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This dissertation research developed the GOLD model (Graph Of Language 

Distribution), a graph-structured semantic space model constructed based on co-

occurrence in a large corpus of natural language, with the intent that it may be used to 

explore what information may be present about relationships between words in such a 

model and the degree to which this information may be used to predict brain 

responses and behavior in language tasks. The present study employed GOLD to 

examine genera relatedness as well as two specific types of relationship between 

words: semantic similarity, which refers to the degree of overlap in meaning between 

words, and associative relatedness, which refers to the degree to which two words 

occur in the same schematic context. It was hypothesized that this graph-structured 

model of language constructed based on co-occurrence should easily capture 

associative relatedness, because this type of relationship is thought to be present 



  

directly in lexical co-occurrence. Additionally, it was hypothesized that semantic 

similarity may be extracted from the intersection of the set of first-order connections, 

because two words that are semantically similar may occupy similar thematic or 

syntactic roles across contexts and thus would co-occur lexically with the same set of 

nodes. Based on these hypotheses, a set of relationship metrics were extracted from 

the GOLD model, and machine learning techniques were used to explore predictive 

properties of these metrics. GOLD successfully predicted behavioral data as well as 

neural activity in response to words with varying relationships, and its predictions 

outperformed those of certain competing models. These results suggest that a single-

mechanism account of learning word meaning from context may suffice to account 

for a variety of relationships between words. Further benefits of graph models of 

language are discussed, including their transparent record of language experience, 

easy interpretability, and increased psychologically plausibility over models that 

perform complex transformations of meaning representation. 
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Chapter 1: Introduction 

1.1 Overview 

The present study aims to develop a computational model of language that 

uses graphs and graph algorithms, is structured in a psychologically and/or 

neurologically plausible manner, and may be used to predict behavioral and neural 

data from language tasks. This chapter will describe how the study will progress, 

present relevant major theoretical issues, and summarize the research questions at 

hand. 

1.1.1 Three major stages of the present study 

The first stage is the construction of a graph-structured semantic space model, 

herein referred to as GOLD (Graph Of Language Distribution). GOLD will be 

constructed based on lexical co-occurrence within a large corpus of natural language. 

The second stage is the extraction of relatedness metrics from GOLD. Metrics 

of word relationships will be derived from the word graph in a theoretically informed 

manner, such that the metrics reflect theoretical conceptions of word meaning and 

word relationships. This theory-driven approach will extract specific properties of the 

graph that correspond to theoretical constructs and use these properties to construct a 

variety of metrics.  

The third stage of this study will comprise behavioral and neuroimaging tasks 

that will provide data with which to test GOLD’s metrics from stage two. 

Specifically, the analyses of the third stage will predict (a) human ratings of word 

relationships and (b) neural activity in a semantic relatedness judgment task, and 
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compare GOLD’s predictive performance to that of certain existing models.  Machine 

learning techniques will be used to discover predictive properties of the GOLD 

metrics; if GOLD is successful, subsequent examination may be warranted to 

determine if the discovered properties may further inform theory. 

1.2 Major theoretical issues 

1.2.1 Language representation and language models 

A central question in the study of language in cognitive science is how word 

meaning is represented in the mind and brain. There is strong evidence that the 

meanings of words are learned from context (Bolger, Balass, Landen, & Perfetti, 

2008a), and later reconstructed ad-hoc when meaning retrieval is necessary (Burgess 

& Lund, 1998; Kintsch & Mangalath, 2011). A class of computational models called 

‘distributional models’ (discussed in Chapter 2) may be congruent with these 

properties of word meaning, as these models are constructed based on co-occurrence 

of words within a large collection of contexts, and relationships among words in the 

model may be later extracted. As such, these models mirror the general form of word 

meaning acquisition, representation, and usage as conceptualized in human language 

processing. 

Different types of relationships between words may be considered within 

distributional models of language (Budanitsky & Hirst, 2005; Utsumi, 2010) and may 

be mathematically defined within a model (Weeds, Weir, & McCarthy, 2004). The 

present study will consider two different types of relationship: semantic similarity, 

referring to the degree of overlap in meaning features (e.g. cat and feline are highly 
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similar, while cat and blobby are not), and associative relatedness
1
, referring to co-

occurrence of words in contexts (e.g. question and ask are highly associated, while 

question and query are not) (Budanitsky & Hirst, 2006; Kolb, 2006; Landauer & 

Dumais, 1997; Lund & Burgess, 1996). Distributional data may be able to capture 

both (Weeds & Weir, 2005), from the hypothesis that words that are similar in 

meaning may occur in the same role in similar contexts, while words that are 

associated may occur nearby. The first aim of this dissertation is to test whether 

GOLD can provide support for this hypothesis by calculating association from raw 

co-occurrence and calculating similarity from shared or patterns of connectivity 

between two words (Lund, Burgess, & Atchley, 1995), such that two words that are 

connected to the same community of words with similarly weighted connections are 

more similar. 

It has been suggested that associative relatedness and semantic similarity are 

separate entities supported by separate networks of word representations, while others 

suggest a single mechanism of representation that can give rise to both of these 

relationship types (see Hutchison, 2003 for a review). However, association and 

similarity are not easily dissociable: words that are associated are likely to be 

semantically similar to some degree, and words that are semantically similar often co-

occur (Deyne & Storms, 2008; Hutchison, 2003). Thus, it is difficult to argue that a 

particular effect arises from one relationship type or the other, as the relationships so 

often overlap. The present study uses a different approach: if GOLD can successfully 

differentiate between similarity and association, then this would suggest that the 

                                                 
1
 This concept is referred to by a variety of names, including semantic relatedness, association, 

associative  relatedness, and lexical similarity. For clarity the present study will use the phrase 

‘associative relatedness’ or ‘association’. 
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information necessary to identify these two relationship types must be present in the 

single mechanism of co-occurrence.  

1.2.3 The utility of computational models in brain research 

A variety of computational models have been proposed that describe semantic 

processing of language, including acquisition of word meaning, semantic 

organization, and word use. These semantic models generally process a corpus of text 

and produce a model that represents some set of relationships among words. Some 

semantic models require pre-existing human analysis to specify relationships among 

words or concepts (e.g. WordNet, Roget’s thesaurus, or Wikipedia), while others only 

encode those relationships that can be extracted by automated means (like distribution 

and co-occurrence). Specific semantic models will be reviewed in the next chapter. 

Semantic models may be used for theoretical aims or for real-world 

applications: to judge relationships between words, like semantic distance or 

synonymy (Landauer, Foltz, & Laham, 1998); to make predictions of lexical items or 

phrases, like what word is likely to follow an existing sequence or what word a writer 

intended to write and instead misspelled (e.g. Islam & Inkpen, 2008); to classify 

input, like sorting sets of text by likely author (e.g. Burrows & Tahaghoghi, 2007); to 

assess the relatedness of semantic content in a student’s writing to gauge how well a 

concept is understood (e.g. Kakkonen, Myller, Timonen, & Sutinen, 2005);  and 

many other tasks. In light of these real-world applications, there have been concerns 

that these computational models are “tools” rather than valid psychological models, 

and while they are useful feats of engineering, they are bankrupt theoretically 

(Chomsky; Keynote panel, 2011). It has been argued that this is not the case (Norvig, 
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2011), for several reasons. Firstly, computational models are constructed based on 

theories of language acquisition and organization; the success of a model constructed 

based on a particular theory constitutes support for that theory. Secondly, 

computational models are typically quite parsimonious, as they are implemented 

manually based on a limited set of assumptions or parameters. Thirdly, computational 

models tend to make predictions that are well-quantified and falsifiable, which is not 

always the case in non-computational language models (e.g. complaints against 

Chomsky’s theory of Universal Grammar: Piattelli-Palmarini, 1980). Lastly, a major 

benefit of implementing a language model in a computer is that its functioning is 

entirely transparent. In a computational architecture, it is known exactly what 

information is available to a model and what the model does with that information in 

order to be successful, so it is easier to draw conclusions about language processing’s 

reliance on that information. For example, as will be discussed in subsequent 

chapters, many models that use only co-occurrence of words within documents have 

been successful at mimicking human performance on certain tasks. This success is 

evidence that statistical co-occurrence alone carries sufficient information to perform 

on these tasks. However, these models fail on other tasks (e.g. Burgess, 2000; 

Wiemer-Hastings, 2000), which indicates that some other information beyond co-

occurrence is necessary to complete those tasks. Assessing how models achieve, or 

fail to achieve, their stated goals can thus further inform theory about what 

information the mind may use or how it may be organized. 
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1.2.4 Psychological and neurological plausibility of language models 

The prominent distribution models such as HAL and LSA are vector space 

models in which words or contexts are represented as vectors in multidimensional 

space.  Due to the vast number of words and contexts, the immensity of the vector 

space is necessarily reduced using an algorithm known as singular value 

decomposition. While highly effective as a computational tool, it is questionable 

whether such a process plausibly reflects a psychological process (Jones & Mewhort, 

2007; Kwantes, 2005; Steyvers & Tenenbaum, 2005).  It should be noted that a 

variety of work has explored neurally plausible implementations of complex 

mathematical processes, including arithmetic and more complex nonlinear 

computations in individual neurons (see Silver, 2010, for a review), convolution 

(Blouw & Eliasmith, 2003), and Fourier transforms (Velik, 2008), so it is not 

necessarily the case that computational models  that rely on processes such as SVD 

can be ruled out as viable explanations of human semantic processing. However, 

alternatives that profess greater plausibility have been developed using episodic 

memory models (Kwantes, 2005), neural network models (Plaut & Booth, 2000; 

Rohde, Gonnerman, & Plaut, 2005), and with graph models (Collins-Thompson & 

Callan, 2007; Steyvers & Tenenbaum, 2005). The purported plausibility of these 

models arises from their congruence with cognitive theories, model assumptions, 

more ready interpretations of their calculations, and the types of information 

contained within the representations. Graph models in particular are consistent with 

an instance-based learning framework of word learning (Bolger et al., 2008; Daalen-

kapteijns & Elshout-mohr, 2001; Fukkink, Blok, & de Glopper, 2001; Jenkins, Stein, 
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& Wysocki, 1984), in which episodic traces representing individual exposures to a 

word are accessible, but information derived from larger patterns of co-occurrence is 

also available. This aspect of graphs will be discussed in more detail in Chapter 2. 

1.3 Research questions 

The present study seeks to establish the utility of the GOLD model in 

predicting behavioral performance and neural activity underlying word processing. If 

GOLD is found to be effective, subsequent research can specify the source(s) of its 

predictive power. The research questions of the present study will focus on evaluating 

the quality of the GOLD model, and exploring what may be learned from its 

performance on a small suite of tasks, rather than which specific parameters of GOLD 

influence its performance. Each of the following three sections will introduce a 

finding or set of findings that GOLD is expected to replicate or outperform. 

1.3.1 Can GOLD predict behavioral data? 

GOLD will be used to predict human ratings of association and similarity of 

word pairs. GOLD is intended to capture the information necessary to judge 

relationships of both association and similarity from co-occurrence data. Accordingly, 

using theoretically informed metrics of similarity and association, GOLD is 

hypothesized to predict both association and similarity ratings, as well as classify 

words based on their relationship type. These predictions, if successful, will provide 

some indication the corpus is reasonable and that the methods of calculating 

relationships are appropriate.  
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1.3.2 Can GOLD predict neural data? 

A specific feature of event-related potentials (ERPs) called the n400 

(discussed in Chapter 2) is elicited in response to language. The n400 effect has been 

consistently found to be modulated by the strength of the relationship between words, 

such that greater relation between words in a pair produces a smaller n400 effect. 

Furthermore, the specific relationship types of similarity and/or association of word 

pairs has been shown to produce differential n400 effects (e.g. Koivisto & Revonsuo, 

2001). Using similarity metrics derived from theoretical formulations of word 

meaning, combined with machine learning algorithms, GOLD is hypothesized to 

predict the size of the n400 effect elicited in response to a variety of stimuli.  

1.3.3 Can GOLD’s predictions outperform other models? 

 LSA (Landauer, Laham, & Foltz, 1997) has been used to predict amplitudes in 

similar electrophysiology tasks (e.g. Parviz, Johnson, Johnson, & Brock, 2011). 

GOLD’s performance on the prediction task will be compared to LSA to determine if 

the GOLD is an improvement on this commonly used and broadly successful model. 

It is hypothesized that GOLD will outperform LSA due to GOLD’s maintenance of 

full model dimensionality, its theory-informed similarity metrics, and its consistency 

with well-supported psychological theory. 
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Chapter 2: Literature review 

This chapter aims to review relevant literature in several fields: distributional 

models in general, graph models in particular, event-related potentials, and machine 

learning. It is worth noting here that this literature review is ultimately from a 

perspective of what can be learned about language. Accordingly, the computer 

science and machine learning literatures are reviewed to the degree necessary to 

clarify the methods used in the present study, and are not comprehensively covered. 

2.1 Distributional models 

2.1.1 Introduction 

The distributional hypothesis (Firth, 1957; Mcdonald & Ramscar, 2000) states 

that the meanings of words are related to or inferred from how words co-occur with 

other words in an entire corpus of contexts: if a word occurs in similar contexts as 

another word, then the two words should have similar meanings. The distributional 

hypothesis is notable in that it asserts no role of syntax, thematic organization, or 

even word order in inferring word meaning: the distribution of words in contexts 

alone is sufficient to construct their meaning. The following sections will discuss the 

psychological plausibility of this type of computational model, existing distributional 

models and their uses, and various parameters that change distributional models’ 

utility. 
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2.1.2 Psychological plausibility of distribution models 

Distributional models account for a wide range of behavioral findings and are 

strongly rooted in theory. This section will discuss two major well-supported 

theoretical bases of semantics that are both transparently reflected in distributional 

models:  (1) that meaning is dynamic as well as context-constrained, and (2) that 

learning occurs incrementally from context.  

There is plentiful evidence that the meanings of words are learned primarily 

from context (Fukkink et al., 2001; Swanborn & de Glopper, 1999, 2002; van Daalen-

Kapteijns, Elshout-mohr, & de Glopper, 2001), that the meanings of words are fluid 

and dynamic (Bolger, Balass, Landen, & Perfetti, 2008; Kintsch & Mangalath, 2011) 

and depend heavily on context rather than formal definitions (Lawrence W Barsalou, 

1987; Rogers & McClelland, 2011). Conceptually speaking, rather than looking up 

the meanings of words in a mental ‘dictionary’ when words are encountered, the 

meanings of words are constructed ad-hoc in a contextually-constrained manner 

(Burgess & Lund, 1998). Contextually-relevant meanings of words are problematic 

for certain other types of models, such as cognitive models of semantic knowledge 

that specify features or categorical organization (e.g. Mervis & Rosch, 1981), as 

category models can’t account easily for context constraints (Rogers & McClelland, 

2011). Distributional models can, as words may co-occur with other words that 

belong to disparate inter-connected groups that reflect different meanings.  

Behavioral evidence suggests that, while acquiring meanings of novel words, 

learners gradually extract abstract meaning from successive exposures, while also 

maintaining non-abstract associations from each individual exposure (e.g. van 
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Daalen-kapteijns, Elshout-mohr, & de Glopper, 2001). The process of acquiring 

meaning gradually, through exposure to context, is formalized in the incremental 

learning hypothesis (Bolger et al., 2008; Fukkink et al., 2001). In a distributional 

framework, on exposure to a word within a context, a ‘connection’ between each 

word in the context is entered into the computational model. The unreduced 

distributional model thus represents the entire history of the learner’s instances of 

exposure to language.  

In human learners acquiring word meanings, a small number of exposures to a 

novel word leads to word knowledge that is weak and changeable (van Daalen-

Kapteijns & Elshout-Mohr, 1981), and exposures to novel words in uninformative 

contexts leads to word knowledge that is weak or inaccurate (G. a Frishkoff, Collins-

Thompson, Perfetti, & Callan, 2008; G. A. Frishkoff, Perfetti, & Collins-Thompson, 

2010). In a distributional model, frequency and informativeness of exposures are both 

encoded: words that have been viewed infrequently or with nonspecific or generic 

contexts have weak connections that can be numerically overshadowed by co-

occurrence with other, more informative words or by future exposures.  

Furthermore, definitional meaning is not stored in a qualitatively distinct 

system, rather experiences of ostension are represented as an instance or contextual 

episode in distributional models.  In such models, the core set of abstract meaning 

features is represented as the pattern of most frequent associates of that word. These 

benefits are discussed at length with respect to the HAL model (Lund & Burgess, 
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1996), which does not reduce the dimensionality of its representations
2
 and thus 

maintains all of the ‘memory traces’ of language exposure that lead to its structure. 

2.1.3 Existing distributional models and their applications 

2.1.3.1 Introduction 

 

A wide variety of computational models have been developed using 

distributional bases, such as LSA  (Landauer & Dumais, 1997; Landauer et al., 1998), 

HAL (Lund & Burgess, 1996), COALS (Rohde et al., 2005), SOC-PMI (Islam & 

Inkpen, 2008), and many other variants. These distributional models have met with 

success at a variety of tasks ranging from synonymy judgment to essay grading 

(Kakkonen et al., 2005), indicating that the information contained just within 

distributions of words is sufficient to meet a surprising range of language-related 

goals. However, certain models that have incorporated syntactic, thematic, or other 

information (Kakkonen, Myller, & Sutinen, 2006; Padó & Lapata, 2006) or combined 

distributional models with other sources of information structure such as Wikipedia 

or WordNet (Agirre et al., 2009; Strube & Ponzetto, 2006) have improved on the 

performance of strictly distributional models in certain tasks, confirming that there is, 

unsurprisingly, more to language than just distribution. While distribution-only 

models may not reach peak performance compared to models supplemented with 

other information, they do possess a major advantage: models that rely only on 

distribution can be fully automated, and thus be reconstructed on arbitrary corpora 

with no additional human effort. Automation is a terrifically attractive characteristic 

                                                 
2
 Some variants of the HAL model do use dimensionality reduction methods, including discarding low-

variance columns and multidimensional scaling algorithms (e.g. Lund, Burgess, & Atchley, 1995); it is 

reported that performance is equivalent between full- and reduced-dimensionality versions of the 

model. 
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when considering language, a system with a vocabulary of many hundreds of 

thousands of words and infinite generativity (Hauser, Chomsky, & Fitch, 2002). 

Accordingly, distributional models are a fruitful area of research and have been found 

to succeed at a wide range of tasks with real-world applications, such as grading 

student responses to a training program (Magliano & Graesser, 2012), synonym 

generation (Inkpen, 2007), scoring definitions (Collins-Thompson & Callan, 2007), 

authorship attribution (Burrows & Tahaghoghi, 2007), and so on.  

