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Abstract—This Is a conceptual and speculative paper concerning the
future development of system and control theory in operational and
discrete event systems with particular emphasis to the techniques of
perturbation analysis.

L. INTRODUCTION

ICTURE yourself with the mythical Mr. T. S. Mits (The

Scientific Man In The Street) and the task of explaining to him
the phenomena and workings of 1) the Gulf Stream and 2) a
computer-controlled flexible manufacturing system (FMS). Both
phenomena are real and both are not completely understood.
However, for task 1) you face an easier task since you can draw
upon knowledge of calculus and the differential equation to
provide a succinct description of ocean currents and fluid
dynamics. For task 2) no such ready-made models are in
existence.' One is reduced to essentially an algorithmic descrip-
tion not that different from writing a computer program to
simulate the FMS. In fact, modern technology has increasingly
created dynamic systems which are not easily described by
ordinary or partial differential equations. Examples of such
systems are production or assembly lines, computer/communica-
1ion networks, air traffic systems, etc., where the evolution of the
system in time depends on the complex interactions of the timing
of various discrete events, such as the arrival or departure of a
job, the completion of a task or message. The state of such
dynamic systems changes only at these discrete instants of time
instead of continuously. We shall call such man-made systems
discrete event dynamic systems (DEDS) as opposed to the more
familiar continuous variable dynamic systems (CVDS) in the
physical world that are described by differential equations.
Although systems governed by difference equations are often
referred to as discrete-time systems, conceptually they have more
in common with CVDS than with DEDS despite the name
similarity. For the purpose of this paper, we shall not distinguish
between differential and difference equations. To help fix ideas
for DEDS, consider a flexible manufacturing system (FMS) [1],
[2], [11] with several work stations each consisting of one or more
identical machines. These stations are attended by operators and/
or inspectors. Parts belonging to different classes arrive at these
stations via computer control following some routing plan. They
queue up in the buffers according to some priority discipline until
a machine and an operator are available to work on them. Stations
are connected by some kind of material handling system (MHS) or
automatic guided vehicles (AGVY) which transport parts from
station to station until they finish processing and leave the system.
Typical performance criteria of interest for such an FMS are
average throughput (TP), flow or wait time (WT), and work in
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! We do not regard queueingdnetworks or automata models of an FMS as
being accessible to Mr. T. S. Mits. More about these models in Section II.

process (WIP). Note that with some simple changes in terminol-
ogy from parts to messages, work station to nodes, routes to
virtual circuits, MHS to communication links, AGV to packets,
fixtures to tokens, etc., the above description could be for a
communication network which moves and processes information
packets rather than material parts [12]. Multiprogrammed com-
puter operating in the batch and time shared mode is another
example fitting this description. The point here is the pervasive
nature of such systems in the modern world and the relative lack
of good analytical and dynamical oriented models for their
description.

The purpose of this paper is twofold: to advocate to the control
system theorists and engineers the rich opportunities in the field of
DEDS in general, and to outline some more specific open
problems in a newly developed technique, called perturbation
analysis (PA) for DEDS in particular. DEDS is used here in the
narrow sense as a parallel to CVDS in the form of dx/dt = f(x,
u, t). We shall not address issues such as implementation,
integration, interfaces, and hardware in DEDS. By this we do not
imply that such issues are unimportant. But our narrower
definition of DEDS is consistent with our past use of the term as
well as with the convention adopted in discussions of control
theory for CVDS. Conceptually, one can visualize the entire
sweep of classical control-theoretic problems, such as, controlla-
bility and observability, estimation and identification, informa-
tion, and control awaiting formulation for DEDS. Mathemati-
cally, there are a multitude of specific challenging analytical
problems in PA demanding resolution. Although we discuss
conceptual and visionaryv issues, the emphasis is on the subject of
performance evaluation of such systems since we believe ulti-
mately it is the practical and useful technology that will drive the
development of the field. Consequently, we shall admit at the
outset that there is a bias against computationally infeasible tools.
Perhaps a separate paper advocating the pure theory of DEDS can
be published to discuss the intrinsic nature of DEDS without
reference to performance issues. Our purpose here is to stimulate,
to challenge, to speculate, and to provide one perspective, but not
necessarily to record something of archival value.

11. DiscreTE EVENT DYNAMIC SYSTEMS

Conceptually, we can visualize such a DEDS consisting of jobs
(parts) and resources (machines, operators, AGVY's, MHS, and
buffer spaces). Jobs travel from resource to resource demanding
and competing for service. The dynamics of the system is
determined by the complex interactions of the timings of various
discrete events associated with the jobs and resources. In this
sense, DEDS are simple. There are only two objects in DEDS,
jobs and resources, which interact. When they do, job occupies
(receives service from) the resource for 2 random/deterministic
period of time. If we let the number of jobs waiting at a resource
be a state variable x(#) and, furthermore, consider the approxima-
tion that there are an infinitc number of jobs each infinitesimally
small, then we can consider the differential equation

dx/dt=\-p x>0
=\ x=0 )
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where A is the rate of job arrival and u is the service rate of the
resource. This is a deceptively simple model of one component of
a queucing system. The complications come in because A and u
can depend in arbitrary ways on other state variables of the
DEDS. In other words, jobs compete and wait for service by the
resources in very very complicated ways. Here we have an
endless variety of queueing disciplines, priorities, service require-
ments, routing, resource sharing, and general logical conditions
that need to be met for interactions to take place. Any attempts to
describe a DEDS by (1), even in cases where the approximation is
appropriate, results on the right-hand side of (1) are so compli-
cated as to be useless. This description amounts to the writing of a
computer program to simulate the DEDS. In fact, general purpose
discrete event simulation languages provide the constructs of jobs,
resources, timing of events, and logical tests while the coding in
such languages produces the description of the specific systems.
At this point we simply have no convenient way to capture these
descriptions mathematically with the same degree of efficiency as
the case of CVDS with differential equations. Thus, as mentioned
earlier, the workings of such DEDS are described through a
system of ‘‘rules of operation’* or ‘‘algorithms.”” This is
essentially a brute force approach. However, it is important to
emphasize that DEDS are nevertheless **dynamic systems’” in the
usually understood sense of the term, i.e., it is a quintuple
consisting of (input set, output set, state set, state transition map,
and output map?). Sce, for example, [77, chs. 6 and 9). But the
specification of these five objects are far from succinct and
pristine as is in mathematical system theory (e.g., compare [7,
Section 3.1} or {40}, [41] versus [8, p. 154]). Nevertheless, the
fact that we can implement general purpose discrete event
simulation languages can be construed as testimony to the
**dynamical’’ nature of these systems.

