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Chapter 1: Introduction  
 

1.1. Mercury as an Environmental Contaminant 

Mercury (Hg) contamination of ecosystems is a global environmental concern and 

is the cause of the majority of fish consumption advisories in the United States (US EPA, 

2010). Though Hg occurs naturally in the environment in soils, aquatic systems, rocks 

and the atmosphere, the amount “actively” cycled through the environment has increased 

as a result of anthropogenic activities (Fitzgerald et al., 1998; Lindberg et al., 2007). The 

majority of Hg in the environment exists in inorganic forms, predominantly as elemental 

gaseous Hg (Hg
0
), and divalent ionic Hg (Hg(II)). Methylmercury (MeHg), an organic 

form, occurs as a relatively small fraction of the total Hg pool in the environment, but the 

occurrence of this toxic form is the driver of human and ecosystem health concerns. The 

prevalence of MeHg in the environment has implications for human health as MeHg is a 

neurotoxin and is classified as a potential carcinogen (US EPA, 2000). Additionally, 

MeHg is bioaccumulative and has been shown to have toxicological effects on various 

animals, particularly those feeding on fish or at higher trophic levels (Wolfe et al., 1998; 

Tan et al., 2009). Both abiotic and biotic mechanisms exist to form MeHg from Hg(II). 

Chemical methylation has been observed in aqueous, particulate and sediment 

environments in the presence of methyl donors, such as methyl iodide, dimethyl sulfide 

or certain components of organic matter (Celo et al., 2005). However, biotic methylation 

by anaerobic bacteria is the dominant pathway MeHg formation in the environment 

(Gilmour et al., 1992). Areas where anoxic conditions occur, such as aquatic sediments 

and bottom waters, are therefore sites of high MeHg production (Gilmour et al., 1992; 
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Gilmour and Riedel, 1995; Benoit et al., 2003; Heyes et al., 2004; Heyes et al., 2006; 

Hollweg et al., 2009).  

Industrial activities such as coal combustion, waste incineration and mining 

activities have led to increases in levels of Hg in the atmosphere, which is in turn the 

primary pathway of Hg to most ecosystems (Lindberg et al., 2007; Mason et al., 1994; 

Fitzgerald et al., 1998). Hg
0
, comprising approximately 98% of Hg species in the 

atmospheric pool, has a long residence time in the atmosphere, and can be transported 

over great distances, leading to contamination of even remote, unindustrialized areas 

(Wiener et al., 2003; Kolker et al., 2010). Atmospheric Hg(II) is operationally defined as 

reactive gaseous Hg (RGM) or particulate Hg (p-Hg). RGM is highly soluble and is 

delivered to surfaces as wet deposition in precipitation, while Hg
0
 and p-Hg are more 

commonly removed from the atmosphere via dry deposition (Mason et al., 1994).  

Forested ecosystems retain a high proportion of atmospherically derived Hg, first 

primarily in canopy and ground vegetation, to be later transferred to soil pools in 

throughfall or litterfall (Graydon et al., 2008; Demers et al., 2007). This leads to the 

accumulation of Hg in soils with some release occurring as soil organic carbon (SOC) is 

mobilized into the dissolved phase (Grigal, 2002; Grigal, 2003).  However, the timeline 

of Hg cycling within soils and vegetation following deposition is not well characterized 

and there is therefore uncertainty regarding the length of time it takes for Hg to be 

exported from watersheds (Hintelmann et al., 2002). Due to the large number of surfaces 

upon which Hg can be deposited and the capacity of soils to retain Hg, soils and 

vegetation together comprise a much larger pool of Hg than does the aquatic portion of 

most watersheds. This is particularly true in watersheds in which the surface area of the 
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terrestrial environment is much larger than that of the receiving water body (Kolka et al., 

2001; Grigal, 2002). Concern over impacts of MeHg on human and ecosystem health has 

led governments and agencies to consider practices that would reduce atmospheric Hg 

emissions, for example by limiting emissions from coal fired power plants. However, 

lack of understanding about the timing of Hg release from terrestrial systems makes it 

difficult to predict the impact that such controls would have on MeHg levels in aquatic 

ecosystems. The Mercury Experiment to Assess Atmospheric Loading in Canada and the 

United States (METAALICUS) in part seeks to address the uncertainty associated with 

this component of the Hg cycle. 

1.2. METAALICUS 

1.2.1. General Description 

The METAALICUS experiment is being conducted at the Experimental Lakes 

Area, Canada, a field research facility located in the boreal ecoregion of northwestern 

Ontario, Canada (49°39'35.16"N 93°43'25.75"W). The ELA is located on the Superior 

Province of the Canadian Shield. Glacial erosion has created a complex landscape, with 

many ridges and valleys that have isolated and separated watersheds creating a seemingly 

disproportionate number of headwater watersheds. Exposed outcrops are a common site 

with forests dominated by jack pine (Pinus banksiana), balsam fir (Abies cilicica), black 

spruce (Picea mariana), red maple (Acer rubrum) occupying slopes valleys and treed 

islands and an understory of alder shrubs (Alnus rugosa) and juniper (Juniperus spp). 

Soils are classified as silt loams and probably of glacio-lacustrine origin (Brunskill and 

Schindler, 1971). Pilot studies for the METAALICUS experiment began in 1999, and the 

whole-ecosystem study began in 2001 at Lake 658 (49°44'2.31"N 93°44'14.35"W) a first 

http://www.ces.ncsu.edu/depts/hort/consumer/factsheets/trees-new/acer_rubrum.html
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order lake located approximately 17 km north of the main field station (Figure 1). Lake 

658 is an oligotrophic, dimictic lake, 18.4 ha in area and approximately 13 m deep.  

The METAALICUS experiment utilized stable isotopes in a loading experiment. The 

loading rate was approximately 22 µg Hg m
-2 

year
-1

, which is roughly equivalent to 

deposition in contaminated regions of Europe and North America (Sandilands et al., 

2008). Each year from 2001 to 2006, three enriched stable isotopes of Hg were added to 

the Lake 658 system; one each to the upland (
200

Hg), the wetland (
198

Hg) and the lake 

surface (
202

Hg). The stable isotopes are discernable from ambient Hg present in the 

environment, allowing researchers to track Hg as it is transported through the terrestrial 

environment, and within the lake ecosystem.  

1.2.2. Findings to Date  

One of the immediate findings of the METAALICUS study was that the 
202

Hg 

added to the surface waters of Lake 658 was rapidly methylated and incorporated into the 

food web. Within one month of addition, Me
202

Hg was measured in sediments, 

zooplankton and benthic invertebrates, and within 2 months, Me
202

Hg was detected in 

fish tissue (Harris et al., 2007). This observation demonstrates how quickly newly added 

Hg was quickly transported to sites of methylation (anoxic bottom waters and sediments), 

methylated and taken up by organisms. This implies that increased loading of Hg to lake 

systems results in increased MeHg in organisms in the very short term (Harris et al. 

2007).    

An important finding of the METAALICUS study has been that very little 
200

Hg 

added to the upland has been detected in the lake ecosystem. Following deposition to the 

upland, concentration of 
200

Hg in discharge from the catchment was only a fraction of 
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that added, being equivalent to approximately 1% of ambient Hg within the first 8 years 

(Harris et al., 2007, this study). While the plot scale studies of Hintelmann et al. (2002) 

suggested little Hg would be released in the short term, i.e. within a year, this extremely 

slow response was somewhat unexpected, as the terrestrial upland is the primary source 

of ambient Hg to the lake. This implies that in natural systems a lag phase of unknown 

duration  occurs after Hg is deposited onto a catchment and before it is transported to 

receiving waters. The concentration of 
200

Hg in the stream draining the UP1 sub-basin 

has gradually increased in discharge from UP1 each year from 2005 to 2009 

(Krabbenhoft D., pers. comm; this study) and while it is expected to continue to increase 

in the short term, there is no definitive indication about when 
200

Hg export will reach 

steady state.  

This finding has raised several questions about the biogeochemical and 

hydrological controls on Hg transport from terrestrial to aquatic systems, and about the 

timing of the response of forested uplands to changes in Hg deposition. Because natural 

organic matter (NOM) appears to influence Hg binding, transport and bioavailability in 

the environment, an investigation of the characteristics of Hg-bound NOM in the Lake 

658 watershed is relevant to addressing these questions. 

 

1.3. The Role of NOM quality in Hg Binding and Transport 

Natural organic matter in soils, sediments and aquatic matrices are comprised of a 

heterogenous mixture of plant, fungal and algal by products, microbial metabolites and 

exudates, and represent a variety of functional groups, molecular weights and structures 

(Grandy and Neff, 2008; Kaiser et al., 2002; Kögel-Knabner, 2002). NOM is generally 
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grouped into two pools: dissolved of organic matter (DOM) and particulate organic 

matter (POM) fractions. These fractions are operationally defined and designations may 

vary. In this study 0.7 micrometer (µm) glass fiber filters (Whatman, USA) were used to 

separate DOM. Both pools are in general reactive with respect to one another and to their 

surrounding environment, being susceptible to mineralization, physical degradation, 

leaching, sorption and fractionation (Kögel-Knabner, 2002). Biogeochemical cycling of 

NOM is complex and difficult to characterize in part because structure and form are 

dynamic. Additionally, techniques to characterize NOM are usually defined 

operationally, rather than functionally. NOM extraction techniques may influence the 

composition of the material, and analytical techniques provide information about only a 

portion of the material being examined (Grandy and Neff, 2008; Floge and Wells, 2007). 

Certain techniques, such as nuclear magnetic resonance (NMR), provide information 

about overall bonding structures but lack information on molecular level composition. 

Others, such as pyrolysis techniques, are useful in providing structural information at the 

molecular level but not on the macromolecular scale (Grandy and Neff, 2008). When 

attempting to characterize NOM, techniques should therefore be chosen with great 

consideration of the purpose of the characterization, the overall goals of the study and 

with an understanding of any drawbacks. 

One method of DOM characterization involves the determination of the 

proportions of compounds in different molecular weight size classes. These are generally 

designated as low molecular weight (LMW) and high molecular weight (HMW) classes. 

HMW compounds are sometimes termed “colloids”; this generally implies the fraction 

between 10 kilodaltons (kDa) and 0.45 µm in size (Babiarz et al., 2003; Bianchi, 2007). 
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In this study, dissolved phase is operationally defined as those compounds passing 

through a 0.7 µm filter; within the dissolved phase, LMW compounds are present in 

ultrafiltrate of a 3 kDa ultrafilter and HMW compounds are between 3 kDa and 0.7 µm. 

A dalton (Da) is an atomic mass unit but can be generally correlated with diameter of 

macromolecules: a 1 nm spherical diameter is essentially equivalent to macromolecules 

with a nominal molecular weight cutoff of 1 kDa (Floge and Wells, 2007; Wells, 2002).  

Common methods to size fractionate DOM include centrifuge ultrafiltration (Miller, 

2006) and tangential flow ultrafiltration (Babiarz et al., 2003; Babiarz et al., 2001; 

Mannino and Harvey, 2000). The molecular weight of DOM has been shown to influence 

DOM mobility in watersheds, with LMW fractions generally exhibiting greater mobility 

(McCarthy et al., 1996; Kaiser et al., 2002). HMW compounds have been demonstrated 

to have lower mobility in flow through terrestrial systems because they are more likely to 

be adsorbed to soil surfaces (Kaiser et al., 2002; McCarthy et al., 1996; Lajtha et al., 

2005; Kalbitz et al., 2005). There is some evidence for a relationship between molecular 

weight distribution and the binding of metals (Sigg et al., 2000). With respect to Hg, 

HMW compounds generally have a higher affinity for Hg, though the reason for this is 

unclear (Cai et al., 1996; Babiarz et al., 2003; Chapter 2). Haitzer et al. (2003) indicate 

that HMW compounds in general contain a greater number of thiol groups, but since thiol 

content was not measured in this or other studies examining molecular weight 

distribution of Hg-bound DOM, the importance of thiols cannot be confirmed (Babiarz et 

al., 2003; Babiarz et al., 2001; Guetnzel et al., 1996; Cai et al., 1999; Choe et al., 2003).  

Another method of characterization of NOM is the analysis of lignin phenolic 

compounds. Lignin phenols are a class of compounds found in the hemicelluloses matrix 
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of the secondary cell walls of vascular plants (Wershaw, 2004). The lignin polymers 

found in NOM depend on the source and diagentic state of the material and are 

comprised of varying amounts of p-hydroxyphenolpropanoid, guaiacylpropanoid and 

syringylpropanoid monomeric units. The analysis requires cleavage of the dominant β-O-

4 bond cross-linking monomeric units, commonly by CuO oxidation or 

thermochemolysis, to produce derived phenols (Bianchi, 2007). The derived lignin 

phenols are grouped into four families: vanillyls (V), parahydroxy phenols (P), syringyls 

(S) and cinnamyls (C), the relative proportions of which in a given sample matrix reflect 

the plant/tissue type and the diagenetic state of the original source material (Bianchi, 

2007; Teisserenc, 2009). If the lignin signature of an NOM sample is known, the relative 

influence of different source materials, degradation state of material and the relative 

proportion of NOM derived from the terrestrial environment can potentially be 

established. In streams, NOM sources and the degree of DOM degradation may have 

implications for binding and transport of Hg, since the structure of DOM is altered with 

degradation and may impact availability of binding sites for metals. 

 In terrestrial and aquatic systems, the majority of Hg in oxygenated sample 

matrices exists as Hg(II) associated with NOM. In the dissolved phase, associations 

between Hg and dissolved organic carbon (DOC) concentrations have been observed in a 

variety of systems (Shanley et al., 2002; Brigham et al., 2009; Dittman et al., 2009; 

Dittman et al., 2010). There is increasing evidence that specific types or qualities of 

DOM correlate more strongly with Hg concentration than do total DOC concentrations 

(Shanley et al., 2002; Dittman et al., 2009; Ravichandran, 2004; Waples et al., 2005). 

Recent studies have focused on identifying specific characteristics of DOM that may 
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provide information on relative affinity of different types of DOM for Hg. Examples of 

methods applied to classify the types of compounds with which Hg is associated within 

NOM include XAD resins to fractionate DOM intro hydrophobic and hydrophilic acids 

and neutrals (Haitzer et al., 2003; Hall et al., 2008; Schuster et al., 2008), 
13

C NMR to 

measure aromatic carbon content (Ravichandran et al., 1998; Waples et al., 2005; Haitzer 

et al., 2003), measurement of absorbance capacity of UV light by DOM as proxies of 

hydrophobicity (Ravichandran et al., 1998; Waples et al., 2005; Dittman et al., 2009), 

molecular weight size fractionation (Babiarz et al., 2003; Guetnzel et al., 1996; Cai et al., 

1999; Choe et al., 2003), and application of lignin biomarkers to examine the role of 

degradation state in Hg binding and ascertain source areas of DOM (Ouellet et al., 2009; 

Teisserenc, 2009; Caron et al., 2008). These techniques separate DOM into different 

classes, and are followed by subsequent analysis of Hg and DOC within those fractions. 

The goal is to determine relative affinity of different types of DOM for Hg, which is 

expected to lead to more accurate understanding of the characteristics of DOM that drive 

Hg binding. 

Studies focusing on characterization of NOM associated with Hg have provided 

some indication about the characteristics of NOM that may drive the association between 

NOM and Hg. Spectral properties generally correlate with molecular weight as 

compounds with a higher proportion of HMW compounds displaying a higher 

absorbance capacity (Helms et al., 2008; Chin et al., 1994; Weishaar et al., 2003). Several 

studies have also demonstrated a correlation between compounds with high absorbance 

capacity and Hg concentrations (Ravichandran et al., 1998; Waples et al., 2005; Dittman 

et al., 2009; Shanley et al., 2020). Similarly, XAD resin techniques separate DOM into 
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hydrophobic and hydrophilic acids and neutral fractions, and studies generally show a 

more pronounced association of Hg within the more hydrophobic acid fractions 

(Ravichandran et al., 1998; Hatizer et al., 2003; Shanley et al., 2010). HMW compounds 

as determined by ultrafiltration techniques also contain higher Hg concentrations 

(Chapter 2; Cai et al., 1996; Babiarz et al., 2003; Guentzel et al., 2003; Choe et al., 2003). 

Application of lignin phenol biomarkers to examine correlations between diagenetic state 

of NOM and Hg binding is a more recent technique, and relatively few studies exist 

(Teisserenc, 2008; Ouellet et al., 2009). Ouellet et al. (2009) found that Hg is more 

strongly correlated with fresher POM and DOM, as indicated by lignin parameters of 

degradation, while Teisserenc (2008) found that correlations between Hg and diagenetic 

state of sediment organic matter varied in different watersheds characterized by different 

land use types. In general, results from several studies have implicated lability of DOM 

as a predictor of binding in different environmental matrices across geographical areas. 

Though organic matter is difficult to characterize and techniques for size determination 

and specific linkages are not exact, information gained through studies can be applied to 

improve models of Hg cycling in specific environments. However, the evolution of Hg-

DOM association within watersheds remains vague and to understand the controls on Hg 

flux and likely subsequent bioavailability in aquatic ecosystems, further advances in this 

field are required. Understanding the continuum and evolution of DOM and associated 

Hg during transport has major implications for predicting the long term impacts of 

changes in atmospheric Hg deposition.  

The goal of this study was to characterize NOM associated with Hg along a 

watershed transect in the Lake 658 system to better understand biogeochemical controls 
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on Hg export from the upland. Samples were examined in the dissolved phase (in 

subsurface flow, streamflow and in the water column), and in the solid phase in soils in 

the Lake 658 watershed. Characteristics of DOM that influence the capacity of DOM to 

transport Hg from the point of entry into SSF to the receiving lake were examined. 

Molecular weight size fractionation was applied to determine the relative reactivity and 

mobility of LMW and HMW compounds in the Lake 658 upland and the implications for 

transport of associated Hg within those fractions. Lignin biomarkers were applied to 

determine degradation state of organic matter in soil and the DOM in subsurface waters, 

released from selected points within the watershed and surface waters along flowpaths to 

the lake. Biomarkers are also applied to examine the degradation state of the sediment as 

this is a long term repository for terrestrial NOM and Hg delivered to the lake. This study 

was conducted in the METAALICUS watershed and advances research towards one of 

the main goals of the project: to understand timing of release of deposited Hg from the 

terrestrial upland to the Lake 658 system.  

 

1.4. Research Questions 

The goal of this study was to investigate characteristics of NOM that are related to 

the binding, transport and fate of Hg in the terrestrial environment. Of more specific 

interest are broad spectrum characteristics of DOM that improve our ability to predict the 

affinity of Hg to DOM and qualities of DOM that influence its mobility through 

watersheds. In the Lake 658 watershed, I am interested in shallow subsurface and 

intermittent stream flow which is the most important transport pathway of water from the 
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Lake 658 upland to lake components of the ecosystem. Two main questions were 

investigated in this thesis: 

1. What is the role of DOM quality in controlling the movement of Hg within and 

from the Lake 658 upland?  
 