It is worthwhile to note that computational language models relying only on 

co-occurrence are not intended to model the full extent of language. Some models 

account for other features, such as word order (e.g. Blouw & Eliasmith, 2003; Jones 

& Mewhort, 2007), but the majority are ‘bag of words’ models that discard syntactic 

information, and thus are incapable of making distinctions in meaning that rely on 

syntax, word order, or other features that are not represented in co-occurrence. 

Furthermore, these models are not intended to comprehend language in the sense of 

grounding semantic meaning in situational information (Kintsch & van Dijk, 1978). 

Rather, these models operate at an earlier level of comprehension (L.W. Barsalou, 

Santos, Simmons, & Wilson, 2008) that enables early lexical semantic processing in 

comprehension and word learning. 

Approaches that do account for structure in language, whether syntactic or 

conceptual or otherwise, are profoundly valuable in the study of semantic knowledge 

and language, but tend to address different classes of questions than corpus-based 

models that rely on statistical features of language context to model relationships 

between units of language (Griffiths, Steyvers, & Tenenbaum, 2007).  
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2.1.3.2 The role of ‘context’ in distributional models 

The distributional hypothesis asserts that the meanings of words are learned 

based on other words that co-occur in a context (Mcdonald & Ramscar, 2000), but it 

does not specify what, exactly, “context” means. It may be the case that “context” 

means something different in written than in spoken language. In a face-to-face 

conversational situation, context is not limited to the precise contents of speech and 

may include such factors as physical, social, and intellectual attributes of the 

speakers, previous topics discussed by the speakers, prosody, and so on. It may be the 

case that all of these contextual cues are relevant in interpreting or constructing 

(Kintsch & Mangalath, 2011) the meaning of an utterance. However, in developing 

semantic space models, context is assumed to be limited to the words present in the 

current text.  

In semantic space models, words count as co-occurring with a target word if 

they fall within some “window” of words around the target word in a text. Models 

may use several sizes of windows: some use ‘document’ as the smallest 

organizational unit, and link every word in a document to every other word (e.g. 

LSA: Landauer, Foltz, & Laham, 1998) others use some smaller value (e.g. ten words 

before and after the target word: Lund & Burgess, 1996). These models typically 

slide the window over the entire document, counting co-occurrence to the target word 

in the center of each window until the end of the document is reached. The role of 

window size in model performance has been assessed (e.g. Bullinaria & Levy, 2012) 

with the general finding that increasing window size produces worse performance. 

However, this analysis was carried out using models that collapse the dimensionality 
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of the represented corpus; it is unclear if this finding will apply to models that 

preserve dimensionality (dimensionality is discussed below).  

Naturalistic texts provide additional meaningful units of organization beyond 

the ‘document’, namely the sentence and the paragraph. There is evidence that these 

organizational units are reflected to some degree in a reader’s processing of the text 

(e.g. Goldman, Hogaboam, Bell, & Perfetti, 1980; Ledoux, Camblin, Swaab, & 

Gordon, 2006; Shanahan, Kamil, & Tobin, 1982).   

2.1.3.3 The role of corpus size and selection in distributional models 

Selecting an insufficiently large corpus carries two risks: first, that a word 

may not be represented at all in the corpus, and second, that all of the senses of the 

word may not be represented in the corpus. What constitutes a “large” corpus has 

varied dramatically over the years: versions of LSA by 1997 used “very large 

numbers of words” in the range of 20-70k  (Landauer et al., 1997); early HAL models 

(Lund & Burgess, 1996) used 160 million words from USENET; HiDex, a later 

HAL-type model, used a one billion word corpus from USENET (Shaoul & 

Westbury, 2010), in part because a 160 million word subset did not include every 

word from their 50,000-word lexicon.  If a corpus contains no instances of a word, 

then clearly that word is not represented and cannot be processed using the resulting 

model; if a corpus contains very few instances of a word, it is unlikely that those 

instances span all possible senses in which a word may be used. As English is rife 

with polysemy (84% of words examined in Rodd, Gaskell, & Marslen-Wilson, 2004), 

a small corpus might be expected to exclude alternate meanings or uses of a huge 

number of words. Hence, larger corpora should be more likely to capture the variance 
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with which words are used – not only increasing range of associations, but also 

allowing the model to encounter words with multiple meanings in many different 

contexts.   

A small corpus also risks insufficient representation of domain-specific terms. 

For example, while CPU and RAM have specific meanings whose differences are 

vital to the workings of computers, LSA-type models judge the two terms to be 

highly similar, in some cases maximally similar (Wiemer-Hastings, 2000). Both 

occur in a specific domain – a computer’s hardware – and either the limited corpus or 

the dimensionality reduction eliminated the fine distinctions between the two terms. 

It may be valuable from a perspective of ecological validity to construct 

models that mimic human experience, but many existing models use corpus sizes that 

do not reflect the size or range of realistic language input to a developing human. It is 

difficult to estimate how many words a person hears and reads over the course of a 

lifetime, but a lower bound may be estimated using the Human Speechome Project
3
, 

which recorded the in-home audiovisual environment of a child from infancy to age 

three. A subset of the recordings has been transcribed, yielding a set of 7 million 

(total, non-unique) words to which the child was exposed
4
. Considering that not all of 

the records had been transcribed, and that the entire dataset represents only three 

years of exposure to speech and minimal exposure to written text, it seems safe to 

place a (very) conservative lower bound of exposure to language at 7 million words. 

A more appropriate lower bound estimate would scale this figure by age, such that an 

18-year-old would have heard six times more than a 3-year-old, leading to a figure of 

                                                 
3
 http://www.media.mit.edu/cogmac/projects/hsp.html 

4
 http://www.ted.com/talks/deb_roy_the_birth_of_a_word.html 
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42 million words; this figure accounts only for spoken, and not written, words. In 

either case, theoretically, corpora sizes on the order of millions would be more 

ecologically valid than smaller corpora. 

From a data-driven standpoint, there is strong evidence that vastly increasing 

the size of a corpus can lead to increased success using a distributional model (e.g. 

Chelba, Bikel, Shugrina, Nguyen, & Kumar, 2012; Dean et al., 2012). Some studies 

have found diminishing returns beyond some threshold size (90 million words, in  

Bullinaria & Levy, 2007), while some have found unbounded benefits at larger 

corpus sizes (2 billion words, in Bullinaria & Levy, 2012). The utility of larger 

corpora may also depend on the measure in question: there is evidence that simply 

increasing the size of the input corpora can dramatically improve performance at 

certain automated tasks, especially if the corpus comprises unlabeled data (Dumais, 

Banko, Brill, Lin, & Ng, 2002; Recchia & Jones, 2009). Whether or not more data 

will improve performance in the present model is a directly testable question, as the 

data are collected and then stored in units of documents, and thus document sets of 

varying size may be tested in the same way, and their performance compared. 

Addressing this question is beyond the scope of the present study, but may be 

addressed in future work. 

2.1.3.4 Manually annotated taxonomies 

A number of studies have examined the utility of word relationships that have 

been manually defined or organized, such as dictionaries, thesauruses, and 

knowledgebases like Wikipedia or WordNet (Miller, 1995). Budanitsky & Hirst 

(2005) reviewed a variety of human-organized knowledge bases (e.g. Roget’s 
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Thesaurus, WordNet (Miller, 1995), MeSH
5
) and compared the performance of 

various similarity metrics trained on WordNet’s human-annotated data; a variety of 

other works have used knowledgebases entirely, or in combination with language 

distributions, to complete language tasks (e.g. Agirre et al., 2009; Gabrilovich & 

Markovitch, 2007; Jarmasz, 2003; Li, Sun, & Datta, 2011; Mihalcea, Corley, & 

Strapparava, 2005; Strube & Ponzetto, 2006). These models typically perform very 

well, which is one of many arguments to be made in support of manually constructed 

knowledgebases. However, human-annotated models suffer from the general 

limitations of (a) the enormous amount of time required to annotate or organize the 

data, (b) that only  data that has been preprocessed in this resource-intensive manner 

can be used by the model, and (c) the assumption that the structure of meaning in 

language is both static and predefined. These models require a correct, precise 

taxonomy of terms and concepts, which depend on extensive and accurate human 

effort. In contrast, an automated system lacks the additional information that is 

provided by human judgment, but is cheaper, faster, and much less limited in scope.  

Another major drawback of human-annotated corpora is that the model is 

‘frozen’ in the historical period in which the model was made, and cannot incorporate 

novel uses of language without massive human effort. It is an often-lamented reality 

that language is continually evolving (e.g. Dorogovtsev & Mendes, 2001; Scheel, 

1998). A human-annotated model generally only captures a ‘snapshot’ of a language, 

while an automated processor can track evolving language use in a community on a 

much shorter timescale than the years it takes to complete a project on the scale of 

WordNet.  

                                                 
5
 http://www.ncbi.nlm.nih.gov/mesh 
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2.1.3.5 Model dimensionality 

Natural language is vast. The OED contains 600,000 unique words
6
, while the 

Google Books project has estimated that English contains over a million unique 

words (Michel et al., 2011). Given the enormous size of the vocabulary, much less the 

possible combinations of multiple words into phrases, maintaining the full 

dimensionality of a language-derived space has traditionally been difficult. Some 

models maintain most of the dimensionality of the semantic space, notably the HAL 

model (Lund & Burgess, 1996), which performs well at extracting both similarity and 

association, as well as additional tasks such as categorization. Many existing models 

do collapse across dimensions using procedures like singular value decomposition (in 

LSA; Landauer et al., 1997) or various approaches that discard dimensions based on 

their variance (Lund, Burgess, & Atchley, 1995) to yield a much more manageable 

computational space, however these reduced dimensions (a)  do not map directly to 

concepts or words, and (b) necessarily minimize the salience of less dominant 

meanings of words. Some have argued that the real dimensionality of the human 

semantic space is very small (Lowe, 2000), and thus that dimensionality reduction 

accurately reflects human semantic processing. However, compressional/reduction 

methods like SVD have been found to distinguish poorly among near-synonyms 

(Wang & Hirst, 2010)  or multiple meanings of words (Lee, Baker, Song, & 

Wetherbe, 2010). These findings indicate that, from a data-driven perspective, higher-

dimensional representations may be necessary for at least some tasks of language use. 

2.1.3.6 Word frequencies 

Lastly, this method of model construction also produces word frequency 

counts. Word frequencies are strong predictors of reaction time in a wide variety of 

                                                 
6
 http://public.oed.com/about/ 
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reading tasks; accordingly, the accuracy of the model of language from which word 

frequencies are derived is critical (Burgess & Livesay, 1998). The word frequency 

counts expected from this internet-based corpus may more accurately reflect the 

language experience of participants than many existing word frequency databases. 

Consider that the word pizza has the same frequency as scrutiny in the American 

National Corpus
7
 and advocate in the BYU Contemporary American corpus

8
, and it 

doesn't even appear in the Brown corpus (Wilson, 1988). Given that the target 

population of most university studies is the infamous college sophomore, a corpus 

based on language generated by many users (many of whom are from a college 

demographic) may be a better fit for experimental uses.  

It has been found (Burgess & Livesay, 1998) that a larger and more recent set 

of frequencies (from the HAL corpus: Lund & Burgess, 1996) more strongly 

predicted medium-to-low frequency words than the Brown corpus. High-frequency 

words in a language are less likely to change or be replaced by new words over time 

(Pagel, Atkinson, & Meade, 2007), which may explain the older Brown corpus 

predicted reaction times to high frequency words as well as the newer corpus. 

Accordingly, a corpus that reflects realistic, conversational word frequencies – and 

can be updated automatically to reflect changing language – may be ideally suited to 

experimental use. 

                                                 
7
 http://www.anc.org/frequency.html 

8
 http://corpus.byu.edu/coca/ 
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2.2 Graph models 

2.2.1 Introduction 

The majority of the models discussed in the preceding section are vector space 

models in which words or sets of words are represented as vectors in a dimension-

reduced space. Far fewer researchers have used a graph theory approach to 

constructing models based on the distributional hypothesis, though these models are 

rapidly gaining traction (Radev & Mihalcea, 2008). This section will introduce graphs 

and discuss some graph models that have met with success in previous research. 

 Graphs are methods of representing data and relationships among data using 

‘nodes’ and ‘edges’ or ‘connections’. Connections between nodes have an associated 

number referred to as ‘weight’. In the case of a graph model of language, each node 

may represent a word, a document, and the weight of a connection between two nodes 

may represent proximity or frequency of co-occurrence. A possible benefit of graph 

models of language is that the data are not necessarily collapsed or reduced, though 

reduction is possible. Instead of singular value decomposition (SVD) or similar 

algorithms needed for high dimensionality models, reduction of complexity in graphs 

may be executed using clustering, by collapsing clusters of nodes into supernodes that 

could be described as latent concepts, by directly collapsing synonyms, or by pruning 

of nodes or connections based on weights, frequencies, or other properties.  

2.2.2 Existing graph models 

Graph models that have been used in the literature have varied widely in the 

target tasks and algorithms employed. Previous research has addressed the task of 
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identifying category exemplars using an algorithm that considered each new exemplar 

candidate’s connectivity to previously identified exemplars (Widdows & Dorow, 

2002); gauged document similarity using a type of sub-graph comparison that 

compared the entirety of the documents rather than considering individual terms 

(Tsang & Stevenson, 2010); and identified ‘communities’ corresponding to word 

senses using clique analysis, an algorithm commonly applied to social networks 

(Palla, Derényi, Farkas, & Vicsek, 2005). The MESA model (Collins-Thompson & 

Callan, 2007) used random walk Markov chains through a graph whose connections 

represented several different types of word relationships to judge the quality of word 

definitions, while Huges and Ramage (2007) used random walk Markov chains on 

graphs based on WordNet relationships to judge semantic similarity of word pairs.   

The consistent feature of these studies is that each study exploits graph-specific 

properties of the model and graph analysis algorithms to address their chosen tasks.  

The combination of graph models with machine learning approaches has also 

been successful at various language tasks. Machine learning algorithms may be used 

to find patterns in existing data, and use those patterns to predict characteristics of 

new data. This approach may be particularly useful when the model produces or 

contains a great deal of information, but is not clear on precisely how that information 

should be combined or reduced to a final prediction. Minkov and Cohen (2008) 

combined a graph theoretic approach with machine learning techniques to learn a 

similarity metric with a graph walk algorithm. Silva and Amancio (2013) used 

specific types of graph traversal with  machine learning classifiers to perform word 

sense disambiguation. The combination of graph theory and machine learning may be 
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fruitful, as graph analysis algorithms may extract information from the word graph 

that can then be used as inputs to the machine learning algorithm. 

2.2.3 Psychological and/or neurological plausibility of graph models 

Graph models
9
 provide certain additional relevance to the psychological study 

of language, largely stemming from the fact that dimensionality of the model is not 

reduced in any transformative manner. While low-frequency words or low-weight 

connections may be deleted from a graph model in order to reduce its computational 

burden, these deletions don’t impact any other words or connections. Each node still 

represents a word and each connection still represents first-order co-occurrence. In 

contrast, the matrix reduction used in LSA takes a semantic space with many 

thousands of dimensions and reduces it to a few hundred dimensions, such that 

vectors within the resulting space do not correspond directly to any specific concepts 

(hence the ‘latent’ meaning in ‘latent semantic analysis’).  

A major benefit of full graphs of co-occurrence, rather than reduced vector 

spaces, is that the full graph allows statistical properties of language to accrue from 

the episodic traces that are reflected in connection weights (Kwantes, 2005; Steyvers 

& Tenenbaum, 2005), grounding the graph in the episodic-trace models of memory 

(Hintzman, 1984; Howard, Addis, Jing, & Kahana, 2005; Kwantes, 2005).  Thus, 

maintaining full dimensionality in a graph model doesn’t eliminate information as 

singular value decomposition does.  Instead, it records the history of language 

exposure in very clear way and allows for easier interpretation of model output 

because nodes and edges reflect specific words and co-occurrence, rather than latent 

                                                 
9
 Graphs can be represented as matrices, and thus information within a graph may still be described as 

vectors.  
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meaning (Audet & Burgess, 1999; Burgess & Lund, 1997; Lund & Burgess, 1996). 

The ultimate output of the graph model – in this case, judgments of similarity and 

association – is thus extracted from the accumulation of contexts that contain the 

target words. This is a mechanism that is consistent with theories of word learning, 

particularly the instance-based learning framework (Bolger et al., 2008), that assert 

that the meanings of words are learned from features that are consistently present in 

discourse or other contexts.  

2.3 Event-related potentials 

2.3.1 Introduction 

The preceding sections reviewed research in language models. The success of 

the language model in the present study will be quantified by its ability to predict 

neural activity as measured by event-related potentials (ERPs). Accordingly, the 

following section will introduce ERPs and discuss their utility in studying language 

processes. 

ERPs are small segments of electroencephalograph (EEG) recordings that are 

time-locked to the onset of stimuli and averaged over many trials to produce an 

averaged waveform. Averaging many trials allows a very small event-related signal to 

be extracted from the background noise of brain activity. Various features, referred to 

as components, of the time-locked waveform have been identified as reflecting 

particular language-related processes or experimental manipulations (Kaan, 2007; 

Osterhout, Kim, & Kuperberg, 2006). Several of these ERP components have been 

used as tools to examine various aspects of on-line processes involved in reading, 

among them the n400 (discussed below). 
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 There are many benefits of collecting ERP data in addition to behavioral data, 

notably their sensitivity. ERPs are generally considered to be more sensitive than 

behavioral output, for several reasons. Firstly, ERP data are high-dimensional: 64 or 

128 channels and generally around a thousand timepoints per trial. While a task with 

a yes/no response generally only examines variance on the two metrics of reaction 

time and accuracy of a decision output, ERP can allow the examination of latent 

activity that is collapsed into the single instance of behavioral output. In the present 

study regarding word knowledge, if variability in knowledge or representation of a 

word is not large enough to produce different behavioral output, or if the variability is 

on a dimension that doesn’t directly alter behavioral output on a particular task, then 

the variability may not be reflected in behavior. ERPs provide a sensitive measure 

that is often able to measure such latent variability in cognitive processes. 

2.3.2 The n400 component 

The n400 is a negative deflection in the EEG signal that occurs roughly 

400ms after stimulus onset. This component, extensively reviewed elsewhere (Kutas 

& Federmeier, 2011) is commonly used as an index of semantic knowledge and 

integration of semantic knowledge into existing contexts. Of particular importance is 

that the degree of relationship between a predicted target and the actual target has 

been found to modulate the amplitude of the n400 (e.g. Federmeier & Kutas, 1999), 

and that similarity between word pairs in priming tasks shows a similar, though 

sometimes attenuated, effect (Perfetti, Wlotko, & Hart, 2005). Koivisto and Revonsuo 

(2001) found that both semantic similarity and relatedness affect n400 amplitude, but 

noted that related words elicited a longer-lasting n400 priming effect than the similar 
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words. These properties make the n400 an ideal tool for investigating language 

processes and how word meanings are represented or manipulated in the brain. 