A. Existing Models for DEDS

Attempts have been made in the past with varying degrees of
success to model analytically DEDS. The most basic being the use
of finite state Markov chains or processes [13]. We assume that
the state, input, and output set are finite or countable. Conse-
quently, the state transition and output map can be modeled by
finite or countably infinite matrix of transition probabilities. This
is perfectly general. The only difficulty is computational and
structural. The number of states in a typical DEDS can be
combinatorially large. For example, consider a serial production
line of M stations which can be either in working order or being
repaired. Each station has associated with it a buffer (queue space)
of size K;. Then the total number of states of the production line
when viewed as a finite state machine is

M
number of states = (H (K, +1 )> M) ¥3)

=1

which can easily reach billions for relatively small M and X, (two
possible states for each of the M machines and K; + 1 states for
the ith buffer storage). Secondly, in such a finite state approach,
all structural information about the system is lost. The states are
completely one-dimensionalized in the sense of being listed one
after another with no particular distinctions. It is difficult to
establish approximating notions such as neighboring states or to
identify a given state with a particular system configuration. Thus,
microscopic and finite state approaches such as petri nets, and
automata, primarily are more useful for answering qualitative
(yes/no) or conceptual rather than quantitative questions. Qutside
of academic examples, it does not seem hopeful that we can do
anything computationally useful for engineering purposes unless a
successful theory of aggregation can be developed. At present,

. ? The transition and the output map for DEDS have to be interpreted to
include objects such as time advance and event selection mechanisms
commonly found in discrete event simulation languages.
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this is hopeful but not yet successful. We shall have more to say
about this in Sections II-B and IV. In this vein, we must also
classify the works on extended state machines [64], [70]. Without
general aggregation techniques, they do not at this point appear to
be computationally feasible.

On the other hand, the “‘network of queues’® model developed
in Operations Research in the 1960’s and 1970’s does preserve
structural information and solves the computational problem [14]-
[16]. Here, in the simplest case, we take as the *‘state’’ the vector
with each component representing the number of jobs waiting and
being served at each service station. The theory then strives to
develop a description for the equilibrium probability distribution
of the state vector. This is indeed possible for the so-called
**product form®’ class of networks. A fair amount of modeling
successes have been obtained in practice, particularly in the
computer system performance analysis area. The models have
also been shown to be very robust with respect to many of the
assumptions, such as exponentially distributed service time, of the
theory. In fact, the results in this area can be derived by way of a
completely different set of assumptions not based on probabilistic
considerations. This is known as the operational analysis of
queueing network [15]. A number of approximate analysis
techniques based on this theory have been developed and made
precise with respect to the nature of their approximations [14],
(15], [16], [17], [35], [36]). For many rough cut analyses, this
approach is eminently reasonable and practical; its main limitation
being its generality. Features, such as, finite queue limit, state-
dependent routing, simultaneous resource sharing (one job de-
manding several resources or one resource requiring several jobs
to begin service, e.g., assembly/disassembly), and nonstandard
queue disciplines, are difficult for the theory to handle.

Lastly, queueing theory is primarily a quasi-dynamic approach.
While it does take into account jobs competing for resources and
the time order of job arrival/departure, it does so only on the
average in the steady state. To use a rough analog, the product
form network of queues theory can be likened to the frequency
response theory of linear stationary systems, namely, the tech-
nique solves one class of problem analytically, it transforms the
time domain behavior of the system to a different domain, it deals
only in steady state, and it can be extended to solve other classes
of problems approximately but not universally successful in all
applications. For example, systems which are totally deterministic
and relatively simple often exhibit periodic behavior if break-
downs are ignored. For such systems, we cannot rely on
**complexity'’ to imitate ‘‘randomness.”” Queueing theory is less
applicable. However, for such a restricted class of discrete event
systems, a relatively new algebra, the so-called minimax algebra,
offers an elegant solution for modeling [65], [66]. On the other
hand, for more general DEDS, the network is often so complex as
to appear random even though the constituent parts all behave
deterministically. This has been demonstrated experimentally in a
series of papers [73]-[76]. But, for a completely general
description and analysis of DEDS, we are left with the only
alternative of simulations.

In principle, simulation is a completely general tool and a
*‘dynamics oriented’’ tool. A simulation model can be made as
accurate as one desires, limited only by cost and time. To put it
simply, it is brute force trial and error experimentation using a
computer model of the real thing. Such efforts can be time
consuming and expensive, particularly for parametric studies.
Consequently, most of the efforts in simulation have to do with the
following:

1) good language design and friendly software to make
simulation modeling easy;

2) statistical analysis of outputs, such as variance reduction,
regenerative simulations, etc., to make the experiments more
efficient and thus ameliorating the cost.

Mathematically, the theory of generalized semi-Markov proc-
esses (GSMP) has been advanced as a formal model of simulated
discrete event process [40), [41]. Its main feature is to distinguish
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the discrete/countable (e.g., queue contents) and continuous/
uncountable (ec.g., remaining service times) parts of the state
space. The former is defined as the state of the GSMP with the
latter defined as event clock readings. This definition is
conceptually useful. At present, however, the theory has not
attained the level of succinctness and quantification that the CVDS
has with differential equation models. The continued creation of
new discrete event simulation languages such as SIMAN, DES-
FOR, GPSS-85, to name a few, are also evidence of the vitality
and needs of the field [3], [78]. It is also worthy to note the almost
complete absence of similar developments of simulation lan-
guages for the CVDS except for software dealing with a better
numerical integration formula. This is another indirect evidence
of the lack of a good analytical model for DEDS.