To understand the evolution of the Hg-DOM association, we measured dissolved 

phase Hg and DOM concentrations and UV absorbance properties, in different molecular 

weight size fractions of DOM along a watershed transect that encompassed subsurface 

water flow, stream water flow and the water column of Lake 658. This technique is 

advantageous because it allows the determination of DOM and Hg concentrations and 

UV absorbance properties in specific molecular weight size fractions from the same 

unique sample.  

To further characterize NOM associated with Hg along this transect, we applied 

lignin biomarkers as proxies of source material of DOM. Specifically, we examined S/V 

ratios, an indicator of relative source of angiosperms and gymnosperms, in soils, soil 

leachate, SSF, streamflow and the lake to determine whether there were correlations with 

Hg concentration in those matrices. We investigated the potential for lignin biomarkers 

contained in NOM to be applied as proxies of the degradation state of NOM in the Lake 

658 watershed. To do this we used C18 solid phase extraction, combined with TMAH 

thermochemolysis. The appropriateness of the method as an effective tool in the study of 

lignin phenol analysis in these environmental matrices will be discussed.   

2. Does the relationship between natural organic matter and Hg binding and 

transport vary between recently deposited (isotopically labeled) and historic 

(ambient) Hg in the Lake 658 watershed? 
 

Anthropogenic Hg deposited to watershed surfaces is a major source of Hg to 

lakes but evidence suggests there is a time lag between deposition and release from 
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terrestrial environments (Hintelmann et al., 2002; Harris et al., 2007; Munthe et al., 

2007). The time lag appears to be controlled by processes associated with carbon cycling 

so we will use the isotopically labeled Hg in the METAALICUS watershed to examine 

how qualities of DOC influence the fate and transport of both newly deposited Hg and 

Hg that has resided in the watershed for a longer period of time. 
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Figure 1.1. Location of ELA on a map of Canada and an aerial photograph of Lake 658 

Watershed. The watershed boundary is indicated by the black line, the wetland portion by 

the dashed yellow line and the lake by the white line.  
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Chapter 2: Characteristics of Dissolved Organic Matter Controlling Hg 

Transport in the Lake 658 Upland.   
 

2.1 Introduction 

Mercury (Hg) transported from the terrestrial environment is a significant source 

of Hg to aquatic systems, though the hydrological and biogeochemical controls of Hg 

transport are not well characterized. The transformation of Hg to methylmercury (MeHg) 

occurs predominantly in anoxic aquatic environments, such as bottom waters and 

sediments (Gilmour et al., 1992; Gilmour and Riedel, 1995; Benoit et al., 2003; Heyes et 

al., 2004; Heyes et al., 2006; Hollweg et al., 2009). Health concerns over MeHg have led 

governments and agencies to consider practices to reduce anthropogenic Hg emissions in 

an effort to reduce MeHg production. However, the lack of understanding about the 

transport of Hg from terrestrial to aquatic ecosystems is a source of uncertainty in 

predicting the effect that such controls will have. It is important to understand the length 

of time Hg is retained in the terrestrial environment prior to export in order to accurately 

develop model predictions about long term effects of reduced atmospheric Hg emissions 

on resultant MeHg production and subsequent accumulation in food webs.  

The Mercury Experiment to Assess Atmospheric Loading in Canada and the United 

States (METAALICUS), being conducted in the Lake 658 watershed at the Experimental 

Lakes Area (ELA) Canada, is designed in part to address the question of the timing of the 

watershed response to reduced atmospheric emissions by examining Hg cycling within 

terrestrial systems following deposition. An enriched stable isotope of Hg (
200

Hg) was 

added to the upland each year from 2001 to 2006, at rate of approximately 22 µg Hg m
-2 

year
-1

, approximately equivalent to deposition in contaminated regions of Europe and 

North America (Sandilands et al., 2008). 
200

Hg is discernable from ambient Hg occurring 
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in the environment, allowing researchers to track Hg as it is transported through the 

terrestrial environment and to the lake ecosystem. From this study, there is evidence that 

Hg resides in watersheds for a significant period of time before being delivered to aquatic 

systems. Three years following deposition of 
200

Hg in the Lake 658 watershed, the 

majority of Hg in the uplands was bound within upper soil horizons, primarily the litter 

and upper organic layers that do not contribute significant amounts of water to flow 

(Harris et al., 2007; Oswald et al., 2010; submitted). As of 2009, 
200

Hg was detected in 

trace quantities in streamflow from the Lake 658 upland, being equivalent to no more 

than 5% of ambient Hg concentration. Because it is known that ambient Hg from the 

upland is the dominant source of Hg to Lake 658, these studies indicate that a significant 

delay exists between the time Hg is deposited from the atmosphere to initial points of 

contact (canopy and ground vegetation), incorporated into soils and translocated to zones 

of flow generation. 

Inputs of Hg to terrestrial systems occur as wet or dry deposition to ground and 

canopy vegetation, which then deliver Hg to soil surfaces as leaves and needles fall to the 

forest floor and senesce (Grigal, 2003; Graydon et al., 2009). Hg is also delivered to soils 

in direct precipitation and throughfall, as precipitation removes some particulate Hg from 

foliar surfaces with passage through the canopy (Graydon et al., 2008). Hg accumulates 

in soils, making them an important pool in terrestrial systems, and subsequent release 

from soils an important source of Hg to aquatic bodies in most watersheds (Obrist et al., 

2009; Smith-Downey et al., 2010). As soil organic matter is degraded into dissolved 

organic matter (DOM) fractions, it may be transported in flow to downstream areas, 

carrying associated Hg with it (Akerblom et al., 2008; Skyllberg et al., 2003; Kalbitz and 
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Wennrich, 1998; Aastrup et al., 1991). Water passing through organic soils horizons 

generally contribute the majority of soil derived subsurface flow to downstream areas in 

many watersheds (Akerblom et al., 2008; Froberg et al., 2003; Tipping et al., 2005; Schiff 

et al., 1999; Oswald et al., 2010, submitted), therefore DOM-Hg compounds occurring in 

those horizons are more likely to be exported from the terrestrial system. The length of 

time it takes for Hg to reach soil layers where flow generation occurs is unknown, but 

results from the METAALICUS study do provide some indication. In 8 years following 

deposition, 
200

Hg was detected only in trace quantities in upland flow, however, 

concentrations (in streamflow) have been gradually increasing since 2002 (Krabbenhoft, 

D., pers. comm.) implying that more 
200

Hg has reached zones within the soil profile from 

which it can be mobilized and exported in greater quantities. 

Release of Hg from soil layers occurs primarily with transport of natural organic 

matter (NOM) (Shanley, 2002; Brigham et al., 2009; Dittman et al., 2010; Dittman et al., 

2009; Akerblom et al., 2008; Fleck, 1999; Allan and Heyes, 1998; Schuster et al., 2008; 

Shanley et al., 2008; Bushey et al., 2008). In the Lake 658 upland, DOM components, 

defined in this study as NOM passing through a 0.7 µm filter, are most important with 

respect to Hg transport, which is the case in some other forested systems (Bushey et al., 

2008), while in others transport via particulate organic matter is also significant (Shanley 

et al., 2002; Schuster et al. 2008). There is increasing evidence that the chemical 

character of DOM influences the strength of the association between Hg and DOM, 

which in turn influences Hg transport and fate in watersheds (Ouellet et al., 2009; 

Dittman et al., 2009; Dittman et al., 2010; Ravchandran et al., 2004). The role of DOM in 

Hg binding and transport needs to be better understood in order to accurately model Hg 
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behavior in the natural environment and the response of watersheds to changes in 

atmospheric Hg deposition.  

Natural organic matter in forested environments is a heterogeneous mixture of 

decomposition products of vascular plants, microbial metabolites, and fungal by-

products. Common organic complexes represented include lignins, lipids, carbohydrates, 

proteins and amino acids, which span a wide range of molecular weights and chemical 

structures (Kalbitz et al., 2000). As it ages and moves downslope, terrestrial DOM 

continually undergoes dynamic processing through microbial and photochemical 

degradation, leaching, sorption and fractionation (Kaiser et al., 2002; Grandy and Neff, 

2008; Kalbitz et al., 2000). Due to its complexity, the characterization of DOM has 

proven difficult. Most analytical methods in common use have inherent drawbacks, often 

relying on operationally defined measures, or providing information about only a portion 

of the material being examined (Grandy and Neff, 2008). It is therefore important that 

results are interpreted and applied with caution and with acknowledgement of any 

shortcomings.  

The measurement of spectral properties of DOM, such as absorbance of 

ultraviolet light a specific wavelength (SUVA) and chromophoric DOM (CDOM) are 

commonly applied to describe DOM. The capacity of DOM to absorb UV light has been 

shown to correlate positively with the molecular weight and the aromaticity of DOM 

(Chin et al., 1994; Weishaar et al., 2003), qualities which affect both the mobility of 

DOM compounds and its capacity to bind metals (McKnight et al., 1994; McCarthy et al., 

1993; Ravichandran et al., 1998). CDOM is defined as the absorption coefficient of DOM 

at a given wavelength; similarly, SUVA represents the absorption coefficient of DOM at 
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a specific wavelength, normalized to the concentration of dissolved organic carbon 

(DOC) of the sample. Both SUVA and CDOM are applied as proxies of the aromatic 

carbon content and lability of DOM (Del Vecchio and Blough, 2004; Ma et al., 2010; 

Weishaar et al., 2003; Chin et al., 1994). Chin et al. (1994) also demonstrated a strong 

positive correlation between SUVA280 and molecular weight as determined by high 

pressure size exclusion liquid chromatography. In general, compounds with higher 

measured absorbance are expected to be more labile with respect to degradation, 

comprised of more aromatic structures and comprised of a greater proportion of HMW 

compounds. With respect to Hg, SUVA254, along with aromatic carbon content of DOM, 

was correlated with the rate of dissolution of cinnabar, solid mercuric sulfide, induced by 

DOM (Ravichandran et al., 1998). In a similar study, SUVA280, along with degree of 

aromaticity, as determined by 
13

C-nuclear magnetic resonance (NMR), and molecular 

weight, as determined by high pressure size exclusion liquid chromatography (HPSELC), 

was correlated with rate of cinnabar dissolution by DOM (Waples et al., 2005). Recently, 

SUVA254 was found to be strongly correlated to Hg concentrations in streams to such an 

extent that the authors postulate using SUVA254 as a proxy of Hg concentration (Dittman 

et al., 2009).  

The molecular weight distribution of DOM in natural waters has been shown to 

affect its mobility in terrestrial systems, and its ability to bind metals (Babiarz et al., 

2003; Guentzel et al., 1996; Cai et al., 1999; Choe et al., 2003; Kaiser et al., 2002; Sigg et 

al., 2000). Though molecular weight fractions are operationally defined and size cutoffs 

may vary, in general, high molecular weight (HMW) compounds are generally comprised 

of a higher proportion of hydrophobic, aromatic compounds that have higher affinity for 
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both Hg and soil surfaces (Kaiser et al., 2002; Cai et al., 1999; Babiarz et al., 2003). Low 

molecular weight (LMW) compounds have been demonstrated to be more mobile in 

subsurface flow (Kaiser et al., 2002; McCarthy et al., 1993; Lajtha et al. 2005). Molecular 

weight distribution also provides information about the age, reactivity, and bioavailability 

of DOM, as predicted by the reactivity size continuum hypothesis (Mannino and Harvey, 

2000; Tulonen et al., 1992; Amon and Benner, 1996, Amon and Benner, 1994, Tranvik, 

1990). HMW compounds represent material that is younger in age, more labile and more 

reactive, while LMW compounds are generally older and more recalcitrant. In studies of 

Hg binding in different molecular weight size fractions, HMW compounds have been 

demonstrated to have greater importance in dissolved phase Hg binding (Babiarz et al., 

2003; Guetnzel et al., 1996; Cai et al., 1999; Choe et al., 2003). The above studies 

generally demonstrate a correlation between Hg concentrations and measures of 

reactivity and molecular weight of NOM. However, the mechanism driving the apparent 

higher affinity of more reactive HMW compounds for Hg is not clear.  

Though a correlation between HMW DOM and Hg has been demonstrated in a 

variety of environmental systems, no studies have specifically examined the role of 

molecular weight distribution of Hg and DOM in subsurface flow, which represents a 

conduit for Hg transport from terrestrial to aquatic systems. While HMW compounds are 

expected to more favorably bind Hg, they are also expected to have a greater affinity for 

soil surfaces (McKnight et al., 1992, Meier et al., 1999; Kaiser et al., 1996). The overall 

role of molecular weight distribution of DOM in Hg transport from terrestrial to aquatic 

systems will therefore depend on both the affinity of DOM for Hg and its susceptibility to 
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sorption on soil surfaces, which subsequently prevents its transport and that of associated 

Hg.  

The purpose of this study was to investigate the relationships between DOM 

structural character and Hg transport in a first-order boreal watershed. The study was 

designed to assess the size and age of Hg-DOC complexes moving downslope in this 

environment. Molecular weight distribution and absorbance properties of DOC were 

measured in samples collected along a watershed transect: from subsurface flow in 

different areas of the upland, to areas of hydrological convergence (representing an 

intermediary between subsurface flow and the outlet), streamflow draining the catchment, 

and in the lake water column. Additionally, having the opportunity to distinguish between 

ambient Hg and 
200

Hg in this watershed, the study investigates variations in the role of 

DOM character on newly deposited versus historic Hg in this watershed.   

 

2.2 Materials and Methods 

2.2.1. Study Site  

The study was conducted as part of the METAALICUS project which is taking 

place in the Lake 658 watershed (49°43.95′ N, 93° 44.20′ W ) (Figure 2.1a) situated 

approximately 18 km from the Experimental Lakes Area (ELA) base field station in 

northwestern Ontario, Canada. Lake 658 is a first order boreal lake, 8 ha in area, and the 

terrestrial upland and wetland comprise 43 ha. The terrestrial upland is comprised of 14 

ha portion of old growth forest, dominated by mature black spruce (Picea mariana) and 

balsam fir (Abies balsamea), a 21 ha area which was burned in 1983 and now supports 

young jack pine (Pinus banksiana), and a 6 ha area deciduous stand, subject to logging in 
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1978 and comprised of red maple (Acer rubrum), white birch (Betula papyrifera) and 

trembling aspen (Populous tremuloides). A 2 ha wetland, which drains into the west 

basin, supports a mixed stand of black spruce, wetland alder (Alnus sp) and tamarack 

(Larix laricnia). Thin podzolic soils dominate the upland and are underlain by pink 

Precambrian granodiorite (Brunskill and Schindler, 1971). 

2.2.2. Field Sampling 

Zero tension lysimeters were installed in organic soil horizons throughout the 

upland of the Lake 658 watershed in 2006 and 2008. The zero tension lysimeters collect 

only soil pore water, indicated here as subsurface flow (represented in figures and tables 

as SSF) that is likely to drain saturated soil horizons and flow down slope. Location of 

lysimeter installation was determined with the use of Light Detection and Ranging 

(LiDAR) maps, which allowed us to identify subsurface flowpaths (Sandilands et al., 

2008). Lysimeters were installed in three different sub-basins to include different forest-

soil assemblage types present in the Lake 658 upland (Figure 2.1a, Richardson et al., 

2009). Lysimeter samples were collected in double bagged clean 500 ml PETG (glycol-

modified polyethylene terephthalate) bottles attached to lysimeters by acid washed C-

flex® tubing. The bottles were placed within plastic boxes dug into the ground to protect 

the samples from heat and sun exposure. A total of 13 lysimeters were installed – five in 

the UW sub-basin, five in the Upland 1 (UP1) sub-basin and three in the C2 sub-basin 

(Figure 2.1b). Water was also collected from flow at two areas of hydrologic 

convergence where diversion walls were built to constrain subsurface flow through 

shallow moss layers but water passing through these sites may also contain an overland 

flow component (Figure 2.1b). These samples were collected using 500-ml PETG bottles 
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stored in doubled plastic bags. The hydrologic convergence sites are grouped as one 

sample type and denoted “HC” in figures and tables. Streamflow was also collected in 

double bagged PETG bottles at the gauged weir near the terminus of UP1 (Figure 2.1b). 

Samples were collected repeatedly during three sampling periods: May 7 to- 18; June 24 

to July 6; and October 14 to 28; 2009. Lake water column samples were collected using 

acid cleaned Teflon tubing and a peristaltic pump at depths of 2 m at sites CB-W, UW, 

UP1, C2 and 13 m at CB-W once per field trip (Figure 2.1b).  

 Immediately upon collection, samples were transported to the chemistry 

laboratory at the ELA field site, stored refrigerated and in the dark, then filtered through 

pre-combusted 0.7 µm glass microfiber filters (GF/F, Whatman, USA) within 24 hours. 

Filtered water samples were analyzed for THg concentration, DOC concentration, and 

DOM spectral absorbance. Aliquots of the filtered samples were further size-fractionated 

using centrifuge ultrafiltration to 3kDa.  The ultrafilters (regenerated cellulose, Amicon 

Millipore, USA) required cleaning prior to use (Miller, 2006). Filters were cleaned once 

with a 15 ml aliquot of dilute solution of ultra trace grade HCl, rinsed with three 

subsequent aliquots of Milli-Q de-ionized water to remove residual acid and finally 

conditioned with a 15 ml aliquot of the sample (Appendix A). Subsequent 15 ml aliquots 

of the sample were then centrifuged at 3000 rpm and a constant temperature of 25
0
C on a 

fixed rotor centrifuge (IEC Model CL, GSR Technologies, Canada) for approximately 45 

minutes. Three filtrates from each sample were combined into a single PETG bottle with 

subsamples taken for DOC, absorbance and Hg analysis. All samples for DOC and 

SUVA analysis were stored frozen in 20-ml amber vials until analysis. Samples for Hg 

analysis were acidified with ultra trace grade HCl (Baker Company, USA) to 0.5% by 
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volume. In the data presentation, samples analyzed after filtration through 0.7 µm filter 

are designated “<0.7 µm fraction”, those ultrafiltered through 3 kDa ultrafilters are 

labeled “low molecular weight” (LMW). The fraction in between 3 kDa and 0.7 µm is 

labeled “high molecular weight” (HMW), and was calculated by difference.   

2.2.3. Laboratory Methods 

2.2.3.1 Reagent Preparation 

De-ionized water used for reagent preparation was reagent grade Milli-Q. 

