v,tvt] exceeds the change detection threshold.

- Use time instants when ELL(µt) exceeds its threshold, as segmentation boundaries.

- If at time t, ELL(µt) has exceeded its threshold but the tracking error is still below its

threshold (PF is still in track, i.e. πN
t approximates πc

t correctly), then set µt+1 as the

posterior Procrustes mean of the shape at t, given past observations, Y1:t. This is explained

in the last two paragraphs of section 3.5.

- Recalculate vt and ct in the new tangent space at µt+1 (as discussed in section 3.5).

4.5 Experimental and Simulation Results

We now present experimental results for abnormal activity detection and tracking using

SSA and NSSA models. We have used the airport video (group of passengers deplaning and

moving towards the terminal), a simulated configuration sequence and a human action video

to test our algorithms.
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4.5.1 Dataset and Experiments

We have used a video sequence of passengers deplaning and walking towards the airport

terminal as an example of a “stationary shape activity”. The number of people in the scene

varies with time. We have resampled the curve formed by joining their locations using

“arc-length resampling” (described in section 3.7) in all experiments except the temporal

abnormality [1] detection where we use “uniform resampling”. As we needed observation

noise-free data to learn the system model, we used hand-marked passenger locations for

training. The mean shape, µ, and the tangent space Gauss Markov model parameters,

A, Σv, Σn, were learnt using this data (as discussed in section 3.3.1). Also the motion model

parameters (which in this case model random motion of the camera) were estimated with

this data. Simulated test sequences were produced by adding observation noise to the hand-

marked data. We did this to study robustness of the method to increasing observation noise.

We also tested with real observations obtained using a motion detection algorithm [69]. Both

real and simulated observation sequences were tracked using the PF described in section 2.2.2

with the number of particles, N = 1000.

This video was provided to us by the Transport Security Administration (TSA) and did

not have any instances of abnormal behavior. Abnormal behavior was simulated by making

one of the persons walk away in an abnormal direction (in the results shown one person was

made to walk away at an angle of 45o to the X-axis, see figure 4.1(b); 4.1(a) shows a normal

activity frame). Now, the person could be moving away at any speed which will make the

abnormality a slow or a drastic change. We have simulated this by testing for walk away
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speeds of 1, 2, 4, 16, 32 pixels per time step in both x and y directions. The average speed of

any person in the normal sequence is about 1 pixel per time step. Thus walk-away velocity

of 1 pixel per time step, denoted as vel. = 1, corresponds to a slow change which does not

go out of track for a long time while vel. = 32 is a drastic change that causes the PF to lose

track immediately.

We show change detection results and tracks using real observations of the passengers’

locations in each frame obtained using a motion detection algorithm described in [69]. The

ability of our algorithm to deal with temporal abnormalities [1] is demonstrated as well. We

also plot the ROC curves for change detection using the ELL, the tracking error (TE) and

a combination of both.

Now all of the above was done using a SSA model. As will be discussed in later sub-

sections, the SSA model is able to track normal behavior and detect abnormality but is not

very good for tracking abnormal behaviors. Thus we also experimented with using an NSSA

model to track the observation sequences better and yet detect abnormality using ELL. We

also generated a simulated shape sequence of normal and abnormal behavior to compare

performance of SSA and NSSA. Finally, we have also applied the NSSA model to tracking

normal human actions and tracking and detecting abnormal actions.
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4.5.2 Group Activity: Abnormality Detection

ELL versus Tracking Error: Slow and Drastic Changes

Figure 4.2 shows ELL, tracking error and OL plots for simulated observation noise. As can

seen from Figure 4.2(b) and (c), the tracking error and OL plots look very similar (reason

discussed in section 2.7.5).

Next, we discuss the results for observations obtained using a motion detector [69] which

have observation noise because of the sensor noise and motion detection error. Figure 4.8(b)

shows a slow abnormality (vel. = 1) introduced at t = 5 which is tracked correctly for a long

time (figure 4.3(b) plots the tracking error) and hence we need to use ELL to detect it (ELL

plots shown in figure 4.3(a)). Figure 4.8(c) shows a drastic abnormality (vel. = 32) which was

also introduced at t = 5 but loses track immediately. In this case the abnormal observations

are ignored and the PF continues to follow the system model. As a result, the ELL (figure

4.3(a)) confuses it for a normal sequence and fails completely, while tracking error (figure

4.3(b)) detects it immediately. In figure 4.3(a), we show the ELL plot for increasing rates

of change. With vel. = 1, the abnormality (introduced at t = 5) gets detected at t = 27

and with vel. = 4 it gets detected at t = 12. For vel. = 32, the ELL is unable to detect

the abnormality. The tracking error (figure 4.3(b)) detects this abnormality immediately (at

t = 6) while it misses detecting the slow abnormality (vel. = 1). Also, note the OL plots are

very similar to the tracking error plots and hence are not shown here.

This demonstrates the need to use a combination of ELL and tracking error to detect

both slow and drastic changes (since the aim is to be able to detect any kind of abnormality
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with rate of change not known). As explained earlier, we declare an abnormality if either

the ELL or the tracking error exceeds its corresponding thresholds. The ROC curves for this

combined ELL/TE strategy are shown in Figure 4.6. As is discussed below, by combining

ELL and TE we are able to detect all slow and drastic changes with detection delay less

than 7 time units.

ROC curves and Performance Degradation with increasing Observation Noise

The intuition discussed above is captured numerically in the ROC (Receiver Operating Char-

acteristic) curves [68, 15] for change detection using ELL (figure 4.4(a) and (b) for slow and

drastic changes respectively), using tracking error (figure 4.5(a) and (b)) and using a combi-

nation of both (figure 4.6(a),(b),(c),(d)). Please note that every figure in the ROC plot has

a different y axis range. The blue circles, red stars, magenta triangles and cyan diamonds

are the ROC plots for simulated observation noise with increasing variances of 3, 9, 27, 81

square pixels. The ROC for a change detection problem [15] plots the average detection

delay against the mean time between false alarms by varying the detection threshold. The

aim of an ROC plot is to choose an operating point threshold which minimizes detection

delay for a given value of mean time between false alarms.

For the slow change (vel. = 1), the detection delay is much lesser using ELL than using

the tracking error while the opposite is true for the drastic change (vel. = 32). The detection

performance degradation of ELL for slow change and of tracking error for drastic change with

increasing observation noise is slow. In figure 4.4(a) (ELL for slow change), detection delay
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is less than or equal to 2 time units for σ2
obs = 3 and 7 time units for σ2

obs = 81. In figure

4.5(b) (tracking error for drastic change), the detection delay is less than or equal to 3 time

units for σ2
obs = 3 and 4 time units for σ2

obs = 81. Since the aim is to be able to detect all

kinds of abnormalities (abnormality parameters are assumed not known), we propose to use

a combination of the ELL and the tracking error and declare a change when either exceeds

its threshold. In figure 4.6, we plot the ROC curves for slow and drastic change detection

using a combination of ELL and tracking error. In this case, for each observation noise

variance, there are multiple curves, since one needs to vary thresholds for both the ELL and

the tracking error to get the ROC. A single curve is for the ELL threshold fixed and tracking

error threshold varying. We have a set of curves for varying ELL thresholds. We plot the

low and high observation noise cases in two separate plots. As can be seen, the combined

strategy has better performance than either ELL or tracking error for all rates of change and

for all observation noises (detection delay less than 7 time units in all cases).

Temporal abnormality [1] detection

We also tested our method for detecting what is referred to in [1] as a temporal abnormality

(one person stopped in his or her normal path). It gets detected in this framework because

there is a change in shape when the person behind the stopped person goes ahead of him

(curve becomes concave). We used “uniform resampling” (discussed in section 3.7) which

detected temporal abnormality easily using ELL (figure 4.7). “Arc-length resampling” does

not work too well in this case. This is because it tends to average out the locations of
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two closely spaced points, thus smoothing out the concavity which needs to be detected.

“Uniform resampling”, on the other hand, assumes the observed points are uniformly sampled

and hence gives equal weight to all the observed points irrespective of the distances between

them. Thus it is able to detect concavity caused even by two closely spaced points. Another

way to detect temporal abnormality would be to use a NSSA model and look at deviations

from the expected value of shape velocity.

4.5.3 Group Activity: Tracks

Figure 4.8(a) shows a normal observation frame (circles) and the corresponding tracked

configuration (stars), for real observations obtained using a motion detector [69] on the

image sequences. The observation noise was modeled to be Gaussian (although the PF can

filter non-Gaussian noise as well) and its covariance was learnt from a training sequence of

observations obtained using the motion detector. This shows the ability of our model to

potentially be used for “tracking to obtain observations”. Figure 4.8(b),(c) show tracking of

a slow (vel = 1) and drastic (vel = 32) abnormality both introduced at t = 5. As can be

seen, the drastic abnormality has lost track at t = 7 while the slow one is not totally out of

track even at t = 13. The NSSA model tracks abnormality better as is shown below. Note

that since we use only a point object abstraction for moving objects (here persons), we show

observed and tracked point object locations only without showing the actual images.
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4.5.4 Group Activity: Nonstationary Shape Activity (NSSA) Model

We compare here the performance of SSA and NSSA for tracking and detecting abnormal

behavior. Very noisy observations were obtained by using the motion detection algorithm of

[69]. In figure 4.9(a), we show the tracking error for a “faster” abnormality. NSSA is able

to track much better than SSA. In 4.9(b), we show the ELL plots. Thus NSSA detects the

“faster” abnormality using ELL, while the SSA detects it using tracking error (loses track).

Note here that we use the NSSA model for tracking but the normal system is assumed to be

a stationary shape activity (SSA) and so the ELL is evaluated w.r.t. the SSA model only.

4.5.5 Simulated Shape Sequence: Comparing NSSA and SSA

We first simulated a shape activity sequence, starting with a regular hexagon as the mean.

The sequence was stationary for the first 40 frames (around the regular hexagon) and for the

next 40 frames, a bias was added to the tangent coordinate at every frame, which resulted

in unmodeled non-stationary deformations of the shape (abnormality). We also scaled and

rotated each frame according to Markov log-Gaussian and Gaussian models. We used only

the stationary part of one such sequence (first 40 frames) as training data to learn both

SSA and NSSA parameters. Another such sequence with 40 stationary and 40 nonstationary

(abnormal frames) was generated. Four pixel and nine pixel i.i.d. white Gaussian observation

noise was added to each frame to produce the noisy observation data.

We attempted to track the noisy observation sequence using both SSA and NSSA models.