On the other hand, it should be pointed out that during the
1970’s, system theorists at Berkeley did launch a major effort for
a ‘*dynamics oriented’” approach to the study of stochastic point
processes {51]-[55]). In fact, to quote Bremaud **... The Martin-
gale calculus was applied to point process systems in much the
same way as it had already been applied to Wiener-driven
stochastic systems..."" (51, p. xvii}. However, they may be ahead
of their time. Manufacturing systems and computer communica-
tion networks had not achieved the degree of practical importance
then as today. As a result, it is fair to say that the effort was more
mathematically oriented in establishing a parallel with Wiener-
driven processes in stochastic control than building new models to
fit real world systems which are the raison d’ etre for all the
discrete event simulation language developments.

This brings us back to the thesis of the relative lack of
computationally usable mathematical models, particularly *‘dy-
namics oriented’” models for the descriptive and prescriptive
analysis of such systems. This relative lack of mathematically
succinct and computationally feasible models for DEDS cannot be
overemphasized. Unlike their counterpart in CVDS where there is
a long history of research results starting from calculus and
Newtonian physics, DEDS are modern day phenomena that do not
have the same well-established vertical intellectual structure. Just
as it is most difficult to do mathematics without symbols, it is
equally hard to do analysis of DEDS without good mathematical
models. We submit that many of the problems of design,
operations management, scheduling, and control of DEDS can be
dealt with if good dynamic models of DEDS are available. To
show this is not idle speculation, we mention the recently
developed idea of ‘‘perturbation analysis”* for DEDS {4]. This
technique views DEDS as a stochastic dynamic system evolving in
the time domain. By examining and analyzing the trajectory of
such dynamic systems, it ‘‘linearizes’’ the dynamics of the system
about the particular trajectory in question and answers ‘‘what if"’
questions about perturbations around this trajectory based on this
linearization. This is completely parallel to the familiar perturba-
tion analysis used for continuous variable dynamic systems
governed by nonlinear ordinary differential equations. Inasmuch
as linear system theory represents the most successful part of
control theory, the development of perturbation analysis for
DEDS so far can be regarded as a possible first step in an effort to
create a control system theory and modeling methodology for
such systems. Some initial successes have been achieved. Much
more can be and remains to be done.

Furthermore, we submit that the development of a theory of
DEDS requires serious experimental effort very similar to that of
experimental physics in support of the effort of theoretical
physics. Qur success in controfling acrospace vehicles or other
physical systems often obscures the enormous modeling and
experimental effort of the last century in developing the differen-
tial equation model of continuous variable dynamic systems. It is
on the basis of these efforts that our successes with control theory
were built. However, no such parallel exists for DEDS which are
very recent man-made phenomena. In fact, our experience in the
development of the perturbation analysis is an example of the
importance of experimentation. Many of the theoretical results of
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PA (1o be discussed in Section III) are inspired by efforts to
cxplain experimental findings first arrived at via intuition,
heuristics, insight, and observed experiences. It is not an
exaggeration to say that PA would never have been developed if
we did not engage in the ‘‘observation-conjecture-experiment-
validation’’ cycle of the research effort [5]. Without experimenta-
tions, we run the danger of creating ‘‘models without data’* or
doing *‘as if analysis’’ as theoretical economists are sometimes
accused of doing. It is a trap all too easily fallen into by control
theorists after decades of success and the unquestioned assumption
of dx/dt = f(x, u) as the starting point of analysis. More
importantly, without experiments, it is difficult to determine the
correct level of details to be modeled. If control theory is to make
headway in DEDS, then this author submits that we must
acknowledge properly the importance of experimentation [6). It is
unlikely that progress in DEDS can be made with the purely
deductive logic of mathematics. On the other hand, we do not
advocate blindly going ahead with data collection and simulation.
*‘Data without model’’ simply creates an experience-based
discipline. Only with the proper combination of experiments—
inspired-theory and theory-induced-experimentation can there be
meaningful progress.

B. The Nature of the Dynamics of DEDS

As we alluded to at the beginning of Section II, the dynamics of
a queue is basically a flow of jobs in and out of a storage. The
purpose of storage is to smooth out fluctuations in the demand for
resources. Performance of a queueing system is thus basically a
trade-off between utilization of the resources and the delay time
experienced by the jobs. 100 percent resource utilization, in
general, can be achieved only at the expense of long waiting times
for most of the jobs. Conversely, instantaneous service requires a
large reserve of resources to meet peak demands. To put it
another way, we maintain that the long-term behavior of a DEDS
is governed by the concepts of continuity and conservation of
flow. In steady state, the flows in and out of a station or a part of a
network balance in some probabilistic sense. For example, take
the simple birth-death process in equilibrium. The probability that
we find the population is equal to K is a constant. The probability
that we move out of the state K due to birth or death is balanced by
the probability that we move into the state K from K — 1 by birth
and from K + 1 by death. This is called global balance. In
addition, the probability that we move from state K to state K + 1
due to birth at a particular node of the system is further balanced
by the probability of death at that node. This is called local
balance. From these balance equations, we can calculate the
expected behavior and the equilibrium distributions in very much
the same way as the calculation of flows balance in hydrostatics.
On the other hand, in the short run, the purpose of a queue is to
decouple the behavior of one station from that of another. Thus,
we speculate, and queueing network theory supports this with
some evidence [13, p. 150], that for ‘‘dynamic’’ control and
estimation it may be possible to analyze and control behavior one
station at a time as if the arrival and departure are not affected by
happenings at other parts of the network. By the same token, it
probably will not be very fruitful to estimate the behavior of one
part of a DEDS based on observation of that of another [18], [42].
This is very different in CVDS where action in one part of the
system instantaneously affects every other part via the differential
equation model of the dynamics. In other words there is no
computationally easy Kalman-Bucy filter for DEDS.