Bromine monochoride (BrCl) was prepared by dissolving 27 g of reagent grade 

potassium bromide (KBr) in 2.5 L concentrated hydrochloric acid (HCl). Prior to reagent 

preparation, KBr was muffled overnight at 250
0
C, removed while still hot and 

immediately dissolved in HCl. Stannous chloride (SnCl2) solution was prepared by 

dissolving 100 g of reagent grade SnCl2 in 500 ml of de-ionized water and 50 ml of 

concentrated Baker Instra-analyzed HCl (Baker Company, USA). The solution was 

purged overnight with ultra high purity nitrogen (N2) at 300 ml/minute. Hydroxylamine 

hydrochloride (NH2OH*HCl) was prepared by adding 30 g of reagent grade 

hydroxylamine hydrochloride to 100 ml de-ionized water and 100 µl of SnCl2. The 

solution was purged overnight with ultra high purity N2 at 300 ml/minute. Mercury 

standards were prepared from a stock solution obtained from National Institute of 

Standards and Technology (NIST. Standards used for standard curve generation were 

prepared with concentrations of 0.5, 1, 5, 10, 20 and 50 ng L
-1

 into analytical vials 

containing 250 µl BrCl and 10 µl NH2OH*HCl. The quality of the curve was based on 

attaining r
2
 > 0.999. 
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2.2.3.2. Total and Isotopic Hg analysis  

Total Hg was measured using cold vapor atomic fluorescence spectrometry 

(CVAFS) on a Tekran Model 2600 Preconcentration/Detector Unit with a Model 2620 

Autosampler (Tekran Instruments, Canada). The instrument performs in-line reduction of 

Hg(II) to Hg
0
 by SnCl2 for capture of Hg

0
 onto a gold trap and subsequent thermal 

desorption, and analysis by CVAFS. The Tekran is interfaced with a Hewlett Packard 

4500 ICP-MS (Agilent Technologies, USA), to which the sample was carried after 

passing through the fluorescence cell in the Tekran, and analyzed for Hg isotopes. 

Concentrations of individual isotopes were measured by ICP-MS, then relevant isotope 

concentrations were calculated using the methods of Hintelmann et al. (2003). Briefly, 

ambient Hg is measured by using 
201

Hg as an ambient Hg surrogate. Because a small 

amount of 
201

Hg is present in the spike solution, contributions of 
201

Hg from the spike 

were mathematically subtracted from the total 
201

Hg measured in the sample and the 

remaining 
201

Hg used to calculate the ambient concentration. Quantification was 

performed using the external standards, and quality assurance/quality control measures 

included matrix blanks, calibration blanks, sample spikes and replicate samples (every 10 

– 12 samples). Replicate sample concentrations were required to be within 10% of each 

other and spike recoveries between 90 and 110%. 

 2.2.3.3. Measurement of Chemical Properties of Aquatic Samples 

DOC concentration on all filtered and ultrafiltered samples was measured on a 

Shimadzu Total Organic Carbon Analyzer 5000 (Shimadzu Corporation, Japan) at 

Nutrient Analytical Services at the Chesapeake Biological Laboratory. Absorbance at 

wavelengths from 270 to 750 nm was measured on all filtered and ultrafiltered aquatic 
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samples using clean 1 cm quartz cuvettes on a Cary 4E UV-visible spectrophotometer 

(Varian Inc., USA) at the Smithsonian Environmental Research Center. CDOM was 

calculated as the absorption coefficient at 440 nm, which is the absorbance at 440 nm, 

adjusted for scattering and path length of the cuvette. SUVA was calculated for each 

sample as the absorption coefficient at 280 nm divided by the corresponding DOC 

concentration of the sample. Absorbance measurements were taken only on <0.7 µm and 

LMW fractions, as samples in the HMW fraction were not collected for analysis. For 

DOC and Hg, HMW concentration was obtained by subtracting the concentration in the 

LMW from that in the <0.7 µm fraction; since absorbance is not an additive property, as 

Hg and DOC are, the same method is not appropriate to obtain absorbance in HMW 

fraction. 

2.2.4. Statistical Analyses 

 Student’s t test was applied to test for the difference between two means in 

normally distributed data. For non-normally distributed data, the Mann-Whitney U test 

was applied to test for differences between two means and Kruskal-Wallis was applied to 

test for differences between more than two means. Simple linear regression was applied 

to examine correlations between DOC and Hg concentrations (Figure 2.2) and between 

spectral properties and Hg concentrations (Figure 2.10). In all cases, significance was 

evaluated at p = 0.05.   

 

 

2.3. Results 

To examine the relationship between Hg and DOM characteristics in the Lake 658 

watershed, the data were examined in two general ways. First, the relationships between 
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Hg and DOC concentration and DOM spectral properties were investigated in water from 

subsurface flow using data from all three sub-basins. Second, changes in Hg-DOM 

properties in water collected along a flow path were examined by comparing subsurface 

water in the UP1 catchment with water from the downslope convergence areas and the 

main stream channel.  Subsurface flow from the UW and C2 sub-basins could not be 

compared directly to water delivered to the lake since discharge from those catchments 

occurs as diffuse flow through shallow horizons and could not be sampled directly. 

2.3.1. Relationships Between Hg and DOC Concentrations in the Lake 658 Upland. 

 

Hg and DOC concentrations were significantly correlated in subsurface waters 

throughout the Lake 658 upland in water collected in the spring, summer and fall (Figure 

2.2). Both Hg and DOC concentrations in subsurface waters spanned a wide range in all 

seasons (Figure 2.2) and were more variable than those at zones of convergence and in 

the stream (Figure 2.3, 2.4). Concentrations of Hg and DOC were generally highest 

during drier periods in the fall. In all three seasons, DOC concentrations were 

significantly higher in upland subsurface waters than in either streamwater or the 

downslope convergence sites (Figure 2.3). Hg concentrations followed the same general 

pattern, and were significantly higher in upland subsurface waters than in downslope 

water in summer and fall (Figure 2.4).  

2.3.2.  Molecular Weight Distribution of Hg and DOC Along a Watershed Transect 

While the samples collected in the UP1 sub-basin were collected as being 

representative of a continuum of water transport from subsurface flow (collected in 

lysimeters upslope), through hydrologic convergence zones and then to the stream, the 

water collected may not actually represent a continuous transport pathway. The 
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subcatchments from which water may flow and contribute to the runoff that drains the 

catchment are not always continuously hydrologically connected (Oswald et al., 2010, 

submitted). The samples are however indicative of the differences in DOC character and 

DOC and Hg concentrations in these water flow classes.  

DOC concentrations in both HMW and LMW fractions decrease from subsurface 

flow to flow at convergence zones and the stream (Figure 2.5). However, the proportion 

of DOC in the LMW fraction increases downslope, with the proportion in the stream 

greater than in the convergence zones, and greater than subsurface flow in all seasons 

(Figure 2.5 – 2.6). The proportion of DOC in LMW and HMW fractions is most 

consistent between sample types in the summer, when DOC concentrations are lowest, 

while in spring, streamflow contains a high proportion of LMW compounds (Figure 2.6). 

Through the summer and fall, the proportion of DOC in the LMW fraction continues to 

increase from the stream to the water column, while in the spring, the proportion of 

LMW DOC decreases through the season (Figure 2.6). Similar to DOC, Hg 

concentrations generally decrease from subsurface flow to flow at convergence zones and 

in the stream in both size fractions (Figure 2.7). Hg concentrations are consistently 

significantly higher in HMW fractions in all sample types along the watershed transect 

(Figure 2.7). In water from all sample locations and seasons, the Hg content (µg) relative 

to DOC (g) is significantly higher in the HMW (Hg/DOCHMW) than in the LMW 

(Hg/DOCLMW) fraction (Figure 2.8). Average Hg/DOCHMW are slightly higher in the fall 

than in spring and summer, while Hg/DOCLMW  is lowest in the fall (Figure 2.8). 

Hg/DOCLMW and Hg/DOCHMW concentrations are relatively consistent between sample 

types and seasons (Figure 2.8). In comparison to sample matrices in the upland, Hg is 
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more evenly distributed between molecular weight size fractions of DOC in the Lake 658 

water column: average annual Hg/DOCLMW is 0.17 ug Hg g
-1

 C and average annual 

Hg/DOCHMW concentration is 0.27 ug Hg g
-1

 C (data not shown).  

2.3.3. Correlations Between Hg Concentration and Spectral properties in the Lake 658     

Upland 

There is a general trend of decreased chromophoric DOM along the watershed 

transect. <0.7 µm CDOM440 values were highest in subsurface flow, and values were 

sequentially lower in convergence zones, streamflow and the water column sites (Figure 

2.9). In general, there are correlations between spectral properties and Hg concentrations 

in subsurface flow throughout the Lake 658 upland (Figure 2.10). CDOM440 is a better 

predictor of Hg binding than SUVA280 (data not shown) and CDOM is significantly 

correlated with Hg concentration in all seasons in the <0.7 µm fraction but only in the 

LMW fraction in the spring (Figure 2.10). 

2.3.4. 
200

Hg in the Lake 658 Upland 

200
Hg was detected in only 53 of a total of 121 water samples collected in the 

Lake 658 upland and not detected in any samples taken from the water column of the 

lake. Overall, 
200

Hg concentrations were low in all sample classes; subsurface flow, 

convergence zone and streamflow water samples being 1.08 +0.09 ng L
-1

, 0.75 + 0.14 

and 0.89 + 0.13 (mean + std error) respectively. Concentrations were highest in 

subsurface flow in UP1 being significantly higher than concentrations in flow at 

convergence zones and in the stream (Table 2.1).  Of the MW fractionated samples in 

which 
200

Hg was detected, it was detected in the LMW fraction in only 10 samples. 
200

Hg 

was not observed in the water column in any season. There were no correlations between 

200
Hg concentration and CDOM440 or DOC concentration.  
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Samples containing 
200

Hg were compared with those in which 
200

Hg was not 

detected (Table 2.1). Significant differences in the DOC concentration and CDOM440 

value existed between the two groups of samples, with samples containing 
200

Hg 

exhibiting higher DOC concentrations and higher CDOM. Samples containing 
200

Hg 

were also characterized by higher SUVA280 and a lower proportion of DOC in the LMW 

fraction, though differences were not significant.  

 

2.4. Discussion 

2.4.1.   Variations in DOC and Hg Concentrations Along a Watershed Transect 

In general, these findings support the widely recognized notion that dissolved 

phase complexation of Hg in oxic waters is controlled by DOC (Figure 2.2). DOC 

concentration accounted for about half of the variability observed in Hg concentrations in 

subsurface flow in the Lake 658 upland. The strength of the Hg-DOC correlation was not 

as strong as some studies that examined only streamflow (Dittman et al., 2009; Dittman 

et al., 2010) but was similar to those reported in studies examining a wide range of DOC 

and Hg concentrations as in subsurface flow (Babiarz et al., 2001, Akerblom et al., 2008; 

Fleck et al., 1999). Since it is expected that only a portion of DOC partakes in Hg 

binding, deviations in the correlation between Hg and DOC is not unexpected and implies 

that DOC concentration alone is not sufficient to predict Hg binding in these sample 

matrices.  

Overall, DOC and Hg concentrations were higher and more variable in subsurface 

flow than in flow at convergence zones and in the stream (Figures 2.3-2.4). Overland 

flow, subject to direct precipitation, contains lower Hg and DOC concentrations since 
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precipitation contains relatively low Hg concentrations and negligible DOC. Samples 

containing an overland flow component, such as those in convergence zones and at the 

stream, are diluted by water lower in Hg and DOC, resulting in lower concentrations of 

both. Also, more continuous flow at those two site classes leads to more consistent solute 

concentrations. The concentration of Hg and DOM in subsurface flow is controlled by the 

amount of soluble Hg and soluble NOM available in the hydrologicaly conductive soil 

layer during a flow event. The concentrations will depend on the duration of an event, the 

duration of drying cycles between events allowing the resupply of Hg and NOM through 

oxidation, and the amount of water moving through the layer during an event. Thus 

changes in any of these factors could result in different concentrations of Hg and DOC 

observed (Boyer et al., 1996; McGlynn and McDonnell, 2003; Akerblom et al., 2008). 

Concentrations of DOC and Hg are therefore higher and more variable in subsurface flow 

than in flow at convergence zones and in the stream.  

Composition of DOM in subsurface flow water also appears to differ from that of 

DOM in streamflow and in flow at zones of convergence. DOM in subsurface flow is 

consistently comprised of a lower proportion of LMW DOC (Figures 2.5, 2.6), and a high 

proportion of chromophoric DOM (Figure 2.9), implying that DOM exported in the 

stream is more degraded, more recalcitrant and older than that in subsurface flow in the 

UP1 sub-basin (Mannino, 2000; Amon and Benner, 1996; Del Vecchio and Blough; 

2004, Weishaar et al., 2003; Chin et al., 1994). The organic matter leaving the Lake 658 

watershed has undergone significant processing in the upland before being exported as 

DOM, which is consistent with observations made in other boreal forest systems (Schiff 

et al., 1997; Sanderman et al., 2008; Palmer et al., 2001). The continued processing of 
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DOM in transit may be in part explained by the findings of Oswald et al. (2010, 

submitted) that the movement of water in the watershed is controlled by “fill and spill”. 

Water flows between subcatchments or contributing areas only when a storage threshold 

is reached; DOM is therefore subject to degradation prior to export from each component 

(Oswald et al., 2010, submitted). The primary source of water, and therefore DOC and 

Hg, in streamflow draining the UP1 sub-basin is a terminal depression near the stream 

that collects water from various contributing areas of the catchment. Thus, it can be 

expected that once DOM compounds reach the terminal depression, they are more 

degraded, having undergone significant processing in other depressions before reaching 

the stream. 

The higher proportion of LMW compounds in the stream water, as compared to 

subsurface flow, suggests that in accordance with studies of mobility of different types of 

DOM (McCarthy et al., 1993; McKnight et al., 1994; Kaiser et al., 2002), HMW 

compounds have an overall reduced mobility along the watershed transect. This finding is 

supported by the higher CDOM recorded in water from subsurface flow than in water 

collected at the hydrologic convergence zones and in the stream. Thus, DOM with higher 

absorbance and more HMW compounds is less mobile in general. The trend is consistent 

across seasons except in the summer when CDOM440 of water from convergence zones is 

equivalent to that of stream water in the <0.7 µm fraction, and lower in the LMW fraction 

of stream water (Figure 2.9). This deviation from the general trend of a lower proportion 

of HMW DOC further down the watershed transect is not unexpected, as during the 

summer when dry periods are likely to result in the hydrological isolation of many soil 
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pockets, and leave differences between the water character at convergence zones and the 

stream to be driven by local factors.  

The observed depletion of HMW DOC with transport through the upland is 

expected to have implications for associated Hg. Despite the preferential loss of HMW 

DOC over LMW DOC, the HMW fraction transports a larger amount of Hg into the lake 

(Figure 2.7). Relative to DOC concentration, Hg content is much higher in HMW 

fractions across upland sample types and across seasons (Figure 2.8). Though the relative 

extent of this enrichment appears to vary somewhat with transport along the watershed 

transect, (Figure 2.8), Hg/DOCHMW is not significantly different between subsurface 

flow, flow at convergence zones or the stream in any season. This implies that as LMW 

and HMW compounds sorb to soil surfaces during transport, associated Hg sorbs with it, 

resulting in consistent Hg/DOCHMW and Hg/DOCLMW concentrations. Greater relative 

importance of HMW fractions in Hg retention has been observed in a variety of other 

ecosystems (Guentzel et al., 1996; Cai et al., 1999; Stordal et al., 1996; Babiarz et al., 

2003; Babiarz et al., 2001).  

2.4.2. Export of Hg and DOC Compounds to Lake 658 

Water in the Lake 658 water column is comprised of a higher proportion of DOC 

in the LMW fraction and lower CDOM values when compared with upland runoff 

(Figure 2.6). This implies that DOC in the lake is at a more advanced diagenetic state 

than that exported from the UP1 sub-basin. In comparison to sample matrices in the 

upland, the enrichment of Hg in HMW fractions of DOC was less pronounced. The fate 

of Hg entering the lake cannot be ascertained from this data, but variations in the relative 

proportion of Hg in different molecular weight fractions between the stream and the 



34 

 

water column imply that Hg is subject to further physical, chemical and biological 

processes upon entry into the lake. The distribution and size fractionation of Hg in the 

water column will affect lake Hg cycling, though exact implications are unclear from this 

study.  

2.4.3. Spectral Properties and Hg Concentrations 

CDOM440 was a better predictor of Hg concentration (Figure 2.9) than SUVA280, 

which was only significantly correlated with Hg/DOC concentrations in the 0.7 µm 

fraction in the spring (p= 0.0087) and in the LMW fraction in the summer (p = 0.0008). 

The results in this study tend to indicate that Hg binding may in part be controlled by the 

chromophoric portion of DOM, which generally represents HMW, aromatic structures 

(Weishaar et al., 2003; Chin et al., 1994; Spencer, R., pers comm). The weakness of the 

correlation between Hg/DOC and SUVA is somewhat in contrast to other studies. Studies 

that demonstrate a strong correlation between Hg and SUVA values in streams also 

contain a lower magnitude and range of spectral properties and DOC concentrations 

(Dittman et al., 2009; Dittman et al., 2010). This implies that DOM composition was 

more homogenous in those sample matrices, while in subsurface flow measured in our 

systems, a wider range of DOC concentrations and spectral properties was observed, 

implying a greater range of structures and compounds. Though in general, spectral 

properties appear to be related to Hg concentration in subsurface flow, spectral properties 

are not sufficient to predict the portion of DOM controlling Hg binding. CDOM440 and 

SUVA280 are not quantitative measures of molecular weight or aromaticity, though they 

are generally accepted as proxies of those characteristics (Weishaar et al., 2003; Chin et 
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al., 1994). Studies employing spectral proxies should therefore be coupled with other, 

more precise measures of DOM composition. 

2.4.4. 
200

Hg in the Lake 658 Watershed 

 Though the small sample number makes it difficult to examine patterns of 

molecular weight distribution and 
200

Hg binding, the lack of detection in the LMW 

fraction in the majority of samples that contain 
200

Hg implies that, like ambient Hg, 
200

Hg 

is found largely in the HMW fraction. It also appears that like ambient Hg, 
200

Hg 

concentrations are higher closer to sites of release and due to its reactivity may be readily 

lost via sorption to soil surfaces.  The lack of correlation between 
200

Hg and DOC 

concentrations or other parameters may be a result of the small sample number present in 

each season, and implies that 
200

Hg has not yet reached steady state with the existing Hg 

pool since it does not appear to behave similarly to ambient Hg. However, though no 

significant correlations exist between 
200

Hg concentrations and DOC qualities, data in 

Table 2.2 indicate that 
200

Hg is generally found in samples comprised of a greater 

proportion of fresher and younger NOM. This data tends to support the hypothesis based 

on distribution of 
200

Hg within the soil profile (Chapter 3, Oswald et al., 2010, in 

preparation) that 
200

Hg is associated with fresher NOM in upper soil horizons. 
200

Hg has 

not yet been translocated to lower organic horizons where the majority of flow within the 

soil profile is generated, and thus has not been exported from soils in significant 

quantities to a degree that it is not yet detected in the lake (Harris et al., 2007). 

 

2.5. Conclusions 

This study provides valuable insight about the role of characteristics of DOM that 

affect Hg binding and transport in the Lake 658 watershed. LMW compounds are more 
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mobile along a transport pathway through the UP1 sub-basin, while HMW compounds 

consistently contain more Hg per unit of DOC. Though the quality of DOM changes with 

transport in UP1, the Hg/DOC ratio does not vary widely within molecular weight 

fractions or between sample types, implying that despite the reactivity of DOC, 

association of Hg within molecular weight size fractions does not change with transport. 

