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The focus of research concerning human pathogens has been primarily centered on 

virulence in the host, transmission between hosts, and treatment of the subsequent 

infections.  Justifiably, our well-being relies on such research but it has erroneously 

resulted in the assumption that the role of these microbial pathogens is to infect and 

reproduce within or on our bodies and then pass to another human to follow this same 

cycle ad infinitum.  Although this does represent a true optional lifestyle for many 

pathogens, it must be stated that this lifestyle is one of several life histories that a 

pathogen may follow and in many cases human infections represent a dead end.  This 

study focuses on the natural ecology of several human pathogens, V. cholerae, V. 

parahaemolyticus, and V. metecus, and their associated virulence factors, in regions 

where they cause sporadic illness as well as a region where one of these pathogens, V. 

cholerae, has never caused a human illness.  In this work we demonstrate the non-

human environment as a natural ecosystem for several human pathogens as well as a 

reservoir of virulence factors.  This was achieved by employing a combination of 



  

high-throughput whole genome analyses focused on the nucleotide and amino acid 

level, combined with broader ecological studies evaluating the role of the 

environment with respect to presence of the pathogens and expression of their 

virulence factors.  This work further demonstrates the ubiquity of virulence factors in 

the environment and the expression of these factors at temperatures found outside of 

the human host suggests their utility in the environment. 
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Chapter 1: Introduction 

 

Human pathogens are globally ubiquitous and conventional wisdom holds that 

they are associated with human contamination or human fecal pollution.  Although 

human contamination does lead to the dispersal of pathogens, itq cannot account for their 

total presence and it does not account for the initial cases in an epidemic.  Further, human 

absence in an environment does not imply the absence of human pathogens in that 

environment; thereby demonstrating many human pathogens have an ecology that is not 

dependent on the human body.  For example, Vibrio cholerae, the causative agent of 

cholera and extraintestinal infections, responsible for thousands of deaths annually, was 

once thought to be spread solely by human fecal contamination (Allen et al., 1975).  

Decades of research supported by several thousands of publications have definitively 

proven this organism to be a natural member of aquatic environments on a global scale, 

its presence being related to non-anthropogenic parameters such as water temperature, 

salinity, and presence and species composition of zooplankton communities.  Still, 

debates concerning the ecology of genotypes most frequently isolated from human 

infections continue.   

Members of the Enterobacteriaceae, such as Salmonella enterica and Escherichia 

coli, are known to be shed by the human body into the environment and some pathotypes 

within this family, such as Salmonella enterica subsp. enterica serovar Typhi, being 

subclinically carried and shed by humans for decades (Saphra, 1957; Nath et al., 2010).  

Thus, the association between these organisms and human fecal contamination has been 
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clearly and clinically demonstrated.  However, human shedding does not account for the 

total presence of these organisms in the environment as they have been found in regions 

of little or no human fecal contamination and have been demonstrated to outlive non-

pathogenic members of the human intestinal microbiome (Mezrioui et al., 1995).  This is 

demonstrative of their adaptation to, viability in, and reproductive success in the natural 

(non-mammalian) environment.  Thus, they are natural members of the environmental 

microbiome with the ability to be successful in both the mammalian and non-mammalian 

environments.  

 

Ecological Roles of Microbial Virulence 

Prokaryotic and eukaryotic microorganisms can be pathogens of humans and 

other mammals and both are ubiquitous in the natural environment.  It is often 

environmental exposures that lead to infections with these pathogens.  Many of these 

infections are considered ecological dead-ends in that after the infection, the pathogen is 

either killed by the immune system of the infected individual or it is shed out of the host 

body (Levin, 1994; Lainhart et al. 2011).  In developed nations this shedding, particularly 

during enteric infections, occurs into confined sewage systems where human waste is 

treated and pathogens are effectively killed.  Thus, these microorganisms are unable to 

re-enter the human environment as they are killed before they can encounter food, water, 

or mammals in/on which they can replicate.  Thus, the human → environment → human 

transmission cycle may occur only for a few pathogens, namely viruses, which are not 

considered viable organisms.  In developing nations where sanitation and effectively 

treated water is lacking or limited, this human → environment → human transmission 
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cycle can and does occur.  Yet, many infectious diseases that occur in developing nations 

are also reported in developed nations demonstrating that the environment → human 

cycle is responsible for many infections in developed nations and the initiation of 

epidemics in developing nations.   

Thus, the environment can be accurately thought of as a reservoir of pathogens 

from which epidemics arise.  This then begs the questions why; are pathogens in the 

environment, and what is the role of virulence in the environment?  To sufficiently 

address this question, it must be noted that for an organism to become pathogenic to 

humans it must encode functional suites of genes, many of which are mobile, that 

produce products that result in an immune response in the infected human.  For many 

pathogens, such as V. cholerae, this process relies on the expression of several sets of 

mobile elements (CTXΦ, tcpA of Vibrio pathogenicity island-1, and nanH of Vibrio 

pathogenicity island-2) and many genes encoded in the backbone (toxR, hapA,etc.).  

Absence of one or more of these mobile elements may result in a decreased colonization 

and infection or no colonization or infection at all.  However, in this organism, cells 

lacking one or more of these virulence factors are frequently isolated from the 

environment, and sometimes these elements are found in high frequency in a particular 

environment or in environments where humans do not live (Haley et al., 2012).  An 

example of this is the Vibrio pathogenicity island-2, which encodes sialidase (NanH), a 

sialic acid scavenger that removes this oligosaccharide from the gangliosides of the 

human intestine making them more available to the cholera toxin.  This scavenger also 

allows sialic acid to be catabolized by the sialic acid metabolism cluster encoded in VPI-

2.  This pathogenicity island is found in many epidemic strains of V. cholerae isolated 
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from clinical cholera cases (those of the O1 serogroup that are toxigenic and are 

associated with the current cholera pendemic) as well as non-toxigenic strains isolated in 

the environment.  The island is also known to have many variants, some with major 

segments deleted and others with additional elements inserted, such as the type III 

secretion system homologous to TIIISS-2 of Vibrio parahaemolyticus.  Its ubiquity in the 

environment suggests it has an ecological role outside of the human body.  Further 

supporting this is the demonstration that the TIIISS of this island is known to induce 

severe diarrhea in humans (Shin et al., 2011) while its homolog in V. parahaemolyticus is 

known to have a similar function as well as an anti-predation role in the presence of 

grazing protozoa (Vp T3SS paper).  A variant of this island has also been identified in 

Vibrio sp. Ex25, an organism recovered from a deep-sea hydrothermal vent, an 

environment well outside of the human ecology. 

As stated earlier, many of these human infections are relatively brief (non-

chronic) and self-limiting, while it is known and demonstrated that these organisms live 

in the environment and individual cells live longer in the environment that the length of a 

human infections.  Thus, the time that a pathogenic microorganism spends in the 

environment, interacting with those biotic and abiotic features within that environment, is 

much greater than the time spent in the human body.  Thus, those interactions with the 

biota and abiota, such as predation, nutrient limitation, temperature shifts, and ultraviolet 

irradiation shape the microbial genome (Woods et al., 2011).  It is further believed that 

these interactions have led to the evolution of protein products or secondary metabolites 

occurred in response to these parameters while also coincidentally resulting in an immune 

response in the human body (Lainhart et al., 2011).  While a microorganism can be the 
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prey of many grazing organisms it is genomically impossible to encode virulence factors 

that respond to each species of prey.  Therefore it is likely that natural selection selects 

for the evolution and maintenance of those virulence proteins or metabolites that target 

factors or pathways conserved in eukaryotes as a way of limiting the amount of DNA 

needed to replicate in the cell cycle.  Thus, many virulence factors are able to interact 

with structures of pathways in the human body as it contains elements conserved in other 

eukaryotes including protozoan grazers (Lainhart et al., 2011).  Examples of virulence 

factors that cause disease in humans but have a primary role in the environment are listed 

in Table 1.1. 

Many of these virulence factors are mobile while some are conserved in the 

backbone of all members of a species.  In the case of V. cholerae, mobile elements are 

known to be horizontally transferred in the environment (Boyd and Waldor, 1999; Boyd 

et al., 2000; Faruque at al., 2003; Meibom et al., 2005, Blokesh and Schoolnik, 2007, 

Miller at al., 2007).  Thus, highly pathogenic strains can arise in the environment and 

lead to massive epidemics and pandemics.  

Essentially, clinical isolates are environmental in origin as are their integrated 

mobile virulence factors.  However, it is often presumed that highly pathogenic strains 

are only present in regions due to the presence of a human carrier and their subsequent 

shedding of the organism into local and untreated water supplies.  Although, proper 

sanitation that prevents fecal contamination of water and food supplies does reduce 

human amplification of a cholera outbreak, it does not account for initial cases in regions 

where autochthonous microorganisms are not removed from drinking water or raw or 

undercooked seafood is consumed.  This assumption that highly pathogenic strains are 
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not autochthonous to the natural environment is often based on the difficulty in isolating 

V. cholerae strains with “epidemic cholera” features from the environment in regions 

where cholera does not occur annually.  However, the difficulty in isolating such strains 

is mostly related to the vast genomic diversity of organism in the in the environment such 

that diversity dilutes any one specific genotype and the difficulty in isolating culturable 

bacteria from the environment as the majority of cells (> 99%) are in the viable but non-

culturable (VBNC) state and cannot be recovered for genotypic analysis (Figure 1.2).   

 

Objectives of this Study 

Objectives of this study were to take a genomic and ecological approach to 

understand the ecology of human pathogens in the environment.  In this work we 

demonstrate the non-human environment as a natural ecosystem for several human 

pathogens.  This was achieved by employing a combination of high-throughput whole 

genome analyses focused on the nucleotide and amino acid level, combined with broader 

ecological studies evaluating the role of the environment with respect to presence, 

densities, and virulence expression of the pathogens.   

Chapters 2 - 5 present results of genomic analyses of V. cholerae and two newly 

described species, V. metecus and V. parilis, previously believed to be a “variant” V. 

cholerae of the non-O1/non-O139 serogroups.  V. metecus and V. parilis are 

biochemically identical to V. cholerae and V. mimicus, respectively,but genomically 

unique.  These two new species encode many of the genes involved in pathogenesis in V. 

cholerae and V. mimicus and show evidence of horizontal exchange with them.  Chapter 

2 reports on the genomic analysis of an environmental V. cholerae strain with a high level 
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of genomic similarity with those isolated from clinical cases in Egypt 75 years earlier 

providing evidence of genomes with clinical features being stable in the environment 

over long periods of time.  This further demonstrates the natural habitat of pathogenic V. 

cholerae strains is the aquatic environment.  The overriding theme of the four chapters is 

that bacteria sharing genome-wide similarity with pathogenic V. cholerae can be isolated 

from the environment in regions where cholera and other V. cholerae infections are 

sporadic at most.  The data provided in the chapters present genomic evaluation of 

virulence factors of V. cholerae, namely Vibrio pathogenicity island 2 (VPI-2) about 

which a separate chapter is provided. 

Chapters 6 - 10 present findings of ecological studies on V. cholerae, V. metecus, 

and V. parahaemolyticus conducted over several years in the Chesapeake Bay, Iceland, 

the Georgian coast of the Black Sea, and waters bodies in Azerbaijan, including the 

Caspian Sea.  These regions proved to be significant since vibrioses occur sporadically in 

these locations.  In fact, in Iceland there has never been a recorded Vibrio infection and 

this is a reliable conclusion because the country is known for its highly detailed and 

uninterrupted health record keeping for the entire population.  Furthermore, vibrioses are 

reportable infections in Iceland.  The ecological study on V. metecus is the first for this 

organism and the results reveal an ecology different than that of its nearest phylogenetic 

neighbor, V. cholerae.  This organism is an emerging pathogen and has been shown to 

share many genes with V. cholerae demonstrating that its emergence is of public health 

significance. 
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Figure 1.1. Genomic variation and gene flow in the environment.  Colored squares 

represent transmissible genetic elements. 
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Figure 1.2.  Schematic representation of sample processing to genotyping. 
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Table 1.1. Roles of virulence factors in the human body and in the non-human environment. 

 

 

 

 

Organism Virulence Factor Role in Virulence in Mammalian Hosts Actions in the Environment Reference

Vibrio cholerae Type VI Secretion System
Induces an inflammatory diarrhea and 

facilitates replication within the intestine.
Protection from amoebae grazing. (Pukatzki et al., 2006)

Toxin Co-regulated Pilus (VPI-1)
Attachment to intestinal epithelial cells 

and formation of biofilms inside intestine.
Attachment to plankton. (Reguera and Kolter, 2005)

prtV (protease)
Cytotoxicity to human intestinal cells and 

fibronectin and fibrinogen degradation.
Protection from eukaryotic grazing. (Vaitkevicius et al., 2006)

HA/P (hemaglutinnin/protease)
Involved in release of V. cholerae  cells 

from intestine.

Utilize Chironomid egg masses as a 

food source.
(Halpern et al., 2003)
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Chapter 2: Pre-7
th
 Pandemic Vibrio cholerae BX 330286 El Tor 

Genome; Evidence for the Environment as a Genome Reservoir 
 

 

Abstract 

Vibrio cholerae O1 El Tor BX 330286 was isolated from a water sample in 

Australia in 1986, nine years after an indigenous outbreak of cholera occurred in that 

region.  This environmental strain encodes virulence factors highly similar to those of 

clinical strains, suggesting an ability to cause disease in humans.  We demonstrate its 

high similarity in gene content and genome-wide nucleotide sequence to clinical V. 

cholerae strains, notably to pre-7
th

 pandemic O1 El Tor strains isolated in 1910 (V. 

cholerae NCTC 8457) and 1937 (V. cholerae MAK 757), as well as 7
th

 pandemic strains 

isolated after 1960 globally.  Here we demonstrate that this strain represents a transitory 

clone with shared characteristics between pre- 7
th

 and 7
th

 pandemic strains of V. cholerae.  

Interestingly, this strain was isolated twenty-five years after the beginning of the 7
th

 

pandemic, suggesting the environment as a genome reservoir in areas where cholera does 

not occur in sporadic, endemic or epidemic form. 

 

Introduction 

Vibrio cholerae is an autochthonous member of marine, estuarine, and freshwater 

microbial communities worldwide and the causative agent of cholera, a profuse 

secretory-diarrhea that can lead to death by dehydration if left untreated.  Cholera is 
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caused by the O1 and O139 serogroups of V. cholerae, while some of the more than 200 

known non-O1/non-O139 serogroups are responsible for sporadic cases of diarrhea and 

extraintestinal V. cholerae infections (Safrin et al., 1988; Ko et al., 1998; Lukinmaa et al., 

2006; Shannon et al., 2006; Chatterjee et al., 2009).  Serogroup O1 strains can be further 

divided into either Classical or El Tor biotypes based on a distinct combination of 

biochemical and phenotypic traits, including phage and Polymyxin B susceptibility, 

acetoin production, and allelic variation of rstR of CTXΦ and tcpA of Vibrio 

Pathogenicity Island 1 (Mukerjee, 1963; Han and Khie, 1963; Davis et al., 1999; Jonson 

et al., 1991).   

 It has been observed that one biotype predominates in clinical cases in a 

pandemic.  There have been seven cholera pandemics recorded since 1817, with the 5
th

 

and 6
th

 pandemics caused by strains of the serogroup O1 biotype Classical and the current 

7
th

 pandemic by strains of serogroup O1 biotype El Tor.  The interpandemic period 

between the 6
th

 (ending in 1923) and 7
th

 pandemics (beginning in 1961) was 38-years.  

During this period localized cholera epidemics occurred sporadically, but it is presumed 

that cholera did not occur in the form of a pandemic.  Biotype El Tor strains isolated 

during this period are termed “pre-7
th

 pandemic” (Byun et al., 1999).  The first cluster of 

cases of the 7
th 

pandemic is believed to have occurred in 1961 on the island of Sulawesi 

(formerly known as Celebes), an island of Indonesia, and rapidly spreading to Asia and 

Africa, and continuing globally.  Recent studies have demonstrated that the flexible 

genome of V. cholerae allows genomic drift and, therefore, adaptation to novel 

environments, as well as avoidance of the host immune response (Chun et al., 2009).  

Lineages, however, may retain a relatively persistent genome over time that undergoes 
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little sequence divergence, suggesting that a part of the V. cholerae genome remains 

static. 

 V. cholerae strain BX 330286 is an O1 Inaba biotype El Tor strain isolated from a 

water sample in 1986 from Australia, in an area geographically close to Sulawesi (ca. 

1100 km at their closest locations) (Safa et al., 2009).  These waters were determined to 

be the source of Australia’s first recorded indigenous cholera outbreak in 1977, when 

epidemiological investigations determined that surface water was the vehicle for V. 

cholerae O1 El Tor infections among the local populations (Rao and Stockwell, 1980) 

(Rogers et al., 1980).  A PCR-based multilocus genetic analysis suggested it was similar 

to pre-7
th

 pandemic strains as it did not encode VSP-I and II (Safa et al., 2009).     

 A phylogeny of 23 V. cholerae strains, including BX 330286, was determined by 

Chun et al. (2009), based on 1,676 homologous genes (1,370,469 bp).  The evolutionary 

pathway based on these homologous regions of the genome revealed four major clades in 

the evolution of V. cholerae.  A non-O1/non-O139 clade, dominated by environmental 

isolates, comprises the most heterogenous group of sequenced strains.  Twelve other 

strains formed a Phylocore Genome (PG) clade, comprising O1 and O139 clinical strains, 

and another clinical strain that putatively received an O37 antigen via horizontal gene 

transfer.  V. cholerae BX 330286 is a member of Phylocore Genome group-1 (PG-1), 

consisting mainly of El Tor clinical isolates, some of which had been isolated prior to the 

7
th

 pandemic, with a relatively short branch length to the ancestral node of the 7
th

 

pandemic clade, indicating a relatively short evolutionary distance from that ancestral or 

hypothetical progenitor clinical strain of the 7
th

 pandemic strains isolated since 1961 

(Chun et al., 2009).  These data suggest that V. cholerae BX 330286 represents a 
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genomically persistent transitionary strain between the pre-7
th

 pandemic El Tor strains 

and those of the 7
th

 pandemic clade.  V. cholerae O1 El Tor strains demonstrating similar 

pre-7
th

 pandemic characteristics were also isolated from clinical cases in this region in 

1998 (Nair et al., 2006). 

 The aim of this study was to investigate and characterize the genome of 

environmentally isolated V. cholerae BX 330286, a strain genetically similar to pre-7
th

 

pandemic El Tor strains (Safa et al., 2009), with a close phylogenetic relationship to the 

progeny of the hypothetical ancestor of the 7
th

 pandemic clade (Chun et al., 2009).  To 

accomplish this we compared the genome of V. cholerae BX 330286 to pre-7
th

 pandemic 

and 7
th

 pandemic El Tor, biotype Classical, and non-O1/non-O139 V. cholerae isolated 

globally from clinical cases and the environment.  Here we present an analysis of this 

genome with an emphasis on its genome-wide similarity to two pre-7
th

 pandemic clinical 

strains isolated during the 6
th

 cholera pandemic in 1910 (V. cholerae NCTC 8457 from 

Saudi Arabia) and between the 6
th

 and 7
th

 pandemics in 1937 (V. cholerae MAK 757 

from modern-day Sulawesi) and six 7
th

 pandemic strains, particularly V. cholerae 

N16961, a strain isolated early in the 7
th

 pandemic.  Our findings suggest individual 

genomes demonstrating clinical strain characteristics and relatively little sequence 

divergence can persist in the environment over time where cholera is not endemic. 

 

Materials and Methods 

Genome Sequencing 

Draft sequences were obtained from a blend of Sanger and 454 sequences and 

involved paired end Sanger sequencing on 8kb plasmid libraries to 5X coverage, 20X 
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coverage of 454 data, and optional paired end Sanger sequencing on 35kb fosmid 

libraries to 1-2X coverage (depending on repeat complexity). To finish the genomes, a 

collection of custom software and targeted reaction types were used. In addition to 

targeted sequencing strategies, Solexa data in an untargeted strategy were used to 

improve low quality regions and to assist gap closure. Repeat resolution was performed 

using in-house custom software (Han and Chain, 2006).  Targeted finishing reactions 

included transposon bombs, an in vitro transposon insertion strategy involving random 

insertion of a yeast transposable element into a gap followed by amplification off both 

ends of the element, primer walks on clones and PCR products, and adapter PCR 

reactions (Goryshin and Reznikoff, 1998).  Gene-finding and annotation were achieved 

using an automated annotation server (Aziz et al., 2008).  All genome sequences are 

available from the NCBI Genbank and accession numbers are listed in Table 2.1. 

 

Comparative Genomics 

Genome to genome comparison was performed using three approaches, since 

completeness and quality of nucleotide sequences varied from strain to strain among the 

set of strains examined in this study. First, nucleotide sequences as whole contigs were 

directly aligned using the MUMmer program (Kurtz et al., 2004). Second, ORFs of a 

given pair of genomes were reciprocally compared to each other, using BLASTN, 

BLASTP, and TBLASTX programs (ORF-dependent comparison). Third, a 

bioinformatic pipeline was developed to identify homologous regions of a given query 

ORF. Initially, a segment on target contig homologous to a query ORF was identified 

using the BLASTN program. This potentially homologous region was expanded in both 
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directions by 2,000 bp, after which the nucleotide sequences of the query ORF and 

selected target homologous region were aligned, using a pairwise global alignment 

algorithm (Myers and Miller, 1988) and the resultant matched region in the subject contig 

was extracted and saved as a homolog (ORF-independent comparison). Orthologs and 

paralogs were differentiated by reciprocal comparison.  In most cases, both ORF-

dependent and –independent comparisons yielded the same orthologs, though the ORF-

independent method performed better for draft sequences of low quality, in which 

sequencing errors, albeit rare, hampered identification of correct ORFs.  All genomic 

islands in the V. cholerae strains used in this study have been identified by Chun et al. 

(2009). 

 To estimate the genomic similarity among strains we determined the average 

nucleotide identity (ANI), by performing a reciprocal best match BLASTN analysis for 

each genome with V. cholerae BX 332086 (Konstantinidis and Tiedje, 2005). 

 

Phylogeny of Mobile Genetic Elements 

To infer phylogeny of the mobile elements among strains, neighbor-joining trees 

were developed, using homologous ORFs between the strains included in this study.  

Sequences were aligned using CLUSTALW2 (Larkin et al., 2007).  Trees were 

developed using the Kimura-2-parameter of nucleotide substitution (Kimura, 1980).  One 

hundred bootstrap replications were executed for each tree.  Phylogenetic estimations 

were performed using MEGA software (Kumar et al., 2007). 
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Results 

General Genome Features, Virulence Factors, and Genomic Islands 

The draft genome of V. cholerae BX 330286 spans 8 contigs and putatively encodes 

3,663 coding sequences covering 4,000,672 bp.  Of the 3,663 coding sequences, 778 

(26.5%) are annotated as hypothetical proteins, 416 of which are located on the large 

chromosome and 362 on the small chromosome.  This strain encodes 111 RNAs, 90 of 

which are annotated as tRNAs. 

 Similar to the clinical strains, V. cholerae BX 330286 encodes several 

pathogenicity islands; however, this strain does not encode Vibrio seventh pandemic 

islands (VSP) I and II, hallmarks of clinical strains of the 7
th

 pandemic (Safa et al., 2009).  

V. cholerae BX 330286 encodes Vibrio pathogenicity islands (VPI) 1 and 2, toxin linked 

cryptic plasmid (TLC), cholera toxin prophage (CTXΦ), and the RS1Φ element.  VPI-1 

of V. cholerae BX 330286 has 100% nucleotide sequence similarity with V. cholerae 

MAK 757, 99.9% similarity with 7
th

 pandemic strains, and 99% similarity with NCTC 

8457.  Based on the tcpA sequence, V. cholerae BX 330286 encodes VPI-1
El Tor

 in that it 

has 100% sequence similarity with all O1 El Tor strains and 99% sequence similarity 

with V. cholerae O395 Classical.  This is supported by a phylogenetic analysis which 

infers that the donor of this island is an El Tor strain as the tcpA sequences of the El Tor 

strains group together in an unresolved branch (Figure 2.1).  Although the tcpA 

phylogeny is unresolved, its nucleotide sequence similarity suggests that V. cholerae BX 

330286 and MAK 757 received VPI-1 from a similar source (Table 2.2). 

 VPI-2 of V. cholerae BX 330286 has 100% sequence similarity across the 

complete island (100% conserved) with V. cholerae N16961, 2740-80, and V52 and 
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99.9% with V. cholerae NCTC 8457, O395 Classical, and the other 7
th

 pandemic strains, 

excluding V. cholerae MO10 which has a truncated island and V. cholerae MJ-1236 with 

which it has 99.7% sequence identity (Table 2.2).  VPI-2 of V. cholerae BX 330286 has 

98.2% sequence similarity across 66.6% of the ORFs with V. cholerae MAK 757 (Table 

2.2).  The divergence and low percent conserved ORFs between the two homologous 

islands can be attributed to VPI-2 variants encoded by the two strains suggesting a 

different source of the island for these two strains.  A phylogenetic analysis of the phage 

integrase from this island (the only ORF conserved among all strains encoding this 

island) showed this ORF clustering with all other clinical strains, including the 7
th

 

pandemic and pre-7
th

 pandemic strains (B.J. Haley, unpublished).  Although it cannot be 

inferred by phylogenetic analysis, the sequence similarity and high percent of 

conservation across the ORFs suggests that V. cholerae BX 330286 acquired canonical 

VPI-2 from either a 7
th

 pandemic strain or from an ancestral strain that donated VPI-2 to 

the 7
th

 pandemic clade. 

 V. cholerae BX 330286 contains the TLC element, proximal to CTXΦ on the 

large chromosome, sharing 100% sequence similarity with that of all other strains 

carrying the element suggesting, an highly conserved state (Table 2.2).  This strain also 

encodes tandem copies of CTXΦ
CL

, based on the rstR sequence (Chun et al., 2009; Safa 

et al., 2009).  Similarly, MAK 757 encodes CTXΦ
CL

 but only a single copy (Chun et al., 

2009).  The tandem CTXΦ
CL

 copies in V. cholerae BX 330286 are identical in sequence, 

most likely from duplication of the prophage.  The CTXΦ of V. cholerae BX 330286 

shows divergence from other CTXΦ, with higher sequence similarity to the CTXΦ of the 

V. cholerae 7
th

 pandemic strains than all other strains (Table 2.2).  This finding suggests 
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that although the prophage is a Classical biotype, based on rstR sequence, it has overall 

higher sequence similarity to CTXΦ of El Tor strains (Table 2.1).  A phylogenetic 

analysis of a ca. 5.5 kb homologous region of the CTXΦ (covering rstA to ctxB) of 

strains included in this study infers CTXΦ of V. cholerae BX 330286 shares a common 

ancestor with 7
th

 pandemic strains diverging from CTXΦ of V. cholerae MAK 757 

(Figure 2.2).  This strain also encodes a copy of RS1Φ
ENV

 suggesting a non-7
th

 pandemic 

or pre-7
th

 pandemic source of this element (Chun et al., 2009; Safa et al., 2009). 

 V. cholerae BX 330286 encodes V. cholerae GIs-1, 2, and 5.  GI-1 of V. cholerae 

BX 330286 has a higher sequence similarity with V. cholerae NCTC 8457, MAK 757, 

the 7
th

 pandemic clade, V52, 2740-80, and O395 Classical than with other strains 

encoding the same island (Table 2.2).  GI-2 of V. cholerae BX 330286 has a higher 

sequence similarity with V. cholerae NCTC 8457, MAK 757, 2740-80, V52, and O395 

Classical, than with other strains encoding this island (Table 2.2).  GI-5 of V. cholerae 

BX 330286 has 100% sequence similarity with all other strains encoding this island 

(Table 22). 