To illustrate additional parallel developments in CYDS and
DEDS, mention must be made to the idea of the Norton's
cquivalent of a queueing network [42]. This is the analogous idea
of replacing a complex electrical network with a simple equivalent
source and impedance for the purpose of external behavior
calculation. It turns out that the same thing can be done for
queueing networks that are ‘‘product form.’’ Such an idea of
aggregation and equivalence is fundamental to all engineering
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analysis and design. But what about more general cases? More
about this later. In short, we submit that the entire range of
control-theoretic problems that have been studied for the past two
decades for CVDS have their possible counterpart in DEDS. Only
the surface has been scratched [10], {37], [45]. The opportunities
and the payoffs seem to be enormous.

In summary, we submit that many of the well-known concepts
of system theory can be transplanted to and further developed in
DEDS. In order to accomplish this, we need to change some well-
entrenched notions of system theory as a purely deductive
mathematical discipline. Rigorous experimentation must accom-
pany mathematical modeling if we are to make substantial inroads
to the intelligent control of such discrete event systems.

III. PERTURBATION ANALYSIS

Perturbation analysis (PA) is an analytical technique that
calculates the sensitivity of performance measure of a DEDS with
respect to system parameters by analyzing its sample path.
Ordinarily, unless closed-form formulas are available, perform-
ance sensitivity is calculated by brute force using two different
experiments each with only the parameter value being different.
This can, of course, be very time consuming, expensive, and
numerically difficult. PA, in effect, is a method of reconstructing
the perturbed performance value from the nominal (original)
experiment or sample path of the DEDS without the need of
actually carrying out the perturbed experiment. This point
deserves emphasis. PA is simply an analytical means to process
information inherent in the sample path of an experiment. It
makes no difference whether or not the experiment deals with
steady state or transient performance. To the extent PA is
applicable to the particular experiment, it can be used for the
determination of either steady state or transient performance
gradients.

The starting point of PA is the recognition that the timing of
events is the most basic element in the description of the behavior
of a DEDS. (The **state”* of a DEDS changes only at an event.
Nothing of consequence occurs between two successive events.) It
approaches the problem by decomposing the calculation of the
system sensitivities into the following three parts.

1) How does the change in the value of a system paraineter §
change the timing of various system eveats ¢,, i.e., 81,/30? This is
often referred to as the perturbation generation rules.

Example: Changing the mean service time of a resource will
induce a series of changes in the service termination time of the
resource.

2) How does the change in the timing of one event 7, change the
timing of another /4, i.e., 3¢x/8¢;? This is often referred to as the
perturbation propagation rules.

Example: 1f server A completes a job earlier and sends it onto a
waiting server B, then server B will be able to start, and hence
complete, service earlier.

3) How does the change in the timing of events fx change the
system performance PM, i.e., IPM/0dtx?

Example: The change in the time required to fimsh 100 000
jobs will change the average throughput of the system.

Questions 1) and 3) are parameter and performance measure
specific. In the context of DEDS performance analysis, they can
usually be resolved via ordinary calculus and probability {46].
However, question 2) is generic to the sample path of all DEDS.
The answer for 2) is based on a very simple notion, namely that of
the critical timing path (CTP) which couples the timing of one
event to that of another, PA can be visualized as a very efficient
method of keeping track of a large number of complex CTP’s. In
the parlance of discrete event simulation, the CTP is simply the
*“event scheduler or future event list"' found in all general
purpose simulation languages. Putting 1)-3) together, we get

dPM/d8= 2 (OPM /3ty Xdtx/31t;)(31,/0). @a.1)
i

The resemblance of (3.1) to the well-known equation of control
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theory
dPM/df= _‘ (8J/0x(t.))B(ty, tN3f700) dt 3.1’

for the system dx/dt = f(x, 0, t) and PM = J(x(t/)) is no
coincidence. To carry out (3.1) efficiently, we take advantage of
the fact that the CTP of the nominal and the perturbed sample path
is in fact the same for a sufficiently small perturbation in the
parameter value. Thus, we can use the nominal sample path to
reconstruct the perturbed sample path and performance. This is
fine as long as we limit ourselves to the experiment of finite length
and parameter values that are continuous. In such cases, we can
always visualize a conjectured perturbation of small enough size
such that the nominal and the perturbed trajectory have the same
CTP. This condition is denoted as deterministic similarity.

On the other hand, the above argument is a two-edged sword.
No matter how small the parameter perturbation, with probability
one we can always find a sample path (or for any sample path if
one waits long enough) such that the CTP of the nominal will be
different from that of the perturbed. In other words, the order of
the timing of some events will be changed due to the perturbation.
Short of reconstructing the perturbed sample path, how can one
estimate the perturbed performance based only on the nominal
sample path? This problem can be understood in practical terms
by considering two examples. First is the case of the sensitivity of
throughput to routing probability in a queueing network. Intui-
tively, it is obvious that this sensitivity is continuous and nonzero
in general. However, a naive perturbation analysis immediately
encounters a dilemma. If the perturbation is small enough to
maintain the same CTP for the nominal and the perturbed sample
path, then there will never be any change in the routing of any
jobs, and hence any change in the throughput. On the other hand,
if a job is ever routed differently, then the nominal and perturbed
path of the network from that point on can have vastly different
CTP’s. Thus, either we implement (3.1) with such a small Af so
as to produce the incorrect answer of zero sensitivity or we
require essentially brute force reconstruction of the perturbed
sample path which PA purports to avoid. The situation can be
visualized graphically as shown in Fig. 1| which illustrates
generically the plot of a performance measure PM, say, sample
throughput, with respect to a system parameter 8, such as routing
probability. Note that the PM is a function of both ¢ and the
sample path which we denote as w’. For small perturbation in 6
there is no change in PM as shown in Fig. 1(a) (or more generally
a linear change as in Fig. 1(b) for other PM and ). However, as 8
changes beyond a certain value, a discontinuity in either the value
or the slope of the PM results. This corresponds to the point at
which the sample path under study will undergo a discontinuous
change in its CTP, e.g., two or more discrete events taking place
simultaneously are about to switch their order of occurrence, or
the creation/destruction of an event such as an idle interval. For a
different sample path w’, the plot of PM(6, w’) will have the
same general character but different details as to the location of
discontinuities and ordinate values. When averaged over w, w’,
and w”... the resultant average PM takes the intuitively more
reasonable shape as shown in Fig. 2 [for the case of Fig. 1(a)}.
As the number of samples increases, it is entirely plausible that we
obtain a continuous PM(0) curve with nonzero slopes. Another
example of the same type of phenomenon considers the case of the
sensitivity of the average number of customers served in a busy
period in a G/G/1 queue as a function of the mean service time
(this example will be further discussed in Section III-C). Again
intuitively we see that if the change in mean service time is
sufficiently small, then no two busy periods will ever coalesce
together, thus changing the number of customers served in a busy
period. Consequently, for any given experiment one can always
find df small enough to give rise to zero sensitivity (as illustrated