 

2.4 Machine learning 

2.4.1 Introduction  

Machine learning (ML) uses ‘features’, or predictors, and ‘examples’, or 

instances of data from which to learn or to predict. In the present study, the output of 

the GOLD model will make up the features and grand average ERPs will make up the 

examples. Many features will be used as inputs to the ML algorithms because the 

literature informs no specific pre-existing hypotheses about which types of similarity 

calculation and/or normalization are most appropriate. It may be valuable to use 

feature selection, in which predictions are made using only a subset of features that 

have been identified as being more informative than others, particularly because 

many of the GOLD features will be correlated. Feature reduction often leads to better 

performance, except in the case where certain features predict a subset of the problem 

space that other features do not predict (Hall, 1999). Additionally, variables that are 

correlated can still add information, as long as they are not perfectly correlated 

(Guyon & Elisseeff, 2003). Accordingly, the present model will rely on the full set of 

features from GOLD as well as exploring model performance with reduced sets of 

features. 
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2.4.2 Types of algorithms  

No a priori hypotheses regarding ML algorithms, so naïve implementations of 

several different algorithms were tested, including support vector machines, neural 

networks, random forests, and k-nearest-neighbors. Each of these algorithms is 

briefly introduced below. 

Support vector machines (SVMs) and support vector regressors (SVRs) can 

identify patterns in data that are complexly related by mapping the data into a new 

space in which they are more simply related. Furthermore, SVMs/SVRs aim to 

optimize these transforms such that the space between the classes of examples is as 

wide as possible, which allows for better generalization. These methods are robust in 

the face of noisy and/or sparse, high-dimensional, and have been used with success in 

brain research (Lotte, Congedo, Lécuyer, Lamarche, & Arnaldi, 2007) and a variety 

of other fields. 

Neural networks (Cheng & Titterington, 1994; Hopfield, 1982) are based on a 

very simplified model of neurons, typically modeled as layers of ‘neurons’: an input 

layer, one or more hidden layers, and an output layer (the present study uses 

multilayer perceptrons with a single hidden layer).  The input layer takes in the 

stimuli, passes them on to the hidden layer, and the hidden layer outputs to the output 

layer which corresponds directly or indirectly to the network’s decision. All of the 

connections between neurons in each layer are weighted, and those weights altered 

such that the pattern of weights in the network can represent transformations from 

input to output. Neural networks have been applied to a variety of fields including 

language research (Bengio, Ducharme, Vincent, & Jauvin, 2003) 
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 The random forest algorithm (Breiman, 2001) trains many decision trees that 

are initialized with random weights. Instead of relying on a single decision tree’s 

prediction, it averages over the predictions of all of the trees in the forest, to produce 

an output that is more robust against noise and vagaries of random weight 

assignment. Random forests have met with success in language modeling (Xu & 

Jelinek, 2004). 

The k-nearest-neighbors algorithm considers the k training examples that are 

nearest in the feature space to a test example, and assigns the average value (for 

regression) or most common class (for classification) of the neighbors as the 

prediction of the test example. This is a fairly simple approach, and considers only the 

immediate feature space, but achieves high performance on a variety of measures 

(e.g. Weinberger, Blitzer, & Saul, 2009). 

2.4.3 Psychological/neurological plausibility 

In keeping with the theme of psychological/neurological plausibility, it 

seemed appropriate to restrict GOLD’s learners to algorithms that are plausibly 

implementable in a brain. However, what exactly constitutes a psychologically or 

neurologically plausible mechanism is not clear. Logically speaking, it is the case a 

neural network of suitable size with one or more hidden layers is capable of 

performing arbitrarily complex mathematical operations  (Hornik, Stinchcombe, & 

White, 1989); if the brain can operate as the mathematically modeled neural networks 

do, then it is not obvious that an algorithm like SVM, or even SVD, could not be 

occurring in the brain. Empirically speaking, realistic models of neurons have found 

success at modeling a variety of algorithms, including fast Fourier transforms (Velik, 
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2008) and convolution (Blouw & Eliasmith, 2003). Accordingly, it seems 

inappropriate to rule out a particular algorithm based on its implausibility, and so all 

of the aforementioned ML algorithms will be used and discussed. 

2.5 Summary 

This chapter reviewed relevant literature in language acquisition and 

representation (the distributional hypothesis), semantic space models, graph models, 

language-related ERPs, and the basics of machine learning. This past work leads to 

the general hypothesis that a graph model of distributional data may give rise to 

similarity measures that can predict behavior as well as neural activity measured via 

ERP. The next chapter discusses the construction of such a model. 
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Chapter 3: Methods 

 

This section will describe the construction of the GOLD model, the LSA 

model, and the machine learning techniques that will be used to predict behavioral 

and brain data. 

3.1 GOLD model 

3.1.1 Introduction 

The present study will construct a graph-structured model (GOLD) of English 

based on the distributional hypothesis discussed in the previous chapter. The ultimate 

goal of GOLD in the present study is to measure similarity of two sets of words by 

representing their meanings through their relationships to other words.  

GOLD will not reduce its complexity to a small set of dimensions as in LSA 

(Landauer et al., 1997) and many other vector space models. Instead, GOLD will take 

the form of a graph in which each node represents a word and the weights associated 

with connections between nodes will represent relative frequency and proximity of 

co-occurrence. The weakest connections between nodes and/or the most infrequent 

words may be removed from the graph in the interest of reducing necessary 

computations, and connection values may be normalized, but no further 

transformations will be applied. Maintaining, rather than reducing, the dimensionality 

of the data is intended to allow the finest possible comparisons between words by not 

eliminating any information about their connectivity.  
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3.1.2 Corpus 

In an attempt to capture modern language usage, we collected a corpus from 

comments on the forum website Reddit (www.reddit.com), which is one of the most 

frequently visited websites on the internet (www.alexa.com). The benefits of using a 

Reddit comment corpus include naturalistic language use, a wide range of authors, a 

broad array of topics under discussion, and a vast pool of data. Posts in the most 

popular subsections of Reddit (enumerated at http://subreddits.org/) were queried 

roughly daily from October 2012 through February 2013, and threads containing 

more than 100 comments were collected. Comments were parsed at the ‘document’ 

level, which consisted of the entire comment thread; the ‘paragraph’ level, which took 

<p> and <br> tags as paragraph breaks; and the ‘sentence’ level, which used 

sentence-final punctuation such as periods and exclamation points  as delimiters in 

addition to the paragraph breaks. The GOLD model was constructed based on the 

paragraph level data, as a compromise between the computational complexity of full-

document processing and the limited span of the sentence-level data. A total of 

19,646 comment threads were collected, totaling 4,342,302 paragraphs, 97,976,253 

tokens (word instances), with 431,822 types (unique words).  

3.1.3 Preprocessing 

The corpus was stripped of several classes of letterstrings. Stop words (closed-

class words such as it, the, and; using NLTK’s English 127-word stoplist; Bird, 

Loper, & Klein, 2009) were removed, on the premise that removal of stop words does 

not impact the output of the network but does dramatically decrease the 

computational load of network construction and analysis (Bullinaria & Levy, 2012). 
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This removed 50,064,361 tokens, more than half of the corpus. Unique strings that 

did not occur in a large set of words combined from NLTK’s word lists (size 

755,110) and NLTK’s package of WordNet (size 10,771,928) were removed on the 

premise that these words are not common terms in the language. This step eliminated 

letterstrings such as fooooood, hasbut, and qxt, and protowords such as facepalm, 

derp, and awesomesauce. A surprising 362,202 types were removed in this step, for 

two reasons. First, retaining only words that occur in wordlists is overly conservative, 

as many legitimate words were not present in the wordlists (such as minnesota and 

minecraft). Second, the internet is rife with creative misspellings, and these strings 

are more likely to be unique than correct spellings – for example, someone may occur 

with a high frequency but only count as a single unique type, while sumone, someon, 

somoen, summone, etc., will each count as a separate, unique type. Despite the huge 

number of types removed in this step, these types accounted for only 2,112,017 

tokens, or ~2.15% of the corpus. Lastly, strings that occurred only once in the entire 

corpus (10,592 tokens, such as osseous and monomorphism) were removed on the 

premise that very low frequency words will be connected to a very small set of co-

occurring words and thus cannot contribute much to the network processing or to 

psychological meaning.  

A final list of 58,901 types remained after cleaning, composing a corpus of 

45,799,875 tokens.  

3.1.4 Constructing the graph 

Co-occurrence of words within the cleaned corpus was calculated by 

examining each paragraph in turn, pairing every word in the paragraph with every 



 

 33 

 

other word, and incrementing the weight of the connection for each word pair by 1. 

Paragraphs of length=1 (e.g. "cuuuuuuuuuute" and, mysteriously, “onychomycosis”) 

were ignored. The total collection of word pairs and connection weights were fed into 

graph database software (Neo4j version 1.8.2; Eifrem, 2009) to construct the graph. A 

total of 58,901 unique words (nodes) and 54,399,032 weighted relationships among 

those words (edges) were included in the GOLD model. The graph possesses 

expected properties of a large-scale language network (Steyvers & Tenenbaum, 

2005), such as a degree distribution following Zipf’s law and small-world structure. 

On the advice of Bullinaria and Levy (2007, 2012), the network was 

reconstructed using a window of size=1, such that words were only connected to 

words that occurred immediately adjacent in the cleaned paragraphs. This network 

included 58,901 nodes and 10,603,851 weighted edges, and is hereafter referred to as 

‘smallGOLD’.  

Figures 1 and 2 display the immediate neighbors of two pairs of words in 

smallGOLD: grumpy-cat in Figure 1, and sushi-octopus in Figure 2. Figure 1 is too 

dense to discern much about individual connections, but in Figure 2, edges’ thickness 

and color reflect their weight. The effect of frequency is very apparent in Figure 1, as 

grumpy occurs 754 times in the corpus, while cat occurs 17,551 times; accordingly, 

the size of the cat associate cloud dwarfs that of the grumpy associate cloud. Figure 2 

displays a pair that is much closer in frequency: sushi occurs 938 times in the corpus, 

while octopus occurs 512 times. It is worth noting that the higher frequency words are 

more likely to be in the overlap set (those nodes that are connected to both words of 

the word pair) merely as a result of frequency.  
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Figure 1. First-order associates of grumpy-cat. Connectivity between associates is not 

displayed. The large cloud of nodes are the associates of cat that are not also 

connected to grumpy; the small cloud of nodes are the associates of grumpy that are 

not also connected to cat; and the round blob between them is the set of nodes that is 

connected to both grumpy and cat. Figure produced using Force Atlas and Yifan-Hu 

layout algorithms in Gephi (Bastian, Heymann, & Jacomy, 2009).  

 

 
Figure 2. First-order associates of sushi-octopus. Connectivity between associates is not 

displayed. This subgraph is small enough to display weight information as well; 

weight of connections is depicted by color (red=large weights) as well as thickness. 

Figure produced using Force Atlas and Yifan-Hu layout algorithms in Gephi (Bastian 

et al., 2009).  
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3.1.5 Normalization 

Theoretically, high-frequency words carry less information or specificity of 

meaning than low-frequency words (Finn, 1977; Schatz & Baldwin, 1986).  That is, 

terms with high specificity are used more rarely because their specificity is applicable 

more rarely (e.g. the concept denoted by antidisestablishmentarianism isn’t relevant 

often in daily life). In contrast, more frequent words tend to be far less specific and 

are more likely to be polysemous (e.g. run). In a co-occurrence model, high-

frequency words are connected heavily and widely merely as a product of their 

frequency, rather than necessarily reflecting meaningful relationships. Accordingly, 

these abundant, heavy weights must be normalized to remove this undue influence of 

frequency. Any applied normalization method must account for frequencies of the 

words at both ends of an edge; several standard methods, such as pointwise mutual 

information (PMI) and association strength (Eck & Waltman, 2009) already do this, 

while other methods that only normalize node properties, such as inverse document 

frequency (IDF), may be altered to suit a two-word relationship. The theoretical 

underpinnings of graph models of language are clear that weights should be 

normalized, but are not clear on the best manner of normalizing weights. 

Accordingly, we used 15 different normalization techniques that rely on combinations 

of raw frequency, document frequency, IDF, and log transforms of these frequencies.  

3.1.6 Similarity and association metrics 

There is evidence (e.g. Weeds & Weir, 2005) that examination of different 

types of information within a model framework can identify different types of 

relationships  such as similarity and association. From a theory-driven perspective, 
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the structure of a word graph may be able to directly capture both types of 

relationships. Semantic similarity between two items may be reflected in second-

order connections, or the intersection between their connections (i.e. are both words 

connected to the same set of other words?). Association may be captured in first-order 

connections, or the connection between the two items themselves (are the words 

connected to each other? If so, how strongly?). These proposed patterns derive from 

the distributional hypothesis, for the following reasons. Similarity would be 

represented in second-order connections because two words that connect to the same 

neighborhood of words may take the same role (e.g. the hot cup of coffee and the 

warm cup of coffee); similarity would not be captured in first-order connections 

because natural language doesn’t generally provide that kind of redundancy (e.g. the 

hot and warm coffee). Association would be represented in first-order connections 

because those would co-occur directly together, as coffee and hot would be associated 

in the previous example, as would coffee and warm. 

From a data-driven perspective, it may be beneficial to view the model as 

containing useful information of some kind, but remain agnostic as to the exact form 

of that information. Machine learning techniques will be used to discover and 

describe, rather than proscribe, what properties of the word graph may be useful in 

representing different relationships between words. However, theory will inform the 

properties that are extracted from the graph to be input to the machine learning 

algorithms. The use of both theory and data to inform model metrics will be useful on 

several levels. The theory-driven approach is more clearly informed and 

psychologically valid; the data-driven approach may yield a metric that is more 
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difficult to interpret psychologically, but will produce more accurate predictions. If 

this is the case, the metrics may be examined more closely to determine what sort of 

information in the graph it is relying on to produce better predictions, which may in 

turn inform theory. In this way, if existing theory is incomplete in explaining how 

relationships are encoded in distributional data, the data-driven method may be used 

to discover additional factors that might make theory more complete.  

 
 

Figure 3. A simplified graph of grumpy-cat. Overlap nodes are shown on a blue 

background and nonoverlap nodes are shown on a green background.  

 

Ideal metrics for assessing relatedness between words in the GOLD model 

should (a) reflect psycholinguistic theories, (b) preferably be limited to a set range of 

values, such as LSA’s -1 to 1, for easy comparison, and (c) differentially consider 

nodes that are connected to both words in a word pair as well as words that were 

uniquely connected to each word, as both first- and second-order co-occurrences 

putatively contribute to relatedness differentially. Figure 3 presents a very small 

subset of the associates of grumpy-cat to illustrate the overlap and nonoverlap nodes. 

Association was theorized to be reflected in the direct connection between the 

two words in a word pair, which reflects the episodic history of how often the two 
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words co-occur. This metric has no upper bound, and a minimum of 0 indicating no 

relationship. This metric was calculated by extracting the raw weight of the 

connection between the two words and normalizing it by the normalization methods 

in Table 1. An additional metric was determined by calculating PMI as follows, 

where w is the weight between the two words in the word pair, is the document 

frequency of word 1, and is the total number of documents in the corpus: 

 

 Additionally, 15 methods of normalizing the connection weights were used 

(see Table 7 in Appendix A for normalization methods). All permutations of these 

association algorithms and normalization methods were calculated from the graph, for 

a total of 30 association metrics (15 normalization methods x 2 association 

calculation methods). 

Semantic similarity goes beyond the simple co-occurrence between to words 

and is theoretically reflected in shared or overlapping patterns of connectivity for two 

words (Lund, Burgess, & Atchley, 1995), such that two words that are connected to 

the same community of words with similarly weighted connections are more similar. 

In essence, the graded nature of similarity (e.g. Collins & Loftus, 1975) might be 

represented by some combination of the overlapping relative to non-overlapping 

patterns of connections and the fundamental weighting of those connections. This 

general conception of similarity is akin to Lin’s universal similarity measure (Lin 

1998b, as reviewed in Budanitsky & Hirst, 2005), although with a definition of 

overlap that arises from connectivity rather than information directly. 
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This theoretical conception does not prescribe the exact calculation of the 

metric, so in order to determine the optimal metric for detecting similarity versus 

association in GOLD, we tested 5 different algorithms (see Appendix A for 

calculation details). All permutations of the similarity algorithms and normalization 

methods were calculated from the graph, for a total of 75 similarity metrics (15 

normalization methods x 5 similarity calculation methods). These metrics are 

redundant to some degree; however, because one of the primary goals of the present 

study was to establish if the information necessary to classify stimuli is present in the 

graph, the full set of metrics was input into the neural network classifiers. 

Additionally, eliminating metrics based on performance on this stimulus set may 

provide an inaccurate view of which metrics are necessary or most predictive, 

because this stimulus set is not designed to span the full space of relationships (e.g. 

there may be many synonyms and few antonyms in the stimulus set).  

3.2 Latent semantic analysis (LSA) 

Latent Semantic Analysis (LSA) is a vector-space model commonly used in 

language research to gauge word relationships and is often considered the gold 

standard for performance of a range of measures. Accordingly, LSA was used here as 

a comparison model. LSA was constructed on the corpus described above using 

gensim (Rehurek & Sojka, 2004). The same preprocessing steps were applied to the 

corpus and the model was constructed with 300 dimensions, as has been determined 

to be optimal for LSA model creation for a variety of tasks (Landauer, Laham & 

Foltz, 1997).  
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3.3 Machine learning 

In both Experiment 1 and Experiment 2, model predictions were quantified 

using the Orange machine learning software suite (Demsar et al., 2013). Classifiers 

were trained for tasks that required sorting stimuli into discrete groups and regressors 

were trained for tasks that required predicting continuous values, using the algorithms 

described in section 2.4.2.  

3.4 Summary 

Chapter 3 described the construction of the GOLD model and an LSA model. 

These models will be used to predict rating data in Experiment 1 in Chapter 4, and 

neural activity in Experiment 2 in Chapter 5.   
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Chapter 4: Experiment 1 (behavioral data) 

 Assessing relationships between words by asking participants to make rating 

judgments is a commonly used method that dates to at least the 1960’s, with 

Rubenstein and Goodenough’s ( 1965) experimental validation of contemporary 

theories of conceptual similarity. Rated word pairs of this nature are often used as 

standards of comparison for computational models of language (Budanitsky & Hirst, 

2006; Kintsch & Mangalath, 2011) as they are thought to reflect theoretical accounts 

of semantic knowledge as well as empirical human judgment. 