Both SSA and NSSA track the normal observations equally well (figure 4.10(a)). But within
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a few frames of introducing the abnormality SSA loses track, while NSSA is able to remain in

track till the very end (figure 4.10(b)). Even in 9-pixel noise (very large noise), NSSA is able

to track the abnormality. We also plot the tracking error and the ELL(Shape) for 4-pixel

observation noise in figure 4.11(a) and (b) and the ELL(Shape) for 9-pixel noise in (c). SSA

and NSSA are able to detect abnormality using tracking error and ELL respectively.

4.5.6 Human Actions: Comparing NSSA and SSA

Next we attempted to track human actions and track as well as detect abnormality in the

action. We show here results on tracking a figure skater (shown in figure 4.12(a)). We had

observation noise-free locations of landmarks in the normal skater sequence as well as the

abnormal one. The 10 landmarks used were head, torso, both elbows, hands, knees and

feet. The abnormality was the knee deviating too far away. As before, we used the normal

sequence for training SSA and NSSA models; added observation noise to the abnormal one

and attempted to track it. We show the tracks (of the landmark locations) along with the

ground truth in figure 4.12(b) and (c). The SSA is able to track the normal sequence better

than NSSA while it completely fails to track the abnormality. But NSSA is able to track

both. In figure 4.13, we show tracking error and ELL (Shape). Here as well, NSSA is able

to detect using the ELL while SSA can detect this change using the tracking error (since it

has lost track).
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(a) A ‘normal activity’ frame with 4 people (b)Abnormality introduced by making one
person walk-away in an abnormal direction

Figure 4.1: Airport example: Passengers deplaning
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Figure 4.2: ELL, Tracking error (TE) and Observation Likelihood (OL) plots: Simulated Obser-
vation noise, σ2

obs = 9 (3-pixel noise). TE and OL plots look alike because of the reasons discussed
in section 2.7.5 In the rest of the experiments, we show only the TE plots.
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Figure 4.3: ELL and Tracking error plots: Real Observations. Abnormality was introduced at
t = 5. The ELL is able to detect slow changes better while the tracking error works better for
drastic changes. The plots are discussed in Section 4.5.2.
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Figure 4.4: ROCs for Change detection using ELL. Blue circles, red stars, majenta triangles and
cyan diamonds plots are for σ2

obs = 3, 9, 27, 81 respectively. Note that the two plots have different
y axis ranges. The ELL completely fails for drastic changes. Detection delays in (b) are very large
(60 time units) while for the slow change maximum detection delay is only 7 time units. Plots are
discussed in Section 4.5.2.
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Figure 4.5: ROCs for Change detection using Tracking error. Blue circles, red stars, majenta
triangles and cyan diamonds plots are for σ2

obs = 3, 9, 27, 81 respectively. Please note that the two
plots have different y axis ranges. Tracking error does not detect slow changes easily. Detection
delays in (a) are large (maximum delay is 28 time units) while drastic changes are detected almost
immediately with delay ≤ 4 time units. Plots are discussed in Section 4.5.2.
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Figure 4.6: ROCs for Change detection using combined ELL-Tracking error. In this case, for each
observation noise variance, there are multiple curves, since one needs to vary thresholds for both
ELL and tracking error to get the ROC. A single curve is for the ELL threshold fixed and tracking
error threshold varying. We have a set of curves for varying ELL thresholds. The maximum
detection delay is 2 and 3 time units for σ2

obs = 3 ((a) and (b)), and 7 and 4 time units for σ2
obs = 81

((c) and (d)). Plots are discussed in Section 4.5.2.
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Figure 4.7: ELL plot for Temporal abnormality detection. Abnormality was introduced at t = 5.
The plot is discussed in Section 4.5.2.
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Figure 4.8: Tracks: Real Observations. Plotting the observed and tracked positions of the land-
marks (passengers) on the x-y plane. The plots are discussed in Section 4.5.3.

(a) Tracking Error, Fast Change (vel.=4) (a) ELL (Shape), Fast Change (vel.=4)

Figure 4.9: Tracking and detecting slow & drastic abnormalities (introduced at t = 5): Comparing
NSSA and SSA
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Figure 4.10: Simulated shape: Tracking normal and abnormal behavior (introduced at t = 40)
using SSA and NSSA. NSSA tracks abnormality as well.

(a) Tracking Error, σ2
obs = 16 (a) ELL (Shape), σ2

obs = 16 (b) ELL (Shape), σ2
obs = 81

Figure 4.11: Simulated Shape Statistics: Abnormality introduced at t = 40. NSSA detects
abnormality using ELL (since it is able to track) while SSA detects using tracking error (loses
track).
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(a)The Figure Skater (b) Normal (SSA tracks it better) (c) Abnormal (SSA fails)

Figure 4.12: Tracking the figure skater: The green triangles line is the observed (noisy) data, the
cyan -+ line is the ground truth, the blue circles and red stars are filtered shape using NSSA and
SSA respectively. Abnormality introduced at t = 20.

(a) Tracking Error (b) ELL (Shape)

Figure 4.13: Tracking the figure skater: Abnormality introduced at t = 20. NSSA detects
abnormality using ELL while SSA detects using the tracking error.
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Chapter 5

Principal Component Null Space

Analysis (PCNSA)

5.1 Introduction

A fourth contribution of this thesis is Principal Component Null Space Analysis (PCNSA)

which is a classification algorithm that approximates the optimal Bayes classifier for Gaussian

class conditional distributions with unequal covariance matrices. The abnormal activity

detection (described in the previous chapter) is a sequential hypothesis testing problem. For

abnormality detection in the fully observed case, i.e. when observation noise is negligible,

we use log-likelihood of the state to detect abnormality (discussed in 4.1.1). PCNSA, which

approximates the optimal LRT for Gaussian distributions can also be used in this case and

as discussed in section 5.6.4 (more detailed discussion in [11]), it has certain advantages.
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The PCNSA algorithm can also be used for retrieval problems, we show its application to

human action retrieval in section 5.6.4.

The PCNSA algorithm was originally proposed by us for “apples from oranges” type

classification problems like object recognition or face recognition under large pose variations.

Problems like face recognition under small pose variations that involve discriminating similar

objects can be categorized as “apples from apples” type classification problems. “Apples

from apples” type problems are those in which different classes have similar class covariance

matrices (in particular similar directions of low and high intra-class variance) while for

“apples from oranges” type problems classes can have very different class covariance matrix

structures. As an extreme case of this situation, the minimum variance direction of one class

could be a maximum variance direction for another. We propose a linear classifier (which we

call PCNSA) for this situation of unequal covariance matrices, which actually approximates

the optimal Bayesian solution.

We have evaluated bounds on PCNSA’s classification error probability (in Section 5.3)

and discussed conditions under which it would outperform Linear Discriminant Analysis

(LDA) and when it would fail (in Section 5.4). Applications of PCNSA to object recog-

nition (figure 5.4(a)), feature matching (see figure 5.4(b)), face recognition under large

pose/expression variations (see figure 5.5), abnormal group activity detection [11] (see figure

4.1) and video retrieval are discussed in Section 5.6.
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5.1.1 Problem Statement

Consider a P -dimensional data sample Y from class i (denote class i by Ci).

(Y)P×1|{Y ∈ Ci} ∼ N (µfull,i, Σfull,i) (5.1)

For high dimensional data like images, the real dimensionality of data (with noise removed)

is much smaller than P . Thus we perform Principal Component Analysis (PCA) to remove

directions with only noise and retain directions with large between class variance. The PCA

takes data from all classes as a single sample and evaluates the common mean, µ̄full, and

common covariance matrix, Σ̄full, and chooses the L leading eigenvectors of Σ̄full as the

principal components’ subspace (PCA space). The data sample of class i projected in the

L-dimensional PCA space with projection matrix, (W PCA)P×L, is

(X)L×1
4
= W PCAT

(Y − µ̄full) ∼ N (µi, Σi) where

(µi)L×1
4
= W PCAT

(µfull,i − µ̄full),

(Σi)L×L
4
= W PCAT

Σfull,iW
PCA. (5.2)

In this work, we address the classification problem for the most general class covariance

matrices (unequal, non-white) with eigenvalue decomposition Σi = UiΛiU
T
i . LDA, on the

other hand, assumes same eigenvectors for all classes (Ui = U) i.e. similar directions of low

and high variance while the PCA when used for classification assumes Ui = I, Λi = σ2
i I i.e.

the class covariance matrices are white in PCA space.
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5.2 Principal Component Null Space Analysis

Principal Component Null Space Analysis (PCNSA) first applies the PCA transform on the

entire data for dimensionality reduction and for maximizing the between class variance [56].

In the PCA space, it finds for each class i, an Mi dimensional subspace along which the class’s

intra-class variance is smallest. We call this subspace the approximate null space (ANS) of

class i since for most applications, the lowest variance(s) are usually “much smaller” than

the highest (the class covariance matrix is usually ill-conditioned). A query is classified into

class i if its distance from the ith class’s mean in the ith class’ ANS is a minimum. We first

discuss below the assumptions required for PCNSA to work as a classification algorithm and

in 5.2.2, provide the stepwise algorithm.

5.2.1 Assumptions

1. For all classes i, Σi has a high enough condition number, R = λmax/λmin so that an

approximate null space (ANS) exists. This would happen for most real classification

problems especially the “apples from oranges” ones.

2. Distance of the mean of any class, j, from mean of any other class i in ANS of class

i (denoted by Ni) is “significant” compared to the total distance ||µj − µi||, i.e. there

exists a ρ < 1 “significantly” greater than zero s.t. ||NT
i (µj − µi)|| > ρ||µj − µi|| 1.

This assumption is also not very restrictive when the number of classes is small.

1This condition is required because if it were not satisfied for two classes i and j, and if their null spaces

coincide, i.e. Ni = Nj , then we would have di(X) = dj(X) always, causing the algorithm to fail always
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3. We assume approximate linear separability (which is required for any linear classifica-

tion algorithm). Gaussian distributed classes would be approximately linearly separa-

ble if the square of the distance between class means of any two classes is of the order

of the maximum eigenvalues (variance) of both classes.

5.2.2 Algorithm

1. Obtain the PCA Space: Evaluate the sample mean, µ̄full and covariance, Σ̄full of

the training data of all classes taken together as one sample set. Obtain the PCA

projection matrix, (W PCA)P×L whose columns are the L leading eigenvectors of Σ̄full.

2. Project the training data samples of each class into the PCA space. Evaluate for each

class i, the class mean, µi, and the class covariance, Σi, in the PCA space.

3. Obtain Class ANS: Evaluate the approximate null space, (Ni)L×Mi
, for each class i

as the Mi trailing eigenvectors of Σi (choose Mi so that the eigenvalues in ANS satisfy,

λ ≤ 10−4λmax). Assumption 1 ensures that it exists.