While this gives the appearance that Hg does not move between DOC complexes or 

ligands, this finding does not imply that Hg is not actively cycled, but rather that the 

association of Hg with HMW compounds is maintained through long term diagenesis. 

The importance of HMW compounds is in general agreement with the relatively few 

studies that have examined Hg binding in molecular weight fractions of DOC, though 

none have examined this trend in subsurface flow. The cause of the observed higher 

affinity of HMW compounds for Hg is not clear from this study, but may be a function of 

relative thiol content. Future research should focus on further characterization of LMW 

and HMW fractions of DOC, including the measurement of thiol content to determine 

whether its concentration is limiting in LMW fractions.  

This study demonstrates that DOM compounds present in flow at different points 

along a transport pathway increase in degradation state with transport, implying that 

DOM-Hg compounds being exported from the UP1 sub-basin are older and more 

recalcitrant than that flowing through upland soils. This finding is supported by the 

observation of low levels of 
200

Hg detected in flow 8 years following depositions, and by 

results from other METAALICUS studies (Harries et al., 2007; Hintelman et al., 2002). 

This has implications for the recovery of terrestrial systems to reduced atmospheric Hg 
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deposition and suggests that the recovery time of watersheds in response to reduced 

atmospheric deposition is substantial.  

DOC is exported from the UP1 sub-basin primarily as LMW compounds. DOC 

composition and concentration, as well as Hg concentrations vary between streamflow 

draining the UP1 sub-basin and the water column of Lake 658, implying that Hg-DOC 

compounds entering the lake are reactive and subject to various types of processing. The 

fate of terrestrially derived Hg-DOC compounds that enter the lake is unclear but has 

important implications for bioavailability of Hg to sulfate reducing bacteria in sediments 

of Lake 658. The proportion of HMW to LMW DOC may provide a means of identifying 

the proportion of Hg entering lakes from the terrestrial environment that is bioavailable. 

The application of 
13

C and 
14

C isotopes would provide more precise information on the 

age of the material being export from the upland. Future research to investigate the 

bioavailability of terrestrially derived Hg should focus on the relationship between the 

activity of sulfate reducing bacteria and molecular weight distribution of Hg-bound as 

well as age of Hg-bound DOC.  
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Figure 2.1a) Map of the Lake 658 watershed showing general forest types and contour 

lines.  
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Figure 2.1b) Map of the Lake 658 watershed showing UW, UP1 and C2 sub-basins, 

location of subsurface flowpaths and zoomed in area of upland showing sites of 

collection of subsurface flow, flow at zones of hydrologic convergence, streamflow and 

lake water. Map courtesy of C. Oswald. 
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Figure 2.2. Hg and DOC concentrations in the <0.7 µm fraction in subsurface flow from 

all lysimeters in the Lake 658 upland sampled in 2009; the r
2 

presented is for complete 

data set.  
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Figure 2.3. DOC concentration in the <0.7 µm fraction (mean + std error) in different 

sample types in the UP1 sub-basin. Sample types are subsurface flow, collected from 

lysimeters (SSF); mixed subsurface and overland flow through convergence zones (HC) 

collected directly from diversion walls constraining subsurface and overland flow, and 

pure overland flow (OF) collected from the gauged weir at the terminus of the UP1 sub-

basin. Mann-Whitney U test was applied to determine significance of difference in DOC 

concentrations between sample types and seasons. Data sets not significantly different 

from one another are grouped by the same symbol.  
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Figure 2.4. Hg concentration in the <0.7 µm fraction (mean+ std error) in different 

sample types in the UP1 sub-basin. Sample types are subsurface flow, collected from 

lysimeters (SSF); mixed subsurface and overland flow through convergence zones (HC) 

collected directly from diversion walls constraining subsurface and overland flow, and 

pure overland flow (OF) collected from the gauged weir at the terminus of the UP1 sub-

basin. Mann-Whitney U test was applied to determine significance of difference in DOC 

concentrations between sample types and seasons. Data sets not significantly different 

from one another are grouped by the same symbol. 
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Figure 2.5. DOC concentration in HMW and LMW fractions (mean + std error) along a 

watershed transect in the Lake 658 watershed. LMW = low molecular weight (< 3 kDa); 

HMW = high molecular weight (3 kDa< HMW < 0.7 µm). Sample types are subsurface 

flow, collected from lysimeters (SSF), mixed subsurface and overland flow through 

convergence zones (HC) collected directly from diversion walls constraining subsurface 

and overland flow; and pure overland flow (OF) collected from the gauged weir at the 

terminus of the UP1 sub-basin.  
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Figure 2.6. Proportion of DOC in the LMW fraction in different sample types in the UP1 

sub-basin and in surface water of Lake 658. All bars represent at least 3 samples. Sample 

types are subsurface flow, collected from lysimeters (SSF); mixed subsurface and 

overland flow through convergence zones (HC) collected directly from diversion walls 

constraining subsurface and overland flow; and pure overland flow (OF) collected from 

the gauged weir at the terminus of the UP1 sub-basin. 
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Figure 2.7 Hg concentration in HMW and LMW fractions (mean + std error) along a 

watershed transect in the Lake 658 watershed. LMW = low molecular weight (< 3 kDa); 

HMW = high molecular weight (3 kDa< HMW < 0.7 µm). Data sets not significantly 

different from one another are grouped by the same symbol. Sample types are subsurface 

flow, collected from lysimeters (SSF); mixed subsurface and overland flow through 

convergence zones (HC) collected directly from diversion walls constraining subsurface 

and overland flow; and pure overland flow (OF) collected from the gauged weir at the 

terminus of the UP1 sub-basin. 
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Figure 2.8. Hg/DOC concentrations across the watershed transect in HMW and LMW 

fractions demonstrating greater relative importance of HMW fractions in Hg binding. 

Data sets not significantly different from one another are grouped by the same symbol. 

Sample types are subsurface flow, collected from lysimeters (SSF); mixed subsurface and 

overland flow through convergence zones (HC) collected directly from diversion walls 

constraining subsurface and overland flow; and pure overland flow (OF) collected from 

the gauged weir at the terminus of the UP1 sub-basin. 
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Figure 2.9. Decreasing CDOM440 in the <0.7 µm fraction along watershed transect in the 

UP1 sub-basin. Sample types are subsurface flow, collected from lysimeters (SSF); 

mixed subsurface and overland flow through convergence zones (HC) collected directly 

from diversion walls constraining subsurface and overland flow; and pure overland flow 

(OF) collected from the gauged weir at the terminus of the UP1 sub-basin. 
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Figure 2.10. Correlations between CDOM440 (m

-1
) and Hg concentration (ng L

-1
) in <0.7 

µm and LMW (<3 kDa) fractions in all subsurface flow samples in the Lake 658 upland. 
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 Table 2.1. Average 
200

Hg concentration in samples from the Lake 658 upland. 

 Sample 

type 

n number of 

samples 

containing 
200

Hg 

Average 
200

Hg 

conc (ng L
-1

) 

(mean + std error) 

UP1 SSF 37 25 1.01 + 0.12 

UP1 HC 24  7 0.77 + 0.14 

UP1 OF 10  3 0.89 + 0.13 
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Table 2.2. Contrast between upland flow samples containing 
200

Hg and those that do not 

contain 
200

Hg.  

Parameter  Samples with 
200

Hg  

Samples without 
200

Hg  

p value  Test  

% LMW  53.1 + 2.5  56.7 + 2.8  0.34  Student’s t 

CDOM440 (m
-1

)  20.6 + 1.9  12.9 + 0.9  0.02  Mann-Whitney 

SUVA280(L mg
-1

 

m
-1

)  

3.0 + 0.1  2.7 + 0.2  0.15  Student’s t 

DOC (mg L
-1

)  42.3 + 4.1  36.0 + 4.7  0.03  Mann-Whitney 
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Chapter 3: Distribution of Ambient and Isotopically Labeled Hg in 

Soils in the Lake 658 Upland. 
 

3.1. Introduction 

 Deposition from the atmosphere is the primary source of Hg to the terrestrial 

environment, which is in turn the dominant Hg source to the aquatic system in most 

watersheds (Grigal, 2002). Within terrestrial systems, soils comprise a significant pool of 

Hg, the magnitude of which is estimated to have increased substantially since 

preindustrial times (Smith-Downey et al., 2010). Hg complexation within soils is 

dominated by soil organic carbon (SOC), evidenced by the strong correlation between 

SOC and Hg concentrations in different soil horizons across land use types and 

geographical areas (Grigal, 2002; Smith-Downey et al., 2010; Biester et al., 2002). 

Release of SOC and associated Hg, particularly in the dissolved phase, is an important 

vector of Hg transport to aquatic systems, wherein Hg methylation occurs. However, the 

connections between Hg deposition to terrestrial systems and resultant concentrations of 

MeHg in aquatic systems are poorly understood. Thus, an investigation of SOC and Hg 

cycling within soils and biogeochemical factors affecting their release will contribute to 

understanding Hg dynamics in terrestrial systems. 

In forested systems, SOC is produced from decomposition of canopy and ground 

vegetation and by leaching of carbon complexes from live standing biomass (Kaiser et 

al., 1996). Atmospherically derived Hg associated with those components is incorporated 

into soil pools as decomposition occurs (Smith-Downey et al., 2010; Hintelmann et al., 

2002; Graydon et al., 2008). Hg deposition to soils is therefore delayed by its cycling 

within vegetation and litterfall. A pilot study in which a stable Hg isotope was applied to 
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a small catchment at the Experimental Lakes Area (ELA) demonstrated that one year 

after deposition, the majority of Hg was associated with vegetation, whereas soils 

contained only a small proportion (Hintelmann et al., 2002). 3 years following deposition 

of a stable isotope of Hg in the Lake 658 watershed, the majority of Hg in the uplands 

was bound within upper soil horizons, primarily the litter and upper organic layers 

(Harris et al., 2007). These litter horizons do not appear hydrologically important and do 

not contribute significant amounts of water to flow (Oswald et al., 2010, submitted). 

These studies indicate a significant delay exists between timing Hg is deposited from the 

atmosphere to initial points of contact (canopy and ground vegetation) and its 

incorporation into soils. During this time period, the Hg-organic matter complex is prone 

to significant environmental processing.    

Within the soil horizon, SOC continues to undergo degradation during vertical 

translocation (Sanderman et al., 2008). This leads to increase in diagenetic state of 

organic matter with movement downwards in the soil profile and a concurrent decrease in 

SOC as carbon is mineralized. In general, Hg concentrations mirror SOC concentrations, 

and are higher in organic as opposed to the mineral horizons (Akerblom et al., 2008; 

Grigal, 2002; Oswald et al., 2010, in prep). Bulk density and SOC concentration are 

inversely correlated, which makes mineral layers, with low organic carbon concentrations 

but high density, a significant pool of Hg on a mass basis. Strong sorptive stabilization 

due to surface properties of mineral phases in these soil layers inhibits the release of 

dissolved organic matter (DOM) compounds (Kalbitz et al., 2005). Furthermore deeper 

soil layers generally do not contribute to lateral water flow, thus once the DOM and 

associated Hg migrate deep enough, the potential for DOM export is reduced (Biester et 
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al., 2002; Kalbitz et al., 2000; Kalbitz et al., 2005; Kiaser and Guggenberger, 2000). 

Conversely, Hg occurring in organic horizons could be mobile, as subsurface flow that 

supplies surface waters is primarily generated from those layers (Akerblom et al., 2008; 

Froberg et al., 2003; Tipping et al., 2005; Schiff et al., 1999). As SOC undergoes 

partitioning to the dissolved phase, associated Hg is also mobilized (Akerblom et al., 

2008; Skyllberg et al., 2003; Kalbitz and Wennrich, 1998; Aastrup et al., 1991). 

Akerblom et al. (2008) measured consistent ratios of Hg to organic carbon in source area 

soils and subsurface flow, indicating that Hg-ligand binding does not change as 

partitioning into the dissolved phase occurs. However, this has not been widely observed 

since relatively few field studies contain data on Hg and organic carbon in both source 

area soils and flow generated through soils. In this study, field measurements of Hg and 

organic carbon were made in both soil and subsurface flow components to study changes 

in the nature of the Hg-NOM association in boreal soils.  

Lignin phenols are a class of compounds found in the hemicelluloses matrix of 

the secondary cell walls of vascular plants (Wershaw, 2004) (Figure 1). Processing for 

analysis involves cleavage of the dominant β-O-4 bond that cross-links monomeric units 

by cupric oxide (CuO) oxidation or thermochemolysis. The derived phenolic compounds 

are grouped into four families: vanillyls (V), parahydroxy phenols (P), syringyls (S) and 

cinnamyls (C). Relative proportions of some compounds are specific to plant and tissue 

type: S compounds are present only in angiosperm tissue, while V compounds occur in 

both angiosperms and gymnosperms. The ratio of S to V can therefore be used to 

determine the relative influence of angiosperm and gymnosperm sources. S/V of pure 

source material (ie fresh tissue) is less than 0.1 for angiosperms and ranges between from 
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0.8 to 3.8 for gymnosperms (Bianchi, 2007). As tissues from various sources break down 

and are incorporated into soil organic matter, ratios are altered leaving soils with unique 

lignin signatures.  

In addition to being applied as tracers of the source material for NOM, lignin 

signatures are useful as proxies of degradation since specific lignin phenol compounds 

are selectively degraded by bacteria and fungi during translocation in soil horizons 

(Teisserenc, 2009; Houel et al., 2006; Ouellet et al., 2009). Demethylation induced by 

brown rot fungal degradation leads to the selective loss of vanillyl and syringyl 

methoxylated groups, while p-hydroxy phenols (P) remain unaltered. Thus, P/(V+S) can 

be applied as a proxy of the diagenetic state of NOM. 3,5 dihydroxybenzoic acid (3,5-

Bd), not defined as a lignin phenol, is a product of soil degradation derived from tannins 

and other flavonoids (Ouellet et al., 2009). Increase in 3,5-Bd in soils has been shown to 

occur with increased degradation of plant tissues, and specifically an increase in 3,5-Bd 

relative to V compounds has been applied as a proxy for the diagenetic state of NOM 

(Teisserenc, 2009). A final proxy of degradation that can be utilized from lignin phenols 

analysis is the ratio of vanillic acid to vanillic aldehyde, as aldehydes are converted to 

acids during degradation because of side chain oxidation by white rot and brown rot fungi 

or microbial processing. Lignin compounds are highly refractory compounds and 

undergo minimal alteration as they are transported from the terrestrial to the aquatic 

environment and delivered to sediments (Ertel and Hedges, 1984). Because lignins retain 

the unique chemical structure specific to the plant and tissue from which they are 

generated, they are useful as biomarkers of NOM, either with respect to source area 

material or as parameters of degradation (Teisserenc, 2009; Ouellet et al., 2009; Caron et 
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al., 2008; Dittmar and Lara, 2001). As stated, soils are likely the most useful indicator of 

source signature of lignins, since they contain information on the state of material present 

at the site of generation of DOC compounds, as opposed to raw source material (e.g. 

plant matter) which undergoes in situ processing before DOC is released. 

 With respect to Hg specifically, lignin biomarkers have been used to identify the 

source material for Hg-NOM compounds and to determine whether correlations between 

Hg concentration and diagenetic state of NOM occur (Teisserenc, 2009; Ouellet et al., 

2009; Caron et al. 2008). Caron et al. (2008) applied lignin biomarker signatures to 

demonstrate that erosion of agricultural soils may be a source of elevated Hg in an 

aquatic system. Ouellet et al. (2009) found correlations between Hg concentrations and 

total lignin content in the water column of boreal lakes, implying that Hg in lakes is 

predominantly terrestrially derived. They also found an inverse correlation between Hg 

and diagenetic state of organic matter, which they postulate is a result of logging 

disturbance in the watershed which caused the release of fresh soil organic matter and 

associated Hg. Teisserenc (2009) found a direct correlation between Hg and diagenetic 

state of material as indicated by 3,5-Bd/V in some lake sediments of undisturbed 

watersheds, indicated that Hg is more strongly associated with highly degraded organic 

material in those matrices. These findings indicate that land use in the watershed has 

implications for transport of NOM and Hg and emphasize the importance of 

understanding the quality of the NOM moving through and from watersheds. 

In Chapter 2 it was described that the molecular weight distribution of DOC was altered 

within soil profile, such that LMW compounds were released in greater proportions than 

HMW compounds. The majority of DOM migrating in subsurface flow was adsorbed, as 
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shown by the loss of the high molecular weight fraction, while older, LMW compounds 

were more mobile. There was also evidence that Hg transported by the DOM was also 

lost and the Hg reaching downstream areas was older. In this chapter, lignin biomarkers 

are applied to further test these hypotheses. S/V and (Ad/Al)van ratios were applied to 

determine whether Hg content in various matrices varies with respect to source area of 

NOM and whether these ratios could be applied as a tracer of source of subsurface flow 

within the soil profile. C18 solid phase extraction (SPE) was conducted for isolation of 

lignin compounds, which were subsequently processed for analysis by 

tetramethylammonium hydroxide (TMAH) thermochemolysis. Recovery of isolated 

lignin compounds with C18 SPE is generally high, ranging from 73 to 101% (Louchouarn 

et al., 2000; Spencer et al., 2010). Applicability of this method for the determination of 

degradation state of NOM is discussed in section, and details on the chemical reactions 

involved in TMAH thermochemolysis are given in Appendix B.) 

 

 3.2. Materials and Methods 

3.2.1 Study Site 

 The study was conducted as part of the Mercury Experiment to Asses 

Atmospheric Loading in Canada and the US (METAALICUS) at the Lake 658 watershed 

(49°43.95′ N, 93° 44.20′ W ) (Figure 2), situated approximately 18 km from the 

Experimental Lakes Area (ELA) base field station in northwestern Ontario, Canada. Lake 

658 is a first order boreal lake, 8 ha in area, and the terrestrial upland and wetland 

comprise 43 ha. The terrestrial upland is comprised of 14 ha portion of old growth forest, 

dominated by mature black spruce (Picea mariana) and balsam fir (Abies balsamea), a 21 
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ha area which was burned in 1983 and now supports young jack pine (Pinus banksiana), 

and a 6 ha area deciduous stand, subject to logging in 1978 and comprised of red maple 

(Acer rubrum), white birch (Betula papyrifera) and trembling aspen (Populous 

tremuloides). A 2 ha wetland, which drains into the west basin, supports a mixed stand of 

black spruce, wetland alder (Alnus sp) and tamarack (Larix laricnia). Thin podzolic soils 

dominate the upland and are underlain by pink Precambrian granodiorite. As part of the 

METAALICUS project, the watershed was spiked with enriched stable isotopes of Hg at 

a rate of approximately 22 µg Hg m
-2 

year
-1

, which is roughly equivalent to deposition in 

contaminated regions of Europe and North America (Sandilands et al., 2008). Each year 

from 2001 to 2006, one of each of the isotopes was added to the upland (
200

Hg), the 

wetland (
198

Hg) and the lake surface (
202

Hg). The isotopes are discernable from ambient 

Hg present in the environment, allowing researchers to track Hg as it is transported 

through the terrestrial environment, and within the lake ecosystem. This study examines 

proportion of 
200

Hg in upland samples. 