4.1 Stimuli 

4.1.1 For human subjects in Experiment 1a and Experiment 2 

 The stimulus set was limited to 350-400 word pairs based on the duration of 

each trial (~4s, plus ITI) and the tolerance of participants to lengthy sessions. Word 

pairs were drawn from existing studies ( Chiarello, Burgess, & Richards, 1990; 

Thompson-schill, Kurtz, & Gabrieli, 1998; and  Miller & Charles, 1991 and 

Rubenstein & Goodenough, 1965 as cited in Budanitsky & Hirst), and then additional 

word pairs were generated from the Reddit corpus. First, the lexicon of the cleaned 

Reddit corpus was reduced to words with frequency > 100 and length > a2. Words 

appearing in a taboo word list (words referring to racial slurs, explicit violence, etc.) 

were removed. Then, the following procedure attempted to produce a stimulus set 

from these words that spanned the relatedness space. Ten thousand words were 

randomly selected from the reduced word list. These 10,000 words were randomly 
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paired several times and sorted into bins based on their LSA cosines
10

. Two hundred 

word pairs from each of the 15 LSA bins were randomly selected, and those pairs 

were further whittled down by removing word pairs containing a word with multiple 

meanings.  

Because word frequency can influence behavior and neural activity, an 

attempt was made to balance words pairs in each bin on frequency, such that the 

average frequencies of words in each bin were equivalent, by removing word pairs 

with extreme frequency values (both high and low). However, this attempt was not 

entirely successful, because higher frequency words tend to have higher cosines with 

other words of high or medium-high frequency. It was more likely that word pairs 

that are unrelated according to LSA are also lower frequency, so the most unrelated 

bins have a slightly lower average frequency (see Appendix D). 

Many words were duplicated between the word pairs drawn from other studies 

and the randomly generated pairs. Duplicated stimuli is inappropriate for behavioral 

as well as EEG paradigms, which generally aim to avoid identical word repetition 

(unless in a ‘repetition’ condition). Accordingly, these sets of word pairs were 

reduced to sets containing only unique words. The final set of words totaled 345 

pairs. Four pairs were later identified as containing duplicates with the remaining set, 

and were removed, leaving 341 pairs. During data collection, five word pairs that 

should have been rejected during the taboo word screening were identified. These 

                                                 
10

 Due to a typo in the author’s code to generate the LSA model, these LSA values are based on a 30 

dimensional model rather than a 300 dimensional model. This typo was discovered after human 

subjects data collection but before data analysis, so all later LSA values used in the analyses are from 

the (correct) 300-dimensional model. This error is not a major concern because the purpose of using 

LSA during stimuli selection was to group stimuli into very general bins of similarities, so precise 

assessment is not crucial. Additionally, the two versions of the model correlate with a Pearson 

correlation of 0.628 and Spearman correlation of 0.716. 
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words were changed to non-taboo words for the remaining participants and the five 

involved pairs were rejected post-hoc. Final analyses were conducted on 336 word 

pairs. 

4.1.2 For model predictions in Experiment 1b 

 

 The stimulus set described above was constrained in size due to the needs of 

human participants. If no humans are involved, or if pre-collected human data is used, 

then the stimulus set can be quite large. To expand upon some of the stimuli in the set 

described above, we tested the GOLD model and LSA on the complete sets of word 

pair stimuli from Plaut & Booth (2000) and Chiarello et al (1990). Plaut and Booth’s 

240 word pairs are categorized as related and unrelated, based on free association 

norms (Nelson et al., 1999). Chiarello et al.’s 144 word pairs are sorted into three 

categories according to relationship type: associated only, similar only, and word 

pairs that are both similar and associated. These categorizations were assigned based 

on several sets of norms, and the words were balanced on length, frequency, and 

imageability. 

It is worth noting that some of the stimuli from Chiarello dated themselves; 

ostensibly related pairs such as decoy-duck were rated as unrelated by all participants 

in Experiment 1a, suggesting that this pair is no longer reliably associated in the 

modern lexicon. The same may be argued of some of the older commonly used sets, 

such as Rubenstein and Goodenough’s set (1965) that includes terms with vulgar 

connotations in modern parlance. Accordingly, post-hoc sorting and plotting of ERP 

data that was collected in Experiment 2 was based on rating data as well as 
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predefined word categories, as the rating data may better reflect the lexicon and 

language experience of the ERP participants.  

4.2 Participants (1a) 

Reaction times and judgment data were collected in two tasks: the first was a 

task of similarity judgment, and the second a task of association judgment. 

Participants were 34 undergraduate students (3 male) in the association task, and 31 

undergraduate students (7 male) in the similarity task, recruited from the Psychology 

Department participant pool and compensated with course credit. All were native 

English speakers. None of the participants who contributed data to the word pair 

judgment tasks also contributed data to the ERP task.  

4.3 Procedure (1a) 

 In each of the tasks, participants gave informed consent and then were seated 

at a standard desktop computer. Participants were first instructed on the nature of the 

relationship they were to judge, and then completed several example trials with the 

experimenter, discussing their judgments on each example trial. After the 

experimenter was satisfied that the instructions were understood, the participant then 

completed 341 trials, self-paced. Each trial consisted of a word pair presented with a 

Likert scale (1-7) with ends labeled as maximally or minimally related based on the 

specific relationship in the task. 

4.4 Data analysis (1a) 

Brief post-hoc interviews with participants indicated some difficulty regarding 

task instructions, ranging from forgetting the instructions partway through the task to 
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inconsistency in following task-specific instructions. Data were cleaned by removing 

trials whose RTs were below 500ms (36 out of 11,594 trials in the association 

judgment task, and 12 out of 10,571 trials in the similarity judgment task).  

4.5 Results  

4.5.1 Ratings (1a) 

Rating data on the similarity and association judgment tasks were treated as 

continuous data and were separately predicted using several regression algorithms: 

support vector regressors (SVR), random forests, and k-nearest-neighbors. GOLD 

output and LSA were separately used as input features to these algorithms. 

Performance measures are averaged across 10 iterations of training and testing on 

randomly selected subsets of the data (70/30 train/test). Performance was quantified 

via r-squared and root mean squared error (RMSE), which is not meaningful alone 

and is thus compared to a predictor that always predicts the training set mean. The 

default parameters from the Orange software suite were used for each algorithm: 

SVM regression (type=nu, cost=8.0, complexity bound=0.5, kernel type=RBF, 

tolerance=.001), random forests (maximum 20 trees, minimum 5 numbers of 

instances per leaf), and k-nearest-neighbors (5 neighbors, weighting by Euclidean 

distance, normalizing continuous attributes). 

Table 1. Regressor performance on similarity and association ratings. Highest performance for 

each model is in a red font. 

  
Association 

 

Similarity 

 

Algorithm RMSE r
2
 

 

RMSE r
2
 

       

 

Mean 2.0308 -0.0173 

 

1.6779 -0.015 

 
   

 
  

smallGOLD SVM Regression 1.3869 0.5255 

 

1.2273 0.4571 
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Random Forest 1.2625 0.6068 

 

1.1081 0.5575 

kNN 1.4437 0.4859 

 

1.3023 0.3887 

       

GOLD 

SVM Regression 1.3163 0.5726 

 

1.2025 0.4789 

Random Forest 1.2498 0.6147 

 

1.1595 0.5155 

kNN 1.3336 0.5613 

 

1.2709 0.4179 

 
   

 
  

LSA 

SVM Regression 1.6461 0.3317 

 

1.3752 0.3184 

Random Forest 1.7227 0.2679 

 

1.4082 0.2853 

kNN 1.9561 0.0562 

 

1.5906 0.0881 

       

 

 

Figure 4. Similarity predictions from one train/test using a random forest trained on smallGOLD  

(r=0.75). 
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Figure 5. Association predictions from one train/test iteration using a random forest trained on 

smallGOLD  (r=0.79). 

 

GOLD and smallGOLD performed roughly equally, and quite well, at the task 

of predicting similarity and association ratings, with a maximum Pearson’s r = 0.78. 

One set of train/test from each set of ratings was randomly selected for display in 

Figures 6 and 7. LSA did not perform as well at this task; to ensure a fair assessment, 

raw Pearson correlations were also calculated between LSA and association ratings (r 

= 0.5847, r
2
 = 0.3418) and between LSA and similarity ratings (r = 0.5827, r

2
 = 

0.3395). 

While GOLD performed well on the task of predicting continuous rating data, 

the high variability in human ratings suggests that these relationships may not all be 

‘true’, in the sense that they are not agreed upon by multiple speakers. A subset of the 

word pairs judged in the above tasks were drawn from sets of words with predefined 

relationships, such as the words from Chiarello et al. (1990) which were categorized 

into words that were associated only, similar only, or both similar and associated. 

These predefinitions rest on datasets that may more reliably reflect the underlying 
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word relationships, if at a coarser scale. Another set of words, from Plaut & Booth 

(1995), were categorized as related or unrelated, regardless of relationship type, 

which is at an even coarser scale. Accordingly, we next tested model performance on 

these full sets of words: first, the simpler classification task of  related-unrelated pairs 

from Plaut & Booth (1995), and then the more complex task of distinguishing 

between the types of word relationships in the pairs from Chiarello et al. (1990).  

4.6.1 Word pair categories (1b) 

4.6.1.1 Distinguishing between related and unrelated words 

 

Performance measures are averaged across 10 iterations of training and testing 

on randomly selected subsets of the data (70/30 train/test). Performance measures of 

accuracy, sensitivity (rate of true positives/'hits’), and specificity (rate of true 

negatives/’correct rejections’) are presented, as well as confusion matrices. LSA was 

tested using several algorithms; best overall performance was achieved with neural 

networks (parameters: 1 hidden layer, 20 hidden layer neurons, regularization 

factor=1.0, maximum 300 iterations), so those data are presented here. 

Table 2. Classifier performance on the Plaut and Booth (2000) word pairs. 

 

 Accuracy  Sensitivity  Specificity 

   Related Unrelated  Related Unrelated 

smallGOLD 0.9000  0.8914 0.9086  0.9086 0.8914 

GOLD 0.9043  0.9000 0.9086  0.9086 0.9000 

LSA 0.7443  0.6629 0.8257  0.8257 0.6629 

 
 

Table 3.  Classifier confusion matrices for the Plaut and Booth (2000) word pairs. Red 

percentages are the correct classifications. 

 

  smallGOLD 

  Related Unrelated 

True Related 89.1% 10.9% 
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class Unrelated 9.1% 90.9% 

 

 

 

 

 

 
 

 

 

The two GOLD models demonstrated nearly identical, high performance 

(90% accuracy). Inspection of word pairs that were incorrectly classified reveal that 

the unrelated words misclassified as related were sometimes clear errors (right-found) 

but often perhaps related (e.g. split-fight, yell-burst, treat-equal,). GOLD failed to 

identify some clearly related word pairs (e.g. horse-stall, great-super, take-bring, 

gives-share, slice-piece, glue-paste, right-wrong, live-death). It appears that several 

of these pairs have more specific relationships than relatedness, including synonymy 

and antonymy. LSA performed well (74% accuracy); its most common error was to 

mis-classify related words as unrelated. 

4.6.1.2 Distinguishing among relationship types  

Having established that GOLD can distinguish related from unrelated word 

pairs, we turn to the task of distinguishing type of relatedness. As stated earlier, the 

distinction between association and semantic similarity is often a matter of degree as 

these factors are not orthogonal to one another.  Thus, finding word pairs that are 

stronger in one dimension than the other or are stronger in both is a difficult task.  

Chiarello and colleagues (1990) have identified 144 such word pairs that are 

  GOLD 

  Related Unrelated 

True 

class 

Related 90.0% 10.0% 

Unrelated 9.1% 90.9% 

  LSA 

  Related Unrelated 

True 

class 

Related 66.3% 31.1% 

Unrelated 24.9% 82.6% 
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semantically related (table-bed) based upon category membership norms, 

associatively related (mold-bread) based upon free-association norms, and both 

semantically and associatively related (aunt-uncle). Following Lund, Burgess, and 

Atchley (1995, Experiment 3), we tested whether the metrics of the GOLD model 

could reliably classify these patterns of relationships and compared the results of the 

GOLD model to those of LSA.  

Table 4. Classifier performance on the Chiarello et al. (1990) word pairs. 

 

 Accuracy  Sensitivity  Specificity     

   Associated Both Similar  Associated Both Similar 

smallGOLD 0.6023  0.6000 0.4857 0.7214  0.8250 0.7621 0.8172 

GOLD 0.5791  0.6067 0.4429 0.6857  0.7250 0.7897 0.8517 

LSA 0.3884  0.2667 0.5857 0.3214  0.7643 0.6862 0.6345 

 

 

Table 5. Classifier confusion matrices for the Chiarello et al. (1990) word pairs.  Red percentages 

are the correct classifications.  

 

  smallGOLD 

  Associated Both Similar 

True 

class 

Associated 60.0% 24.7% 15.3% 

Both 30.0% 48.6% 21.4% 

Similar 5.0% 22.9% 72.1% 

 

  GOLD 

  Associated Both Similar 

True 

class 

Associated 60.7% 24.0% 15.3% 

Both 41.4% 44.3% 14.3% 

Similar 13.6% 17.9% 68.6% 

 

  LSA 

  Associated Both Similar 

True 

class 

Associated 26.7% 27.3% 46.0% 

Both 15.0% 58.6% 26.4% 

Similar 32.1% 35.7% 32.1% 
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 Overall accuracy is best for the smallGOLD model. Inspecting the confusion 

matrices indicates that the GOLD models’ most common error is to mis-classify word 

pairs that are both similar and associated as associated-only; the next most common 

mistake is the reverse, where associated-only word pairs are mis-classified as both 

similar and associated. LSA’s most common error is to mis-classify the associated-

only words as similar-only. It also assigns similar-only words equally often to the 

three categories. 

4.6.1.3 Feature analysis 

This initial exploratory testing of the GOLD model relied on the ‘shotgun 

approach’ of feature generation, in which all of the combinations of normalization 

and metric calculation were used as inputs to the neural network. In order to 

determine which features the algorithm is relying on to produce its classifications, 

and perhaps to suggest which types of information are important for judging these 

word relationships, we investigated feature relevance using one- and two-feature 

classifiers, as well as standard feature selection methods. For the one- and two-feature 

classifiers, a neural network learner classified the similar/associated/both word pair 

on 5 iterations of 70/30 train/test splits. In the first round of analysis, the neural 

network was given each of the 105 smallGOLD features individually; maximum 

accuracy of the 105 classifiers reached 50%. The full set of 105 features was sorted 

and the 50 highest-accuracy features were retained. In the second round of analysis, 

the neural network was given all combinations of two features from these 50 features, 

one pair of features at a time; maximum accuracy reached 63% accuracy, which is on 

par with the full set of features. Inspection of these feature pairs revealed that the 
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majority of the top ranked pairs included two types of metrics: Method 5 from the 

similarity metrics (which considered only overlapping nodes, weighted by magnitude 

difference and normalized by size) and the PMI calculation of association. The top 30 

performers were all pairs that included one association and one similarity measure. 

 Limiting the neural network to those two methods (30 features) yielded 63% 

accuracy. Limiting the neural network inputs to those two metrics (30 features) 

yielded 63% accuracy. Using additional feature selection (linear SVM weights) to 

reduce the number of features to 10 produced 65% accuracy; reducing the number of 

features to 5 boosted accuracy to 68%, which is well in excess of performance using 

the full set. However, these performance outcomes should be interpreted as 

exploratory only. The broad conclusion regarding features is that the combination of 

association (direct connections between the two words) and similarity (based on the 

overlapping and nonoverlapping neighbors of the two words) metrics is more 

powerful at predicting category than either alone. It may be possible to conclude that 

the similarity metric considering normalized overlap only and the PMI calculation of 

association are the most useful, but the similar/associated/both word pairs are not 

designed to span the language space and thus this finding may not generalize to other 

regions of the graph. 

Chapter 5: Experiment 2 (neural data) 

5.1 Participants  

 Participants were 20 graduate and undergraduate students recruited from the 

University of Maryland campus. Participants (7 male, 13 female; mean age = 25.15 
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and SD = 2.79) were all right-handed. One male participant’s data were not 

considered in analyses, due to scores far below the sample mean on all of the reading 

and language assessments. All participants gave informed consent and were 

compensated for their participation with snacks. 

5.2 Procedure 

In the first hour of the study, participants completed the Peabody Picture 

Vocabulary Test (PPVT; Dunn & Dunn, 2007), both subtests of the Test of Word 

Reading Efficiency (TOWRE; Torgensen, Wagner, & Rashotte, 1999) the Nelson-

Denny Vocabulary and Comprehension tests (Brown, Fishco, & Hanna, 1993), and a 

handedness questionnaire. All assessments were pencil-and-paper. The PPVT is a 

standardized measure of receptive vocabulary in which participants must identify 

pictures that represent the meanings of orally presented words. The TOWRE consists 

of two subtests: Sight Word Efficiency and Phonetic Decoding Efficiency. The Sight 

Word Efficiency subtest is a measure of word reading fluency in which participants 

must read a list of words in 45 seconds, emphasizing both speed and accuracy The 

Phonetic Decoding Efficiency subtest is a measure of phonemic decoding skill in 

which participants read a list of pronounceable nonwords (e.g. pelnador) in 45 

seconds, again emphasizing both speed and accuracy. The Nelson-Denny comprises a 

multiple-choice vocabulary test and a comprehensions test in which participants read 

passages and answer questions based on those passages. These assessments were not 

analyzed in the following work, but were rather used to ensure that participants were 

high-skill readers. The mean performance of the 19 participants who contributed ERP 

data is presented in Appendix B. 
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Following these behavioral measures, participants were fitted with the EEG 

cap and electrodes, seated in front of a standard LCD monitor, and asked to place 

their right hand on the number pad of the keyboard. Responses were made using the 

‘1’ and ‘2’ keys on the number pad, and the next trial advanced using the ‘enter’ key 

on the number pad as well, all with the right hand. Experimental trials proceeded as in 

Figure 8 below. Each trial began with a fixation cross in the center of the screen for 

450-550ms, jittered. The first word of the pair appeared for 800ms, followed by a 

blank screen for 200ms; then the second word of the pair appeared for 800ms, 

followed by a blank screen for 1000ms, followed by a prompt to judge if the pair was 

related or unrelated. The prompt remained onscreen until the participant responded. 

