
ABSTRACT

Title of dissertation: MATHEMATICAL MODELS
OF QUORUM SENSING

Hana Ueda, Doctor of Philosophy, 2016

Dissertation directed by: Professor William E. Bentley
Department of Bioengineering &
Applied Mathematics & Statistics,
and Scientific Computation (AMSC) program

Professor Konstantina Trivisa
Department of Mathematics &
Applied Mathematics & Statistics,
and Scientific Computation (AMSC) program

Mathematical models of biological phenomena are constructed in order to fur-

ther the understanding of the known and unknown interactions that result in the

behaviors of dynamical systems. We present mathematical models dealing with

quorum sensing, which is the biological process of communication in bacteria. The

density-dependent means of communication are mediated by molecules called au-

toinducers that are both synthesized and collected by quorum sensing bacteria.

We employ differential equations to investigate and understand the dynamics

of underlying signaling processes. The first two models of this study were con-

structed with the idea of relating flocking movements observed in birds to gene

expression in quorum sensing. To this end, modified Cucker-Smale flocking equa-

tions which do not require detailed knowledge of signal transductions mechanisms



or regulatory proteins are used to represent quorum sensing and chemotaxis. The

dynamical behaviors of these models are analyzed and approximated using asymp-

totic analysis and simulations. The coupling of quorum sensing and chemotaxis

systems results in the formation of two groups of cells during the migration towards

the attractant, which is similar to behavior observed in experiments of chemotaxing

E. coli. This consequence of density influencing the velocity of bacteria suggests

the possibility that density (or a density-dependent system such as quorum sensing)

affects the chemotaxis system. We also show an application of this coupled model

that produces qualitatively similar results with experimental data.

To further analyze collective behavior emerging from the interactions of quo-

rum sensing and chemotaxis, this study uses statistical physics to derive a partial

differential equation that tracks the time evolution in phase space of the distribution

of these cells. Lastly, this study combines theory and experimental data to present

a compartmental model that predicts p-aminophenol (PAP) response to various au-

toinducer concentrations in quorum sensing cells. The use of compartments allows

for the model to be customized for constructs that do not use autoinducer-mediated

production of the β-galactosidase enzyme.
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Chapter 1: Introduction

In order to extract more insights from biology, mathematics can be used to

elucidate the complexities of biological phenomena. The field of systems biology

strives to accomplish this with the construction of mathematical models. The model

breaks down the complex interactions within the system into components. Each of

these components can be then analyzed separately in order to gain an understanding

of how one influences the other and how each contributes to the system as a whole.

By building such a dynamical model, one can study the effects of changing various

parameters and the long-term behavior of the various processes involved that would

otherwise be difficult to deduce in an experimental setting. There are mechanistic

models that seek to model the detailed regulatory networks of a system. There are

also simple models that generalize the observed phenomenon. In this dissertation,

we build mathematical models of quorum sensing, a form of chemical signalling

employed by bacteria.

1.1 Quorum sensing

The term ‘quorum sensing’ describes the system employed by bacteria that

allows them to sense the population density in their surroundings and collectively

1



express certain genes. The means by which each bacterium accomplish this feat

are through the use of molecules called autoinducers. These autoinducers are both

synthesized and collected by the bacterium. The number of autoinducers in the

external environment increases as the population density increases. When a suffi-

cient concentration is attained, signal transduction mechanisms are activated that

in turn, facilitate the expression of specific genes. The result of such a system is

the collective expression of these autoinducer-regulated genes when enough bacteria

accumulate (ie when a quorum is attained).

Quorum sensing systems differ from species to species. The participating

regulatory proteins, signalling pathways, and types of autoinducer can be varied.

To illustrate, we elaborate on the LuxI/LuxR system in Vibrio fischeri and the

LuxS/AI-2 system in Escherichia coli.

1.1.1 LuxI/LuxR system in Vibrio fischeri

The Vibrio fischeri is one of many species of bacterium that produce light.

They live in the light organ of the Hawaiian bobtail squid, Euprymna scolopes. The

two have a symbiotic relationship in which the bioluminescence produced by the

bacterium enables the squid to escape from bottom-dwelling predators as the light

achieves a camouflage effect by resembling moonlight [67] [92].

There are two divergent operons that regulate the quorum-sensing behavior

that generates the bioluminescence in Vibrio fischeri. One operon contains the

luxICDABEG genes. luxI aids in the synthesis of an acyl-homoserine lactone (AHL),
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the autoinducer in this quorum sensing system. luxCDE codes for proteins that aid

in the synthesis of the aldehyde substrate needed for luminescence. luxAB are the

genes responsible for the luciferase enzyme that produces the bioluminescence [36]

[109]. luxG codes for proteins that reduce flavin mononucleotide (FMN) for reactions

that produce luminescence [70] [77].

On the other operon is the gene that codes for the LuxR protein. Together, the

LuxR and AHL form a complex that activates the transcription of the luxICDABEG

genes, allowing for the expression of bioluminescence.

When the cell population is low (ie low density of cells), the concentration

of autoinducers in the surrounding medium is low. Hence, there is only a basal

(background) level of expression of bioluminescence. When there is a high cell

density, there are consequently much more autoinducers which accumulate both

outside and inside of the cell. After the autoinducers surpass a certain threshold,

the AHL/LuxR complex upregulates transcription of luxICDABEG which produces

the light. On the other hand, the complex negatively regulates luxR transcription

which in turn controls the formation of the AHL/LuxR complex which in turn

controls the transcription of luxICDABEG. Hence, this LuxI/LuxR system consists

of positive and negative feedback mechanisms that regulate bioluminescence.

1.1.2 LuxS/AI-2 system in Escherichia coli

Escherichia coli is a species commonly found in the lower intestine of humans

and known to help with digestion. Depending on the strain of the species, however,

3



E. coli can produce harmful toxins. The difference between a non-pathogenic E.

coli and a pathogenic one lies in the genes of the strain: When specific genes of

the pathogenic E. coli are transcribed, toxins are produced. The instructions of

whether or not to transcribe these genes is influenced by a furanosyl borate diester

called AI-2, the autoinducer that is both synthesized and collected byE. coli.

Each of the cells produce the AI-2 which is used to sense the presence of other

cells in their surroundings. E. coli first synthesizes the amino acid methionine, which

is used to produce S-adenosylmethionine (SAM), with the help of the methionine

adenosyl transferase (MetK) enzyme. SAM has further roles in other methylation

processes within the cell due to its donatable methyl group. One of its roles is the

donation of the methyl group via the cheR methyltransferase to a Methyl accep-

tor, which produces S-adenohomocysteine (SAH) and a methylated product. The

enzyme, Pfs, degrades SAH by removing adenine to form S-Ribosylhomocysteine

(SRH). SRH, assisted by the LuxS enzyme, then becomes homocysteine and 4,5-

dihydroxy-2,3-pentanedione (DPD). Homecysteine is used to produce methionine,

which is used to start this entire process again. DPD in turn becomes AI-2. How-

ever, the process of how DPD turns into AI-2 is still unknown and how AI-2 is

exported outside of the cell is unknown [95] [111].

The divergent operons of lsr (consisting of lsrACDBFG) and lsrRK play an

integral role in quorum sensing in E. coli. The lsrRK operons codes for the LsrR

and LsrK proteins. The lsr operon encodes for Lsr A, Lsr C, LsrD, LsrB, LsrF,

LsrG, and Tam. LsrA, LsrC, LsrD, and LsrB assist in the transport of AI-2 from

the extracellular medium to inside the cell. LsrF and LsrG are involved in the degra-
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dation of phosphorylated AI-2 (AI-2-P). What becomes of AI-2-P after the actions

of LsrF and LsrG is still unknown [111] [112]. The cyclic AMP (cAMP) and the

cAMP receptor protein (CRP) bind together to form the cAMP-CRP complex. The

cAMP-CRP in turn needs to bind to the promoter region of the operon in order

for transcription to occur. The regulator LsrR prevents the transcription of the lsr

operon as well as the transcription of its own lsrR. But when AI-2-P binds to LsrR,

LsrR no longer represses transcription (ie given the presence of the cAMP-CRP

complex, an increase in AI-2-P causes an increase in lsr transcription). LsrK trans-

forms the extracted AI-2 into AI-2-P and Tam helps out in AI-2 synthesis [112].

The working model for uptake of AI-2 is as follows. AI-2 is transported back

into the cell via Lsr A, Lsr B, Lsr C, and Lsr D. The rate of transport of AI-2

depends on the amount of glucose outside of the cell [111]. When glucose is present,

there are low levels of cAMP and CRP intracellularly, which reduces transcription

of the lsr operon. Since the lsr operon codes for the LsrA, LsrB, LsrC, and LsrD,

this causes less extracellular AI-2 to be taken up by the cell.

Low levels of cAMP and CRP also cause an increase in LuxS. However, how

cAMP and CRP accomplish this is still unknown as the cAMP-CRP complex does

not bind to promoter region of luxS [111]. Nonetheless, the increase in luxS tran-

scription aids in the increase in the synthesis of AI-2. Besides facilitating the conver-

sion of SRH to DPD and Homocysteine, however, the direct process of an increase

in LuxS causing an increase in AI-2 is not clear. Most likely, glucose also aids in

the production of SAM and other substrates at the beginning of the AI-2 synthesis

process [111].
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When glucose is not present, the cAMP-CRP complex binds to the lsr operon,

allowing for transcription of the lsr and lsrRK operons. Thus, production of LsrA,

LsrB, LsrC, and LsrD allows for the uptake of extracellular AI-2. The AI-2 then

goes through phosphorylation via LsrK to become AI-2-P. Although transcription of

lsrR means that the repressor LsrR may stop the transcription of the lsrACDBFG

operon, AI-2-P binds with LsrR in order for transcription to continue. LsrF and

LsrG help regulate this cycle by degrading AI-2-P since low levels of AI-2-P will

allow the LsrR to continue repressing transcription [111].

So, different species of bacteria can have different ways of quorum sensing. In

Pseudomonas aeruginosa, there is the LasI/LasR-RhlI/RhlR system. In Agrobac-

terium tumefaciens, there is the TraI/TraR system and we have only discussed some

species of gram-negative bacteria. For more details, several more quorum sensing

systems are explained in Miller and Bassler [69].

While bacteria are quorum sensing, many do not remain motionless: there is

movement. When there is movement as a result of chemical stimuli, bacteria are said

to be chemotaxing. Chemotaxis describes the directed movement of bacteria towards

or away from areas of higher concentrations of certain chemicals. For E. coli, these

chemicals can range from food sources such as glucose (chemoattractant) to amino

acids such as leucine (chemorepellent). The movements toward these chemicals take

the form of tumbles and runs, in which the duration of the run is longer when an

increase in concentration of chemoattractants is detected. Chemoreceptors sense the

changes of chemicals in the environment and activate a signal transduction cascade

that influences the flagella. By using this system of motility, bacteria can travel to-

6



ward environments favorable to their survival. More details of the specific signalling

pathways involved in chemotaxis can be found in Wadhams and Armitage [110] and

in Adler [1] [2], among others [12] [16] [66] [100].

1.2 Quorum sensing models

Mathematical models of quorum sensing began fairly recently, with the deter-

ministic models of James et al. [55], Dockery and Keener [29], and Ward et al. [115].

The first two models focused on the regulatory mechanisms involved in the quo-

rum sensing systems of Vibrio fischeri and Pseudomonas aeruginosa, respectively.

Both papers used ordinary differential equations (with the latter presenting a sec-

ond model of ordinary and partial differential equations) to analyze the effect of

autoinducers on transcription of regulatory proteins. Various simplifying assump-

tions were used to perform a steady state and stability analysis which showed there

exists a switch between the states of quorum sensing-related expression dependent

on certain parameter values as well as autoinducer concentration. Ward et al. [115]

provided a more generalized model of the regulation of lux genes in Vibrio fischeri

using ordinary differential equations. The model, focusing on density of cell pop-

ulation and autoinducer concentration, was fitted to experimental data to extract

parameter values that establish the stable steady state solution of the system.

The models developed since then either build on the complexity of the reg-

ulatory processes [34] [33], such as taking into account negative feedback mecha-

nisms [116] and oxygen concentrations in the medium [20], or making generaliza-
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tions about the modelled system, such as in Koerber et al. [61] and Ward et al. [114].

Quorum sensing models range from deterministic (ordinary/partial differential equa-

tions) [37] [39] [52] [73] [108] to stochastic [40] [63] [89].

Many quorum sensing models, such as those listed above, do not incorporate

movement of the bacterium even though the modelled species is motile. One ex-

ample of a chemotaxis model that incorporates quorum sensing in some way is the

Painter and Hillen model [78]. This system of partial differential equations analyzes

the density of cell population and chemoattractant concentration. They include an

assumption of ‘quorum-sensing type behavior’ as a means of regulation of the cell

aggregation that occurs in their volume-filling model. That is, they have their cells

change response to the attractant based on the density of their surroundings. They

construct their model in this way to allow for cell migration to a lower density, which

reduces the traffic caused by the aggregation in their model.

We model quorum sensing bacteria that are chemotaxing towards some source

of attractant. Our goal is to explore how the two systems of quorum sensing and

chemotaxis influence one another. In order to do this, we use the concept of flocking.

1.3 Flocking

The study of self-organization of autonomous agents provides for a better

understanding of such observed phenomena in nature. These kinds of collective be-

havior can be reflected in motions of birds, fish, wildebeest, and in certain species of

bacteria [6] [15] [41] [79]. By constructing mathematical models, one can analyze how
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local interactions of these agents can influence overall, complex behaviors and can

explain how such multi-agent interactions can benefit the population biologically.

Many of these mathematical models are particle based models, in which the behav-

iors of each agent are characterized by rules that take the form of differential equa-

tions governing position and velocity or a Fokker-Planck equation [18] [106] [119].

One such model is the Cucker-Smale flocking model [24]. This model focuses

on the flocking, or collective motion, observed in birds. By using equations of the

continuous and discrete variety with respect to time, they showed that if every bird

in the flock adjusts its velocity according to the velocities of birds in its surround-

ings, then depending on certain conditions, the birds will all converge to the same

velocity. The continuous time formulation of the Cucker-Smale model expanded on

by Ha and Tadmor [44] is shown below.

d

dt
xi(t) = vi(t)

d

dt
vi(t) =

λ

N

∑
1≤j≤N

k(xi(t),xj(t))(vj(t)− vi(t))

Here, each agent i’s position and velocity are represented by ordinary differ-

ential equations for a dynamical system of N agents. Each agent i’s velocity is

adjusted based on the surrounding agents j. The differential equation governing

cell i’s velocity, with constant coefficient λ, contains the function k(xi,xj) which

acts as a weight for (vj − vi) and is based on the proximity of agents i and j. The

weights can be constructed so that the closer agent j is to agent i, the velocity of

agent j will have more influence on the velocity of agent i.
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1.4 Other methods of modelling

Various other techniques can be used to model biological processes, such as

those used in enzyme kinetics and in computational neuroscience. Enzyme kinetics

is a field devoted to the analysis of enzymatic reactions in order to understand

the substrate-enzyme interactions within the cell as well as the conditions which

affect such interactions. The Michaelis-Menten model is used to analyze the fast

enzymatic reactions that convert substrates into products. This model takes into

account the rate in which the enzyme binds to the substrate, the rate in which the

enzyme unbinds from the substrate, and the rate in which the enzyme unbinds from

the product. By simplifying this dynamics process into three parts, Michaelis and

Menten constructed an equation that gives the rate of product formation, given the

concentration of substrate and the initial concentration of the enzyme.

d[P ]

dt
=
kcat[E0][S]

KM + [S]

where kcat is the rate in which the product forms from the enzyme-substrate com-

plex, KM is the Michaelis constant, E0 is the initial enzyme concentration, S is the

concentration of substrate, and P is the concentration of product.

In computational neuroscience, models are used to find out more about the

workings of the brain, such as the ways in which the many neurons transmit in-

formation in the form of chemical and electrical signals. The system of nonlinear

differential equations that is the Hodgkin-Huxley model [50] showed how a model

that takes into account voltage, membrane capacitance, and various currents could
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capture the dynamics of action potentials. Developed in the 1950’s, Hodgkin and

Huxley analyzed the action potentials in the squid giant axon that was used in elec-

trophysiological experiments [75]. The Hodgkin-Huxley equations formed the basis

of subsequent compartmental modelling of neuron behavior.