 

Conservation of the Superintegron Region among Clinical Strains 

The genome of V. cholerae BX 330286 encodes a superintegron region putatively 

encoding 236 ORFs, 114 of them are hypothetical proteins.  Results of the analysis 

demonstrate that this region is highly conserved in clinical strains and V. cholerae BX 

330286, sharing most of the ORFs with the superintegron region of V. cholerae NCTC 

8457 (225 ORFs, 95% of ORFs in the superintegron) with an average of 99.3% 

nucleotide sequence identity between these ORFs (Table2. 2) and with only 6 ORFs 
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showing less than 100% nucleotide sequence identity (Data not shown).  Interestingly, 

the superintegron region encodes two pre-7
th

 pandemic regions.  One region is a 6 ORF 

duplication spanning ca. 3 kb (NCBI Genbank locus tags VCF_001728 to VCF_001733) 

found in V. cholerae BX 330286, NCTC 8457, and MAK 757 (Figure 2.3).  Four of the 

ORFs are annotated as hypothetical proteins, one as a plasmid stabilization system, and 

another as a microcin immunity protein MccF.  Another region unique to these three 

strains is ca. 6.3 kb, containing 8 ORFs (VCF_001761 to VCF_001768), five of which 

show no match to 7
th

 pandemic or V. cholerae O395 Classical and 2 to 3 which have a 

non-reciprocal match with ORFs from these strains (Figure 2.3). The 5 ORF unique 

region encodes 4 hypothetical proteins and one protein annotated as Sll1503 protein, and 

the non-reciprocal region encodes 2 hypothetical proteins and one annotated as 

lactoylglutathione lyase and related lyases (Figure 2.3).  The superintegron region of V. 

cholerae BX 330286 also has high similarity to V. cholerae N16961 and RC9, in that it 

has 203 and 201 ORFs in common and 99.8 and 99.3% nucleotide sequence identity 

across homologous ORFs from the superintegron regions of these two strains, 

respectively (Table 2.2).  These data indicate a clonal relationship of this region between 

V. cholerae BX 330286 and NCTC 8457, as well a significant similarity to current 7
th

 

pandemic strains. 

 

Genome-Wide Nucleotide Similarity Shows High Similarity to Pre-7
th

 Pandemic and 

7
th

 Pandemic Strains 

To estimate the genomic similarity among strains, we determined the average 

nucleotide identity (ANI) between protein-coding sequences of V. cholerae BX 330286 
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and 22 V. cholerae genomes (Table 2.1).  By this analysis V. cholerae BX 330286 has the 

highest genomic similarity with six strains of the 7
th

 pandemic clade (N16961, RC9, B33, 

CIRS101, MO10, and MJ-1236) and the pre-7
th

 pandemic strains V. cholerae NCTC 

8457 and MAK 757 (Table 2.1).  V. cholerae BX 330286 shares 100% nucleotide 

sequence similarity with 3,272 of 3,627 (90%) protein-coding ORFs with V. cholerae 

N16961 but has more ORFs with 100% sequence similarity with V. cholerae NCTC 8457 

(ca. 93.41%) and MAK 757 (ca. 92.53%) than any other strain in this analysis (Table 

2.1).  The ANI range for V. cholerae BX 330286 and NCTC 8457 and MAK757 was 

larger than the 7
th

 pandemic clade strains, suggesting selective pressure over time may 

have caused sequence divergence of relatively few ORFs among V. cholerae BX 330286 

and the pre-7
th

 pandemic group.   

 There were 215 ORFs in V. cholerae BX 330286 that showed divergence with 

homologs in V. cholerae NCTC 8457 (ca. 6.6 % of shared ORFs) and 258 ORFs that 

showed divergence with homologs in MAK 757 (ca. 7.5% of shared ORFs).  Fifty-six of 

these ORFs showed divergence between homologs in V. cholerae BX 330286 and both 

pre-7
th

 pandemic strains and 105 of these ORFs also showed divergence with homologs 

of at least one 7
th

 pandemic strain.  The most notable of these are hapR, a quorum-

sensing regulator of virulence and biofilm formation, putative RTX toxin transporter, 

putative RTX toxin, putative response regulator, RNA polymerase sigma factor rpoS, and 

general secretion pathway protein K involved in CT translocation.  Interestingly, these 

ORFs are involved in V. cholerae virulence or environmental response.   

 Further, there are seven ORFs which show divergence between V. cholerae BX 

330286 and both pre-7
th

 pandemic strains, but not between V. cholerae BX 330286 and 
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the 7
th

 pandemic strains.  These are topoisomerase IV subunit A, predicted ATPase 

related to phosphate starvation-inducible protein PhoH, putative acetyltransferase, heat 

shock protein 60 family chaperone GroEL, spermidine putrescine ABC transporter 

permease component PotB, myo-inositol-1(or 4)-monophosphatase, and secreted trypsin-

like serine protease.  By our methods, several ORFs were determined to have diverged 

dramatically in V. cholerae BX 330286 from those of V. cholerae NCTC 8457 and MAK 

757.  These include phage replication protein rstA, hypothetical protein, methyl-accepting 

chemotaxis protein, and L-serine dehydratase.  However, none of these ORFs have, as of 

yet, been implicated in environmental persistence or pandemic potential and most likely 

do not account for the persistence of V. cholerae BX 330286.  RstA, however, is involved 

in CTXΦ prophage replication, but its homolog in V. cholerae NCTC 8457, a CTXΦ-

negative strain, is part of the GI-19 phage-like element (Chun et al., 2009).  It should be 

noted that V. cholerae BX 330286 has the highest ANI across the conserved core of all V. 

cholerae strains used in this study with MAK 757, RC9, and N16961 (Table 2.1). 

 

Operon Divergence in 7
th

 Pandemic Clade 

Interestingly, there are 266 ORFs found in all 7
th

 pandemic strains that show 

divergence with homologous ORFs of both the pre-7
th

 pandemic strains and V. cholerae 

BX 330286 (7.6% of V. cholerae BX 330286 genome).  One hundred ninety nine of these 

ORFs occur in contiguous sets of 2 or more ORFs, totaling 35 sets of contiguous ORFs 

with nucleotide sequence divergence suggesting that several operons of the 7
th

 pandemic 

clade have undergone partial or complete sequence divergence with respect to those of V. 

cholerae BX 330286.  These diverged ORFs include GI-2, a carbohydrate 
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phosphotransferase system (PTS), maltose regulon, iron-transport system, glycerol 

uptake and metabolism, tryptophan metabolism, D-gluconate and ketogluconates 

metabolism, pyruvate metabolism, deoxyribose/deoxynucleoside catabolism, and polyol 

metabolism operons.  Interestingly, maltose metabolism has been shown to affect cholera 

toxin secretion (Lång, et al. 1994), suggesting that the observed divergence (98.7% 

sequence similarity) of malT, the transcriptional activator of the maltose regulon, in the 

7
th

 pandemic strains may have contributed to an alteration of virulence and clinical 

success in the 7
th

 pandemic strains.  Furthermore, divergence in three GGDEF domain 

protein coding sequences was observed.  These proteins comprise a family involved in 

cyclic diguanylate degradation and synthesis, a signaling molecule involved in virulence 

regulation (Tischler et al., 2005; Matson et al., 2007).  These data suggest that 7
th

 

pandemic strains have undergone a uniform sequence divergence of these ORFs.  The 

consistency of this sequence divergence across all strains of the 7
th

 pandemic clade 

suggests that this divergence occurred when this group evolved from the 7
th

 pandemic 

ancestor and may have conferred increased success in the human host. 

 

Conclusions 

V. cholerae BX 330286, an environmental O1 El Tor strain isolated from a water 

sample in Australia in 1986, demonstrates high genome-wide similarity to clinical strains, 

especially the pre-7
th

 pandemic strains V. cholerae NCTC 8457 (isolated in Saudi Arabia 

in 1910) and V. cholerae MAK 757 (isolated in Sulawesi in 1937), and 7
th

 pandemic 

strains (isolated globally).  This strain encodes all major virulence factors, including a 

tandemly repeated CTXΦ
CL

, but does not encode either VSP-I and II, two hallmarks of 
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the 7
th

 pandemic clade.  The high genomic similarity of this strain with pre-7
th

 pandemic 

and 7
th

 pandemic strains and the results of the phylogenetic analysis of this strain and 

other V. cholerae strains suggest that V. cholerae BX 330286 has a genomic structure 

similar to pre-7
th

 pandemic strains and an early progeny of the 7
th

 pandemic clade 

ancestor as was suggested by a multilocus genetic analysis (Safa et al., 2009).  V. 

cholerae BX 330286 appears to be “frozen in time”; i.e., originating from the pre-7
th

 

pandemic period before divergence of 7
th

 pandemic strains, but isolated 25 years after the 

onset of the 7
th

 pandemic.  This lineage has undergone divergence from the pre-7
th

 

pandemic El Tor strains in relatively a few ORFs compared to the 7
th

 pandemic strains, 

which contributes to the finding of this genome being a genomically transitory clone 

between the pre-7
th

 pandemic and 7
th

 pandemic strains.  However the V. cholerae BX 

330286 genome shares a greater percent of ORFs with 100% similarity to the pre-7
th

 

pandemic strains, further grounding the idea that this strain is an environmental pre-7
th

 

pandemic clone.  Furthermore, it appears that the 7
th

 pandemic strains evolved from the 

pre-7
th

 pandemic El Tor strains through a genomic divergence, not across the whole 

genome but rather localized to several operons, as well as an insertion of the VSP-I and II 

islands.  It is concluded that the V. cholerae genome is highly plastic and flexible, but 

clonal strains persist in the environment with relatively little sequence divergence, while 

novel genotypes emerge.  Essentially, lineages radiate in gene content and sequence 

identity while others exhibit minor divergence over generations. 
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Table 2.1.  V. cholerae strains used in this study and results of their comparative nucleotide sequence analysis with V. cholerae 

BX 330286.  

Strain
Phylogenetic 

clade 

Pandemic 

period during 

which strain 

was isolated

Serogroup Biotype Source Location
Year of 

Isolation

ANI(%) 

with        

BX 330286

ANI range 

for ORFs 

shared with         

BX 330286

No. of ORFs 

shared with     

BX 330286

ANI(%) of 

conserved V. 

cholerae 

core with  

BX 330286

Percent of 

ORFs with 

100% ANI 

with         

BX 330286

NCBI Genbank 

accession No.

N16961    7P 
A 7th O1 El Tor clinical Bangladesh 1975 99.9 0.17 3627 99.87 90.21 AE003852/AE003853

RC9 7P 7th O1 El Tor clinical Kenya 1985 99.89 0.17 3625 99.87 90.01 ACHX00000000

CIRS101 7P 7th O1 El Tor clinical Bangladesh 2002 99.89 0.21 3590 99.86 88.69 ACVW00000000

B33 7P 7th O1 El Tor clinical Mozambique 2004 99.88 0.17 3590 99.86 88.36 ACHZ00000000

MAK 757 PG1 interpandemic O1 El Tor clinical Sulawesi 1937 99.87 0.54 3480 99.87 92.53 AAUS00000000

MJ-1236 7P 7th O1 El Tor clinical Bangladesh 1994 99.87 0.42 3502 99.86 88.72 CP001485/CP001486

MO10 7P 7th O139 clinical Madras, India 1992 99.85 0.34 3505 99.85 88.73 AAKF03000000

NCTC 8457 PG1 6th O1 El Tor clinical Saudi Arabia 1910 99.77 0.58 3507 99.85 93.41 AAWD01000000

2740-80 PG1  7th O1 El Tor water US Gulf Coast 1980 99.62 0.57 3446 99.71 85.55 AAUT01000000

O395 PG2  7th O1 Classical clinical India 1965 99.45 0.33 3582 99.33 58.63 CP000626/CP000627

V52 PG2  7th O37 clinical Sudan 1968 99.27 0.57 3478 99.23 61.85 AAKJ02000000

12129(1)  7th O1 El Tor water Australia 1985 98.37 0.47 3369 98.32 8.28 ACFQ00000000

AM-19226  7th O39 clinical Bangladesh 2001 98.37 0.52 3288 98.36 6.93 AATY01000000

MZ-O2  7th O14 clinical Bangladesh 2001 98.29 0.55 3224 98.26 6.64 AAWF01000000

1587  7th O12 clinical Lima, Peru 1994 98.15 0.58 3248 98.27 6.74 AAUR01000000

623-39  7th non-O1/O139 water Bangladesh 2002 98.13 0.57 3270 98.31 6.88 AAWG00000000

TMA21  7th non-O1/O139 water Brazil 1982 98.11 0.55 3295 98.16 6.95 ACHY00000000

MZ-O3  7th O37 clinical Bangladesh 2001 98.09 0.57 3222 98.36 9.40 AAUU01000000

TM-11079  7th O1 El Tor sewage Brazil 1980 97.95 0.48 3299 97.96 6.34 ACHW00000000

VL426 unknown non-O1/O139 water UK Unknown 97.83 0.48 3203 97.85 4.87 ACHV00000000

V51  7th O141 clinical USA 1987 97.78 0.58 2991 97.91 4.38 AAKI02000000

RC385  7th O135 plankton
Chesapeake 

Bay
1998 97.1 0.58 2744 97.30 3.68 AAKH02000000

BX 330286 PG1  7th O1 El Tor water Australia 1986 100 0 3663 100 100 ACIA00000000

Mean 
B 99.75 0.37 3539 99.74 84.24

A = Evolutionary clade as determined by Chun et al.,  (2009)

B = Does not include values from BX 330286 versus BX 330286
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Table 2.2. Percent identity and percent ORFs conserved between V. cholerae strains and 

V. cholerae BX 330286 genomes.  

 

 

 

 

 

Strain Clade CTXΦ 
B TLC VPI-1 VPI-2 GI-1 GI-2 GI-5 Superintegron

N16961    7P 
A

99.22
C

 (100)
D

100 (100) 99.9 (100) 100 (100) 100 (100) 98.6 (100) 100 (100) 99.8 (86)

RC9 7P 99.19 (100) 100 (100) 99.9 (100) 99.9 (100) 100 (100) 98.6 (100) 100 (100) 99.2 (85)

CIRS101 7P 99.19 (100) 100 (100) 99.9 (100) 99.9 (100) 100 (100) 98.6 (100) 100 (100) 99.3 (72)

B33 7P 99.19 (100) NP 99.9 (100) 99.9 (100) 100 (100) 98.6 (100) 100 (100) 98.9 (73)

MAK 757 PG1 98.51 (100) 100 (100) 100 (100) 98.2 (66.6) 100 (100) 100 (100) 100 (100) 98.5 (67)

MJ-1236 7P 99.22 (100) NP 99.9 (100) 99.7 (100) 100 (100) 98.6 (100) 100 (100) 98.7 (74)

MO10 7P 99.22 (100) 100 (100) 99.9 (100) 100 (47.9) 100 (100) 98.6 (100) 100 (100) 98.3 (57)

NCTC 8457 PG1 NP 100 (100) 99 (100) 99.9 (100) 100 (100) 100 (100) 100 (100) 99.3 (95)

2740-80 PG1 NP 100 (100) 99.1 (100) 100 (100) 100 (100) 100 (100) 100 (100) 98.7 (72)

O395 PG2 98.50 (100) 100 (100) 98 (100) 99.9 (100) 100 (100) 100 (100) 100 (100) 98.9 (70)

V52 PG2 99.05 (100) 100 (100) 98 100) 100 (100) 100 (100) 100 (100) 100 (100) 98.8 (70)

12129(1) NP NP 98.8 (100) 93.8 (54) 98.9 (100) NP NP 94.4 (34)

AM-19226 NP NP NP 94.7 (47.9) 99.6 (100) NP NP 93.6 (30)

MZ-O2 NP NP NP NP 99.6 (100) NP NP 93.7 (33)

1587 NP NP NP 95.5 (47.9) 99.5 (100) NP NP 93.9 (36)

623-39 NP NP NP 96.9 (45.8) 99.6 (100) NP NP 92.4 (37)

TMA21 NP NP NP 91.8 (50) 99.5 (100) NP NP 95.1 (32)

MZ-O3 NP NP NP NP NP NP NP 95.1 (50)

TM-11079 NP NP NP 96.1 (97.9) NP NP NP 91.1 (29)

VL426 NP NP 93.8 (97) NP NP 99.3 (100) NP 91.4 (23)

V51 98.94 (100) NP 93.8 94.4 (47.9) 99 (100) NP NP 92.4 (25)

RC385 NP NP NP NP NP 99.1 (100) NP 92.4 (33)

A = Evolutionary clade as determined by Chun et al. , (2009)

B = Two identical tandem copies in V. cholerae  BX 330286

C = Percent identity across conserved ORFs

D = Percent ORFs conserved compared with V. cholerae  BX 330286

NP = Not present

Element
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Figure 2.1.  Neighbor-Joining tree of tcpA from the strains used is this study.  Bootstrap values are (%) shown at nodes.  Bar is 

equivalent to 0.01 substitutions per site.  Pandemic during which each strain was isolated is listed on right. 
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Figure 2.2.  Neighbor-Joining tree of a ca. 5.5 kb (concatenated rstA to ctxB ORFs) homologous region of the CTXΦ from the 

strains used in this study.  Bootstrap values (%) are shown at nodes.  Bar is equivalent to 0.002 substitutions per site.  

Pandemic during which each strain was isolated is listed on right. 
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Figure 2.3.  Duplicated region of the genome in V. cholerae BX 330286, and pre-7
th

 pandemic strains NCTC 8457 and MAK 757 

(top).  Unique genomic regions in V. cholerae BX 330286, NCTC 8457, and MAK 757 (bottom).  V. cholerae strains are listed in the 

top row.  NCBI Genbank loci are located in column on far left.  Nucleotide sequence similarity is noted by color (column on far right). 
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Chapter 3: Multiomic Analysis of US Gulf Coast Cholera (2010 to 

2011) Isolates 

 

Abstract 

Between October, 2010, and May, 2011, twelve cases of cholera, unrelated to a 

concurrent outbreak in Hispaniola, were recorded and the causative agent, Vibrio 

cholerae serogroup O75, was traced to oysters harvested from Apalachicola Bay, Florida.  

From the 11 diagnosed cases, eight isolates of V. cholerae were isolated (73% of all 

diagnosed cases of this outbreak) and their genomes were sequenced.  Genomic analysis 

demonstrated the presence of a suite of mobile elements previously shown to be involved 

in the disease process of cholera and a phylogenomic analysis showed the isolates to be 

monophyletic with V. cholerae V51 serogroup O141, a clinical strain isolated 23 years 

earlier.  Metabolic profiles, virulence gene expression, secretome analyses, and a 

Caenorhabditis elegans model of infection for the isolates were conducted and 

comparative analyses of the attributes revealed layers of diversity among these otherwise 

highly similar strains of V. cholerae. 

 

Introduction 

Vibrio cholerae non-O1/non-O139 are the causative agents of sporadic, yet 

significant, extraintestinal and gastrointestinal infections globally and it is well 

established that, like Salmonella enterica, all strains of this species are capable of causing 

human infections and represent a significant global health burden (Ko et al. 1998; Safrin 
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et al 1998; Shannon and Kimbrough 2006; Lukinmaa et al 2006; Chatterjee et al. 2009).  

Infection and subsequent illness caused by these organisms are linked to the presence of 

virulence factors in the core backbone of V. cholerae (hemolysins, RTX toxins, lipases) 

or mobile pathogenicity islands (VPIs-1 and -2, and CTXФ) that are frequently found in 

clinical isolates from cholera patients suffering severe rice water diarrhea (Tacket et al. 

1998; Vanden Broeck et al., 2007; Almagro-Moreno and Boyd, 2009).  Epidemic cholera 

is typically ascribed to V. cholerae serogroup O1 or O139; however, it is now understood 

that, similar to disease caused by pathogenic Escherichia coli, a constellation of virulence 

factors and host immune and nutritional status, are responsible for the severity and 

characteristic infections caused by these organisms (Tacket et al. 1998; Vanden Broeck et 

al., 2007; Manning et al., 2008; Almagro-Moreno and Boyd, 2009; Chun et al., 2009).  It 

is established that those V. cholerae which acquire and express genes carried on mobile 

elements (O-antigens, VPI-1, VPI-2 with or without a type III secretion system, CTXФ, 

NAG-ST, etc.) are linked to epidemics of cholera.  The scenario of mobile genetic 

element acquisition has been shown to have occurred within the 7
th

 pandemic and CG-1 

and -2 clades (Chun et al., 2009), but occurrence and persistence of such genetic 

constellations remains underappreciated in V. cholerae non-O1/non-O139 (non-CG) 

lineages.  These elements, among many others, can be laterally transferred between 

strains of the same species or distantly related species in the environment (Meibom et al., 

2005; Udden et al., 2008; Boucher et al., 2011) and give rise to virulent strains that 

potentially can cause epidemics.  Further, these elements can be stable in V. cholerae 

non-O1/non-O139 isolates, as in strains of the 7
th

 pandemic clade and persist in these 

conformations over time, ultimately conserved in the environment. 
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In developed nations, the leading cause of human disease caused by vibrios is 

consumption of raw or undercooked seafood, namely shellfish.  In the United States, 

seafood-borne vibrioses have been traced to shellfish harvested from coastal (Atlantic 

and Pacific) regions, as far north as Alaska, but by far the majority of infections occur in 

the Gulf of Mexico, where the water is warm and highly productive, both associated with 

increased Vibrio spp. densities as well as increased risk of vibriosis (Hlady and Klontz, 

1996; Shapiro et al., 1998; Tamplin, 2001; Lipp et al., 2002; Huq et al., 2005).  Recent 

outbreaks of cholera traced to seafood consumption and many V. parahaemolyticus 

infections and deaths caused by V. vulnificus have been reported in this region. 

V. cholerae O75 serogroup strains have been reported to cause sporadic shellfish-

borne cholera cases in the southeastern United States (Tobin-D’Angelo et al., 2008; 

Onifade et al., 2011).  Outbreaks caused by these strains are not continuous as outbreaks 

in developing nations because sanitation in the United States is such that untreated human 

waste is not discharged into water used for drinking, recreation, or harvesting of seafood.  

Further, V. cholerae O75 strains have been isolated from environmental waters in the 

southeastern United States in the absence of reported cholera cases (Tobin-D’Angleo et 

al., 2008).  Here we present results of analysis of eight clinically recovered V. cholerae 

O75 isolates from an indigenous US Gulf Coast cholera outbreak that occurred in 

October, 2010, and during March and April, 2011 (Onifade et al., 2011). 

 

Materials and Methods 

Clinical V. cholerae isolates that were epidemiologically linked to consumption of 

oysters harvested from the Apalachicola Bay, FL were obtained from the Florida 
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Department of Health.  Virulence assays were conducted following methods standardized 

for V. cholerae (Son and Taylor, 2011).  BiOLOG phenotypic microarrays (PM1, PM2A, 

PM9, and PM10) were conducted following the manufacturers’ instructions (BiOLOG, 

Hayward, CA).  C. elegans virulence assays was conducted following the methods of 

Cinar et al. (2010).  To infer phylogeny of the mobile elements among strains, neighbor-

joining trees were developed, using homologous ORFs between the strains included in 

this study.  Sequences were aligned using CLUSTALW2 (Larkin et al., 2007).  Trees 

were developed using the Kimura-2-parameter of nucleotide substitution (Kimura, 1980).  

One hundred bootstrap replications were executed for each tree.  Phylogenetic 

estimations were performed using MEGA software (Kumar et al., 2007). 

 

Results and Discussion 

Phylogenomic Analysis of Florida Outbreak Strains 

The eight isolates subjected to analysis in this study have been labeled by number 

(isolates CP1110, 1111, 1112, 1113, 1114, 1115, 1116 and 1117) and are referred to as 

the V. cholerae FL Group.  Using 1104 homologous ORFs the phylogeny of 38 fully and 

partially sequenced V. cholerae strains, including the eight V. cholerae FL Group 

genomes, was inferred (Figure 3.1).  Results of the analysis demonstrate that the V. 

cholerae FL Group are monophyletic with V. cholerae V51, a clinical V. cholerae O141 

serogroup strain isolated from a human clinical case in the United States in 1987, 

suggesting a common ancestor after it had diverged from other V. cholerae lineages.  

This inferred phylogeny showed identical topology when both the Maximum Composite 

Likelihood and the Kimura-2-Parameter models of nucleotide substitution were used.  
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From a public health perspective, the results of the analysis demonstrate the group 

represents a phyletic lineage of non-O1/non-O139 strains that persist in the United States 

as a cause of morbidity 

 

Genomic Islands, Pathogenicity Islands, and Virulence Factors 

PCR analyses showed all isolates were CTXΦ
Classical

-positive and encoded the 

three known RS1Φ elements (RS1environmental, RS1Calcutta, and RS1El Tor).  The small 

chromosome CTX-attachment site of all isolates, except CP1112, had an insertion, 

suggesting that whereas seven of the eight isolates had a CTX insertion or other genomic 

island at this site, isolate CP1112 does not.  The presence of the three RS1 elements has 

not heretofore been described suggesting these isolates have a unique RS1-CTXФ 

arrangement. 

The genomes of the eight isolates encoded Vibrio pathogenicity island 1 (VPI-1) 

shown to be responsible for biofilm formation in the intestine and a receptor for CTXФ 

phage.  VPI-1 of the V. cholerae FL Group has highest amino acid identity with V. 

cholerae O395 (98.5%), and TcpA protein (often used as a marker of V. cholerae 

biotype) of V. cholerae O395 shared 98.7% amino acid identity with V. cholerae FL 

Group, higher than all other reciprocal comparisons in this study.  However, V. cholerae 

O395 encodes 61% of the V. cholerae FL Group VPI-1 ORFs found in, determined by 

reciprocal BLASTP analysis (Table 3.1). 

The genomes of all V. cholerae FL Group isolates also encoded VPI-2 with type 

III secretion system (TTSS).  The TTSS in these genomes, similar to that of V. cholerae 

V51 and AM-19226, a non-O1 TCP-negative and CTX-negative isolate, has been shown 

to be essential in the colonization of the infant rabbit intestine and associated with severe 
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diarrhea in this model (Shin et al., 2011).  These VPI-2 elements did not encode a 

sialidase (also known as neuraminidase), determined by genome sequence analysis and 

PCR.  Sialidase is a sialic acid scavenger that acts on higher order gangliosides in the 

small intestine and facilitates the interaction of cholera toxin with these gangliosides.  

Absence of sialidase results in a decrease in binding of cholera toxin to GM1 

gangliosides, as demonstrated in the suckling mouse model (Galen et al., 1992).  

However, all isolates encoded a functional sialic acid catabolism operon within VPI-2, 

determined be Biolog Phenotypic Microarray assays. The assays demonstrated that all 

strains utilized sialic acid 3 to 6 times background levels, indicating the operon in these 

isolates is functional.  The mu-like phage region, the most variable region of the 

canonical VPI-2, is absent in these genomes. 