4. Obtain Valid Classification Directions in ANS: Now Ni = [ei,1|ei,2|...ei,k...|ei,Mi
].

A null space direction, e, is a valid classification direction only if the distance between

class means along that direction is “significantly” greater than zero i.e. e = ei,k satisfies

|(µi − µj)
T e| > ρ||µi − µj||, ∀j 6= i, 0 < ρ < 1

or equivalently, θ
4
= cos−1(

|(µi − µj)
T e|

||µi − µj|| ) < θ0 <
π

2
. (5.3)
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The PCNSA projection matrix for class i (Wi
NSA) is chosen as those columns of Ni

which satisfy this condition. By assumption 2, this is possible to do.

5. Classification: Project the query Y into the PCA space as X = W PCAT
(Y − µ̄full).

The most likely class, c, is given by c = arg mini di(X) where

di(X)
4
= ||Wi

NSAT
(X− µi)||. (5.4)

5.3 Classification Error Probability

We obtain the error probability bound for classification using PCNSA for a two class problem.

We first evaluate error probability assuming a one dimensional ANS per class so that WNSA
i =

(Ni)L×1 and Gaussian distributed classes. We then show how this can be extended to the

general case of Mi dimensional ANS per class. We discuss in Section 5.3.3, how the error

probability analysis can be extended to non-gaussian but symmetric, unimodal distributions.

The two class error probability expressions can be used to obtain a union bound [65] for the

multi-class error probability.

5.3.1 One-dimensional ANS per class

Define Ei as the event that error occurs given query X ∈ Ci (class i). The average error

probability is Pe,avg = P (E1)+P (E2)
2

. Using PCNSA’s class specific metric defined in (5.4), the

error event E1 is

E1
4
= {d2

2(X) < d1
2(X)|X ∈ C1} (5.5)
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Now since ANS is one dimensional, W1
NSA = N1 and d1(X) = |NT

1 (X − µ1)| is a scalar.

Using (5.2),

NT
1 (X− µ1)|{X ∈ C1} ∼ N (0, λANS,1). (5.6)

To upper bound P (E1), define

∆ = k
√

λANS,1 (5.7)

Then, P (d1
2(X) > ∆2|X ∈ C1) = 2(1− Φ(k))

4
= g(k) (5.8)

where Φ(.) is the cdf of an N (0, 1) random variable. We choose k large enough so that g(k)

is small. For k = 10, g(k) = 10−23. Now the error event E1 (defined in (5.5)) can be split as

2,

E1 = {d2
2(X) ≤ d1

2(X), d1
2(X) ≤ ∆2} ∪ {d2

2(X) ≤ d1
2(X), d1

2(X) > ∆2}

⊆ {d2
2(X) ≤ ∆2} ∪ {d1

2(X) > ∆2}. (5.9)

Thus, P (E1) ≤ P (d2
2(X) ≤ ∆2) + g(k) 3. Now d2(X) = |NT

2 (X−µ2)|. Using (5.2) we get,

Z
4
=

NT
2 (X− µ1)√
NT

2 Σ1N2

∼ N (0, 1). (5.10)

So defining,

α
4
= |NT

2 (µ1 − µ2)|, and σ
4
=

√
NT

2 Σ1N2, (5.11)

we get, P (d2
2(X) < ∆2) = P (α−∆

σ
< Z < α+∆

σ
). Thus

P (E1) ≤ P (
α−∆

σ
< Z <

α + ∆

σ
) + g(k)

2Assume X ∈ C1 everywhere

3This bound is tight when the right hand side is small or equivalently when λANS is small.
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= Φ(
α + ∆

σ
)− Φ(

α−∆

σ
) + g(k)

=
∫ α

σ
(1+∆

α
)

α
σ

(1−∆
α

)
N (z; 0, 1)dz + g(k) (5.12)

Similar expressions can be obtained for P (E2).

5.3.2 Mi-dimensional ANS per class

In this case N1 and N2 are L×Mi, i = 1, 2 dimensional matrices. Define ∆ as

∆2 = k2(
M1∑

j=1

λ2
ANS,1,j) (5.13)

Error event E1 is as defined in (5.5) and can be bounded using exactly the same logic as in

(5.9). Thus we have

P (E1) ≤ P (d2
2(X) < ∆2|X ∈ C1) + P (d1

2(X) > ∆2|X ∈ C1) (5.14)

First consider P (d1
2(X) > ∆2). Define

ZN1

4
= NT

1 (X− µ1) ∼ N (0, ΛANS,1), ΛANS,1 is diagnol (5.15)

then d1
2(X) = ||ZN1||2. It is easy to see that

{d1
2(X) > ∆2} ⊆ {∩jAj}c, Aj = {Z2

N1,j < k2λ2
ANS,1,j} (5.16)

By (5.15), the components of the vector ZN1 are independent and hence the events Aj are

independent. Also, P (Aj) = 1− g(k) where g(k) is defined in (5.8). Thus using (5.16),

P (d1
2(X) > ∆2) ≤ P ({∩jAj}c) = 1−

M1∏

j=1

P (Aj) = 1− (1− g(k))M1
4
= gM1(k). (5.17)
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Now consider P (d2
2(X) ≤ ∆2). Define

β
4
= NT

2 (µ2 − µ1) and Σ
4
= NT

2 Σ1N2

and ZN2

4
= NT

2 (X− µ1) ∼ N (0, Σ), (5.18)

then d2
2(X) = ||ZN2 − β||2. Let Σ = USUT be the eigenvalue decomposition of Σ. U is

the M2×M2 matrix of eigenvectors and S = diag(σ2
j ) is a diagnol matrix of its eigenvalues.

Using U to diagnolize ZN2 , we get

Zindep
N2

= UTZN2 ∼ N (0, S), S is diagnol (5.19)

Also define, α
4
= |UT β| (5.20)

Since U is orthonormal, ||Zindep
N2

− α|| = ||UT (ZN2 − β)|| = ||ZN2 − β|| and so

P (d2
2(X) ≤ ∆2) = P (||Zindep

N2
− α||2 < ∆2) (5.21)

Now, it is easy to see that

{||Zindep
N2

− α||2 < ∆2} ⊆ ∩jBj, Bj = {(Zindep
N2,j − αj)

2 < ∆2}

The events {Bj} are independent since elements of the vector Zindep
N2

are independent. Using

(5.12), P (Bj) = P (αj −∆ < Zindep
N2,j < αj + ∆) = [Φ(αj+∆

σj
)− Φ(αj−∆

σj
)] where σ2

j = Sj,j.

Thus, P (d2
2(X) ≤ ∆2) ≤ P (∩jBj) =

M2∏

j=1

[Φ(
αj + ∆

σj

)− Φ(
αj −∆

σj

)] (5.22)

Finally, combining (5.14), (5.17) and (5.22), we get

P (E1) ≤
M2∏

j=1

[Φ(
αj + ∆

σj

)− Φ(
αj −∆

σj

)] + gM1(k) (5.23)
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5.3.3 Extension to Non-Gaussian Distributions

Now the analysis for one-dimensional ANS can be extended to the case of non-Gaussian

distributions which are symmetric and unimodal4. Assume that the distribution of X is

symmetric about its mean, µ1, and has covariance matrix Σ1. Let F1(.) be the cumulative

distribution function (cdf) and f1(.) the probability distribution function (pdf) of
NT

1 (X−µ1)√
NT

1 Σ1N1

i.e. it is the cdf of NT
1 X after location normalization to zero mean and scale normalization

to unit variance. Similarly, let F2(.) and f2(.) be the cdf and pdf of
NT

2 (X−µ1)√
NT

2 Σ1N2

. Then it is

easy to see that P (d1
2(X) > ∆2) = 2(1−F1(k)). Also Z defined in (5.10), has cdf F2. Hence

P (E1) ≤ F2(
α + ∆

σ
)− F2(

α−∆

σ
) + 2(1− F1(k))

=
∫ α

σ
(1+∆

α
)

α
σ

(1−∆
α

)
f2(z)dz + 2

∫ ∞

k
f1(z)dz (5.24)

Now the distribution of X is unimodal implies that f1 and f2 are unimodal. Thus assuming

f1 is not heavy tailed, the second term is small (for k large enough). Also if ∆/σ is small or

if α/σ is large, and f2 is not heavy tailed, the first term is small as well. It is easy to see

that if the pdf of X is lighter tailed than Gaussian (sub-Gaussian), then the upper bound on

P (E1) will be smaller than that for Gaussian distributed classes. Hence for all sub-Gaussian,

unimodal, symmetric distributions, the PCNSA performance will be better than for Gaussian

distributed classes.

4The Mi-dimensional ANS analysis is more difficult to extend because it hinges on the assumption that

dependent Gaussian variables can be made independent by a linear transformation.
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5.4 Comparison with Subspace Linear Discriminant Anal-

ysis (SLDA)

5.4.1 Subspace Linear Discriminant Analysis (SLDA)

As discussed in Section 5.1, SLDA [56] is a linear classification algorithm. It first computes

a PCA space for the training data of all classes taken together as one sample. In PCA space,

it performs linear discriminant analysis, i.e. it computes the most discriminant directions,

WLDA, as

WLDA = arg max
W :W T W=1

(W T ΣbW )

(W T ΣwW )
, (5.25)

where Σb = (
∑K

i=1(µi − µ̄))/K and (Σw =
∑K

i=1 Σi)/K. The classification metric is

di(X) = ||WLDAT
(X− µi)||. (5.26)

The error event for a two class problem (one dimensional WLDA) is E1
4
= {d2

2(X) <

d1
2(X)|X ∈ C1}. The error probability for LDA follows directly using Gaussian hypoth-

esis testing [65] and has also been discussed in [73]:

P (E1) = 1− Φ(
α̂

σ̂
) =

∫ ∞
α̂
σ̂

N (z; 0, 1)dz where

α̂
4
=
|WLDAT

(µ2 − µ1)|
2

, σ̂
4
=

√
WLDAT Σ1WLDA. (5.27)

5.4.2 Classification Performance Comparison

Looking at expressions (5.12) and (5.27), it is clear that the PCNSA error probability can

be made small if either the class means’ distance along ANS is large compared to standard
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deviation of other classes along ANS (α/σ →∞) or if it is large compared to ANS standard

deviation of the class itself (∆/α → 0). While LDA necessarily requires class means’ distance

along the classification directions to be large compared to the standard deviation of all classes

( α̂
σ̂
→∞). We now compare the error probability expressions when using PCNSA and LDA

for a best and a worst case situation for LDA. We make some simplifying assumptions to

reduce the number of variables.