Compartmental models have applications in epidemiology, ecology, and neuro-

science [49] [80] [101] [105] to name a few. The principle of breaking down a system

into components is what compartmental models literally aim to do. The system is

broken down into connected subsystems. Each subsystem is modelled. The subsys-

tem can be analyzed separately. It can also be hooked up to the other subsystems

to see how the sum of the parts make up the whole.

To elaborate on how such a construction of models can provide insight into

biological processes, one can look at how compartmental models are used in investi-

gating the workings of a neuron. Neurons relay chemical and electrical signals that

are conveyed through the dendrites, soma, and axons. The dendrites receive signals

from other neurons and relays them to the cell body. The axons take information

away from the cell body and relay them to other neurons, muscles, or nerves via

synapses. There are several ways in which compartmental models are constructed

for such a system, such as in the Traub et al. 19-compartment system [101] or the

Pinsky/Rinzel 2-compartment model [80]. But the general idea is that the output of

one compartment is used as the input of another compartment. The proximal and

distal dendrites and soma can be all represented as compartments. Alternatively,

the dendrites can be lumped into one compartment and the soma can be the other

compartment.
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1.5 Statement of Purpose

The discovery of quorum sensing showed that bacteria can sense the cell den-

sity in their surroundings as well as demonstrate group behavior in the form of

collective gene expression. Mathematical models seek to further the understanding

of the working of complex systems such as these. Many quorum sensing models

analyze the regulatory circuits that coordinate this signalling system but do not

factor in the effects of movement in species that are motile. In our quorum sens-

ing models, we take movement into account by having the cells chemotax toward

a source of attractants. We approximate the two biological processes of quorum

sensing and chemotaxis with Cucker-Smale type equations. The purpose of incorpo-

rating Cucker-Smale is to construct a generalized model. Developing a mechanistic

model would require the modelling of detailed regulatory mechanisms that differ

from species to species. By using Cucker-Smale flocking generalizations, the goal is

to construct a model that can be applied to multiple species of motile bacteria and

to analyze the resulting behaviors of this dynamical system.

This dissertation is an exploration in the modelling of quorum sensing in motile

bacteria. Chapter 2 and Chapter 3 introduce flocking as a representation of bac-

terial movement and communication. These mathematical models present novel,

deterministic, non-mechanistic, particle-based ordinary differential equations that

explore the connection between the quorum sensing system and chemotaxis system.

In our flocking models, we look at each individual cell and we track the following

aspects: position, velocity, auto-inducer triggered gene expression, and surrounding
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concentration of autoinducers. We analyze the quorum sensing behaviors of each cell

while they chemotax towards a specified source and we perform asymptotic analysis,

sensitivity analysis and explore any trends in dynamics evoked by the interplay of

both quorum sensing and chemotaxis systems.

Chapter 4 focuses on the development of a kinetic partial differential equa-

tions model. From our flocking model, we employ statistical physics to derive an

N -particle partial differential equation that describes the time evolution in phase

space of a distribution of N particles. We reduce the N -particle distribution into

a j-particle formulation, referred to as the Bogoliubov-Born-Green-Kirkwood-Yvon

(BBGKY) hierarchy.

Finally, Chapter 5 presents a compartmental model for an electrochemical

method of measuring autoinducer-triggered gene expression. In that model, there

are two compartments which model regulatory mechanisms of quorum sensing and

enzyme kinetics, respectively. Each compartment is fitted to the corresponding data

set. Then, the compartments are combined together as one system of differential

equations. The results of the model are compared to the results of the experiment

to see how well the model predicted the observed dynamics.
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Chapter 2: Quorum Sensing as a form of flocking

2.1 Introduction

Quorum sensing is a form of communication that bacteria employ in order

to coordinate behavior in a collective manner. The means of communication, or

collective gene regulation, is accomplished through chemical signals called autoin-

ducers. By producing and collecting autoinducers, bacteria such as Escherichia coli,

Vibrio fischeri, and Pseudomonas aeruginosa, can determine the cell density in their

surroundings. An increase in cell density through changes in the concentration of

autoinducers triggers a series of signal transduction mechanisms. This in turn allows

for changes in gene expression. Hence, when there is a sufficient amount of bacteria

(a quorum) in an area, bacteria collectively exhibit various phenotypes, such as bi-

oluminescence, biofilm, and virulence factors, to name a few [69] [117].

One approach to modelling these kinds of regulatory systems involves differen-

tial equations that represent signal synthesis, uptake, binding, and the transcription

and translation from gene to protein as well as the various enzyme interactions (e.g,

repression, phosphorylation) that allow for these processes to occur [52] [84] [104].

We propose a different approach, in which we model the general behaviors of cellular

dynamics. By not emphasizing the regulatory mechanisms, we solely focus on the
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general picture pertaining to quorum sensing and the general behaviors governed

by quorum sensing such as chemotaxis. In order to accomplish this, we introduce

flocking. To date, there are no reports of quorum sensing behavior attributed to

flocking.

Flocking describes the movement of biological entities that prescribes to the

information from their surroundings to adjust their actions, forming a collective mo-

tion. Collective motion is observed, for example, in birds, fish, wildebeest, and even

in E. coli [6] [26] [41] [79]. To quantify this emergent behavior in order to further

study the self-organizing dynamics of biological systems, Cucker & Smale [24] [25]

introduced a dynamical model that analyzes these movements using weighted aver-

ages. This representation of flocking was introduced as a method to examine the

dynamics behind flocking formation in birds by taking weighted averages of the sur-

rounding velocities as an illustration of how birds adjust their velocity with respect

to other birds. When each bird in a flock adjusts its speed in this way, every bird

ultimately attains the same velocity. The biological coordination of bird flocking

has been attributed to sight [82], wherein mathematically expanded on by Ha and

Tadmor [44], the Cucker-Smale model is as follows:

d

dt
xi(t) = vi(t)

d

dt
vi(t) =

λ

N

∑
1≤j≤N

k(xi(t),xj(t))(vj(t)− vi(t))

The model states that the velocity of each bird i, represented by the state variable

vi(t), changes based on the velocities of the surrounding birds j, with the symmetric

weights k(xi(t),xj(t)) determining the strength of influence of the neighboring birds.
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xi(t) and xj(t) represent the positions of birds i and j and k(xi(t),xj(t)) is a function

of the distances between the birds. That is, k(xi(t),xj(t)) = k(|xi − xj|). N is

the total number of birds and λ > 0 is a factor controlling the strength of the

flocking term. From this differential equation, Cucker & Smale prove that every

bird approaches the same velocity.

The mathematical definition of flocking, provided in [72], is given as:

Definition 2.1.1. Given a particle model with distances and velocities of each cell

i represented by {xi(t), vi(t)}i=1,...,N , the system converges to a flock provided that

the following properties hold:

(a) limt→∞maxi,j |vj(t)− vi(t)| = 0

(b) supt≥0 maxi,j |xj(t)− xi(t)| <∞

In order to qualify as flocking, the distances must remain bounded and the velocities

must asymptotically converge to the same value.

As for applications of flocking to cells, Di Costanzo et al. [28] incorporated

this in the modelling of motility of cells during the morphogenesis process of the

posterior lateral line primordium in zebrafish. Ha & Levy [43] incorporated flocking

into their model when modelling phototaxis of cyanobacterium Synochocystis sp..

In this paper, we build on the groundwork established by Ha & Levy [43] and Ha

& Tadmor [44]. Our model introduces flocking not just as a method of representing

velocities but as a way of representing quorum sensing behavior. To do this, we

have expanded the number of state variables of interest. By taking the average of

autoinducer-triggered cell activity in a similar way to which the velocities are aver-
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aged, positive and negative feedback behavior can be encapsulated.

We apply the concept of taking weighted averages to describe the dynamics

in bacterial communication in tandem with chemotaxis. The model takes into ac-

count the fluctuations in both cell velocity and in cell gene expression as a result of

changing autoinducer concentrations in the surrounding medium. The model that

we present can be applied to any quorum sensing species that (1) demonstrates

positive and/or negative feedback and (2) produces and collects autoinducers via

diffusion or potentially even activated transport.

Quorum sensing systems vary from species to species with different kinds of

autoinducers, different signal transduction motifs, and different emergent pheno-

types or behaviors. There are many variations and importantly, not all mechanisms

are known. By incorporating the Cucker-Smale flocking terms, our goal is to create

a minimal model that globally describes these quorum sensing behaviors.

2.2 Flocking Model

We introduce a general model that focuses on the following four aspects of

each cell:

1. xi: position of cell i

2. vi: velocity of cell i

3. pi: cell activity of cell i

4. Ai: concentration of autoinducers surrounding cell i
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The model is a system of 4N ordinary differential equations that tracks the

dynamics of the above four state variables. N represents the total number of cells.

dxi
dt

= vi (2.1)

dvi
dt

=
λ1

N

N∑
j=1

k1(xi,xj)(vj − vi) + F0(voês − vi) (2.2)

dpi
dt

=
λ2

N

N∑
j=1

k2(xi,xj)(pj − pi) + L0(p∞ − pi)ψA(Ai) (2.3)

dAi
dt

= λ3

N∑
j=1

k3(xi,xj)r − ku(xi,xj)Ai − kdAi (2.4)

with the corresponding weights,

k1(xi,xj) = k2(xi,xj) = k3(xi,xj) =
1

(1 + |xj − xi|2)β

logistic function,

ψA(Ai) =
1

(1 + ec0(c1−cAAi))α

and uptake function

ku(xi,xj) = exp

 − (a(γ(
∑N

j=1 |xj − xi|2β))− b)2

2c

 (2.5)

The weight functions k1, k2, k3 are symmetric, which will prove useful in the

subsequent proofs. These functions are decreasing as the distance between the cells

increase. The power of the denominator controls how fast the functions decrease

from 1. Qualitatively, the β represent the scope of influence that the neighboring

cells have on the individual. So, low β values (such as β = 0) would model a system

in which the individual is influenced by all cells.
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The logistic function ψA(Ai) acts as smoothed piecewise constant functions

and take values ranging from 0 to 1 depending on the level of cell activity (pi) and

surrounding autoinducer concentration (Ai) of cell i, respectively. The uptake func-

tion is modelled as a truncated, shifted Gaussian. The truncation is enforced solely

by the non-negative domain. ku(xi, xj) is constructed in such a way so that the

uptake rate increases as the density increases up until a certain point. Then the

uptake decreases when the density is high. This is to reflect a decrease in metabolic

activity caused by overcrowding (i.e. decreased nutrient availability when cells are

crowded). By using this Gaussian, we are assuming that there is a density range in

which uptake is highest.

Equation (2.1) is the definition of velocity. Equation (2.2) models the changing

dynamics of the velocity of cell i by employing a flocking term and a source term.

The flocking term addresses how the velocities of neighboring cells influence the

individual’s velocity. The weight function k1 as well as the parameter β determine

how much influence the other cells j have on cell i. Next, the source term models

the chemotaxing behavior in which the cell runs toward the higher concentrations of

chemoattractant at a velocity of voês, where ês represents the unit direction vector.

The strength of this term is controlled by the constant F0. The combination of both

the flocking term and the source term generalizes the movements of these cells in

response to the chemical stimuli.

Equation (2.3) tracks the dynamics in autoinducer-triggered gene expression

which lead to collective expression of such phenotypes as biofilm formation. To

motivate the existence of equation (2.3), for the sake of a concrete example, we use
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the expression of bioluminescence by Vibrio fischeri [70] [117]. In this species, the

autoinducer AI-1(also known as acyl-homoserine lactone) is involved in the quo-

rum sensing process. The regulatory LuxI/LuxR system governs the production of

both the autoinducers and various proteins. LuxI is responsible for the production

of AI-1 and LuxR is the repressor that interacts with the autoinducers, regulating

transcription of the luxCDABEG operon. The luxCDABEG genes code for the reg-

ulation of bioluminescence, including the expression of the luciferase enzymes that

are responsible for light. The flocking term then “averages” the bioluminescence

of the surrounding cells. The additional term represents the bioluminescence trig-

gered when the surrounding concentration of autoinducers passes a certain threshold.

Above this threshold, the logistic function ψA approaches 1, thereby activating the

term. The strength of this term is controlled by the constant L0.

The changes in the surrounding concentration of autoinducers of a particular

cell is represented by Equation (2.4). The equation is constructed as

dAi
dt

= synthesis− uptake− sloughing off/degradation of autoinducers

= λ3

N∑
i=1

k3(xi,xj)r − ku(xi,xj)Ai − kdAi

2.2.1 Asymptotics and Analysis

In this section, we prove that the system represented by equations (2.1)-(2.4)

satisfy the above definition of flocking. We first analyze the asymptotic behaviors

of cell velocity and then proceed to the analysis regarding cell position.
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2.2.1.1 Velocity

Proposition 1. Let vavg(t) := 1
N

N∑
j=1

vj(t) represent the average velocity of all the

cells. Then,

|vavg(t)− voês| ≤ |vavg(0)− voês|e−Fot

Proof.

First we sum the rate of change in velocities of all the cells. k1(xi,xj) is a

symmetric function, which allows us to simplify further.

d

dt

N∑
i=1

vi =
λ1

N

N∑
i=1

N∑
j=i

k1(xi,xj)(vi − vj) +

N∑
i=1

Fo(voês − vi)

= NFovoês − Fo
N∑
i=1

vi

For conciseness, let vavg(t) := 1
N

N∑
j=1

vj(t), the average velocity of all the cells.

Re-writing the above equation, we have a first order linear differential equation.

d

dt
vavg(t) + Fovavg(t) = Fovoês

Solving for vavg(t),

vavg(t) = voês

(
1 +

vavg(0)− voês

voês

e−Fot

)
|vavg(t)− voês| ≤ |vavg(0)− voês|e−Fot

Hence,

lim
t→∞

vavg(t) = voês
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(i.e. the average velocity of all the cells approaches voês).

Proposition 2. Let V (t) :=
N∑
i=1

|vi(t) − voês|2. Then, V (t) ≤ V (0)e−2Fot and

limt→∞ vi(t) = voês.

Proof.

Taking the derivative and plugging in equation (2.2), we obtain

d

dt

N∑
i=1

|vi(t)− voês|2 = 2

N∑
i=1

(vi − voês)
dvi
dt

=
2λ1

N

∑
i,j

k1(xi,xj)(vi − voês)(vj − vi)− 2Fo

N∑
i=1

(vi − voês)
2

Since k1 is symmetric,
∑
i,j

k1(xi,xj)(vj − vi) = 0, therefore

d

dt

N∑
i=1

|vi(t)− voês|2 =
2λ1

N

∑
i,j

k1(xi,xj)vi(vj − vi)− 2Fo

N∑
i=1

(vi − voês)
2

= −λ1

N

∑
i,j

k1(xi,xj)|vj − vi|2 − 2Fo

∑
i

|vi − voês|2

The lefthand term is nonpositive for ∀t, so

d

dt

N∑
i=1

|vi(t)− voês|2 ≤ −2Fo

∑
i

|vi − voês|2

= −2FoV (t)

d

dt
V (t) ≤ −2FoV (t)

By Grönwall’s inequality,

V (t) ≤ V (0)e−2Fot
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meaning

lim
t→∞

vi(t) = voês

for every cell i.

Earlier, we showed that the average velocity vavg(t) asymptotically approaches

the same value as voês. Following the assumption that velocity of each cell is the

weighted average of the velocities of cells surrounding it, the velocity of each cel ap-

proaches the average velocity, represented by the value voês. Another interpretation

is that since V (t) is a measure of variance, the variance about the mean approaches

0 asymptotically. Visually, this is represented in Figure 2.1. The velocities of 100

cells are randomly generated. Using these initial conditions, simulations show that

they all converge to a common velocity. That is, there is little to no variance in

velocity as time progresses.

2.2.1.2 Position

Proposition 3. For any cell i, j at any time t, supt≥0 maxi,j |xj(t) − xi(t)| < ∞.

Specifically,

|xi(t)− xj(t)| ≤ |xi(0)− xj(0)|+ 2V (0)1/2

F0
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Figure 2.1: (a) Convergence of velocity in the x-direction (Vx) and y-
direction (Vy) with λ1 = 5 and β = 0.2 for 100 cells, with initial con-
ditions randomly generated from a uniform distribution on the interval
[0,20] and [0,30] for Vx and Vy, respectively. (b) Cells remain bounded
(shown here for fixed time). The cells are represented by circles. The
trail represents the path travelled by the cell. Initial positions were ran-
domly generated from a uniform distribution on the interval [0,100] for
both x and y.
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Proof.