Between trials, a neutral screen encouraged participants to blink as needed before 

pressing enter to begin the next trial. Participants were encouraged to rest if their 

EEG appeared to be showing higher alpha power, if they appeared drowsy, or at their 

own discretion. Each participant completed all 341 trials in roughly 30 minutes.  
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Figure 6. Trial  template in the ERP task. 

 

5.3 Data collection and analysis 

5.2.1 ERP collection and preprocessing 

EEG data were collected during the above task using the Biosemi system with 

a 64 channel electrode cap, referenced to linked mastoids. In two participants, one 

mastoid was irrecoverably noisy and/or separated from the scalp and thus their data 

were referenced to a single mastoid. In cases where a single scalp electrode failed (1 

subject), it was interpolated. No more than one electrode was interpolated on any 

subject. No eye leads (EOG) were used; instead any trials contaminated by blink 

artifacts were rejected entirely. EEG was epoched (-200ms to 800ms), filtered (0.1Hz 

to 30Hz), and individual epochs rejected based on automated artifact identification 

(sliding window average). Trials were grand averaged by (a) word or response 
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characteristics, discussed below with visualizations, and (b) by individual word pair, 

to be exported for per-stimulus ERP values.  

5.2.2 Features for machine learning 

A problem encountered in the course of ‘predicting neural activity’ is deciding 

what, exactly, should be predicted about neural activity. In the present study, the 64 

channel electrode cap measured 512 timepoints per electrode per trial, which yielded 

~30,000 data points per trial. It is reasonable to expect that only those timepoints and 

electrodes where the effect of word relationships is present will be predictable, so the 

tens of thousands of data points from other electrodes and time windows are not 

appropriate to consider. The n400 is typically measured as an average over the 300-

500ms time window, and that the component is typically maximal over centro-

parietal sites (Lau, Phillips, & Poeppel, 2008), so the present study restricted 

predictions to the average in the n400 window at the Pz and CPz sites.  

5.3 Results 

5.3.1 ERP visualizations and sanity checks 

Grand average ERPs were visualized by averaging across trials sorted into 

various conditions in several ways: first, by individual subject responses (the ‘yes’ or 

‘no’ judgments rendered while ERPs were collected); second, by the behavioral rating 

data in the relatedness and similarity tasks; and third, by category as defined in 

previous literature (the subset of words that appeared in the Chiarello et al. 1990 

paper). As a sanity check, the first words of the word pairs in the yes-no judgment 
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figure were plotted as well, to ensure no pre-existing differences that might reflect 

any number of errors.  

 

Figure 7. First and second words of the wordpairs, sorted by participant response. 

 

Figure 9 above displays words that participants rated as related (‘yes’) and 

unrelated (‘no’). The first and second words of the word pair are displayed. Both 

word1s show a strong negativity in n400 window, which is to be expected, and are 

almost identical. Differences between the ‘yes’ and ‘no’ responses appear in the 

second word of the word pairs; related words produced an attenuated n400 compared 

to the first words of the pairs, and unrelated words produced either no difference or a 

smaller attenuation. This figure is assurance that the paradigm worked as intended in 

the broadest sense, and that the ERPs are thus far consistent with the literature. 
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 The next set of figures will visualize the ERP data in several ways, and 

conduct statistical sets on certain contrasts. First, the ERPs sorted according to word 

pair rating will be presented and analyzed; then ERPs sorted according to category 

(the word pairs from Chiarello et al., 1990) will be presented and analyzed. 

 

 
Figure 8. Second words of the word pairs, sorted into high and low similarity and association 

ratings. 

 

Figure 10 above shows the second words of the word pairs, sorted into bins 

according to their ratings (by a different set of participants, in Experiment 1a). 

However, each trial contributes to two bins in these visualizations (each pair has both 

a similarity and an association rating), and many word pairs that were rated as 

minimally associated were also rated as minimally similar, so the two traces that look 

nearly identical are nearly identical, because they comprise a nearly identical set of 
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ERPs. In this figure it appears that words with the lowest ratings produced a large 

n400, and that highly rated similar and highly rated associated words each produced 

an attenuation of the n400 compared to their lower-rated counterparts. To examine 

this in more detail, Figure 11 and 12 present trials sorted by ratings binned into 6 

bins, where each bin spans a single interval of the 7-point Likert scale (e.g. bin 1 

holds word pairs rated from 1 to 2, bin 2 holds word pairs rated from 2 to 3, etc.). 

 

Figure 9. ERPs sorted by association ratings in six ordered bins. 

Figure 11 shows the traces for the association ratings, divided into six bins. 

Across sites, but particularly clearly at Pz, the magnitude of voltage dip in the n400 

window appears to be modulated by the degree of association. 
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Figure 10. ERPs sorted by similarity ratings in six ordered bins. 

 

Figure 12 is as Figure 11, but displays bins of similarity ratings rather than 

association ratings. The modulation of the n400 by degree of similarity is still 

apparent but less clear. This may reflect a genuine effect of similarity, or it may be 

the case that the range of similarity in the present stimulus set is smaller or differently 

distributed than the range of association. However, this and the previous figures 

plotted only mean waveforms and included no variability information and no 

statistical tests.  

To determine if the ratings are reflected by real differences in the ERPs, 

statistical analyses were conducted on the highest versus the lowest bins of each of 

similarity and association, using t-maps or raster plots produced using the cluster-

based permutation test from the Mass Univariate ERP Toolbox (Groppe, Urbach, & 
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Kutas, 2011). Cluster-based permutation tests capitalize on the broadly distributed 

effects of interest as well as the spatial density of the 64-channel electrode array. 

Additionally, although there are clear a priori predictions regarding the 

spatiotemporal distribution of effects for highly similar words, it is not known how 

these effects may change spatially or temporally with other types or degrees of 

relationships, and thus testing the entire timecourse and all electrodes using the 

cluster-based permutation test is appropriate (Groppe, Urbach, & Kutas, 2011). Raster 

plots were produced with the Mass Univariate ERP Toolbox. The raster plots display 

electrodes on the vertical axis (upper set is left hemisphere, middle set is midline, and 

lower set is right hemisphere; within each set, moving from top to bottom moves 

from anterior to posterior), and time on the horizontal axis. Filled electrode x 

timepoint boxes represent spatiotemporal locations with a significant difference 

(white boxes = condition 1 is more positive than condition 2, black boxes = condition 

1 is more negative than condition 2). 

 
Figure 11. Main effect of association  (lowest-highest). 
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Figure 12. Main effect of similarity: lowest-highest 

 

Figure 13 shows an n400 effect of association arising at around 300ms and 

extending through the rest of the epoch. Figure 14 shows and n400 effect of 

similarity, also arising at around 300ms and extending through the rest of the epoch. 

To determine if the spatiotemporal distributions of these two effects, are different, the 

interaction was tested as well (figure not shown). It was not significant at any 

timepoint: the two effects arise at the same time, taper off with the same general 

timescale, and are broadly distributed across electrodes. Some studies have found 

differences in spatial or temporal distribution of association and similarity effects 

(Koivisto & Revonsuo, 2001), but this finding was not replicated in the present 

ratings data. The next section examines ERPs to these word relationships sorted by 

predetermined category, rather than ratings. 
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Figure 13. Chiarello et al. (1990) words vs. lowest rated words. 

 

 Figure 15 above displays the Chiarello et al. (1990) associated, similar, and 

similar-and-associated words compared to the words with the lowest ratings. All of 

the Chiarello et al. (1990) words produce some degree of attenuation of the n400 of 

the lowest rated words, but the degree of association appears to be graded. Words 

with both types of relationship produce the smallest n400, similar words produce a 

larger n400, and associated words produce an even larger n400.  

To determine if these categories are reflected by real differences in the ERPs, 

statistical analyses were conducted on the three main effects of similarity, association, 

and both, as well as the interactions between these effects, using the cluster analysis 

described above. For present purposes, the word pairs rated lowest are referred to as 

‘unrelated’ and are used as a baseline to which the categorically related words may be 

compared. 
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Figure 14. Main effect of association (associated-unrelated) 

 

 

Figure 15. Main effect of similarity (similar-unrelated) 
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Figure 16. Main effect of similarity and association (both-unrelated) 

 

Figures 16, 17, and 18 demonstrate main effects of the associated, similar, and 

both associated and similar relationships. In all three main effects, an n400 

attenuation appears by roughly 300 or 350ms, such that the related words are more 

positive than the unrelated words, and lasts for the duration of the epoch. These 

rasters do show some variability, so the next section will present the interactions to 

test if the effects of each relationship type are different. 
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Figure 17. Interaction between association and similarity (associated-similar). 

 

 

 
Figure 18. Interaction between association and both (associated-both) 
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Figure 19. Interaction between similarity and both (similar-both) 

 

Figures 19, 20, and 21 reveal that the interaction between the effect of 

similarity and the effect of association is not significant anywhere, but similarity and 

association each produce a smaller attenuation than both relationships together in the 

classic n400 window (300-500ms). These data support an account that the total 

relationship between two rods produces a particular n400 magnitude, rather than 

similarity or association contributing unique variance to the n400 magnitude.  

However; of the entire set of 341 word pairs that neural data were collected , 

only a small subset were drawn from the Chiarello et al. (1990) pairs (30 associated 

only pairs, 23 similar only pairs, and 21 similar and associated pairs). The author has 

previously found significant n400 effects and interactions with a similar number of 

trials per condition on the same hardware, software, and workflow, and with similar 

participants (Jackson & Bolger, in preparation), but, in the present study, it is possible 

that certain effects are present but would only reach significance with a larger pool of 

trials per participant. However, the choice of analysis (cluster analysis using the Mass 
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Univariate Toolbox) gives a high probability of finding an effect if it is large, which 

n400 effects tend to be. In summary, it is possible that a difference between similarity 

and association would be apparent in ERP under different circumstances. 

All of these visualizations demonstrate a clear n400, followed by a difference 

that lasts throughout the remainder of the epoch at a subset of the electrodes. This is 

not a common finding in the ERP literature, but it is a pattern that we have observed 

in language tasks recorded on the same equipment with a similar pool of subjects in 

the past. Whether this extended difference represents a genuine finding or an error of 

some sort in collection or processing is not clear. However, for the present, analyses 

will be confined to the n400 window, in which these ERPs display a canonical form.  

 In summary, initial examinations of the ERPs are generally consistent with 

previous literature. Similarity and association are both reflected in the n400, though 

perhaps not differentially. We next turn to predictions of these ERPs. 

5.3.2 Model predictions of ERP voltage 

Average voltages in the n400 time window at Pz, averaged across subjects, 

were treated as continuous data and were predicted using several regression 

algorithms: support vector regressors (SVR), random forests, and k-nearest-

neighbors. GOLD output and LSA were separately used as input features to these 

algorithms. Additionally, similarity ratings and association ratings from Experiment 

1a were used as predictors (each individually, and summed) to determine if that 

information is sufficient to predict neural activity. Performance was quantified via 

RMSE and r
2
 as in Experiment 1a, using the same algorithm parameters.  
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Table 6. Regressor performance on voltage at Pz, 300-500ms. 

 

  
Pz300-500ms 

 

Algorithm RMSE R2 

    

 

Mean 2.0414 -0.0038 

 
   

smallGOLD 

SVM Regression 1.9999 0.0366 

Random Forest 2.1100 -0.0724 

kNN 2.3154 -0.2914 

    

LSA 

SVM Regression 2.0499 -0.0122 

Random Forest 2.2054 -0.1716 

kNN 2.5260 -0.5370 

 
   

Ratings 

SVM Regression 2.0271 0.0102 

Random Forest 2.1136 -0.076 

kNN 2.4171 -0.4073 

    

 

     Performance on this task was best in all cases using SVM, but the maximum 

performance achieved was smallGOLD’s r
2
 of 0.0366, which is unimpressive. It is 

particularly strange that the ratings produce such poor performance as well. However, 

note that several of the r
2
 values are negative; this may indicate that r

2
 is an 

inappropriate measure, perhaps due to nonlinearity in the ERP data (Tremblay & 

Newman, 2013). Following Carlson et al. (2014), Spearman correlations were 

calculated for one randomly selected set of train/test for each prediction method. To 

ensure that the machine learning methods did not detract from the performance that a 

raw correlation would produce, those correlations were calculated as well.  
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Table 7. Correlations between metrics and ERP measures. 

 

 

Pearson Spearman 

SVM-smGOLD 0.237 0.246 

SVM-LSA300 -0.103 -0.101 

SVM-ratings 0.209 0.157 

LSAval300 -0.112 -0.099 

AssocRating -0.079 -0.059 

SimRating -0.062 0.023 

   

As this single iteration of train/test may be a fluke, the correlations between 

predicted ERP values and true ERP values for the test sets of 20 iterations of train/test 

were calculated for smallGOLD, SVM-LSA, and the raw LSA values. The 

correlations are reported in full in Appendix C. Correlations between the true ERP 

values and the raw LSA values were slightly higher than the SVM-LSA values, so 

raw LSA was taken as the best LSA performance. A t-test assuming unequal 

variances (Ruxton, 2006) was conducted on the Spearman correlations for 

smallGOLD and LSA; this test and found a significant difference, t(30) = 7.02, p < 

.001, such that smallGOLD correlations (M = 0.228, SD = 0.084) were significantly 

higher than LSA’s (M = 0.076, SD = 0.048). 

In comparison to the better behavioral data predictions in Experiment 1, this 

may also seem unimpressive. However, it is important to note standards from the 

literature. To refer to a recent example of predicting neuroimaging data, Carlson et al. 

(2014) calculate Spearman correlations between various computational models and 

brain activity in two different brain regions; the maximum Spearman correlation that 

any of the models achieved was ρ = 0.154 (shown in their Figure 2). Accordingly, the 

mean smallGOLD performance of ρ = 0.228 may be acceptable.  
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Chapter 6:  Discussion 

6.1 Model performance 

The fundamental goal of this paper was to demonstrate that as a computational 

model using more psychologically plausible architecture, the GOLD model could 

viably account for the relations between words using a graph constructed from the 

single mechanism of co-occurrences between words in discourse context. As such, 

the GOLD model performed very well (90% accuracy) on the simpler task of 

classifying words as related or unrelated. It performed well, but not as well (60%+ 

accuracy) on the more difficult task of determining whether the Chiarello et al. (1990) 

word pairs were similar, related, or both similar and related; however, this 

performance is considered with respect to an LSA model that reached only 39% 

accuracy on this task. GOLD reached ~60%, ~50%, and ~70% on the three 

relationship categories considered individually, and when it erred, it tended to err on 

word pairs in the ‘both’ category, which may reflect model error or may reflect 

greater strength of one or the other type of relationship. It was also much less likely to 

classify a word pair with only relationship type (associated only or similar only) as 

the other relationship type; if it erred on these word pairs, it was much more likely to 

categorize them as ‘both’.  

GOLD was able to predict human ratings of similarity and association with 

high accuracy as well (Pearson’s r ranging from 0.7 to 0.8), again outperforming 

LSA’s r = 0.58. The task of predicting brain activity was much harder for both GOLD 

and LSA, and even the human judgments performed poorly, as measured by r
2
. 

However, an analysis based on previous literature that predicted neural activity from 
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language models indicated both that Spearman’s correlation is more appropriate given 

nature of neural activity, and that GOLD’s performance was actually quite good in 

the context of prior findings. One potential source of difficulty in predicting the ERP 

measure is that even fine-grained behavioral ratings of word pairs on the similarity 

and association axes were poor predictors. It may be the case that the influence of 

similarity and association combine in some nonlinear fashion to produce the n400 that 

is ultimately measured, or it may be the case that another variety of relationship 

entirely is also contributing variability to the ERP. Additional, direct testing of the 

n400 did not show waveform magnitude differences based on the type of relationship 

of the words that produced it; if anything, the n400 magnitude appeared to reflect 

total amount of relationship rather than any specific subtype.  

The predictive power of the GOLD model, which was constructed from co-

occurrence alone, indicates that the information used to judge relationships among 

words may be present in lexical co-occurrence alone, without considering additional 

language information such as word order. Furthermore, because GOLD was able to 

predict multiple, graded varieties of relationships between words (similarity and 

association), it is implied that information sufficient to represent both relationship 

types is present in lexical co-occurrence. This predictive success lends support to a 

single-mechanism model of word knowledge, and suggests that the method of 

calculating relationships, rather than representing relationships, may be what differs 

between relationship types. This is consistent with theories that word meaning is 

constructed or retrieved on an ad-hoc basis (Kwantes, 2005, see Neely, 1991 for 

review), as multiple mechanisms of querying may reasonably be involved in that ad-
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hoc construction. Preliminary analysis of the neural network classifier using the 

GOLD metrics indicates that the combination of association and similarity metrics are 

more powerful predictors than either type of metric alone, which lends additional 

support to this multiple querying mechanism account of word meaning. However, the 

data predicted in the present study were not reaction time data, as from priming 

studies, that may better distinguish between relationship types, as was done in Lund, 

Burgess, and Atchley (1995). As such, GOLD is agnostic as to which specific 

processes (such as automatic spreading of activation or post-lexical retrieval 

processes) its predictions are modeling or may be reflecting.  

6.2 Word relationships 

An alternative explanation for GOLD’s misclassifications may not reflect an 

error in the model, but rather the fundamental difficulty of assigning words to 

different relationship types, which are non-orthogonal categories, as Chiarello and 

colleagues (1990) have done.  In essence, the GOLD model, using a corpus of more 

natural language use and preserving that history in the connectivity patterns, may 

reveal that conceptually related words co-occur more frequently than assumed on the 

basis of free association norms.  

It may also be the case that the very question of “how similar are these two 

words” is ill-posed to some degree. Consider hot and cold: these words are antonyms, 

but both are temperatures, and thus perhaps more similar than hot and rutabaga. 

Earthquake and tornado are wildly different concepts, but in a list of earthquake, 

tornado, and democracy, suddenly they are much more similar.  In this vein, is it even 

meaningful to ask if two items are similar in isolation, or is a larger context 



 

 74 

 

necessary? If the larger context is important, what is the brain actually doing with 

these word pairs in isolation? Clearly some sort of similarity judgment is possible, as 

an n400 response can be achieved in the case of minimal context, and furthermore, 

that n400 can be modulated by some manner of relationship between the prime and 

target words.  

6.3 Benefits of computational models 

 As was discussed in chapter 1, it has been argued that computational models 

are merely tools, from which nothing of substantive value can be learned. The GOLD 

model and its performance in the present study are intended as an argument to the 

contrary: as a model of language, rather than a tool, GOLD produced evidence that 

supports specific theoretical accounts of language acquisition, word meaning, and the 

reflection of language in neural activity.  