Simplifying Assumptions

We assume a two dimensional PCA space and each class having a one dimensional ANS

and one direction of maximum variance. Also, we assume that the eigenvalues of covariance

matrices of both classes are equal, i.e. λmax,1 = λmax,2 = λmax and λANS,1 = λANS,2 = λmin

5. Now by the linear separability assumption, ||µ1−µ2|| should be of the order of
√

λmax, we

take ||µ1 − µ2|| =
√

λmax. With these assumptions, the error probability expressions can be

reduced to a function of three variables: the condition number, R = λmax/λmin, the angle

between N1 and N2, denoted by ψ and the angle made by the the vector (µ1 − µ2) (line

joining the means) with N2, denoted by θ. In two dimensions these two angles automatically

fix the angle between the direction of (µ1 − µ2) and N1. We study the variation of error

probability as a function of R and θ for two extreme values of ψ, ψ = 0o (case 1) and

ψ = 90o (case 2) which correspond to best case and worst case scenarios for LDA. We show

that PCNSA works well in both these extreme cases as long as the assumptions of Section

5PCNSA actually requires λmax,2/λANS,1 and λmax,1/λANS,2 to be large. Our assumption combines both

these into a single variable R = λmax/λANS .
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5.2.1 are satisfied and fails completely when they are not.

Qualitative Comparison

We first provide a qualitative comparison of the two cases (ψ = 0, 90o) using figure 5.1(a)

and (b). In both figures, the condition number R is set to a large value (assumption 1 of

Section 5.2.1). We have θ ≈ 0 in figure 5.1(a) and θ ≈ 45o in 5.1(b), both being far from

90o (assumption 2 of Section 5.2.1). Case 1 shown in Figure 5.1(a) is a best case scenario

for both PCNSA and LDA since the Y axis is the ANS direction for both classes and the

common LDA direction (WLDA) is close to the Y axis (ANS direction for either class). As

the variance of both classes along WLDA is small, the LDA works very well. Also the variance

of class 1 along ANS of class 2 (and vice versa) is small and θ = 0o is far from 900. Hence

the performance of PCNSA will also be very good in this case. The class boundaries defined

by PCNSA and SLDA in the figure are almost coincident.

But in case 2 shown in Figure 5.1(b), the maximum variance direction of one class

coincides with the ANS of the other. This is the worst case for LDA but PCNSA works very

well in this case. In fact, this case demonstrates the need for the PCNSA algorithm. Here,

the Y axis is ANS direction for class 1 but a maximum variance direction for class 2 and vice

versa for X axis. Thus WLDA is along the direction (µ1 − µ2) (direction AB in the figure).

Along WLDA both classes have a large enough variance. So LDA has a high error probability

in this case. The region for the LDA error event ELDA
1 is the region of ellipse 1 to the right

of line PR and for ELDA
2 it is the region of ellipse 2 below line PR. But PCNSA still works
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well because the integration region for ENSA
1 is only those parts of ellipse 1 that are closer

to µ2 (point B) along N2 (X axis) than to µ1 (point A) along N1 (Y axis) and similarly for

ENSA
2 . Thus the error region is the small overlap region of the two ellipses (region PQRS)

for both ENSA
1 and ENSA

2 .

Quantitative Comparison: Error Probabilities as a function of R and θ

Now in case 1 (ψ = 0o), N1 = N2 = [0 1]T . Using the simplifying assumptions and definitions

(5.11), Σ1 = Σ2 = diag{λmax, λmin}, α =
√

λmax cos θ and σ =
√

λmin. R = λmax/λmin is

the condition number of either class’s covariance matrix. Substituting in (5.12), we get

P (ENSA
1 ) ≤

∫ √
R cos θ+k

√
R cos θ−k

N (z; 0, 1)dz
4
= P (ENSA bound) (5.28)

and the same expression for P (ENSA
2 ) so that P (ENSA

avg ) = P (ENSA
1 ). We also evaluate

P (ELDA) using (5.27). MATLAB is used to evaluate WLDA for different values of R and

θ. Both P (ENSA,bound) and P (ELDA) are plotted in figure 5.2(a), for θ ∈ [0, 90o], and

R = 103, 104, 105. This is a best case scenario for both SLDA and PCNSA as long as θ is

bounded away from 90o (assumption 2 of section 5.2.1 satisfied). We have for both NSA and

LDA

lim
R→∞

P (ENSA/LDA, R, θ) = 0, ∀ |θ| < θ0 < 90o

But, lim
θ→90o

lim
R→∞

P (ENSA bound, R, θ) = 1

while, lim
θ→90o

lim
R→∞

P (ELDA, R, θ) ≈ 0.31 (5.29)
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i.e. when θ tends to 90o, PCNSA fails completely while the performance of LDA degrades

gracefully 6.

Now in case 2 (ψ = 90o), N1 ⊥ N2 i.e. N1 = [0 1]T and N2 = [1 0]T . So Σ1 =

diag{λmax, λmin} while Σ2 = diag{λmin, λmax}. Again using the simplifying assumptions

and (5.11), σ =
√

NT
2 Σ1N2 =

√
λmax and α =

√
λmax cos θ. This gives

P (ENSA
1 ) ≤

∫ cos θ+ k√
R

cos θ− k√
R

N (z; 0, 1)dz. (5.30)

For LDA, Σw = Σ1+Σ2

2
= diag{λmax+λmin

2
, λmax+λmin

2
} so that WLDA is along (µ1 − µ2) i.e.

WLDA = [cos θ sin θ]T . Thus we have

P (ELDA
1 ) =

∫ ∞
√

R

2(
√

R cos2 θ+sin2 θ)

N (z; 0, 1)dz. (5.31)

The expressions for P (E2) for both PCNSA and LDA have the “cos” replaced by “sin”.

Case 2, as also discussed earlier, is the worst case for LDA. The average error probabilities

are plotted in figure 5.2(b). The LDA error probability in this case converges to a non-zero

value which depends on θ, i.e. we get (using (5.31)),

lim
R→∞

P (ELDA, R, θ) =

∫∞
sec θ

2
N (z; 0, 1)dz +

∫∞
cosecθ

2
N (z; 0, 1)dz

2
(5.32)

The above limit is approximately the LDA curve (dotted line) shown in figure 5.2(b). PCNSA

still works very well in this case, i.e. we have (using (5.30))

lim
R→∞

P (ENSA, R, θ) = 0 ∀ θ (5.33)

although the rate of convergence is much slower than in case 1.

6The LDA limit is an approximate numerically evaluated value
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Discussion

From the above analysis, we conclude that PCNSA fails for small values of R (no null space)

or when the distance between class means projected along ANS becomes small (θ → 90o).

We have included checks in steps 3 and 4 of our algorithm (section 5.2.2) to avoid these two

situations. For all other cases, its performance is superior or as good as SLDA as long as the

query data follows the training data distribution. By evaluating the error probability expres-

sions, one can choose between LDA and PCNSA for a given application or even use different

algorithms for distinguishing different class pairs in a multi-class classification problem.

5.4.3 Comparing Size of Training Data

In real applications, the model is never exact and so the ANS calculation is never exact.

Finding the approximate null space directions requires a large amount of training data to

correctly find directions along which there is almost no variation. The size of the training

data set per class should be at least two to three times the dimension of the PCA space

to correctly estimate the lowest eigenvalues (and corresponding eigenvectors) of the class

covariance matrix. SLDA can do with lesser training data and PCA requires the least.

This fact has been observed experimentally and is plotted in figure 5.3. Performance of

PCNSA when compared with LDA in real applications is not as good as that predicted by

the analytical expressions. As part of future work, we hope to do a perturbation analysis

similar to that done in [73] to compare robustness to model error of both algorithms. Another

relevant work is [74] which compares PCA and SLDA training data size by evaluating them

123



on many face databases.

5.4.4 Comparing ‘New’ (Untrained) Class Detection Ability

Since PCNSA defines a class specific metric, ‘new’ (untrained) classes can be detected most

easily using PCNSA. When a query belongs to a trained class its distance from the class

mean along that class’s approximate null space is a very sharp minimum while a query

belonging to a new class will have no such sharp minimum. Detecting new classes is more

difficult with LDA because trained classes will also not have very sharp minimum distances

from their own class means along the LDA directions. The new class detection strategy used

by us is discussed in Section 5.6.2. Also, the PCNSA class-specific metric does not require

any knowledge of the second class and so can be used for binary hypothesis testing problems

where the statistics of the not null hypothesis (H1) are not known. We have discussed its

application to abnormal activity detection (where “abnormality” is not characterized) in

Section 5.6.4.

5.5 Relation to Multispace KL

Multispace KL (MKL) [58] when used for classification, separates all classes into subsets of

similar classes and for each subset derives a principal component subspace representation.

For classification of a query, it first finds the subspace (subset) from which the distance of

the query is a minimum and in that subspace finds the class mean that is closest to the query

in Euclidean norm. The distance from space defined in [58] is equivalent to the distance in
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ANS space defined by us. PCNSA if put in this framework, defines one subspace for each

class and classifies queries by finding the subspace (and hence the class) to which the query

is closest.

In fact MKL is exactly equivalent to performing NSA to choose the nearest subspace

(subset) and then using PCA to choose the nearest class within the subset. We can extend

the error probability analysis of Section 5.3 to analyzing the classification error probability of

MKL. The error in choosing the correct subspace is P (ENSA) with ANS dimension Mi = n−k

(Using notation from [58] where k is the subspace dimension and n is the original data

dimension). The bound for this error, P (ENSA bound), for a two class problem is given by

(5.23). The error in classification within the subspace is the error in classification using

Euclidean distance in PCA space. The classification error (given class i) using MKL would

be

P (EMKL
i ) = P (ENSA

i ) + (1− P (ENSA
i ))P (EPCA

i ) ≤ P (ENSA bound
i ) + P (EPCA

i ). (5.34)

5.6 Experiments and Results

We first present a Monte Carlo verification of correctness of the PCNSA upper bounds

derived in Section 5.3. We then discuss the new (untrained) class detection problem and a

heuristic solution to it using PCNSA. We propose a modification of PCNSA which we call

progressive-PCNSA that varies the dimension of ANS on the fly and also detects new classes.

We then compare performance of PCNSA, progressive-PCNSA, SLDA and PCA for three

image classification applications - object recognition, feature matching for image registration
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and face recognition under large pose/expression variation. Finally we show applications

of PCNSA to two video classification problems - abnormal activity detection and action

retrieval, using a shape dynamical framework proposed by us in another work [11].