For any i, j, using the mean value theorem

|xi(t)− xj(t)| =
∣∣∣∣xi(0) +

∫ t

0

vi(s)ds− (xj(0) +

∫ t

0

vj(s)ds)

∣∣∣∣
=

∣∣∣∣(xi(0)− xj(0)) +

∫ t

0

(vi(s)− vj(s))ds

∣∣∣∣
Adding and subtracting (vi(s)−vj(s)) as (vi(s)−v∞ês−(vj(s)−v∞ês)), we obtain

|xi(t)− xj(t)| ≤ |xi(0)− xj(0)|+
∣∣∣∣∫ t

0

(vi(s)− v∞ês − (vj(s)− v∞ês))ds

∣∣∣∣
≤ |(xi(0)− xj(0))|+

∫ t

0

|vi(s)− v∞ês|+ |vj(s)− v∞ês|ds

Since
∫ t

0
|vi(t)− v∞ês| ≤ V (0)1/2

∫ t
0
e−F0sds for any i as shown in Proposition 2,

|xi(t)− xj(t)| ≤ |xi(0)− xj(0)|+ 2V (0)1/2

∫ t

0

e−F0sds

≤ |xi(0)− xj(0)|+ 2V (0)1/2

∫ ∞
0

e−F0sds

Therefore,

|xi(t)− xj(t)| ≤ |xi(0)− xj(0)|+ 2V (0)1/2

F0

for all i, j.

This means that the distance between any two cells will remain bounded for all t.

The boundedness of the set xi(t) is illustrated in Figure 2.1(b) by showing the paths

of bacteria for the time interval [0, 6].
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2.2.1.3 Cell Activity

Proposition 4. Let pavg(t) := 1
N

N∑
j=1

pj(t) represent the average cell activity of all

the cells. For the case when ψA(Ai) = 1 at some time to,

|pavg(t)− p∞| ≤ |pavg(0)− p∞|e−Lot

For the case when ψA(Ai) = 0 for all t, the differential equation reduces to the stan-

dard Cucker-Smale equation and hence, limt→∞maxi,j |pj(t)−pi(t)| = 0 for β < 1/2.

Proof.

Similar to the proof of Proposition 1, we start with summing the rate of change of pi

of all the cells. The symmetric property of k2(xi,xj) allows for further simplification.

d

dt

N∑
i=1

pi =
λ2

N

∑
i,j

k2(xi,xj)(pj − pi) +

N∑
i=1

Lo(p∞ − pi)ψA(xi,xj)

= Lo

N∑
i=1

(p∞ − pi)ψA(xi,xj)

Case: ψA = 1 for all t

For conciseness, let pavg(t) := 1
N

N∑
j=1

pj(t), the average cell activity of all the cells.

Rewriting the above equation, we have a first order linear equation.

d

dt

N∑
i=1

pi = NLop∞ − LoNpavg(t)

d

dt
pavg(t) + Lopavg(t) = Lop∞
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Solving for pavg(t),

pavg(t) = p∞

(
1 +

pavg(0)− p∞
p∞

e−Lot

)

|pavg(t)− p∞| ≤ |pavg(0)− p∞|e−Lot

Hence,

lim
t→∞

pavg(t) = p∞

(i.e. the average cell activity of all the cells approaches p∞).

Case: ψA = 0 for all t

Equation (2.3) simplifies to

dpi
dt

=
λ2

N

∑
j 6=i

k2(xi,xj)(pj − pi)

What remains is the Cucker-Smale flocking term. As such, limt→∞ pi(t) = 1
N

∑N
j=1 pj(t

∗)

for some t∗, for β < 1/2.

Proposition 5. Let L (t) :=
N∑
i=1

|pi(t) − p∞|2. Then, L (t) ≤ L (0)e−2Lot and

limt→∞ pi(t) = p∞.

Proof.

L (t) ≤ L (0)e−2Lot with L (t) :=
N∑
i=1

|pi(t)− p∞|2
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d

dt

N∑
i=1

|pi(t)− p∞|2 = 2

N∑
i=1

(pi − p∞)
dpi
dt

=
2λ1

N

∑
i,j

k1(xi,xj)(pi − p∞)(pj − pi)− 2Lo

N∑
i=1

(pi − p∞)2

=
2λ1

N

∑
i,j

k1(xi,xj)pi(pj − pi)− 2Lo

N∑
i=1

(pi − p∞)2

= −λ1

N

∑
i,j

k1(xi,xj)|pj − pi|2 − 2Lo

∑
i

|pi − p∞|2

≤ −2Lo

∑
i

|pi − p∞|2

= −2LoL (t)

d

dt
L (t) ≤ −2LoL (t)

By Grönwall’s inequality,

L (t) ≤ L (0)e−2Lot

Hence, as t → ∞, limt→∞ pi(t) = p∞, which we have shown to be the asymptotic

mean of the population’s cell activity. To put this in the context of Vibrio fischeri,

each of the cells will collectively express bioluminescence at some average level.

2.2.1.4 Autoinducers

To perform asymptotic analysis on Equation (2.4), we first make assumptions

on the form of ku(xi,xj). Since the form of Equation (2.5) causes difficulties in
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solving the linear differential equation, we focus on the simple case of ku(t) = 1
1+e−t .

(Note that this logistic function can be generalized but we work with this simple

case in order to present a proof less cluttered.) This applies to scenarios in which

the rate of uptake is initially low and increases to some stable or maximum uptake

rate over time. In other words, this can be observed in scenarios in which the cell

density increases up to a certain point and maintains that density.

Proposition 6. For the case when ku(t) = 1
1+e−t (and

∑N
j=1 k3(xi,xj) = Mi for all

t ≥ t∗),

lim
t→∞

Ai(t) =
λ3rMi

kd + 1

Proof.

dAi
dt

+ ku(t)Ai + kdAi = λ3r
N∑
j=1

k3(xi,xj)

Multiplying both sides by e
∫
ku(s)ds+kdt in order to perform reverse product rule,

d

dt

(
e
∫
ku(s)ds+kdtAi

)
= λ3r

N∑
j=1

k3(xi,xj)e
∫
ku(s)ds+kdt

e
∫
ku(s)ds+kdtAi = λ3r

∫ t

0

N∑
j=1

k3(xi,xj)e
∫
ku(s)ds+kdtdt

Let G(t) :=
∫
ku(s)ds, the antiderivative of ku(t).

Ai = e−G(t)−kdtλ3r

∫ t

0

N∑
j=1

k3(xi,xj)e
G(s)+kdsds

Since
∑N

j=1 k3(xi,xj) = Mi for all t ≥ t∗,

Ai = e−G(t)−kdtλ3r

(∫ t∗

0

N∑
j=1

k3(xi,xj)e
G(s)+kdsds+

∫ t

t∗
Mie

G(s)+kdsds

)
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The indefinite integral of ku(t) = 1
1+e−t is ln(1 + et).

Ai =
λ3re

−kdt

1 + et

(∫ t∗

0

N∑
j=1

k3(xi,xj)e
G(s)+kdsds+Mi

∫ t

t∗
(1 + es)ekdsds

)

Integrating the second integral∫ t

t∗
(1 + es)ekdsds =

∫ t

t∗
ekds + e(kd+1)sds

=
1

kd
(ekdt − ekdt∗) +

1

kd + 1
(e(kd+1)t − e(kd+1)t∗)

and the limit of the second term simplifies to

lim
t→∞

λ3re
−kdt

1 + et
Mi

(
1

kd
(ekdt − ekdt∗) +

1

kd + 1
(e(kd+1)t − e(kd+1)t∗)

)
=
λ3rMi

kd + 1

since the following limits hold:

lim
t→∞

ekd(t∗−t)

1 + et
= 0, lim

t→∞

et

1 + et
= 1, lim

t→∞

ekd(t∗−t)+t∗

1 + et
= 0

The first integral

lim
t→∞

λ3re
−kdt

1 + et

(∫ t∗

0

N∑
j=1

k3(xi,xj)(1 + es)ekdsds

)

≤ lim
t→∞

λ3rNe
−kdt

1 + et

∫ t∗

0

(1 + es)ekdsds

≤ lim
t→∞

λ3rNe
−kdt

1 + et

(
1

kd
(ekdt

∗ − 1) +
1

kd + 1
(e(kd+1)t∗ − 1)

)
= 0

since the limt→∞
e−kdt

1+et
= 0. Hence, the limit of the first integral is 0 since the limit

of non-negative functions bounded above by 0 signify that the functions converge

asymptotically to 0. Putting that all together,

lim
t→∞

Ai(t) =
λ3rMi

kd + 1

30



The surrounding concentration of autoinducers around cell i is ultimately de-

termined by synthesis of autoinducers, the surrounding density of cells, and the rate

at which autoinducers are left behind or degraded.

2.3 Simulations and Discussion

The particle-based model presented in this paper was constructed to ana-

lyze both movement of cells towards a chemoattractant and autoinducer-triggered

gene expression. This system of 4N differential equations, in which the four state

variables of position, velocity, gene expression, and surrounding autoinducer con-

centration are assigned to each cell. N represents the total number of cells. The

equation governing the surrounding concentration of autoinducer of cell i consists

of a weighted synthesis term, an uptake term, and a degradation term. The uptake

function can be customized to reflect the system. We initially used a logistic uptake

function that was dependent on time to prove that the surrounding concentration

of autoinducers converged to a constant value, which differs for each cell. The de-

tails are presented in Proposition 2. The assumption here is that the cells grow

sufficiently dense enough as time passes that the uptake increases at some point in

time and remains at that elevated level. The purpose of this logistic function was to

find a simple representation of this general behavior that was with respect to time,

instead of position, so that one could run the asymptotic analysis on the differential
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Figure 2.2: Gene expression and surrounding concentration of autoin-
ducers of 100 cells. The combination of the Gaussian uptake and the
logistic function ψA(Ai) allows for the observed gene expression varia-
tion. Parameter values for the Gaussian uptake function: a = 4, b = 4,
c = 27.8085 with β = 0.62 and γ = 1/2000.

equation.

Simulations were performed using a shifted Gaussian for the uptake function

in which at low cell densities, the uptake is low (close to 0). At higher densities,

the uptake increases. At even higher densities, the uptake begins to decrease. The

reason for this is to account for the effect of overcrowding on metabolic processes.

Also, this allows for more interesting dynamics in the surrounding concentration of

autoinducers, which leads to a higher variance in gene expression as seen in Figure

2.2. Note that the variation in gene expression here is also attributed to the logistic

function, ψA(Ai).

32



The β parameter in the model can be interpreted as the weight placed on the

behaviors of the neighbors. When β = 0, the individual cell places equal weight

on all other cells. As β increases, the individual cares less about the behaviors of

the cells further away from it. We modified this value to investigate the resulting

dynamics. As seen in Figure 2.3, the β values analyzed were β = .5, β = .58,

β = .66, and β = .7. As the β value increases, there is a change in the gene ex-

pression dynamics of cells. For lower values of β (i.e. β = .5, β = .58), the cells

at a higher density are expressing more than the cells at a lower density. In this

case, these were the cells that were on the outskirts of the group. As β increases to

β = .66 and β = .7, the cells at a lower density are expressing more. This is due

to the Gaussian uptake function. As the β increases, the difference in positions of

the cells (i.e. |xi(t)− xj(t)|) take on a higher value. So the uptake rate approaches

0. Since autoinducers are still being synthesized by our formulation, genes are still

being expressed. The cells at a higher density continue to uptake the autoinducers

since the distances between cells are smaller than those at a lower density. So at

higher values of β, the autoinducer-triggered gene expressions would be lower for

cells of higher density than cells of lower density.

Next, we focused on varying the β values on each of the weight functions,

k1, k2, and k3. Changing k1 had the most widespread effect on the dynamics of

our system. The changes in velocity governs the positions of the cells. As proved

in Proposition 2, the velocity converges for all values of β. In the Cucker-Smale

model [24] [44], the differential equation for velocity only consists of the flocking
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Figure 2.3: (a)-(d) Cell paths for β = .5, β = .58, β = .66, and β = .7,
respectively. The circles represent the cells and the lines represent the
path the cells have travelled. Green represents low cell activity and
yellow represents higher cell activity. As the β value increases, there is a
reversal. The cells which are at a higher density are expressing less than
the cells at a lower density. This is due to the Gaussian uptake term,
in which the β value increases the value of the sum of the distances
between cells. This causes the value of uptake to approach 0 and hence,
the higher gene expression.

34



term and hence, convergence is only guaranteed for β < 1
2

and guaranteed under

specific conditions for β ≥ 1
2
. So it makes sense that changing the strength of

the source term in Eq. (2.2) (by changing F0) and setting the β value to 0.7, for

example, could change the rate of convergence in our velocities. This allows more

dynamics in the positions of the cells and hence more variation in gene expression

and surrounding concentration of autoinducers. In Figure 2.4, we show the effect

of a slower convergence in velocity. This is in contrast to the velocity profile shown

in Figure 2.1, where the velocities are converging quickly to a common value. The

velocities of the cells have not converged to a common value within the time frame

shown and the autoinducer profile now has a downward slant, unlike the profile

shown in Figure 2.2. If we had increased β3 to a higher value, that in conjunction

with the degradation rate kd will cause fluctuations that will, in conjunction with

the logistic function ψA(Ai), influence the variance in gene expression. Altering the

β values of k2 along with the L0 coefficient will also influence the effects of velocity

and autoinducer concentration on gene expression. Hence, the change in β, or the

change in the extent to which the neighbors influence the individual, causes variation

in the dynamics of our system. Specifically, setting β > 1
2

and weakening the effect

of the source term by lowering the values of coefficients F0 and L0 promotes more

interesting behaviors in our cells.
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Figure 2.4: (a) Velocity profile for 100 cells in the x-direction and y-
direction. The slowness in the rate of convergence causes the downwards
slant in the autoinducer profile shown in (b). Here, F0 = 0.1, β1 = 0.7 ,
β2 = 0.7, β3 = 0.2.
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2.4 Conclusion

We introduced a method of modelling quorum sensing that does not a priori

require knowledge of the intrinsic protein interactions that are necessary to commu-

nicate with other bacteria. Instead, the autoinducer-triggered cell activity changes

with respect to the cell activity of neighboring cells. That is, the flocking term

generalizes quorum sensing in the form of weighted averages.

This keeps the ordinary differential equations simple enough to perform asymp-

totic analysis while encapsulating the dynamics of bacterial communication in tan-

dem with chemotaxis. This method of modelling also allows us to analyze these

dynamics in 2 and 3-dimensions.

Since the cell activity is independent of the known protein interactions that

differ from species to species, this kind of flocking representation allows for the

generalized modelling of positive feedback and negative feedback mechanisms in a

variety of quorum-sensing bacteria.

Future directions include adapting stochastic elements to the system that

would account for the variations observed in movement and in behavior. This would

also allow for analysis of what kinds of random processes applied to movement, ve-

locity, cell activity, and autoinducer concentration would affect the modelled system

that would facilitate a closer representation of bacterial chemotaxis and quorum

sensing interactions.
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Chapter 3: Modeling the interplay of quorum sensing and chemo-

taxis

3.1 Introduction

Bacteria exhibit collective gene expression called quorum sensing, which was

first discovered when specific phenotypes were collectively expressed by bacteria at

a certain density [8]. Further investigations revealed the presence of chemical signals

called autoinducers which the bacteria both produce and collect. At some threshold

in concentration of autoinducers, signal transduction networks are triggered causing

coordinated expression of specific genes. This can be observed in Vibrio harveyi

through the collective production of bioluminescence. In Pseudomonas

aeruginosa, quorum sensing enables the production of various virulence factors as

well as biofilms [93]. This kind of molecular communication system allows bacteria

to collectively exhibit these various phenotypes.

Another form of dynamical behavior observed in bacteria is chemotaxis. Chemo-

taxis is the movement of bacteria triggered in response to a gradient in concentration

of particular substances which are classified as either attractants or repellents. The

changes in concentrations of these substances activate a cascade of signal transduc-
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tion mechanisms that affect motility [10].

Not much is known about the direct connections between the quorum sensing

system and the chemotaxis system. Any connections that exist tend to describe

the interactions or effects of one major protein in one system influencing the other

system in some way. For example, AI-2 is a known attractant for E. coli [7] [32] [48]

and the LsrB protein, which is responsible for AI-2 uptake, is necessary for the

chemotaxing to AI-2 [48]. Here, the LsrB protein from the quorum sensing system

is integral to the chemotaxis system, with regards to the movements toward AI-2.