3.2.2 Field Sampling  

Zero tension lysimeters were installed in organic soil horizons throughout the 

upland of the Lake 658 watershed in 2006 and 2008 (Figure 3.2b, indicated as subsurface 

flow collection sites). The zero tension lysimeters collect only soil pore water, indicated 

here as subsurface flow that is likely to drain saturated soil horizons and flow down 

slope. Location of lysimeter installation was determined with the use of Light Detection 

and Ranging (LiDAR) maps, which allowed us to identify subsurface flowpaths 

(Sandilands et al., 2008). Lysimeters were installed in three different sub-basins to 

include different forest-soil assemblage types present in the Lake 658 upland (Figure 
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3.2a, Richardson et al., 2009). Lysimeter samples were collected in double bagged clean 

500 ml PETG (glycol-modified polyethylene terephthalate) bottles attached to lysimeters 

by acid washed C-flex® tubing. The bottles were placed within plastic boxes dug into the 

ground to protect the samples from heat and sun exposure. A total of 13 lysimeters were 

installed – five in the UW sub-basin, five in the Upland 1 (UP1) sub-basin and three in 

the C2 sub-basin (Figure 3.2c). Water was also collected from flow at two areas of 

hydrologic convergence where diversion walls were built to constrain subsurface flow 

through shallow moss layers but water passing through these sites may also contain an 

overland flow component (Figure 3.2c). These samples were collected using 500-ml 

PETG bottles stored in doubled plastic bags. Streamflow was also collected in double 

bagged PETG bottles at the gauged weir near the terminus of UP1 (Figure 3.2c). Samples 

were collected repeatedly during three sampling periods: May 7 to- 18; June 24 to July 6; 

and October 14 to 28; 2009. Lake water column samples were collected using acid 

cleaned Teflon tubing and a peristaltic pump at depths of 2 m at sites CB-W, UW, UP1, 

C2 and 13 m at CB-W once per field trip (Figure 3.2b).  

Soil samples for a leachate experiment were collected in May, 2009 from each of 

the three sub-basins (sites not shown). Soils were taken at a depth of approximately 10 

cm and include an integrated sample of fresh litter/live layer and surface organic soil. 

Samples were placed in acid washed plastic containers (Ziploc) and submerged in Milli-

Q water. Samples were stored in the dark and refrigerated at 4
0
C for approximately 4 

weeks, after which time leachate water was removed. Leachate and lysimeter waters were 

subsampled for Hg, DOC and lignin phenolic content. Samples for Hg and DOC analysis 

were filtered through pre-combusted 0.7 µm GF/F filter and acidified to 0.5% by volume 
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with ultra trace grade HCl in 250-ml PETG bottles. DOC samples were stored frozen in 

20-ml amber vials. Sub samples for lignin phenol analysis were filtered through 0.2 

polycarbonate filters (Millipore), acidified to pH 2 using ultra trace grade HCl and stored 

at 4 
0
C in preparation for C18 SPE extraction.  

Soil samples were also collected from sites throughout the Lake 658 upland 

(Figure 3.2.b). Samples were taken from live/litter, organic and mineral horizons based 

on visual assessment of the soil profile. Designations were later made based on SOC 

concentration, measured after collection (Table 3.1)  

3.2.3. Laboratory Methods 

3.2.3.1. Processing of Samples for Hg Analysis  

Soils and sediment samples were digested on a hot plate at 250 
o
 F for 6-8 hours 

in 5 - 10 mL of 70:30 nitric acid: sulfuric acid. Samples were cooled and brought up to a 

total volume of 50 ml in Milli-Q water. Approximately 24 hours prior to analysis, 

digested soil extracts and water (subsurface flow and leachate) samples were brominated 

with bromine monochloride (BrCl) to oxidize residual organic matter. Hydroxylamine 

hydrochloride (NH2OH*HCl) was added to neutralize excess BrCl prior to analysis. A 

Tekran Model 2600 Cold Vapor Atomic Fluorescence Spectroscopy (CVAFS) was used 

to perform inline reduction of Hg with tin chloride (SnCl2) and Hg detection was done by 

both CVAFS and ICP-MS (for isotopic analysis) methods by plumbing the instrument in 

sequence. The standard reference material NIST 1944 (New York/New Jersey waterway 

sediment, NIST, USA) was analyzed along with digestion blanks, blank spikes, sample 

spikes and duplicates were measured as part of the quality assurance/quality control 

protocol. Duplicate SRM concentrations and samples concentrations were required to be 



60 

 

within 10% of each other and SRM concentrations were within 10% of the reported 

concentration of 3.4 mg kg
-1

. Digestion blank concentrations were 2.22 + 0.22 ng L
-1

 

(mean + std deviation) and calibration blanks were 0.12 + 0.1 ng L
-1

. Sample and blank 

spike recoveries were between 90% and 110%. Standards used for standard curve 

generation were prepared with concentrations of 0.5, 1, 5, 10, 20 and 50 ng L
-1

.The 

quality of the curve was based on attaining r
2
 > 0.999. Hg concentration in soil sample is 

denoted HgS and Hg concentration in aquatic samples in the dissolved phase is denoted 

HgD. 

3.2.3.2. Lignin Phenol Processing by C18 SPE and TMAH Thermochemolysis 

Concentration and isolation of lignin phenols in aquatic samples (leachate, 

subsurface flow, streamflow and water column samples) was conducted using the method 

outlined by Louchouarn et al. (2000).  A C18 column with 10 g of sorption material 

composed of octadecyl carbon moieties (C18) chemically bonded to a silica support (C18-

SPE Mega-Bond Elut, Varian, USA) and a bed volume of 60 ml was used for lignin 

phenol isolation. Methanol (MeOH, Ultra Resi-Analyzed, Baker, USA) was used to 

activate the columns and for subsequent sample elution. Columns were pretreated with 

100 ml of MeOH, then 50 ml of Milli-Q water that was acidified to pH 2 with reagent 

grade HCl (Instra-Analyzed, Baker, USA). Filtered samples were also acidified to pH 2 

using HCl, then 300-500 mL of sample were poured into the headspace of the pretreated 

C18 columns while the columns were still wet. Samples were drained through the column 

by gravity, allowing sufficient time for sorption of the hydrophobic DOM compounds. 

After extraction, a small amount of Milli-Q water was used to keep the column moist, the 

bottom and top of the column were wrapped with Parafilm, and the columns were stored 
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refrigerated. Prior to sample elution, columns were allowed to warm to room 

temperature, then 50 ml of MeOH was used to elute DOM into pre-combusted round 

bottom flasks. Samples were evaporated (Buchi R-210 Rotavapor, USA) to 

approximately 2-4 ml, then frozen at -80
o
C for 3-4 hours prior to being freeze dried for 

24 hours at a vacuum of 100 millitorres (Virtis Benchtop Freeze Dryer, USA). Soil (and 

sediment) samples, having been frozen after collection, were freeze dried directly. The 

freeze dried samples were transferred to pre-combusted 10-ml amber vials in 2.0 ml of 

MeOH. Samples were dried under nitrogen, brought up in a known volume and an aliquot 

of the sample containing approximately 2 mg was transferred to ampoules for TMAH 

thermochemolysis. Ampoules were made from 48 inch hollow Pyrex rods (9 mm o.d., 

VWR Scientific) by breaking the tube into 8 inch long sections. One end of each was fire 

polished, while the other end was sealed using a flame. A dimple was formed at 

approximately 6 inches from the sealed end to be used to flame seal the ampoule under 

vacuum following thermochemolysis.  

After sample addition, approximately 1 mg of each of three internal standards was 

added to ampoules: ethyl vanillin, p-coumaric acid and nonadecanoic acid (Sigma-

Aldrich, USA). 200 µl of TMAH (Sigma-Aldrich, USA, 25 wt % solution in MeOH) was 

added to each ampoule immediately before the samples were put under vacuum. Samples 

were evacuated for 3 hours and then flame sealed and heated in a GC oven at 250
o
C for 

30 minutes. Ampoules were cooled to room temperature, cracked open and samples were 

transferred with three rinses of dichloromethane to pre-combusted amber vials. Samples 

were dried under nitrogen, then brought up in 50uL of N,O-

bis(trimethylsilyl)trifluoroacetamide (BSTFA, Sigma-Aldrich, USA) 10% by volume 
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solution in pyridine (Sigma-Aldrich, USA) and the sample was heated in a heating block 

at 50
0
C for 30 minutes to induce trimethylsilation of any unmethylated hydroxyl groups. 

Samples were dried under nitrogen then brought up in a known volume of 

dichloromethane for subsequent GC-MS and GC-FID analysis.  

3.2.3.3. Lignin Phenol Analysis by GC-FID and GC/MS 

Lignin compounds were quantified and identified using the approach outlined by 

Mannino (2000). The procedure involves quantification by gas chromatography with 

flame ionization detection (GC-FID) (Agilent 6890N Network GC system, USA) and 

identification by Gas Chromatography Mass Spectrometry (GC-MS) (Agilent 6890 

Series GC system coupled to an Agilent 5973 Network Mass Selective Detector, USA) 

operated in electron ionization mode. For GC-FID detection a 60 m DB-5MS fused silica 

column (0.32 mm internal diameter, 0.25 mm film thickness, J&W Scientific, USA) with 

carrier gas (hydrogen) flow rate at 2 ml min
-1

 and with four step temperature ramp of 

10
0
C min

-1
 from 50 

0
C to 120

0
C followed by 3

0
C min

-1
 to 200

0
C and 4

0
C min

-1
 to 300

0
C 

was used. For GS-MS helium was used as the carrier gas.  

 The lignin compounds analyzed and quantified included vanillin (G4), 

acetovanillone (G5) and vanillic acid (G6) from the vanillyl (also known as guiacyl) 

family, and syringin (S4), acetosyringone (S5) and syringic acid (S6) from the syringyl 

family. Unlike the more traditional CuO oxidation method to measure lignin phenols, the 

TMAH thermochemolysis technique applied in this study induces methylation of all 

hydroxy groups, leaving compounds present in the sample as phenols indistinguishable 

from those present in the sample as 3,4-dihydrodxy or 3,4,5-trihydroxy compounds. As a 

result, the lignin signal measured from fresh and degraded lignin from the same source 
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material will be identical when measured by TMAH thermochemolysis. This precludes 

the application of ratios of lignin compounds that have been implicated as parameters of 

degradation in other studies. P/(V+S), for example, produces a different signal from fresh 

and degraded lignin, when measured by CuO oxidation, but is identical when measured 

by TMAH thermochemolysis (see Appendix B for details on TMAH thermochemolsyis 

reactions). 

3,5-Bd/V is another parameter of degradation applied in studies (Ouellet et al., 

2009, Teisserenc, 2009, Caron et al., 2008). 3,5-Bd, a product of soil decomposition, the 

likely precursors of which are tannins and other flavonoids with hydroxy groups present 

on alternate positions on the ring. 3,5-Bd has been shown to increase in proportion to 

diagenetic state of NOM in soil matrices (Teisserenc, 2009, Houel et al., 2006). Thus, the 

3,5-Bd content is expected to increase with degradation, while the V content decreases, 

making it an effect tracer of degradation. However, tannin compounds, the parent 

material of 3,5-Bd are themselves subject to methylation by TMAH thermochemolysis, 

rendering them indistinguishable from 3,5-Bd. Additionally, TMAH thermochemolysis 

prevents the detection of changing V content with degradation, as stated above. The 

influence of tannins likely to affect the signal of 3,5-Bd and the inability to distinguish 

between degraded and fresh V compounds make TMAH thermochemolysis ineffective at 

detecting changes in 3,5-Bd/V with degradation. A more detailed explanation with 

specific test identifying the phenomena is presented in Appendix B.   

3.2.4. Statistical Analysis 

Student’s t test was applied to test for differences in Hg and DOC concentrations 

between subsurface flow and leachate samples. These data were normally distributed. 
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The Mann-Whitney U test was applied to test for differences in Hg and organic carbon 

content among soils as these data were not normally distributed due to small sample size. 

Significance was evaluated at p = 0.05.  

 

3.3. Results 

3.3.1. Distribution of Ambient and 
200

Hg in Soils  

SOC concentrations were applied to designate soil horizons as live/litter, organic 

or mineral horizons (Table 3.1). The relatively low carbon concentration in the organic 

soil horizon implies that the material sampled represents lower organic horizons (A 

horizons). The samples were taken on bulk and reflect visual layer continuity rather than 

depth. This sampling approach may not have captured the gradient of Hg penetration 

resulting from increased anthropogenic deposition as upper organic horizons are not 

represented. Still, a wide range of SOC concentration was present and ambient Hg 

concentration was significantly correlated with SOC concentration across soil horizons 

(Figure 3.3), while 
200

HgS concentration was not (r
2
 = 0.1598, p = 0.1250). In general, 

ambient and 
200

HgS exhibited different distributions in upland soils, indicating that 
200

Hg 

does not reflect the behavior of the larger Hg pool. The concentration of 
200

Hg in the 

live/litter horizon was more than 10 times that in the organic horizon, while ambient Hg 

concentration in the live/litter was approximately twice that of organic soils (Figure 3.4). 

Ambient HgS/SOC concentration was not significantly different between litter and 

organic horizons, while in the mineral horizon they were higher and significantly 

different than both litter and organic horizons (Figure 3.5). 
200

HgS/SOC concentrations 

were significantly different between live/litter and organic horizons, with live/litter 
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containing the highest HgS concentration; 
200

Hg was not detected in mineral horizons 

(Figure 3.5).    

3.3.2. Release of Hg from Soils in Subsurface Flow and Soil Leachate 

Soil leachate from the upper soil horizon was obtained by submerging soil in water 

to enhance physical degradation. We assumed negligible biological degradation because 

samples were stored at 4
0
C and negligible carbon and Hg loss via volatilization or 

photochemical reduction since samples were covered and stored in the dark. The soil 

leachate was compared to water obtained from lysimeters, which also contain DOM 

extracted from soils, however the lysimeters contain additive water, meaning it has passed 

between horizons and is less discrete than the leachate. Subsurface flow was also subject 

to dilution and antecedent moisture conditions will influence DOM constituents. Leachate 

on the other hand represents stagnant conditions, not likely to be encountered in these soil 

environments and thus absolute concentrations will likely exceed those of normal runoff. 

On average, leachate samples contained DOC, ambient Hg and 
200

Hg concentrations well 

above those observed in subsurface flow waters (Table 2). However, ambient Hg/DOC 

and 
200

Hg/DOC concentrations were not significantly different between subsurface flow 

and leachate samples.  

3.3.3 Lignin Phenolic Compounds  

S/V and (Ad/Al)van was measured in soils, soil leachate and subsurface flow in 

UP1 samples as biomarkers of source material. (Ad/Al)van values did not vary 

significantly between soil and subsurface flow samples, but values were significantly 

higher in leachate samples than both soil and subsurface flow waters (Table 3.3). S/V 

also did not vary widely between soil horizons, source areas or sample types, with values 
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falling between 0.03 and 0.55 (mean: 0.18 +0.06) (Figure 3.6). Average S/V was 0.12 + 

0.03 when soils were combined and 0.11 + 0.02 in subsurface flow. In UP1 samples, S/V 

and (Ad/Al)van (leachate samples excluded) did not vary widely among sample types, 

implying little modification occurs along the watershed transect. Neither ambient nor 

200
Hg concentration or HgS/SOC were related to S/V or (Ad/Al)van in any sample 

matrices.  

 

3.4. Discussion 

3.4.1. Distribution of Ambient and 
200

Hg in Soils  

As expected, ambient HgS complexation in soils was dominated by SOC, 

demonstrated by the significant correlation between ambient HgS and SOC 

concentrations across soil horizons and sample types (Figure 3.3). However, the strength 

of the correlation varied between live/litter (r
2
 = 0.4481, p = 0.2165), organic (r

2
 = 

0.4200, p = 0.1154) and mineral (r
2
 = 0.8672, p = 0.0069) horizons and was only 

significant in the mineral horizon. As expected, ambient HgS complexation in soils was 

dominated by SOC, as indicated by the significant correlation between ambient HgS and 

SOC concentrations across soil horizons and sample locations (Figure 3.3). However, the 

strength of the correlation varied between live/litter (r
2
 = 0.4481, p = 0.2165), organic 

(r
2
 = 0.4200, p = 0.1154) and mineral (r

2
 = 0.8672, p = 0.0069) horizons and was only 

significant in the mineral horizon. This demonstrates that in upper soil layers, HgS 

concentration was less strongly correlated with total SOC concentration, consistent with 

other studies (Obrist et al., 2009). The increase in the strength of the correlation between 

Hg and SOC in mineral horizons as well as the enrichment of Hg with respect to SOC in 
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those layers may be driven by the mineralization of carbon during decomposition, which 

results in shrinking carbon pools with depth. During this process Hg accumulates and 

becomes associated with more recalcitrant organic carbon in the deeper soil horizons.   

The distribution of ambient Hg in the soil profile (Figure 3.3a) is somewhat in contrast to 

data from an extensive soil survey conducted in the Lake 658 upland (Oswald et al., 

2010, in prep). The authors report that the concentration of ambient Hg is highest in the 

organic horizon, followed by the live/litter horizon, and the mineral horizon.  The 

observation of enrichment of ambient Hg in the litter layer observed in this study may be 

a result of the timing of sample collection, the location from within the soil horizons 

samples were taken, and the relatively small sample set. Samples were collected only 

once in October, 2009, in the period following leaf fall. As leaf litter contains Hg, which 

is a source of Hg to the surface soil layers (Graydon et al., 2008; St. Louis et al., 2001), 

this sudden input of Hg in the fall could have temporarily influenced the Hg distribution. 

Schiff et al. (1997) indicate that a significant amount of organic carbon can be leached 

from fresh leaf litter within a week, thus transport of associated Hg is also likely.  

The distribution of 
200

Hg in this study (Figure 3b, Figure 4b) does correspond with data 

from Oswald et al. (2010, in prep), demonstrating that the concentration of 
200

Hg in the 

live/litter horizon is consistently larger than in the lower organic horizons and present in 

undetectable or trace quantities in the mineral horizon at the majority of sites. This 

provides evidence that most of the Hg deposited between 2001 and 2006 has yet to 

migrate from litter and surface organic horizons into deeper soil layers. The relatively 

low 
200

Hg concentration in subsurface flow and streamflow in this watershed indicates 

flow is largely generated from layers with low 
200

Hg, and supports the observation that 
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organic horizons are the dominant source of flow within terrestrial systems (Froberg et 

al., 2003; Tipping et al., 2005; Akerblom et al., 2008). The distribution of 
200

HgS/SOC 

(Figure 3.4a) from this study also corresponds with Oswald et al. (2010, in prep), 

demonstrating highest concentrations in live/litter, then organic horizons. Enrichment of  

200
HgS/SOC in live/litter horizon is further evidence that 

200
Hg has not yet fully been 

equilibrated into soils pools; this is also implied by the lack of correlation between 
200

Hg 

and SOC. 