The presence of other genomic islands comprising the V. cholerae mobilome 

described by Chun et al. (2009) was evaluated using BLASTN.  Including VPI-1 and 2 

and a VSP-II-like element, all genomes encoded sequences with high similarity to GIs-1, 

2, 3, 4, 26, 37, 57, 58, and two genomic islands not yet described and designated here as 

FLGI-1 and FLGI-2 (Figure 3.2)  The locus for VSP-I is empty and, therefore, not 

encoding any inserted genomic island.  The VSP-II-like island discovered in the V. 

cholerae FL Group isolates shows variable similarity and conservation with other 

homologous sequence strings in the Vibrionaceae (Figure 3.3).  Interestingly, the VSP-II-

like element found in the V. cholerae FL Group isolates shares 12 of 20 contiguous ORFs 

(60%) with a contiguous sequence encoded in the genome of Vibrio corallilyticus ATCC 

BAA-450, having an average amino acid identity of 81.2%, suggesting the suite of VSP-

II elements is distributed, not only among clinical V. cholerae isolates, but also among 
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those from the environment including non-cholera vibrios.  Figure 3.4 depicts a proposed 

scenario of genomic island insertion and deletion in the V. cholerae V51/V. cholerae FL 

Group lineage before and after these two sets of isolates (V. cholerae V51 and V. 

cholerae FL Group isolates) diverged from a common ancestor. 

 

O-Antigen Coding Region 

This region in the V. cholerae FL Group is ca. 57.6 kb, with the LPS core region 

ca. 17.3 kb and O75 specific region ca. 40 kb.  Of all V. cholerae serogroup data 

represented in NCBI GenBank, the core OS and the O141-antigen-specific coding 

regions are most similar to the homologous ORFs of the V. cholerae FL Group (Figures 

3.5A and 3.5B).  Of 56 identified ORFs in this region of the genomes of the V. cholerae 

FL Group isolates, V. cholerae V51 shares 20 (35.7%) with 100% nucleotide sequence 

similarity and 20 with at least 95% nucleotide sequence similarity.  When the wav* (Core 

OS) and wbf* (O-antigen specific) clusters were compared, the V. cholerae FL Group 

isolates encode all ORFs in the homologous clusters of V. cholerae V51, with high 

nucleotide sequence similarity in the wav* cluster and 100% nucleotide similarity in the 

wbf* cluster.  However, the wbf* cluster of V. cholerae V51 does not encode the wbfE 

ORF of the V. cholerae FL Group. 

Eight ORFs were found in the O75-antigen coding region of the V. cholerae FL 

Group isolates that have not yet been described in the O-antigen coding regions of other 

V. cholerae genomes and these ORFs may be specific to the O75 antigen (Figures 3.5A 

and 3.5B).  When the O-antigen ORFs of V. cholerae V51 serogroup O141 are used as a 

reference, a similar pattern is observed with the only observed structural differences 
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being 7 of 10 ORFs missing in the regions homologous to VCV51_0176 to VCV51_0185 

in the Florida isolates and 11 of 14 ORFs in V. cholerae V51 missing in the homologous 

region (CP1110_00269 to CP1110_00282).  Although, it is well known that this region is 

a hot-spot for gene transfer, it can be assumed that the O141 and O75 O-antigen coding 

regions derived from a common source based on the high level of conservation between 

the two and that the difference between the two clusters arise from substitution of ORFs 

specific to the O-antigen region.  A similar mechanism has been suggested for the 

relationship between O139 and O22 serogroups (Dumontier and Berche, 1998; Yamasaki 

et al., 1999).  This substitution may have involved a ca. 18.2 kb region in the genomes of 

the V. cholerae FL Group isolates and a ca. 16.2 kb region in V. cholerae V51 flanked by 

the homologs CP1110_00268 (glucose-1-phosphate thymidylyltransferase (EC 2.7.7.24) 

and CP1110_00286 (lipid carrier:UDP-N-acetylgalactosaminyltransferase).  

Alternatively, three substitution events involving shorter sequences may have occurred 

between the flanking regions, indicated by absent ORFs (red squares) in reciprocal 

comparison.  Interestingly, the serogroup with the next highest level of conservation with 

serogroup O141 and O75 is found in the O139 serogroup isolate V. cholerae MO10. 

 

Open Reading Frame Polymorphisms 

These 8 genomes proved to be highly clonal with very few polymorphisms at 

each of the conserved gene loci (Table 3.2).  A total of 29 ORFs were found to be 

polymorphic across the entirety of the genomes, with 14 in the core backbone and 15 in 

mobile genetic elements (2 ORFs in GI-26 [TTSS] and 13 cassettes in the superintegron 

region).  Eleven of the ORFs were annotated as hypothetical proteins with a median size 
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of 135 bp compared to 865 bp of non-hypothetical protein polymorphic ORFs, 828 bp of 

all polymorphic ORFs, and 831 bp of all ORFs of the V. cholerae FL Group.  These data 

suggest that the polymorphic hypothetical proteins are pseudogenes arising from 

nonsense mutations. 

One polymorphism was a SNP occurring in an ornithine decarboxylase gene 

(VCA1063); however, a benchtop assay of the decarboxylase activity demonstrated 

showed the system is functional in all eight isolates.  Another SNP was found in strain 

VC417 in vpsR (VC0665), the regulator of rbmA, the rugosity and biofilm structure 

modulator subunit A.  Interestingly this isolate formed rugose colonies and produced 

larger biofilm than all other V. cholerae FL Group isolates, suggesting SNP effects 

expression of the associated genes.  One SNP was found in each ORF that was annotated 

as acetolactate synthase large subunit (VC0031) and dihydroxy-acid dehydratase 

(VC0028), part of the ilv operon involved in isoleucine and valine biosynthesis, shown to 

confer decreased virulence (Merrell et al., 2002).  A SNP was found in an ORF annotated 

as RTX toxin and related Ca
2+

-binding proteins (VCA0849) a gene discivered to be 

expressed > 2-fold in V. cholerae El Tor biotype isolates than in V. cholerae Classical 

isolates (Beyhan et al., 2006).  A SNP was also found in hypothetical protein (VC0874), 

transcriptionally induced during an infant mouse model infection (Osorio et al., 2005).  

Taken together, these SNP data suggest there may be differences in virulence expression 

among these isolates that may result in subtle differences in disease outcomes. 
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Virulence Assays 

The eight V. cholerae FL Group isolates were further evaluated for hemolysis, 

motility, and proteolysis, following standard methods for V. cholerae (Son and Taylor, 

2011) and the results were compared among strains from this outbreak and with other 

strains whose genomes have been sequenced (Figures 3.6 and 3.7a - c).  Biofilm 

formation was quantified and compared among V. cholerae FL Group isolates (Figure 

3.6).  All strains were hemolytic with wide zones of clearing on blood agar plates, except 

for strain CP1114 which demonstrated incomplete hemolysis.  Interestingly, CP1114 had 

a wider zone of hemolysis, than all of the other V. cholerae FL Group isolates.  Isolate 

CP1115 was significantly more hemolytic than the other isolates, not including CP1114 

(analysis of variance, P < 0.05).  Significant variation in proteolysis was observed among 

V. cholerae FL Group isolates, with isolate CP1114 significantly less proteolytic than 

other V. cholerae FL Group isolates.  This low proteolytic activity in CP1114 may result 

in low hemolysis by this strain as hemolysin A must be processed by an extracellular 

protease for complete hemolysis to occur.  All V. cholerae FL Group isolates were highly 

motile but displayed variability in degree of motility (Figure 3.6).  Biofilm formation was 

variable across the V. cholerae FL Group isolates but these isolates did not significantly 

differ from each other.  In a comparison of virulence expression with other V. cholerae 

isolates (clinical and environmental), the V. cholerae FL Group does not form a cohesive 

group, but rather their expression data is interspersed among all isolates (Figs. 3.7a - c).  

In all three assays isolates of the V. cholerae FL Group show some of the highest levels 

of virulence expression of all V. cholerae isolates assayed. 
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 Using the Caenorhabditis elegans model of V. cholerae infection, which yields 

data on the strength of the hemolytic activity (hlyA) of a strain, (Cinar et al., 2010), 

nematodes fed three isolates of the V. cholerae FL Group (V. cholerae CP1112, 1114, 

and 1115) and the results demonstrated significantly faster die-off than nematodes fed a 

non-pathogenic E. coli control strain but a significantly slower die-off than nematodes 

fed V. cholerae El Tor strain E7946 (P < 0.05) (Figure 3.8).  All three V. cholerae FL 

Group isolates resulted in similar C. elegans survival patterns when compared to each 

other.  However, median survival of worms fed isolates V. cholerae CP1112 and CP1115 

was 9 days but 11 days for worms fed CP1114, the isolate with incomplete hemolysis, 

suggesting a somewhat weaker hemolysis in this isolate than the others.  Interestingly, the 

three isolates each caused a C. elegans die-off more similar to V. cholerae O1 biotype 

Classical isolates than to El Tor isolates (unpublished data). However, hlyA of the V. 

cholerae FL Group do not have the same 11 bp deletion that is the polymorphism linked 

to the decreased hemolytic activity of V. cholerae O1 Classical isolates but rather have 

higher nucleotide sequence similarity with V. cholerae O1 El Tor N16961 than Classical 

O395 and (98 and 97% respectively).  The hlyA sequences of the V. cholerae FL Group 

are 100% similar at the nucleotide level and the identified nucleotide sequence 

polymorphisms among the V. cholerae FL Group have not been documented to result in 

differential hemolytic activity, suggesting genomic rearrangements or methylation 

patterns, two characteristics not analyzed in this work, may influence virulence 

expression.  Results of in vitro and in vivo analyses support the conclusion that clonal 

strains of the same outbreak may potentially result in different levels of virulence 

expression in the human intestine.  However, pathogenic potential of an infectious agent 
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is only one part of the equation, as host immune status in known to play a significant role 

in disease outcome. 

 

Conclusions 

There are no known or suggested human carrier(s) of V. cholerae O75 and no 

recent cases of V. cholerae O75 infections prior to the outbreak.  It is concluded that the 

outbreak was caused by emergence virulent V. cholerae that grew to a density high 

enough over a region large enough of the environment (not only local one oyster) to 

cause multiple cases of cholera.  A high level of clonality (only 14 polymorphisms in 

core backbone ORFs) of the isolates, covering 73% of all reported cholera cases from this 

source, demonstrates that there need not be a human vehicle of V. cholerae dispersal into 

a region prior to a cholera outbreak caused by highly clonal strains, as has been suggested 

for the ongoing Haitian cholera epidemic. 

Because these isolates form a monophyletic lineage with V. cholerae V51 

serogroup O141, a human clinical isolate from 1987, we postulate the clade may 

represent a new lineage of cholera-causing isolates, similar to those of the 7
th

 pandemic 

clade, but smaller geographic scope.  Other V. cholerae serogroup O141 isolates have 

been shown to cause significant global disease and many carry the CTX
classical

 prophage 

(Dalsgaard et al., 2001; Udden et al., 2008) as do the V. cholerae FL Group serogroup 

O75 isolates.   To assess this fully, clinical V. cholerae non-O1/non-O139 serogroup 

isolates need to be evaluated in a phylogenomic context.  Pathogenic V. cholerae cells 

that cause a significant global disease burden should be characterized in their 
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phylogenomic context and genomic island constellations rather than simply as being 

isolates labeled as serogroups O1, O139, or non-O1/non-O139. 

Data from this analysis and recently published studies of V. cholerae non-O1/non-

O139 pathogenicity suggest monitoring the presence of TTSS genes, along with CTXФ, 

in shellfish and shellfish harvesting waters should be conducted to assess public health 

safety of seafood and, thereby, prevent illness and economic loss.  In conclusion, multi-

dimensional approaches to analyzing bacterial isolates, such as the one presented here, 

can yield multiple layers of information. 
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Figure 3.1.  Neighbor-Joining tree of 1104 homologous from 38 fully and partially sequenced V. cholerae strains.  Nucleotide 

substitution is the Kimura-2-parameter.  Bar length = 0.002 nucleotide substitution.
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Figure 3.2.  BLASTN atlas of V. cholerae FL Group genomes, V. cholerae V51, and V. mimicus MB-451 with V. cholerae 

N16961 as the reference and chromosomal locations of genomic islands in the V. cholerae FL Group genomes.  Genomic 

islands with the prefix “GI” are described by Chun et al., (2009).  SI = superintegron. 
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Figure 3.3.  Novel VSP-II-like element in all V. cholerae FL Group isolates (top).  Canonical VSP-II in V. cholerae N16961 

(bottom).  ORFs in black are conserved between the two and white or grey ORFs are not found in the other element.  HP = 

hypothetical protein, TR = transcriptional regulator, Rb HI = Ribonucease HI. 
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Figure 3.4.  Proposed hypothetical insertions of genomic islands in the V. cholerae V51/V. cholerae FL Group clade. 
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Figure 3.5A.  Reciprocal BLASTN analysis of LPS coding region with V. cholerae V51 as a reference.   
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Figure 3.5B.  Reciprocal BLASTN analysis of LPS coding region with V. cholerae FL Group as a reference.   
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Figure 3.6.  Virulence factor expression.  The X-axis shows the V. cholerae FL Group 

isolates.  The Y-axis on the left shows zones (mm) of hemolysis, proteolysis, and motility 

on sheep blood agar, milk agar, and motility agar, respectively.  The Y-axis on the right 

shows biofilm formation in OD500. 

 

 

 

 

 

 

 

 

 

 

 

 



 

57 

 

 

 

 

Fig. 3.7a. Virulence factor expression of selected V. cholerae isolates whose genomes 

have been sequenced. The X-axes show the isolates.  The Y-axes shows zone of 

proteolysis (mm) on milk agar. 
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Fig. 3.7b. Virulence factor expression of selected V. cholerae isolates whose genomes 

have been sequenced. The X-axes show the isolates.  The Y-axes shows zone of motility 

(mm) on motility agar. 
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Figures 3.7c. Virulence factor expression of selected V. cholerae isolates whose genomes 

have been sequenced. The X-axes show the isolates.  The Y-axes show zone of hemolysis 

(mm) on sheep blood agar. 
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Figure 3.8.  Survival curves of C. elegans challenged with V. cholerae CP1112, CP1114, 

CP1115, V. cholerae El Tor E7946, Escherichia coli OP50. 
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Table 3.1.  Amino acid similarity of ORFs in Vibrio pathogenicity island 1 (VPI-1) between the V. cholerae FL Group and V. 

cholerae strains BX 330286, V51, N16961, and O395.  

BX 330286 V51 N16961 O395

Length Annotation

162 tmRNA-binding protein SmpB 99.38 99.38 99.38 99.38

419 Phage integrase 97.63 100 97.63 97.63

53 Phage integrase 98.08 100 98.08 80.39

40 Phage integrase 60.53 100 60.53

1591 Accessory colonization factor AcfD precursor 96.19 98.87 96.19 96.19

216 Accessory colonization factor AcfA 96.74 100 96.74

303 TagE protein 99.01 99.34 99.01 99.01

254 Accessory colonization factor AcfC 98.81 98.81 98.81 99.35

627 Accessory colonization factor AcfB 98.88 96.96 98.72 98.72

255 TCP pilin signal peptidase, TcpA processing 96.39 98.39 96.39 96.39

277 TCP pilus virulence regulatory protein ToxT, transcription activator 99.64 98.19 99.64 99.64

339 Toxin co-regulated pilus biosynthesis protein F, putative outer membrane channel for TcpA extrusion 99.11 73.29 98.82 98.52

286 Toxin co-regulated pilus biosynthesis protein E, anchors TcpT to membrane 98.95 98.6 98.95 98.95

504 Toxin co-regulated pilus biosynthesis protein T, putative ATP-binding translocase of TcpA 99.2 99.33 99.01 99.2

153 Toxin co-regulated pilus biosynthesis protein S 100 98.68 100

274 Toxin co-regulated pilus biosynthesis protein D 97.44 99.27 97.44 97.44

93 Toxin co-regulated pilus biosynthesis protein R 100 100 100

490 Toxin co-regulated pilus biosynthesis protein C, outer membrane protein 99.39 99.18 99.39 99.8

127 Toxin co-regulated pilus biosynthesis protein Q 97.62 98.21 97.62

431 Toxin co-regulated pilus biosynthesis protein B 94.88 97.44 96.74 97.44

225 Toxin co-regulated pilin A 82.14 82.14 82.14 98.66

101 Toxin co-regulated pilus biosynthesis protein H, transcriptional activator of ToxT promoter 97 97 97

222 Toxin co-regulated pilus biosynthesis protein P, transcriptional activator of ToxT promoter 97.74 98.19 97.74

621 Toxin co-regulated pilus biosynthesis protein I, chemoreceptor, negative regulator of TcpA 98.87 99.68 98.87 98.71

165 Thiol peroxidase, Tpx-type (EC 1.11.1.15) 99.39 99.39 99.39

313 Putative zinc metalloprotease 97.44 98.72 97.44 98.4

418 inner membrane protein, putative 94 99.53 94 94.72

1107 inner membrane protein, putative 95.58 99.91 97.96 98.14

507 Aldehyde dehydrogenase (EC 1.2.1.3) 97.43 100 97.43 97.71

307 Transposase 97.22 100 97.22

V. cholerae  FL Group

% Similarity
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Table 3.2.  ORFs with polymorphisms among the V. cholerae FL group.  All ORFs 

shown represent all ORFs that have a polymorphism between at least two V. cholerae FL 

Group isolates.  Strain 417 is used as a reference for a BLASTN comparison. 
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Chapter 4: Vibrio Pathogenicity Island 2 (VPI-2) Diversity 

 

Abstract 

Vibrio pathogenicity island 2 (VPI-2), VPI-2 variants and VPI-2-like elements, 

including novel variants, were detected in the whole genome sequences of members of 

the Vibrionaceae, including clinical and environmental Vibrio cholerae, Vibrio mimicus, 

Vibrio orientalis, and Vibrio sp. Ex25, a deep-sea hydrothermal vent Vibrio.  The 

presence of previously described islands was confirmed in twenty-two Vibrionaceae 

strains chronologically and geographically distince.  Regions homologous to that of VPI-

2 sialic acid metabolism are present in the backbone of several Vibrio spp.  Several 

variants encoded unique phage-like elements and type 3 secretion systems homologous to 

T3SS-2 in the V. parahaemolyticus pathogenicity island.  Elements homologous to 

regions of VPI-2 in non-cholera vibrios were also found.  Nucleotide diversity among 

homologous regions in clinical V. cholerae strains was low (π = 0.001 to 0.005) which 

could be interpreted as selection for the canonical variant in the human host, but also 

found to encode variants of this island were environmental strains isolated from regions 

where cholera does not occur in pandemic or epidemic form.  A multi-step evolutionary 

history of the elements is proposed to have led to emergence of a mosaic structure for 

VPI-2 variants, also shown at the nucleotide level as well.  The presence of variants in 

both environment and clinical V. cholerae and non-cholera vibrios suggests a dual role 

for this island, in the environment and human disease.  Characteristics of the VPI-2 



 

64 

 

variants suggest adaptations to different specific niches, rather than deletion outside the 

human host. 

 

Introduction 

Members of the Vibrionaceae are known to harbor genomic islands that allow 

colonization of novel environmental niches including marine organisms and human hosts.  

These islands, also known as fitness islands, confer unique traits on the carrier cell, e.g., 

novel metabolic pathways, xenobiotic degradation, antibiotic resistance, and virulence.  

Vibrio cholerae, the causative agent of cholera causes a severe secretory diarrhea and its 

genomes encodes islands associated with pathogenicity, such as CTXΦ, VPI-1 and -2, 

and VSP-I and –II.  However, occurrence of these islands and their allelic variations in 

the environment (outside the human host) suggests a dual role in human infections and as 

yet undescribed function in the environment (Mukhopadhyay et al., 2001).  Recently dual 

roles for the type three secretion system 2 (TTSS-2) of V. parahaemolyticus, which is 

highly similar in structure to that of V. cholerae, (Matz et al., 2011) and the shiga toxin 

(stx) of Escherichia coli have been reported (Steinberg and Levin, 2007).  

 Vibrio pathogenicity island 2 (VPI-2) is a mobile genetic element that is ca. 57 kb 

encodes phage-like integrase, sialic acid metabolism region, and type-I restriction 

modification system and is present in epidemic strains of V. cholerae.  Encoded within 

the sialic acid metabolism region is nanH, a gene responsible for production of 

neuraminidase (also known as sialidase), a glycoside hydrolase that removes sialic acid 

from higher order gangliosides, unmasking the GM1 receptor for cholera toxin on human 

intestinal cells (Jermyn and Boyd, 2002).  Genes juxtaposed to nanH (nan-nag gene 
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cluster) code for utilization of host-derived sialic acid as a carbon source (Moustafa et al., 

2004; Schneider and Parker, 1982).  Thus, VPI-2 is associated with pathogenesis and 

sialic acid metabolism of toxigenic V. cholerae.  However, 10 of the VPI-2 of 11 V. 

cholerae serogroup O139 isolates examined in the study did not encode nan-nag genes or 

type-I restriction modification system (Jermyn and Boyd, 2005).  Both deletions have 

been linked to reduced fitness and offered as an explanation for this serogroup to no 

longer be the dominant cause of epidemic cholera in the Indian subcontinent (Jermyn and 

Boyd, 2005).   

 Several variants of VPI-2 with major insertions and deletions have been identified 

(Murphy and Boyd, 2008).  In this study, four V. cholerae strains encoded two variants of 

a type three secretion system (V. cholerae NRT36S, AM 19226, 623-39, 1587, and V51), 

two had large deletions (V. cholerae MO10 and MAK 757), and one encoded a novel 

phage-like element (V. cholerae V51).  The objectives of this study were to evaluate the 

presence of VPI-2 variants and regions homologous to variants in Vibrionaceae genome 

sequences, determine polymorphisms in homologous ORFs, and apply the data to infer an 

evolutionary history of the variants. 

 

Methods 

Strains 

A total of 25 genomes, both draft and complete, of members of the Vibrionaceae 

encoding elements considered part of VPI-2 were evaluated for completeness and allelic 

variants of VPI-2 and VPI-2-like elements.  The V. cholerae, Vibrio mimicus, Vibrio 
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orientalis, and Vibrio sp. Ex25 strains, isolated from clinical and environmental are listed 

in Table 4.1. 

 

Comparative Genomics 

Because completeness and quality of nucleotide sequences varied among strains, genome 

to genome comparison was performed using three different approaches.  Nucleotide 

sequences as whole contigs were directly aligned using the MUMmer program (Kurtz et 

al., 2004).  ORFs of a given pair of genomes were identified and reciprocally compared 

with each other, using BLASTN (comparison based on ORFs).  Finally, a bioinformatic 

pipeline was developed to identify homologous regions of a given ORF.  Initially, a 

homologous region of an ORF of completely sequenced chromosomes or high quality 

contigs was identified using BLASTN.  This region was then expanded in both directions 

by 2,000 bp each.  Query ORF sequence and target homologous region were aligned 

using global pairwise alignment and the resultant matched region was extracted and 

retained as homolog (comparison based on similarity) (Myers and Miller, 1988).  

Orthologs and paralogs were differentiated by reciprocal comparison.  In most cases, 

comparisons based on ORFs and similarity yielded the same orthologs, but similarity was 

preferable in the case of draft sequences of low quality, in which sequencing errors, albeit 

rare, hampered accurate identification of ORFs.  By this analysis, contiguous ORFs 

demonstrating homology with regions of VPI-2 in the canonical variant or previously 

published variants were considered to be VPI-2 islands or VPI-2-like elements.  

 Multiple sequence alignments were constructed by aligning homologous 

nucleotide sequences using ClustalW2.  Phylogenetic analysis was conducted using 
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MEGA 4 program for reconstruction of neighbor-joining trees using the Kimura-2 

parameter (K2P) and Jukes-Cantor (JC69) nucleotide substitution models with 100 

bootstrap iterations (Tamura et al., 2007).  In cases where trees demonstrated congruency, 

the neighbor-joining tree using the K2P nucleotide substitution model is displayed in the 

text. 

 

Results and Discussion 

Gene Structure and Attachment Loci of VPI-2 Varaints 

Strains used in this study (Table 4.1) were found to encode several variants of 

VPI-2 (Figure 4.1).  V. cholerae MJ-1236 encoded a previously undescribed variant of 

VPI-2 (Figure 4.1) and the non-cholera vibrios, Vibrio sp. Ex25, V. mimicus and V. 

orientalis encoded an element homologous to a large region of canonical VPI-2.  Several 

other non-cholera vibrios isolated from both human clinical cases and the environment 

encoded regions within the genomic backbone similar to the sialic acid metabolism 

region of the canonical VPI-2.  All except three VPI-2 variants were inserted at 

homologous tRNA-serine loci. The variant found in Vibrio sp. Ex25 was encoded in the 

superintegron region of the large chromosome of its genome (Figure 4.1).  Interestingly, 

this tRNA-serine locus shows 100% nucleotide sequence similarity across the entire 

sequence with homologous tRNA-serine in all V. cholerae genomes, as well as in the V. 

parahaemolyticus, V. harveyi, V. coralliilyticus, Vibrio sp. Ex25, and Shewanella loihica 

genomes.  

 Based on bidirectional BLASTN pairwise comparisons, variable nucleotide 

sequence similarity was observed between variants (Figure 4.2).  VPI-2 islands of V. 
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cholerae O395, RC9, BX 330286, 2740-80, V52, CIRS101, and B33 were similar to 

canonical VPI-2 of V. cholerae N16961, encoding the complete type-1 restriction 

modification system, sialic acid metabolism, and nearly complete Mu-like phage regions, 

all with > 99% nucleotide similarity across homologous ORFs (Figure 4.2).  V. cholerae 

RC9 and N16961, O1 El Tor strains, and CIRS101 and B33, the latter O1 El Tor hybrid 

strains, were isolated from clinical cases during the 7
th

 pandemic and all are members of 

the same clonal complex (Chun et al., 2009).  V. cholerae BX 330286 and 2740-80, 

environmental strains isolated from Australia in 1986 and from the US Gulf Coast in 

1980, respectively, and demonstrating high similarity to pre-7
th

 pandemic El Tor 

serogroup O1 strains, encode VPI-2 with similarity in gene content and nucleotide 

sequence with the canonical VPI-2 (Figures 4.1 and 4.2). 

 Interestingly, clinical isolates V. cholerae O395 O1 Classical (isolated in India in 

1965), V. cholerae NCTC 8457 O1 El Tor (Saudi Arabia in 1910), and V. cholerae V52 

serogroup O37 (Sudan 1968) isolated preceding the 7
th

 pandemic, demonstrated 

similarity both in gene content and nucleotide sequence with canonical VPI-2, suggesting 

that the structure of the island is not strictly biotype or pandemic-specific as other 

elements such as VSP-I and II (Grim et al., 2009; Taviani et al., 2009) and CTXΦ (Figure 

4.2).  However, V. cholerae O395 VPI-2 carried nucleotide polymorphisms, compared to 

the 7
th

 pandemic strain (99% sequence similarity, with highest divergence between ORFs 

of 99.7% in VC1801 for a hypothetical protein), but not with as much divergence as VPI-

1 (98.7% sequence similarity, with highest divergence between ORFs of 77.5% in tcpA).  

However, the very small polymorphisms in VPI-2 of this strain most likely have arisen 

from genetic drift.  Interestingly, VPI-2 of V. cholerae N16961 demonstrated a higher 
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average pairwise sequence similarity with V. cholerae BX 330286, an environmental 

strain and progeny of a hypothetical ancestor of the 7
th

 pandemic strains, than V. cholerae 

O395 (99.99% and 99.96% similarity, respectively) supporting the hypothesis that 

pandemic strains arise in the natural environment. 