Another example of a connection between quorum sensing and chemotaxis is that

there was an up-regulation in motility and production of flagella in luxS knockouts

in E. coli. luxS is the gene that contributes to AI-2 production [64] in the quorum

sensing system and removing this gene had caused changes to the chemotaxis sys-

tem.

To explore the cellular behavior resulting from the possible interactions be-

tween these two complex systems, we look to differential equations. The regulatory

systems in quorum sensing and chemotaxis consist of various transcriptions and

translations of genes to proteins that contribute to the dynamical behaviors as well

as enzymatic activities (e.g. phosphorylation, induction) that are involved in these

processes [110] [111]. Taking into account the various reactions and regulatory

mechanisms of these systems can be complicated so instead, we aim to generalize

the behaviors of the quorum sensing and chemotaxis system with help from the

concept of flocking.

Flocking in nature is the description applied towards the behavior of a group
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of birds in flight [31]. The ways in which birds maintain such organized formations

while flying has led to several theories and various mathematical models and sim-

ulations [24] [45] [82] [88]. One such model is the Cucker-Smale model [24] [25].

This is a dynamical model constructed from ordinary differential equations that

demonstrates that the speed of each bird approaches the speed of the flock, under

the assumption that each bird adjusts its velocity by weighing the velocities of its

neighbors. This model was expanded upon by Ha & Tadmor [44] and the system is

described as:

d

dt
xi(t) = vi(t)

d

dt
vi(t) =

λ

N

∑
1≤j≤N

k(xi(t),xj(t))(vj(t)− vi(t))

The state variables are the position of particle i (xi(t)) and the velocity of particle

i (vi(t)), with N representing the total number of particles. The velocity of particle

i changes according to the neighboring particles j, with the function k(xi(t),xj(t))

acting as weights. That is, the function determines the scope of influence of the

surrounding particle j on the individual particle i. The λ acts as a coefficient

representing the strength of this flocking term.

The definition of flocking in [72] requires two conditions to be met.

Definition 1. The N agents of a particle system, with each agent i’s distances

and velocities represented by {xi(t), vi(t)}i=1,...,N , converge to a flock provided the

following properties hold:

(a) supt≥0 maxi,j |xj(t)− xi(t)| <∞

(b) limt→∞maxi,j |vj(t)− vi(t)| = 0
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In order to classify a group of N particles as flocking, the distances between agent i

and agent j remain bounded for all time t and the velocities of each agent approach

a common velocity.

This Cucker-Smale flocking method of modelling group dynamics has been

applied to cells. Di Costanzo et al. [28] employed flocking to model the process of

morphogenesis of cells of the posterior lateral line primordium in zebrafish. Ha &

Levy [43] incorporated flocking in the modelling of phototaxis of cyanobacterium

Synochocystis sp.. In this paper, building on the work of Ha & Levy [43] and Ha &

Tadmor [44], we introduce flocking behavior as a representation of quorum sensing

behavior.

The goal of this paper is to suggest a minimal model that explores the dynam-

ical behaviors that result from the coupling of the biological processes of quorum

sensing and chemotaxis. The regulatory systems involved in quorum sensing differ

from species to species. By employing Cucker-Smale flocking terms, we can model

positive and negative feedback properties of quorum sensing without accounting for

the specific signalling mechanisms involved.

Our general model looks at the dynamics of the following four state variables.

Each cell i’s position, velocity, autoinducer-triggered gene expression, and surround-

ing autoinducer concentration is focused on.

1. xi: position of cell i

2. vi: velocity of cell i

3. pi: gene expression of cell i
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4. Ai: autoinducer concentration surrounding cell i

The behavior of the state variables are governed by the following system of differ-

ential equations.

dxi
dt

= vi (3.1)

dvi
dt

=
λ1

N

N∑
j=1

k1(xi,xj)(vj − vi) + F0(voês + (v∞ − vo)êsψp(pi)− vi) (3.2)

dpi
dt

=
λ2

N

N∑
j=1

k2(xi,xj)(pj − pi) + L0(p∞ − pi)ψA(Ai) (3.3)

dAi
dt

= λ3

N∑
j=1

k3(xi,xj)r − ku(xi,xj)Ai − kdAi (3.4)

If there are N cells in the modelled system, there are 4N ordinary differential equa-

tions.

The differential equations for velocity and gene expression (equation (3.2) and

equation (3.3)) consist of the flocking term and source term. The flocking term is

the weighted adjustment of the velocity (or gene expression) of cell i with respect to

the velocities (or gene expression) of all other cell j’s. The k1(xi, xj) and k2(xi, xj)

are symmetric function with values which depend on distances between cells.

k1(xi,xj) =
1

(1 + |xj − xi|2)β1

k2(xi,xj) =
1

(1 + |xj − xi|2)β2

The weight function takes on higher values for cells closer to cell i, meaning that

cells would adjust their velocities and gene expression according to the velocities

and expression of cells in closer proximity than those further away. The β power

represents the scope of influence that the neighbors would have on cell i. For low β
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values (e.g. close to 0), the cells further away still have weight values that are closer

to the weight values of cells that are nearby. As β increases, the cells further away

have much less influence.

The strength of the source term for velocity is governed by constant F0 and ês

stands for the unit direction vector. ψp(pi) is a logistic equation that takes values

between 0 and 1 depending on the values of gene expression corresponding to that

cell.

ψp(pi) =
1

(1 + ec0(c1−cppi))α1

If ψp = 0 for all t, the source term reduces to F0(voês − vi). If ψp = 1 for all t,

the source term becomes F0(v∞ês − vi). vo is the magnitude for the basal level

of velocity. After the gene expression approaches a certain amount of activity, the

cell’s velocity increases, approaching v∞ if gene expression pi continues to increase.

The source term for the differential equation governing autoinducer-triggered

gene expression is not as complicated. The strength of this term is controlled by

the constant, L0. ψA(Ai) is a logistic function that takes values between 0 and 1

depending on the value of surrounding concentration of autoinducer for that cell.

ψA(Ai) =
1

(1 + ec2(c3−cAAi))α2

If ψA = 0, the source term disappears altogether. If ψA = 1, then the gene expression

will approach some maximal expression level. Biologically, this ψA represents the

putative threshold of surrounding autoinducer concentration required for quorum

sensing-related expression of, for example, luciferase in Vibrio harveyi or biofilm in

Pseudomonas aeruginosa.
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The differential equation governing the surrounding concentration of autoin-

ducer (equation (3.4) does not contain Cucker-Smale terms. However, the first term

does use a symmetric weight function k3(xi, xj) that is the same as the Cucker-Smale

weights.

k3(xi,xj) =
1

(1 + |xj − xi|2)β3

This equation consists of three parts: the synthesis term, the uptake term, and

the degradation/sloughing-off term. The synthesis term is a weighted term with r

representing the rate of synthesis of autoinducers by the cells. The higher the rate of

synthesis, the more autoinducers will accumulate in the surroundings. The uptake

term represents the concentration of autoinducers that are collected by the cells

and thus removed from the surroundings. For the purposes of this model, a shifted

Gaussian was used. The reason for the use of this kind of function lies in the ability

of the autoinducer uptake rate of each cell depending on the surrounding density.

At higher densities of cells, a sufficently higher autoinducer concentration in the

surroundings triggers an increase in uptake rate. As the density increases, the cells

become crowded enough that there is a reduction in cellular metabolic processes.

So at some sufficiently high density, there is a reduction in uptake rate. Hence, the

shape of the Gaussian proves useful in this scenario. The last term accounts for the

autoinducers that are degraded or left behind as a result of movement towards the

chemoattractant.

ku(xi,xj) = e

− (a(
∑N

j=1 |xj − xi|2β3)− b)2

2c (3.5)

44



3.2 Sensitivity Analysis

The resulting dynamics produced by the model is very much dependent on

the autoinducer concentration. Biologically, this makes sense as gene expression is

powered by the autoinducers in the surrounding medium. We can view the changes

in behavior of the model by exploring the sensitivities of various parameter values.

3.2.1 Adjusting the β values

β1, β2, and β3, which we will also refer to as the β values, are the parame-

ters that control the behavior of the weighted values in the Cucker Smale flocking

terms in equations (3.2 and 3.3) and in the rate of synthesis term in equation (3.4).

Qualitatively, the β values represent the scope of influence of the neighbors on the

individual. For low values of β (e.g. β = 0), every cell influences the individual. As

β values increase, the dynamics of the cells furthest away from the individual exert

little to no influence. To observe how this scope of influence affects the velocity, gene

expression, and surrounding concentration of autoinducers, we adjust the values of

β1, β2, and β3.

First, we analyze the dynamics of the state variables by varying β1 and β2 =

β3. After cycling through many β values, we focus on the two values of 0.2 and

0.7 to demonstrate the effects of these parameters on our model. These values were

chosen because there was a change in the profiles of our state variables when the β

values passed 0.5.

When all the β values are 0.2, the autoinducer concentration remains high
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so all cells exhibit the same expression profile. The velocity profiles initially show

flocking behavior, in which all the different initial conditions start converging to a

common velocity. Then, the threshold determined by ψp(pi) kicks in, causing an

increase in velocity. As the gene expression values for all cells are the same, all cells

increase in velocity at the same time. If β1 = 0.7, while β2 and β3 remain at 0.2,

the velocity profiles of each of the cells show more variation before converging to a

common velocity.

When β1 = 0.2, while β2 and β3 are raised to 0.7, the autoinducer concentra-

tion shows much variance. This is a result of the higher β3 value (as opposed to the

0.2), the uptake function, and the degradation parameter of kd. Consequently, the

gene expression values are different for each cell as seen in Figure 3.1. The velocities

of the cells initially take on an assortment of values but the β1 = 0.2 ultimately

steers the cell velocities to take on the same values. If β1 is raised to 0.7, the cell

velocities don’t converge to the same value within the time frame shown in Figure

3.1. Effectually, we see the most variation in the profiles of velocity, gene expression,

and autoinducer concentration when all β values are set to 0.7.

If we consider situations when β2 and β3 take on different values, most of the

variation in autoinducer-activated phenotypic expression is observed when β3 ≥ 0.5.

3.2.2 Adjusting the α values

Parameters that can also influence our model are those associated with the

logistic function of our source terms. Specifically, we focus on varying the α1 and
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Figure 3.1: Profiles of velocity in y-direction (Vy), gene expression, and
autoinducer concentration. (a) β1 = 0.2, β2 = β3 = 0.2. The autoin-
ducer concentration remains high enough that we obtain convergence in
Vy and in gene expression. (b) β1 = 0.2, β2 = β3 = 0.7. Fluctuations of
autoinducer concentration cause variation in velocity and gene expres-
sion. (c) β1 = 0.7, β2 = β3 = 0.7. The variance in velocity causes more
fluctuations in autoinducer concentration.
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α2 values (which we will also refer to as the α values) of ψp(pi) and ψA(Ai) while

fixing all other parameter values. ψp(pi) controls the threshold in which the motility

of the cell is upregulated, as a result of gene expression and indirectly, autoinducer

concentration. ψA(Ai) is the concentration threshold for autoinducers, in which

specific genes are upregulated because of an accumulation of autoinducers. Changing

the location of the threshold has a greater influence on the dynamics of velocity, gene

expression, and autoinducer concentration than from adjusting the β values. Note

that modifying the cp and cA values will also influence the location of the thresholds.

But we fix those values and toggle the α values instead, as the effect of moving the

thresholds is the same regardless of the means in which we change the threshold

values.

Raising the α values results in the raising of the threshold. That is, more

expression is required for an increase in velocity and more autoinducers are necessary

for an increase in gene expression. When α values are high (e.g. α1 = α2 = 50) as

shown in Figure 3.2, the velocity of a majority of cells show an alignment in velocity.

Gene expression levels remain low for most of the cells. When the threshold for

ψA(Ai) is lowered, (e.g. α1 = 50, α2 = 5), we see as a result that the cells express

a variety of expression, causing one group of cells to converge to one velocity and

another group of cells (ie the cells which have expressed high enough gene expression

so that ψp 6= 0) are gravitating towards a higher velocity. Lowering both threshold

values (e.g. α1 = α2 = 1) resulted in all cells approaching a higher velocity and

higher expression levels. Since velocity of cells influence their positions, the profiles

of autoinducer concentration show more dynamics when the velocities fluctuate.
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Figure 3.2: Effects of varying α parameters: profiles of velocity in y-
direction (Vy), gene expression, and autoinducer concentration. (a) α1

= 50, α2 = 50. Majority of cells converge to a lower velocity. Gene
expression are varied but mostly stay low. (b) α1 = 50, α2 = 5. Two
groups of cells approach either a higher or lower velocity. High variance
of gene expression. (c) α1 = 1, α2 = 1. All cells approach a higher
velocity. Gene expression is the least varied with most cells exhibiting
higher gene expression than in (a) and (b).
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3.3 Discussion and application

The 4N system of differential equations can be customized for quorum sensing

systems by using different threshold values, which are controlled by changing α1

and α2 (or alternatively, cp and cA), modifying the scopes of influence (β1, β2, β3),

customizing the uptake function in Equation 3.4 (e.g. Gompertz function rather

than Gaussian), and toggling the strength of each of the flocking and source terms

(λ1, λ2, λ3, F0, L0).

When we set our α values as the same, we observed notable dynamics in our

cells: Two groups of cells had formed. We conclude that the reason for this behavior

in our model is attributed to the coupling of quorum sensing and chemotaxis systems.

The rationale for this conclusion is that in our model from Chapter 2, the cells

maintain one single group with only a portion of the group expressing more than

the rest. Since quorum sensing does not influence velocity in that model, cells with

higher expression would not move faster. When we couple the model such that gene

expression influences velocity, the portion with higher expression would move faster,

leaving the rest of the group behind. Not only would we observe that different cells

would have different velocities, we can observe the formation of two groups as shown

in Figure 3.3.

The organization of cells into two groups is consistent with experimental obser-

vations. In chemotaxis experiments conducted using capillary tubes, where E. coli

was placed on one end and the chemoattractant (galactose) was placed on the other

end, E. coli moved towards galactose. What was unexpected was the appearance of
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Figure 3.3: Simulation resulting in formation of two groups: (a) Ran-
domly placed cells in [0,100] × [0,100] move towards source of attractant.
(b) The dense portion of cells reach a higher velocity, which (c)-(d) splits
away from the rest of the group and (e) forms two groups.

51



Figure 3.4: Chemotaxis experiment in Adler et al. [1] in which E. coli
(white) were placed at the left end of the capillary tube and galactose
(chemoattractant) was placed on the opposite end. The bacteria split
into two groups as they chemotaxed, as shown by the two white bands.

two bands, shown in Figure 3.4. To prove that this behavior was not attributed to

the heterogeneity in the cells, they scraped the cells from one of the two bands and

repeated the experiment with those cells. Two groups of cells formed, yet again.

Our model presents the possibility that quorum sensing systems, or some kind

of density-dependent mechanisms, are connected to the chemotaxis system. The in-

creased gene expression caused by the density of cells and the subsequent separation

of this group from the original pack would explain the formation of two sets of cells

during the process of chemotaxis.

What kind of response would we see when α1 6= α2? What kind of experiment

would we observe an α1 6= α2 scenario? We first respond to the latter question by de-

scribing the experiments conducted in a transwell apparatus in Servinsky et al. [97].
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The transwell experiments presented the movement of recruitable cells towards AI-2

(also a chemoattractant) and the monitoring of the expression of green fluorescent

protein (GFP) as well as constitutively expressed DsRed. There are two sets of cells

in this experiment. One set are sentinel cells that secrete AI-2. These are placed in

the lower chamber of the transwell. The other set of cells, called recruitable cells,

are genetically engineered to produce GFP when transcription is induced by autoin-

ducers. Located in the upper chamber, these cells also constitutively express DsRed

as a method of indicating their accumulation in the lower chamber of the transwell.

These recruitable cells are not engineered to produce AI-2 so that the only source

of AI-2 was the sentinel cells located in the lower chamber. The schematic of this

arrangement is visualized in Figure 3.5(a). The results of this experiment showed

that signs of DsRed, but not GFP, were detected at the 16 hour point. However,

both GFP and DsRed appear at the 40 hour time point. The conclusion was that

the motility response is more sensitive than the quorum-sensing-triggered gene ex-

pression response with respect to AI-2. In such a scenario, α1 < α2.