Though there is some evidence that deciduous and coniferous tissues vary with 

respect to relative Hg concentration (Rasmussen et al., 1991; Moore et al., 1995), but in 

this study there was no relationship observed between Hg concentration and S/V in the 

sample matrices examined, in accordance with other studies (Teisserenc, 2009; Ouellet et 

al., 2009). This is not surprising as litterfall Hg concentration do not vary widely between 

forest types in the Lake 658 upland or elsewhere (Graydon et al., 2008; Maňkovská, 

1996). This study provides further evidence that relative influence of angiosperm and 

gymnosperm sources is not an important factor controlling Hg cycling in boreal forest 

soils. Additionally, S/V content of different sample types was relatively consistent 

throughout the watershed and between different soil horizons, despite attempting to select 

sites with varying angiosperm and gymnosperm dominance. Thus S/V ratio is unsuitable 

as a tracer of source of flow within the soil horizon in this system. 

3.4.2. Release of Hg from Soils in Leachate and Subsurface Flow   

The soil leachate experiments indicate that ambient HgD and 
200

HgD were easily 

solubilized from litter and upper organic horizons (Table 3.2). While DOC and HgD 

concentrations generated were much higher than those observed being released from soils 
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under ambient conditions, the ratio of HgD/DOC concentration was not significantly 

different between leachate and lysimeter samples (Table 3.2). Though the compounds 

represented in the two sample types are subject to different processing mechanisms, the 

HgD/DOC ratio produced is relatively consistent between them. This implies that in 

response to different types of environmental degradation, there is little to no change in 

the Hg to carbon ratio even as DOM is degraded. 
200

HgD/DOC concentrations are also 

similar between sample types, implying that though 
200

Hg is present in much lower 

levels, its distribution with respect to DOC concentration is similar between sample types 

and that, like ambient Hg, the ratio of newly deposited Hg with respect to organic carbon 

is similar in different sample types.  

These findings also demonstrate that it is feasible to use soils to generate 

substrates of DOC and Hg, which can be used to test bioavailability of Hg released from 

soils to methylation by sulfate reducing bacteria. In particular, studies of leachate 

produced from soils in the Lake 658 watershed would provide a particular advantage 

since there is the potential to generate both ambient and 
200

Hg, allowing for the 

comparison of bioavailability of recently deposited and historic Hg.  

3.4.3.Lignin Phenol Compounds 

In some leachate samples examined, (Ad/Al)van ratios that are well beyond those 

observed in the natural environment, with (Ad/Al)van in leachate samples samples 

averaging  11.22 + 2.27 (mean + std error). In comparison, the highest values in mineral 

soils in a boreal system was measured as approximately 3.5 (Teisserenc, 2009) (Table 

3.3), and maximum values observed in mangrove sedimentary organic matter was 1.3 

(Dittmar and Lara, 2001). The elevated (Ad/Al)van content in this study appears to be the 
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result of very high vanillic acid signal in high DOC leachate samples (Table 3.3). 

Presumably, the DOC released in such samples is comprised of a greater diversity of 

compounds, and there is the potential for the presence of hydrolysable tannins to 

influence the vanillic acid signal.   

A relatively narrow range of S/V values was observed in this study (Figure 3.6). 

S/V content of fresh plant material has been found to range from 0.01 to 3.5 (Teisserenc 

et al., Goni and Hedges, 1992), and Teisserenc (2009) observed S/V values between 0.2 

and 0.9 in organic and mineral boreal soils. The even narrower range of values measured 

in this study implies that the relative influence of angiosperms and gymnosperm cannot 

be determined in this system. Alternately, this could be in part due to the sampling 

approach of this study as no fresh litter was examined and samples were taken from 

throughout the upland in areas in close proximity to lysimeter sites so that source material 

signatures could be compared with signatures of subsurface flow. A sampling scheme 

aimed at sampling isolated deciduous or coniferous stands within sub catchments would 

likely produce more varied S/V ratios. However, these signatures would soon be lost in 

subsequent downslope water mixing. 

Hg was not related to S/V or (Ad/Al)van content of any sample matrices examined. 

This implies that Hg binding is not influenced by relative contribution of angiosperm 

versus gymnosperm sources. However, studies of vegetation in the Lake 658 upland have 

shown that the concentration of Hg in coniferous versus deciduous tissue does vary 

(Gradyon et al. 2009). The absence of any correlation observed between Hg and S/V in 

the samples examined was also likely due to the sampling approach. Samples were 

obtained from soil horizons at depths where NOM has undergone decomposition and 
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does not represent fresh material. All the sites sampled in this study contained both 

deciduous and coniferous vegetation in some amount, although proportions varied. The 

resulting S/V signature demonstrates that inputs of both are present to such a degree and 

did not vary widely enough between samples to capture any variation in Hg content 

resulting from vegetation types. Again a sampling approach targeting isolated deciduous 

and coniferous stands would be useful in identifying whether decomposed litter of the 

two types of vegetation vary with respect to Hg content, but again, this signature would 

soon be lost downslope.  

 

3.5. Conclusions 

This study demonstrates that concentrations of ambient Hg, when normalized to 

organic carbon content, do not vary widely between different sample matrices in the Lake 

658 watershed. Newly deposited Hg, represented by 
200

Hg in the METAALICUS 

watershed, resides primarily in surface layers for substantial periods, (greater than 5 

years), and is unlikely to contribute significantly to subsurface flow. As Hg is 

translocated downward in the soil profile during decomposition of associated organic 

matter as part of the soil forming process. The subsequent DOM produced lies in the 

more hydrologically conductive soil. It is from these layers that OM can be solubilized 

and more readily mobilized, enhancing transport of associated Hg. Since this has not yet 

happened to OM carrying isotope, it is important that the distribution of 
200

Hg within the 

soil horizons and its concentration in the different components of flow in the Lake 658 

upland continue to be monitored. Thus the length of time it takes for Hg to be released 

from forested environments following atmospheric deposition can actually be quantified.  
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Leachate samples also demonstrate that a high concentration of 
200

Hg, along with 

ambient Hg, occurs in surface and upper organic horizons, which has the potential to be 

released and transported in flow through the upland. However, lower Hg and DOC 

concentrations in lysimeter waters, representative of what is actually occurring in this 

system, implies that in the natural environment, biological degradation and volatilization 

are important loss mechanisms for DOC and Hg.  

The relative influence of angiosperm and gymnosperm sources, as indicated by 

S/V,  did not vary widely between different source areas in the Lake 658 upland and was 

not related to Hg binding in soils, subsurface flow, leachate or water column samples. 

This lack of relationship likely stems from coniferous and deciduous litter Hg 

concentrations being similar and relatively consistent influences of those litter types in 

the Lake 658 upland. TMAH thermochemolysis is effective for examining S/V but not 

for measurement of diagenetic state as it has a number of draw backs that restrict 

interpretation (Appendix B). The application of CuO oxidation is a better approach in this 

system and would allow for measurement of lignin phenolic compounds that provide 

information about diagenetic state of NOM, which is expected to be an important factor 

determining Hg binding (Chapter 2; Ouellet et al., 2009; Teisserenc, 2009; Dittmar and 

Lara, 2001).  
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Figure 3.1. Lignin compounds, composed of connecting units of monolignols cross-

linked by carbon to carbon and the dominant B-O-4 aryl ether bonds. (From Bianchi, 

2007)  
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Figure 3.2 a) Map of the Lake 658 watershed showing general forest types and contour 

lines.  
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Figure 3.2b) Map of the Lake 658 watershed showing forest types, subsurface flowpaths 

and location of sub-basins, and soil and water column collection sites.  
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Figure 3.2.c) Map of the Lake 658 watershed showing UW, UP1 and C2 sub-basins, 

location of subsurface flowpaths. The insert is an expanded map showing sites of 

collection of subsurface flow, flow at zones of hydrologic convergence, streamflow and 

lake water.  
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Figure 3.3. Correlation between the soil mercury (HgS) and soil organic carbon (SOC) 

concentrations for the Lake 658 upland. 
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Figure 3.4. Concentration of a) ambient Hg and b) 
200

HgS (mean + std err) in soil 

horizons in the Lake 658 upland. For both ambient and upland spike, Hg concentrations 

were significantly different in each horizon tested by a Mann-Whitney U test (p = 0.05)  

n = 6 for all sample groups. n/d indicates non-detect. 
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Figure 3.5. Concentration of a) ambient Hg/SOC and b)
200

Hg /SOC (mean + std err) in 

soil horizons in the Lake 658 upland. An identical symbol means the difference between 

the Hg concentrations is not significant as determined by Mann-Whitney U test. n = 6 for 

all sample groups. n/d indicates non-detect. 
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Figure 3.6. S/V ratios in different sample types demonstrating narrow range of S/V 

content across sample types and locations. Soils, soil leachate and subsurface flow (SSF) 

were collected from selected sites throughout the Lake 658 upland (see Figure 3.2a and 

3.2b for site locations). 
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Table 3.1. Soil organic carbon concentrations in soil horizons from samples in the Lake 

658 upland.  

Soil horizon Mean + std error (mg g
-1

) Minimum (mg g
-1

) Maximum (mg g
-1

) 
Live/litter 365.72 + 51.10 269.71 556.10 
Organic 98.85 + 15.95 53.80 178.76 
Mineral 3.95 + 0.80 1.75 7.41 
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Table 3.2. Concentration (mean + std error) of Hg, DOC and Hg/DOC concentrations in 

subsurface flow and leachate samples. p values indicated were calculated based on 

comparison of values in leachate versus subsurface flow using student’s t test.  

Type Hg (ng L
-1

) 200
Hg (ng L

-1
) DOC (mg L

-1
) Hg/DOC 

(µg g
-1

) 

200
Hg/DOC (µg g

-

1
) 

Leachate 
(n=10) 

59.08 

+8.38 

5.66 + 1.49 89 +13.59 0.75  

+0.09 

0.07 + 0.03 

Subsurface 
flow 

(n=16) 

19.19 

+3.39 

0.79 + 0.08 26.62 + 2.52 0.61 

+0.06 

0.03 + 0.00 

p value <0.001 0.002 <0.001 0.333 0.142 
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Table 3.3. (Ad/Al)van content in different sample types demonstrating enhanced 

(Ad/Al)van in soil leachate samples.  

Sample Type (Ad/Al)van (mean + std err)  n 

Soil 1.18 +0.33 12 

Subsurface flow 2.65 + 0.87 4 

Leachate 11.22 + 2.27 13 
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Chapter 4: Conclusions 

4.1. Overview 

NOM has been shown to control Hg complexation in a variety of environmental 

matrices in both pristine and contaminated areas (Skyllberg et al., 2003; Akerblom et al., 

2008; Bushey et al., 2008; Shanley et al., 2008, Ouellet et al., 2009). This study provides 

further evidence that quality of NOM influences Hg binding and transport from terrestrial 

systems. Through an analysis of DOC and Hg concentrations in different molecular 

weight size fractions in subsurface flow, streamflow and lake water in the Lake 658 

watershed it became clear that the molecular weight of DOC to which Hg was bound 

influenced Hg transport through the upland and to the lake. In a comparison of lignin 

phenolic composition of flow samples with source area material (soils), as determined by 

the ratio of syringyl to vanilliyl (S/V) compounds it was found that the source areas of Hg 

in the L658 watershed could not be separated because the source material in what were 

perceived to be different source areas was too similar for the method to work. Finally, 

recently deposited Hg, as represented by the Hg isotope (
200

Hg) applied to the 

METAALICUS watershed between 2001 and 2006 remains bound to the upper soils 

horizons and little is being transported by DOM to downslope areas.  

 

4.2. Research Questions  

This research addresses two main questions: 

1. What is the role of DOC quality in controlling the movement of Hg within and 

from the Lake 658 upland?  

 

 Three characteristics of L658 watershed DOC were examined. First, the relative  

concentrations of Hg and carbon of high molecular weight (HMW), defined as being 
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between 3 kDa and 0.7 µm in size, and low molecular weight (LMW) defined as being 

less than 3 kDa, fractions of NOM were studied. Centrifuge ultrafiltration was applied to 

separate DOC molecules based on size. Second, spectral properties of DOM were 

analyzed by absorbance of light at a wavelength of 280 nm and normalized to organic 

carbon concentration of the sample (SUVA280), and absorbance of light at a wavelength 

of 440 nm (CDOM440). Finally, lignin phenolic compounds were analyzed by 

tetramethylammonium hydroxide (TMAH) thermochemolysis. It was hypothesized that 

in subsurface flow, LMW compounds would have greater mobility and hence greater 

overall importance with respect to Hg transport. Results from Chapter 2 indicate that 

LMW compounds were more mobile in the UP1 sub-basin, as the relative proportion of 

DOC in the LMW fraction was higher in areas further downslope and the stream than in 

subsurface flow in close proximity to source material (i.e. soil organic carbon). However, 

HMW compounds consistently demonstrated greater relative importance with respect to 

Hg binding, as concentrations were significantly higher in HMW fractions across sample 

types and seasons. This finding supports other studies demonstrating greater sorption of 

HMW compounds to soil surfaces, causing their fractionation with transport (Kaiser et 

al., 1996; Lajtha et al., 2005; McCarthy et al., 1993; Kalbitz et al., 2005) and with studies 

demonstrating greater relative importance of HMW DOC in Hg binding (Choe et al., 

2003; Babiarz et al., 2003; Cai et al., 1999). As HMW DOC is thought to represent 

fresher material, this is evidence that Hg binds preferentially to more reactive, labile 

compounds within DOM. This also implies that DOM-Hg compounds being exported to 

Lake 658 are more degraded and older than present in subsurface flow in the upland. 

However, Hg is still preferentially associated with the HMW fraction. 
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Spectral properties, which are generally accepted to be proxies of hydrophobicity 

and molecular weight of DOM, supported the trend observed of DOM being increasingly 

degraded with movement downslope in this system, as absorption values were on average 

higher in subsurface flow water in headwater areas than in subsurface water in 

hydrological convergence zones further downslope and in the stream. Though 

correlations between absorbance values and reactivity have been observed (Ravichandran 

et al., 1998; Waples et al., 2005; Dittman et al., 2009), correlations between Hg and 

SUVA280 were not significant in all seasons and sample types in this study.  Spectral 

properties are not quantitative measures of molecular weight or hydrophobicity of DOM 

and supply information about only the portion of DOM reactive to UV light. Size 

fractionation of DOM by ultrafiltration with known molecular weight size cutoffs 

provided an advantage in this study because it allowed for a more precise measure of the 

role of molecular weight distribution of DOM in Hg binding and transport. 

Centrifuge ultrafiltration was determined to be a viable method for the molecular weight 

size fractionation of DOM and associated Hg (Appendix A). Results demonstrate that 

DOC contamination was present on centrifugal ultrafilters and there was evidence of Hg 

binding of some ultrafilters in the initial sample aliquot. Inclusion of a rinse of the 

ultrafilters with an aliquot of sample following the standard cleaning procedure was 

sufficient to remove DOC contamination and to saturate Hg binding sites. 

It was hypothesized that Hg concentrations would be related to diagenetic state of 

NOM as determined by lignin phenol composition, as discussed in Chapter 3. However, it 

was not possible to test this hypothesis using TMAH thermochemolysis, which was 

shown to be ineffective for the study of lignin phenols as parameters of degradation in 



87 

 

this case (Appendix B). TMAH thermochemolysis induces methylation of all hydroxyl 

groups present on the parent molecule, producing identical derivatized compounds from 

different parent molecules (Filley et al., 2006; Lara and Dittmar, 2001). This precludes 

the ability to distinguish between fresh and altered compounds, so degradation ratios 

were not applicable in this study. TMAH thermochemolysis was, however, an appropriate 

method for determining S/V content of different sample types (Chapter 3). We measured 

S/V content of soils, subsurface flow, streamflow and water column samples. This 

parameter did not correlate with Hg concentration in any sample matrices, supporting 

findings of other studies and demonstrating that Hg concentrations do not vary widely 

between vegetation assemblages (Graydon et al., 2008; Ouellet et al., 2009; Teisserenc, 

2009; Caron et al., 2008; Maňkovská, 1996). S/V content was also consistent throughout 

source areas and sample types so did not provide information about source of subsurface 

flow generated within the soil profile, or about relative contributions of DOC from 

different sub-basins to the lake.  

2. Does the relationship between NOM quality and Hg binding and transport vary 

between recently deposited (isotopically labeled) and historic (ambient) Hg in 

different sample matrices in the Lake 658 watershed? 

 

Dissolved phase 
200

Hg concentrations were low in subsurface flow and 

streamflow (mean + std error:  1.21 +0.14 ng L
-1

) and detectable in a relatively small 

number of samples (53 of 121 upland samples examined). Of those samples, 
200

Hg was 

only detected in the LMW fraction on 10 occasions. Though the small sample number 

makes it difficult to examine patterns of molecular weight distribution and 
200

Hg binding, 

the lack of detection in the LMW fraction in the majority of samples containing 
200

Hg 

implies that like ambient Hg, 
200

Hg is found in a higher proportion in the HMW fraction. 
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200
Hg was not observed in the water column in any season, confirming that terrestrial Hg 

deposited between 2001 and 2006, has not yet been exported to the lake in significant 

quantities (Harris et al., 2007).  

200
Hg was detected in significant quantities in leachate and soil samples. 

Distribution of ambient and 
200

Hg within the soil profile provided information about 

general distribution of Hg within a soil profile and how this varies between recently 

deposited and historic Hg pools. 
200

Hg concentrations are highest in litter and surface 

organic horizons and appears to still be migrating to lower soil horizons. This finding 

supports the hypothesis that subsurface flow is primarily generated from organic horizons 

(Akerblom et al., 2008; Froberg et al., 2003; Tipping et al., 2005; Schiff et al., 1999), 

which would explain low 
200

Hg concentrations in subsurface flow and streamflow. 

Concentrations of 
200

Hg in leachate, though still only a fraction of ambient Hg 

concentration, were significantly higher than those in subsurface flow. Ambient Hg and 

DOC concentrations were also significantly higher in soil leachate than in subsurface 

flow. This implies that DOC and both pools of Hg are easily mobilized from litter and 

surface organic layers. This finding implies that soil leachate is a potentially useful tool 

in the study of bioavailability of Hg to aquatic organisms, as the substrate generated 

represents material that sulfate reducing bacteria may encounter in the natural 

environment thus can be used for laboratory based studies of Hg uptake by sulfate 

reducing bacteria.  
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4.3. Future Research 

 The findings of this study are further evidence that characterization of NOM 

provides insight about the biogeochemical controls of Hg transport from terrestrial to 

aquatic systems. Though Hg appears to bind favorably in HMW DOM fractions, the 

majority of compounds exported to the lake are in the LMW fraction. This implies that 

DOM released from the Lake 658 upland is older and more recalcitrant than that in soil 

porewater, while Hg binds preferentially to fresher, more labile material. However, while 

molecular weight distribution is expected to provide information about lability and age of 

material, it is not a definitive measure of either parameter. Further characterization of 

NOM is required to elucidate mechanisms controlling the observed lower mobility and 

higher affinity for Hg of HMW compounds, and to confirm whether LMW fractions of 

DOC do represent older, more recalcitrant material. Characterization of DOC in future 

studies should focus on identifying diagenetic state and age of material in different 

sample components as those parameters are likely to explain variations in mobility and 

Hg binding. It will also allow for the development of more accurate predictions of the 

length of time it takes for Hg to be transported to receiving waters after deposition to 

forested environments, since DOC export controls Hg export (Grigal, 2003; Dittman et 

al., 2009; Dittman et al., 2010). If the majority of DOC released from the terrestrial 

environment is older and more degraded, as indicated by this study, the lag between Hg 

deposition to a catchment and its export to receiving waters is likely to be significant. 