5.6.1 Synthetic Data Verification

We simulated L = 3 and L = 20 dimensional PCA space data at random and evaluated

the PCNSA error probabilities to verify the correctness of the error probability bounds both

using one dimensional ANS and multidimensional ANS. We also generated the mean and

covariance matrices at random. Each element of the mean was i.i.d. normally distributed

with mean zero and variance one. The covariance matrix was generated as CCT where the

matrix C had i.i.d. standard normal entries. The tightness of the PCNSA error bound

depended on the smallness of the ANS eigenvalues. Also, one could obtain the tightest

possible bound by varying the value of k until the smallest value of error probability was

obtained. Another observation is that as the PCA space dimension, L, is increased the

performance of PCNSA improves. This is because as the number of eigenvalues is increased,

there is greater chance that the ratio of lowest to highest eigenvalue is small (or equivalently

R is large). We found the for L = 3, SLDA performed better than PCNSA more times,

but for L = 20 the opposite is true. For L = 20, PCNSA outperformed SLDA (when using

analytically calculated PCNSA upper bound for PCNSA) 86% of times and 99.9% of the

times when using Monte-Carlo simulation data.
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5.6.2 New Class Detection and Progressive-PCNSA

New Class Detection

A common problem in most classification applications is to detect when a query does not

belong to any of the classes for which the classifier has been trained. We call such a query

as belonging to a ‘new’ class. Since PCNSA uses a class-specific metric, its ability to detect

‘new’ classes is better. We use the following heuristic idea to test for a ‘new’ class: If

distances from two or more classes are roughly equal, we conclude that the query belongs to

a ‘new’ class. This is because a query will have a very sharp minimum in its own class’s ANS

and if there is no such sharp minimum, then one can say that it does not belong to any of the

trained classes. We classify a query X as belonging to a ‘new’ class if the minimum distance

(dc(X)) is greater than a threshold t times the distance from any other class (di(X),i 6= c)

with t < 1 i.e.

dc(X) > tdi(X) ∀i 6= c, t < 1 (5.35)

or equivalently
dc(X)

mini 6=c di(X)
> t (5.36)

The value of t governs the false alarm probability. If we define H0 as the hypothesis that the

query belongs to one of the K trained classes and H1 as the hypothesis that it belongs to an

untrained (‘new’) class, then false alarm is the event that the algorithm decides in favor of

H1 (‘new’ class) when actually H0 is true (query comes from a trained class) [75]. One could

use Neyman Pearson’s lemma [75] to choose t to minimize the miss probability (probability

of wrongly classifying a query from a ‘new’ class as belonging to one of the K trained classes)
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given a maximum value of false alarm probability. But since H0 is a complex hypothesis,

this is analytically intractable and hence we choose the value of t experimentally.

Progressive-PCNSA

Progressive-PCNSA is a modification of the PCNSA algorithm to choose the number of ANS

directions on the fly and to also use the above new class detection strategy. In practice, when

the number of classes is large, quite often there is no one single direction of the ANS of class

i which satisfies (5.3) for all j 6= i. As a practical solution to this problem, we vary the

dimension of ANS of all classes from Ml to Mh and evaluate the ratio given in the left hand

side of (5.36) until it is less than t. The class c for which the distance defined in (5.4) is

minimized and the ratio is less than t is chosen as the most likely class. If this does not

happen for any class, for any value of M ∈ [Ml,Mh], we declare the query as belonging to a

‘new’ class. The stepwise classification procedure is as follows:

1. Vary ANS dimension from M = Ml,Ml + 1, ...Mh. For each value of M ,

- Evaluate di(X) for all classes using (5.4) and with WNSA
i the M trailing eigenvectors

of Σi. Find the minimum distance dc(X) and the corresponding class c.

- Evaluate (5.36). If it is true, then try the next higher dimension of ANS for all

classes. If it is false, then declare the current minimum distance class ‘c’ as the most

likely query class and stop.

2. If (5.36) is true for all values of M ∈ [Ml,Mh], declare the query as belonging to a ‘new’

class.
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5.6.3 Image Classification Experiments

We compare the performance of PCNSA, SLDA and PCA for object recognition, facial

feature matching and face recognition. We show the superior performance of PCNSA for

new class detection by leaving a few classes untrained and testing for data from those classes.

There are three kinds of classification errors

-Misclassification error given H0 : A query from trained class i gets wrongly classified

as trained class j, i 6= j.

-False Alarm (Type I error) given H0 : A query from any ‘trained’ class gets wrongly

classified as ‘new’.

-Miss (Type II error) given H1 : A query from a ‘new’ class gets wrongly classified as

some ‘trained’ class. Correct new class detection probability is 1− P (Miss).

The total error probability is P (H0) ∗ (P (Misclassification|H0) + P (False Alarm|H0)) +

P (H1)∗P (Miss). The new class detection threshold, t, can be adjusted based on the require-

ments of the problem, if the application can tolerate false alarms but is sensitive to misses

and misclassification, t can be reduced. For PCNSA, if a really low value is used for t, the

misclassification probability can be reduced to zero. Thus test data classified as ‘not new’

can be used as labeled data for training thus increasing the amount of training data and

consequently improving the performance of PCNSA which requires large amounts of training

data. This idea is motivated by the discriminant-EM idea described in [76] for LDA. In the

experiments described below, two kinds of tests were performed: - Test (a) : First assuming

no possibility of a ‘new’ class. In this case the only type of error is misclassification error.
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and Test (b) : Allowing possibility of ‘new’ class (hypothesis H1) and setting P (H1) to a

non-zero value so that all three types of errors can occur.

Object Recognition

The algorithm was tested on the Columbia Object Image Library (COIL-20) which contains

20 different objects and 72 views of each object taken at 5 degree apart orientations. Due to

the entirely different covariance matrix structures of different objects, PCA and SLDA do

not work as well as PCNSA. ‘Leave 10 out’ testing was done by choosing 10 frames per class

at a time for testing and the rest 62 for training and in this way a total of 1400 tests were

carried out by choosing different test and training samples every time. Sample images from

the 20 classes are shown in figure 5.4(a). Table 5.1 (a) and (b) tabulate the results for the

two types of tests described above. A total of 1400 queries were tested each time. In (a),

P (H1) = 0 while in (b), only three classes were trained and 17 were left ‘untrained’ so that

P (H0) = 0.15, P (H1) = 0.85. As can be seen from the table, progressive-PCNSA performs

best in terms of all three errors followed by SLDA and then PCA. The ‘miss’ probability using

prog-PCNSA/ PCNSA is almost half that of SLDA or PCA thus indicating the superior new

class detection ability of PCNSA.

Feature Matching for Image Registration

Image registration is an important problem in 3D model alignment and baseline stereo. The

first step in image registration is detecting features and obtaining feature correspondences

between two or more frames. [14] uses a cornerfinder algorithm followed by k-means cluster-
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ing for facial feature detection. Feature matching is posed as a posterior hypothesis testing

problem, i.e. detected features are matched to seven pre-trained facial feature classes (shown

in figure 5.4(b)) and the probability of correct match to a class is taken to be proportional

to correlation with mean of that class. We propose to replace this correlation match by

distance in PCA, SLDA or PCNSA space which would use both class mean and covariance

information. We show that using PCNSA space for obtaining distance measures gives lowest

error rates. Also new feature detection is very important here, since as the face moves,

new (previously occluded) features can appear. Tests were done using 110 training images

per class to train the PCA, LDA or PCNSA spaces and 10 images to test and twelve such

iterations were run with different training and test data (total 840 tests). Results for tests

(a) and (b) described above are shown in table 5.2. In (b), only three classes are trained and

four are left untrained so that P (H0) = 0.43, P (H1) = 0.57.

Also, variation with reduced training data sizes is shown in figure 5.3. As discussed in

Section 5.4.2, PCA works well even for really small training data sizes per class followed

by LDA while PCNSA requires much more training data to obtain correct directions of

minimum intra-class variation.

Face Recognition

Face recognition has been discussed very briefly only as an example of an ‘apples from

apples’ type application where LDA and PCNSA perform equally well. The algorithms

were tested on two standard face databases: The UMIST face database[77] which consists
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of 23 images of each person taken in different poses is shown in figure 5.5(a). The Yale

database which has 11 images per subject: one per facial expression or configuration -

center-light, w/glasses, happy, left-light, w/no glasses, normal, right-light, sad, sleepy, sur-

prised, and wink is shown in figure 5.5(b) 7. The face images can be downloaded from

http://images.ee.umist.ac.uk/danny/database.html and

http://cvc.yale.edu/projects/yalefaces/yalefaces.html respectively. The ‘one leave out’ strat-

egy was adopted for testing, i.e. all except one image of each class were used in the training

and the one left out image was used as the query. When there are no new classes (tables

5.3(a) and 5.4(a)), PCNSA and LDA perform equally well, PCNSA is superior for UMIST

while LDA is superior for the Yale database. But in test (b) where we train three classes and

test on data from all fifteen, PCNSA has a significantly better new class detection ability

and hence outperforms the other two.

5.6.4 Video Classification/Retrieval Experiments

Abnormal Activity Detection

Abnormal activity detection in the fully observed case (discussed in section 4.1.1) can be

treated as a two class classification problem with only statistics of the normal class known.

We have proposed in chapters 3 and 4, a shape based dynamical model for modeling activity

7The reason only these two databases were used is that they had enough training data per class to obtain

reliable ANS representations for each class. When training data is small, performance of PCNSA deteriorates

very fast.
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performed by a group of moving landmarks (here people). We repeat here some of the details

of the problem formulation. A normal activity frame and an abnormal activity frame are

shown in figure 4.1. We represent a stationary shape activity by a mean shape plus a linear

dynamical model in the tangent space [9] at the mean shape. The dynamics in tangent space

is modeled by a linear Gauss-Markov (G-M) model, vt = Avt−1 + nt. We define an ANS for

Σn which is the covariance matrix of the system noise, nt. The training algorithm using a

“normal activity sequence” is:

{Yt}T
t=1 −→ {wt}T

t=1 −→ Sµ, {zt}T
t=1 −→ {vt = [I − SµS

∗
µ]zt}T

t=1 −→ A, Σv, Σn where

Yt is the configuration vector at time t, wt is the preshape obtained after translation and scale

normalization of Yt, Sµ is the Procrustes mean shape obtained after Generalized Procrustes

Analysis [9] on the preshapes, zt is the shape obtained after aligning the preshapes, wt, to

Sµ [9]. vt are the tangent coordinates in the tangent space at Sµ, A is the autoregression

matrix, Σv, Σn are the the covariance matrices of vt and nt [11].

We used sum square distance from mean (zero) in ANS of Σn over a subsequence of past

frames as the activity metric to detect an abnormal activity at a given time. For L=20 past

frames the activity metric at time t is

d20(t)
2 =

t∑

τ=t−20

||WNSAT
(vτ − Avτ−1)||2. (5.37)

We observed in [11] that this detected abnormality faster than both full Euclidean distance

and full Mahalonobis distance (log likelihood under the Gauss Markov model)8 [11]. Plots of

8In this application, the data dimension was originally quite small (8 dimensional) and hence dimension-
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the activity metric as a function of time for normal activity and two kinds of abnormalities

are shown in figure 5.6.