 V. cholerae INDRE 91/1, a biotype El Tor strain of the 7
th

 pandemic and the first 

clinical isolate of a 7
th

 pandemic outbreak in Mexico, revealed deletions in ORFs 

VC1761, an hypothetical protein proximal to the helicase and VC1801 to VC1803, three 

hypothetical proteins downstream of the Mu-like phage region, as well as VC1795, a 

putative transcriptional regulator (Figure 4.2). 

 V. cholerae MJ-1236, a 7
th

 pandemic clinical isolate hybrid strain showed high 

sequence similarity (> 99%) with canonical VPI-2, but only 89% sequence similarity 

with the helicase (VC1760) proximal to the phage integrase (Figure 4.2).  V. cholerae 

MJ-1236 encodes a 19 kb phage-like region inserted at VC1761 (Figure 4.1).  This 

phage-like element of the MJ-1236 VPI-2 is located at other loci in this genome with 

undescribed homologs.  This phage encodes a type-1 restriction modification system that 

may be involved in host-addiction. 

 The VPI-2 present V. cholerae non-O1/non-O139 TM 11079-80 seroconverted to 

O1 via lateral gene transfer.  It was originally isolated from sewage and showed 

divergence across homologous sequences (77 to 100% nucleotide similarity) with an 

average pairwise sequence identity of 97.8% similar to the average genome-wide 

similarity between this strain and the 7
th

 pandemic strains (97.9 to 98%)  Four 

hypothetical proteins (VC1788 and VC1801 to VC1803) are deleted in the VPI-2 of this 

strain.   
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 VPI-2 of V. cholerae M66-2 and MAK 757, two O1 El Tor strains isolated during 

a cholera outbreak in Celebes in 1937, demonstrated high sequence similarity with the 

canonical VPI-2 variant.  However, the island in V. cholerae MAK 757 has complete 

deletion of the Mu-like phage, as well as regions VC1805 to VC1810, and V. cholerae 

M66-2 has a deletion of the Mu-like phage region, but encodes ORFs VC1805 to 

VC1810.  Deletion of these regions may have occurred when the lineage evolved from 

the progenitor of the PG-1 clade, since other lineages have retained this region. 

 V. cholerae 12129(1) and TMA21 both have a VPI-2 similar to that previously 

described in V. cholerae AM-19226 (Murphy and Boyd, 2008) (Figure 4.1).  V. cholerae 

12129(1) and TMA21 both encode VPI-2 with type three secretion systems (T3SS) 

inserted in the region where the type-I restriction modification system is located in 

canonical VPI-2 variants (VC1760 to VC1772) (Figure 4.1).  T3SS of V. cholerae 

12129(1) and TMA21 encode 34 ORFs, all of which are 93 to 100% similar by 

bidirectional BLASTN analysis to ORFs of the T3SS of V. cholerae AM-19226 and V51.  

However, a 10 kb deletion in the region was detected in the T3SS of V. cholerae 

12129(1) when compared with V. cholerae AM-19226.  Direct repeats could not be 

detected in the flanking regions of these T3SS suggesting that homing between the T3SS 

and the remainder of the VPI-2 has occurred and that it is a stable element within this 

island.  V. cholerae 12129(1), TMA21, V51, and AM-19226 contain 32 ORFs 

homologous to those of T3SS in V. parahaemolyticus while V. cholerae 1587 and 623-39 

have 16 and 17 ORFs, respectively, homologous to this region (Figure 4.2).  Sequence 

similarity between these ORFs in V. parahaemolyticus showed higher sequence similarity 

to V. cholerae 12129(1), V51, AM-19226, TMA21 (82%) than to V. cholerae 1587 and 
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623-39 (67%).  For the purpose of the analysis reported here and based on average 

pairwise identity, VPI-2 of V. cholerae 12129(1), TMA21, V51, and AM-19226 comprise 

group 1 and V. cholerae 1587 and 623-39 group 2. 

 V. cholerae V51 the phage integrase of VPI-2 is inserted proximal to a 50 kb 

phage-like element, previously identified as GI-60 (Chun et al., 2009), that is itself 

inserted at the tRNA-serine locus (Figure 4.1).  This phage encodes several hypothetical 

proteins and phage assembly proteins and its function is not deducible from its sequence.  

A conserved hypothetical protein (VCV51_1184) from this sequence shows 68% 

nucleotide sequence similarity to orf2 of Shigella flexneri bacteriophage V.  However, 

other sequences are not homologous to any in the NCBI Genbank database.  This phage 

may have transduced the VPI-2 element into the V. cholerae V51 genome, or it may have 

integrated at the tRNA-serine locus after the VPI-2 was integrated at this locus. 

 Vibrio sp. Ex25 encodes a phage integrase that is not homologous to VC1758 of 

VPI-2, but shows low amino acid sequence similarity (58%) to phage integrase VC0516 

of the Vibrio Seventh Pandemic Island- II (VSP-II) V. cholerae N16961 by BLASTX.  

This strain also encodes the canonical type-1 restriction modification system and all 

ORFs between VC1758 and VC1772, with 86% nucleotide sequence identity.  However, 

ORFs VC1773 to VC1810 are deleted and replaced with a 12 kb region that includes six 

hypothetical proteins and a phage integrase (Figure 4.1).  This 12 kb insert does not have 

significant match to any sequences in the NCBI Genbank database, excluding a 103 bp 

region with 78% sequence similarity to a putative transcriptional regulator of V. 

parahaemolyticus.  Interestingly, this VPI-2-like element is inserted into the 

superintegron region of Vibrio sp. Ex25, rather than a tRNA-serine locus and this may be 
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the result of due to the inability of this highly diverged phage integrase to integrate at this 

tRNA locus.  The element is flanked by sequences with similarity to V. parahaemolyticus 

superintegron repeats (91% nucleotide identity) a closely related organism, and ORFs 

homologous to superintegron cassettes of other vibrios are found both upstream and 

downstream of this element.  These data suggest the type-1 restriction modification 

system found in VPI-2 may derive from a phage-like element similar to the one found in 

Vibrio sp. Ex25, a deep-sea bacterium. 

 G+C content varied among the variants and regions of the VPI-2 strains (Table 

4.2), ranging from 37% to 47%, indicative of a mosaic structure (Table 4.2).  Further, 

variants encoding T3SS, the regions ranged between 37 and 38% to 43 and 47 G+C% 

content.  Within the T3SS, G+C content of the ORFs were between 29.4% and 45.9% 

with difference in G+C content of up to 13% between some neighboring ORFs 

suggesting a mosaic structure for T3SS itself.  The sialic acid metabolism region of the 

canonical variants showed 43% G+C%, content and the homologous region in V. 

orientalis was a 45 G+C%, suggesting sialic acid metabolism has an ancestral association 

with the type-1 restriction modification system and Mu-like phage regions (43 to 44% 

and 42 to 41% G+C content, respectively, across all canonical variants). 

 

Sialic Acid Metabolism ORFs in the Backbone of non-V. cholerae Genomes 

Several Vibrio spp. were found to encode ORFs homologous to the sialic acid 

metabolism region of VPI-2.  All of these regions were associated neither with mobile 

elements nor integrated at a tRNA locus, suggesting they are anchored in the backbone of 

these organisms.  Interestingly, this region was found in the backbone of V. mimicus MB-
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451, but not in V. mimicus 223.  Based on high sequence similarity between sialic 

metabolism genes anchored in the backbone of V. mimicus MB-451 and VPI-2 elements, 

it is probable that origin of this region in VPI-2 most likely derived from an ancestor of 

V. mimicus/V. cholerae group, the region in VPI-2 most likely in the backbone of a non-

cholera Vibrio, having been mobilized and recombined with elements of VPI-2. 

 

Nucleotide Diversity 

Results of pairwise BLASTN analysis of VPI-2 variants suggest high nucleotide diversity 

within this island and from nucleotide diversity (π) estimated between all variants and 

groups of variants in each of the three major regions of VPI-2, as well as nucleotide 

diversity of a concatenated alignment of three ORFs encoded in the backbone of all 

genomes used in this study; mdh, groEL, and toxR (Table 4.3).  Diversity in regions of 

the VPI-2 variants between groups of strains, all clinical V. cholerae strains for example 

were compared, and further analysis was done comparing the results to nucleotide 

diversity of the three backbone ORFs.   

 Interestingly, nucleotide differences within type-1 restriction modification system, 

sialic acid metabolism, and Mu-like phage regions were smaller than the backbone ORFs 

for all of the clinical and environmental V. cholerae and non-cholera vibrios (Table 4.3).  

Within the T3SS, nucleotide differences were significantly than the background ORFs, 

even when the homologous T3SS region of V. parahaemolyticus was omitted from the 

analysis (Table 4.3). 
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Evolution of VPI-2 Variants 

All three major regions were independent based on homologs of the regions 

independent of each other in strains of different species.  Based on G+C% content phage 

integrase, type-1 restriction modification system, and sialic acid metabolism regions 

(GC% 44 to 43), an ancient association of these regions in an environmental setting or 

within an unknown donor organism is hypothesized.  Phylogenetic analyses of the type-1 

restriction modification system, the sialic acid metabolism regions, and both concatenated 

yielded congruent results (Figures 4.3 to 4.5) supporting co-integration into the V. 

cholerae genome.  These data are consistent for both nucleotide substitution matrices 

used in phylogenetic tree reconstruction.  It is further suggested that the Mu-like phage 

integrated with this element into an ancestral clinical strain after these two regions had 

been linked as it is only found in canonical strains while the type-1 restriction 

modification system and sialic acid metabolism regions are found in most variants in this 

study.   

 The canonical variant of clinical strains and one environmental strain are highly 

conserved with few polymorphisms within the 7
th

 pandemic clade and near neighbors.  

These data coupled with previous knowledge of the evolution of the species and the 

suggestion that 7
th

 pandemic V. cholerae El Tor strains and V. cholerae Classical strains 

evolved from separate lineages (Chun et al., 2009) suggests that a VPI-2 of a Classical 

strain was laterally transferred to an environmental pre-7
th

 pandemic strain which gave 

rise to the clinical 7
th

 pandemic strains or that an environmental progenitor of the 7
th

 

pandemic clade and the Classical strain received VPI-2 from a common source.  This is 

further supported by an average pairwise similarity analysis of VPI-2 between V. 
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cholerae N16961, BX 330286, and O395 which shows that the island in N16961 is more 

similar to BX 330286 than to O395 (99.99% and 99.96% similar, respectively), while the 

genome-wide pairwise similarity between these three strains is lower (99.95% and 99.7% 

similar, respectively).  The slight divergence in these   The major deletions of the Mu-like 

phage that are observed in V. cholerae MAK 757 and M66-2, both closely related, are 

inferred to have occurred in this clonal complex after divergence from its phylogenetic 

near-neighbors. 

 Based on the highly divergent sequence of the sialic acid metabolism region of V. 

mimicus MB-451 and V. orientalis and the phylogenetic analyses of this region, it is 

apparent that horizontal transfer of this region between V. mimicus and V. cholerae did 

not occur recently (Figure 4.4).  Most likely, the region evolved with the genomes, as part 

of the pool of accessory genes for each species, after evolution from an ancestral Vibrio.   

 Phylogenetic analyses of the conserved ORFs of the T3SS infer a closer 

evolutionary relationship between T3SS of V. cholerae 12129(1), V51, AM-19226, 

TMA21, and V. parahaemolyticus than V. cholerae 1587 and 623-39 (Fig 4.6).  These 

data are consistent for both nucleotide substitution matrices used in phylogenetic tree 

reconstruction.  The T3SS element of V. cholerae 12129(1), TMA21, V51, and AM-

19226 is concluded to be more closely linked evolutionarily to T3SS of V. 

parahaemolyticus than to the T3SS of V. cholerae 1587 and 623-39, with a T3SS more 

distantly related to that of V. parahaemolyticus. 

 Although, V. cholerae V51 has a T3SS phylogenetically more closely related to 

those of V. cholerae 12129(1), TMA21, and AM-19226, it has a sialic acid metabolism 

region phylogenetically more closely related to those of V. cholerae 1587 and 623-39 
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(Figure 4.4 and 4.6).  Two scenarios may account for this incongruency; V. cholerae V51 

could have acquired an island homologous to those in 12129(1), TMA21, and AM-19226 

followed by convergent evolution with the sialic acid metabolism regions of 1587 and 

623-39, or V51 encoded a VPI-2 island similar to 1587 and 623-39 followed by 

replacement via recombination of the T3SS with one more similar to that found in 

12129(1), TMA21, and AM-19226. 

 

Conclusions 

Results of this study demonstrate mosaic architecture for VPI-2, marked by 

presence and absence of regions, and evidence of horizontal gene transfer between 

variants.  This mosaic is represented at individual ORF and nucleotide levels, 

demonstrated by variable G+C% content and nucleotide polymorphisms between 

variants.  These data suggest independent elements formed type-1 restriction 

modification system, sialic acid metabolism, and Mu-like phage regions, while individual 

ORFs of different origin recombined to form an ancestral VPI-2 which later diversified 

via genetic drift.  These observations are supported by presence of homologous sialic acid 

metabolism regions not associated with mobility genes in the genomes of two 

Vibrionaceae (V. mimicus MB-451 and V. orientalis CIP891) and the presence of a type-

1 restriction modification system in a deep-sea Vibrio (Vibrio sp. Ex25) with high 

similarity to a homologous region of the canonical variant.   

 The presence of the canonical variant in environmental and clinical strains 

suggests it plays a significant role in V. cholerae pathogenicity as an accessory to cholera 

toxin, but may not be an essential element in the mechanism of cholera infection, and 
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furthermore, may also benefit V. cholerae outside of the human host.  This hypothesis is 

based on persistence of an element in a genome depending on its utility to that organism 

(Lawrence, 1999) and further supported by the extremely low-rate of mutation in this 

island in V. cholerae BX 330286, compared to those of clinical strains.  Lower rates of 

polymorphism in VPI-2 in clinical strains between different lineages (7
th

 pandemic El 

Tor strains and Classical) suggest that this variant may be optimized at the nucleotide 

level for the human intestine, while variants with a similar gene content but higher levels 

of polymorphism may be optimized for their respective ecological niches outside of the 

human intestine as has been demonstrated for VPI-1 (Reguera and Kolter, 2005).  

 The presence of a T3SS homologous to that of T3SS-2 in the V. parahaemolyticus 

pathogenicity island suggests a common origin of this region in the two species.  

Interestingly, several strains encode a T3SS phylogenetically more closely related to that 

of V. parahaemolyticus than to each other, suggesting horizontal gene transfer of this 

region has occurred between the two species.  The role of secretion systems in host-

pathogen interactions has been demonstrated and the observation that the T6SS of V. 

cholerae is cytotoxic for Dictyostelium amoebae (Pukatzki et al., 2006), a predaceous 

organism found in aquatic environments, suggests T3SS of VPI-2 may play a similar 

environmental role.  Clinical and environmental strains were found in both groups with 

high levels of polymorphism relative to other VPI-2 regions and the V. cholerae 

backbone, suggesting a “trench warfare” model of host-pathogen interactions for the high 

levels of polymorphism, preventing the host from adapting to an ubiquitous allele, as has 

been demonstrated with T3SS of Pseudomonas syringae (Guttman et al., 2006; Ma et al., 
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2006).  Further, hypervariability was observed within this region as evidence of two 

horizontal transfer events were observed between V. cholerae 12129(1) and TMA21.  

 The presence of a homologous type-1 restriction modification system in a VPI-2 

like element in the genome of Vibrio sp. Ex25, a deep-sea Vibrio, and a homologous 

sialic acid metabolism region in the backbone of V. orientalis suggests there is more than 

a single function for this region in niches other than the human intestine.  Sialic acid 

catabolism has been shown to enhance colonization of V. cholerae in the mouse intestine 

(Almagro-Moreno and Boyd, 2009a) and to be confined primarily to pathogens and 

commensals of mammals (Almagro-Moreno and Boyd, 2009b).  However, V. orientalis 

was originally isolated from a shrimp.  Interestingly, sialic acids are found in some 

marine organisms (Saito et al., 2001) suggesting this gene cluster found in V. orientalis 

may be involved in scavenging this sialic these organisms.  Thus, the sialic acid cluster of 

V. orientalis represents a distantly related homolog of the VPI-2 sialic acid metabolism 

cluster that is involved in non-human host interactions in the environment.  Interestingly, 

evidence of horizontal transfer of ORFs from this cluster has been reported (de Koning et 

al., 2000). 

New variants are described and compared with the canonical V. cholerae N16961 

O1 El Tor VPI-2.  Novel variants in V. cholerae MJ-1236, an O1 El Tor hybrid strain 

isolated from a clinical case in Bangladesh in 1994, Vibrio sp. Ex25, a deep-sea Vibrio 

isolated from an hydrothermal vent are described.  Results of this study demonstrate that 

flexibility is a characteristic of VPI-2, and show that VPI-2 and VPI-2-like elements are 

present in clinical and environmental V. cholerae and non-cholera vibrios. 
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In conclusion, VPI-2 is a fitness island that can be optimized for different niches, 

one of these niches being the human intestine with other microniches existing in the 

aquatic environment.  However, optimization for one niche does not rule out utility in 

another as is seen by the canonical variant in environmental strains.  This variant is 

optimized for functioning in the human intestine but remains stable in the environment, 

while the T3SS variants may be optimized for interaction with aquatic organisms or 

defense against predation. 
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Table 4.1.  Strains used in this study.  NCBI Genbank accession numbers are listed in the 

right-hand column. 

 

 

 

 

 

 

 

 

 

Strain Serogroup Biotype Geographical origin
Source of 

isolation

Year of 

isolation
Accession

V. cholerae  B33 O1 Ogawa El Tor Beira, Mozambique clinical 2004 ACHZ00000000

V. cholerae  CIRS101 O1 Inaba El Tor Dhaka, Bangladesh clinical 2002 ACVW00000000

V. cholerae  623-39 non-O1/O139 Bangladesh environmental 2002 NZ_AAWG00000000

V. cholerae  AM-19226 O39 Bangladesh clinical 2001 NZ_AATY01000000

V. cholerae  MJ-1236 O1 Inaba El Tor Matlab, Bangladesh clinical 1994 CP001485/CP001486

V. cholerae  BX 330286 O1 Inaba El Tor Australia environmental 1986 ACIA00000000

V. cholerae  1587 O12 Lima, Peru clinical 1994 NZ_AAUR01000000

V. cholerae  MO10 O139 Madras,India clinical 1992 AAKF03000000

V. cholerae  V51 O141 USA clinical 1987 NZ_AAKI02000000

V. cholerae  RC9 O1 Ogawa El Tor Kenya clinical 1985 ACHX00000000

V. cholerae  12129(1) O1 Inaba El Tor Australia environmental 1985 ACFQ01000000 

V. cholerae  TMA21 non-O1/O139 Brazil environmental 1982 ACHY00000000

V. cholerae  2740-80 O1 Inaba El Tor US Gulf Coast environmental 1980 NZ_AAUT01000000

V. cholerae  TM 11079-80 O1 Ogawa El Tor Brazil environmental 1980 ACHW00000000

V. cholerae  N16961 O1 Inaba El Tor Bangladesh clinical 1975 NC_002505/NC_002506

V. cholerae  V52 O37 Sudan clinical 1968 AAKJ02000000

V. cholerae  O395 O1 Ogawa classical India clinical 1965 NC_009456/NC_009457

V. cholerae  MAK757 O1 Ogawa El Tor Celebes Islands clinical 1937 NZ_AAUS00000000

V. cholerae  M66-2 O1 Indonesia clinical 1937 NC_012578

V. cholerae  NCTC 8457 O1 Inaba El Tor Saudi Arabia clinical 1910 NZ_AAWD01000000

V. mimicus MB-451 Bangladesh clinical NZ_ADAF00000000

V. orientalis  CIP 102891 China environmental NZ_ACZV00000000

Vibrio  sp. Ex25 deep sea vent, East Pacific Rise environmental NC_013456/NC_013457

V. parahaemolyticus  RIMD 2210633 
a Osaka, Japan clinical 1996 NC_004603/NC_004605

a = used for comparison purposes and not considered to encode VPI-2 
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Table 4.2. Average G+C% content of the VPI-2 regions.  

 

 

 

 

 

 

 

 

 

 

Organsim Genome
Total 

VPI-2
V51 Phage

Phage 

Integrase

MJ-1236 

Phage
T3SS T1RMS

Sialic Acid 

Metabolism

Ex25 

Phage

Mu-like 

Phage

V. cholerae  N16961 47 43 - 44 - - 43 43 - 42

V. cholerae RC9 47 43 - 44 - - 44 43 - 41

V. cholerae  MJ-1236 47 42 - 44 40 - 44 43 - 41

V. cholerae  B33 47 43 - 44 - - 44 43 - 41

V. cholerae  CIRS 101 47 43 - 44 - - 43 43 - .

V. cholerae  INDRE 91/1 47 43 - 44 - - 43 43 - 41

V. cholerae  MO10 47 42 - 44 - - - - -
V. cholerae  BX 330286 47 43 - 44 - - 44 43 - 41

V. cholerae  8457 47 43 - 44 - - 43 43 - 42

V. cholerae 274080 47 43 - 44 - - 43 43 - 41

V. cholerae M66-2 47 42 - 44 - - 43 43 - -

V. cholerae  MAK757 47 43 - 44 - - 43 43 - -

V. cholerae  O395 47 43 - 44 - - 44 43 - 41

V. cholerae  V52 47 43 - 44 - - 43 43 - 42

V. cholerae  TM-11079 47 43 - 44 - - 43 43 - -

V. cholerae 12129(1) 47 40 - 44 - 38 - 43 - -

V. cholerae TMA21 47 40 - 44 - 38 - 43 - -

V. cholerae AM-19226 47 40 - 44 - 38 - 43 - -

V. cholerae  1587 47 41 - 43 - 37 - 43 - -

V. cholerae  623-39 47 41 - 43 - 37 - 43 - -

V. cholerae  V51 47 43 47 43 - 38 - 43 - -

V. mimicus  MB451 46 44 - - - - - 44 - -

Vibrio  sp. Ex25 44 42 - 43 - - 42 - 42 -

V. orientalis  ORI891 44 45 - - - - - 45 - -

V. parahaemolyticus 45 - - - - 39 - - - -

Mean 42 47.0 43.8 40.0 37.9 43.3 43.1 42.0 41.3
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Table 4.3.  Nucleotide diversity of VPI-2 regions between different groups of VPI-2 

encoding vibrios. 

 

S Θ π

Type-1 restriction modification system 15 2763 0.054927 0.0298 (0.0356 
a
)

     V. cholerae  only 14 1049 0.020588 0.00985 (0.0029)

          clinical V. cholerae 11 4 0.000086 0.00007 (0.0014)

                7
th

 pandemic V. cholerae 6 0 0 0 (0)

     environmental V. cholerae and Vibrio  sp. Ex25 4 2810 0.095212 0.0963 (0.1302)

T3SS 
b 7 1897 0.157664 0.18908

     V. cholerae  only 6 1624 0.144738 0.1766 (0.00810)

     clinical V. cholerae  and V. parahaemolyticus 4 1883 0.209141 0.219745

Sialic acid metabolism 19 555 0.017878 0.0133 (0.00691)

     clinical strains (V. cholerae  only) 13 330 0.011971 0.00897 (0.00566)

                7
th

 pandemic V. cholerae 6 0 0 0 (0)

     environmental V. cholerae 6 594 0.026693 0.0242 (0.0111)

Mu-like Phage Region 12 73 0.00522 0.002627 (0.00337)

     clinical V. cholerae 9 0 0 0 (0.00164)

               7
th 

pandemic V. cholerae 6 0 0 0 (0)

     environmental V. cholerae 3 87 0.012441 0.0124 (0.00868)

a = calculations for concatenated and mdh , groEL , and toxR  alignment (3506 bp)

b = T3SS-2 of V. parahaemolyticus  was included in this analysis

c = n < 4

16858

5156

9754

4668

Region n size
Total
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Figure 4.1. Schematic representation of VPI-2 variants found in this study.  Homologous regions are coded in each variant by 

shade and pattern. 
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Figure 4.1 cont’d 
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Figure 4.2.  Heat map showing results of BLASTN comparison of representative variants against all strains used in this study.
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Figure 4.3. Neighbor-Joining tree of the type-1 restriction modification system. 
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Figure 4.4. Neighbor-Joining tree of the sialic acid metabolism region. 
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Figure 4.5. Neighbor-Joining tree of the concatenated type-1 restriction modification 

system and sialic acid metabolism regions. 

 

 

 

 

 

 

 

 

 

 



 

 92 

 

 

Figure 4.6. Neighbor-Joining tree of the type three secretion system. 
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Figure 4.7. . Neighbor-Joining tree of the Mu-like phage region. 
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Chapter 5:  Comparative Genomics Reveals Evidence of Two 

Novel Vibrio Species Closely Related to V. cholerae 
 

 

Abstract 

In recent years genome sequencing has been used to characterize new bacterial 

species, a method of analysis available as a result of improved methodology and reduced 

cost.  Included in a constantly expanding list of Vibrio species are several that have been 

reclassified as novel members of the Vibrionaceae.  The description of two putative new 

Vibrio species, Vibrio sp. RC341 and Vibrio sp. RC586 for which we propose the names 

V. metecus and V. parilis, respectively, previously characterized as non-toxigenic 

environmental variants of V. cholerae is presented in this study.  Based on results of 

whole-genome average nucleotide identity (ANI), average amino acid identity (AAI), 

rpoB similarity, MLSA, and phylogenetic analysis, the new species are concluded to be 

phylogenetically closely related to V. cholerae and V. mimicus.  Vibrio sp. RC341 and 

Vibrio sp. RC586 demonstrate features characteristic of V. cholerae and V. mimicus, 

respectively, on differential and selective media, but their genomes show a 12 to 15% 

divergence (88 to 85% ANI and 92 to 91% AAI) compared to the sequences of V. 

cholerae and V. mimicus genomes (ANI <95% and AAI <96% indicative of separate 

species).  Vibrio sp. RC341 and Vibrio sp. RC586 share 2104 ORFs (59%) and 2058 

ORFs (56%) with the published core genome of V. cholerae and 2956 (82%) and 3048 

ORFs (84%) with V. mimicus MB-451, respectively.  The novel species share 2926 ORFs 

with each other (81% Vibrio sp. RC341 and 81% Vibrio sp. RC586).  Virulence-
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associated factors and genomic islands of V. cholerae and V. mimicus, including VSP-I 

and II, were found in these environmental Vibrio spp.  Results of this analysis 

demonstrate these two environmental vibrios, previously characterized as variant V. 

cholerae strains, are new species which have evolved from ancestral lineages of the V. 

cholerae and V. mimicus clade.  The presence of conserved integration loci for genomic 

islands as well as evidence of horizontal gene transfer between these two new species, V. 

cholerae, and V. mimicus suggests genomic islands and virulence factors are transferred 

between these species. 