3 We can think of w as representing all the random variables in the DEDS.
In simulation, it is a sequence of independent samples from the uniform
distribution on [0, 1].
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in Fig. 1(a). On the other hand, for any given d0, there always
exists w such that two busy periods will coalesce and produce a
discontinuity in the sample performance measure. Again Fig. 2 is
generic to this case.

Thus, the problem is how can we obtain information about
PM(0) by only looking at individual sample paths in the small and
without reconstruction of the entire perturbed sample path.
Criticisms of the early works on PA rest entirely on this premise
{56]. This was actually well understood [24], [29] and PA has
developed a three pronged attack which led to some very
interesting and challenging theoretical problems in DEDS.

A. Discontinuities and Interchange of Expectation and
Derivatives

Perturbation analysis calculates the average value of the sample
derivatives of some PM with respect to a parameter 6. On the
other hand, we are interested in the derivative of the expected
value of the PM w.r.1. 8. Thus, there is the question as to when
are we justified in interchanging the operations of averaging and
differentiation, i.e.,

dE[PM (6, w)}/d0="=E[dPM(6, w)/db]. 3.2)

Note the left-hand side of (3.2) is typically approximated by 27 _,
[PM@© + A6, w) — Z7_, PM(6, w))/Af via the brute force
simulation of the system at two different values of the system
parameter. On the other hand the right-hand side is obtained via a
single Monte Carlo simulation using PA in the manner of Fig. 2.
As we can see, these need not be equal. Mathematically, a
sufficient condition to ensure the validity of the interchange is the
dominated convergence theorem which in simple cases often
requires PM(f, w) to be smooth w.r.t. 8. The detail condition
under which this interchange can be effected is addressed in [24]
in general terms. The idea is that if for small perturbation in 8,
both the probability of encountering a discontinuity in PM(0, w)
and the value of the discontinuity are sufficiently small, then such
sample paths do not contribute substantially to the averaging
process and (3.2) is valid. This may occur, for cxample, for cases
illustrated in Fig. 1(b). Here the error resulting from ignoring

h I 3
Introducing a single perturbation in the sample path of a G/G/1
queue. C, = ith customer arrival in the sample path.
® Change in the response time of C and C;: A.
* Change in the response time of Cy, Cy, Cy: max (0, A - I,).
¢ Change in the response time of Cy, Cy, Cip: max (0, & - 1, - I).
® Change in the response time of C,;: max (0, A — [, — ) = Iy).

Fig. 3.

event order change is small as the discontinuity is only in the slope
of the PM(#, w) curve. We can get a glimpse of this idea by the
following illustration given in Fig. 3. We consider the introduc-
tion of a given perturbation of size **delta’” into one of the service
times of a G/G/1 queue. It is clear that the effect of this
perturbation has ever decreasing influence on the events in
succeeding busy periods. Thus, if we use infinitesimal PA rules
which ignore propagation effects across busy periods to compute,
say, the throughput sensitivity, then heuristically we can see that
the right answer may still be obtained even though on a
vanishingly small (as A8 — 0) percentage of the time the rule will
make errors which also are small in magnitude. On the other
hand, the case pictured in Figs. 1(a) and 2 is where the
discontinuities are the only things of interest in the averaging
process. In such cases PA calculation using only the local
information of PM(6, w) does not give correct information about
the slope. In general, the conditions in [24] are not easy to check
explicitly. So far, the validity of (3.2) must be established
separately for each class of problem. Table I lists what has been
proved.

B. Extensions of Perturbation Analysis

Of course, in many situations of interest (3.2} simply is not
true. In such cases, different approaches are necessary. Two
approaches will be outlined below.

1) Extended Perturbation Analysis: The basic idea of PA for
DEDS is the reconstruction of an arbitrary perturbed sample path
from a nominal path. Under deterministic similarity, the simple
infinitesimal perturbation analysis (IPA) rules described in (3.1)
apply, and the computation of perturbation propagations is easy
since the *‘critical timing path’’ or the *‘future event schedule’’
between the nominal and perturbed paths remains the same.
However, as pointed out before in the limit of path of very long
duration or experiment with very large ensembles, deterministic
similarity will always be violated. In such cases, the IPA rule,
which ignores the order changes of events, gives strongly
consistent estimates for performance gradients of only a limited
class of DEDS as shown above. In other cases, the key question is
‘“how can one reconstruct the perturbed path short of a
separate new simulation/experiment?’’ We now suggest an
alternative which we believe to be much more efficient than brute
force reconstruction. As a byproduct of the new idea, we extend
the applicability of IPA rules to situations where it has been
thought to be unworkable.