Action Retrieval

We show here an application of PCNSA to action retrieval in the landmark shape dynamical

framework of chapter 3. We use motion capture data (which provides locations of 53 human

joints in a set of frames) to learn Procrustes mean shapes and PCNSA spaces of tangent

space at the Procrustes means, for three different actions - “walking”, “brooming”, and

“sitting”. In this case the landmarks were the different joints. Also, for 53 joint locations

the dimension of tangent to shape space was quite large , 2 ∗ 53 − 4 = 102 and hence

dimensionality reduction is required in this case. For each class, we define the PCA space by

projecting all classes into its tangent space and then define a Gauss-Markov model in this

reduced dimension space. The algorithm is as follows:

1. For each class i, learn the Procrustes mean shape and tangent space.

2. For each class i,

- Project data from all classes into its tangent space and learn a L = 20-dim PCA

space, W PCA
i for the class.

- Project training data of class i into this PCA space, to learn the Gauss-Markov

ality reduction using PCA was not required. Also, the “abnormal” class was not characterized, so we could

not apply PCA to increase between class variance. For the same reason, LDA could not be used for this

application.
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model, Ai, Σn,i, Σv,i in PCA space. Project the autoregression matrix Ai back into full

tangent space to get Afull,i = W PCA
i AiW

PCA
i

T
.

- Learn WNSA
i , the ANS projection matrix of Σn,i. Combine both PCA and NSA

projection matrices to obtain W project
i = W PCA

i WNSA
i .

3. Given a test sequence,

- For each class i, project the sequence into its tangent space to obtain {vt,i}.

- Choose the most likely class c as c = arg mini di where

di =
t∑

τ=t−20

||W project
i

T
(vτ,i − Afull,ivτ−1,i)||2 (5.38)

We used one sequence of each of the actions to learn the mean shape, PCA space, G-M

model parameters, and ANS for each class. We then used different instances of walking,

brooming and sitting actions as queries and attempted to retrieve the closest action to the

given action. We show the distances in table 5.5. The query actions were prowl-walk, 2

brooming sequences, crawl, jog, 2 sitting sequences, 3 walking sequences and a sad-walk

sequence (shown in first row). We have underlined the distance of a query from its closest

action. As can be seen, for all the 5 walk sequences, the “walk” sequence is correctly

retrieved. Also for the two broom sequences and two sit sequences, the correct action is

retrieved. For crawl, which is a new class, the minimum distance (dmin) and second largest

distance (dmin2) are quite close, so using the new class detection method given in (5.35)

with t = 0.5, it gets classified as a new class.

Now for a large database retrieval application or in fact for any classification problem

involving large number of classes, we can select subsets of classes with similar within-class
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covariance matrices and obtain ANS for each subset (as in [58]). PCNSA can then be used

to choose the subset to which the query is closest and LDA to classify within the subset.
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Figure 5.1: θ is the angle between the line AB and the Y -axis in (a) and between AB and the
X-axis in (b). Case 1 with ANS directions (Y -axis) of both classes coinciding is shown in (a).
Case 2 is shown in (b). Y axis is ANS for class 1 & maximum variance direction for class 2, vice
versa for X axis. 137
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(a) Object Recognition Samples

(b) Facial Features for Feature Matching

Figure 5.4: (a) Object recognition classes (b) Facial Feature Matching classes
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(a): 23 different face poses used for each face from the UMIST face database

(b): 11 facial expressions used for each face in the Yale face database

Figure 5.5: Face recognition databases
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for a temporal abnormality introduced at t = 5 and the green -* plot in (b) is for a spatial
abnormality introduced at t = 5.
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(a) No New, New Class Detection Disabled

Error Probabilities PCA SLDA progressive-PCNSA PCNSA

Misclassification = Total Error 0.125 0.053 0.020 0.046

(b) 17 New, P (H0) = 0.15, P (H1) = 0.85, New Class Detection Enabled

Error Probabilities PCA SLDA progressive-PCNSA PCNSA

Misclassification |H0 0.0476 0.0048 0.0000 0.0429

(R1)

False Alarm |H0 0.0333 0.0143 0.0381 0.0286

(R2)

Total Error |H0 0.0810 0.0190 0.0381 0.0286

R3 = (R1 + R2)

Miss |H1 0.5496 0.6924 0.3731 0.3739

(R4)

Total Error 0.4793 0.5886 0.3229 0.3286

R3 ∗ P (H0) + R4 ∗ P (H1)

Table 5.1: Object Recognition results: (a) shows results for training and testing on data from 20

trained classes (no new). (b) shows results for training 3 object classes and using data from all 20

for testing. Correct new class detection probability is 1−P (Miss). For (a), a 50 dimensional PCA

space was used while for (b) a 20 dimensional PCA space was used. In (a), 15 LDA directions were

used and ANS dimension was varied between 4 and 9 for progressive-PCNSA while in (b) 2 LDA

dimensions were used and ANS dimension varied between 3 and 6.
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(a) No New, New Class Detection Disabled

Error Probabilities PCA SLDA progressive-PCNSA

Misclassification = Total Error 0.0548 0.0369 0.0226

(b) 4 New, P (H0) = 0.43, P (H1) = 0.57, New Class Detection Enabled

Error Probabilities PCA SLDA progressive-PCNSA

Misclassification |H0 0.0028 0.0028 0.0000

(R1)

False Alarm |H0 0.1333 0.0528 0.0500

(R2)

Total Error |H0 0.1361 0.0556 0.0500

R3 = (R1 + R2)

Miss |H1 0.0500 0.6250 0.4083

(R4)

Total Error 0.0857 0.3810 0.2548

R3 ∗ P (H0) + R4 ∗ P (H1)

Table 5.2: Facial Feature Matching results: (a) shows results for training and testing on data from

the 7 trained classes (no new). For (a) a 50 dimensional PCA space was used while for (b) a 20

dimensional PCA space was used. In (a), 6 LDA directions were used and ANS dimension was

varied between 3 and 9 for progressive-PCNSA while in (b) 2 LDA dimensions were used and ANS

dimension varied between 3 and 6.
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(a) No New, New Class Detection Disabled

Error Probabilities PCA SLDA progressive-PCNSA

Misclassification = Total Error 0.1182 0.0061 0.0030

(b) 12 New, P (H0) = 0.20, P (H1) = 0.80, New Class Detection Enabled

Error Probabilities PCA SLDA progressive-PCNSA

Misclassification |H0 0.0000 0.0000 0.0000

(R1)

False Alarm |H0 0.8030 0.0000 0.0303

(R2)

Total Error |H0 0.8030 0.0000 0.0303

R3 = (R1 + R2)

Miss |H1 0.1136 0.8636 0.1023

(R4)

Total Error 0.2515 0.6909 0.0879

R3 ∗ P (H0) + R4 ∗ P (H1)

Table 5.3: Face Recognition Results (UMIST database): (a) shows results for training and testing

on data from 15 trained classes (no new). (b) shows results for training 3 classes and using data

from all 15 for testing. The false alarm and miss probabilities of LDA in (b) are skewed because

new class detection thresholds were kept constant at the same value for all the three applications

(not optimized for each application separately). PCNSA new class detection is not sensitive to the

type of application (numerical values of class variances) and hence performs equally good new class

detection for all applications.
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(a) No New, New Class Detection Disabled

Error Probabilities PCA SLDA progressive-PCNSA

Misclassification = Total Error 0.0100 0.0000 0.0000

(b) 12 New, P (H0) = 0.20, P (H1) = 0.80, New Class Detection Enabled

Error Probabilities PCA SLDA progressive-PCNSA

Misclassification |H0 0.0000 0.0000 0.0000

(R1)

False Alarm |H0 0.0833 0.0000 0.0667

(R2)

Total Error |H0 0.0833 0.0000 0.0667

R3 = (R1 + R2)

Miss |H1 0.4083 0.5625 0.1708

(R4)

Total Error 0.3433 0.4500 0.1500

R3 ∗ P (H0) + R4 ∗ P (H1)

Table 5.4: Face Recognition Results (Yale database): (a) shows results for training and testing on

data from 15 trained classes (no new). (b) shows results for training 3 classes and using data from

all 15 for testing.
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bprowl broom1 broom3 crawl jog1 sit1 sit2 walk1 walk2 walk3 walk

-walk -sad1

walk 1.43e-4 5.09e-4 4.58e-4 4.11e-4 2.36e-4 1.01e-3 2.08e-4 0.03e-6 1.60e-4 4.20e-5 2.20e-5

broom 5.65e-4 2.00e-6 2.90e-5 7.52e-4 4.36e-4 4.16e-3 1.95e-3 1.36e-4 2.05e-4 2.44e-4 3.31e-4

sit 9.66e-4 5.18e-4 3.53e-4 1.17e-3 6.33e-4 3.00e-6 4.70e-5 2.23e-4 3.69e-4 5.40e-4 3.67e-4

Table 5.5: Retrieving actions using PCNSA in tangent to shape space: The distances of the

query sequences (top row) in ANS space of tangent to mean shape (equation (5.38)) of each of

the 3 database sequences (in leftmost column) are shown. The underlined distance in each column

corresponds to the closest match to query.
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Chapter 6

Summary and Future Directions

6.1 Summary

In chapter 2, we have proposed statistics for slow and drastic change detection in stochastic

state space models when change parameters are unknown. We use a PF to estimate the

posterior probability distribution of the state at time t (Xt) given observations up to t (Y1:t),

Pr(Xt ∈ dx|Y1:t)
4
= πt(dx). We propose here a statistic called ELL which is able to detect

slow changes. ELL is the conditional Expectation of the negative Log-Likelihood of the state

at time t ([− log pt(Xt)]), given past observations, Y1:t. It is evaluated as the expectation

under πt of [− log pt(Xt)].

Now, the PF is optimal for the unchanged system and hence when estimating πt for

the changed system, modeling error is present. Also the particle filtering error (error due to

finite number of Monte Carlo samples or particles) is much larger. But using stability results

148



from [5], we have shown that the approximation errors are stable (monotonically decreasing)

with time and number of particles (in section 2.4). We have also shown in section 2.5, that

the bound on the error is proportional to the rate of change. Thus for slow changes, the

estimation error in πt is small i.e. ELL is approximated correctly for such changes. Hence

the approximate value of ELL detects the slow change as soon as it becomes “detectable”

(defined in Definition 5 of section 2.3.2). ELL fails to detect drastic changes because of large

estimation error in evaluating πt. But large estimation error in evaluating πt also corresponds

to a large value of OL (or tracking error) which can be used for detecting such changes. We

discuss this in Section 2.6. The application of ELL and OL (or tracking error) to abnormal

activity detection and activity segmentation is discussed in chapter 4.

In chapter 3, we proposed stochastic state space models for the changing configuration

of moving landmarks. We split the deformation/motion of the configuration into scaled

Euclidean motion plus nonrigid shape deformations. In applications where the shape is

stationary, the deformation model is simply a zero mean AR model in tangent plane to shape

space at the mean shape. This idea is an extension of landmark shape analysis described in

[9] for static hypothesis testing applications to modeling dynamics of a sequence of shapes.