 

Introduction 

The genus Vibrio comprises a diverse group of gamma-proteobacteria 

autochthonous to the marine, estuarine, and freshwater environment.  These bacteria play 

a role in nutrient cycling, degrade hydrocarbons, and can be devastating pathogens for 

fish, shellfish, and mammals as well as humans (Pacha, et al. 1969; Kushmaro, et al., 

2001).  From 1981 to 2009, the number of validly described species within the genus 

increased from 21 to 100 (Thompson et al., 2004).  The most notorious, V. cholerae, is 

the etiological agent of the severe diarrheal disease cholera, endemic in southeast Asia for 

at least 1,000 years and the cause of seven pandemics since 1817.  Shown to be 

autochthonous to the aquatic environment globally, more than 200 serogroups of V. 

cholerae have been described.  Epidemics of cholera are caused by V. cholerae O1 and 

O139, with V. cholerae non-O1/non-O139 strains associated with sporadic cholera cases 

and extraintestinal infections (Huq et al., 1983; Nair et al., 1988).  Cholera infections 

have been ascribed to the presence and expression of virulence genes, e.g., ctxA, tcpA, 
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tcpP, and toxT (Davis et al., 1981; Shinoda et al., 2004), which are also harbored by 

toxigenic strains of V. mimicus, a phylogenetic near-neighbor of V. cholerae.  Genomic 

analyses of V. cholerae and V. mimicus demonstrated significant similarity, suggesting 

horizontal exchange of virulence factors, such as CTXΦ and VPIs-1 and -2 (Boyd et al., 

2000).  Based on results of phylogenetic analyses reported by Thompson et al.(2006), V. 

cholerae and V. mimicus should be assigned to separate genera, a taxonomic assignment 

not yet resolved. 

 The aims of this study were to describe the genomes of two Vibrio strains 

previously characterized as variant V. cholerae by culture-based and molecular methods 

(Choopun, 2004; Zo, 2005), and compare them to closely related Vibrio genomes.  

Results of this study suggest these two strains represent novel species and demonstrate 

evidence of horizontal gene transfer with their near-neighbors, V. cholerae and V. 

mimicus.  We present here the genomic characterization of two new Vibrio species, 

Vibrio sp. RC341 (for which we propose the name Vibrio metecus) and Vibrio sp. RC586 

(for which we propose the name Vibrio parilis), that share a close phylogenetic and 

genomic relationship with V. cholerae and V. mimicus, but are distinct species, based on 

comparative genomics, average nucleotide identity (ANI), average amino acid identity 

(AAI), multi-locus sequence analysis (MLSA), and phylogenetic analysis.  Also, we 

present results of a comparative genomic analysis of these two novel species with 22 V. 

cholerae, two V. mimicus and one each of V. vulnificus and V. parahaemolyticus (Table 

5.1).  The new Vibrio species are characterized as Vibrio sp. RC341 and Vibrio sp. 

RC586, sharing genes and mobile genetic elements with V. cholerae and V. mimicus.  

These data suggest that Vibrio sp. RC341 and Vibrio sp. RC586 may act as reservoirs of 
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mobile genetic elements, including virulence islands, for V. cholerae and V. mimicus,  

Horizontal gene transfer among these bacteria enables colonization of new niches in the 

environment, as well as conferring virulence in the human host. 

 

Methods 

Genome Sequencing 

Draft sequences were obtained from a blend of Sanger and 454 sequences and 

involved paired end Sanger sequencing on 8kb plasmid libraries to 5X coverage, 20X 

coverage of 454 data, and optional paired end Sanger sequencing on 35kb fosmid 

libraries to 1-2X coverage (depending on repeat complexity).  To finish the genomes, a 

collection of custom software and targeted reaction types were used.  In addition to 

targeted sequencing strategies, Solexa data in an untargeted strategy were used to 

improve low quality regions and to assist gap closure.  Repeat resolution was performed 

using in house custom software (Han and Chain, 2006).  Targeted finishing reactions 

included transposon bombs (Goryshin and Reznikoff, 1998), primer walks on clones, 

primer walks on PCR products, and adapter PCR reactions.  Gene-finding and annotation 

were achieved using an automated annotation server (Aziz et al., 2008).  The genomes of 

these organisms have been deposited in the NCBI Genbank database (accession nos.  

NZ_ACZT00000000 and NZ_ADBD00000000). 
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Comparative Genomics 

Genome to genome comparison was performed using three approaches, since 

completeness and quality of nucleotide sequences varied from strain to strain in the set 

examined in this study.  Firstly, nucleotide sequences, as whole contigs were directly 

aligned using the MUMmer program (Kurtz et al., 2004).  Secondly, ORFs of a given 

pair of genomes were reciprocally compared each other, using the BLASTN, BLASTP 

and TBLASTX programs (ORF-dependent comparison).  Thirdly, a bioinformatic 

pipeline was developed to identify homologous regions of a given query ORF.  Initially, a 

segment on a target contig homologous to a query ORF was identified using the 

BLASTN program.  This potentially homologous region was expanded in both directions 

by 2,000 bp, after which, nucleotide sequences of the query ORF and selected target 

homologous region were aligned using a pairwise global alignment algorithm (Myers and 

Miller, 1988).  The resultant matched region in the subject contig was extracted and 

saved as a homolog (ORF-independent comparison).  Orthologs and paralogs were 

differentiated by reciprocal comparison.  In most cases, both ORF-dependent and -

independent comparisons yielded the same orthologs, though the ORF-independent 

method performed better for draft sequences of low quality, in which sequencing errors, 

albeit rare, hampered identification of correct ORFs. 

 To determine average nucleotide (ANI) and average amino acid identities (AAI) 

for the purpose of assigning genetic distances between strains and strains to species 

groups, a recripocal best match BLASTN analysis was performed for each genome.  The 

average similarity between genomes was measured as the average nucleotide identity 

(ANI) and average amino acid identity (AAI) of all conserved protein-coding genes, 
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following the methods of Konstantinidis and Tiedje (2005).  By this method, AAI>95% 

and ANI>94% with >85% of protein-coding genes conserved between the pair of 

genomes, is judged to correspond to strains of the same species, whereas AAI<95% and 

ANI <94% and <85% conservation of protein-coding genes indicate different species.  

Dinucleotide relative abundances were determined for each genome used in this analysis.  

Genomic dissimilarities between genomes were determined following the methods of 

Karlin et al. (1997).  A multi-locus sequence analysis (MLSA) was determined following 

standard methods for the Vibrionaceae (Thompson et al., 2009).  Data for the MLSA 

were reported as percent similarity between concatenated homologous ORFs for the 

genomes which encoded these ORFs.  These criteria were applied to results of the 

analyses employed in this study. 

 

Identification and Annotation of Genomic Islands 

Putative genomic islands (GIs) were defined as a continuous array of five or more 

ORFs discontinuously distributed among genomes of test strains following the methods 

of Chun et al (2009).  Correct transfer or insertion of GIs was differentiated from deletion 

events by comparing genome-based phylogenetic trees and complete matrices of pairwise 

orthologous genes between test strains. Identified GIs were designated, and annotated 

using the BLASTP search of its member ORFs against the Genbank nr database.  Arrays 

of continuous unique ORFs annotated as encoding phage-related elements and/or 

transposases were also identified as putative genomic islands.  Genomic islets were 

identified as regions less than 5 ORFs and flanked by genomic island insertion loci Chun 
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et al. 2009).  Putative genomic islands were also investigated using the web-based 

application IslandViewer (Langille and Brinkman, 2009). 

 

Phylogenomic Analyses Employing Genome Sequences 

A set of orthologues for each ORF of V. cholerae N16961 was obtained for different sets 

of strains, and individually aligned using the CLUSTALW2 program (Larkin et al., 

2007).  The resultant multiple alignments were concatenated to generate genome scale 

alignments that were subsequently used to reconstruct the neighbor-joining phylogenetic 

tree (Saitou and Nei, 1987).  The evolutionary model of Kimura was used to generate the 

distance matrix (Kimura, 1980).  The MEGA program was used for phylogenetic analysis 

(Kumar et al., 2008). 

 

 

Results and Discussion 

Strains 

The two strains analyzed in this study, Vibrio sp. RC341 and Vibrio sp. RC586, were 

isolated from water samples from the Chesapeake Bay, MD in 1999.  Vibrio sp. RC341 

and Vibrio sp. RC586 were presumptively classified as variant V. cholerae (Choopun, 

2004; Zo, 2005), based on amplification of the 16S-23S intergenic spacer unit (Chun et 

al., 1999) and similarity to the 16S ribosomal RNA of V. cholerae.  Vibrio sp. RC341 

appears yellow V. cholerae-like cells and Vibrio sp. RC586 appears as green V. mimicus-

like cells on TCBS agar.  Both strains were typeable with V. cholerae antisera, Vibrio sp. 
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RC586 as serogroup O133 and Vibrio sp. RC341 as serogroup O153 (Choopun, 2004; 

Zo, 2005). 

 

General Genome Overview 

The genomes of Vibrio sp. RC341 and Vibrio sp. RC586 span 28 and 16 contigs, 

respectively, and putatively encode 3574 and 3592 ORFs totaling 4,008,705  bp and 

4,082,591 bp, respectively.  Vibrio sp. RC341 encodes 91 RNAs, 71 of which are tRNAs.  

Vibrio sp. RC586 encodes 115 RNAs, 91 of which are tRNAs.  The %GC content of each 

genome is ca. 46%, while the %GC content of V. cholerae strains is 47%.  Vibrio sp. 

RC341 encodes 681 hypothetical proteins (19% of total ORFs) and Vibrio sp. RC586 

encodes 719 hypothetical proteins (19.6% of total ORFs) determined by subsystem 

annotation.  Twenty-four of these hypothetical proteins of Vibrio sp. RC586 and 48 of 

Vibrio sp. RC341 showed no homology to any of the sequences in the NCBI database. 

 Both genomes putatively encode two chromosomes, determined by comparing 

both chromosomes of V. cholerae N16961 to draft genome sequences of Vibrio sp. 

RC341 and Vibrio sp. RC586 using the MUMmer program (Kurtz et al., 2004) (see 

additional figures 5.1 and 5.2).    The smaller chromosome of Vibrio sp. RC586 

putatively encodes 1035 predicted ORFs, totaling approximately 1,155,676 bp.  By this 

method, 951 ORFs were detected in Vibrio sp. RC341 totaling 987,354 bp.  The smaller 

size of the second chromosome of Vibrio sp. RC341 can be attributed to low-quality 

coverage of this genome or uncaptured gaps.  Both putative small chromosomes of the 

two species encode a superintegron region homologous to that of V. cholerae.  The 

superintegron region of Vibrio sp. RC586 is ca. 93.6 kb, putatively encodes 96 ORFs, 66 



 

 102 

(69%) of which are hypothetical proteins and the superintegron region of Vibrio sp. 

RC341 is ca. 68.6 kb, putatively encodes 66 ORFs, only 17 (26%) of which are 

hypothetical proteins.  Interestingly, the superintegron of Vibrio sp. RC341 encodes 

several membrane bound proteins suggesting their role in the interaction with the 

extracellular environment. 

 

Genome Comparisons 

The genomes of Vibrio sp. RC341 and Vibrio sp. RC586 were compared with each other 

and to 22 V. cholerae, two V. mimicus, one V. vulnificus and one V. parahaemolyticus 

genome sequences by pairwise reciprocal BLAST analysis.  Vibrio sp. RC341 and Vibrio 

sp. RC586 share 2104 non-duplicated ORFs (58% of the Vibrio sp. RC341 protein-

coding genome) and 2058 non-duplicated ORFs (57% of the Vibrio sp. RC586 protein-

coding genome) with 22 V. cholerae strains.  Chun et al. (2009) determined that the 

current V. cholerae core contains 2432 ORFs, indicating a dramatic difference in number 

of core genes between Vibrio sp. RC341/RC586 and V. cholerae core genomes.  Vibrio 

sp. RC341 shares 2613 ORFs with V. cholerae N16961 (73% of V. sp. RC341), and 

Vibrio sp. RC586 shares 2581 ORFs with V. cholerae N16961 (71% of Vibrio sp. 

RC586) (Figure 5.1).   Vibrio sp. RC341 shares 2956 ORFs with V. mimicus MB-451 

(82% of Vibrio sp. RC341), and Vibrio sp. RC586 shares 3048 ORFs with V. mimicus 

MB-451 (84% of Vibrio sp. RC586) (Figure 5.1).  Vibrio sp. RC341 and Vibrio sp. 

RC586 share 2926 ORFs with each other (81% of ORFs in both genomes) (Figure 5.1). 

 To determine average nucleotide identity (ANI) and average amino acid identity 

(AAI) between each genome, the average pairwise similarity between ORFs conserved 
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between the compared genomes was calculated, following methods of Konstantinidis and 

Tiedje (2006) and Konstantinidis et al. (2005).  In this approach, two genomes with an 

ANI >95% and AAI >96% belong to the same species, while those with ANI and AAI 

below these thresholds, comprise separate species (Konstantinidis and Tiedje, 2006) and 

Konstantinidis et al. 2005).  The ANI and AAI between Vibrio sp. RC586 and Vibrio sp. 

RC341 was 85 and 92%, respectively (see additional figures 5.3, 5.4, and 5.5).  The ANIs 

between Vibrio sp. RC586 and individual V. cholerae ranged between 84 and 86%, while 

the ANI between Vibrio sp. RC341 and V. cholerae ranged between 85 and 86% (see 

additional figures 5.3, 5.4, and 5.5).  The AAIs between Vibrio sp. RC341 and individual 

V. cholerae genomes and Vibrio sp. RC341 and V. cholerae were 92% in all comparisons 

(data not shown).  The ANIs between Vibrio sp. RC586 and V. mimicus MB-451 and 

VM223 were 88% and 87%, respectively, and 86% for Vibrio sp. RC341 and both V. 

mimicus genomes (see additional figures 5.3, 5.4, and 5.5).  The AAI between Vibrio sp. 

RC341 and V. mimicus strains MB-451 and VM223 was 92% in both comparisons, while 

the AAI between Vibrio sp. RC586 and both V. mimicus strains was 93% (data not 

shown). 

 The V. cholerae genomes had ANI >95% and AAI >96% and both V. mimicus 

strains a 98% ANI and AAI.  The ANI for all V. cholerae and both V. mimicus strains 

was 86%.  Based on these data, it is concluded that Vibrio sp. RC341 and Vibrio sp. 

RC586 are, indeed, separate species, genetically distinct from V. mimicus and V. cholerae 

and from each other.  Strains of interspecies comparisons shared <95% ANI and <96% 

AAI with members of other species included in this study, the threshold for species 

demarcation (Konstantinidis and Tiedje, 2006) and Konstantinidis et al. 2005), as applied 
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to Vibrio, Burkholderia, Escherichia, Salmonella, and Shewanella spp. (Konstantinidis et 

al., 2006; Thompson et al., 2009; Vanlaere et al., 2009).  When Vibrio sp. RC341 and 

Vibrio sp. RC586 were compared with the more distantly related V. vulnificus and V. 

parahaemolyticus, Vibrio sp. RC586 showed 72 and 73% ANI and 73 and 73% AAI, 

respectively and Vibrio sp. RC341 73 and 72% ANI and 73 and 73% AAI with V. 

vulnificus and V. parahaemolyticus, respectively (see additional figures 5.3, 5.4, and 5.5).  

Furthermore, comparative analysis of the rpoB sequence demonstrates that Vibrio sp. 

RC341 and Vibrio sp. RC586 have <97.7% sequence identity with the rpoB sequences of 

all V. cholerae and V. mimicus strains included in this study.  In a comparative DNA-

DNA hybridization and ANI analysis, Adékambi et al. (2008) demonstrated that rpoB 

<97.7% correlated with DNA-DNA hybridization <70% and ANI <95%, both being 

interpreted as demarcation thresholds for bacteria.  All V. cholerae strains included in this 

study showed >99.5% rpoB sequence similarity with V. cholerae N16961 (data not 

shown).  Based on a standard MLSA for the Vibrionaceae (Thompson et al., 2009), 

Vibrio sp. RC341 and Vibrio sp. RC586 both <95% pair-wise similarity with V. cholerae, 

V. mimicus, V. vulnificus, and V. parahaemolyticus strains.  All V. cholerae strains and 

both V. mimicus strains used in this analysis demonstrated >95% similarity between 

concatenated genes of like-species (data not shown).  Karlin’s dissimilarity signatures 

were also calculated between these two genomes and the Vibrio genomes used in this 

study.  Vibrio sp. RC586 shared >10 dissimilarity with all V. cholerae (11.5 to 16.2), V. 

vulnificus (19.6), and V. parahaemolyticus (41.6) genomes, and > 7 with both V. mimicus 

strains.  Vibrio sp. RC341 >10 dissimilarity for all V. cholerae (10.2 to 14) except V. 

cholerae B33 (9.4) and TMA21 (9.8).  Vibrio sp. RC341 shared >10 genome signature 
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dissimilarity with V. parahaemolyticus (40.2), V. vulnificus (16.3), and both V. mimicus 

(>14) genomes.  Vibrio sp RC341 and RC586 shared a genomic dissimilarity of 8.7 with 

each other.  Taken together these data indicate that Vibrio sp. RC341 and Vibrio sp. 

RC586 are new species with a high genomic relatedness to V. cholerae and V. mimicus. 

 

Evolution of Vibrio sp. RC341 and Vibrio sp. RC586 Lineages 

The phylogenies of Vibrio sp. RC341 and Vibrio sp. RC586 were inferred by 

constructing a supertree, using a 362,424 bp homologous alignment of V. cholerae, V. 

mimicus, and the new species (Figure 5.2).  Based on the supertree analysis Vibrio sp. 

RC341 and Vibrio sp. RC586 are deeply rooted in ancestral nodes, suggesting ancient 

evolution of the two species.  Results of this phylogentic analysis suggest the Vibrio sp. 

RC341 lineage evolved from a progenitor of the V. cholerae and V. mimicus lineages 

(Figure 5.2), a finding supported by strong bootstrap support and further evidenced by the 

evolutionary distance of V. cholerae and V. mimicus from Vibrio sp. RC341 (see 

additional figure 5.6).  The two V. mimicus strains are interspersed among V. cholerae, 

with respect to evolutionary distance, suggesting that evolutionary distances of V. 

cholerae and V. mimicus are equidistant from Vibrio sp. RC341 (see additional figure 

5.6). 

 The phylogeny of Vibrio sp. RC586 suggests it evolved from an ancestral member 

of the V. mimicus lineage after the lineage evolved from a progenitor of V. mimicus/V. 

cholerae (Figure 5.2).  These iterations are supported by strong bootstrap support 

calculations.  A close evolutionary relationship for Vibrio sp. RC586 and V. mimicus is 

also supported by shorter evolutionary distances between the Vibrio sp. RC586 and V. 
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mimicus strains (see additional figures 5.7 and 5.8).  The evolutionary distance of all 

genomes used in this study from V. cholerae BX 330286, a putative progeny of the 

progenitor of the 7
th

 pandemic clade (Chun et al., 2009; Haley et al., 2010), is shown in 

additional figure 5.9. 

 

Virulence Factors 

Both Vibrio sp. RC586 and Vibrio sp. RC341 genomes encode several virulence 

factors found in toxigenic and non-toxigenic V. cholerae and V. mimicus.  These include 

the toxR/toxS virulence regulators, multiple hemolysins and lipases, VSP-I and II, and a 

type 6 secretion system.  Both VSP islands are also present in pathogenic strains of the 

seventh pandemic clade (Dziejman et al., 2002).  Although neither genome encodes 

CTXΦ phage, the major virulence factor encoding the cholera toxin (CT) that is 

responsible for the profuse secretory diarrhea caused by toxigenic V. cholerae and V. 

mimicus, both genomes do have homologous sequences of the chromosomal attachment 

site for this phage.  Although these genomes do not encode TcpA, the outer membrane 

protein that CTXΦ attaches to during its infection cycle and ToxT, involved in CTXΦ 

replication and activation, they do encode several other mechanisms necessary for the 

complete CTXΦ life cycle and both CT production and translocation, including TolQRA, 

inner membrane proteins involved in CTXΦ attachment to the cell, XerCD tyrosine 

recombinases, which catalyze recombination between CTXΦ and the host genome, 

LexA, involved in CTXΦ expression, and EspD, involved in the secretion of the CTXΦ 

virion and CT translocation into the extracellular environment.      
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 Neither Vibrio sp. RC341 nor Vibrio sp. RC586 encode VPI-1 or VPI-2, but 

Vibrio sp. RC341 encodes one copy of both VSP-I (VCJ_003466-VCJ_003480) and 

VSP-II (VCJ_000310 to VCJ_000324) and Vibrio sp. RC586 encodes one copy of VSP-I 

(VOA_002906-VOA_002918).  However, neither of these strains encodes complete VSP 

islands, but rather variants of canonical VSP islands.  Incomplete VSP islands have been 

frequently found in environmental V. cholerae and V. mimicus isolates (Grim et al., 2010; 

Taviani et al., 2010). 

 The toxR/toxS virulence regulators, hemolysins, lipases, and type 6 secretion 

system are present in all pathogenic and non-pathogenic strains of V. cholerae and both 

VSP islands are present in pathogenic strains of the seventh pandemic.  Presence of these 

virulence factors in V. cholerae genomes sequenced to date, as well as their divergence 

consistent with the conserved core of Vibrio sp. RC341 and Vibrio sp. RC586, suggests 

that they comprise a portion of the backbone of many Vibrio species.  Their widespread 

occurrence suggests the ability of all vibrios to be potential pathogens, but more likely, 

these factors have an important role in their ecology. 

 

Natural Competence 

Analysis of the 22 V. cholerae genomes that have been sequenced revealed the presence 

of type IV pili genes, involved in natural transformation of Haemophilus spp. and 

Neisseria spp. and other competent Bacteria (Barnhart et al., 1963; Wolfgang et al., 

1998).  Vibrio sp. RC341 and Vibrio sp. RC586 also encode this system.  Moreover, both 

species encode all 33 ORFs described by Meibom et al. (2004; 2005) that comprise the 

chitin utilization program for induction of natural competence.  The presence of these 
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systems in the two new species and in V. cholerae indicates natural competence is widely 

employed by vibrios to incorporate novel DNA into their genomes and, thereby, enhance 

both adaption to new environments and in evolution.  Furthermore, the well-established 

association of these bacteria with chitinous organisms and with high densities in biofilms 

(Pruzzo et al., 2008) supports the notion that natural competence and horizontal gene 

transfer are both highly expressed and common in vibrios. 

 

Genomic Islands and Integration Loci for Exogenous DNA 

Analysis of 23 complete and draft V. cholerae genomes by Chun et al. (2009) showed 73 

putative genomic islands to be present.  By pairwise reciprocal comparison, the genomes 

of Vibrio sp. RC341 and Vibrio sp. RC586 are concluded to encode several of these 

genomic islands, as well as many of the insertion loci of V. cholerae genomic island 

(2009), indicating extensive horizontal transfer of genomic islands.  V. cholerae insertion 

loci are not specific to individual genomic islands, but can act as integration sites for a 

variety of islands(2009).  Vibrio sp. RC586 contains 33 putative GI insertion loci and 

Vibrio sp. RC341 contains 40 that are homologous to V. cholerae.  In addition to having 

highly similar attachment sequences and insertion loci, as found in V. cholerae, most of 

the homologous tRNA sequences between Vibrio sp. RC341, Vibrio sp. RC586, and V. 

cholerae are identical (100%).  However, three glutamine-tRNA and one aspartate-tRNA 

sequence of Vibrio sp. RC586 and four glutamine-tRNA and four aspartate-tRNA 

sequences of Vibrio sp. RC341 show between 99 and 97% similarity with homologous V. 

cholerae tRNA sequences.  These sites serve as integration loci for many pathogenicity 

islands.  Interestingly, all tRNA-Ser, the loci most commonly targeted by island encoded 
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integrases of mobile elements in V. cholerae (Boyd et al., 2009), were 100% similar 

between all strains.  This high similarity of platforms serving to insert exogenous DNA 

suggests that the same or highly similar genomic islands are readily shared.  GIs and 

islets with homologous V. cholerae insertion loci and putative function and annotations 

are described in Tables 5.2, 5.3. 

 Vibrio sp. RC586 putatively encodes eighteen genomic islands and islets that 

are also found in V. cholerae (Table 5.3).  Of these, VSP-I, islet -2 and GIs-2, -4, -33, -

34, -35, -41, -62, -64, -73, and Vibrio sp. RC586-GI-1 are located on the large 

chromosome and islets-3 and 4, and GIs-9, -10, -20, -and -61 are located on the small 

chromosome (see additional Table 5.2).  The VSP-I island is located at the homologous 

insertion locus for VSP-I (VOA_002906-VOA_002918) in V. cholerae strains, but is a 

variant of the canonical island having a deletion in VC0175 (deoxycytidylate deaminase-

related protein) and 90% sequence similarity to the canonical island. 

 Vibrio sp. RC586 also encodes five sequences with homology to the CTXΦ 

attachment site, with four of them being tandemly arranged on the putative large 

chromosome (VOA_000105-VOA_000126).  At these loci are four elements with high 

similarity (82 and 81% AAI) to the RS1Φ phage-like elements (rstA1 and rstB1) of V. 

cholerae SCE264 and 97 to 100% nucleotide identity to the RS1Φ-like elements in V. 

cholerae TMA21, TM11079-80, VL426, and 623-39, reported by Chun et al. (2009) to be 

GI-33 (Figure 5.3).  RS1Φ is a satellite phage related to CTXΦ and assists in integration 

and replication of the CTXΦ (Davis and Waldor, 2003; Faruque et al., 2002).  However, 

these V. cholerae strains were either CTXΦ-negative or encode a CTXΦ on the other 

chromosome, while encoding sequences with high similarity to rstA, and rstB of RS1Φ, 
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RS1-type sequences (Mukhopadhyay et al., 2001).  Immediately upstream of the rstA1-

like sequence is an hypothetical protein and immediately downstream of this rstB1-like 

sequence is an hypothetical protein with 52% identity with that of Colwellia 

psychrerythraea 34H, and a sequence with 99% similarity to an end-repeat (ER) region 

and an intergenic region (ig) of CTXΦ (Figure 5.3).  This region may represent a novel 

phage containing ORFs with similarity to the RS1Φ satellite phage and ER and ig-1 

regions with high similarity to CTXΦ.  Absence of an integrase in this region suggests it 

may integrate into the genome via XerCD tyrosine recombinases, as does CTXΦ.  All 

genomic islands shared by V. cholerae and Vibrio sp. RC586 are listed in Table 5.3. 

 Vibrio sp. RC341 putatively encodes 14 genomic islands and islets that are also 

found in V. cholerae (Table 5.2).  VSP-I and -II and GIs-1 to 4, 33, and islets-1 to 5 are 

located on the large chromosome, while GI-9 and 10 are located on the small 

chromosome.  These GIs were described by Chun et al. (2009) and two are single copies 

of VSP-I (VCJ_003466 to VCJ_003480) and VSP-II (VCJ_000310 to VCJ_000324).  

Neither of the VSP islands was present in their entirety, compared to 7
th

 pandemic V. 

cholerae strains.  Similar to the VSP-I variant in Vibrio sp. RC586, the variant in Vibrio 

sp. RC341 has a deletion of VC0175. Also, ORFs VCJ_003468 to VCJ_003470 are 

annotated as phage integrase, transposase, and phage integrase, respectively.  The 

homologous ORFs of this VSP-I variant have a 92% sequence similarity to the canonical 

VSP-I island.  Interestingly, VSP-II variant of Vibrio sp. RC341 contains a 10 kb putative 

phage encoding a type 1 restriction modification system, has a %GC of ca. 38%, and is 

located at the GI-56 insertion locus (tRNA-Met) (Figure 5.4).  This phage shares 

significant similarity with V. vulnificus YJ016 phage (94% query coverage and 98% 
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sequence similarity).  Several variants of VSP-II are encoded in multiple strains of V. 

cholerae (Taviani et al., 2010).  However, the variant encoded in Vibrio sp. RC341 is, to 

date, unique.   