We model a similar system in which the chemotaxis system is more sensitive

than the (quorum-sensing-mediated) gene expression system. This can be modelled

by lowering the threshold of ψp(pi) (ie the value of pi for which the logistic function

increases to 1) and raising the threshold of ψA(Ai). That is, setting α1 < α2. In this

simulation, we mimic the upper and lower chambers of the transwell apparatus by

assigning some fixed distance from the origin as the “membrane”. We recorded the

number of cells that pass this “membrane” as well as their gene expression in our

simulation. We classify the cells that express greater than 0.7 as fully expressing
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GFP. Figure 3.5(c) shows the increasing cell count in the “lower chamber” of our

simulation as well as the increasing fraction of cells fully expressing. We compare

that to the results in Servinsky et al. [97], shown in Figure 3.5(b) and we observe

qualitatively similar results: As time passes the cell count increases but GFP is not

expressed until afterwards.

3.4 Conclusion

We presented a simple model representing a quorum-sensing, chemotaxing

group of bacteria using Cucker-Smale flocking terms. The model requires little

knowledge behind the specific signal transduction and other regulatory mechanisms

involved in either quorum sensing or chemotaxis. The flocking terms as well as the

source terms of our model generalize the complex signalling process at play.

The logistic functions of ψp(pi) and ψA(Ai) couple together our system of 4N

differential equations (Equation (3.1) - Equation (3.4)). Velocity is influenced by

gene expression after a certain threshold is attained. Gene expression is influenced

by autoinducers after a certain threshold is reached. While there exists a threshold of

autoinducers required before triggering the expression of phenotypes such as biofilm

or bioluminescence, the connection between gene expression via the quorum sensing

system and the chemotaxis system remains to be proven. That is, few research

exists on the upregulation of velocity due to autoinducer-related gene expression.

In our model we suggest a possible connection between these two systems.

Our simulations show the formation of two groups of cells, as shown in Figure 3.3.
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Figure 3.5: Comparison of Servinsky et al. [97] results to our simulation.
(a) In the transwell, the recruitable cells in the upper chamber and the
sentinel cells in the lower chamber are separated by a membrane. The
recruitable cells constitutively express DsRed and express green fluores-
cent protein (GFP) in the presence of AI-2. (b) The bar chart shows
the number of cells in the lower chamber at hour 16 and hour 40. The
fraction of cells expressing GFP are shown by the green bars. (c) Our
simulation in which we observe qualitatively similar results: The fraction
of cells expressing is initially 0 and increases as time passes.
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If our system of differential equations were decoupled so that chemotaxis was not

dependent on quorum sensing (ie ψp(pi) = 0) as was the case in Chapter 2, the cells

remain in one group. The two groups that formed in our model was the consequence

of autoinducer-triggered gene expression influencing the velocity of our cells. This

suggests the possibility that chemotaxis is influenced in some way by another regula-

tory process that is density dependent. In our case, we demonstrated that a coupling

of quorum sensing with chemotaxis can lead to behavior consistent with experimen-

tal observations [1]. When we simulated a system in which the chemotaxis response

is more sensitive than the quorum-sensing-triggered gene expression response, we

were able to obtain trends similar to those produced by transwell experiments in

Servinsky et al. [97].
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Chapter 4: Application of plasma theory to bacteria

4.1 Introduction

Plasma is a gas consisting of charged particles (ions and electrons) and plasma

kinetic equations are differential equations that describe the dynamics of these par-

ticles. The goal of this paper is to treat bacteria as these charged particles in order

to derive partial differential equations that describe the evolution of these systems

over time.

We begin by discussing the Liouville equation, one of the canonical equations

of plasma dynamics. This looks at the motion of an ensemble of particles described

as a product of delta distributions. The time evolution of each particle is analyzed

on the phase space, (x,v), which represent the random variables of position and

velocity of a particle.

Traditionally, differential equations are used to study the movements and ex-

pression of bacteria. For a system in which the dynamics of every bacteria are

tracked, this would require many initial conditions and we would be working under

the assumption that their behaviors are deterministic. Instead, we turn to a prob-

abilistic representation to characterize our ensemble of bacteria. For this paper, we

turn to statistical mechanics for assistance [5] [53] [76] [86] [87]. That is, we treat
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bacteria like a system of particles in which the density of a particular point in time,

position, velocity, and any other state variables is assigned a probability distribution,

fN . Instead of Maxwell’s equations and Newton’s laws governing the movement of

electrons, we have a flocking model governing the various characteristics of bacteria.

The flocking model is as follows:

dXi

dt
= Vi (4.1)

dVi

dt
=
λ1

N

N∑
j=1

k1(Xi,Xj)(Vj −Vi) + F0(voês −Vi) (4.2)

dPi
dt

=
λ2

N

N∑
j=1

k2(Xi,Xj)(Pj − Pi) + L0(p∞ − Pi)ψA(Ai) (4.3)

dAi
dt

=
λ3

N

N∑
j=1

k3(Xi,Xj)r − (ku + kd)Ai (4.4)

where with the corresponding weights:

k1(Xi,Xj) = k2(Xi,Xj) = k3(Xi,Xj) =
1

(1 + |Xj −Xi|2)β

and logistic function:

ψA(Ai) =
1

(1 + ec0(c1−cAAi))α

The uptake rate of ku and degradation rate of kd are both constant here. First,

we derive the modified Liouville Equation that will incorporate our flocking model.

Next, we show a formal derivation of the BBGKY hierarchy similar to what is done

in Ha & Levy [43].
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4.2 Derivation of a Modified Liouville Equation

The density of a system of N particles in phase space is written as

L(x1,v1, p1, a1, ...,xN ,vN ,pN , aN , t)

=
N∏
i=1

δ[xi −Xi(t)]δ[vi −Vi(t)]δ[pi − Pi(t)]δ[ai − Ai(t)]

=
N∏
i=1

δx,v,p,a,i

Here, we introduce the shorthand notation of

δx,v,p,a,i = δ[xi −Xi(t)]δ[vi −Vi(t)]δ[pi − Pi(t)]δ[ai − Ai(t)]

to represent the density of particle i. If we were in 3-dimensional space,

δ[xi −Xi] = δ(xi −Xi)δ(yi − Yi)δ(zi − Zi).

We take the derivative of L(x1,v1, p1, a1, ...,xN ,vN , pN , aN , t) with respect to time

∂L

∂t
=

N∑
i=1

(
∂

∂t
(δ[xi −Xi])δv,p,a,i

∏
k 6=i

δx,v,p,a,k +
∂

∂t
(δ[vi −Vi])δx,p,a,i

∏
k 6=i

δx,v,p,a,k

+
∂

∂t
(δ[pi − Pi])δx,v,a,i

∏
k 6=i

δx,v,p,a,k +
∂

∂t
(δ[ai − Ai])δx,v,p,i

∏
k 6=i

δx,v,p,a,k

)

and apply chain rule

∂L

∂t
= −

N∑
i=1

(
∇xi
·

(
dXi

dt

N∏
k=1

δx,v,p,a,k

)
+∇vi

·

(
dVi

dt

N∏
k=1

δx,v,p,a,k

)
+

∂

∂pi

(
dPi
dt

N∏
k=1

δx,v,p,a,k

)
+

∂

∂ai

(
dAi
dt

N∏
k=1

δx,v,p,a,k

))

which simplifies to

∂L

∂t
+

N∑
i=1

(
∇xi
·
(
dXi

dt
L

)
+∇vi

·
(
dVi

dt
L

)
+

∂

∂pi

(
dPi
dt
L

)
+

∂

∂ai

(
dAi
dt

L

))
= 0
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Then, we plug in our flocking model. Applying the f(x)δ(x− xi) = f(xi)δ(x− xi)

property, we obtain the following modified Liouville equation:

∂L

∂t
+

N∑
i=1

∇xi
· (viL)

+
N∑
i=1

∇vi
·

([
λ1

N

N∑
j=1

k1(xi,xj)(vj − vi) + F0(voês − vi)

]
L

)

+
N∑
i=1

∂

∂pi

([
λ2

N

N∑
j=1

k2(xi,xj)(pj − pi) + L0(p∞ − pi)ψA(ai)

]
L

)

+
N∑
i=1

∂

∂ai

([
λ3

N

N∑
j=1

k3(xi,xj)r − kuai − kdai

]
L

)
= 0

Therefore,

∂fN

∂t
+

N∑
i=1

∇xi
·
(
vif

N
)

+
N∑
i=1

∇vi
·

([
λ1

N

N∑
j=1

k1(xi,xj)(vj − vi) + F0(voês − vi)

]
fN

)

+
N∑
i=1

∂

∂pi

([
λ2

N

N∑
j=1

k2(xi,xj)(pj − pi) + L0(p∞ − pi)ψA(ai)

]
fN

)

+
N∑
i=1

∂

∂ai

([
λ3

N

N∑
j=1

k3(xi,xj)r − kuai − kdai

]
fN

)
= 0 (4.5)

where fN(x1,v1, p1, a1, ...,xN ,vN , pN , aN , t) is the N -particle probability distribu-

tion. fN vanishes at infinity in our phase space and is symmetric, which means that

xi,vi, pi, ai can be interchanged with xk,vk, pk, ak. For example,

fN(x1,v1, p1, a1,x2,v2, p2, a2, ...) = fN(x2,v2, p2, a2,x1,v1, p1, a1, ...)

4.3 Formal derivation of the BBGKY Hierarchy

The Liouville equation describes the time evolution of the N -body proba-

bility density, fN . This can represent a rather large system. Instead, one can
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examine a reduced system via integration. By integrating over the space associ-

ated with the N − j particles, one can analyze a reduced j-body system with the

resulting j-body probability density. This reduced system forms what is called

the BBGKY (Bogoliubov-Born-Green-Kirkwood-Yvon) hierarchy, a set of j cou-

pled integro-differential equations. Each describes the time evolution of a reduced

probability density. The reduced j-body probability distribution is written as

fNj =

∫
Ω

(fN)dxj+1dvj+1dpj+1daj+1...dxNdvNdpNdaN =

∫
Ω

(fN)dΩ

where Ω =
{
R2d(N−j) × RN−j

+ × RN−j
+

}
is the space which we are integrating over.

To obtain the BBGKY hierarchy, we integrate Equation (4.5) over the space

associated with the j + 1,...,N particles and simplify. Since Equation (4.5) consists

of 5 terms, we will call each of these terms as ‘sections’ to avoid confusion later on.

When we integrate over Ω, the first section of Equation (4.5) is simply
∂fNj
∂t

. We

focus on the second section.

Second section of Equation (4.5)

The second section is split into two terms.

Second section =

j∑
i=1

∫
Ω

∇xi
· (vifN)dxj+1dvj+1dpj+1daj+1...dxNdvNdpNdaN+

N∑
i=j+1

∫
Ω

∇xi
· (vifN)dxj+1dvj+1dpj+1daj+1...dxNdvNdpNdaN

The first term simplifies to

j∑
i=1

∇xi
·

vi

∫
Ω

(fN)dxj+1dvj+1dpj+1daj+1...dxNdvNdpNdaN


because xi and vi are independent. The second term simplifies to 0 because in our

N -particle phase space, fN vanishes at infinity (ie fN → 0 as each component of
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xi → ±∞). Therefore,

Second section =

j∑
i=1

∇xi
·
(
vif

N
j

)
Third section of Equation (4.5)

The third section is split into three terms.

Third section =

j∑
i=1

∫
Ω

∇vi
·

(
λ1

N

j∑
k=1

k1(xi,xk)(vk − vi)f
N + F0(voês − vi)f

N

)
dΩ+

j∑
i=1

∫
Ω

∇vi
·

(
λ1

N

N∑
k=j+1

k1(xi,xk)(vk − vi)f
N

)
dΩ+

N∑
i=j+1

∫
Ω

∇vi
·

(
λ1

N

N∑
k=1

k1(xi,xk)(vk − vi)f
N + F0(voês − vi)f

N

)
dΩ

The two parts of the first term can be simplified as such

j∑
i=1

∫
Ω

∇vi
·

(
λ1

N

j∑
k=1

k1(xi,xk)(vk − vi)f
N

)
dΩ

=

j∑
i=1

∇vi
·

(
λ1

N

j∑
k=1

k1(xi,xk)(vk − vi)f
N
j

)
j∑
i=1

∫
Ω

∇vi
·
(
F0(voês − vi))f

N
)
dΩ =

j∑
i=1

∇vi
·
(
F0(voês − vi))f

N
j

)
because we are integrating over all xj+1,vj+1, pj+1, aj+1...xN ,vN , pN , aN , whereas

the derivatives are with respect to the velocities of the i = 1 to i = j particles.

The second term is simplified using the same reasoning

λ1

N

j∑
i=1

∫
Ω

∇vi
·

(
N∑

k=j+1

k1(xi,xk)(vk − vi)f
N

)
dΩ

=
λ1

N

j∑
i=1

∇vi
·

∫
Ω

N∑
k=j+1

k1(xi,xk)(vk − vi)f
NdΩ


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and further simplified

=
λ1(N − j)

N

j∑
i=1

∇vi
·

∫
Ω

k1(xi,xj+1)(vj+1 − vi)f
NdΩ


=
λ1(N − j)

N

j∑
i=1

∇vi
·

 ∫
Ωj+1

k1(xi,xj+1)(vj+1 − vi)f
N
j+1dΩj+1


where Ωj+1 integrates over all xj+1,vj+1, pj+1, aj+1. The rationale for such simplifi-

cations is as follows. First,

∫
Ω

k1(xi,xj+1)(vj+1 − vi)f
NdΩ =

∫
Ω

k1(xi,xm)(vm − vi)f
NdΩ

for ∀m ∈ Z such that j + 1 ≤ m ≤ N . Within each integral, without loss of

generality, we can switch labels on the particle m with particle j + 1. The value of

fN will not change thanks to the symmetry property. Also, if we define the spaces

such that Ωj+1 integrates over all xj+1,vj+1, pj+1, aj+1 and Ω′ integrates over the

rest, then

∫
Ωj+1

∫
Ω′

k1(xi,xj+1)(vj+1 − vi)f
NdΩ′

 dΩj+1

=

∫
Ωj+1

k1(xi,xj+1)(vj+1 − vi)f
N
j+1dΩj+1

Moving on to the third term, we can apply the divergence theorem to obtain

N∑
i=j+1

∫
Ω

∇vi
·

(
λ1

N

N∑
k=1

k1(xi,xk)(vk − vi)f
N

)
dΩ

+
N∑

i=j+1

∫
Ω

∇vi
·
(
F0(voês − vi)f

N
)
dΩ = 0
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Hence, we have simplified the third section down to

Third Section =
λ

N

j∑
i=1

∇vi
·

(
j∑

k=1

k1(xi,xj)(vk − vi)f
N
j

)

+F0

j∑
i=1

∇vi
· ((v0ês − vi)f

N
j )

+
λ1(N − j)

N

j∑
i=1

∇vi
·

(∫
Ωj+1

k1(xi,xj+1)(vj+1 − vi)f
N
j+1dΩj+1

)

Fourth section of Equation (4.5)

Fourth section =

j∑
i=1

∫
Ω

∂pi

(
λ2

N

j∑
k=1

k1(xi,xk)(pk − pi)fN + L0(p∞ − pi)ψAfN
)
dΩ

+

j∑
i=1

∫
Ω

∂pi

(
λ2

N

N∑
k=j+1

k1(xi,xk)(pk − pi)fN
)
dΩ

+
N∑

i=j+1

∫
Ω

∂pi

(
λ2

N

j∑
k=1

k1(xi,xk)(pk − pi)fN + L0(p∞ − pi)ψAfN
)
dΩ

The two parts of the first term simplify using the same reasoning as in the third

section.
j∑
i=1

∫
Ω

∂pi

(
λ2

N

j∑
k=1

k2(xi,xk)(pk − pi)fN
)
dΩ =

j∑
i=1

∂pi

(
λ2

N

j∑
k=1

k2(xi,xk)(pk − pi)fNj

)
j∑
i=1

∫
Ω

∂pi
(
L0(p∞ − pi)ψAfN

)
dΩ =

j∑
i=1

∂pi
(
L0(p∞ − pi)ψAfNj

)
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The second term also simplifies using the same reasoning as in the third section.