But for a non-stationary shape activity, the shape moves on the shape manifold. Dynamics is

defined by a linear Gauss-Markov model on the shape “velocity” (time derivative of shape),

which can be a random walk or an AR model depending on the problem. The “velocity” at

a point on a manifold is defined in the tangent space to the manifold at that point. When

the shape is not stationary but is only slowly varying, one can model the mean shape as
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being piecewise constant (instead of changing it at each time instant).

In this work, we treat an object as a point object or landmark and we model “activities”

performed by groups of moving objects as moving and deforming landmark shapes. An

HMM as described above is learnt for an activity using training data. In chapter 4, we have

shown an application of the stationary shape activity model to tracking normal activities

for which the mean shape is constant over time and to detect abnormal activity. Abnormal

activity is defined as a slow or drastic change from normal shape dynamics with change

parameters unknown. We have used a combination of the statistics defined in chapter 2

(ELL and tracking error) for abnormality detection. The nonstationary shape activity model

is useful for detecting and also tracking abnormal behavior (it is a more flexible model which

can track unmodeled shape changes as well). When using NSSA, more abnormalities get

detecting using ELL i.e. get detected before loss of track. A long activity sequence can be

segmented into stationary pieces using a piecewise stationary shape activity model and ELL

to detect the segmentation boundaries.

The last part of the thesis is a linear subspace algorithm for pattern classification, which

we call Principal Components’ Null Space Analysis. PCNSA was motivated by PCA and

it approximates the optimal Bayes classifier for Gaussian distributions with unequal covari-

ance matrices. We have derived classification error probability expressions for PCNSA and

compared its performance with that of subspace LDA both analytically and experimentally.

Results have been shown for abnormal activity detection, human action retrieval and object

and face recognition.
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6.2 Future Directions

As part of future work, we intend to find practical examples of non-linear systems which

satisfy the assumptions of theorems 1 and 2 in chapter 2. Also, we would like to study in

more detail the implications of the Alpha function bound on ELL error. We are working

on applying the CUSUM algorithm [15] to the case of unknown change parameters (as

discussed in section 2.3.4) and evaluating its performance. We are also working on using

ELL for neural signal processing where the goal is to detect how quickly an animal’s brain

responds to changes in stimuli provided to it. Also, we would like explore application of ELL

to network or traffic congestion detection which also starts as a slow change.

When defining landmark configuration dynamics, we have currently dealt with the prob-

lem of varying number of landmarks in an adhoc fashion. As part of future work, we would

like to study this problem in greater detail since it is a very important practical issue. To do

this we would like to be able to deal with a time varying dimension of the shape manifold

(treating the dimension as a Poisson process). Approaches in literature which embed a lower

dimensional manifold as a boundary of the higher dimensional manifold will be explored.

Currently we have dealt with 2D shapes, the same approaches can be extended to 3D

shapes. Also, the shape activity framework can be used in conjunction with a measure-

ment model as a tracker to obtain new observations (discussed in section 4.2). Activity

segmentation using PSSA and ELL to detect the segmentation boundaries has application

in segmenting long video sequences containing multiple moving objects (for e.g. a traffic

video) into stationary pieces. Our approach is sensor independent and observations can in-
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stead be obtained from acoustic, radar, infra-red or any other sensors and we would like to

explore these applications in the future.

We would also like to improve performance of PCNSA for classification and make it more

robust. Some ideas to do this are: (a) By evaluating the error probability expressions, one can

choose between PCNSA and SLDA for a given application or even use different algorithms

for different class pairs in a multi-class problem. (b) Perform a class-specific LDA i.e. find

for each class, directions which not only minimize its variance but also maximize its distance

from means of all other classes. (c) For classifying between a large number of classes, one can

use ideas similar to [58] as discussed above in Section 5.6.4. (d) Kernel methods [61, 62] can

be used to transform non-linearly separable data into higher dimensions where it becomes

linearly separable and then PCNSA can be performed in kernel space. (e) A more systematic

method than progressive-PCNSA (discussed in Section 5.6.2) can be developed for choosing

valid ANS directions and new class detection thresholds. (f) Discriminant EM [76] can be

used to increase the size of the training data set. We also hope to do a perturbation analysis

for PCNSA similar to that done in [73] for LDA.

6.3 Contributions

Now in this last section, we briefly summarize the contributions of this thesis:

1. We have proposed the ELL statistic for slow change detection in general HMMs. We

have extended PF stability theorems to prove stability (asymptotic stability under

stronger assumptions) of errors in ELL approximation.
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2. We have compared performance of ELL with OL for slow and drastic changes. Finally,

we have also shown that the bound on ELL approximation error is an increasing func-

tion of “rate of change” with all increasing derivatives and discussed its implications.

3. Stochastic dynamical models for landmark shapes (random walk of shape velocity on

the shape manifold), the stationary, nonstationary and piecewise stationary cases, are

an extension of landmark shape analysis [9] to modeling dynamics.

4. The ideas of modeling a changing configuration of a group of moving point objects as

a deforming shape is new. We have applied the landmark shape dynamical models

to represent group activity and tracked it using a particle filter, defined abnormal

activity as a change from normal shape dynamics and used ELL and tracking error for

abnormality detection.

5. Also, the idea of using ELL along with PSSA model for activity segmentation and

activity sequence identification and the idea of using the shape activity models for

tracking to obtain observations is new.

6. The PCNSA classification algorithm, its classification probability analysis and its appli-

cation to abnormal activity detection, action retrieval and face and object recognition.
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Chapter 7

Appendix: Proofs of Chapter 2

Proof of Theorem 1.1:

• Ex,Yt being a compact and proper subset of Et (assumption (iv)) implies that there

exists Mt < ∞, s.t. [− log pt(x)] ≤ Mt for all x ∈ Ex,Yt . Because of the uniform

compactness M∗ = supt Mt < ∞. Or in other words, [− log pt(x)] is uniformly bounded

by M∗ for all t.

• First consider normal observations. Since assumptions (ii) and (iii) hold and since

[− log pt(x)] ≤ M∗ (bounded), we can apply the lemma 2.2 (for uniformly mixing

kernels). Taking φ(x) = [− log pt(x)]
M∗

1, µt = π0
t , µ

N
t = π0,N

t , εk = ε0, ∀k < tc, εk =

1Note that φ(x) ≤ 1 ∀x ∈ Ex,Yt and both posterior distributions µt, µ
′
t are zero outside Ex,Yt . Hence the

inner product over E is equal to the inner product taken over the set Ex,Yt .
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εc,0, ∀k ≥ tc, we get:

EY1:t [Ξpf [|K(π0,N
t : pt)−K(π0

t : pt)|]] = M∗EY1:t [Ξpf [|(π0,N
t −π0

t ,
[− log pt(x)]

M∗ )|]] ≤ M∗β∗√
N

(7.1)

Taking N →∞, first equation of (2.16) follows.

• For changed observations 2,

|Kc
t −Kc,0,N

t | ≤ |Kc
t −Kc,0

t |+ |Kc,0
t −Kc,0,N

t |

(7.2)

– Since (iii) holds, we can apply lemma 1 with ε = min{εc, εc,0} and τ = max{τ c, τ c,0}.

We take φ(x) = [− log pt(x)]
M∗ , µt = πc

t , µ
′
t = πc,0

t , Rk = Rc
k,∀tc ≤ k ≤ tf , Rk =

Rc,0
k ,∀k > tf , and consider t ≥ tf + 3. Then we get

|Kc
t−Kc,0

t | ≤ M∗(τ)(t−tf−3)
tf∑

k=tc

(τ)(tf−k)δk ≤ 2M∗(tf−tc+1)(τ)(−tf−3)τ t 4= LM∗τ t

(7.3)

The second inequality follows from inequality (2.12) and the fact that τ < 1. For

uniformly mixing kernels, ε and hence also τ are nonrandom (independent of Y1:t)

and so we can take EY1:t [.] in (7.3) and the RHS remains unchanged. Now taking

t →∞, we get

lim
t→∞EY1:t [|Kc

t −Kc,0
t |] = 0 (7.4)

which means that given any error ∆ > 0, we can choose a t∆ s.t. ∀t ≥ t∆,

EY1:t [|Kc
t −Kc,0

t |] ≤ ∆/2.

2For ease of notation, we denote K(πc
t : pt) by Kc

t , K(πc,0,N
t : pt) by Kc,0,N

t and so on
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– Now fix t = t∆, and apply lemma 2.2 (for uniformly mixing kernels) to |Kc,0
t −

Kc,0,N
t | with µt = πc,0

t , µN
t = πc,0,N

t , Rk = R0
k,∀k < tc, Rk = Rc,0

k ,∀k ≥ tc and

εk = min{ε0, εc,0} . Then we get:

EY1:t [Ξpf [|Kc,0
t∆ −Kc,0,N

t∆ |]] ≤ M∗β∗√
N

(7.5)

Taking N →∞, we get limN→∞ EY1:t [Ξpf [|Kc,0
t∆ −Kc,0,N

t∆ |]] = 0.

Now since β∗ is constant with time, the above convergence is uniform in t and so we

can take limt,N→∞ simultaneously. Thus taking limt,N→∞ EY1:t [Ξpf [.]] in (7.2), we get

the result.

Proof of Theorem 1.2:

Since assumption (iv) (of Theorem 1.1) does not hold, [− log pt(x)] is not bounded in this case.

But we can approximate it by the increasing sequence of bounded functions [− log pM
t (x)] =

min {[− log pt(x)],M}. So we have limM→∞[− log pM
t (x)] = [− log pt(x)] pointwise in x.

• First consider normal observations.

|K0
t −K0,M,N

t | ≤ |K0
t −K0,M

t |+ |K0,M
t −K0,M,N

t | (7.6)

– Applying Monotone Convergence Theorem (MCT) [64](page 87), with µ = π0
t ,

fM(x) = [− log pM
t (x)] 3, we get

lim
M→∞

|K0
t −K0,M

t | = lim
M→∞

|(π0
t , [− log pM

t (x)])− (π0
t , [− log pt(x)])| = 0, a.s.

(7.7)

3Since pt is a pdf, supx pt(x) < ∞. So it is easy to see that Ct = infx[− log pM
t (x)] > −∞ ∀M , and hence

we can apply MCT [64] in this case
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Since the above result holds a.s. over observation sequences, it also holds in mean

[68], i.e.

lim
M→∞

EY1:t [|K0
t −K0,M

t |] = 0 (7.8)

Now by assumption (iv)′, the above convergence is uniform in t. Thus given an

error ∆, one can choose an M∆ (independent of t) large enough s.t. ∀M ≥ M∆,

|K0,M
t −K0

t | < ∆/2.