 Interestingly, Vibrio sp. RC341 encodes V. cholerae GI-33, a ca. 2615 bp region, 

(VCJ_001870 to VCJ_001874) similar to RS1Φ-like phage in Vibrio sp. RC586, V. 

cholerae strains VL426, SCE264, TMA21, TM11079-80, and 623-39,  showing 93 to 

96% nucleotide sequence similarity across 67 to 79% of the phage (Figure 5.3).  This 

region in Vibrio sp. RC341 encodes only the rstA1 and rstB1 and the 3’ hypothetical 

protein flanked by CTXΦ-like end repeats and an intergenic region, inserted at the 

homologous CTXΦ attachment site on chromosome I (Figure 5.3).  Analysis of this and 

similar phages inserting at this locus suggests an extremely high diversity of vibriophages 

in both structure and sequence in the environment. 

 

Horizontal Gene Transfer of Genomic Islands 

Homologous genomic islands typically showed higher ANI between strains than the 

conserved backbone regions of these genomes, an indication of recent transfer of these 

islands among the same and different species.  All GIs shared by Vibrio sp. RC586 and V. 

cholerae strains were 87 to 100% ANI%, with the exception of two GIs with 77% (GI-9) 

and 82% (GI-62) ANI.  All GIs among Vibrio sp. RC341 and V. cholerae had 87 to 99% 

ANI, excluding three GIs with 81 to 82% (GIs-3, 9, and 2), and two with and 85% (GI-1, 

Vibrio sp. RC341 islets 1 and 2) ANI. 

 Phylogenetic analysis using homologous ORFs of the genomic islands yielded 

evidence of recent lateral transfer of VSP-I, and GIs-2, 41, and 61 among V. cholerae and 
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Vibrio sp. RC586.  In all cases, phylogenies inferred by the ORFs were incongruent with 

species phylogeny, suggesting the elements were transferred after the species diverged 

(see additional Figures 5.10 to 5.14).  Using the same methods, we found evidence of 

recent lateral transfer of VSP-I, GI-4, and islet-3, between V. cholerae and Vibrio sp. 

RC341.  In all cases, phylogenies inferred by the ORFs were incongruent with species 

phylogeny (see additional Figures 5.12, 5.13, and 5.15).  Our data suggests that VSP-I 

was transferred from a progenitor of the V. cholerae biotype albensis (V. cholerae 

VL426) lineage to Vibrio sp. RC586 and Vibrio sp. RC341.  We also found evidence of 

horizontal transfer of V. cholerae GI-2 from V. cholerae to Vibrio sp. RC586, as well as 

Vibrio sp. RC341 Islet-3 and V. cholerae GI-4 from Vibrio sp. RC341 to V. cholerae 

strains. 

 VSP-II, islets-2, -4, -5, and GIs-1, -2, -3, -9, -10, all present in at least one V. 

cholerae genome and in Vibrio sp. RC341, showed no evidence of horizontal gene 

transfer.  Most likely there are many undescribed variants of these elements, in both 

structure and nucleotide sequence, yet to be found in the natural environment, with 

certain variants more frequently transferred among strains of the same species.  

Coevolution of the island and host genome over time no doubt occurs.  In any case, based 

on the data reported here V. cholerae is not alone in propagating these elements. They 

surely cycle among different but closely related species in the environment. 

 

Unique Genomic Islands 

Vibrio sp. RC586 encodes five unique genomic islands and islets not yet reported 

for V. cholerae.  Vibrio sp. RC586 GI-2 and islet-5 encode phage-like elements.  
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Interestingly, islet-5 is annotated as probable coat protein A precursor, with similarity to 

bacteriophage f237 ORF5 of V. campbellii and zona occludens toxin (zot), with high 

similarity to V. parahaemolyticus and V. harveyi zot (VOA_001598-VOA_001600).  

This phage-like element is inserted at the homologous locus for V. cholerae O1 Classical 

CTXΦ insertion (VCA0569-VCA0570).  Vibrio sp. RC586  GI-4 encodes sequences 

homologous to the Tn7 transposition tnsABCDE, a transposon known to integrate into 

phylogenetically diverse organisms and form genomic islands.  Vibrio sp. RC586 GIs-1, -

3, -4, and islets-1 through 6 all share homologous insertion loci with previously described 

V. cholerae GIs.   

 Vibrio sp. RC341 encodes six putative unique genomic islands not reported 

before.  Vibrio sp. RC341 GIs-1, 2, 3, 4, and 7 all encode phage-like/related elements.  

Vibrio sp. RC341 GI-4 and 7 both encode several transposases and a sequence with 

homology to an insertion-like sequence in the V. parahaemolyticus insertion sequence 

element ISV-3L.  Vibrio sp. RC341 GI-6 (VCJ_002614 to VCJ002618), ca. 4962 bp 

region of hypothetical proteins and transposases, is inserted at the homologous locus for 

V. cholerae O1 Classical CTXΦ, a locus shown to harbor a variety of GIs and phages 

(Chun et al., 2009). 

 

Conclusions 

The genomes of two new Vibrio species previously characterized as variant V. 

cholerae, have been sequenced and their sequences used to describe their interesting and 

important features.  The genomes of both species reveal significant nucleotide sequence 

divergence (12 to 15%) from each other and from V. cholerae and V. mimicus genomes, 
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supporting the conclusion that both represent unique species not described before.  

Moreover, genes conserved among V. cholerae, V. mimicus, and the two new species 

varied sufficiently to suggest ancient speciation via genetic drift of the ancestral core 

genomic backbone.  Furthermore, results of our analyses suggest Vibrio sp. RC341 to 

have evolved from a progenitor of V. cholerae and V. mimicus, whereas Vibrio sp. RC586 

is concluded to have evolved from an early V. mimicus clade.  Although the ANI of all 

genomes analyzed in this study demonstrates divergence, putative genomic islands were 

found to cross species boundaries, often at an higher ANI than the conserved backbone.  

These data, coupled with phylogenetic analyses, point to lateral transfer of the islands and 

phages among V. cholerae, V. mimicus, Vibrio sp. RC341, and Vibrio sp. RC586 in the 

natural environment.  Furthermore, homologous GI insertion loci were present in both 

new species and in the case of V. cholerae, these insertion loci were not GI-specific.  The 

pool of DNA laterally transferred between and among members of the Vibrionaceae 

strongly suggests that near-neighbors of V. cholerae act as reservoirs of mobile genetic 

elements and virulence in the environment and that V. cholerae is not alone in 

propagating these elements therein.  Results of this study also demonstrate a widespread 

allelic variation in these elements and evidence of evolution of mobile genetic elements, 

including pathogenicity islands, through a multistep mosaic recombination with other 

elements, including phage.  The ability of vibrios to incorporate exogenous DNA at 

several loci that encode a large combination of GIs, thereby, allows optimization of the 

genome for success in a specific niche or wider ecology in the natural environment. 



 

 115 

 

 

 

Table 5.1.  Vibrio strains used in the comparative genomics utilized in this study.  NCBI Genbank accession numbers are listed 

in the right column. 

 

Species Strain
Serogroup/ 

Serotype
Biotype Geographical origin

Source of 

isolation

Year of 

isolation
Accession

Vibrio sp. RC341 RC341 O153 Chesapeake Bay Water 1999 NZ_ACZT00000000

Vibrio sp. RC586 RC586 O133 Chesapeake Bay Water 1999 NZ_ADBD00000000

V. cholerae N16961 O1 Inaba El Tor Bangladesh Clinical 1975 NC_002505/NC_002506

V. cholerae RC9 O1 Ogawa El Tor Kenya Clinical 1985 NZ_ACHX00000000

V. cholerae MJ-1236 O1 Inaba El Tor Matlab, Bangladesh Clinical 1994 NC_012668/NC_012667

V. cholerae B33 O1 Ogawa El Tor Beira, Mozambique Clinical 2004 NZ_ACHZ00000000

V. cholerae MO10 O139 Madras,India Clinical 1992 NZ_AAKF00000000

V. cholerae 2740-80 O1 Inaba El Tor US Gulf Coast Water 1980 NZ_AAUT01000000

V. cholerae BX 330286 O1 Inaba El Tor Australia Water 1986 NZ_ACIA00000000

V. cholerae MAK757 O1 Ogawa El Tor Celebes Islands Clinical 1937 NZ_AAUS00000000

V. cholerae NCTC 8457 O1 Inaba El Tor Saudi Arabia Clinical 1910 NZ_AAWD01000000

V. cholerae O395 O1 Ogawa Classical India Clinical 1965 NC_009456/NC_009457

V. cholerae V52 O37 Sudan Clinical 1968 NZ_AAKJ02000000

V. cholerae 12129(1) O1 Inaba El Tor Australia Water 1985 NZ_ACFQ00000000

V. cholerae TM 11079-80 O1 Ogawa El Tor Brazil Sewage 1980 NZ_ACHW00000000

V. cholerae VL426 non-O1/O139 albensis Maidstone, Kent, UK Water Unknown NZ_ACHV00000000

V. cholerae TMA21 non-O1/O139 Brazil Seawater 1982 NZ_ACHY00000000

V. cholerae 1587 O12 Lima, Peru Clinical 1994 NZ_AAUR01000000

V. cholerae RC385 O135 Chesapeake Bay Plankton 1998 NZ_AAKH02000000

V. cholerae MZO-2 O14 Bangladesh Clinical 2001 NZ_AAWF01000000

V. cholerae V51 O141 USA Clinical 1987 NZ_AAKI02000000

V. cholerae MZO-3 O37 Bangladesh Clinical 2001 NZ_AAUU01000000

V. cholerae AM-19226 O39 Bangladesh Clinical 2001 NZ_AATY01000000

V. cholerae 623-39 non-O1/O139 Bangladesh Water 2002 NZ_AAWG00000000

V. mimicus VM223 Sao Paulo, Brazil Bivalve NZ_ADAJ00000000

V. mimicus MB-451 Matlab, Bangladesh Clinical NZ_ADAF00000000

V. parahaemolyticus RIMD2210633 O3:K6 Kansai, Japan Clinical 1996 NC_004603/NC_004605

V. vulnificus YJ016 1 Taiwan Clinical NC_005139/NC_005140
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GI Hosts Direction of Transfer Description/Functional Annotation

Vibrio sp. RC341 GI-1 VCJ_000612-VCJ_000633 
e

VC0378-VC0379 
f

25 
g N/A

site-specific recombinase, phage integrase family, methyl-accepting chemotaxis protein, 

hypothetical proteins, putative phage-related replication initiation protein

VSP-I 
a, b, d VCJ_003465-VCJ_003481 VC0186-VC0174 1-5, 20, 23 V. cholerae  → RC341 VSP-I

VSP-II 
b, d VCJ_000309-VCJ_rna011 VC0489-VC0517

1-5, 

17,18,21, 

25

N/A VSP-II; phage integrase, type I restriction modification system

Vibrio sp. RC341 Islet-1 
b VCJ_000450-VCJ_000452 VC0080-VC0081 21,24, 25 N/A methyl-accepting chemotaxis protein/sensory box protein

Vibrio sp. RC341 GI-2 
 c VCJ_000471-VCJ_rna020 VC0060 None N/A

integrase for prophage CP-933T, putative replication initiation protein, phage-related, C 

protein, methyl-accepting chemotaxis protein

Vibrio sp. RC341 GI-3 
 c, d VCJ_001039-VCJ_001102 VC1425 None N/A transposases, chitinase, ompA precursor, phage-related protein, antirestriction protein

Vibrio sp. RC341 Islet-2 
b VCJ_001117-VCJ_001119 VC1407-VC1411 1-17, 19, 21 N/A multidrug efflux pump operon, TetR (AcrR) family

Vc GI-1 
b VCJ_001123-VCJ_001134 VC1391-VC1406 1-16, 19 N/A motility and chemotaxis

Vibrio sp. RC341 Islet-3 
a, b VCJ_001197-VCJ_001202 VC1328-VC1332

12, 14, 15, 

18
RC341 → V. cholerae multidrug resistance efflux pump

Vibrio sp. RC341 GI-4 
 c, d VCJ_001439-VCJ_01452 VC2622-VC2623 None N/A

putative regulatory prophage protein, phage recombinase, putative, type I restriction-

modification system

Vibrio sp. RC341 Islet-4 
b VCJ_001536-VCJ_001538 VC2714-VC2715

10, 13, 15, 

16, 18, 19
N/A GGDEF domain protein

Vc GI-33 
d VCJ_001869-VCJ_001875 VC1445-VC1480 15, 20-23 N/A RSΦ-like element

Vibrio  sp. RC341 Islet-5 
b VCJ_001947-VCJ_001950 VC1560-VC1563

1-13, 16-19, 

23
N/A Beta-lactamase-related protein, LysR-family transcriptional regulator VC1561

Vc GI-2 
b VCJ_001965-VCJ_001969 VC1587-VC1579

1-9, 11-12, 

18, 20, 23
N/A superoxide stress response

Vc GI-3 
b VCJ_002126-VCJ_002130 VC1746-VC1754

1-9, 11-12, 

18-19, 21
N/A paraquat-inducible protein A, small-conductance mechanosensitive channel

Vibrio sp. RC341 GI-5 
c VCJ_002133-VCJ_002141 VC1757-VC1810 None N/A

anaerobic C4-dicarboxylate transporter dcuC, tripeptide aminopeptidase, alpha-aspartyl 

dipeptidase peptidase E, serine/threonine protein kinase related protein, adenylate cyclase, 

transcriptional regulator

Vc GI-4 
a, b, d VCJ_002147-VCJ_002157 VC1816-VC1828

1-12,15, 17-

19, 23, 24
RC341 → V. cholerae carbohydrates (PTS system)

Vc GI-9 
b VCJ_003140-VCJ_003132 VCA0849-VCA0859

All exc. 18, 

19-20
N/A response regulator, autolysin sensor kinase, ABC-type transport system

Vc GI-10 
b VCJ_003152-VCJ_003207 VCA0870-VCA0885

7, 10, 14, 

17, 18, 20, 

22, 23

N/A
phage integrase, streptococcal hemagglutinin protein, secretion activator protein, 

hypothetical proteins, type II restriction modification system

Vibrio sp. RC341 GI-6 
 c VCJ_002613-VCJ_002619 VCA0569-VCA0570 None N/A transposases, hypothetical proteins

Vibrio sp. RC341 GI-7 
 c, d VCJ_002860-VCJ_002887 VCA0235-VCA0236 None N/A

phage-related protein, transposases, type I restriction modification system, hypothetical 

protein, DNA helicase related protein

Vibrio sp. RC341 Islet-6 
 c VCJ_002907-VCJ_002910 VCA0197-VCA0204 None N/A transposase, hypothetical protein

a  evidence of horizontal transfer as determined by incongruent phylogeny (see additional file 1: Figs. 10 to 15)

b genomic islands found in clinically isolated strains of V. cholerae or V. mimicus as determined by Chun et al. [15]

c genomic islands not yet found in other strains

d confirmed by IslandViewer [41]

e  insertion loci in Vibrio sp RC341 (either flanking genes or island borders if island runs off both ends of a contig)

f  homologous flanking ORFs in V. cholerae  N16961 as determined by Chun et al. [15]

g  strains used in this study encoding the same islands  (see additional file: Table 3)

Vibrio sp. RC341

Insertion Site
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I
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e 
II
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Table 5.2.  Putative genomic islands of Vibrio sp. RC341. 
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Vc GI-33
 d

VOA_000105-VOA_000126 
e

VC1445-VC1481 
f 

15, 20-23 
g N/A RS1Φ-like element

Vibrio sp. RC586 Islet-1 VOA_000163-VOA_000165 VC1519-VC1520     None N/A hypothetical protein

Vc GI-64 VOA_000199-VOA_000212 VC1560-VC1561 18, 20 N/A lux operon

Vibrio sp. RC586 GI-1 VOA_000212-VOA_000216 VC1560-VC1562 18 N/A hypothetical and conserved proteins with similarity to V. cholerae  RC385 and V. vulnificus

Vc GI-2
 a, b VOA_000234-VOA_000239 VC1582-VC1587

1-9, 11-12, 

18, 20, 23
V. cholerae  → RC586 superoxide stress response

Vibrio sp. RC586 GI-2 
c, d VOA_000549-VOA_000568 VC1067-VC1068 None N/A phage-related proteins, hypothetical proteins, error-prone repair proteins

Vc GI-41 
a, d VOA_000782-VOA_000810 VC0806-VC0847 18, 22 N/A phage integrase;hypothetical proteins, HCP, VgrG protein

Vibrio sp. RC586 GI-3 
c VOA_002149-VOA_002155 VC1757-VC1810 None N/A

transcriptional regulator, Anaerobic C4-dicarboxylate transporter dcuC, Tripeptide 

aminopeptidase, alpha-aspartyl dipeptidase peptidase E, diguanylate 

cyclase/phosphodiesterase domain 2

Vibrio sp. RC586 GI-4 
c VOA_001387-VOA_001395 VC0487-VC0488 None N/A

transposon Tn7 transposition proteins tnsABCDE, retron-type reverse transcriptase, 

ompA precursor

Vc GI-62 VOA_001969-VOA_001973 VC1407-VC1414 20 N/A type I restriction-modification system

Vc GI-73 
d VOA_002071-VOA_002077 VC1668-VC1669 18 N/A chalcone synthase (EC 2.3.1.74), cytotoxic necrotizing factor 1, ISSod2, transposase

Vc GI-4 
b VOA_002158-VOA_002165 VC1816-VC1828

All exc. 13-

14, 16, 20-

22

N/A carbohydrates (PTS system)

Vc GI-35 
b VOA_002247-VOA_002255 VC1910-VC1911

13-16, 21-

22, 24-25
N/A

MoxR-like ATPase;Outer membrane receptor protein;ABC-type oligopeptide transport 

system;Oligopeptide transport system

Vibrio sp. RC586 Islet-2
 b VOA_rna036-VOA_002388 VC2041-VC2042

All exc. 8,  

18-19
N/A histone deacetylase/AcuC/AphA family protein

Vc GI-34 VOA_003551-VOA_003558 VC2714-VC2715
13-14, 21-

22, 24-25
N/A ribose ABC transport system, Beta-hexosaminidase

VSP-I 
a, b VOA_002906-VOA_002918 VC0174-VC0186 1-5, 20, 23 V. cholerae  → RC586 VSP-I

Vc GI-61 
a, b VOA_001088-VOA_001091 VCA0369-VCA1067 18-19 N/A 

Outer membrane lipoprotein-sorting protein;Predicted exporter of the RND 

superfamily;Transcriptional activator, LuxR/UhpA family of regulators

Vibrio  sp. RC586 Islet-3 VOA_001152-VOA_001156 VCA0018-VCA0022 18, 21 N/A putative membrane protein, hypothetical protein

Vibrio sp. RC586 Islet-4 VOA_001364-VOA_001367 VCA0197-VCA0204 22 N/A chromosome segregation ATPase

Vibrio sp. RC586 Islet-5 
c, d VOA_001597-VOA_001601 VCA0569-VCA0570 None N/A probable coat protein A precursor, zona occludens toxin

Vc GI-20 
b VOA_001636-VOA_001668 VCA0608-VCA0614 7 N/A

DNA methylase, SSU ribosomal protein S2p (SAe), bacteriophage tail sheath protein, 

phage baseplate assembly protein, transposases, lyzozyme

Vibrio sp. RC586 Islet-6 
b VOA_001820-VOA_001822 VCA0789-VCA0797 24-25 N/A periplasmic divalent cation tolerance protein cutA

Vc GI-9 
b VOA_000884-VOA_000892 VCA0849-VCA0859 18-20, 22 N/A response regulator;Autolysin sensor kinase;ABC-type transport system

Vc GI-10 
b, d VOA_000902-VOA_000957 VCA0870-VCA0885

14, 15, 18, 

21, 23
N/A

phage integrase, streptococcal hemagglutinin protein, secretion activator protein, 

hypothetical proteins, type II restriction modification system

a  evidence of horizontal transfer as determined by incongruent phylogeny (see additional file 1: Figs. 10 to 15)

b genomic islands found in clinically isolated strains of V. cholerae or V. mimicus as determined by Chun et al. [15]

c genomic islands not yet found in other strains

d confirmed by IslandViewer [41]

e  insertion loci in Vibrio sp RC586 (either flanking genes or island borders if island runs off both ends of a contig)

f  homologous flanking ORFs in V. cholerae  N16961 as determined by Chun et al. [15]

g  strains used in this study encoding the same islands  (see additional file: Table 3)
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Table 5.3.  Putative genomic islands of Vibrio sp. RC586. 

 

 

 

Table 5.4. Strain no. corresponds to “Host” column in Tables 2 and 3 (above). 

 

 

 

 

 

Strain Strain No.

V. cholerae  N16961 1

V. cholerae  RC9 2

V. cholerae  MJ-1236 3

V. cholerae  B33 4

V. cholerae  MO10B 5

V. cholerae  BX 330286 6

V. cholerae  NCTC 8457 7

V. cholerae  2740-80 8

V. cholerae  MAK 757 9

V. cholerae 12129(1) 10

V. cholerae O395 11

V. cholerae  V52 12

V. cholerae  AM 19226 13

V. cholerae 1587 14

V. cholerae 623-39 15

V. cholerae  MZO-2 16

V. cholerae  MZO-3 17

V. cholerae RC385 18

V. cholerae  V51 19

V. cholerae  VL426 20

V. cholerae TMA21 21

V. cholerae  TM11079-80 22

Vibrio sp. RC341/RC586 23

V. mimicus  MB451 24

V. mimicus  223 25
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Figure 5.1.  Venn diagrams showing ORFs shared by Vibrio sp. RC341, Vibrio sp. 

RC586, V. cholerae N16961, and V. mimicus MB-451.  The number in the middle shows 

the conserved number of ORFs shared by the three strains.  The numbers show that there 

are ORFs unique to that strain or that there are ORFs shared.   
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Figure 5.2.  Neighbor-joining tree based on 362,424 bp alignment of homologous 

sequences unsing the Kimura-2 parameter for nucleotide substitution.  The bootstrap 

supports, as percentage, are indicated at the branching points. Bar represents 0.005 

substitutions per site. 
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Figure 5.3.  RS1Φ-like elements located at CTXΦ attachment sites on the large 

chromosomes of Vibrio sp. RC586 and Vibrio sp. RC341 and the canonical RS1Φ of V. 

cholerae.  SHK = sensor histidine kinase, HP = hypothetical protein, ER = end repeat, ig  

= intergenic region. 
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Figure 5.4.  Novel VSP-II variant found in Vibrio sp. RC341.  Red arrows represent VSP-

II ORFs and blues arrows represent the novel phage-like region in the 3’ region of the 

sequence.  Grey arrows represent the adjacent flanking sequences.  T1R/M = type I 

restriction modification system.  PI = phage integrase. 
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Additional Figure 5.1 MUMmer plot of Vibrio sp. RC586 as query and V. cholerae 

N16961 as reference.  Vibrio sp. RC586 contigs are on Y-axis and V. cholerae N16961 

chromosomes are on X-axis.  V. cholerae N16961 chromosome I begins at XY-intercept 

and chromosome II is located on the right section of the X-axis. 
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Additional Figure 5.2 MUMmer plot of Vibrio sp. RC341 as query and V. cholerae 

N16961 as reference.  Vibrio sp. RC341 contigs are on Y-axis and V. cholerae N16961 

chromosomes are on X-axis.  V. cholerae N16961 chromosome I begins at XY-intercept 

and chromosome II is located on the right section of the X-axis. 
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Additional Figure 5.3.  Average nucleotide identity (ANI%) between Vibrio sp. RC341 

and Vibrio genomes used in this study. 
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Additional Figure 5.4.  Average nucleotide identity (ANI%) between Vibrio sp. RC586 

and Vibrio genomes used in this study. 
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Additional Figure 5.5.  BLAST atlas key for additional Figures 3 and 4. 
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Additional Figure 5.6.  Evolutionary distance of strains used in this study from Vibrio sp. 

RC341 as determined by ANI between Vibrio sp. RC341 and all strains used in this 

study. 
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Additional Figure 5.7.  Evolutionary distance of strains used in this study from Vibrio sp. 

RC586 as determined by ANI between Vibrio sp. RC586 and all strains used in this 

study. 
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Additional Figure 5.8.  Evolutionary distance of Vibrio sp. RC586 and Vibrio sp. RC341 

from V. mimicus MB451 as determined by ANI between V. mimicus MB451 and all 

strains used in this study. 
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Additional Figure 5.9.  Evolutionary distance of Vibrio sp. RC586 and Vibrio sp. RC341 

from strains V. cholerae BX 330286 as determined by ANI between V. cholerae BX 

330286 and all strains used in this study. 
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Additional Figure 5.10.  Phylogeny of the genomic island GI-2 as determined by 

reconstructing a neighbor-joining tree using the Kimura-2 parameter as a nucleotide 

substitution model. 
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Additional Figure 5.11.  Phylogeny of the genomic island GI-41 as determined by 

reconstructing a neighbor-joining tree using the Kimura-2 parameter as a nucleotide 

substitution model. 
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Additional Figure 5.12. Phylogeny of the genomic island GI-4 as determined by 

reconstructing a neighbor-joining tree using the Kimura-2 parameter as a nucleotide 

substitution model. 

 

 

 

 

 

 

 

 



 

136 

 

 

 

 

Additional Figure 5.13. Phylogeny of the genomic island VSP-I as determined by 

reconstructing a neighbor-joining tree using the Kimura-2 parameter as a nucleotide 

substitution model. 
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Additional Figure 5.14.  Phylogeny of the genomic island GI-61 as determined by 

reconstructing a neighbor-joining tree using the Kimura-2 parameter as a nucleotide 

substitution model. 
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Additional Figure 5.15.  Phylogeny of Vibrio sp. RC341 Islet-3 as determined by 

reconstructing a neighbor-joining tree using the Kimura-2 parameter as a nucleotide 

substitution model. 
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Chapter 6:  Seasonality of Vibrio metecus in the Chesapeake Bay, 

MD 
 

Abstract 

Vibio metecus, a recently described bacterial species closely related to Vibrio 

cholerae, has been reported to be autochthonous to the Chesapeake Bay, the coastal 

waters of Massachusetts, and the Bay of Bengal.  Analysis of phenotypic data indicates 

this organism is indistinguishable from V. cholerae.  However, genomic analyses 

demonstrate genome-wide divergence between the two species.  Although it has been 

isolated from the aquatic environment, its ecology remains to be elucidated.  Here we 

report results of a two year study of the occurrence and distribution of V. metecus in the 

Chesapeake Bay using direct PCR of water, plankton, sediment, and oyster samples 

collected from the Chester River and Tangier Sound.  V. metecus were most numerous 

during winter, yet it could be detected throughout the year, even during the warm summer 

months.  Results of regression analyses demonstrated that when water temperature and 

salinity decreased, V. metecus densities and frequencies of detection increased, 

suggesting seasonal fluctuation in these parameters in the Chesapeake Bay influences the 

ecological dynamics of this organism.  It is concluded that the ecology of V. metecus 

differs from that of V. cholerae which typically thrives at water temperatures at or near 

15°C. 
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Introduction 

Genomic analyses have demonstrated significant diversity among species of the 

Vibrionaceae, and within the Vibrio cholerae species (Chun et al., 2009; Thompson et al., 

2009).  Results of phylogenetic analysis demonstrated Vibrio metecus to be a novel 

species, phenotypically identical to V. cholerae in key features, but genetically distinct 

(Haley et al., 2010; Turnsek et al. 2010; Boucher et al., 2011).  Mobile elements and 

virulence factors are shared by both species (Haley et al., 2010; Boucher et al., 2011).  A 

number of clinical isolates, described as V. cholerae by conventional polymerase chain 

reaction, were subsequently shown to be V. metecus using specific primers.  Human 

infections from which V. metecus was isolated have been increasing with time, 

suggesting this organism is an emerging pathogen (Turnsek et al., 2010).  According to 

Boucher et al. (2011), like V. cholerae and other members of the Vibrionaceae, V. 

metecus occurs in coastal environments worldwide. 