λ2

N

j∑
i=1

∫
Ω

∂pi

(
N∑

k=j+1

k2(xi,xk)(pk − pi)fN
)
dΩ

=
λ2

N

j∑
i=1

∂pi

∫
Ω

N∑
k=j+1

k2(xi,xk)(pk − pi)fNdΩ


=
λ2(N − j)

N

j∑
i=1

∂pi

∫
Ω

k2(xi,xj+1)(pj+1 − pi)fNdΩ


=
λ2(N − j)

N

j∑
i=1

∂pi

 ∫
Ωj+1

k2(xi,xj+1)(pj+1 − pi)fNj+1dΩj+1


where Ωj+1 integrates over all xj+1,vj+1, pj+1, aj+1.

The third term simplifies to 0 via the divergence theorem,

N∑
i=j+1

∫
Ω

∂pi

(
λ2

N

N∑
k=1

k2(xi,xk)(pk − pi)fN
)
dΩ

+
N∑

i=j+1

∫
Ω

∂pi
(
L0(p∞ − pi)ψAfN

)
dΩ = 0

Hence, gathering all the simplified terms of the fourth section together, we get

Fourth section =
λ2

N

j∑
i=1

∂pi

(
j∑

k=1

k2(xi,xj)(pk − pi)fNj

)

+L0

j∑
i=1

∂pi((p∞ − pi)ψAfNj )

+
λ2(N − j)

N

j∑
i=1

∂pi

(∫
Ωj+1

k2(xi,xj+1)(pj+1 − pi)fNj+1dΩj+1

)
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Fifth (and last) section of Equation (4.5)

Fifth section =

j∑
i=1

∫
Ω

∂ai

(
λ3r

N

j∑
k=1

k3(xi,xk)f
N − (ku + kd)aif

N

)
dΩ+

j∑
i=1

∫
Ω

∂ai

(
λ3r

N

N∑
k=j+1

k3(xi,xk)f
N

)
dΩ+

N∑
i=j+1

∫
Ω

∂ai

(
λ3r

N

N∑
k=1

k3(xi,xk)f
N − (ku + kd)aif

N

)
dΩ

The two parts of the first term simplify.

j∑
i=1

∫
Ω

∂ai

(
λ3r

N

j∑
k=1

k3(xi,xk)f
N

)
dΩ

=

j∑
i=1

∂ai

(
λ3r

N

j∑
k=1

k3(xi,xk)f
N
j

)
j∑
i=1

∫
Ω

∂ai
(
(ku + kd)aif

N
)
dΩ = (ku + kd)

j∑
i=1

∂ai
(
aif

N
j

)
The second term simplifies using the same reasoning as in the previous sections.

λ3r

N

j∑
i=1

∫
Ω

∂ai

(
N∑

k=j+1

k3(xi,xk)f
N

)
dΩ

=
λ3r

N

j∑
i=1

∂ai

∫
Ω

N∑
k=j+1

k3(xi,xk)f
NdΩ


=
λ3r(N − j)

N

j∑
i=1

∂ai

∫
Ω

k3(xi,xj+1)fNdΩ


=
λ3r(N − j)

N

j∑
i=1

∂ai

 ∫
Ωj+1

k3(xi,xj+1)fNj+1dΩj+1


where Ωj+1 integrates over all xj+1,vj+1, pj+1, aj+1.
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Applying the divergence theorem, the third term simplifies to 0.

N∑
i=j+1

∫
Ω

∂ai

(
λ3r

N

N∑
k=1

k3(xi,xk)f
N

)
dΩ

−
N∑

i=j+1

∫
Ω

(ku + kd)∂ai
(
aif

N
)
dΩ = 0

Hence, the fifth section is simplified down to

Fifth section =
λ3r

N

j∑
i=1

∂ai

(
j∑

k=1

k3(xi,xj)f
N
j

)

+
λ3r(N − j)

N

j∑
i=1

∂ai

(∫
Ωj+1

k3(xi,xj+1)fNj+1dΩj+1

)

−(ku + kd)

j∑
i=1

∂ai(aif
N
j )

Putting all five simplified sections together, we have the following BBGKY formu-

lation.
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∂fNj
∂t

+

j∑
i=1

∇xi
·
(
vif

N
j

)
+ F0

j∑
i=1

∇vi
· ((v0ês − vi)f

N
j )

+ L0

j∑
i=1

∂pi((p∞ − pi)ψAfNj )− (ku + kd)

j∑
i=1

∂ai(aif
N
j )

+
λ1

N

j∑
i=1

∇vi
·

(
j∑

k=1

k1(xi,xj)(vk − vi)f
N
j

)

+
λ2

N

j∑
i=1

∂pi

(
j∑

k=1

k2(xi,xj)(pk − pi)fNj

)

+
λ3r

N

j∑
i=1

∂ai

(
j∑

k=1

k3(xi,xj)f
N
j

)

+
λ1(N − j)

N

j∑
i=1

∇vi
·

(∫
Ωj+1

k1(xi,xj+1)(vj+1 − vi)f
N
j+1dΩj+1

)

+
λ2(N − j)

N

j∑
i=1

∂pi

(∫
Ωj+1

k2(xi,xj+1)(pj+1 − pi)fNj+1dΩj+1

)

+
λ3r(N − j)

N

j∑
i=1

∂ai

(∫
Ωj+1

k3(xi,xj+1)fNj+1dΩj+1

)
= 0 (4.6)

4.4 Future directions

To go further with the BBGKY hierarchy, we would take the mean field limit.

That is, take N →∞. But this requires many assumptions from our hierarchy that

are difficult to prove rigorously. Formally, if we could take the limit and assuming

lim
N→∞

fNj = fj, Equation (4.6) becomes
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∂fj
∂t

+

j∑
i=1

∇xi
· (vifj) + F0

j∑
i=1

∇vi
· ((v0ês − vi)fj) + L0

j∑
i=1

∂pi((p∞ − pi)ψAfj)

− (ku + kd)

j∑
i=1

∂ai(aifj) (4.7)

+ λ1

j∑
i=1

∇vi
·

(∫
Ωj+1

k1(xi,xj+1)(vj+1 − vi)fj+1dΩj+1

)

+ λ2

j∑
i=1

∂pi

(∫
Ωj+1

k2(xi,xj+1)(pj+1 − pi)fj+1dΩj+1

)

+ λ3r

j∑
i=1

∂ai

(∫
Ωj+1

k3(xi,xj+1)fj+1dΩj+1

)
= 0

This is still a coupled system of integro-differential equations. In order to close this

hierarchy, we can set j = 1 and use the molecular chaos assumption of

f2(x1,v1, p1, a1,x2,v2, p2, a2, t) = f1(x1,v1, p1, a1, t)f1(x1,v1, p1, a1, t)

to obtain a PDE for f1.
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Chapter 5: Electrochemical Measurement of the β-galactosidase Re-

porter from Live Cells: A Comparison to the Miller Assay

(Reproduced with permission from Tschirhart, Tanya, et al. “Electrochemical

measurement of the β-galactosidase reporter from live cells: a comparison to the

Miller assay.” ACS Synthetic Biology 5.1 (2016): 28-35. Copyright 2016 American

Chemical Society.) This is a collaboration in which I developed the compartmental

model for the experiments performed by Dr. Tanya Tschirhart and Xinyi Zhou.

5.1 Abstract

In order to match our ability to conceive of and construct cells with enhanced

function, we must concomitantly develop facile, real-time, methods for elucidat-

ing performance. With these, new designs can be tested in silico and steps in

construction incrementally validated. Electrochemical monitoring offers the above

advantages largely because signal transduction stems from direct electron transfer -

allowing for potentially quicker and more integrated measurements. One of the most

common genetic reporters, β-galactosidase, can be measured both spectrophotomet-

rically (Miller assay) and electrochemically. However, since the relationship between

the two is not well understood, the electrochemical methods have not yet garnered
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the attention of biologists. With the aim of demonstrating the utility of an elec-

trochemical measurement to the synthetic biology community, we created a genetic

construct that interprets and reports (with β-galactosidase) on the concentration of

the bacterial quorum sensing molecule autoinducer-2. In this work, we provide a

correlation between electrochemical measurements and Miller Units. We show that

the electrochemical assay works with both lysed and whole cells, allowing for the

prediction of one from the other, and for continuous monitoring of cell response.

We further present a conceptually simple and generalized mathematical model for

cell-based β-galactosidase reporter systems that could aid in building and predicting

a variety of synthetic biology constructs. This first-ever in-depth comparison and

analysis aims to facilitate the use of electrochemical real-time monitoring in the field

of synthetic biology as well as to facilitate the creation of constructs that can more

easily communicate information to electronic systems.

5.2 Introduction

Synthetic biology motivates the rewiring of biological systems for a myriad

of applications, including sensing, directed feedback response to various inputs and

the production of valuable products [99]. One of the aims of the field is to uncover

the underlying design principles of biological systems through the rational design

of gene and protein circuits [17] [74]. Engineered biological systems have already

contributed significantly to our understanding of how natural systems function and

interact [14] [85] [98]. Complex genetic circuits and feedback loops have given us
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quantitative understanding of gene expression and signal transduction [52] [90], in-

sights into the diversity of behaviors that result from various control loops [102],

and the ability to rationally control spatial organization and interactions between

cells [21] [51] [120].

For ease of analysis and for developing designs, genetically engineered cells gen-

erally use a set of well-characterized reporters, typically fluorescent proteins such

as green fluorescent protein (GFP) or enzymes such as β-galactosidase (β-gal) [38].

Fluorescent reporters, when engineered for short half-lives, allow nearly continu-

ous tracking of protein expression in live cells over time under varying conditions

with intracellular resolution. In contrast, enzymatic reporters offer high sensitiv-

ity through signal amplification. Because the enzyme continually generates more

detectable product over time, very small amounts of the enzyme can be measured.

Requiring lower copy numbers of reporter in order to achieve a desired sensitivity

eases the transcriptional/translational burden on the cell [9] so that the process of

detection does not independently influence the system’s biology.

The β-galactosidase enzyme is one of the most common genetic reporters, and

its Miller assay [68] represents a textbook example of a well-quantified, validated

and reproducible method for measuring protein expression and enzyme activity.

Typically, cell samples are collected and lysed at specified time points, and the

freed enzyme is allowed to react with the substrate, ortho-nitrophenyl-β-galactoside

(ONPG). The yellow-colored product o-nitrophenyl (ONP) is produced by enzy-

matic cleavage and is quantified by measuring absorbance. The amount of product,

the extent of the enzymatic reaction and the amount of cells in the sample are used to
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calculate Miller Units, which can be used to compare gene expression across samples

taken under various conditions. Although reliable, the Miller assay has imitations.

The assay requires cell lysis, preventing continuous measurement or intracellular lo-

calization. Use of a different β-gal substrate, X-gal, provides an optical measure of

localization but is not quantitative. These constraints become more problematic as

researchers move from traditional flask and well-plate formats towards microfluidic

and lab-on-a-chip formats that better support rapid, highly sensitive and selective

measurements. As a result, recent influential papers in synthetic biology have mainly

relied on fluorescent reporters [30] [71] [83].

Since an aim of synthetic biology is the analysis and control over natural cir-

cuits as well as the design and manipulation of synthetic parts, we need measurement

techniques that track the dynamics of the synthetic system. Such techniques would

enable more predictive models of metabolic and cellular networks. This paper is

largely motivated by many reports of the biosensor and biochip community, where re-

searchers have used the redox-active molecule p-aminophenyl β-D-galactopyranoside

(PAPG) as a substrate for electrochemically measuring β-gal activity both inside

and outside of cells [4] [11] [19] [23] [59] [60] [62] [81] [96]. The focus to-date, has

targeted the development of sensitive electrode and biochip systems that provide

cost-efficient real-time measurements on the microscale that are easily integrated

into more elaborate electronic systems.

Electrochemical sensing uses electron exchange between redox-active molecules

and electrodes to generate measurable electrochemical signals. Their fast kinetics
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Figure 5.1: (a) A general electrochemical biosensing scheme for a cell
producing β-galactosidase as a reporter (phenotypic output) from a pro-
moter of choice or a combination of genetic elements (synthetic biology
controller) in response to various molecular cues (AI-2 in this paper).
Once β-galactosidase is produced, 4-aminophenyl β-D-galactopyranoside
(PAPG) is added. PAPG enters the cell and is cleaved by β-gal into the
redox active molecule p-aminophenol (PAP). PAP exits the cell and is
quantified through cyclic voltammetry at the electrode. (b) Molecu-
lar structures of the cleavage of ONPG to ONP and D-galactose and
PAPG to PAP and D-galactose by β-gal.(c) The counter (C), working
(W), and reference (R) electrodes used in this work and a schematic
of the electrochemical system setup. (d) Sample cyclic voltammograms
of different concentrations of PAP using the setup in (c) Inset showing
reversible PAP oxidation to p-iminoquinone at the electrode. R and O
indicate reduction and oxidation peaks, respectively. (e) PAP standard
curve shows correlation between PAP concentration and the reduction
peak current, taken from (d).
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enable dynamic monitoring. Additionally, the electronic output is easily analyzed

and used for the development of predictive models. However, most electrochemical

devices for β-gal measurement are manufactured in-house, precluding their prolifer-

ation among synthetic biology laboratories. Moreover, there remains no direct com-

parison to the standard that is well understood by biologists - the Miller Unit. This

disconnect motivated us to investigate the relationship between the electrochemical

(using PAPG) and spectrophotometric (using ONPG) methods for quantifying β-

galactosidase activity.

Here, we show for the first time that the electrochemical substrate PAPG can

be used to detect β-gal in a manner analogous to ONPG being used as a Miller sub-

strate. We demonstrate the electrochemical method by quantifying the responses

of both whole cells expressing β-gal and lysed cells, and correlate both responses to

the Miller assay. We created a whole-cell biosensor that detects the quorum-sensing

molecule autoinducer-2 (AI-2) and responds by producing β-gal in a concentration-

dependent manner. The genetic circuitry is generalizable to any stimuli or molecular

cue that evokes a cell response, contingent on a genetic link to a natural or synthetic

promoter. We specifically chose to detect AI-2 because it is a molecule secreted by

scores of bacteria and facilitates quorum sensing (QS) [95]. QS represents pop-

ulation dependent bacterial communication and response and mediates bacterial

virulence and biofilm formation [46]. QS is particularly relevant as the problem of

antibiotic resistance escalates [91]. Thus, in our example, we utilize synthetic biol-

ogy constructs to transduce molecular signals that mediate biomolecular cell-to-cell

communication into electrical output signals that can be further quantified, ana-
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lyzed, and modeled.

We use both our electrochemical and spectrophotometric data to create a

computational model of the cell ‘biosensor’ under both lysed and whole cell con-

ditions, and correlate the electrochemical sensor measurements to the genetic re-

sponse through the Miller assay. With this framework, researchers can measure

whole cell response with all the advantages of electrochemical detection, without

sacrificing understanding of the underlying genetic response. Overall, our analysis

of the whole-cell electrochemical AI-2 biosensor and corresponding computational

model furthers the use of electrochemical monitoring for synthetic biology.

5.3 Results and Discussion

5.3.1 Electrochemical characterization of LacZ expression

A generalized scheme of the electrochemical detection of PAP to characterize

cellular LacZ expression is presented in Figure 5.1a. Molecular cues signal intracel-

lular synthetic biology controllers (represented in abstract form) to drive LacZ gene

expression, which produces the β-gal enzyme as a surrogate for phenotypic output.

To perform electrochemical enzyme activity measurements, PAPG is added, enters

the cell, and is cleaved by β-gal into PAP (Figure 5.1b), exactly analogously to

ONPG that is cleaved into ONP for optical measurements. PAP can then exit the

cell and be detected electrochemically by oxidation to p-iminoquinone using a three

electrode system (Figure 5.1b and c) [113]. The current readout, as can be seen in

Figures 5.1d (cyclic voltammetry scan) and e (peak current of the cyclic voltammo-
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grams), is linearly proportional to PAP concentration over a fairly wide range. See

Supplementary Figure 5.11 for additional detail regarding the oxidation currents of

PAP. This method allows quantification of β-gal activity whether in cell extracts

or within intact cells. Since we foresee this measurement method being especially

useful in miniaturized lab-on-a-chip systems, it is important to note that decrease

in electrode size should not negatively impact the sensitivity of the system.

5.3.2 Characterization of β-gal produced by biosensor cells

To study the utility of electrochemical β-gal detection in cells, we constructed

an E. coli sensor strain (luxS -, lsrFG-, ∆(argF-lac)169 ) that relies on native im-

port and phosphorylation of AI-2 to de-repress expression of the lsr promoter (Figs.