However, it is undeniable that computational models provide a major 

advantage in their capacity as tools, namely that computational models aren’t people 

and thus are free of human foibles
11

. The model doesn’t participate in the study 

inebriated, doesn’t grow fatigued or fall asleep, doesn’t ignore task instructions, and 

its performance doesn’t change over time, all of which are problems that plague 

human subjects research. The ultimate effects of these foibles on research data fall 

into the categories of consistency and following task instructions (much akin to the 

duality of accuracy and precision). For an example of both, during an informal post-

hoc interview in Experiment 1a, one participant described that he “drifted into” 

judging a different aspect of word meaning partway through the twenty minute rating 

                                                 
11

 Model construction, of course, may be fraught with foible, but that is beyond the scope of the 

present study. 
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task; he had rated association for the first ten minutes, and then similarity for the last 

ten minutes. He was not consistent across word pairs in the session and was not 

following task instructions during the second half of the task. Other subjects 

encountered difficulties in following instructions, particularly in the semantic 

similarity judgment tasks, in which certain participants initially judged all word pairs 

as minimally similar because any two words in a pair “[were not] the same words”. 

Certain studies have quantified within-subject variability on tasks of language 

judgment (e.g. Barsalou, 1987), and consistency varies widely; to the author’s 

knowledge, no formal study has been conducted of participant noncompliance in 

language tasks of this nature. However, it is common practice in behavioral research 

to include questions whose answers are trivially easy (e.g. “Please fill box A on the 

response form for this question”), in order to check if participants are actually 

engaging with the task or following task instructions. In contrast to these problems, 

computational models perform with both accuracy and precision consistently and in a 

trivially replicable manner.  

6.4 Graphs as models of language 

Graphs are a valuable tool in psycholinguistics research, both in service of 

analysis and of understanding. As a boon to analysis, graphs do not require discarding 

vast tracts of data in the process of dimensionality reduction, and so the model may 

maintain a higher degree of complexity that preserves additional information about 

relationships between words as well as overall statistical regularities that reflect the 

model’s ‘experience’ with language (see Steyvers & Tenenbaum, 2005). Analysis of 

a graph model of language rests on the centuries-old field of graph theory for a solid 
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mathematical foundation and a broad array of analytical algorithms, which allow for 

assessment of structural as well as functional properties. These algorithms may be 

useful methods of modeling larger contexts in psychologically meaningful manners, 

through existing methods of modeling network propagation, etc. In terms of aiding 

understanding, graphs may allow for more intuitive interpretation of calculations and 

results than methods that require complex transformations of the data (e.g. SVD, 

Landauer, or circular convolution, Jones & Mewhort 2007). 

However, these benefits, particularly the retained information, are 

accompanied by a major drawback: computational complexity. Analyzing graphs, 

particularly very large graphs as one might encounter in a language model, is 

computationally expensive. The patterns that may prove most interesting are also very 

complex; for example, identifying subgraph isomorphisms, one potential method of 

discovering useful patterns for word sense disambiguation or identifying word 

relationships, is in O(|Vgraph|
|Vsubgraph|

). Even performed in parallel, these operations 

quickly become intractable on standard hardware. Other types of graph theory 

algorithms may be valuable for identifying language features or word attributes, such 

as social network analysis for identifies ‘bridge nodes’ that may be homographs, or 

clique analysis that may be able to cluster register, or connotative/emotional content 

(Osgood, 1957), or feature similarities (McRae, De Sa, & Seidenberg, 1999; Plaut, 

1995). These analyses are much more complex than something like LSA, and take 

exponentially more time to execute. The solutions to this complexity problem vary: 

recruiting massively parallel cloud computing resources, using only well-optimized 
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algorithms and data representations (Sun, Wang, Wang, Shao, & Li, 2012), reducing 

the graph size, or just choosing analyses that can avoid the brute force approach. 

One issue in graphs of word co-occurrence is that their high degree of 

interconnection makes many standard graph algorithms less useful, such as spanning 

trees and various measures of separation (e.g. Dijkstra, 1959). These algorithms are of 

course applicable, but may vary in their informativeness because the high degree of 

interconnectivity in a word-word graph means that words are typically very few steps 

away from any other word. In a graph like this, the weights of connections are more 

important than the presence of connections, so analyses must focus on algorithms that 

take weight into account, algorithms that consider larger patterns of weighted 

connectivity, or methods of graph pruning such that the presence of connections 

becomes informative – perhaps by pruning low weight connections, or limiting words 

to some arbitrary number of connections.  

It may also be valuable to maintain more information during the graph 

construction process. In the present large GOLD model, each connection is weighted 

with weight=1, regardless of actual distance between words. It may be useful instead 

to record connection counts at several distances – e.g. grumpy and cat co-occur 

immediately adjacent n0 times, separated by one word n1 times, separated by two 

words n2 times, etc. Maintaining word order information (perhaps through directional 

connections) may be a better predictor of human behavior as well, because, for 

example, bread-butter has a higher free association probability than butter-bread, etc. 

Lastly, as with all models of language, vagaries of the corpus can influence 

model performance. The corpus from which the GOLD model in the present study 
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was constructed may display a greater influence of conversational speech than, say, 

textbook-based corpora, as well as unorthodox grammatical structures and word 

usage. It also has a rather larger vocabulary of obscenities than a corpus constructed 

from the New York Times might, and spans different topics than standard language 

corpora (e.g. TASA; see Landauer et al., 1998). It was the aim of this corpus that it 

span a large range of unadulterated modern language use to again provide more 

ecological validity with respect to the behavioral data to which the GOLD model may 

be applied. 

6.5 Individual differences 

Individual variability in language experience (explored in the author’s prior 

projects; (Bolger & Jackson, under review; Jackson & Bolger, in preparation) leads to 

dramatic differences in word knowledge and thus the neural response to words in 

context. In the case of paired priming paradigms, the context is minimal: one 

preceding word. Clearly, this minimal context is sufficient to bias the neural response, 

as the n400 effect may be reliably elicited in these paradigms. However, due to its 

brevity and low information density, this context may be less effective at preventing 

unrelated or idiosyncratic semantic activation than a sentence or larger preceding 

context might. For example: the pair grumpy-cat would elicit a small n400 from the 

author, who has encountered the feline referred to as Grumpy Cat
12

  in digital form on 

many occasions, but a large n400 from someone who is unfamiliar with  this animal. 

However, if the context were larger and contained more information and thus more 

constraint, such as “the mouse toy was chewed up by the huge, orange, grumpy cat”, 

                                                 
12

 See www.grumpycats.com for details. 

http://www.grumpycats.com/


 

 79 

 

it may be the case that these two individuals’ n400 responses to cat would be closer in 

magnitude.  

The rating tasks in Experiment 1a provided a clear example of individual 

differences influencing word knowledge. The author presented question-query as an 

example of words that might be rated as highly similar; however, easily half of the 

participants rated this pair very low in similarity, because they had never encountered 

(or could not recall a meaning of) the word query. Incidentally, this is why 

participants with extensive vocabularies and high reading skill were selected to 

contribute the ERP data; the model should be predicting English in as complete or 

objectively accurate a form as possible, rather than being limited to modeling the 

smaller subset of language that is known to lower skill readers.  

6.6 Future research 

6.6.1 Language 

 

The present study supports a single-mechanism account of the acquisition of 

these word relationships, but does not rule out an account in which acquisition is via a 

single mechanism, but later calculation or determination of the relationships (at time 

of judgment) occurs via multiple mechanisms. This question may be approached by 

examining the predictive elements of the model: are the features required for 

predicting association different than the features required for predicting similarity, 

and do these features reflect theoretical conceptions of association and similarity?  

Can the model predict other types of quantifications of word relationships, such as 

reaction time data, finer-grained ratings of word relationships, or neural activity in 
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response to sets of words? Do sets of words constrain meaning and/or concept 

activation better than individual word primes? 

6.6.2 GOLD 

The present study explored whether the GOLD model could distinguish 

among similarity and associativity in word relationships. Future work should 

investigate whether GOLD can differentiate words along other axes and relationship 

types, such as antonyms/synonyms, multiple word senses, register, affective content, 

and so on. In support of these investigations should be the extraction of more 

complex measures from the graph, particularly those examining larger connectivity 

patterns. The present study was exploratory, and so was limited to an undirected, 

smaller graph and simpler, local algorithms. However, the full power of a graph 

model may lie in it its higher-order, more complex patterned relationships, so these 

should be evaluated.  

Preliminary exploration of the ML algorithms used to predict activity and 

behavioral from GOLD does not make it obvious what is driving their obtained 

accuracy. It is not clear either way if either of the theoretically association-based 

(direct links between words) or the theoretically similarity-based (overlap and non-

overlap between words’ neighbors) metrics are more informative, or if the metrics are 

equally informative and the manner of weight normalization is more important. 

However, it is clear that combination of several features is more predictive than each 

feature alone. Further investigating what this may imply for human language 

processing will require a tightly controlled stimulus set that spans many axes of the 

language space.  
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A crucial element of future work will be the identification of optimal methods 

of prediction from the model. The present study used many features and machine 

learners to learn patterns that may be predictive; other studies have used such 

methods as scaling by arbitrary units (Lund & Burgess, 1996), and assessing 

predictive ability based on Spearman correlations (such as on dissimilarity matrices 

entries in Carlson, Simmons, Kriegeskorte, & Slevc, 2014, and on other types of data 

as in Collins-Thompson & Callan, 2007 and Gabrilovich & Markovitch, 2007, to 

name two of countless studies).  It may be also the case that larger contexts, such as 

those already used in judgments of document similarity, are necessary for more 

meaningful judgments of similarity. Future research with the GOLD model should 

address the development of metrics from GOLD that can be expanded to arbitrary-

length inputs, which may enable greater predictive power as well as more accurate 

modeling of psychological reality.  

6.6.3 Individual differences 

It is undeniable that individual differences contribute to neural responses to 

language. Future work may examine these individual differences by comparing neural 

activity in high-skill to readers to that in low-skill readers, particularly if the stimuli 

also vary along several dimensions of difficulty. The word stimuli used in the present 

study were fairly high frequency, but it’s not clear if higher-order interactions with 

words that are involved through spreading activation or other processes, or other 

additional information derived from greater experience with language, may have an 

effect on the measured waveforms. 
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6.6.3 ERP 

One of the major goals of the present study was to predict brain responses in a 

language task. The present study used a very simplistic approach to quantifying these 

brain responses: average voltage in a specific time window of ERP at a single 

electrode. Unfortunately, this approach discards a tremendous amount of data that 

may be very relevant in terms of differentiating word characteristics or cognitive 

processes (e.g. Halgren et al., 2002; Sereno, Brewer, & O’Donnell, 2003; Thornhill & 

Van Petten, 2012). A different method of encoding the total spatiotemporal pattern of 

the brain response may be valuable to capitalize on the additional information present 

in such patterns.  

Future work may also examine prediction in the other direction: predicting 

characteristics of words from ERPs. Using ERPs as predictors may better enable use 

of the entire spatiotemporal pattern of voltage, rather than collapsing such a complex 

pattern into a single value as in the present study. Koivisto and Revonsuo (2001) 

found that dividing the n400 window into early (250-375) and late (375-500) allowed 

for the discovery of different spatial and temporal patterns of effects for lexically 

associated as opposed to semantically similar word pairs; future work may follow this 

paper and attempt to predict differential activation in different time windows and 

electrode locations. 

6.6.5 Extensions 

In the interest of maintaining a sensible scope of the present project, these 

applications were not explored. However, these applications have clear relevance to 

the reading and language literature, the cognitive literature, and other work in the 
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Bolger lab. This chapter will identify and briefly discuss several potential applications 

that GOLD, ERP data, or behavioral data might address. 

6.6.5.1 Context variability 

The context variability hypothesis (Bolger et al., 2008) may be tested by 

replicating the contextual word learning paradigm (Jackson & Bolger, in prep) using 

GOLD as the ‘participant’. The model could be ‘taught’ novel words in the same way 

that human participants were taught: exposure to the novel words embedded in 

sentence contexts. Model performance on this task may be compared to the human 

data from Jackson & Bolger (in prep), which include multiple choice sentence 

completion, congruent/incongruent sentence judgments (including ERPs to this task), 

and participant-produced definitions. 

6.6.5.2 Semantic distance in fMRI 

Previous research in fMRI has found relationships between semantic distance 

of language input and activity in left IFG, bilateral MFG, and anterior temporal 

regions in a lexical decision priming task (Tivarus, Ibinson, Hillier, Schmalbrock, & 

Beversdorf, 2006), and in left frontopolar cortex in an analogy judgment task (Green, 

Kraemer, Fugelsang, Gray, & Dunbar, 2010). GOLD could attempt to predict 

activation from these studies. 

6.6.5.3 Word sense disambiguation 

 Words can be ambiguous in different ways: polysemy refers to multiple 

related meanings (a boot on a foot and to give something the boot), while homonymy 

refers to multiple unrelated meanings (the boot on a foot and the boot of a car). 

Previous research has used various approaches, including clustering (Levin, Sharifi, 
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& Ball, 2006; Lin & Pantel, 2002; Widdows & Dorow, 2002), an information-based 

approach (Durda, Caron, & Buchanan, 2010),  a second-order cluster approach 

(Schutze, 1998), Wikipedia-based methods (Gabrilovich & Markovitch, 2007; Li et 

al., 2011) that uses additional information in a query (e.g. river bank vs bank loan), 

and hybrid methods that use both distributional data and human-annotated 

knowledgebases (Jiang & Conrath, 1997; Marton, Mohammad, & Resnik, 2009).  

GOLD may be able to disambiguate word senses based on the patterns of 

connectivity of the different senses. Bridge analyses, in certain social network 

analyses (Butts, 2008) and epidemiological modeling (Luke & Harris, 2007) aims to 

identify nodes that participate in otherwise disparate sub-networks of nodes (nodes 

that act as ‘bridges’ between groups). It may be the case that homonymous words are 

bridge nodes. For example, the word ball should be heavily interconnected with a 

group of nodes including bat, throw, pitch, baseball, football, which should all be 

heavily interconnected; ball should also be interconnected with a group that includes 

gown, dance, gala, and invitation, all of which should be heavily interconnected, 

none of which should be particularly heavily connected to the sport-related group.  

This type of analysis may also be helpful in identifying where information 

was lost in the parsing process; for example, all input is forced to lowercase before 

being weighted, and accordingly the difference between US and us is not detected in 

the first-order structure of the graph. If bridge analysis identifies ‘us’ as participating 

in two largely disparate clusters, one centering around groups and the other centering 

around foreign policy and military exercises in the Middle East, then GOLD may be 

able to distinguish between these two words.  
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6.6.5.4 Synonymy 

Distributional models generally perform well on tests of synonymy (Turney, 

2001) and some methods have improved performance by specifically training on a 

thesaurus-based corpus (Jarmasz, 2003). Measures that preserve more dimensions are 

better at judging subtle differences between synonyms (“near-synonyms”), because 

less distinguishing information is discarded (Wang & Hirst, 2010). GOLD would not 

discard any data, and thus would be expected to perform well on a near-synonym 

judgment task (Inkpen, 2007; Turney, 2001), and may also be compared to human 

similarity judgments as in Budanitsky & Hirst (2005). 

Theoretically, words with similar meanings should be connected in similar 

ways to other nodes. Standard cluster analysis (Hartuv & Shamir, 1999; Schaeffer, 

2007) may be able to identify groups of words with similar meanings. The ‘central’ 

node – which measure of centrality would be appropriate here is an open question, 

but perhaps word frequency would be effective – would be the ‘label’ of that group. 

This could simplify further computations (by reducing many nodes to a single 

‘supernode’), or be useful for generative queries (‘generate synonyms of tired’). 

6.6.5.6 Other 

The model may be applicable towards a variety of other standard tasks, 

including authorship attribution, Cloze tasks, assessing metaphors, judging 

definitions, and so on. The model is further flexible in its parameters: by propagating 

activation through the network and manipulating parameters like falloff time and 

propagation rate, it may mimic parameters of human memory like WM span and 

speed of processing. Further work may address even more pie-in-the-sky hypotheses: 
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can the model suggest meaning for slang? Can it make rudimentary jokes, perhaps by 

completing an input sequence with a low-probability word?  

6.7 Conclusion 

The present study constructed GOLD, a graph model of language, from 

lexical co-occurrence, and used novel, theoretically-informed similarity metrics from 

GOLD to predict relationships among words, types of relationships among words, 

and neural activity elicited from reading words with particular relationships. The 

GOLD model is capable of distinguishing among types of relationships between 

words, predicting graded relationships between words, and predicting brain activity in 

response to words with varying relationships, using metrics constructed from 

theoretically-informed conceptualizations of association and similarity. These novel 

algorithms are theoretically informed in a straightforward manner: they consider how 

connections to associates that are common to both words and associates that are 

unique to each word differentially contribute to meaning. This type of calculation is 

more transparent in its reflection of the co-occurrence patterns of language that were 

used to construct the model than algorithms involving more complex transformations, 

and, because it doesn’t rely on spatial relationships of word representations in a 

particular language space (e.g. cosine between two word vectors), may be better able 

to account for psycholinguistic properties that would not be reflected in orthogonal 

relationships in a vector space model.  
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Appendix A. GOLD metrics 

Five methods were used to calculate similarity, all considering overlapping 

nodes and nonoverlapping nodes separately. It is theorized that a similar pattern of 

connectivity to overlapping nodes will arise when the word pair is more similar, but if 

their connections to nonoverlapping nodes are much greater, than the similarity in 

overlap may not contribute as much to the overall judgment of the word pairs. 

Accordingly, the following metrics involve various ways of summing weights to the 

overlapping nodes and summing weights to the nonoverlapping nodes, and comparing 

the two sums.  

Method 1: Overlap and nonoverlap sets. The weights to each set are summed 

as follows, where |Vo| is the number of nodes in the overlap set, |Vn| is the number of 

nodes in the nonoverlap set, and  is the weight between word 1 and node i : 

 

 

However, any additive or subtractive combination of these values could be 

arbitrarily high. It would be ideal if the metric would map to a finite range for easy 

comparisons (like LSA’s output ranges from -1 to 1). One approach is to compare the 

proportion of the total weights that is accounted for by weights to the overlap and the 

nonoverlap sets. The difference between these proportions will map from -1 (in the 

case where 100% of weights are connected to nonoverlap nodes) to 1 (in the case 

where 100% of weights are connected to overlap nodes).  
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Method 2: Overlap and nonoverlap sets, normalized by size. Method 2 is 

calculated as Method 1, except that  and 

 are normalized by their relative sizes, as below: 

 

 

The final similarity metric is calculated as in Method 1, as the difference of 

proportions to the overlap and nonoverlap sets. 