The application of a radioactive isotope of carbon (
14

C) can be used to determine age of 

DOC. Thermonuclear testing activity, beginning in the 1940s, has resulted in varying 

levels of 
14

C in the atmosphere over time, leaving organic carbon in the environment with 
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a distinct 
14

C signature based on when it was fixed from the atmosphere (Schiff et al., 

1997; Froberg et al., 2007). 
14

C has been effectively applied as an indicator of age of 

NOM in terrestrial systems (Schiff et al., 1997; Froberg et al., 2007), as well as an 

indicator of origin of subsurface flow within the soil profile (Froberg et al., 2003). The 

analysis of 
14

C and Hg in subsurface flow, streamflow and lake water in the Lake 658 

watershed would lend support to the findings from Chapter 2 that DOC in subsurface 

flow through the UP1 sub-basin is younger and more labile than that delivered to the lake 

via the stream, and that Hg is more closely associated with younger, fresher DOM 

fractions. Analysis of 
14

C in the lake itself would also provide information about 

processing of terrestrially derived DOC within the lake, i.e. whether DOM in the lake 

retains a signature similar to that exported from the upland, or whether it appears older, 

implying that it undergoes significant processing after delivery from the upland. 
14

C 

analysis of LMW compounds of select samples would also demonstrate whether LMW 

compounds represent material that is older and more recalcitrant, as expected. This would 

specifically benefit this study as the results on molecular weight distribution will have 

greater relevance if supported by evidence that size fractions represent material of 

different ages. 

Using lignin phenol compounds as proxies of degradation state of NOM, outlined 

in Chapter 3, could also provide a detailed description of the diagenetic state of DOM. 

Though TMAH thermochemolysis as applied in this study was ineffective for this 

purpose, applying thermochemolysis with 
13

C labeled TMAH would allow for distinction 

between fresh and degraded lignin, as methoxy groups added by TMAH could be 

differentiated from methoxy groups present on the parent compound (Filley et al., 2006). 
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Alternatively, cupric oxide (CuO) oxidation has been demonstrated to be an effective 

technique for analysis of degradation state of NOM as indicated by lignin phenols 

(Ouellet et al., 2009; Dittmar and Lara, 2001; Teisserenc, 2009; Houel et al., 2006). 

Applying either of these methods, would confirm whether compounds present in 

subsurface flow are fresher than those that reach surface waters in this system, as 

indicated in Chapter 2. Corresponding measurement of Hg will indicate whether Hg 

content is a function of diagenetic state of compounds, as was implied by other studies 

(Ouellet et al., 2009; Teisserenc, 2009). This approach could be further enriched by using 

both 
14

C and lignin phenol content of leachate of different soil horizons may be used to 

identify location of source of flow within the soil profile. Comparison of the 
14

C and 

lignin signature from distinct soil horizons and that in subsurface flow will indicate 

whether, as expected, subsurface flow is primarily generated through organic horizons 

(Froberg et al., 2003).  

Finally, the results of this study may have important implications for 

bioavailability of Hg to methylating bacteria in Lake 658 sediments, expected to be of 

primary importance in production of MeHg in this system. There is currently a lack of 

understanding of the link between Hg export from terrestrial systems and MeHg 

accumulation in food webs. The findings from this study may direct future research to 

assess bioavailability of terrestrially derived Hg and subsequent methylation. Greater 

characterization of DOC coupled with studies of Hg methylation will provide information 

about the bioavailability of Hg entering the water column from the upland sources. 

Though relatively few studies examine specifically the role of DOC quality in 

determining bioavailability of Hg to bacteria there is some evidence that molecular 
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weight distribution of DOC affects bacterial uptake in general (Mitchell and Gilmour, 

2008, Golding et al., 2002; Tulonen et al., 1992). This study provides evidence that Hg is 

primarily associated with HMW compounds of DOC in the upland (Chapter 2). 

Therefore, experiments with a focus on determining relative bioavailability of Hg 

associated with HMW versus LMW DOC compounds will allow for a better 

understanding of the relative importance of terrestrially derived DOC-Hg compounds in 

MeHg production. Because molecular weight fractionation of Hg-DOC compounds in 

subsurface flow and streamflow has not been examined in other systems, it is unknown 

whether trends observed in this study are widely observed in other ecosystems. 

Additionally, measurement of 
200

Hg in soil leachates in ratios consistent with subsurface 

flow imply that the Lake 658 soils are a potentially useful tool for generating substrate 

with which to examine bioavailability of DOC-Hg compounds representing those present 

in the natural environment. Because both ambient and 
200

Hg are present in leachate, the 

use of soil leachates in these experiments will also allow for comparison of methylation 

of recently deposited versus historic Hg.  
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Appendix A: Validation of Centrifugal Ultrafiltration for Size 

Fractionation of Mercury and Dissolved Organic Carbon 
 

Introduction 

For the purposes of this research, a method was required for ultrafiltration of 

aquatic samples that uses minimal volumes, as sample volumes for subsurface flow are 

generally small (less than 500 ml). Centrifugal ultrafiltration has been effectively applied 

in studies of DOC and other metals (Bruggemann and Maes, 2010, Zhang and Wang, 

2004) as well as mercury (Hg) (Miller et al., 2007), though has not been widely applied 

in studies of trace metals and dissolved organic carbon (DOC). Additionally, for the 

purposes of this study, ultrafilters were to be reused to process many aliquots of the same 

sample, because the small volume processed per use is insufficient for low level Hg 

analysis. It was therefore required that these methods were deemed appropriate for the 

intended analysis prior to application of centrifugal ultrafilters for Hg and DOC sample 

processing. 

Two potential analytical issues with the application of centrifugal ultrafiltration 

were considered: 1) Hg or DOC contamination might exist on the ultrafilters that would 

result in artificially high concentrations in the ultrafiltrate; and 2) binding sites for Hg or 

DOC might be present on the ultrafilters that would lead to underrepresentation of the 

actual concentration of LMW DOC concentration in the ultrafiltrate. These effects were 

tested by ultrafiltering sequential aliquots of a sample from the natural environment 

through the same ultrafilter, with the presumption that effects of binding or 

contamination of Hg or DOC would result in variations in concentrations in ultrafiltrate 

from sequential sample aliquots.  
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Materials and Methods 

Site description 

St. Mary’s lake is a 250-acre impoundment located in southern St. Mary's County, 

Maryland (38°15'12.82"N, 76°32'31.40"W). Inflow to the lake is primarily via the 

Western Branch of the St. Mary’s River, and discharge from the lake is also to Western 

Branch. Land use distribution in the watershed is approximately 80% 

forested/herbaceous, 8% developed, 8% agricultural, and 4% open water (MDE, 2002). 

Sample Collection 

Surface water samples were collected in February, 2009 from St. Mary’s Lake in 

three separate 1L clean PET bottles. The concentration of mercury in the samples was 

expected to be at or slightly above detection limits, as indicated by a previous 

experiment. Therefore, each 1 L sample was spiked with 3 ml of 10 µg/L 
199

Hg isotope 

within one hour of collection and allowed to equilibrate overnight. The samples were 

filtered through a 0.7 µm Whatman GF/F pre-combusted filter and refrigerated. 

Following filtration, 200 ml of each sample was set aside for total Hg (THg) analysis, 

while the remainder was used for the ultrafiltration experiment. 

Cleaning procedure for the centrifugal ultrafilters 

Prior to sample collection, centrifugal ultrafilters (regenerated cellulose, Millipore 

Amicon Ultrafilters, Millipore Corporations, USA) were cleaned once with a 15 ml 

aliquot of a 10% solution (volume:volume) of ultra trace grade HCl (Baker, USA) : Milli-

Q (Millipore, USA) de-ionized water, then with three subsequent aliquots of Milli-Q de-

ionized water; for each aliquot, ultrafilters were spun at approximately 3000 rpm for 30 

minutes on a swinging bucket centrifuge (Beckman GPR, GMI Inc., USA).  
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Experimental Design 

Ultrafilters with three molecular weight size cutoffs were tested: 3, 10 and 30 

kDa. Each sample bottle was split between four ultrafilters of the same size and a Milli-Q 

de-ionized water blank was passed through four 10kDa ultrafilters. Samples were spun at 

approximately 3 000 rpm at a constant temperature of 25
0
C for 70 minutes. Because only 

15 ml of sample could be processed through an ultrafilter at a time, a volume insufficient 

for Hg analysis, the filtrate of two ultrafilters in each bucket were composited to produce 

one sample and the other two composited to produce the duplicate. After each spin, the 

ultrafiltrate was removed and composites were combined. 5 ml of the total composite 

volume was removed for DOC analysis; the remainder was acidified to 0.5% (vol:vol) 

with Baker Instra-analyzed HCl (Baker, USA) for THg analysis. 

Laboratory Analysis 

Approximately 24 hrs prior to THg analysis, samples were brominated to 0.5% 

(vol:vol) with bromine monochloride (BrCl) for oxidation of organic matter. Immediately 

before analysis, hydroxylamine hydrochloride was added (10 µl per 250 µl BrCl) to 

neutralize any excess BrCl. Samples were added to clean glass bubblers containing Milli-

Q de-ionized water, following the addition of 500 µl of stannous chloride (SnCl2) for 

reduction of all chemical species of Hg to Hg
0
. Samples were sparged with ultra high 

purity argon for 15 minutes to release Hg
0
, which was captured onto attached gold traps. 

Gold traps containing the sample were then thermally desorbed and introduced to the 

inductively coupled plasma-mass spectrometer (Hewlett Packard 4500 ICP-MS, Agilent 

Technologies, USA) in the gaseous phase using argon as the carrier gas. DOC samples 

were kept cold and in the dark until analysis. Samples were analyzed using a Shimadzu 
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TOC-5000 Analyzer (Shimadzu Corporation, Japan) by Nutrient Analytical Services at 

the Chesapeake Biological Laboratory.  

Quality Assurance/Quality Control 

Quality control measures included centrifugal ultrafiltration of a Milli-Q de-

ionized water blank through 10kDa ultrafilters. Blank concentrations were 0.42 + 0.23 ng 

L
-1

 of THg and 0.31 + 0.09 mg L
-1

 of DOC. All samples analyzed for THg and DOC 

were run in duplicate, in addition to instrument duplicates, and Hg sample spikes were 

analyzed. Spike recoveries were between 90 and 110% and duplicate samples 

concentrations were within 10% of each other.  

Statistical Analyses 

  Statistical testing was employed to test for differences between DOC 

concentrations in ultrafiltrate of the first spin and DOC concentrations in the 0.7 µm 

filtered fraction, DOC and THg concentrations in ultrafiltrate of spin 1 and of spins 2-7, 

and DOC and THg concentrations between ultrafiltrate of spins 2-7. Mann-Whitney U 

tests were performed at a significance level of p = 0.05, except for tests of differences 

between individual spins, which were performed at significance of p = 0.10, the lowest p 

value capable of being detected with sample sets of this size. 

 

Results 

Concentration of DOC in Ultrafiltrate of a Series of Sequential Spins 

 The concentration (mean + std error) of DOC in the 0.7 µm fraction of the three 

samples was 6.21 + 0.07 mg L
-1

. The concentration of DOC in ultrafiltrate of the initial 

spin was significantly higher than that in the <0.7 µm fraction in all three samples in all 
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ultrafilters (Table A.1, Figure A.1). Ultrafiltrate of the initial spin also contained DOC 

concentrations significantly higher than that of ultrafiltrate of subsequent spins in all 

molecular weight size classes, while concentrations in subsequent spins were not 

significantly different from one another. Mean proportion of DOC in the ultrafiltrate of 

spins 2-7 was 74.93%, 84.21% and 97.15% in the <3kDa, <10kDa and <30kDa fractions 

respectively.  

Concentration of THg in Ultrafiltrate of a Series of Sequential Spins 

The concentration (mean + std error) of THg in the 0.7 µm fraction of the three 

samples was 36.34 + 1.1 ng L
-1

. THg concentration was significantly lower in the 

ultrafiltrate of the initial spin when compared to ultrafiltrate of subsequent spins of the 3 

kDa ultrafilter (Table A.2, Figure A.2). However, the high standard error reported for that 

value illustrates the variation in that trend. For both duplicates, THg concentration was 

lower in the ultrafiltrate of the first spin than that of all subsequent spins, but the 

difference was much greater for one than for the other. In ultrafiltrate of the 10kDa and 

30kDa molecular weight size filters, THg concentrations in a series of sequential spins 

were not significantly different from one another. As with DOC, all ultrafiltrate samples 

were characterized by THg concentrations below that in the <0.7 µm fraction. Proportion 

of Hg in the ultrafiltrate 24.87%, 37.47% and 43.76% in the <3kDa, <10kDa and <30kDa 

fractions respectively.  
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Discussion 

DOC Concentrations in Ultrafiltrate of a Series of Sequential Spins 

Results from the experiment show that ultrafiltrate from the first spin was 

characterized by an artificially high concentration of DOC, significantly higher than what 

is found in the 0.7 µm filtered sample (Figure A.1, Table A.1). This demonstrates that the 

combination of the weak HCl solution and Milli-Q water did not effectively remove DOC 

contamination from the ultrafilters and was ineffective for the purposes of this study. HCl 

may be ineffective at removing this contamination because decrease pH does not induce 

oxidation of organic matter (Heyes, A., pers. comm.) Additionally, the HCl solution may 

even cause coagulation of organic compounds on the filter, as a decrease in pH has 

shown to induce coagulation of DOC (Bratby, 2005, Howe and Clark, 2002, Bianchi, 

2007). The sample, however, does appear to bind and remove any such contamination 

present, likely because the natural ligands present in the sample either complex and flush 

the DOM from the filter or bind it to the filter surface. 

 Excluding that from the initial spin, the data provide evidence that the ultrafilters 

did separate natural DOC compounds based on their actual molecular weight sizes. 

Ultrafiltrate from the 3kDa ultrafilters contained the lowest DOC concentration, followed 

by 10 kDa ultrafiltrate, then 30 kDa ultrafiltrate. This does not provide definitive 

evidence for accurate compound separation based on molecular weight size, but does 

support it, as variation in that trend (i.e. DOC concentrations in ultrafiltrate of lower 

molecular weight fractions exceeding those in higher molecular weight fractions) would 

prove that ultrafilters were not effectively separating natural DOC compounds based on 

size. Additionally, the consistency of the concentration of the ultrafiltrate of the final six 
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spins implies that there were no effects either of further contamination from the 

ultrafilters after the initial spin, or of binding of LMW DOC compounds to the 

ultrafilters. If there was residual contamination on the ultrafilters after the initial spin, 

there would likely be evidence of that in subsequent spins, i.e. a general decrease in DOC 

concentration in sequential spins. Similarly, if there was binding of natural low molecular 

weight DOC compounds onto the ultrafilters, that effect would likely be diminished after 

the first few spins, due to the presumably low number of binding sites potentially present 

on the ultrafilters that would become saturated. This is not surprising, since centrifuge 

ultrafiltration is commonly used to separate DOC and no such effects have been reported 

(Miller et al., 2007, Leblanc et al., 2004, Bruggemann and Maes, 2010). Finally, the 

results support the effective use of centrifugal ultrafilters to separate DOC based on 

molecular weight size distribution because concentrations reported are in the general 

range to be expected in such a system. LMW compounds generally comprise the highest 

proportion of DOC compounds in such systems, and a very small proportion exist in the 

dissolved fraction >30kDa (Leblanc et al., 2004, Bruggemann and Maes, 2010, Bianchi, 

2007, Harvey, R., pers. comm.).  

THg Concentrations in Ultrafiltrate of a Series of Sequential Spins 

There is no evidence of Hg contamination of ultrafilters in any of the ultrafiltrate 

samples. This is not surprising because a weak acid solution at a pH <1 such as this will 

dissolve Hg rapidly, allowing it to pass into the ultrafiltrate in all molecular weight size 

fractions (Stumm and Morgan, 1996). It is therefore not unexpected that any Hg 

contamination that may be present on the ultrafilters would be removed by the current 

cleaning procedure. There is evidence, however, that there may be active Hg binding sites 
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on the surface of the ultrafilters. Miller et al. (2007) found binding of LMW Hg 

compounds by 5kDa centrifugal ultrafilters. Though they did not test binding of Hg to the 

filters in subsequent aliquots, we would expect that those sites would become rapidly 

saturated by the Hg or other cations (including metals) present in the initial sample 

aliquot, and subsequent aliquots would not be affected. There is some evidence in this 

study for Hg binding by some ultrafilters, as demonstrated by the lower concentration of 

THg present in the ultrafiltrate of the initial spin. The decrease of THg in subsequent 

spins and the lack of statistically significant difference between them indicate that any 

active binding sites are saturated in the first aliquot and subsequent aliquots are not 

affected.  

 

Conclusions 

The DOC contamination that occurs appears in the ultrafiltrate of all molecular 

weight size filters, implying that all ultrafilters are consistently affected by the 

contamination. Because DOC concentrations decrease and remain consistent after the 

initial spin, it appears that all the contamination is removed by the first sample aliquot. 

An organic solvent could potentially have been used as an effective cleaning agent for 

these ultrafilters but may have led to residual organic carbon contamination in the 

ultrafiltrate of the initial sample spin. There appears to be no Hg contamination from the 

filters. Hg binding by surfaces on the filter may occur, but evidence for this is 

inconsistent and appears to only the concentration in the ultrafiltrate of the initial spin. 

This study suggests that an effective way to remove DOC contamination and to prevent 
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any effects of Hg binding on the filters is to include a rinse of the filters with an aliquot 

of the sample in the ultrafilter cleaning procedure.  
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Figure A.1. DOC concentration (mean + std error) (mg L
-1

) in ultrafiltrate of sample in a 

series sequential spins. 
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Figure A.2. Total Hg concentration (mean + std error) (ng L
-1

) in ultrafiltrate of sample 

in a series sequential spins. 
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Table A.1. DOC concentrations (mean + std error) (mg L
-1

) in ultrafiltrate of different 

molecular weight size ultrafilters. 

 <0.7 um Spin 1 Spins 2-7 

<3 kDa 6.29 + 0.04 19.11+0.51 4.77+0.05 

<10 kDa 6.07 +0.05 25.99 +0.74 5.16+0.04 

<30 kDa 6.26 + 0.09 27.61+0.38 6.06+0.10 
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Table A.2. THg concentrations (mean + std error) (ng L
-1

) in ultrafiltrate of different 

molecular weight size ultrafilters. 