To first get an intuitive idea of our approach, let us consider
Markov systems in steady state. For such a system, a sample path
or trajectory can be characterized by a sequence of ‘‘states”
which the system goes through as it evolves in time. While the
time duration between state changes are important for perform-
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TABLE 1
EXISTING RESULTS ON EXACTNESS OF PA
m Throughput waiting Time
[}
arrival rate 6/6/1(21) 6/6/1 [21)
service rate 6/6/1 121} 6/6/1 [21)
service rate Single class Single class
Jackson [31) Jackson [31,34)
Networks Networks
Tandem Network
with Blocking [35)

ance evaluation purposes, we need not be concerned with these
values for the moment but concentrate only on the state sequences.
Deterministic similarity between two sample paths for Markov
systems is equivalent to identical state sequences. Fig. 4 shows
two such random state sequences for a typical Markov DEDS.
The crucial point to be made here is that arbitrary interchange
of partial state sequences beginning with the same state will leave
the underlying stochastic properties of the DEDS invariant. In
other words, one can generate a legitimate sample path by *‘cut
and paste’’ partial state sequences as long as we restrict the
interchange to sequences that began with the same state. This fact
is clearly guaranteed by the Markov and ergodicity properties of
the sequences and is known as *‘coupling’’ {67], [69]. Now let us
see how can we exploit this coupling notion for perturbation
analysis purposes. We know that IPA rules apply as long as the
event order sequence between the nominal and perturbed sample
path (NP and PP) remain deterministically similar (and hence, the
nominal and the perturbed state sequence remain identical). When
an event order change occurs, the state sequences of NP and PP
may or may not start to differ depending on whether some
discontinuous change is involved (e.g., a job originally going to
server A may now go to server B). Suppose, for example, the
state sequence jumps from s, on w, t0 S, on w, instead of s, on w,
as illustrated in Fig. 5. Subsequent perturbations involving state
changes may cause further deviations so that a perturbed path
could be made up from segments of state sequences from w,, w,,
Ly, e
Thclccmral question for PA is simply how to reconstruct such a
perturbed path (PP) from the information furnished by the
nominal path (NP), w,, alone. We submit that using the idea of
*‘coupling’” an equivalent perturbed path can be constructed from
the nominal sample path w, by connecting s, with 5, with 5;, -+,
etc, as they occur on w,. Along each segment of this equivalent
constructed perturbed path (CPP), IPA rules apply since by
construction the NP and CPP are deterministically similar on each
segment of the CPP. On the other hand, the CPP and PP are
**stochastically similar’’ by the notion of coupling. To establish
the connection between different segments of the CPP we use any
finite PA rule to establish the state sequence jump. Such a finitc
PA rule always exists since we can in the extreme employ brute
force reconstructijon for a very short interval of time. The trick is
not to extrapolate the perturbed path indefinitely into the future.
Computationally, we visualize the new method this way.
Imagine the following thought experiment. We begin observing a
DEDS and its identical twin starting from some initial state x(0)
(in the sense of an identical simulation experiment using the same
random seed and same x(0)). The identical twin evolves in exactly
the same way as the nominal DEDS except for the fact that it has a
small perturbation in one of its parameters 0. It is clear that
initially the two systems will evolve in a deterministically similar
way. During this time, simple rules of IPA apply. However,
sooner or later at some transition time, fy, (henceforth, we will use
subscript **8"" and **6° "’ to denote quantitics in the nominal and
perturbed path, respectively), an event order change (compared to

State Sequence
0' . sa,ss,sn,su.sz,sy,Sp.Sa.spsx;se.Sps] ;saosuasj 'SY'SU'SC‘sh'sl ,Sh,so, .

82 Sp,80,8p,5uSt:50:5m- 55230551511 S-S 2855+ 50+ Spr S 5152
Fig. 4. State sequences of a Markov DEDS.
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——————— *  Actual perturbed path (PP)
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.« Constructed perturbed path (CPP)
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Fig. 5. NP, PP, and CPP.

the NP) may occur in the PP due to accumulated perturbations.
After this order changes, the perturbed system may enter into a
different **state’’ than the nominal system. This different state and
the immediate resultant perturbations can be predicted exactly by
the so-called finite perturbation analysis {9] rules. Let us call this
different perturbed state x,-(#;,) as distinguished from the state
on nominal x,(f,), where f,-, denotes the perturbed time, i.e.,
tyry = ty + Aty From this point onward, we can no longer use
the nominal path to track the evolution of the perturbed path.
What we can do is observe the nominal path until at some time 7,,
> t,, when the nominal state x5(75,) = X3+ (f5+,). This will occur
as long as the transition probability matrix of the Markovian
system is irreducible. At that point, we can once again use the
nominal path to track the evolution of the perturbed system
starting from ¢+, with xy-(f5+,). The reasoning being that for the
Markovian system, the present state determines the future
independent of the past. Hence, from a statistical point of view,
the evolution of nominal path from 7, with state x,(75) is
statistically indistinguishable from that of the perturbed path from
ty+, with Xy (ty-,) as long as no further event order change takes
place. Thus, we can use the nominal path from 75, onwards to
track the perturbation along the perturbed path using IPA rules
until at some time f, when we again observe the need for
consideration of an event order change. At that time, we must
again use a finite PA rule to compute the new perturbed state
Xs+(fs’7), and the whole process described above repeats.