Method 3: Overlap and nonoverlap sets, overlap set scaled by magnitude 

difference. For the remaining methods, the sum of weights to overlap transformed 

according to the following equation: 

 

This has the effect of scaling the two weights by how close they are in 

magnitude, such that weights that have a smaller magnitude difference will contribute 

more of their weight to the final total. In the example in Figure 3, grumpy-face has a 

weight of 9 while cat-face has a weight of 52; their combined transformed weight 
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would be 10.56 (18% of the original combined weights). In contrast, grumpy-

depressed has a weight of 2 while cat-depressed has a weight of 3; their combined 

transformed weight would be 3.33 (66% of the original combined weights).  

In Method 3, weights to the overlap nodes are calculated as above, and the final 

similarity metric is calculated as in Method 1 (no additional normalization). 

Method 4:  Overlap and nonoverlap sets, overlap set scaled by magnitude 

difference, both sets normalized by size. In Method 4, weights to the overlap nodes 

are calculated as above and then normalized by size as in Method 2. The final 

similarity metric is calculated as in Method 1. 

Method 5: Overlap set only, scaled by magnitude difference, normalized by 

size. In Method 5, only the overlap set is considered, and its weights are calculated as 

in Method 3 and normalized as in Method 2, as follows: 

 

Because the nonoverlap set is ignored, no proportions are calculated. This 

metric does not map from -1 to 1. 

 

Table 8. Weight normalization methods 

 

Normalization method Calculation of normalized weight 

Raw weights Weight 

Pointwise mutual information 

(PMI)  
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Sum of IDFs  

Product of IDFs  

Sum of document frequencies  

Product of document frequencies  

Inverse of sum of IDFs 
 

Inverse of prod of IDFs 
 

Inverse of sum of document 

frequencies   

Inverse of product of document 

frequencies  

Sum of frequencies  

Sum of frequencies multiplied by 

log sum of frequencies 
 

Product of frequencies multiplied 

by log product of frequencies 
 

Sum of frequencies divided by 

log sum of frequencies  

Product of frequencies divided 

by log product of frequencies  
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Appendix B. ERP Participant assessment results 

 

 
Table 9. ERP participant assessment results 

 

Assessment Mean SD 

Nelson-Denny Comprehension (raw score) 70.11 5.23 

Nelson Denny reading rate (raw score) 298.47 94.35 

PPVT (standard score) 119.74 10.56 

TOWRE sight word (standard score) 103.53 9.63 

TOWRE phonetic decoding (standard score) 101.37 9.90 
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Appendix C. ERP prediction performance 

 
Table 10. Correlations between models and predictions, 20 iterations of 70/30 train/test. 

 

Iteration     Spearman       Pearson   

  

SVM-

smGOLD 
SVM-LSA LSA 

 
SVM-

smGOLD 

SVM-

LSA 
LSA 

         

1 

 

0.314 -0.044 0.069 
 

0.304 -0.016 0.152 

2 

 

0.349 0.182 0.188 
 

0.326 0.187 0.177 

3 

 

0.235 0.044 0.044 
 

0.233 0.006 -0.001 

4 

 

0.335 0.054 0.078 
 

0.323 0.069 0.118 

5 

 

0.246 0.007 0.007 
 

0.218 -0.013 0.030 

6 

 

0.267 0.013 0.088 
 

0.226 0.044 0.125 

7 

 

0.219 0.063 0.063 
 

0.208 0.062 0.051 

8 

 

0.265 -0.020 0.115 
 

0.242 -0.038 0.116 

9 

 

0.250 0.095 0.095 
 

0.205 -0.026 0.036 

10 

 

0.192 0.106 0.106 
 

0.147 0.013 0.039 

11 

 

0.150 0.079 0.079 
 

0.140 0.038 0.045 

12 

 

0.233 0.154 0.154 
 

0.223 0.117 0.108 

13 

 

0.200 -0.030 0.008 
 

0.170 -0.052 0.016 

14 

 

0.238 0.054 0.054 
 

0.215 0.084 0.082 

15 

 

0.129 0.094 0.094 
 

0.133 0.056 0.056 

16 

 

0.357 0.092 0.092 
 

0.300 0.022 0.011 

17 

 

0.175 -0.010 -0.010 
 

0.195 -0.060 -0.080 

18 

 

0.009 0.026 0.027 
 

-0.030 0.024 0.029 

19 

 

0.129 0.087 0.087 
 

0.144 0.091 0.090 

20 

 

0.264 0.086 0.086 
 

0.229 0.031 0.027 

                  

Min 

 

0.009 -0.044 -0.010 
 

-0.030 -0.060 -0.080 

Max 

 

0.357 0.182 0.188 
 

0.326 0.187 0.177 

Mean 

 

0.228 0.057 0.076 
 

0.208 0.032 0.061 

SD   0.084 0.060 0.048   0.081 0.061 0.060 
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Appendix D. Stimuli for ratings and ERP study 

 

 
Table 11. Stimuli and stimuli parameters for ratings and ERP. 

Word1 Word2 Category Sim 

Rating 

Assoc 

Rating 

LSA 

30 

LSA 

300 

Word1 

freq 

Word2 

freq 

accuracy case random 1.45 2.70 0.80 0.02 1288 35962 

actress bandage random 1.16 1.21 -0.26 0.00 609 127 

adultery putty random 1.39 1.09 -0.45 0.11 249 112 

alpaca cap random 1.42 1.59 -0.25 0.06 151 2818 

apple grape Chiarello - similar 5.32 5.67 0.14 0.10 17029 482 

army navy Chiarello - both 5.52 6.56 0.76 0.68 6615 1615 

artist paint Chiarello - associated 4.48 6.65 0.64 0.30 4579 3980 

assumption rant random 2.03 2.24 0.36 0.04 2729 1943 

assure addition random 1.39 1.21 0.36 0.22 1210 3252 

asylum madhouse Miller-Charles 5.97 5.94 0.07 0.03 471 19 

atheism pouch random 1.00 1.12 -0.41 -0.06 6700 165 

attractiveness chili random 1.26 1.15 -0.30 -0.06 296 688 

authority regime random 4.71 4.53 0.82 0.24 3118 1116 

background usage random 1.55 1.85 0.71 0.12 6642 2350 

ball bat Chiarello - both 3.97 6.32 0.81 0.33 7764 1919 

banana peach Chiarello - similar 5.10 5.32 0.48 0.18 1586 367 

barrel council random 1.35 1.15 0.33 0.00 2251 1162 

basin sink Chiarello - both 4.94 4.47 0.63 0.66 85 1890 

battle director random 1.55 1.62 0.78 0.17 4396 2201 

bear twist random 1.03 1.09 0.91 0.09 5815 3252 

bedroom hypothesis random 1.06 1.12 -0.28 0.01 2048 1031 

bee honey Chiarello - associated 4.45 6.88 0.51 0.35 799 2640 

bias perception random 4.39 4.94 0.93 0.51 3531 1982 

bigot internship random 1.16 1.26 -0.36 -0.08 429 504 

birch elm Chiarello - similar 4.55 5.26 0.38 -0.16 76 114 

bird eagle Thompson-Schill et al. 5.55 6.18 0.40 -0.03 2814 1001 

blackmail protein random 1.00 1.03 -0.38 -0.03 275 2669 

blanket waste random 1.19 1.18 0.17 0.01 1545 6528 

bloat housemate random 1.03 1.09 -0.40 -0.07 185 139 

blouse skirt Chiarello - both 4.94 5.59 0.72 0.34 60 557 

book page Chiarello - associated 4.94 6.45 0.78 0.12 26642 15032 

boy clue random 1.29 1.74 0.92 -0.01 9003 2680 

brand pose random 1.81 1.82 0.42 -0.05 5895 1005 

brandy wine Chiarello - both 5.33 5.74 0.51 0.20 83 3147 
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Word1 Word2 Category Sim 

Rating 

Assoc 

Rating 

LSA 

30 

LSA 

300 

Word1 

freq 

Word2 

freq 

brass iron Chiarello - similar 5.23 5.06 0.78 0.14 663 3496 

brick privacy random 2.03 2.03 0.18 0.02 1410 2754 

bruise stereotype random 1.29 1.76 -0.33 0.00 223 1628 

brush comb Thompson-Schill et al. 5.74 6.62 0.46 0.20 1541 207 

building punishment random 1.26 1.29 0.24 -0.04 10218 2995 

burlap felt Chiarello - similar 3.94 2.85 0.36 0.11 33 16590 

bus mode random 1.87 2.26 0.22 0.02 5125 4201 

butter session random 1.06 1.12 0.54 0.14 3434 1536 

bye goodbye Other 6.71 6.71 0.58 0.34 649 906 

bystander yeast random 1.06 1.18 -0.32 0.00 152 909 

camel hump Chiarello - associated 4.10 6.15 0.39 0.01 429 308 

canada steak random 1.13 1.45 0.30 0.01 11553 1935 

candle flame Chiarello - associated 5.06 6.65 0.69 0.31 621 852 

carbon efficiency random 2.06 4.12 0.81 0.60 1867 1411 

carrot corn Chiarello - similar 5.10 5.26 0.49 0.42 438 1836 

carry executive random 2.26 1.82 0.57 0.13 8404 1274 

casserole gender random 1.00 1.18 -0.40 -0.14 143 6320 

castle designer random 1.58 2.44 0.52 -0.01 1217 1442 

chapter reason random 1.35 1.65 -0.04 -0.01 1199 47925 

chip penny random 1.37 1.41 0.91 0.16 1783 1457 

church theism Other 4.00 3.65 0.52 0.81 11313 317 

circle cross Chiarello - similar 2.65 3.24 0.67 0.34 3800 5968 

circus clown Chiarello - associated 4.45 6.65 0.57 0.24 464 856 

clause burden random 1.87 1.47 0.81 0.06 1061 1710 

closet vast random 1.71 2.50 -0.09 -0.03 1535 3981 

cloth dress Chiarello - associated 5.10 5.39 0.60 0.18 614 3789 

cloud output random 1.48 1.18 0.90 0.28 2633 1407 

combination animation random 1.40 1.53 0.87 0.25 2555 1477 

companion intuition random 1.35 1.82 -0.04 0.10 694 341 

compassion brownie random 1.48 2.00 -0.20 -0.02 870 183 

complexity porch random 1.16 1.12 -0.43 -0.04 1067 633 

concept resource random 2.55 2.85 0.73 0.22 7432 1477 

concert lunch random 1.35 1.79 0.82 0.07 1728 3519 

congressman anime random 1.19 1.00 -0.27 -0.09 355 4113 

consideration tradition random 1.87 1.74 0.85 0.09 1429 2023 

constitution communism random 1.94 3.47 0.84 0.30 3467 1204 

container victim random 1.32 1.47 -0.27 -0.04 1002 4470 

content alternative random 1.58 1.65 0.93 0.26 11623 3944 
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Word1 Word2 Category Sim 

Rating 

Assoc 

Rating 

LSA 

30 

LSA 

300 

Word1 

freq 

Word2 

freq 

contrast comparison random 4.19 6.26 0.91 0.46 1557 4716 

cooker commandment random 1.23 1.09 -0.42 -0.01 264 120 

correlation coat random 1.00 1.06 -0.35 0.00 1620 1499 

cotton silk Chiarello - similar 5.13 5.88 0.76 0.34 694 269 

couch philosophy random 1.13 1.59 -0.42 -0.02 2423 5971 

cradle baby Chiarello - associated 4.13 5.88 0.30 0.05 227 14248 

crater moon Chiarello - associated 4.19 6.00 0.60 0.22 140 4108 

creationism treadmill random 1.03 1.00 -0.28 -0.01 678 512 

crop trigger random 1.39 1.15 0.69 0.21 1115 2563 

cube scroll random 1.13 1.36 0.71 0.13 1409 1463 

currency bolt random 1.61 1.44 0.16 0.06 2240 1095 

custom actor random 1.58 1.88 0.10 -0.02 3001 2711 

cut scissors Thompson-Schill et al. 4.84 6.52 0.69 0.28 18614 485 

decoy duck Chiarello - associated 2.19 1.97 0.43 0.04 120 2809 

deer pony Chiarello - similar 4.32 4.09 0.45 0.00 2169 799 

definition smell random 1.45 1.18 -0.18 -0.04 7387 5125 

design sweetheart random 1.23 1.47 -0.26 -0.08 10014 248 

desk stool Chiarello - similar 4.19 4.94 0.86 0.24 2955 226 

devotion milk random 1.03 1.26 -0.13 -0.03 176 5325 

diaper multiplier random 1.26 1.21 -0.27 0.08 444 180 

dirt mud Chiarello - both 6.32 6.70 0.85 0.45 1829 844 

disagreement tuna random 1.00 1.09 -0.12 0.00 593 689 

disgusting gross Other 6.35 6.82 0.78 0.56 3814 3194 

distinction liar random 1.52 2.24 0.02 0.11 1769 1492 

divorce mother random 2.58 4.24 0.93 0.67 1741 15465 

doom agent random 1.45 1.71 0.54 -0.02 1223 1810 

dorm politics random 1.23 1.79 -0.30 -0.04 807 9173 

dose furniture random 1.26 1.29 0.65 -0.05 1216 1052 

downstairs jargon random 1.06 1.24 -0.41 0.01 497 206 

drums piano Chiarello - similar 4.58 5.68 0.68 0.67 966 1245 

ear foot Chiarello - similar 4.29 4.64 0.89 0.42 2783 5617 

elephant paragraph Other 1.00 1.21 0.45 -0.02 1227 1614 

empowerment spaghetti random 1.13 1.03 -0.25 -0.12 101 936 

end mess random 1.45 1.65 0.94 0.09 47547 4462 

enforcement net random 1.83 2.29 0.82 -0.01 1792 3717 

engine car Chiarello - associated 4.61 6.32 0.38 0.20 4319 32872 

entry score random 2.87 2.94 0.78 0.29 2101 3525 

evidence bead random 1.26 1.12 -0.27 0.01 13829 109 
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Word1 Word2 Category Sim 

Rating 

Assoc 

Rating 

LSA 

30 

LSA 

300 

Word1 

freq 

Word2 

freq 

exam gravity random 1.32 1.82 0.19 0.02 1271 2130 

faith shower random 1.19 1.35 -0.40 -0.05 6813 3466 

farmer plow Chiarello - associated 3.81 5.88 0.21 -0.01 810 287 

feature tablet random 1.58 2.33 0.93 0.67 4862 3988 

fever obligation random 1.32 1.26 -0.34 0.00 432 1205 

fiction manager random 1.13 1.21 0.11 -0.11 2755 4528 

fitness vet random 1.77 2.18 -0.19 -0.03 1953 1605 

flavor tribe random 1.29 1.38 -0.11 0.04 2038 562 

flea ant Chiarello - similar 4.81 4.97 0.41 0.05 274 545 

flew regret random 1.35 1.32 0.39 0.03 1121 2931 

fork spoon Thompson-Schill et al. 5.32 6.59 0.81 0.41 938 892 

format dispatcher random 1.42 1.62 -0.45 -0.05 2238 108 

fox horse Chiarello - similar 4.19 4.12 0.47 0.02 5528 4972 

freedom beach random 2.23 2.94 -0.13 -0.04 7782 2330 

frown smile Chiarello - both 3.65 6.00 0.41 0.51 178 3864 

gallon jug Chiarello - associated 4.68 5.71 0.77 0.62 1146 181 

garage piracy random 1.58 1.41 -0.31 -0.06 1764 1069 

gas lemonade Other 1.16 1.32 0.65 0.17 8933 377 

gaze turtle random 1.16 1.26 -0.01 0.08 219 957 

gem jewel Miller-Charles 6.74 6.44 0.00 0.00 1504 117 

gene world random 2.13 2.03 0.83 -0.02 1122 60125 

ghost half random 1.13 1.62 0.79 0.08 2307 27181 

grade libertarian random 1.23 1.76 -0.20 -0.04 7001 3432 

grammar beauty random 1.03 1.82 0.68 0.13 3164 2385 

grandson query random 1.29 1.50 -0.45 -0.04 220 249 

graph grandma random 1.00 1.18 -0.16 -0.03 1231 2268 

grave mileage random 1.48 1.21 -0.31 -0.07 1058 684 

grocer store Chiarello - associated 4.13 5.94 0.73 0.53 65 16594 

grumpy grouchy Other 6.55 6.53 0.56 0.34 754 34 

guy capitalist random 2.06 1.97 -0.11 0.00 79747 1431 

habit steam random 1.10 1.06 0.67 -0.01 1841 5414 

hair fur Chiarello - similar 5.61 5.82 0.54 0.43 11644 884 

happy carpet random 1.10 1.35 0.38 0.14 23716 1149 

harbor boat Chiarello - associated 3.87 5.88 0.65 0.16 514 3734 

hardware section random 1.77 3.03 0.65 -0.03 5085 4964 

head leg Chiarello - similar 4.10 5.24 0.94 0.32 27709 4339 

heckler revenue random 1.58 1.74 -0.29 -0.07 100 3390 

hermit cave Chiarello - associated 3.19 4.03 0.55 0.23 146 1115 
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Word1 Word2 Category Sim 