 <0.7 um Spin 1 Spins 2-7 

<3 kDa 37.94 +  0.91 5.01 + 3.19 9.44 + 0.19 

<10 kDa 35.66 + 0.54 12.50 + 0.15 13.51 + 0.18 

<30 kDa 5.45 + 0.77 16.40 +0.37 15.62 + 0.33 
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Appendix B: Applicability of TMAH Thermochemolysis for 

Analysis of Lignin Phenolic Compounds of Interest 
 

Introduction 

Tetramethylammonuim hydroxide (TMAH) thermochemolysis has been 

effectively applied as a method of sample processing for the determination of lignin 

phenolic compounds in a variety of sample matrices, including vascular plants (Clifford 

et al., 1995), fresh and degraded wood (del Rio et al., 1998, Kuroda and Nakagawa-

izumi, 2005) and estuarine POM and DOM (Harvey and Mannino, 2001). The 

thermochemolysis reaction cleaves carbon to carbon bonds and the β-O-4 bond by which 

lignin compounds are cross-linked in the parent lignin molecule, and subsequently 

methylates carboxylic and acidic hydroxyl groups, leaving the derivatized compound 

amenable to analysis by GC/MS (Clifford et al., 1995, del Rio et al., 1996, Mannino, 

2000). TMAH thermochemolysis produces a greater diversity of lignin products than 

traditional CuO oxidation and provides a greater degree of structural characterization 

(Mannino, 2000, Kuroda and Nakagawa-izumi, 2005). However, recoveries and total 

lignin yields are generally lower than those of CuO oxidation (Harvey, H.R., pers. 

comm., del Rio et al., 1998, Wysocki et al., 2008, Dittmar and Lara, 2001). Prior to 

addressing results of this study, it is important to address drawbacks of this method and 

analytical problems encountered.  

Subsurface flow, soil and stream waters from the Lake 658 upland were collected 

for analysis of lignins. The sampling design was structured to examine differences in 

lignin composition of NOM to indicate degradation state and source of NOM in different 

sample matrices. However, analytical issues prevented the ability to achieve some of 
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those goals. In this appendix, the methods used for lignin analysis are described in detail, 

and the drawbacks of this method are discussed.  The overall results of the lignin 

analysis, and their application to the broader study are given in Chapter 3.  

Analytical Issues 

Analysis of lignin phenols relied on spikes of known quantities of multiple 

standards as internal standards to determine concentrations.  Unfortunately, recoveries of 

both p-coumaric acid and ethyl vanillin used as internal standards were variable and 

generally low; in some cases added standards were not observed. This did not appear to 

be a result of any specific sample matrix since it occurred in samples from different 

origins. In six of 52 samples, the added ethyl vanillin standard was not seen. Standard 

recovery in those samples in which the internal standards were seen was calculated based 

on the recovery of the blank standard; peak areas were normalized to the amount of 

sample were used to compare recoveries. Average recovery of the ethyl vanillin standard 

was 73.54 +14.39% (mean + std error).  As noted above there was a very high range of 

recoveries (min: 0.15%, max: 293%) and the recovery of internal standards exceeded 

100% in 10 of 52 samples, the average recovery of which was 229%. Such variability 

precludes the use of recovery values to quantify concentrations of individual monomers 

in samples for ethyl vanillin. Similar issues were observed with p-coumaric acid standard 

which was not recovered in three samples, and recovery of which was very low in a 

number of others. Recoveries were more variable than those of ethyl vanillin standard, 

with a range in recoveries between 0.11 and 161% (mean + std error of 50.49 + 8.67 %). 

100% recovery of the p-coumaric acid internal standard was exceeded in 7 samples, 
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which averaged 159% recovery, again implying that standard recovery in blanks could 

not be effectively used to determine quantitative concentrations. 

Studies employing TMAH thermochemolysis are often characterized by low 

sample and standard recovery (del Rio et al., 1998, Wysocki et al., 2008, Dittmar and 

Lara, 2001), but complete loss of internal standards was not expected and prevented the 

determination of yields to allow different classes of compounds to be quantified. Given 

that ratios of compounds rather than total yields are the primary interest in this study, a 

comparison of peak area ratios remained sufficient to examine relative sources, and the 

inability to quantify concentrations of each product does not preclude application of the 

data.  Nevertheless, the low or even absent recovery in some samples implies difficulty 

with the derivation process for some matrices. 

In three sediment and soil samples, the ethyl vanillin standard was identified in 

the underivatized form at a retention time of 18 minutes, with identification from NIST 

reference library of 73% (Figure B.1). In these samples, ethyl vanillin was also identified 

in the derivatized form at the regular retention time of 21 minutes. The presence of this 

compound demonstrates that despite TMAH thermochemolysis and the addition of 

BSTFA, a portion of the ethyl vanillin was measured in the underivatized from, implying 

that the derivation process was incomplete or that an added TMS or methyl group was 

lost. The underivatized form was also identified in two blanks which contained only 

standards, confirming that the peaks observed were generated from the ethyl vanillin 

standard itself, rather than originating within the samples. The polarity of the compound 

is expected to prevent it from being measured using the column employed, but its low 

molecular weight and volatility appear to allow a portion to be resolved.  
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TMAH thermochemolysis is expected to completely derivatize lignin compounds, 

as it has been shown to be an effective tool for such reactions (Clifford et al., 1995, 

Harvey and Mannino, 2001, Wysocki et al., 2008, del Rio et al., 1998). However, 

trimethylsilation of functional groups was observed more frequently than expected, 

demonstrating that TMAH did not fully methylate hydroxyl groups of different 

compounds in several samples. No mass spectra of TMS’d derivatives of lignin phenolic 

acids are typically reported, thus we predicted mass spectra based on the structure of the 

derivatized compound were used in conjunction with identification of compounds by the 

NIST reference library. Using these techniques, we identified TMS’d derivatives of P4, 

P6, G4 and G6. The presence of these derivatives may be a result of the degradation state 

of the parent lignin material. As lignin compounds undergo degradation, methoxyl 

functional groups are converted to hydroxyl groups by white rot and brown rot fungi, 

which can lead to adjacent hydroxyl groups on the benzene ring (Teisserenc, 2009, Filley 

et al., 2006, Leonowicz et al., 1999). Due to steric effects, adjacent hydroxyl groups may 

be less likely to undergo methylation simultaneously, leading to methylation by TMAH 

of one group and trimethylsilation of the other. Thus, the presence of multiple hydroxyl 

groups and consequently TMS’d derivatives may be indicative of lignin material of a 

more advanced diagenetic state, though this cannot be confirmed.  

The identification of 3,5-Bd and G6 derivatives presented difficulties because 

they are structurally similar. The fully methylated derivatives are distinguishable from 

one another because their mass spectra, though similar, include important fragment ions 

at m/z 181 among others (Figure B.2). In all samples, the fully methylated derivatives of 

both 3,5-Bd and G6 are present at retention times of 19.75 minutes and 22.9 minutes 
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respectively. Peaks representing what are expected to be derivatives of 3,5-Bd and G6 

with one TMS substitution are also observed  in almost all samples, implying that TMAH 

thermochemolysis did not result in complete methylation  and BSTFA  acted to produce a 

derivatized compound. Figures B.3 and B.4 illustrate the probable reaction mechanisms. 

Initial hydrolysis with TMAH induces subsequent methylation among all but one 

hydroxyl group. BSTFA completes the derivatization by substituting a TMS on the 

remaining hydroxyl group. This results in the formation of one of three possible  

structures (A, B or C) from 3,5-Bd (Figure B.3) and compound D or E from G6 (Figure 

B.4). Compounds A - C are structurally similar to D and E, but are expected to have 

different mass spectra and retention times because of differences in the position of the 

functional groups on the benzene ring, as in the case of the methylated derivatives 

(Figure B.2). A peak appears consistently at a retention time of 27 minutes that was 

positively identified as compound E by the NIST reference library (Figure B.5). Another 

peak appears consistently at a retention time of 23.75 minutes, which based on mass 

spectral interpretation and mass, appears to be one of compounds A –C. The 

identification of the G6 derivative in one sample and the chronology of the retention 

times provide evidence that the peak at 23.75 minutes is one of compounds A –C. To 

confirm the identity of this compound, a series of experiments were conducted using a 

3,5-Bd std (Fisher Scientific, USA). BSTFA and boron trifluoride (BF3) were used as 

agents of trimethylsilation and methylation, respectively to attempt to produce one of 

compounds A –C. Details of the methods and results of the experiment are given below.  
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Methods  

The method for TMAH thermochemolysis used here was based on Mannino, 

2000. The detail procedure used for analysis is as follows. 50 µL BSTFA were added to a 

pre-combusted test tube containing 100 µg of the 3,5-Bd standard. The test tube was 

heated at 50
0
C for 30 minutes, then blown down to dryness with N2. 1 ml BF3 was added 

and it was heated at 70
0
C for 30 minutes. The solution was allowed to cool to room 

temperature, after which time 1 ml de-ionized water and 2 ml of 9:1 hexane:diethyl ether 

were added. The test tube was capped, inverted three times and allowed to sit so the 

layers would separate. The top layer was transferred to an 8 ml amber vial; this was 

repeated twice. The solution was blown to dryness with nitrogen and transferred to an 

injection vial in 100 µl of DCM for analysis by GC/MS. See Chapter 3 for details on type 

and model of GC-MS and GC-FID instrumentation used . Three replicate standards were 

processed as above, and three replicates were processed using only BSTFA to verify the 

retention time and mass spectrum of the TMS derivative. The GC/MS program used was 

the same as outlined in Chapter 3. 

 

Results 

3,5-Bd derivatives were identified in the fully TMS’d form (Figure B.6) and with 

two TMS and one methyl substitution by NIST reference library in the standards 

processed with both BF3 and BSTFA. Neither the derivative with one TMS substitution 

nor the fully methylated derivative were identified, and the fully methylated derivative 

was not identified in the standards processed with only BF3. The experiment was 

repeated once exactly as above, then twice more with the temperature increased to 80
0
C 
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and the heating time extended to one hour after addition of BF3 to catalyze the 

methylation reaction; there was no variation in the results. 

 Since the derivative with one TMS substitution was identified in the samples 

processed with TMAH but not in the standard processed with BF3, there may be an effect 

either of the sample matrix, or the methylation process preventing the formation of the 

methylated derivative. To test for the effect of sample matrix, a sample containing the 

derivatized compound of interest was spiked with the 3,5-Bd standard. The fully 

methylated derivatives and the derivatives with one TMS substitution appeared as they 

were present in the sample with no enrichment of either compound. To test for the effect 

of methylation process, the above experiment was repeated using TMAH as the 

methylating agent. To test for any effect of the strongly basic environment in the 

presence of TMAH, the pH was adjusted by dropwise addition of HCl to a pH of 

approximately 4 in three samples, while the pH was not adjusted in the other three. The 

procedure above was otherwise identical, with TMAH being added prior to the first 

heating step in place of BF3. Again there were no peaks identified as that of either 

compound with one TMS substitution. As with the original experiment, we identified the 

fully TMS’d derivative, as well as a derivative with one methyl substitution and 2 TMS 

substitutions.   

Despite the inability to produce the desired derivatized compound, there is strong 

evidence that the peak at 23.75 minutes is compound A, B or C. This is indicated by the 

mass spectra, which matches that expected by the structure of the compound. 

Additionally, the retention times of the fully methylated derivatives vary by 

approximately 3.25 minutes; the retention times of the suspected 3,5-Bd peak and 
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compound E vary by the same amount and in both cases the 3,5-Bd derivative is eluted 

first. 

An important constraint of TMAH thermochemolysis is the inability to 

distinguish whether methoxyl functional groups of derivatized compounds were present 

on the parent compound as hydroxyl or methoxyl functional groups, which makes 

hydrolysable tannins and other polyhydroxy phenols indistinguishable from lignin 

phenols (Filley et al., 2006, Figure B.7). The contribution from hydrolysable tannins is 

expected to be variable with respect to season, age and source of material, soil horizon 

and sample matrix (Filley et al., 2006). Filley et al. (2006) applied 
13

C TMAH 

thermochemolysis to determine the relative contributions of non-lignin constituents, 

particularly hydrolysable tannins, to signals of specific lignin compounds. They found 

that as a result of methylation by TMAH, hydrolysable tannins produced derivatives 

identical to those of lignin compounds (Figure B.7). The relative contribution of 

hydrolysable tannins varied with sample type and the lignin compound measured, for 

example, the contribution of hydrolysable tannins in oak leaves, roots and bark represent 

30%, 25% and 22% respectively of measured syringyl compounds. Figure B.7 

demonstrates how compounds present in the natural environment, such as hydrolysable 

tannins, can form derivatives identical to those of lignin compounds. 

  Though the study was only conducted on different components of only one type 

of tree, the uncertainty of the contribution of non-lignin constituents warrants 

consideration. This problem is expected to affect sample types with high tannin content, 

such as organic soils, leachate and streamflow, (Filley et al., 2006, Ikeya et al., 2004), 

and has implications for this study. Though we did not measure tannin content in this 
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study, they are likely in several fractions of the sample suite examined and suggest a 

cautious interpretation is warranted. 

 

Implications for this study 

In this study, measuring ratios of lignin compounds have been proposed to 

provide an indication of diagenetic state of NOM (Houel et al., 2006; Dittmar and Lara, 

2001; Teisserenc, 2008; Ouellet et al., 2009). However, in addition to the potential 

influence of tannins on various compound signals, the inability to distinguish whether 

functional groups of derivatized compounds were present on the parent compound as 

hydroxyl or methoxyl functional groups limit its application here for the study of 

degraded lignin contribution.  

 Lignins as parameters of degradation: Biological processing of lignin phenolic 

compounds occurs primarily by white and brown rot degradation by fungi. White-rot 

fungal degradation induces oxidation of the propyl side chain and aromatic ring cleavage, 

while brown-rot degradation induces demethylation of methoxy groups, leading to the 

formation of 3,4- and 4,5-dihydroxylated phenol groups (Dittmar and Lara, 2001). CuO 

oxidation is thought to induce cleavage of aromatic orthohydroxyl groups, thus the 

measured signal from fresh lignin material will have a signature different from degraded 

lignin. The degraded lignin will have a reduced signal of the compounds which are 

susceptible to demethylation, such as those with 3-hydroxy or 3-5 dihydroxy 

configuration (vanillyl and syringyl compounds respectively). Parahydroxyphenols, on 

the other hand, do not contain a methoxy group so do not undergo variation in structure 

with degradation. Relative P/(V+S) content is therefore a parameter of degradation: 
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higher values, produced from a reduction in S and V family compounds, represents 

material at a more advanced diagenetic state 

 Applicability for this study: We applied TMAH thermochemolsysis for lignin 

analysis. Unlike the more traditional CuO oxidation method, this technique induces 

methylation of all hydroxy groups, leaving  compounds present in the sample as phenols 

indistinguishable from those present in the sample as 3,4-dihydrodxy or 3,4,5-trihydroxy 

compounds.  For example, a vanillin compound undergoing degradation in the natural 

environment may form 3,4-dihydroxy benzaldehyde. The derivative of this compound 

following TMAH thermochemolysis is 3,4-dimethoxy benzaldehyde (Figure B.8). A 

vanillin compound not susceptible to degradation in the environment produces the same 

derivatized product following TMAH thermochemolysis (Figure B.9). This example 

demonstrates how the signal measured from fresh and degraded lignin from the same 

source material will not vary with respect to V or S content.  As a result the P/(V+S) ratio 

from the same source material will not change as a result of degradation. 

 3,5-Bd/V is another parameter of degradation applied in studies (Ouellet et al., 

2009, Teisserenc, 2009, Caron et al., 2008). 3,5-Bd, a product of soil decomposition, the 

likely precursors of which are tannins and other flavonoids with hydroxy groups present 

on alternate positions on the ring. It has been shown to increase with degradation in soil 

matrices (Teisserenc, 2009, Houel et al., 2006). Thus, 3,5-Bd content is expected to 

increase with degradation, while V content decreases, making it an effective tracer of 

degradation. However, tannin compounds, the parent material of 3,5-Bd are themselves 

subject to methylation by TMAH thermochemolysis, as described above, rendering them 

indistinguishable from 3,5-Bd. Additionally, TMAH thermochemolysis prevents the 
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detection of changing V content with degradation, as stated above. The influence of 

tannins likely to affect the signal of 3,5-Bd and the inability to distinguish between 

degraded and fresh V compounds make TMAH thermochemolysis ineffective at 

detecting changes in 3,5-Bd/V with degradation. 

 Another ratio applied that has been proposed as a parameter of degradation is 

content of vanillic acid to vanillic aldehyde (Ad:Al)van (Ertel and Hedges, 1984). White 

rot fungal degradation induces side chain oxidation, leading to an increase in this ratio. 

However, the application of this ratio has not been consistently shown to increase with 

diagenetic state. Teisserenc (2009) found that it was only applicable as a parameter of 

degradation in certain soils, potentially in areas where white rot fungi is expected to show 

higher activity, while Dittmar and Lara (2001) found that it was not applicable as a 

parameter of degradation as it was consistent between fresh leaf litter and sedimentary 

organic matter. Additionally, in this study, some samples are characterized by (Ad/Al)van 

ratios well beyond those observed in the natural environment, with (Ad/Al)van in samples 

averaging  11.8 + 2.9 (mean + std error), while the highest values in mineral soils in a 

boreal system was measured as approximately 3.5 (Teisserenc, 2009), and maximum 

values observed mangrove sedimentary organic matter was 1.3 (Dittmar and Lara, 2001). 

This appears to be the result of very high vanillic acid signal measured in some samples. 

This was most notably the case for high DOC leachate samples.. The DOC released is 

likely comprised of a greater diversity of compounds, and there is the potential for the 

presence of hydroysable tannins to influence the vanillic acid signal. Thus (Ad:Al)van_is 

not applicable as a parameter of degradation in thus study. 
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Figure B.1. Mass spectrum of suspected underivatized ethyl vanillin standard in sample 

SED5 and as indicated by NIST reference library.  
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Figure B.2. Mass spectra of fully methylated derivatives of a) 3,5-Bd and b) G6 as 

indicated by the NIST reference library. 
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Figure B.3. Potential reaction mechanisms of the derivatization of 3,5-Bd. 
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Figure B.4. Potential reaction mechanisms of the derivatization of G6. 
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Figure B.5. Mass spectra of peak in sample LIG55 and mass spectra of TMS’d derivative 

of G6 as indicated by the NIST reference library. 
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Figure B.6. Mass spectra of peak in a 3,5-Bd standard processed with BSTFA and BF3 

and mass spectra of TMS’d derivative of 3,5-Bd as indicated by the NIST reference 

library. 
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Figure B.7. The mechanism of formation of the same derivatized compound from 

different sources in the natural environment. Modified from Filley et al., 2006. 

 

 

 

 

 

 

 



124 

 

 
Figure B.8. Reaction mechanism of natural degradation of G6 (vanillin) and subsequent 

derivatization by TMAH thermochemolysis. 
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Figure B.9. Reaction mechanism of derivatization by TMAH thermochemolysis of G6 

(vanillin). 
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