Thus, what we claim is this: By selectively discarding time
segments of the pominal path and connecting the remaining
disjoint segments of nominal path using finite order PA rules and
the condition x,(7s/) = X,+(fy+;), we can reconstruct a perturbed
path which is statistically similar to what could have been
generated if we had decided to reconstruct the perturbed path by
brute force. This constructed perturbed path (CPP) is illustrated in
Fig. 5. Given this statistically equivalent CPP, gradient informa-
tion can be calculated in an obvious way. We submit that this
approach is computationally more efficient than brute force
reconstruction of the PP using a separate experiment particularly
when **0"’ is multidimensional. Segments of the NP discarded for
one component of the ‘‘9”* vector in the construction of one CPP

can be used for the construction of another CPP. Overall, the

computational advantage of N:1 will be preserved.
This idea has many points in common with regenerative
simulation where we must identify particular states along a sample

path. In regenerative simulation, we often look for approximate:

regeneration. In other words, instead of looking for exact match -

-

st




HO. PERFORMANCE EVALUATION AND PERTURBATION ANALYSIS

or regeneration of states, we only search for approximate
regeneration using trap intervals, etc., {71]. Similar approxima-
tions can be employed here. In fact, in this framework we see the
finite PA rule discussed in {9]) can be viewed as an extreme
approximation of this idea of the extension of IPA rules. Namely,
we simply ignore all requirements of a matching state and let
*‘statistical averaging'® take care of everything. Experimentally,
we find even in such a drastic approximation mode, the results are
highly encouraging. In fact, a very large scale statistical experi-
ment involving random generation of systems, routes, parame-
ters, and initial conditions shows that such crude finite perturba-
tion analysis rules do predict sensitivities more accurately than
infinitesimal rules [47]. Additional details of exact and partial
matching using this approximate coupling can be found in {68].
The heuristic reasoning behind the experimental successes of
partial or zero state matching can be stated as the following.

Statistical Similarity Assumption: Once a perturbation (finite
or otherwise) has been introduced, the types of future interaction
it may encounter and induce among customers and servers in the
DEDS along the actual perturbed path is statistically similar to that
of the nominal sample path.

In other words, we assume that for a small system parameter
change, the change in the distribution of various interactions
among customers and servers should be continuous from the
nominal to the perturbed path. Even though finite or large
perturbations may be generated along the sample path, the
propagation of these perturbations along the nominal and the
perturbed sample path will be essentially the same on the
average. As long as we are only interested in the average PM’s,
we can use the nominal path to calculate the propagations. As long
as we implement accurately the short-term effect of the perturba-
tions on each and every interaction (state change), their long-term
accumulated average effects are essentially the same whether we
use the perturbed or the nominal path for calculation. However, a
rigorous proof of this assertion seems difficult at this stage and
must await further development. However, the idea discussed
here and in [68] provides a framework for such an investigation of
the idea of approximate coupling. There are also other cases of
finite PA where only short-term reconstruction of the sample path
is required [62].

2) Smoothed Infinitesimal Perturbation Analysis: The dis-
cussions in the above sections [Figs. 1 and 2, (3.2)] showed that
the basic difficulty in the application of infinitesimal perturbation
rules is the possible discontinuities in the sample performance
with respect to parameter perturbations. Another simple remedy
is then to smooth out these discontinuities. Mathematically, let us
rewrite (3.2) as

dE{PM (0, w)y/dO=dE E, [PM(0, w)l/db
=1=E, _\I;mo [E, [APM(8, w))/A0). (3.3)

In other words, we decompose the ‘‘expectation’’ into a condi-
tional expectation on L first followed by expectation on the
conditioning variable z. We expect E,,[PM(0, w)] = PM(0, 2) to
be smoother than PM(6, w); and hence may make the interchange
between E; and d/d8 possible (e.g., instead of Fig. 1(a) we have
Fig. 1(b)]. This is workable provided PM(8, z) is computable,
i.e., z must be based on data available on the sample path. Let us
consider the second example discussed in the introduction of this
section, that of estimating the sensitivity of the average number of
customers served, E[n}], in a busy period with respect to mean
service time s for a G/G/1 queue. Fig. 6 illustrates the typical
situation.

At time d;, we have accumulated perturbation AY = As, +
As, + As;representing the total change in d; due to mean service
time change on customers C,, C;, and C;. Also, x units of time
have elapsed since the last arrival at time @;. Whether or not we
will encounter a discontinuity in the sample performance (or the
busy period will coalesce with the next) depends on the size of AY
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and the duration of x, i.e., 2 = {AY, x}. The conditional
expectation of the change in the number of customers served is
given by the conditional probability of coalescing and the expected
number of customers added due to the coalescing. Thus,

AE[n}=E,y,, {Prob [coalescing takes place/A Y, x}*
E[number of customers served in a busy period]}

=Eyy {8(x)/1-G(X))*AY }*Eln) (3.4)

where g(x) and G(x) are, respectively, the density and distribu-
tion function of x and g(x)/1 — G(x) is the well-known hazard
rate in reliability theory which is the rate failure may occur given
that it has not occurred in x units. If we further specialize to the
case of an M/M/1 queue with arrival rate X and service rate 1/s,
then (3.4) can be explicitly evaluated to give

AE[n)/As=[E(n)}**\ (3.5)
which agrees with the well-known formula [13, p. 213]. For more

details and further examples of this approach, see [49].

C. Other Approaches to Sensitivity Analysis

There are other approaches to computing sensitivities by using
only one sample path; the most prominent one being the
approaches developed by Reiman and Weiss [48], Rubenstein [50]
and Glynn and Sanders [57]. Briefly, the idea is as follows.

Suppose for the moment that 8 affects the performance measure
E{PM] only through the distribution of the random variables in
the experiments. We write,

E[PM@, v)] = S PM(w)p(8, @) dw

E[PM(0+A8, w)] = S PM(w)p(8+ A8, w) dw
which can be rewritten as

= [ (PM@IP@+ 26, VDO, )1} 206, 0) do

- §{...}p(0,w)dw=E[{"'}l- (3.6)

v

Note that (3.6) is completely general. It only requires the ability to
evaluate the expression in {- - - } along the original sample path or
experiment. In particular, we can write

AlgTo E[(PM(0+ A8, w)] - EIPM(8, w)])/A0]

= | PM@)I(dp/d8)/p 8, NP0, ) do
=E[PM(w)d In p(8, w)/db)}. 3.7

For the case where p(8, w) is the exponential distribution and 4 the
mean, we get d In p(8, w)/dé = §-' — wand

E[dPM (w)/d6) = E{PM(w)0""' - w)] 3.8)

which can be evaluated along the nominal path. Note (3.7) also
requires the interchange of an expectation with d/df. However,
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the conditions here are generally easier to verify than in the PA
case. But this approach requires that the density function of the
random variables be expressed analytically. The variance of the
estimate also increased with the number of random variables
involved. Thus, in general, it tends to work well only with short
regenerative cycles. See [23) for an analysis of this approach.