– Now fixing M = M∆, one can apply Theorem 1.1 (all assumptions required for

it hold) with M∗ = M∆ and pt = pM∗
t to get that limN→∞ EY1:t [Ξpf [|K0,M∆

t −

K0,M∆,N
t |]] = 0, uniformly in t.

Thus taking limM→∞(limN→∞ EY1:t [Ξpf [.]]) in (7.6), we get the result.

• For changed observations,

|Kc
t −Kc,0,M,N

t | ≤ |Kc
t −Kc,M

t |+ |Kc,M
t −Kc,0,M,N

t | (7.9)

– We can again apply MCT [64] to get limM→∞ EY1:t [|Kc
t − Kc,M

t |] = 0 uniformly

in t (by assumption (iv)′). Thus given an error ∆, one can choose an M∆ (M∆

is independent of t because of uniform convergence with t), s.t. ∀M ≥ M∆,

|Kc,M
t −Kc

t | < ∆/3.

– Applying Theorem 1.1, with M∗ = M∆, and pt = pM∆
t , we can show that

limt,N→∞ EY1:t [Ξpf [|Kc,M∆
t −Kc,0,M∆,N

t |]] = 0 4.

4We can apply Theorem 1.1 here because M∆ is independent of time
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Thus taking limM→∞(limt,N→∞ EY1:t [Ξpf [.]]) in (7.9), we get the result.

Proof of Theorem 1.3:

By assumption (iv)′′, we have a compact posterior state space, Ex,Yt , which is a proper subset

of Et, and this implies that [− log pt(x)] < Mt, ∀x ∈ Ex,Yt . Thus the total error can be split

as (similar to proof of Theorem 1.1)

|Kc
t −Kc,0,N

t | = |Kc
t −Kc,0

t |+ |Kc,0
t −Kc,0,N

t | (7.10)

Now using (7.3) with M∗ = Mt, we get

|Kc
t −Kc,0

t | ≤ LMtτ
t (7.11)

But by assumption (iv)′′, the increase of Mt is atmost polynomial i.e. Mt = btp for some finite

p and b. It is simple to show that Mtτ
t goes to zero as t goes to infinity (apply L’Hospital’s

rule p times). This implies that limt→∞ |Kc
t −Kc,0

t | = 0.

By lemma 2.1,

Ξpf [|Kc,0
t −Kc,0,N

t |] ≤ Mtβ
c,0
t√

N
. (7.12)

Thus taking limt→∞(limN→∞ Ξpf [.]) in 7.10, we get the result5.

Proof of Theorem 2.1:

The proof is similar to that of theorem 1.2 but there are two differences. First, now the

5Note that because of Mt in RHS of (7.12), the convergence with N is not uniform in t. So we apply

lemma 2.1 to get a.s. convergence (but it is not uniform with t
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kernels Rc,0
k are not uniformly mixing but only mixing. In this case we have for t > tf + 3,

θc,0
t = τ c,0

t θc,0
t−1. Thus θc,0

t is eventually strictly monotonically decreasing since τ c,0
t < 1 al-

ways. But the decrease is not exponential since τ c,0
t is time varying and hence we cannot

show convergence to zero of θc,0
t . Also, now θc,0

t is a function of Y1:t. Hence we need to take

EY1:t [θ
c,0
t ]. But since θc,0

t (Y1:t) is everywhere positive, it is trivial to show that EY1:t [θ
c,0
t ] is

also eventually monotonically decreasing.

The second difference here is that since Rc,0
k is not uniformly mixing, the convergence

with N is not uniform in t.

Proof of Theorem 2.2:

Now we have a bounded posterior state space at each t, i.e. [− log pt(x)] < Mt, ∀x ∈ Ex,Yt .

Thus the total error can be split as

|Kc
t −Kc,0,N

t | = |Kc
t −Kc,0

t |+ |Kc,0
t −Kc,0,N

t | (7.13)

Applying lemma 1,

|Kc
t −Kc,0

t | ≤ Mtθ
c,0
t (7.14)

Applying lemma 2.2 gives

Ξpf [|Kc,0
t −Kc,0,N

t |] ≤ Mtβ
c,0
t√

N
(7.15)

Taking limN→∞ Ξpf [.] in (7.13), we get the result.

Proof of Theorem 2.3:
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|Kc
t −Kc,0,M,N

t | ≤ |Kc
t −Kc,M

t |+ |Kc,M
t −Kc,0,M

t |+ |Kc,0,M
t −Kc,0,M,N

t | (7.16)

• Applying MCT [64] once again, we can say that given an error ∆ > 0, there exists an

Mt,∆ (since (iv)′ does not hold, it depends on t), s.t. |Kc
t −K

c,Mt,∆

t | < ∆.

• Now since Mt,∆ is a function of t, we cannot apply Theorem 2.1. But for this value of

M , applying lemma 1, we get |Kc,Mt,∆

t −K
c,0,Mt,∆

t | < Mt,∆θc,0
t .

• Given ∆ and Mt,∆, and applying lemma 2 we get, Ξpf [|Kc,0,Mt,∆

t − K
c,0,Mt,∆,N
t |] <

Mt,∆βc,0
t√

N
.

Combining the above three statements and taking limN→∞ Ξpf [.] in (7.16), we get equation

(2.21).

Proof of Lemma 3:

We need to show that f(x, y) = α1(x, α2(y)) is an Alpha function, given that α1(x, z), α2(y)

are Alpha functions of [x, z] and y respectively. Consider the more general case, let

f([x, y]) =
m∑

j=1

αj
1(x, αj

2(y)) (7.17)

and show that f is an Alpha function, given that αj
1, α

j
2, j = 1, 2, ..m are Alpha functions of

their arguments. We prove this as follows: We show the following two facts

1. ∇x,yf(x, y) (gradient of f) is an increasing function and

2. ∇x,yf(x, y) can also be written as a sum of compositions of Alpha functions i.e it has

the same form as f(x) defined in (7.17).
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Because of statement 2, the statements 1 and 2 can now be applied on ∇f to show that

∇f is an increasing function and that ∇∇f can also be expressed as (7.17). This recursive

process can be continued forever to show that all derivatives of f are increasing (or that f

is an Alpha function).

Proof of statement 1: Now

∇x,yf(x, y) =
m∑

j=1

[αj
1x(x, αj

2(y)) + αj
1z(x, αj

2(y))αj
2y(y)] (7.18)

where αj
1x is partial w.r.t x and so on. Now it is easy to see that both the terms above are

increasing functions.

Proof of statement 2: From (7.18), it is easy to write ∇f as a sum of compositions of Alpha

functions. Setting m̃ = 2m and α̃2j
1 = αj

1x(x, z), α̃2j
2 = αj

2(y), α̃2j+1
1 = αj

1z(x, z)αj
2y(y),

α̃2j+1
2 = αj

2(y), we have expressed ∇f in exactly the same form as (7.17). We have used here

the facts that derivative of an Alpha function is also an Alpha function (follows from the

definition) and that the product of two Alpha functions is also an Alpha function (simple to

prove using an argument exactly like the one used here).

Proof of Lemma 4:

For ease of notation, denote supx ψk,Yk
(x)

4
= S. We first prove the following three inequalities

below and then apply them to bound δk, ρk. Note that Rk,Yk
= Rc

k,Y c
k

when applying lemma

1 (model error bound) but Rk,Yk
= R0

k,Y c
k

when using lemma 2 (PF error bound for incorrect

model).

||R0
Y c

k
(πc,0

k−1)−Rc
Y c

k
(πc,0

k−1)||
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≤
∫

x

∫

x′
|R0

Y c
k
(x, x′)−Rc

Y c
k
(x, x′)|πc,0

k−1(x)dx′dx

≤ sup
x

∫

x′
|R0

Y c
k
(x, x′)−Rc

Y c
k
(x, x′)|dx′

4
= DR(R0

Y c
k
, Rc

Y c
k
) = DQ,k (7.19)

Also,

|Ak −R0
k,Y c

k
(πc,0

k−1)(E)| = |Rc
k,Y c

k
(πc,0

k−1)(E)−R0
k,Y c

k
(πc,0

k−1)(E)|

≤ ∫
x′ |

∫
x(R

0
Y c

k
(x, x′)−Rc

Y c
k
(x, x′))πc,0

k−1(x)dx|dx′

= ||R0
Y c

k
(πc,0

k−1)−Rc
Y c

k
(πc,0

k−1)||
(a)

≤ DQ,k (7.20)

Inequality (a) follows from of (7.19).

Next, we lower bound Ak = C − (C − Ak):

C − Ak = |C − Ak| ≤ ||Rc
k,Y c

k
(πc

k−1 − πc,0
k−1)||

(b)

≤
λc

k,Y c
k
(E)||πc

k−1 − πc,0
k−1||

εc
k

4
=

D̃k−1

εc
k

Thus, Ak ≥ C − D̃k−1

εc
k

(7.21)

(b) follows from Lemma 3.5 of [5] and mixing property of Rk.

Now we use the above inequalities to bound δk:

δk = sup
φ:||φ||∞≤1

|(πc,0
k − R̄c

Y c
k
(πc,0

k−1), φ)|

≤ ||πc,0
k − R̄c

kπ
c,0
k−1|| = ||R̄0

Y c
k
(πc,0

k−1)− R̄c
Y c

k
(πc,0

k−1)||
(c)

≤
||R0

Y c
k
(πc,0

k−1)−Rc
Y c

k
(πc,0

k−1)||+ |Ak −R0
k,Y c

k
(πc,0

k−1)(E)|
Ak

(d)

≤ 2DQ,k

Ak

(e)

≤ 2DQ,k

C − D̃k−1

εc
k

(7.22)
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Inequality (c) is an application of inequality (6) of [5] (given in (2.40)), (d) follows by

combining (7.19) and (7.20) and (e) follows from (7.21).

Now consider ρk:

ρk

(f)

≤ S

εc,0
k

2
R0

k,Y c
k
(πc,0

k−1)(E)

(g)

≤ S

εc,0
k

2
(Ak −DQ,k)

(h)

≤ S

εc,0
k

2
(C − D̃k−1

εc
k
−DQ,k)

Inequality (f) follows from Remark 5.10 of [5] (given in (2.39)), (g) follows from (7.20) and

assumption (2.26); (h) follows from (7.21) and assumption (2.26).

Also note that it is easy to see that f(z) = a/(b − cz) and also f(z) = az is an Alpha

function. Thus the bound on δk is an Alpha function of D̃k−1 and DQ,k. The bound on ρk is

an Alpha function of 1
ε

since f(z) = z2 is an Alpha function; it is an Alpha function of DQ,k

and D̃k−1 since f(z) = a/(b− cz) is an Alpha function.
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