Rating 

Assoc 

Rating 

LSA 

30 

LSA 

300 

Word1 

freq 

Word2 

freq 

hi hello Other 6.97 6.88 0.89 0.60 4112 2954 

hockey ice Chiarello - associated 3.81 6.59 0.70 0.21 4010 7437 

home valley random 1.90 2.35 0.53 -0.02 35632 1009 

house lesson random 1.61 2.18 0.66 -0.04 29295 2608 

hypocrisy balance random 1.29 1.68 0.45 -0.06 1042 5120 

ideology razor random 1.03 1.24 0.09 -0.01 1726 1063 

immigration snow random 1.03 1.29 0.09 0.03 1235 4216 

incident destroy random 2.39 2.61 0.21 0.16 2824 3991 

infection treat random 2.42 3.09 -0.14 0.22 1413 5969 

insight blatant random 1.94 1.74 0.56 0.12 1702 1274 

integer buddy random 1.26 1.15 -0.21 -0.04 202 4761 

involve halfway random 1.65 1.62 -0.07 -0.02 1765 1667 

jeep plane Chiarello - similar 3.81 4.09 0.79 0.29 523 3729 

jelly jam Chiarello - both 6.32 6.68 0.74 0.02 1254 1376 

jet budget random 1.19 2.15 0.51 0.24 1208 5256 

justification eliminate random 1.65 1.97 0.72 0.22 1421 1315 

justify summer random 1.13 1.03 -0.29 -0.19 3652 6621 

key door Chiarello - associated 3.90 6.29 0.14 0.18 7588 12802 

knock warrant random 2.10 2.85 0.19 0.08 2680 1313 

law justice Thompson-Schill et al. 5.32 6.50 0.87 0.35 24055 4562 

lawsuit meaningless random 1.45 2.06 0.45 0.02 1111 1801 

lawyer nurse Chiarello - similar 3.29 3.79 0.43 0.10 3001 1813 

layer liquid random 2.06 2.72 0.93 0.46 1677 2631 

leap pen random 1.32 1.18 0.53 0.06 1025 1696 

lee grown random 1.42 1.00 0.32 0.00 1420 3649 

legalization toad random 1.00 1.03 -0.47 -0.04 1142 145 

lemon pear Chiarello - similar 4.68 5.00 0.56 0.20 1034 151 

lie sweet random 1.06 1.47 0.24 0.01 7123 8294 

light lamp Thompson-Schill et al. 6.39 6.65 0.76 0.71 16912 724 

lord tab random 1.23 1.03 0.08 0.04 3944 1586 

lotion cream Chiarello - both 5.90 6.12 0.74 0.31 355 3650 

machine villain random 1.45 1.76 0.22 0.06 8932 1292 

mad anger Thompson-Schill et al. 6.61 6.56 0.37 0.15 6534 2365 

man woman Chiarello - both 4.65 6.79 0.37 0.08 71832 22936 

management chart random 2.55 3.41 0.72 0.08 3810 1304 

market carrier random 2.13 2.53 0.81 0.08 16947 1779 

maximum manufacturer random 1.74 2.35 0.81 0.08 1620 1150 

meal unfortunate random 1.03 1.35 0.03 -0.17 3198 1980 
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Word1 Word2 Category Sim 

Rating 
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Rating 

LSA 

30 

LSA 

300 

Word1 

freq 

Word2 

freq 

medicine amount random 2.55 4.15 0.86 0.15 2674 20920 

met texture random 1.10 1.15 -0.24 -0.08 10417 1060 

miner coal Chiarello - associated 4.03 6.56 0.02 0.12 92 1386 

minimum consumption random 1.55 2.91 0.81 0.30 5352 1710 

minister aroma random 1.23 1.15 -0.04 0.01 1095 112 

mint candy Chiarello - both 4.81 5.71 0.30 0.01 1129 3069 

mistaken criticism random 2.90 2.88 0.82 0.29 1620 2724 

modernism wrist random 1.29 1.15 -0.11 0.01 103 1105 

mold bread Chiarello - associated 3.03 4.75 0.66 0.31 652 3838 

mortgage shown random 1.32 1.47 0.34 -0.01 1245 4312 

moth fly Chiarello - both 5.52 5.50 0.49 0.19 273 4892 

mouse rat Chiarello - both 5.61 6.44 0.37 0.02 4177 1197 

movement association random 2.77 2.38 0.94 0.33 5406 1225 

mug beer Chiarello - associated 3.68 5.94 0.46 0.30 529 11410 

name tortilla random 1.06 1.18 -0.21 -0.01 34714 191 

nationalist cuddle random 1.03 1.00 -0.45 -0.04 284 452 

needle thread Thompson-Schill et al. 4.06 6.85 0.04 -0.14 819 18459 

needless force random 1.42 2.09 0.01 0.04 1403 14107 

nickel dime Chiarello - both 5.74 6.41 0.55 0.24 462 740 

nightmare tape random 1.00 1.38 0.84 0.08 1679 2901 

onion tears Chiarello - associated 3.26 5.71 0.15 -0.01 1314 3040 

opinion evening random 1.16 1.44 -0.30 -0.12 19305 1716 

opportunity contest random 2.87 2.44 0.73 0.16 5308 1424 

orb scum random 1.39 1.29 -0.03 0.00 165 1014 

ounce pound Chiarello - both 4.84 6.24 0.74 0.47 623 1957 

outrage deodorant random 1.23 1.26 0.02 -0.07 876 227 

oxygen rating random 1.35 1.53 0.41 -0.04 1251 1219 

paradox valentine random 1.26 1.24 -0.06 -0.04 816 365 

patriarchy raccoon random 1.26 1.15 -0.48 -0.02 690 335 

percentage summary random 2.39 2.38 0.62 0.22 3395 1001 

persuasion seal random 1.23 1.44 -0.07 -0.02 164 1187 

petty attitude random 3.19 3.76 0.90 0.37 1296 4693 

phenomenon struggle random 1.61 1.85 0.69 0.21 1232 2252 

pillow fort Other 2.57 4.62 0.46 0.14 920 603 

platform default random 1.97 1.97 0.94 0.60 3735 4551 

poll knife random 1.26 1.24 0.12 -0.06 1440 4387 

pool translate random 1.13 1.26 0.08 -0.07 3752 1408 

pork mentality random 1.16 1.12 0.26 -0.01 1037 2119 
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30 

LSA 

300 

Word1 

freq 

Word2 

freq 

prediction diner random 1.10 1.32 -0.21 0.00 807 221 

pregnancy glad random 2.23 3.29 0.19 0.03 2269 13374 

press pitch random 1.93 1.76 0.84 0.14 5675 2002 

procreation maple random 1.26 1.06 0.04 -0.04 140 855 

promote identity random 1.81 2.26 0.90 0.34 1881 2510 

prude freezer random 1.32 1.00 -0.43 -0.05 137 904 

python guilt random 1.06 1.21 -0.01 0.04 3110 1813 

qualify stable random 1.90 2.12 0.61 0.15 1292 2495 

rage farm random 1.48 1.24 0.56 -0.03 3124 2435 

rake leaf Chiarello - associated 4.06 6.38 0.56 0.07 280 804 

ram edge random 1.65 1.82 0.76 0.25 2294 3957 

raw disagree random 1.29 1.29 0.23 -0.03 2606 10275 

reassurance pencil random 1.03 1.15 -0.14 0.01 126 882 

recommend unity random 1.35 1.91 0.76 0.22 7297 1509 

recover sugar random 1.39 1.47 0.48 0.32 1081 3624 

recovery quest random 2.45 2.21 0.63 0.12 1782 1524 

reform apartment random 1.32 1.76 -0.15 -0.09 1389 3813 

relativism boxer random 1.06 1.06 -0.20 -0.05 243 785 

requirement battery random 2.00 2.61 0.55 -0.01 1537 5794 

retirement task random 1.77 1.85 0.38 0.07 1669 1919 

revolution unknown random 1.35 1.71 0.73 0.15 2402 1758 

righteousness scan random 1.23 1.24 0.00 -0.15 190 1099 

riot procedure random 1.90 1.62 0.54 0.03 1105 1531 

rob require random 1.42 1.29 0.08 -0.09 1338 6441 

robber thief Thompson-Schill et al. 6.26 6.85 0.84 0.19 238 857 

rub stream random 1.42 1.29 0.10 0.03 1234 3835 

rubber tire Chiarello - associated 4.39 6.26 0.80 0.34 1350 1317 

rush stuck random 1.42 2.35 0.92 0.39 2755 7733 

salad atheist random 1.00 1.32 -0.38 -0.02 1077 7137 

scan controller random 2.19 2.50 0.70 0.05 1099 2523 

scenario belief random 2.07 2.12 0.68 -0.03 3354 5689 

school apocalypse random 1.16 1.68 0.25 -0.06 49862 1088 

script eye random 1.84 1.94 0.46 -0.03 2292 10393 

search engineer random 1.84 2.56 0.69 0.05 8026 3442 

sector audio random 1.84 1.59 0.42 0.02 1683 2435 

seem hung random 1.26 1.24 -0.21 -0.04 27491 1569 

semi spin random 1.45 1.76 0.63 0.27 3153 1995 

senate safe random 1.48 1.56 0.49 0.02 1367 10812 
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freq 
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freq 

send reflect random 2.03 1.91 0.16 0.02 9255 1441 

sergeant variety random 1.16 1.18 -0.20 -0.01 323 2775 

set role random 2.87 3.15 0.14 0.01 26099 6125 

setup menu random 3.03 3.21 0.93 0.38 2495 2732 

shark trout Chiarello - similar 4.19 4.47 0.29 -0.04 1240 205 

sheep wool Chiarello - associated 4.68 6.21 0.04 0.19 1392 348 

shell sea Chiarello - associated 4.48 6.68 0.79 0.21 2350 3317 

shirt polo Other 5.35 6.00 0.60 0.36 5656 189 

shoe sandal Other 5.50 5.82 0.44 0.18 1225 17 

shoulder chest random 4.42 5.29 0.97 0.74 2584 3241 

sickness health Thompson-Schill et al. 3.74 6.29 0.46 0.30 395 12793 

skip jump Thompson-Schill et al. 5.19 5.88 0.70 0.25 2179 6878 

smoke tobacco Thompson-Schill et al. 4.81 6.85 0.30 0.42 5925 1165 

snake mask random 1.23 1.38 0.92 0.26 1796 2011 

socks shoes Other 4.94 6.65 0.82 0.63 1427 4032 

sofa chair Chiarello - both 5.58 5.85 0.71 0.46 263 2633 

sole compliment random 1.16 1.39 0.19 -0.05 1376 1224 

somebody filter random 1.10 1.15 0.32 0.05 8207 1863 

sort license random 1.16 1.38 0.25 0.03 22981 3775 

sound union random 1.84 1.74 0.13 0.02 20130 6012 

source emotion random 1.77 2.32 0.57 0.04 17256 1666 

speech sin random 1.42 1.65 0.86 0.14 6926 2676 

spider web Chiarello - associated 3.90 6.91 0.43 -0.01 2214 6093 

spirit legacy random 3.35 2.76 0.91 0.06 2548 1080 

stage prize random 2.55 3.56 0.66 0.12 4288 1492 

star sky Chiarello - associated 4.84 6.50 0.63 0.36 10093 3427 

station trail random 2.71 2.68 0.92 0.29 4406 1255 

stem petal Chiarello - similar 4.39 5.85 0.00 0.01 1373 19 

sticker monkey random 1.23 1.32 0.38 0.01 1166 1914 

stigma pint random 1.16 1.09 -0.04 -0.10 906 446 

stoop avocado random 1.00 1.03 -0.43 -0.10 162 261 

stretch cast random 1.52 1.76 0.82 0.31 2278 3567 

string rope Chiarello - both 5.48 6.26 0.65 0.18 2527 1169 

sue society random 1.52 2.32 0.31 0.09 2198 15468 

sunflower modesty random 1.17 1.35 -0.41 0.03 113 122 

surgery equality random 1.61 1.21 -0.33 -0.06 3665 2515 

symbol suggestion random 2.03 2.76 0.58 0.00 1421 1853 

syntax broke random 1.55 1.94 -0.23 -0.04 1008 7083 
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tack nail Chiarello - both 5.13 5.32 0.59 -0.04 247 1835 

team immune random 1.45 1.47 0.47 -0.01 20020 1177 

technology heart random 1.55 2.09 0.11 0.01 8367 10160 

teeth camp random 1.23 1.12 0.60 0.10 4559 2980 

text prose Other 4.29 4.31 0.63 0.30 8898 283 

throw toss random 6.65 6.33 0.91 0.48 10469 1721 

tiger lion Chiarello - both 5.65 6.18 0.80 0.46 1335 1720 

till slide random 1.61 1.24 0.80 0.20 4137 2112 

tired sleepy Other 6.74 6.88 0.73 0.43 5570 297 

tooth react random 1.35 1.62 -0.16 0.21 1105 2237 

tourist dare random 1.16 1.53 -0.11 0.05 801 2676 

tub bath Thompson-Schill et al. 6.19 6.74 0.87 0.81 872 1268 

tube truth random 1.06 1.15 -0.23 -0.08 1687 10100 

tulip daisy Chiarello - similar 5.61 6.12 0.15 -0.10 81 221 

tuner profession random 1.84 1.74 -0.01 -0.03 120 1083 

twitter audience random 2.65 3.68 0.83 0.14 3628 4260 

typo stranger random 1.16 1.21 0.18 0.06 1053 2179 

tyranny pepper random 1.23 1.24 -0.34 -0.01 579 1781 

uncle aunt Chiarello - both 5.32 6.44 0.56 0.91 3232 1607 

unhappy jerk random 2.84 3.88 0.68 0.03 1024 3395 

uniform weapon random 2.52 3.74 0.72 0.27 1214 4959 

usher movie Chiarello - associated 2.32 3.32 0.28 0.20 122 33581 

velvet linen Chiarello - similar 4.19 4.91 0.56 0.25 193 66 

verify jury random 3.52 3.79 0.44 0.20 1134 1337 

vermin pan random 1.39 1.09 -0.22 -0.02 110 2063 

wallpaper daughter random 1.29 1.38 -0.15 0.00 1087 6182 

wash cook random 3.35 4.68 0.73 0.38 2425 4626 

wave ocean Chiarello - associated 5.23 6.68 0.77 0.30 2198 2318 

way immature random 1.19 1.44 0.41 0.04 145795 1204 

weird bud random 1.26 1.38 0.63 0.15 16343 1172 

wife instrument random 1.26 1.35 0.03 -0.03 16363 1119 

winter spring random 4.97 6.24 0.92 0.57 4403 2212 

wolf dog Chiarello - both 5.42 5.38 0.48 0.77 1567 23133 

word sentence Other 4.42 6.41 0.80 0.65 24159 5793 

wrap tournament random 1.48 1.06 0.10 -0.08 1804 1862 

zone gear random 1.48 1.94 0.83 0.15 2812 4726 
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Appendix E. Stimuli and stimuli parameters 

 
Table 12. Word pairs from Chiarello et al. (1990) 

 

Associated only  Similar and associated Similar only 

alley cat  ale beer apple grape 

apple tree  arm leg arm nose 

artist paint  army navy bacon steak 

bee honey  ball bat banana peach 

bone dog  basin sink bean onion 

book page  blouse skirt bear cow 

button coat  boot shoe birch elm 

camel hump  brandy wine brass iron 

candle flame  brush comb burlap felt 

cheese mouse  butter bread car ship 

circus clown  coat hat carrot corn 

cloth dress  coffee tea circle cross 

cow milk  cotton wool coat gown 

cradle baby  dirt mud cotton silk 

crater moon  doctor nurse dagger rifle 

crew ship  dog cat deer pony 

crown king  engine motor desk stool 

decoy duck  figure shape drums piano 

engine car  frown smile ear foot 

farmer plow  inch foot flea ant 

fish water  jacket coat floor wall 

flea dog  jelly jam fox horse 

floor wood  knife fork garlic mint 

gallon jug  lizard snake gin wine 

grocer store  lotion cream hair fur 

hammer nail  man woman head leg 

harbor boat  mint candy house cabin 

hermit cave  moth fly jeep plane 

hockey ice  mouse rat knife pot 

key door  nickel dime lamp chair 

miner coal  ounce pound lawyer nurse 

mold bread  oven stove lemon pear 

mug beer  pepper salt music art 

nest bird  pot pan oak maple 

onion tears  queen king orchid tulip 

pilot plane  road path pan bowl 

rake leaf  sea ocean pants hat 

rubber tire  shirt tie roof door 

rug floor  silver gold shark trout 

sheep wool  sleet snow shoe glove 
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Associated only  Similar and associated Similar only 

shell sea  sofa chair steel brass 

spider web  steel iron  stem petal 

star sky  string rope  street path 

stove heat  sword knife  sugar salt 

train track  tack nail  table bed 

usher movie  tiger lion  train canoe 

waist belt  uncle aunt  tulip daisy 

wave ocean  wolf dog  velvet linen 

 

 

Table 13. Word pairs from Plaut and Booth (2000). 

 

Related  Unrelated 

adult child  admit learn 

agony pain  ahead piece 

alarm clock  alike post 

argue fight  allow knee 

birth death  alone death 

blade knife  anger look 

blank empty  angle tight 

blaze fire  apart aunt 

bored tired  arrow reef 

bride groom  avoid talk 

brief short  basic human 

bring take  beast tree 

canoe boat  begin open 

chain links  bench tale 

chuck throw  blind exit 

cigar smoke  bound rain 

clean dirty  burst yell 

close open  cabin glue 

coach team  cause south 

coral reef  charm happy 

court judge  check hotel 

crane lift  cheek book 

creek river  chest live 

cycle bike  chief black 

death live  china bird 

ditch hole  clear music 

donor blood  climb ghost 

enter exit  cloth sharp 

fairy tale  cloud watch 

fence post  color year 
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Related  Unrelated 

flame fire  count bike 

flood water  crack groom 

fresh fruit  crash curse 

funny laugh  crawl pain 

ghoul ghost  cream fire 

glove hand  crowd judge 

grain wheat  curve move 

grasp hold  dense fake 

grass green  dream noise 

heavy light  drill broom 

honey sweet  drink dress 

house home  early take 

joint knee  equal treat 

knock door  event green 

labor work  extra call 

large small  faith stop 

lemon lime  favor fire 

loose tight  final child 

major minor  floor money 

maple tree  found right 

march april  front young 

mint candy  frost bread 

month year  giant smoke 

motel hotel  glory decay 

north south  going paper 

novel book  guard knife 

paint brush  guest steal 

paste glue  habit plane 

phone call  hurry laugh 

phony fake  leave write 

piano play  level door 

pilot plane  lower short 

poker cards  meter lion 

print write  model turn 

quack duck  moist throw 

queen king  motor metal 

radio music  nerve links 

razor sharp  never work 

reach grab  notes beach 

scent smell  nurse path 

shame guilt  party small 

share gives  patch fruit 

sheet paper  pearl duck 

shift gears  pitch april 

shirt pants  plain blood 
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Related  Unrelated 

shore beach  plate ocean 

shout yell  prize sweet 

skirt dress  proud bite 

slice piece  pupil pants 

smile happy  quick horse 

snake bite  raise shoes 

socks shoes  rapid fork 

sound noise  ready light 

spare tire  reply play 

speak talk  rifle chair 

spend money  rough lime 

spoon fork  scale track 

stall horse  score hold 

stare look  screw clock 

steel metal  shape home 

still move  shine minor 

stone rock  shock king 

storm rain  shoot team 

stuff things  sight hand 

super great  solid brush 

swear curse  split fight 

sweep broom  stalk cards 

table chair  stamp rock 

teach learn  stand thing 

thief steal  state great 

tiger lion  steam candy 

toast bread  stiff smell 

tooth decay  store tire 

touch feel  straw hole 

trail path  swamp wheel 

train track  swift guilt 

trick treat  tense gear 

truce peace  today water 

twist turn  topic lift 

wagon wheel  total peace 

waves ocean  tower boat 

white black  trunk tired 

wings bird  unite dirty 

wrist watch  usual river 

wrong right  visit feel 

youth young  voice give 

   width wheat 

   worse grab 
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