IV. OTHER OPEN PROBLEMS

Routing Probability Sensitivity

There are other ad hoc ways to overcome the problem
mentioned in Section III-A. One possibility is to find another
parameter ', which is deterministically related to 8, and for
which (3.2) holds. Then we can compute the sensitivity w.r.t. 8 by
transforming the equivalent sensitivity w.r.t. 8’. This is the case
for the example with the routing probability sensitivity [25]. We
showed that A[routing probability] can be related to A[visit ratio)
which can be equivalently expressed as A[mean service time] for
certain classes of queueing networks. In fact, from the discussions
in Section III and above, it is tempting to conjecture that if the
performance curve PM(8) of a system is differentiable, a way can
be found to use the idea of perturbation analysis to compute a
consistent estimate of it. In other words, a single sufficiently long
sample path should contain all relevant information about the
stochastic process. The only question is how to extract the
information efficiently (see the discussion in Section III-B-1
again). This is a general open problem waiting for concrete
treatment. The approach of PA is basically sample path analysis
with its accompanying advantage of distribution free analysis.
However, one is not restricted from using probablistic arguments
whenever appropriate.

Aggregation, Decomposition, and Simulation Modeling

The idea of aggregation is so fundamental to modeling and
engineering analysis that we are not often aware of its existence.
Centainly, to claim that dx/dt = f(x, u, t) is a good model for a
large class of dynamical systems implies the validity of the
assumption that many real-world details can be aggregated and
only certain ‘‘state’’ variables are sufficient for analysis and
control purposes. Other examples abound in all phases of
engineering design (see [77]). Furthermore, a good model
satisfies in addition the requirement of *‘external independence,’’
i.e., the model does not change if we connect it to other systems.
Otherwise, the utility of the model is greatly diminished if we
cannot use it to help analyze its effect with others. In the case of
DEDS we know that the Norton theorem holds for product form
networks as mentioned in Section II-B. However, it turns out [39]
that the analogy breaks down in more general cascs. It is no longer
possible to aggregate a portion of a network (i.e., represent the
portion by some simpler network) without considering what
constitutes the rest of the network. In other words, the equivalent
network cannot be dependent only on the part that is being
aggregated. On the other hand, aggregation is a well-developed
engineering concept in system design and analysis. Every system
designer and analyst uses ‘‘aggregation’’ at all stages of the
analysis whether or not he is using analytical or simulation tools.
The aggregation process is not only intuitive and heuristic but
often successful. More recently experimental study of the PA
technique seems to indicate that ‘‘aggregation’’ is possible
approximately for general networks [44]. However, a more
insightful analysis of the approximation process is lacking at
present. In fact, since we know {51, p. 30] that any portions of a
general queueing network can be replaced by an ‘‘externally
dependent’’ equivalent M/M/1 server, it would seem to offer the
possibility of applying PA techniques to analyze problems in
DEDS where it is not applicable if the original nonaggregated
DEDS were used. Thus, in addition to computational saving in the

case of simulation, aggregation may considerably extend the
domain of applicability of the PA technique. Viewed in the
context of ‘‘engineering modeling,’’ there is every reason to be
optimistic with respect to the study of aggregation in DEDS.
Concommitant with aggregation is the concept of ‘‘decomposi-
tion’’ which has been extensively developed by Courtois [19].
Again this idea has its parallel in continuous variable system
analysis. An excellent survey can be found in [20].

Light Traffic Theory as PA with Zero Nominal

Reiman and Simon {58] recently developed a light/heavy traffic
theory approach to the determination of the performance of
certain queueing networks. The idea is that performances under
light (zero customer arrival rate) and heavy (100 percent
utilization) conditions are often easy to determine for certain
networks. In addition the derivatives of PM(8) with 8§ = arrival
rate under light traffic conditions can also be determined by
adding one single customer to the zero rate arriving stream. Thus,
given the two data points and a derivative, the entire curve PM(6)
can be estimated with remarkable accuracy. From the PA
viewpoint, the light traffic derivative theory is simply a special
case of PA where the nominal sample path is trivially easy to
implement, namely, the path with zero customers. However, by
the same token, if another path is available, then PA can be
performed to obtain the derivatives at any point other than § = 0
[72). In fact, the idea of adding a customer to a sample path goes
as far back as the 1977 thesis of Bello [59]. Suri and Cao have also
employed a similar idea in their marked and phantom customer
approach to PA [60]. This approach to the determination of the
entire PM(6) curve appears to be very promising and intriguing,
particularly in the case when 8 is multidimensional.

Sample Path and Operational Analysis Approach to DEDS

Both PA and operational analysis are sample path based
techniques for the study of DEDS. There are many points of
similarity between the two approaches. In fact, results of PA can
be derived from an operational analysis framework [32]. On a
heuristic basis, engineers have routinely used simulation often
without much statistical justification in the design and optimiza-
tion of DEDS. It is natural to ask the question: ‘*Does there exist a
nonprobabilistic or experimental approach to the control and
optimization of DEDS?"’ Various evidences such as ‘‘simulated
annhealing,” ‘‘generalized stochastic approximation,”” etc., sug-
gest that this is not necessarily an outlandish suggestion.

V. CONCLUSION

Perturbation analysis is less a specific technique but more a
state of mind or a framework for the study of DEDS in the time
domain. It complements but does not replace the probabilistic
approach which has dominated the study of queucing networks for
the past two decades. It is also a very natural tool for the system
engineer. The ultimate goal for the system engineers/theorists is
the dynamic optimal stochastic control of DEDS. As mentioned
earlier in the Introduction, we see the entire expanse of traditional
control theoretic concepts and techniques awaiting parallel devel-
opments in DEDS. We are at the dawn of a new era of control
system analysis and synthesis.
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