It has been established that members of the Vibrionaceae are seasonal in 

occurrence and their distribution in the aquatic environment is that are associated with 

physical, chemical, and biological factors, including water temperature, salinity, and 

zooplankton distribution (Kaneko and Colwell, 1974; Louis et al. 2003; Lizárraga-Partida 

et al. 2009; Turner et al. 2009; de Magney et al., 2009; Banaker et al. 2011; Schuster et 

al. 201; Shair et al. 2012).   This newly recognized species of the Vibrionaceae 

demonstrates unique seasonal trends.  To establish the ecology of this species, water, 

sediment, oyster, and plankton samples were collected over a 30 month period from two 

stations in the Chesapeake Bay, The Chester River near Annapolis, MD, and Tangier 

Sound, on the Eastern Shore of Maryland at the border of Virginia and Maryland (Figure 



 

142 

 

6.1).  The unique seasonal signature of V. metecus in the Chesapeake Bay is presented 

here. 

 

Materials and Methods 

Primer sequences specific to the toxR (cholera toxin transcriptional activator) 

gene of V. metecus RC341 (NCBI Genbank accession no. ACZT00000000.1) were 

developed to discriminate this organism from closely related species.  As there is at 

present a single reference genome for this novel species, the toxR gene was selected as a 

target since it is highly conserved within the genomes of the species, yet highly diverged 

between genomes of different species.  A homolog of the toxR gene in Vibrio sp. RC341 

was obtained by aligning the toxR gene (VC0984) of a high quality annotated reference 

genome of Vibrio cholerae N16961 (NCBI reference sequence accession number 

NC_002505.1) to the draft genome sequence of Vibrio metecus RC341.  A multiple 

sequence alignment of the homologous sequences of members of the Vibrionaceae, 

whose genomes had been sequenced and taxonomically validated by determining average 

genomic nucleotide identity, were aligned to determine candidate primer sequences 

specific to V. metecus.  This was done to ensure taxonomic delineations were related to 

the entire genome rather than a subset of ORFs from a multilocus sequence analysis 

(MLSA) that would represent ca. < 0.1% of the genome.  Furthermore, as any nucleotide 

sequence is potentially subject to horizontal gene transfer, with the probability of this 

increasing as genomic sequence similarity between genomes increase, MLSA can 

substantially skew species delineations in cells which this has occurred. 
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Primers were tested in silico against the NCBI nucleotide (nr/nt), reference 

genomic sequence (refseq_genomic) and whole-genome shotgun contigs (WGS) database 

to evaluate specificity for V. metecus.  For conduct PCR 1µl of the primers The primers 

VmetF 5’-TCATTCGCCTAGGCAGTAACGA -3’ and VmetR 5’- 

TTGATGCCAGCAATCAGCAGC-3’ were added in 20 µM concentrations to GoTaq 

PCR MasterMix and 5 µl of boiled cell DNA template.  Primers were also tested against 

a set of Vibrionaceae genomes (listed in Figure 6.2) using polymerase chain reaction 

(PCR). 

Water, sediment, plankton, and oyster samples were collected in the Chester River 

and Tangier Sound in the Chesapeake Bay every month at each site except June through 

August, when samples were collected twice per month at each site.  Grab water samples 

were collected using a beta vertical water sampler (Wildlife Supply Company, Yulee, 

FL), which was submerged and released approximately 1 meter from the surface. Twenty 

liters of water was decanted into two sterile opaque polypropylene bottles.  

Approximately 20 to 30 oysters were collected by trawling and associated shell sediments 

used as sediment samples.  Oysters were placed in a plastic bag and the sediment samples 

were collected into a sterile 500 ml opaque polypropylene bottle.  The > 20 µm plankton 

fractions were collected by pouring 5 liters of water through a 20 µm mesh plankton net 

and adding 50 ml of the trapped material to a sterile centrifuge tube.  Plankton-free water 

was collected in a sterile 1 L polypropylene bottle by capturing the filtrate of the 20 µm 

plankton mesh net.  Triplicates of 900, 90, and 9 ml water samples were added to 100, 10, 

and 1 ml 10 X alkaline peptone water (APW) and incubated at 33°C overnight on a 

shaker at 25 rpm.  Plankton samples were further concentrated to 25 ml and 2 ml of the 



 

144 

 

concentrate were added to 18 ml 1 X APW and incubated overnight at 33°C on shaker at 

25 rpm.  An equal volume of sterile phosphate buffered saline solution (PBS) was added 

to each sediment sample, and the mixture shaken to distribute the sample.  Eleven ml of 

PBS/sediment mixture was added to 1 ml of 10 X APW and incubated overnight at 33°C 

on a shaker at 25 rpm.  The oysters were rinsed in cold deionized water to remove the 

debris from the shells and opened with a sterile oyster knife.  Approximately 250 ml 

oyster meat and hemolymph were transferred to a sterile blender with an equal amount of 

PBS and homogenized for 30 seconds.  As was done with the water samples, triplicates 

of 10, 1, and 0.1 g were added to 25 ml 10 X APW and incubated overnight at 33°C on a 

shaker at 25 rpm.  From each overnight incubation 1 ml was removed, centrifuged at 

10,000 g, decanted, resuspended in 1 ml TE, resuspended, and boiled for 10 min at 1,000 

rpm.  Boiled cells were chilled on ice, diluted 10-fold in TE with 40 µl bovine serum 

albumin per ml added to remove interaction of inhibitors.  PCR was done on the boiled 

and diluted cells to estimate presence and abundance of V. metecus in samples collected 

from the Chester River and Tangier sound over the study period.  Presence or absence of 

V. metecus in each sample type was determined by PCR on boiled APW enrichments and 

concentrations of V. metecus in water and oysters were determined by PCR on dilutions 

of each and calculating the most probable number (MPN) based on patterns of V. metecus 

presence and absence in each dilution following methods described in Standard Methods 

for the Examination of Water and Wastewater (17
th

 edition, 1989).  Environmental 

parameters were determined by using a portable water meter (YSI, Yellow Springs, OH) 

and recording values at both the water surface (ca. 1/3 meter from the surface) and 

bottom (ca. 1/3 meter from the bottom). 
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Correlations between V. metecus densities and environmental parameters were 

determined using Spearman rank analyses.  Multiple stepwise regressions were calculated 

for V. metecus with each environmental parameter as independent variables. A backward 

elimination method was used and P-values of each variable were determined.  Variables 

with P < 0.05 were assumed to be significant and all other variables were removed from 

the model. The multiple regression models were completed when the addition or deletion 

of variables did not improve prediction of V. metecus concentrations. 

 

Results 

An average nucleotide identity matrix showed Vibrio sp. RC341 was the only 

member of the newly recognized species, V. metecus, whose genome has been fully 

sequenced (Figure 6.2), confirmed previously (Haley et al. 2010).  The, toxR primer 

sequences were developed based on this genome as the target and other species as 

background.  The toxR sequence was selected as a target since it typically demonstrates < 

2 % sequence divergence within the species and > 10 % sequence divergence between 

species of the Vibrionaceae.  This gene has been used repeatedly as a target for species 

identification in the Vibrionaceae, demonstrating consistency.  Primer sequences 

developed for the V. metecus toxR gene did not match any sequence in the NCBI 

databases queried (nr/nt, refseq_genomic, and WGS) and did not result in amplification 

for any of the bacterial strains (listed in Figure 6.2) evaluated by PCR excluding Vibrio 

sp. RC341 (V. metecus). 

V. metecus-specific PCR was done on 285 isolates recovered from plankton and 

water samples collected in the Chesapeake Bay between 1998 and 1999.  The isolates 
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were confirmed as V. cholerae by 16S-23S rRNA intergenic spacer unit PCR (Chun et 

al., 1999).  Our results showed that of the 285 isolates, 39 (13.6%) were V. metecus by 

toxR PCR.  These V. metecus isolates formed yellow, sucrose-fermenting colonies on 

TCBS agar and blue-green colonies on CHROMagar
TM

 Vibrio, results consistent with 

those of previous studies stating V. metecus to be indistinguishable from V. cholerae on 

selective and differential media (Haley et al., 2009; Turnsek et al., 2010).  Of the 39 V. 

metecus isolates, 32 were from plankton samples (18 from >64 µm and 14 from the 63-20 

µm fractions) while seven were from water.  The majority of these isolates were 

recovered from sites at the Smithsonian Environmental Research Center in Edgewater, 

MD (17 isolates) and Horn Point in Cambridge, MD (14 isolates), with a few from Kent 

Island in Stevensville, MD (4 isolates), the Baltimore inner harbor (2 isolates), and mid-

Chesapeake Bay (2 isolates). 

Forty-six and forty-three water, plankton (> 20 µm), oyster, sediment, and 

plankton-free water (< 20 µm filtrate) were collected from the Chester River and Tangier 

Sound, respectively, from January 2009 to December 2011.  In the Chester River V. 

metecus was detected in at least one of the sample types during 22 of 46 (49%) samplings 

(Figure 6.3).  Chester river water samples showed V. metecus densities ranging from < 1 

to 155.7 MPN L
-1

, with a mean of 5.4 MPN L
-1

 and standard deviation of 23.7.  The 

highest density was recorded in December, 2009.  In the Chester River V. metecus was 

detected in a single oyster sample (February 2009) at a concentration of 36 MPN L
-1

.  V. 

metecus was detected in the > 20 µm plankton fraction on ten sampling trips and in the < 

20 µm plankton-free fraction 13 times.  V. metecus was not detected in sediment.  Water 

temperature (surface), salinity (surface), water temperature (bottom), and conductivity 
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(bottom) were found to be significantly correlated with V. metecus by analysis using a 

multiple regression model (Table 6.1).  In a binary logistic regression, salinity (surface 

and bottom), conductivity (surface) and total dissolved solids (bottom) were predictive 

for V. metecus in water and in all sample types combined, while salinity(surface and 

bottom) and conductivity (surface) were predictive of V. metecus in plankton-free water, 

and pH (surface) was predictive of V. metecus in the plankton fraction. 

For Tangier Sound samples V. metecus was detected in at least one of the sample 

types in 13 of 43 (30%) samplings (Figure 6.4).  Tangier Sound water samples showed, 

V. metecus densities ranging from < 1 to 155.7 MPN L
-1

, with a mean of 14.5 MPN L
-1

 

and standard deviation of 45.8.  Highest numbers (155.7 MPN L
-1

) were recorded in 

December, 2009, and January, February, and March, 2010.  In Tangier Sound V. metecus 

was detected in only two oyster samples (December, 2009 and March, 2010) and could 

be enumerated in December 2009 at 201.1 MPN L
-1

.  The V. metecus-positive March 

sample was not detected by MPN assay sample, but in concurrently processed samples 

for binary analysis (positive or negative for V. metecus).  V. metecus was detected in the 

> 20 µm plankton fraction during six sample collections and in the < 20 µm plankton-free 

fraction 10 times, and twice in sediment.  Water temperature (bottom), salinity (surface), 

and pH (surface) were significantly correlated with V. metecus in a multiple regression 

model (Table 6.1).  In a binary logistic regression, salinity and conductivity (surface) and 

salinity and total dissolved solids (bottom) were predictive of V. metecus in all sample 

types combined.  Salinity, conductivity, and total dissolved solids (bottom) and salinity 

and total dissolved solids (bottom) were predictive of V. metecus in water samples.  

Salinity, conductivity, total dissolved solids (surface) and salinity, conductivity, total 
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dissolved solids, and dissolved oxygen (benthos) were predictive of V. metecus in 

plankton-free water.  Water temperature (surface and benthos) were predictive of V. 

metecus in the >20 µm plankton fraction. 

 

Discussion 

A significant number of isolates (13.6%) previously characterized as V. cholerae 

by amplification of the 16S-23S rRNA intergenic spacer unit PCR (Chun et al., 1999) 

were subsequently identified as V. metecus using species-specific PCR indicating that V. 

cholerae is indeed ubiquitous in the Chesapeake Bay, but earlier less sensitive methods of 

characterization may have overestimated total numbers.  V. metecus isolates were 

indistinguishable from V. cholerae on TCBS and CHROMagar
TM

 Vibrio, two media 

employed for presumptive differential identification of human pathogenic vibrios, and by 

standard biochemical profiles used to differentiate V. cholerae from other species (data 

not shown) (Huq et al., 2006).  The results of this study suggest that taxonomic 

identification based on biochemical characteristics alone should be carefully interpreted. 

Results of this study show the number of V. metecus in the Chesapeake Bay 

samples varies with season, with the highest numbers in the winter.  The trend was 

consistent at both sampling locations (Figures 6.3 and 6.4).  Although V. metecus is 

closely related to V. cholerae, a globally distributed bacterium and the causative agent of 

cholera, the results of this study demonstrate a different seasonal distribution from V. 

cholerae with respect to population size but present throughout the year, including the 

warmer summer months (Louis et al., 2003; Turner et al., 2009; de Magney et al., 2010).  

V. cholerae can be detected year-round, but its population size is maximum during the 
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warmer months of the year.  V. cholerae populations have been linked to zooplankton 

blooms (Huq et al., 2005), whereas V. metecus detection is also not restricted to cold 

months but its population size is greatest during the winter at both sampling sites and 

frequently undetectable during warmer months of the year. 

In this study, V. metecus was not found to be as closely associated with plankton 

as V. cholerae.  Copepod densities peak in the spring and summer in the Chesapeake Bay 

(Louis et al., 2003), and the ability of V. metecus to grow at low temperatures certainly is 

a factor.  The vast majority of culturable V. metecus collected between 1998 and 1999 

were detected in association with 32 plankton samples and only seven water samples.  

VBNC V. metecus may account for this difference in the two sets of results and further 

work will resolve this apparent anomaly. 

A negative correlation between water temperature and V. metecus densities was 

determined statistically, supporting the field observations (Table 6.3).  A similar 

relationship between V. metecus and was also observed in which the density of the 

organism decreases as salinities increase.  The data indicate V. metecus may prefer 

freshwater, but viable in saline water, and its presence may be associated with changes in 

freshwater fronts and changing tidal levels in the bay.  Further, this trend of higher 

densities of V. metecus in winter months with presence detected in spring months could 

also be related to the high riverine discharge that occurs in the Chesapeake Bay due to 

cycles of high precipitation and snow melt during these months (Schubel and Pritchard, 

1986).  This annual trend in the Chesapeake Bay coupled with the strong negative 

association of V. metecus with salinity levels in the multiple regression models and binary 
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logistic regression analyses strongly suggest its movement in the bay may be due to these 

larger meteorological events. 

From a public health perspective, V. metecus is an emerging pathogen that causes 

illness similar to V. cholerae non-O1/non-O139, suggesting previously diagnosed V. 

cholerae infections may have been V. metecus infections.  Further, the ability of genomic 

islands, namely pathogenicity islands and the CTX phage to be transferred between V. 

cholerae and V. mimicus (Boyd et al., 2000), a more distantly related species, suggests 

the ability of highly pathogenic V. metecus cells to arise in the environment.  A recent 

study by Boucher et al. (2011) demonstrated that V. metecus frequently exchanges 

genetic cassettes with co-occurring V. cholerae in the environment demonstrating 

significant genetic flow between them.  Thus, V. metecus can be considered not only 

receiving genes from V. cholerae, also sharing genes with V. cholerae, V. mimicus, V. 

parilis, and other V. metecus strains in a local environment. 
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Figure 6.1.  Location of sampling stations in the Chesapeake Bay. 

 

 

 

 

 

 

Chester River

Tangier Sound
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Figure 6.2. Average nucleotide identity matrix of Vibrionaceae genomes. 
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Figure 6.3.  Densities and presence/absence of V.metecus in the Chester River.  Lines 

show changes in V. metecus densities (MPN L-1) in water samples and vertical bars show 

V. metecus presence in sediment, water, oyster, plankton, and plankton-free water 

samples.
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Figure 6.4.  Densities and presence/absence of V.metecus in Tangier Sound.  Lines show 

changes in V. metecus densities (MPN L-1) in water samples and vertical bars show V. 

metecus presence in sediment, water, oyster, plankton, and plankton-free water samples. 
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Table 6.1. Spearman rank correlations between V. metecus and environmental 

parameters. 

 

 

 

 

 

 

 

 

 

 Parameter B P

Water Temp  (surface) -0.379 < 0.05

Dissolved Oxygen (surface) 0.325 < 0.05

Water Temp  (benthos) -0.366 < 0.05

 Parameter B P

Water Temp  (surface) -0.413 <0.01

DO (surface) 0.4 <0.01

Water Temp  (benthos) -0.413 <0.01

Dissolved Oxygen (benthos) 0.452 <0.01

Chester River

Tangier Sound
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Table 6.2. Binary logistic regression describing association between environmental 

parameters and presence of V. metecus in each sample type.  For the Chester River, the 

frequency of V. metecus detection in water was the same as frequency of detection in all 

sample types. 

 

All sample types B p All sample types B P

Salinity (surface) -0.282 < 0.05 Salinity  (surface) -0.365 <0.05

Conductivity (surface) -0.169 < 0.05 TDS  (surface) -0.445 <0.05

Salinity (benthos) -0.272 < 0.05 Salinity (benthos) -0.329 <0.05

TDS (benthos) -0.186 < 0.05 TDS (benthos) -0.479 <0.05

PFW B p Water B P

Salinity (surface) -0.288 < 0.05 Salinity  (surface) -0.481 <0.05

Conductivity (surface) -0.178 < 0.05 Conductivity  (surface) -0.174 <0.05

Salinity (benthos) -0.298 < 0.05 TDS  (surface) -0.599 <0.05

Salinity (benthos) -0.427 <0.05

PLK B p TDS (benthos) -0.611 <0.05

pH (surface) -1.499 < 0.05

PFW B P

Salinity  (surface) -0.581 <0.05

Conductivity  (surface) -0.209 <0.05

TDS  (surface) -0.724 <0.05

Salinity (benthos) -0.505 <0.05

Conductivity (benthos) -0.183 <0.05

TDS (benthos) -0.675 <0.05

Dissolved Oxygen (benthos) 0.259 <0.05

PLK B P

Water Temp  (surface) -0.107 <0.05

Water Temp  (benthos) -0.111 <0.05

Chester River Tangier Sound
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Table 6.3. Multiple regression analyses of the association of environmental parameters 

with V. metecus. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p (model) R (model)  Parameter B p (var) 

< 0.01 0.601 Water Temp (surface) -0.685 < 0.01

Salinity (surface) -0.647 < 0.01

Water Temp (benthos) 0.672 < 0.01

Conductivity (benthos) 0.383 < 0.01

p (model) R (model)  Parameter B p (var) 

< 0.001 0.806 Salinity (surface) -0.638 < 0.01

pH (surface) 0.745 < 0.01

Water Temp (benthos) -0.046 < 0.001

TDS (benthos) 0.472 0.075

Chester River

Tangier Sound
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Chapter 7:  Vibrio cholerae in a Historically Cholera-Free Country 
 

Abstract 

We report the autochthonous existence of Vibrio cholerae in coastal waters of 

Iceland, a geothermally active country where cholera is absent and has never been 

reported.  Seawater, mussel, and macroalgae samples were collected close to and distant 

from sites where geothermal activity causes a significant increase in water temperature 

during low tides.  V. cholerae was detected only at geothermal-influenced sites during 

low-tides.  None of the V. cholerae isolates encoded cholera toxin (ctxAB) and all were 

non-O1/non-O139 serogroups.  However, all isolates encoded other virulence factors that 

are associated with cholera as well as extra-intestinal V. cholerae infections.  The 

virulence factors were functional at temperatures of coastal waters of Iceland, suggesting 

an ecological role.  It is noteworthy that V. cholerae was isolated from samples collected 

at sites distant from anthropogenic influence, supporting the conclusion that V. cholerae 

is autochthonous to the aquatic environment of Iceland. 

 

Introduction 

Vibrio cholerae, a Gram-negative bacterium and the causative agent of cholera, 

has caused seven pandemics since 1816, as well as sporadic inter-epidemic outbreaks.  

Studies of V. cholerae in the environment have often focused on geographic regions of 

cholera endemicity, in order to elucidate links between its aquatic reservoir and clinical 

cases of cholera.  This has led to the assumption that disease-causing strains of V. 
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cholerae are confined to geographical regions where cholera occurs annually or 

sporadically, that the human gastrointestinal tract is an essential environment for V. 

cholerae presence and dissemination, and that the primary role of virulence factors is 

infection of the human body.  Here we report the presence of V. cholerae in Iceland, a 

geothermally active island in the subarctic north Atlantic with active marine and 

terrestrial hot-springs, where cholera has never been recorded, and V. cholerae has never 

been isolated from humans (Islam et al., 1993; Gunnardsdóttir, 2008; Haraldur Briem, 

Chief Epidemiologist, Infectious Disease Control, personal communication).  Results 

demonstrated the presence along the coast of this cholera-free country of genetically 

diverse V. cholerae populations encoding virulence factors known to be integral in 

human disease, namely cholera.  This study demonstrates that V. cholerae is 

autochthonous in a region of the world where cholera never occurs and that the human 

body is not an obligate environment for the presence and dispersal of this organism.  

Moreover, virulence factors shown to be conserved in these strains are concluded to be 

related to the ecology of this bacterium in its native aquatic habitat. 

 

Materials and Methods 

Water, mussel, and macroalgae samples were collected at stations along the coast 

of Iceland (Figure 7.1).  All samples were collected within ca. 5 meters of a geothermal 

outlet or source (geothermal-influenced) or from a distance of ca. 1 km or greater from a 

geothermal source (non-geothermal-influenced).  Water temperature and salinity were 

recorded at the time of sample collection. Sampling was not paired at some of the 

sampling locations because of inclement weather conditions at the sampling sites.  
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Iceland experiences extreme weather in some locations where sampling sites are located 

with access difficult.  Paired samples were obtained when conditions permitted. 

 A water sample was collected at Berserkseyri from the pore space of sand 

collected in the tidal zone at low tide.  The hot water source at this site is a natural hot 

spring, flowing ca. 10 to 30 meters, depending on the tide, where it meets the ocean.  A 

hole was dug into the sand to a depth sufficient to collect pore water (ca. 15 cm). 

 In the peninsula of Vatnsnes (northern Iceland), samples were collected at the 

Skarðshver hot spring at two sites where the water temperatures were significantly 

different and located near the hot spring water flowing to the sea.  Water, macroalgae, 

and mussel samples were collected in sterilized bottles and bags and transported on ice to 

the laboratory for processing within four hours of collection (Table 7.1). 

 One liter water samples were filtered through 0.22 µm nitrocellulose membranes. 

Each membrane was placed in 200 ml of 1% alkaline peptone water (APW) and 

incubated overnight at 37ºC with shaking at 100 rpm.  The meat of each mussel was 

removed aseptically and 10 g were weighed and diluted in 100 ml of PBS + 2% NaCl, 

and homogenized in a stomacher (Seward, West Sussex, UK).  The homogenate (10 ml) 

was transferred to a flask with 200 ml of 1% APW and incubated overnight at 37°C with 

shaking at 100 rpm.  Kelp samples were also processed following this procedure.  After 

incubation, 20 µl of the top-most layers of the overnight APW cultures were streaked 

onto TCBS agar (Sigma-Aldrich) and incubated overnight at 37ºC.  Yellow sucrose-

fermenting colonies were presumptively identified as V. cholerae, asceptically removed 

from the TCBS agar, and stored at -80°C in 2-ml cryotubes with 1.5-ml Luria-Bertani 

broth amended with 20% sterile glycerol. 
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 PCR primers used are listed in table 7.3.  PFGE was performed using methods 

developed for V. cholerae (Cooper et al., 2006).  Sialic acid utilization was determined 

using the Biolog Phenotype MicroArrays
TM

 (Biolog Inc., Hayward, California).  

Protreolysis, motility, and hemolysis assays were conducted following standard methods 

(Son and Taylor, 2011). 

The focus the study was both detection of V. cholerae in a country where cholera 

has never occurred and presence of virulence factors in these strains, as well as the ability 

of the strains to express virulence factors at temperatures of the environment where they 

were isolated. 

 

Results and Discussion 

Sampling 

One liter water samples were filtered through 0.22 µm nitrocellulose membranes. 

Each membrane was placed in 200 ml of 1% alkaline peptone water (APW) and 

incubated overnight at 37ºC with shaking at 100 rpm.  The meat of each mussel was 

removed aseptically and 10 g were weighed and diluted in 100 ml of PBS + 2% NaCl, 

and homogenized in a stomacher (Seward, West Sussex, UK).  The homogenate (10 ml) 

was transferred to a flask with 200 ml of 1% APW and incubated overnight at 37°C with 

shaking at 100 rpm.  Kelp samples were also processed following this procedure.  After 

incubation, 20 µl of the top-most layers of the overnight APW cultures were streaked 

onto TCBS agar and incubated overnight at 37ºC.  Yellow sucrose-fermenting colonies 

were presumptively identified as V. cholerae, asceptically removed from the TCBS agar, 
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and stored at -80°C in 2-ml cryotubes with 1.5-ml Luria-Bertani broth amended with 

20% sterile glycerol. 

Sampling locations chosen near geothermal activity were labeled geothermal-

influenced, while locations far from geothermal activity were labeled non-geothermal-

influenced (Figure 7.1).  At sites positive for V. cholerae, all surface water, macroalage, 

and mussel samples collected were positive for V. cholerae (Tables 7.1 and 7.2).  V. 

cholerae were recovered at all geothermal-influenced sites from the samples collected at 

low-tide, but not at any of the non-geothermal-influenced sites or geothermal-influenced 

sites at high tide, when surface water temperatures are low because of cold seawater 

inflow (Table 7.1).  Friedman’s test demonstrated that median surface water temperatures 

at times of sampling when V. cholerae was isolated (median = 27°C, mean = 25.5°C) 

came from a different distribution than surface water temperatures when V. cholerae was 

not isolated (median = 5.5°C, mean = 6.5°C) (P < 0.05).  Three of the sites positive for V. 

cholerae are located significantly distant from cities or towns, centers of tourism, or 

major international shipping routes (Berserkseyri and Stykkishólmur in Breiðafjörður, 

and Vatnsnes in northern Iceland).  Reykjavík harbor (the old port of Reykjavík) and 

Álftanes and Hliðnes near the shipping port of Hafnarfjörður near Reykjavík, are not 

geothermal-influenced and those samples were negative for V. cholerae. 