2a,b). Using a two-plasmid system we amplify the native signal strength (lsr pro-

moter) by driving expression of T7 RNA polymerase (from pCT6). This, in turn,

amplifies gene expression from a generic pET vector, engineered to produce β-gal.

This two-plasmid expression system provides biological amplification that greatly

increases the sensitivity of the strain to AI-2, as discussed by Tsao et al. (2010). As

seen in Figure 5.2c, the cells respond in a predictable, dose-dependent manner; that

is, the β-gal response as measured by the Miller assay correlates with the concen-

tration of added AI-2. These response trends correspond with our previous results

for systems involving AI-2 uptake by cells [103]. Because the stoichiometry of the

reaction using the electrochemical substrate (PAPG) is the same as that using the

colorimetric Miller substrate (ONPG), we expect a direct correlation between the
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Miller and electrochemical assays. We selected cells at 3 hours post-AI-2 induction

for further experiments since the responses were robust and the Miller response

correlated most closely to the AI-2 concentration (Supplementary Figure 5.8).

5.3.3 Real-time electrochemical vs. spectrophotometric measurement

of β-gal activity

To establish the electrochemical measurement using our electrodes, we first

used purchased β-gal as a reference material. In Figure 5.3, we characterized β-gal

activity using both spectrophotometric and electrochemical methods, re-suspending

the enzyme in either the Miller assay’s Z-buffer or 40 mM Tris-HCl, respectively.

These experiments provided a basis for quantifying enzyme (g/L) relative to its ac-

tivity using both methods and for estimating β-gal concentration within biosensor

cells.

The spectrophotometric technique (Fig. 5.3b) allows measurements that are

rapid, sensitive, and linear at low β-gal concentrations. However, in less than a

minute at the highest tested β-gal concentration - 0.005 U/µl - the ONP gener-

ated was above the linear range (>1 AU). Higher concentrations would need to be

diluted. The electrochemical technique, however, remained sensitive and linear, bet-

ter differentiating among higher concentrations of β-gal (Fig. 5.3c). In both cases,

rates of product generation were higher with increasing enzyme concentration (as

expected), and the two measurements were linearly correlated (Fig. 5.3d). We note

also (Fig. 5.3d) that the rate of PAP detection was ∼ 5 fold slower than the rate of
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Figure 5.2: (a) The biosensing scheme for a cell producing β-gal as a
response to added AI-2. (b) The synthetic construct, in which the Lsr
promoter activation induces β-gal production through a two-plasmid sys-
tem. Plasmid pCT6 responds to AI-2 by producing T7 polymerase and
activating the T7 promoter on pETLacZ, which results in β-gal over
expression. (c)A time-course response to different added AI-2 concen-
trations of the above construct, CT108 cells with pCT6 and pETLacZ
plasmids. Averages are from 3 samples and error bars indicate S.D.
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ONP detection.

5.3.4 Electrochemical response of AI-2 biosensor cells

We then characterized the response of our biosensor cells after a 3 hour AI-

2 induction. Since the Miller assay requires cell lysis, we first investigated the

electrochemical response of lysed cells. The schematic in Figure 5.4a depicts the

relationships between all of the system components. PAP current was measured at

0, 5, 10, and 15 minutes after the addition of PAPG. In Figure 5.4b, the current

rose as a function of both time and initial AI-2 concentration. The Miller assay was

also performed on the same cells at the 0 time point, and in Figure 5.4c, a linear

correlation between the Miller Units and the rate of PAP detection from the same

cells was found.

This enabled correlation of the electrochemical measurement to the Miller

Units. To our knowledge, this correlation has never been reported for β-gal ex-

pressed in any cell type. These data provide direct correlation for the two measure-

ments and demonstrate, at least for this synthetic biology application with E. coli,

that the assays are easily employed for typical experimental ranges. Finally, these

data can be used to approximate the amount of intracellular β-gal in the host cells

(Supplementary Figure 5.9).

In Figure 5.5, we continued our studies with whole live cells. PAP current

was measured at the 0, 1, and 2 hr after PAPG addition. Recall that whole cell

80



Figure 5.3: (a) Scheme of real-time electrochemical and spectrophoto-
metric detection of PAP or ONP produced by β-gal cleavage of PAPG
or ONPG. (b) Spectrophotometric ONP measurement from reactions of
various concentrations of β-gal with ONPG over time. (c) The same
β-gal concentrations and conditions as in (b), where the activity was in-
stead measured by electrochemical detection of PAPG cleavage to PAP.
(d) Correlation between electrochemical measurement rate of PAP de-
tection to spectrophotometric measurement rate of ONP detection from
data in (b) and (c), as well as the same data converted to the same units
of µM/min of measured PAP or ONP. All lines in B-D indicate linear
trendlines except for 0.005 U/µl in B, which indicates a best fit 2nd order
polynomial trendline.
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measurements are not possible via the Miller protocol, which lyses cells. In order

to perform measurements in live cells, PAPG and PAP diffusion through the cell

membrane is required, which can be quantified using electrochemical techniques.

As seen in Figure 5.5b, the current response correlates with the initial amount of

AI-2 added, as was the case with the lysed cells. Multiple experiments are shown as

performed on different days. In Figure 5.5c, each point represents both the rate of

PAP detection at 2 hours (as in Figure 5.5b) and the corresponding Miller results of

the same cell samples. It is important to note that during those two hours following

PAPG addition, the quantity of β-gal within the cells did not vary significantly.

Figure 5.5c shows correlation, R2 = 0.97, with R2 = 0.92 for all points between the

Miller Units and the electrochemical response up to ∼ 2000 Miller units. The limit

tested for the lysed cells was also in this range. We also note that the current gener-

ation rate was much lower in whole cells than in lysed cells (Fig. 5.4). The current

obtained in the 40 µM case for the whole cells reached 1.5 µA after 2 hours, but the

same output was obtained within ∼ 7 min for the lysed cells. Clearly, the intact

cells represent a barrier to PAPG and/or PAP transport, in addition to unknown

factors that affect the molecule’s concentrations or reactions.

In Figure 5.6a, we show a comparison between the lysed and whole cell electro-

chemical response rates, dependent on the corresponding Miller Unit measurements.

This again allows a prediction of the current for either lysed or whole cells based

on Miller assay results. The linear relationships from Figures 5.4c & 5.5c were used

to construct a line in Figure 5.6b (see Methods for further information and calcu-
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Figure 5.4: (a) Scheme of detection of AI-2 by electrochemical measure-
ment of PAP production by lysed biosensor cells. (b)Detection of PAP
from cells induced with the indicated AI-2 concentrations for 3 hours and
lysed prior to PAPG incubation for the indicated time. (c) Comparison
of the rate of PAP detection from the samples in (b) to the Miller units
measured from the same samples, indicating a linear relationship and
low background. Dotted lines indicate linear trendlines.
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Figure 5.5: (a) Scheme of detection of AI-2 by electrochemical measure-
ment of PAP production by whole biosensor cells. (b) PAP detection
from whole cells after incubation with the given AI-2 concentrations for
3 hours and then PAPG for the indicated time. Averages are from 3-4
replicates on separate days and error bars show S.D. (c) The calculated
rates of PAP detection over the two hour period versus the Miller Units
of the same cell samples shows a linear relationship. Dotted lines indicate
trendlines.
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lations), which relates the lysed cell assay to the intact cell assay, both measured

via electrochemical means. It is evident from the graphs that lysed cell measure-

ments are more than an order of magnitude faster than whole cell measurements

for samples with similar Miller Units. Nonetheless, the fact that the detection rates

are linear at even low levels of β-gal suggests that relatively rapid analysis of gene

expression is possible using this method, especially if more sensitive electrodes were

used. Additionally, we performed similar preliminary experiments using constructs

with single plasmids and different promoters and were able to confirm similar trends.

One aspect that is not obvious from the plot is that the amount of background sig-

nal for whole cells (∼ 0.005 µA/min, Fig. 5.6b) was similar to that for lysed cells

(∼ 0.004 µA/min, Fig. 5.6a). This background could be due to a combination of

factors: physical PAPG degradation to PAP or other uncharacterized cell processes

resulting in PAPG cleavage, rather than due to reaction by β-gal. We note, however,

that experiments without the addition of PAPG resulted in near zero background

(Supplementary Figure 5.10), indicating that the cells are not producing additional

electrochemical species that overlap with the signal of PAP.

5.3.5 The two-compartment mathematical model

Finally, we constructed a simple computational model that simulates β-gal

levels and PAP concentrations in response to PAPG and AI-2 addition to cells with

respect to time. In order to build this model, compartments (i.e., sub-models) were

constructed separately (Figure 5.7a). The first compartment modeled cell behavior
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Figure 5.6: (a) Comparison of the rates of PAP detection from whole ver-
sus lysed CT108 pCT6/pETLacZ sensor cells based on measured Miller
Units in response to different AI-2 concentrations. (b) The line indicat-
ing the relationship/conversion of PAP detection rate from lysed cells
directly to whole cells. The points on the line indicate calculated whole-
cell rates for lysed cells with specific Miller Units. Dotted lines indicate
trendlines.
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(LacZ expression) in response to AI-2. This model is a surrogate for any cell-based

model for the design of a genetic circuit with corresponding elements of gene expres-

sion. The second compartment modeled the production of PAP via the substrate

PAPG and its response to the enzyme, β-gal. This model represents a calibration

‘standard’ that can be integrated into the first model to provide connection to the

experimental system. These sub-models (Figure 5.7a, 5.7b) were combined into one

final model that was then compared to the lysed cell data. Figure 5.7c shows that

there exists a good correlation between the model predictions and the PAP mea-

surements (see also Supplementary Figures 5.12-5.14). That is, we have divided the

model into two compartments so that the latter compartment could be an electro-

chemical “plug in” to the first compartment, which in turn, would be constructed for

any generic construct wherein the first principles reactions could be conceptualized.

In our case, the first compartment models the AI-2 - mediated expression of β-gal.

5.4 Conclusion

In this work, we report the first in-depth comparison of the electrochemical

method for measuring β-gal activity in both lysed and intact cells to the gold-

standard Miller assay. Our results indicate that the electrochemical method is a

feasible alternative that enables added versatility for analysis of synthetic biology

constructs, especially in applications exploiting lab-on-a-chip devices or real-time

measurements. We demonstrated this by developing a biosensor bacterium that

converts the signaling function of quorum sensing molecule AI-2 to electronic sig-
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Figure 5.7: (a) Model results of cell production of β-gal depending on
AI-2 induction, converted to Miller Units and overlaid with experimen-
tal data. Insert indicates modeled processes. (b) Model results of β-gal
conversion rate of PAPG to PAP overlaid with experimental results. In-
serted scheme indicates modeled processes. (c) Model results of lysed-cell
production of β-gal and PAP production converted to current (combi-
nation of two modeled compartments in a and b) and overlaid with
experimental results.
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nals through a genetic (β-gal) and chemical (PAPG) transducer system. Our results

showed that the electronic current measured was proportional to Miller Units from

the same samples, and can be used to approximate gene expression in a multi-

component synthetic circuit. Such electrochemical measurements would allow for in

situ analyte detection as they integrate seamlessly into electronic systems, and could

therefore provide for programmable measurements of synthetic biology constructs.

Additionally, we created a two-compartment model that can be used to predict PAP

(and thus electrochemical) output from our construct, and can be modified to ac-

commodate other systems driving LacZ expression. We believe this work connects,

for the first time, the work of the biosensor community in enzymatic reporter detec-

tion, with the standard optical measurement techniques biologists use for the same

purpose. A better link between synthetic biologists and biochip / microelectronics

designers enables parallel use of each other’s tools and advances the potential for

synergistic outcomes.

5.5 Methods

5.5.1 Chemical Reagents and Biocomponents.

4-aminophenyl β-D-galactopyranoside (PAPG), 4-aminophenol (PAP),

β-galactosidase (β-gal) and ortho-Nitrophenyl-β-galactoside (ONPG) were from Sigma-

Aldrich. PAPG was dissolved in diH2O and β-gal was dissolved in 40 mM Tris-

HCl. PAP and ONPG were dissolved in 0.1 M phosphate buffer (PB). “In vitro”

autoinducer-2 (AI-2) was produced through previously described biological nanofac-
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tories [47]. Briefly, the nanofactory fusion protein HGLPT (His6-protein G-LuxS-

Pfs-Tyr5) was purified from E. coli BL21 luxS− and incubated with 1 mM of the

substrate S-(f’-deoxyadenosin-5’)-L-homocysteine (SAH) at 37◦C with shaking at

250 rpm, resulting in AI-2 synthesis. The enzymatic reaction product was twice

extracted by an equal volume of chloroform.

5.5.2 Electrochemical PAP Detection.

PAP was detected electrochemically through cyclic voltammetry (CV). CVs

were performed with a CHI Instruments 600-series electrochemical analyzer (CH

instruments, Inc.) using an Au working electrode (2 mm diameter, CH Instruments,

Inc.), a 4 cm-long platinum counter electrode (Alfa Aesar), and Ag/AgCl reference

electrode (BASi). CVs were run from -0.15 to 0.3 V at a scan rate of 50 mV/s. The

current at the reduction peak was used to measure PAP concentration.

5.5.3 Bacterial Strains, Plasmids and Culture Conditions.

In order to enhance the AI-2 responsiveness of E. coli ZK126 [22], a double

chromosomal knockout of lsrFG and luxS strain, CT108, was created using one-

step inactivation method [27]. Briefly, pKD4 was PCR amplified using primers lsr-

FGHP1, ATGGCAGATTTAGACGATATTAAAGATGGTAAAGATTTTCGTGTAG-

GCTGGAGCTGCTTC, and lsrHP2 [111]. The PCR product was electrically trans-

formed into ZK126 pKD46 (to express the Red recombinase). lsrFG:Kanr recombi-

nants were screened with kanamycin and pKD46 plasmid was cured by growing at
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37◦C. After confirming the gene replacement by PCR, the kanamycin resistant gene,

Kanr, was removed by transforming a helper plasmid, pFLPe-Tet (Gene Bridges),

to express the FLP recombinase. Then luxS was knocked-out from ZK126 ∆lsrFG

following the similar procedure published before [111]. CT108 was created after the

removal of the kanamycin resistance gene similarly descripted as above. Plasmids

pCT6 [103] and then the commercially-available pET200/D/LacZ (Life Technolo-

gies) were introduced via standard heat-shock protocols of chemically-competent

cells.

5.5.4 Miller Assay (Colorimetric β-gal Activity Detection).

Miller assay was performed according to standard protocols [68]. Briefly,

cells were lysed with chloroform and sodium dodecyl sulfate (SDS) to release β-

gal. The substrate ONPG was added and cleaved by β-gal into a yellow molecule,

o-nitrophenol. Absorbance at 600 nm, 550nm, and 420 nm was quantified by a

Molecular Systems plate reader. The OD at 600nm was measured from 250 µl of

cells and the ODs at 420 nm and 550 nm were measured from 200 µl of cells.

5.5.5 AI-2 Detection with Bacterial Biosensor.

E. coli CT108 pCT6/pETLacZ was grown in LB Broth, Miller (Fischer Sci-

entific) at 37◦C with aeration by shaking at 250 rpm, then reinoculated at 2% and

grown to early log phase (OD600 0.2). Cells were incubated with AI-2 at 37◦C with

shaking at 250 rpm, then spun down and resuspended in phosphate-buffered saline
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(PBS) at an OD600 of 2. 0.5 mg/mL PAPG was added and CVs were performed as

described above. To validate the electrochemical results, the commonly used Miller

assay was performed on lysed cells to quantify β-galactosidase activity.

5.5.6 Cell Lysis.

10 % chloroform and 0.005 % SDS were added to cells resuspended in PBS.

The reaction was vortexed and incubated at room temperature for 5 min. For ab-

sorbance measurements, the reaction was spun down for 4 minutes at 8000 rpm and

the supernatant was removed for measurement. For electrochemical measurements,

the reaction was spun down for 1 minute at 14,000 rpm and the supernatant was

removed for measurement.

5.6 Supplemental section

Calculations: In order to convert absorbance (Abs/min) or electrochemical (µA/min)

measurements to β-gal (U/µl), the following equations were used, respectively:

x = (y − 0.0016)/134 and x = (y + 0.035)/94.8 (x is the U/µl and y the mea-

surement in either Abs/min or µA/min) . Both equations were calculated from

the data in Figure 3, where for each β-gal amount a calculated rate (Abs/min or

µA/min) was found using Excel’s LINEST function. For the absorbance data, the

highest enzyme concentration’s data was omitted as it was not in the linear range.
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Figure 5.8: Correlation between the concentration of AI-2 used to induce
the biosensor cells and the Miller Units, based on the time after induction
(incubation).

Figure 5.9: (a) The linear correlation between the enzyme units calcu-
lated from absorbance or electrochemical measurements for lysed cells.
(b) Similar results as in (a) but with electrochemical measurements com-
ing from whole cells.
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Figure 5.10: Control experiments were performed with biosensor cells
different than ones used in the main paper, but which behaved similarly.
PAPG concentrations were 0.5 mg/ml and AI-2 was 40 µM. Procedure
was similar to that in the paper, and charge measurements were recorded
instead of current, but represent similar data.

Discussion: We can see that in Supplementary Figure 2a, the rates correlate in

almost a 1-to-1 ratio since in both cases the cells are lysed. In Supplementary Figure

2b, however, the electrochemical measurements show a much lower apparent enzyme

amount compared to the absorbance measurements. This is because although the

absorbance measurements (as part of the Miller assay) were done on lysed cells, the

electrochemical measurements were done on whole cells. The relationship allows us

to calculate the underestimation of the electrochemical whole-cell measurement.

Calculations for line in Figure 6b The line was-calculated by equating the x’s

of the two equations of the lines in 4c and 5c, representative of the Miller Units, and

rearranging the combined equation so that the current for whole cells (y1) depended
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Figure 5.11: (a) Oxidation currents of PAP generated by various β-gal
concentrations, same as in Figure 3c. (b) Oxidation current of PAP
generated by lysed cells induced with the indicated concentrations of
AI-2, same as in Figure 4b. (c) Oxidation current of PAP generated by
whole cells induced with the indicated concentrations of AI-2, same as
in Figure 5b.
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on the current for lysed cells (y2). This allowed for direct conversion of lysed-cell rate

to whole-cell rate for samples with the same Miller Units. The points on the graph

indicate lysed-cell points [(x, y) being Miller, current] whose Miller Units were taken

and plugged into the whole-cell equation to calculate what the whole-cell current

would be for cells with the same Miller Units (x’s). The results were used as the y’s

for the points on the graphs, with the x’s being the experimentally-measured lysed

cell currents.

5.7 The Two-Compartment model

The model for tracking beta-gal (β-gal) activity is a two-compartment model.

That is, the main model is a construction of two sub-models. The first sub-model is a

system of 3 differential equations that model β-gal activity expressed in cells exposed

to different levels of AI-2. The known parameter values are taken from literature

and the rest are fitted to the data. The second sub-model uses the two Michaelis-

Menten differential equations to model PAP production at various concentrations of

β-gal. The Michaelis constant (Km1) is taken from the literature. The turnover rate

(kcat1) is fitted to the data. The two sub-models are combined to create a model

that predicts PAP concentrations at various levels of AI-2 added. To observe the

quality of our predictions, the model output is compared to data collected from the

lysed cells.
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5.7.1 The first compartment

Data Conversion

In order to fit the sub-model, data was converted from Miller units to µM of β-

gal. Using Beers Law, with extinction coefficient e = 4800 and length = 1 cm,

we converted the absorbance at 420nm into µM concentration of ONP. In order to

convert µM ONP into µM β-gal, we use the following Michaelis-Menten equations:

d(ONP )

dt
=
kcat1Eo1(ONPG)

Km1 +ONPG
(5.1)

d(ONPG)

dt
= −kcat1Eo1(ONPG)

Km1 +ONPG
(5.2)

with known turnover rate kcat1 = 620/sec and Michaelis constant Km1 = 120 µM [56]

[65]. Eo1 stands for the initial enzyme concentration. Assuming that Km1 � ONPG,

the ONP differential equation simplifies to:

d(ONP )

dt
= kcat1Eo1 (5.3)

The slope is estimated from the linear fit of the data so Eo1 can be solved at each

time point to extract the µM of β-galactosidase.

Model fitting
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AI-2out
kAI-2−−−→ AI-2in (5.4)

CR + AI-2in
k2−→ DNA (5.5)

4R + DNA
k3−→ CR (5.6)

DNA
k4−→ DNA + β +R (5.7)

For this model, we assume a first order reaction for the influx of AI-2 from

the outside. We have simplified the intracellular dynamics and provide the three

equations below which describe the β-gal enzyme concentration, the LsrR repressor

concentration, and the amount of LsrR bound to DNA [118]. These equations

base β-gal expression on the interplay between LsrR bound as a repressor and its

freely dissociated form. LsrR repression is known to result from the formation of

an LsrR tetramer bound between two distal looped strands of DNA comprising the

intergenic region of the lsr regulon [42]. While a significant simplification of the

known biochemistry, the topology of the expression kinetics agrees well with our

experimental observations. For example, we do not include the phosphorylation of

AI-2 by LsrK. We generalize the transcriptions on the pCT6 and pETLacZ into one

equation that codes for LacZ and LsrR. Hence, we call k2 a generalized rate as it

takes into account these factors. The law of mass action is used to translate these

reactions into differential equations. The constraint CR + DNA = Dtotal, in which

Dtotal is a constant, simplifies the system of differential equations into:
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dβ

dt
= k4(Dtotal − CR)− kd2β (5.8)

dCR
dt

= k3R
4(Dtotal − CR)− k2CR

(
CAI-2

(
1− e−kAI-2(t−1.5)

))
− kd3R (5.9)

dR

dt
= k4(Dtotal − CR)− 4k3R

4(Dtotal − CR)− kd3R (5.10)

The application of this constraint is explained in Alon [3]. However, in our equa-

tions we did not apply the assumption that dCR

dt
= 0 (steady state amount of bound

repressor).

We induced the synthesis of LacZ by the addition of AI-2; typically aiming for

an initial OD of X. To facilitate errors in dynamic lag associated with altered OD’s

for induction and to account for variability in initial growth kinetics, we have set

the initial condition so that the initial appearance of β-gal in the zero AI-2 control

culture matched with the simulation at that point. This meant that the simulations

commenced at t =1.5 hrs, or about a half hour before the initial β-gal measure-

ment. The rest of the initial conditions are CR(1.5) = Dtotal− 1.175× 10−6
µM and

R(1.5) = 1.692× 10−5
µM. The differential equations were solved using MATLAB.

Table 2 shows the parameter values used in the model. Note that for k4 (the

transcription rate of LsrR and LacZ), we take into account the rate at which the

endogenous RNA polymerase transcribes the T7RNA polymerase (2.65 kbp at 39

nt/s) [13] [35] as well as the rate at which the T7RNA polymerase transcribes LacZ
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Name Description

CR LsrR repressor bound to operon (ie acts as a

cap over the DNA to block transcription)

AI-2out Extracellular AI-2

AI-2in Intracellular AI-2

DNA represents DNA that codes for β and LsrR

R LsrR repressor

β Beta-galactosidase enzyme

kAI-2 rate at which AI-2 enters cell

k2 generalized rate of de-repression by AI-2

k3 rate at which LsrR binds to operon

k4 transcription rate

CAI-2 initial AI-2 concentration

kd2 LacZ degradation rate

kd3 LsrR degradation rate

Table 5.1: Variable and Parameter Descriptions
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Parameter Value Source

kAI-2 = 1.7/hr Li et al. (2006)

k2 = 0.73/(µM -hr) fitted to data

k3 = 1.055× 1020 /(µM4-hr) fitted to data

k4 = (1/83.324)/s Fuerst et al. (1986), Bremer/Dennis (1996),

Iost et al.(1991), Kanehisa et al.(2000, 2014)

Dtotal = 13.1× 10−5µM fitted to data

kd2 = 0.6/hr Santillan et al. (2007)

kd3 = 0.6/hr assumed (same as LacZ degradation rate)

Table 5.2: Parameter values and source

Figure 5.12: Cell model and data overlay of experimental data.

(3.075 kbp at 200 nt/s) [54] [57] [58]. Figure 5 shows the resulting first sub-model.

Converting µM ONP/min data from model to Miller Units for Figure 7a

In order to convert the data outputted by the model, in µM ONP/min, Miller
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Units were calculated as follows:

Miller Unit =
1000× (OD420 − 1.75×OD550)

(volume× reaction time×OD600)
(5.11)

To convert the model’s output to an absorbance value at 420 nm (OD420) we used

Beer’s Law as described above. Since the model data was not actual data from cells,

we used values for OD550, volume, reaction time, and OD600 that were similar to

those from the experimental data.

For the OD550, since the experimental values were all almost identical, we used

the overall mean for all conversions. The volume and time stayed the same as in

the experimental data. The OD600, indicative of the amount of cells present, was

averaged for all samples treated with the same AI-2 concentration. These values

were then used to calculate the corresponding Miller Units for the model data and

plotted along with the experimental data in Figure 7a.

5.7.2 The second compartment

Data Conversion

First, the data were converted into µM. The data describe concentrations of PAP

in response to different levels of β-gal. We generated a standard curve that converts

current (µA) to µM of PAP. Then, we convert to units of β-gal. To convert units

of purchased and powdered β-gal into µM of β-gal, we introduced a factor of 1
4

(ie

1
4

gram of β-gal for every 1 gram of powdered β-gal). This factor can also compen-

sate for the differences between cell-generated β-gal activity and store-bought β-gal
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activity. After fitting the model (explained below), the resulting turnover rate, kcat,

is closer (103.26/s) to the value stated in literature (90/s) [107].

Model Fitting

Michaelis-Menten equations were again used for the PAPG substrate and β-gal en-

zyme. However, the parameter values (turnover rate kcat and Michaelis constant

Km) were not documented as well as the ONPG substrate. Viratelle and Yon [107]

provided values of kcat = 90/s and Km = 330 µM. Since these values, nor any com-

bination of kcat and Km, do not produce a reasonable fit that encompasses all our

data, we fixed Km and searched for the kcat that minimized the distance between

the model and the data points. Overall, the values we found were within expected

variances based on our experience. (kcat = 103.26/s and Km = 330 µM). Similar to

above in which µM of ONPG was converted into µM of β-gal, we invoked a similar

assumption that Km � PAPG (excess PAPG). The PAP differential equation of

Michaelis-Menten then simplified to:

d(PAP )

dt
= kcatEo (5.12)

Since we had PAP (µM) at 5 time points for 4 nonzero levels of β-gal, the slopes

were estimated by resolving a linear fit of each of the four data sets. The slopes were

applied to the above equation for each level of enzyme to obtain 4 kcat values. This

provided a range of kcat values that was used to find the best fit kcat by calculating

the least squares fit of the first four time points (as the fifth time point of one of
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Figure 5.13: PAP model and overlay of experimental data.

the datasets seemed noisy). The resulting turnover rate was kcat = 103.26/s.

In this way, we used the average kcat = 103.26/s and the literature value of

Km (330 µM) for our Michaelis-Menten model, shown below. We used this model

to describe PAP activity after the addition of PAPG to β-gal (Eo).

d(PAP )

dt
=
kcatEo(PAPG)

Km + PAPG
(5.13)

d(PAPG)

dt
= −kcatEo(PAPG)

Km + PAPG
(5.14)

The model output is shown below.

5.7.3 The combined model

The above models (equations 8-10 and 12-13) were then combined into one

system of differential equations. The output of the combined model was compared

to the data collected from the lysed cells in which AI-2 was added to the cells and
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the levels of PAP were measured. (Note that cell lysate was used so our results

would not include any time lag associated with transport of small molecules (AI-2)

or proteins (β-gal) passing through the membrane.) The data collected represents

the PAPG that was added to the cell extracts after hour 3, with the PAP levels

measured in the subsequent 15 minutes, at 5 minute intervals. The model was run

accordingly and the predictions are shown in Figure 3 along with the data points.

The data support well, the Michaelis-Menten assumptions and constants evaluated

here and reported by others [13] [35] [54] [57] [58] [63] [94].

Again, there is reasonable agreement between the models and the correspond-

ing data, suggesting the mechanisms underpinning the system of ODEs represents a

reasonable representation of the actual system. We do not, however, claim that be-

cause the model simulations and the data match, the mechanistic bases are validated.

Instead, we suggest that the mechanistic basis for the in vitro electrochemical reac-

tions can be faithfully represented by Michaelis-Menten kinetics, largely supported

by constants obtained by previous researchers, and that the simplified cell based

model describing the kinetics of β-gal expression is sufficiently accurate so that any

future cell-based model describing LacZ kinetics could be added to sub-model 2 de-

scribed here. While this is conjecture at this time, it is the primary motivation for

partitioning the model as described and for including here.
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Figure 5.14: Final model predictions and lysed cell overlay of experimental data.

5.8 Determining of a unit for electrochemical measurements analo-

gous to the Miller Unit

A unit analogous to the Miller Unit would ideally be developed for normalizing

electrochemical PAP measurements. Below we use our data to demonstrate the

concept. Here lysed cells will be used since those measurements are most similar to

the way the spectrophotometric measurements are done to get the Miller Units.

Miller Unit =
1000× (OD420 − 1.75×OD550)

(volume× reaction time×OD600)
(5.15)

In the Miller Unit the OD420 indicates the resulting ONP generated in a volume

of cells (of OD600) after the indicated reaction time. The OD550 indicates the scatter

from cell debris, and when multiplied by 1.75 approximates the scatter at 420nm.

106



AI-2

concen-

tration

(µM)

Peak

current

at end

(µA)

Time

(min)

Volume

(mL)

Cell

OD600

Electrochemical

Units

0 0.093 15 1 2 0.003

5 0.631 15 1 2 0.021

10 1.220 15 1 2 0.041

20 2.490 15 1 2 0.083

40 2.710 15 1 2 0.090

Table 5.3: Calculation of Electrochemical units

Electrochemical Unit =
current

(volume× reaction time×OD600)

Our analogous unit would take into account the current (in µA) measured

after the indicated time (min) of a specific volume (mL) of cells of a certain OD600.

In order to further develop and standardize the electrochemically-measured

unit, measurements would need to be performed with various cell amounts and

volumes and using different electrode materials, sizes, and setups (the units would

likely be different based on the electrodes used). Additionally, any background

interference between the cell lysate and the electrode surface would need to be

studied and taken into account, especially for smaller electrodes. Below are our

sample calculations for lysed cell measurements from Figure 4:
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Figure 5.15: a. Linear relationship between the Miller Units measure
from the lysed cells in Figure 4c and the electrochemical units calculated
as described above from the same cells. b. Linear relationship is also
maintained with the 5, and 10 minute measurements.

When plotted against the Miller Units from Figure 4c, there is a very good

correlation (Supplementary Figure 5.15 below), though again, to standardize this

unit much more data would have to be used.
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Chapter 6: Conclusions

Mathematical models were developed in this dissertation to gain a deeper

understanding of quorum sensing bacteria. Flocking models provide for a non-

mechanistic representation of a dynamical system. By representing gene expression

and motility as a form of flocking, we can model the system without the specific

knowledge of detailed regulatory mechanisms that vary from species to species.

In our study, we used asymptotic analysis and simulations to explore the com-

plex dynamics that results from quorum sensing, chemotaxing bacteria. Simulations

suggest that the chemotaxis system may be influenced by density-dependent mech-

anisms. Two groups form in our simulations that do not appear when chemotaxis is

not influenced by autoinducer-triggered gene expression. The dense portion of our

cells increase in velocity and separate from the rest of the group. The remaining

cells take longer to catch up, forming two groups of cells. This provides a possible

explanation into the phenomenon observed in chemotaxis experiments [1].

The ordinary differential equations modelling velocity and gene expression

have a flocking term and source term. Logistic functions are used to model thresh-

old values in which velocity is influenced by gene expression and gene expression is

influenced by autoinducer concentrations. By adjusting these threshold values, our
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simulations showed similar qualitative behavior to that observed in experiments in

Servinsky et al. [97].

We also developed a kinetic model from our flocking model in which we ex-

plored the application of statistical physics towards cells. The last model presented

was a mechanistic compartmental model of an electrochemical method for measur-

ing quorum sensing activity.

The differential equations in this dissertation aimed to gain insight or predict

behavior of the complex system that is quorum sensing. By developing models,

mechanistic or nonmechanistic, they help make connections that can be difficult to

intuit from experiments.
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