 

Isolate Characterization and Diversity 

In total, 380 presumptive V. cholerae isolates were recovered primarily from 

geothermal-influenced sites.  One non-geothermal-influenced site, Hvalfjörður, yielded 

22 yellow colonies on TCBS that were determined by PCR not to be V. cholerae.  Other 
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non-geothermal-influenced sites yielded no growth on TCBS after incubation of water 

samples overnight at 37°C and incubation of inoculated TCBS plates at 37°C for 24 to 48 

hours.  Mesophilic bacteria that grow on TCBS at 37°C are either absent from or in low 

abundance in these areas or, most likely, may be present in the viable but nonculturable 

(VBNC) state and not detectable by the methods employed in this study.  The remaining 

358 isolates were isolated from samples collected at the geothermal-influenced sites and 

all, except 22 isolates from water samples collected at Stykkishólmur, were 

presumptively identified as V. cholerae by biochemical identification following a 

previously published protocol (Choopun et al., 2002).  A subset (127) of the isolates were 

subjected to PCR and were confirmed V. cholerae.  From these results it is concluded that 

V. cholerae was recovered from five of the coastal sampling sites in nine of 19 sample 

collections that were carried out (Table 7.1).  

 Confirmation of V. cholerae by PCR was achieved by targeting V. cholerae 

intergenic spacer and toxR gene (Chun et al., 1999; Vora et al., 2005), and further 

analysis was done to detect virulence factors and mobile genetic elements.  All V. 

cholerae isolates were non-O1/non-O139 serogroups, and ctxAB negative (Table 7.2), 

and did not encode the Vibrio seventh pandemic island I (VSP-I) on either chromosome 

or the Vibrio pathogenicity island 1 (VPI-1) also known as the TCP island.  All strains 

were evaluated for presence of the Vibrio seventh pandemic island II (VSP-II) by 

employing the PCR typing scheme for presence of the island and its variants (Taviani et 

al., 2010).  Amplification was not observed for any of the VSP-II variants.  However, 50 

strains (39%) demonstrated amplification of the 451 bp region that has been reported in 

all described V. cholerae VSP-II variants, except the V. cholerae CIRS101 variant.  It is 
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concluded that the Iceland strains encode a VSP-II variant similar to that described in V. 

cholerae RC385, an environmental isolate from the Chesapeake Bay and present in other 

V. cholerae non-O1/non-O139 strains isolated from the mid-Atlantic coast of the United 

States and from Bangladesh (Taviani et al., 2010).  PCR targeting VSP-II flanking 

regions of the 77 VSP-II-negative isolates did not result in amplification, demonstrating 

that another genomic island not yet described is inserted at this locus in these isolates. 

All but three strains encoded sialidase (NanH) of the Vibrio pathogenicity island 2 

(VPI-2) that acts as a sialic acid scavenger by cleaving two sialic acid groups from the 

triasialoganglosides of the intestinal mucus, thereby releasing sialic acid and making the 

epithelial cell gangliosides in the human gut more accessible to cholera toxin (Moustafa 

et al., 2004; Almagro-Moreno and Boyd, 2009).  We used nanH as a marker of VPI-2 

which often encodes a suite of sialic acid transport and catabolism genes along with 

nanH, all shown to be expressed in models of V. cholerae infections (Almagro-Moreno 

and Boyd, 2009).   

All strains encoded hlyA, rtxA, HA/P, which are involved in V. cholerae virulence 

in humans (Finkelstein et al., 1992; Olivier et al., 2007).  Fifty eight strains (45%) 

encoded cholix toxin, a novel ADP-ribosylating toxin and 114 (89%) also encoded the 

integrase of an integrative and conjugative element (ICE).  DNA of all strains encoded 

the hemagglutinin/protease (HA/P), known to be involved in mucin penetration, 

detachment, spread of the infection through the gastrointestinal tract, and full expression 

of enterotoxicity (Silva et al., 2006; Shinoda, 2011).  This protease has also been shown 

to be involved in the degradation of chironomid egg masses (Halpern et al., 2003) which 

inhabit the aquatic environment of the Iceland coast (Ingólfsson, 1995; Sæther, 2009; 
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Kaiser et al., 2010).  Chironomids can inhabit the sandy intertidal zone, where we were 

able to isolate V. cholerae in Berserkseyri. 

Diversity of a subset of strains isolated from different locations in Iceland was 

analyzed by pulsed field gel electrophoresis (PFGE), revealing genomic variability within 

Icelandic V. cholerae populations (Figure 7.4).  The genomic patterns did not match those 

of other environmental non-O1/non-O139 and clinical isolates reported in other regions 

of the world.  Interestingly, two sets of strains from different sampling sites: (1) strain 

226 isolated from a sand pore water sample collected at Berserkseyri on 12/08/2006 and 

strain 334 isolated from mussels in Ægisíða isolated on 2/09/2007; (2) strain 310 isolated 

from macroalgae in Seltjarnarnes on 1/09/2007 and strain 295 from macroalgae in 

Ægisíða, on 1/09/2007 yielded identical banding patterns.  These two patterns suggest 

genomic clonality of a subset of strains circulating around Iceland between regions of 

geothermal activity.  However, no other conserved set of PFGE patterns was observed 

among the other Iceland strains, indicating significant diversity of the V. cholerae strains. 

Phenotypic diversity among seven strains randomly selected for analysis was 

observed at 25 and 34°C, showing different patterns of carbon substrate utilization on 

Biolog PM2A plates (Figure 7.3).  Results of other phenotypic tests showed only one 

strain to be bioluminescent, a phenotype encoded in GI-64 of the global V. cholerae 

mobilome reported by (Chun et al., 2009).  Antibiotic disk diffusion assays of a subset of 

44 strains showed all were susceptible to chloramphenicol (30 μg), ciprofloxacin (5 μg), 

vibriostatic agent O/129 (150 μg), streptomycin (10 μg), sulfamethoxazole/trimethoprim 

(23.75/1.25 μg), and tetracycline (30 μg), while 25% were resistant to ampicillin (10 μg).  

These results demonstrate genetic and phenotypic diversity of the V. cholerae populations 
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of the Iceland coast, further evidence that V. cholerae in Iceland is neither imported nor 

derived from a single source.  Moreover, similarity in some of the features suggests that 

strains of V. cholerae can circulate spatially along the coast of Iceland. 

 

Expression of Virulence Factors 

The role of virulence factors encoded in the V. cholerae strains was evaluated by 

expression in vitro at the temperatures of the geothermal-influenced environmental 

sampling sites.  The phenotypes of 44 strains at were tested at 4, 14, 25, and 34, and 

50°C.  Motility, previously reported to be associated with virulence of V. cholerae 

virulence (Guentzel and Berry, 1975; Watnick et al., 2001; Krukonis and DiRita, 2003) 

was tested by inoculating motility media incubated for 24 hours.  Those incubated at < 

14°C were evaluated after 96 hours.  Motility was most active at 34°C (mean = 12.5 

mm), followed by 25°C (mean = 6.25 mm), with no motility observed at temperatures 

>50°C or < 14°C (Figure 7.4).  Hemolysis was detected on blood agar plates incubated at 

34°C (mean = 3 mm) and weak hemolysis at 25°C (mean =1 mm). Growth without 

hemolysis was observed for the blood agar plates incubated at 14°C.  Neither hemolysis 

nor growth was observed for plates incubated at 50°C or 4°C. 

The sialic acid utilization cluster of VPI-2 was studied using seven randomly 

selected strains.  These were inoculated in a medium containing sialic acid as sole carbon 

source and all utilized sialic acid when incubated at 34, 25, and 14°C.  Sialic acid 

utilization was estimated as follows: area under the curve Strain / area under the curve 

Background in a Biolog assay.  Utilization was higher at 34°C (4.12) than at 25°C (3.57) 

(Table7.4).  Quantitative evaluation at of sialic acid utilization at 14°C could not be 
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measured since this temperature falls below the Biolog temperature range.  Plates with 

sialic acid as a carbon source were inoculated and incubated at 14°C, with end point color 

change recorded at 72 hours compared with a negative control.  All strains tested utilized 

sialic acid at 14°C.  Since marine bivalves contain free sialic acid in their hemolymph , 

this pathogenicity island may be instead ecologically significant in utilization of sialic 

acid of the mussels with which the bacterium is associated. 

The V. cholerae strains were actively proteolytic at 14, 25 and 34°C, with the 

largest zones of proteolysis on the milk agar plates incubated at 34°C (6.1 mm).  Milk 

agar plates inoculated with the V. cholerae isolates and incubated at 4°C for 2 weeks 

were also positive for proteolysis.  To confirm proteolysis aliquots of overnight cultures 

were centrifuged at 20,000 x g for 20 minutes and the supernatant was removed and 

placed on ice for 1 hour, after which 10 µl was transfered to the top layer of chilled milk 

agar and incubated at 4°C for two weeks.  Proteolysis was observed, with proteolysis as a 

virulence factor being functional at environmental temperatures relative to Iceland, a 

cholera-free region. 

 

Conclusions 

It is concluded that V. cholerae is naturally occurring and readily isolated from 

environmental samples collected along the coast of Iceland, a country where cholera has 

never been reported.  V. cholerae was readily culturable in areas of geothermal activity 

where water temperature was elevated, but in vitro growth experiments did not 

demonstrate growth of these isolates at 50°C, i.e., the bacteria are not hyperthermophilic.  

We hypothesize that V. cholerae is present in the VBNC state in areas that are not 



 

170 

geothermal-influenced or when tides are high (and the water temperature is low) near 

sites of geothermal activity.  V. cholerae in the mesophilic layer resulting from mixing of 

hot and cold water remained culturable.  A mesophilic layer is present at all times at sites 

of geothermal-influence but during high tide it is overlaid with cold sea water.  The 

similarity of the PFGE patterns of V. cholerae isolated from different locations in Iceland 

indicates circulation of V. cholerae strains around coastal Iceland that become culturable 

with temperature upshift of geothermal heated water.  Such temperature upshifts have 

been shown to resuscitate VBNC cells of V. vulnificus to the culturable state (Oliver, 

2005) and very likely V. cholerae (Chaiyanan et al., 2007).  

DNA of V. cholerae isolated during this study were found to encode many of the 

virulence factors associated with intestinal and extraintestinal infections caused by V. 

cholerae.  Icelanders have very little exposure to the usual pathways of cholera 

transmission, since municipal water is supplied by groundwater recharged by 

precipitation or glacial melt and uncooked molluscan shellfish, a common vehicle of 

vibrioses in developed countries, is not typically consumed in Iceland (Petursson, 1968; 

Guðfinnsson, 2007). 

 Historically, Iceland has experienced both sporadic cases and epidemics of other 

infections (plague, smallpox, and influenza) evidence that it is not isolated from 

pathogens that are global in their epidemiology (Hjaltelin, 1871; Karlsson, 1996; Dowell 

and Bresee, 2008, Cliff et al., 2009; Sigurdsson et al., 2009).  It is one of the very few 

countries never to have recorded even a single case of cholera or related Vibrio infection 

(Islam et al., 1993).  The absence of any record of cholera, a reportable disease in Iceland 

(Gunnarsdóttir, 2008; Icelandic Directorate of Health), combined with the extensive 
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health record keeping for all citizens, with the presence of potentially virulent V. cholerae 

strains in the most remote locations in Iceland, suggest V. cholerae is autochthonous to 

Iceland.  The ecology of V. cholerae, as has been documented elsewhere by other 

investigators does not require human transmission for persistence (Kenyon et al., 1984; 

Louis et al., 2003; Schuster et al., 2011).  However, sporadic cases of cholera or V. 

cholerae infections in or near areas of cholera outbreaks or ballast water exchange in 

shipping ports where cholera has occurred has been suggested to be a source of V. 

cholerae.  To our knowledge this is the first report of V. cholerae with functional 

virulence factors isolated from a region where a case of cholera has never occurred.  It is 

concluded that V. cholerae was not introduced to Iceland, i.e. from ballast water or 

infected persons, but rather is a component of its natural ecological and microbiological 

environment.  The results further suggest global distribution of V. cholerae in the aquatic 

environment without the necessity of anthropogenic activity as a source.  The presumed 

absence of V. cholerae in regions where cholera has never occurred or has not occurred 

for many years earlier, is most likely because the presence of V. cholerae has not been 

recognized as naturally occurring in the aquatic environment and, therefore, not 

monitored. 

 Both presence of the microorganism and the high degree of conservation of 

virulence factors where cholera has not been documented strongly indicate these factors 

have an ecological function other than pathogenicity for humans.  The results of this 

study fully support the autochthonous nature of this bacterium in aquatic systems on a 

global scale and not its confinement to those regions where cholera or V. cholerae 

infections are endemic or sporadic or only to warmer tropical and subtropical regions of 
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the world.  Clearly, human intestinal amplification and shedding is not required for the 

presence of V. cholerae in the natural aquatic environment and conservation of virulence 

factors does not serve solely to maintain cell viability between human infections, but 

rather they play a role in the natural ecology of V. cholerae.  
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Figure 7.1.  Sampling sites showing presence and absence of geothermal activity.  Ægissíða and Nauthólsvík are both located 

within the city limits of Reykjavík.  Symbols that correspond to Reykjavik are bordered in black.  Seltjarnarnes is a suburb of 

Reykjavik. Water, mussel, and macroalgae samples were collected at stations along the coast of Iceland (Figure 7.1).  Photo 

Credit: National Aeronautics and Space Administration (NASA).  Use of this image is licensed under the Creative Commons 

Attribution-Share Alike 3.0 Unported license (http://commons.wikimedia.org/wiki/File:Iceland_sat_cleaned.png).

Skarðshver

Berserkseryi and Stykkishólmur

Hvalfjörður

Reykjavík and Seltjarnarnes

(Ægissíða and Nauthólsvík)

Hliðnes and Álftanes

Hafnir

Reykjanestá geothermally-influenced

not geothermally-influenced
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Figure 7.2. Pulse-Field Gel Electrophoresis images of strains collected along the coast of 

Iceland as well as globally distributed clinical and environmental strains.  PFGE was 

performed using methods developed for V. cholerae (Cooper et al., 2006). 
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Figure 7.3.  Carbon utilization patterns of 7 randomly selected V. cholerae strains using 

Biolog PM2A plate, Biolog Phenotype MicroArrays
TM

 (Biolog Inc., Hayward, 

California).  Strain ID is listed in far left column.  Red = area under curve divided by 

background < 1.  Yellow = area under curve divided by background 2 < 1.  Green = area 

under curve divided by background > 2.  Top row is carbon utilization profile at 25°C, 

bottom row is carbon utilization at 34°C. 
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Figure 7.4.  Expression of virulence factors on agar plates.  Columns show the average 

expression; zones of hemolysis, proteolysis, and motility on blood, milk, and motility 

agar plates, at different temperatures, of strains isolated from different locations along the 

coast of Iceland (n = 44). 
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Table 7.1.  Sample sites, water temperature, salinity, presence of geothermal activity, 

tidal height, type of sample collected (water, kelp, mussels), and presence of V. cholerae 

are presented.  

 

 

 

 

 

 

 

 

Site 
Temp 

(°C)
Salinity Month Year

Geothermally 

Influenced
Tide Sample

V. cholerae 

Detected 

Hvalfjörður 6 NR Oct 2006 - Low Ma, W, M -

Ægissíða 5 NR Oct 2006 + High W -

Hliðnes 7 NR Oct 2006 - Low W -

Álftanes 7 NR Oct 2006 - Low W -

Nauthólsvík 7 NR Oct 2006 + High W -

Seltjarnarnes NR NR Nov 2006 + High Ma, W, M -

Reykjanestá 2 35 Dec 2006 - Low Ma, W -

Hafnir 6 32 Dec 2006 - Low Ma, W -

Reykjavík Harbor 8 30 Apr 2007 - High W, M -

Nauthólsvík 11 NR Sept 2008 + High W -

Stykkishólmur 21 20 Dec 2006 + Low Ma, W +

Berserkseyri 17 6 Dec 2006 + Low W +

Ægissíða 26 7 Jan 2007 + Low Ma, W, M +

Seltjarnarnes 18 20 Jan 2007 + Low Ma, W +

Ægissíða 31 2 Feb 2007 + Low Ma, W, M +

Seltjarnarnes 32 15 Feb 2007 + Low W +

Ægissíða 34 NR Sept 2008 + Low Ma, W, M +

Seltjarnarnes 28 NR Sept 2008 + Low Ma, W +

Skarðshver 34 NR Nov 2008 + Low Ma, W +

Skarðshver 14 NR Nov 2008 + Low Ma, W +

NR = not recorded

Ma = macroalgae

W= water

M = mussel

+ = yes

- = no
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Table 7.2.  Results of PCR analysis of V. cholerae isolates collected during this study.  

 

 

 

8 Dec 2006 Sty kkishólmur Water 10 0 0 0 0 0 10 (100) 10 (100) 10 (100) 10 (100) 10 (100) 10 (100) 10 (100) 0 0 8 (80) 10 (100) 7(70) 0

8 Dec 2006 Sty kkishólmur Macroalgae 10 0 0 0 0 0 10 (100) 10 (100) 10 (100) 10 (100) 10 (100) 10 (100) 10 (100) 0 0 10 (100) 10 (100) 6 (60) 0

8 Dec 2006 Berserksey ri Water 10 0 0 0 0 0 0 10 (100) 10 (100) 10 (100) 10 (100) 10 (100) 10 (100) 0 0 10 (100) 10 (100) 7(70) 0

9 Jan 2007 Ægisíða Water 11 0 0 0 0 0 0 11 (100) 11 (100) 11 (100) 11 (100) 11 (100) 11 (100) 0 0 11 (100) 11 (100) 0 0

9 Jan 2007 Ægisíða Mussel 8 0 0 0 0 0 0 8 (100) 8 (100) 8 (100) 8 (100) 8 (100) 8 (100) 0 0 8 (100) 8 (100) 2(25) 0

9 Jan 2007 Ægisíða Macroalgae 8 0 0 0 0 0 0 8 (100) 8 (100) 8 (100) 8 (100) 8 (100) 8 (100) 0 0 8 (100) 8 (100) 1 (12) 0

9 Jan 2007 Seltjarnarnes Macroalgae 9 0 0 0 0 0 1 (11) 9 (100) 9 (100) 9 (100) 9 (100) 9 (100) 9 (100) 0 0 9 (100) 9 (100) 4 (44) 0

9 Jan 2007 Seltjarnarnes Water 8 0 0 0 0 0 3 (37) 8 (100) 8 (100) 8 (100) 8 (100) 8 (100) 8 (100) 0 0 8 (100) 8 (100) 3 (37) 0

9 Feb 2007 Ægisíða Mussel 11 0 0 0 0 0 5 (45) 11 (100) 11 (100) 11 (100) 11 (100) 11 (100) 11 (100) 0 0 11 (100) 11 (100) 4 (36) 0

9 Feb 2007 Ægisíða Water 6 0 0 0 0 0 3 (50) 6 (100) 6 (100) 6 (100) 6 (100) 6 (100) 6 (100) 0 0 6 (100) 6 (100) 2 (33) 0

9 Feb 2007 Ægisíða Macroalgae 4 0 0 0 0 0 2 (50) 4 (100) 4 (100) 4 (100) 4 (100) 4 (100) 4 (100) 0 0 4 (100) 4 (100) 1 (25) 0

9 Feb 2007 Seltjarnarnes Water 9 0 0 0 0 0 7 (77) 9 (100) 9 (100) 9 (100) 9 (100) 9 (100) 9 (100) 0 0 9 (100) 7 (77) 2 (22) 0

4 Sep 2008 Ægisiða Water 5 0 0 0 0 0 1 (20) 5 (100) 5 (100) 5 (100) 5 (100) 5 (100) 5 (100) 0 0 5 (100) 5 (100) 0 0

4 Sep 2008 Ægisiða Mussel 2 0 0 0 0 0 2 (100) 2 (100) 2 (100) 2 (100) 2 (100) 2 (100) 2 (100) 0 0 2 (100) 0 1 (50) 0

4 Sep 2008 Ægisiða Macroalgae 2 0 0 0 0 0 1 (50) 2 (100) 2 (100) 2 (100) 2 (100) 2 (100) 2 (100) 0 0 2 (100) 0 0 0

24 Sep 2008 Seltjarnarnes Water 2 0 0 0 0 0 2 (100) 2 (100) 2 (100) 2 (100) 2 (100) 2 (100) 2 (100) 0 0 2 (100) 0 1 (50) 0

24 Sep 2008 Seltjarnarnes Macroalgae 5 0 0 0 0 0 5 (100) 5 (100) 5 (100) 5 (100) 5 (100) 5 (100) 5 (100) 0 0 4 (80) 3 (60) 4 (80) 0

27 Oct 2008 Skarðshv er Water 4 0 0 0 0 0 4 (100) 4 (100) 4 (100) 4 (100) 4 (100) 4 (100) 4 (100) 0 0 4 (100) 3 (75) 3 (75) 0

27 Oct 2008 Skarðshv er Macroalgae 2 0 0 0 0 0 2 (100) 2 (100) 2 (100) 2 (100) 2 (100) 2 (100) 2 (100) 0 0 2 (100) 1 (50) 2 (100) 0

27 Oct 2008 Skarðshv er Water 1 0 0 0 0 0 0 1 (100) 1 (100) 1 (100) 1 (100) 1 (100) 1 (100) 0 0 1 (100) 0 0 0

127 0 0 0 0 0 58 (45) 127 (100) 127 (100) 127 (100) 127 (100) 127 (100) 127 (100) 0 0 124 (97) 114 (89) 50 (39) 0

O1/O139StrainsDate Site Source HA/PctxA ctxB ace zot chxA (cholix) toxR ompU hlyA rtxA ICE VSP-II VSP-IluxO tcpA nag-ST nanH     
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Table 7.3.  PCR primers used in the study. 

 

 

 

Forward Primer Reverse Primer Reference

VSP-I GCCGAGAACTCTAAAGCGCTTCTC CCAAGGTACAGATGAGTACCAGCA

VSP-I insertion site (Chr I) AAACTGGCGACCTTTGAGCAAGC GATGGTAGCCTGACGCTGCATCTG

VSP-I insertion site (Chr II) ATAGCGGGAGTTGGCTCTGCA GGTGACTTGGTGCCCATCGTA

pVSP2-I CACCTGTCATGTTATGAGGTGCA AACAGGTCTCTTATCGGCTTTGC

pVSP2-II GCACAACTTGTAAGATAGCCTTGC ACGCAAGACAAAACTACAGCTTGC

pVSP2-III CCAGCAAACGGTCATTCGCT TGGTTGGAAGGTGGGTTGTGT

VSP-II insertion site AGATCAACTACGATCAAGCC CGCAGTCACAGCTTAAAC (O'Shea et al., 2004)

O1 O1 antigen GTTTCACTGAACAGATGGG GGTCATCTGTAAGTACAAC

O139 O139 antigen AGCCTCTTTATTACGGGTGG GTCAAACCCGATCGTAAAGG

ctxA A subunit of cholera toxin ACAGAGTGAGTACTTTGACC ATACCATCCATATATTTGGGAG

ctxAB CTXΦ AGTCAGGTGGTCTTATGCC TTGCCATACTAATTGCGG (Zhu et al., 2007)

HA/protease Hemagglutinin/Protease ACGTTAGTGCCCATGAGGTC ACGGCAAACACTTCAAAACC Our Laboratory

nag-ST non-agglutinating heat stable toxin CAATCGCATTTAGCCAAACA GCAAGCTGGATTGCAACATA Our Laboratory

chxA cholix toxin TGGTGAAGATTCTCCTGCAA CTTGGAGAAATGGATGCGCTG (Purdy et al. 2010)

CGAAAGCACCTTCTTTCACGTTG

TTACCAAATGCAACGCCGAATG

ace accessory cholera enterotixin TGATGGCTTTACGTGGCTTGTGATC GCCTGTTGGATAAGCGGATAGATGG

zot zona occludens toxin ATCTGCCTAACCACGCCTAACATTG ACCGCCTTGCTCCCGACAG

toxR global regulator of virulence ACCGCAGCCAGCCAATGTTG TGGCAATGACTTCTATCGGCTTGAG

ompU outer membrane protein U TACGCTGGTATCGGTGGCACTTAC TCCATGCGGTAAGAAGCGGCTAG

rtxA repeat in toxin CTGAATATGAGTGGGTGACTTACG GTGTATTGTTCGATATCCGCTACG

luxO global regulatory gene CGCTGTATCGTTCTTACCTCACACC GCTCGCCGCAGAGTCAATGG

nanH sialidase CTTCCTCCAATACGGTTCTTGTCTCTTATGC TTCGGCTACCATCGGCAACTTGTATC

GGCAAACAGCGAAACAAATACC

GAGCCGGCATTCATCTGAAT

ICE integrative and conjugative element GCTGGATAGGTTAAGGGCGG CTCTATGGGCACTGTCCACATTG (Hochhut et al., 2001)

Target

(Vora et al., 2006)

hlyA CTCAGCGGGCTAATACGGTTTA (Rivera et al., 2001)

Vibrio  Seventh Pandemic Island I

Vibrio  Seventh Pandemic Island II

A subunit of toxin co-regulated pilus

hemolysin A

(Grim et al., 2010)

(Taviani et al., 2010)

(Hoshino et al., 1998)

tcpA CACGATAAGAAAACCGGTCAAGAG (Rivera et al., 2001)
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A = area under the curve Strain / area under the curve Background 

ND = not done 

 

Table 7.4.  Results of virulence assays. Numbers in columns show average results in 

millimeters (n=44 for hemolysis, proeteolysis, and motility assays). 
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50 0 0 0 ND

34 3 6.11 12.52 4.12 A

25 1 3.32 6.25 3.57

14 0 0.95 0 +

4 0 weak 0 ND
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Chapter 8:  Molecular Diversity and Predictability of Vibrio 

parahaemolyticus in the Black Sea 
 

Abstract 

Vibrio parahaemolyticus not only is a leading cause of seafood-related 

gastroenteritis but is also an autochthonous member of the marine and estuarine 

environment worldwide.  One-hundred seventy strains of V. parahaemolyticus were 

isolated from water and plankton samples collected along the Georgian coast of the Black 

Sea during three years of monthly sample collection.  Isolates were identified as V. 

parahaemolyticus by PCR detection of the toxR and tlh genes.  All confirmed isolates 

were tested by PCR for the thermostable direct hemolysin (tdh) and thermostable-related 

hemolysin (trh).  A subset of strains were serotyped, and tested for other virulence factors 

and markers of pandemicity.  Twenty six different serotypes were represented and five of 

the serotypes were clinically relevant.  Although all 170 isolates were negative for tdh, 

trh, and the Kanagawa Phenomenon, 18 possessed the GS-PCR sequence, 2 the ORF8 

sequence, and 34 the 850 bp sequence of the V. parahaemolyticus pandemic strains.  The 

V.  parahaemolyticus population in the Black Sea was determined to be genomically 

heterogenous by rep-PCR and serodiversity did not correlate with rep-PCR genomic 

diversity.  Statistical modeling was used successfully to predict presence of V. 

parahaemolyticus as a function of water temperature, with strongest concordance 

observed for Green Cape site samples (concordance 70%, P < 0.001).  Results 

demonstrate a diverse population of V. parahaemolyticus in the Black Sea carrying 
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pandemic markers.  Based on predictive modeling, increased water temperature is related 

to the number of V. parahaemolyticus in the water. 

 

Introduction 

Vibrio parahaemolyticus, a halophilic bacterium, is a causative agent of seafood 

related gastroenteritis, wound infections, and septicemia and is known to occur in marine, 

estuarine, and brackish water environments globally with sporadic occurrence reported in 

fresh water (Sarkar et al., 1985; DePaola et al., 2000; Wong et al., 2000; Alam et al., 

2009).  Infections typically occur after consumption of raw or undercooked seafood and 

wounds are most frequently acquired by handling seafood or exposure of open wounds to 

natural waters.  Sporadic cases and outbreaks caused by V. parahaemolyticus increasingly 

have been reported in the United States, Asia, and Europe (Chowdury et al., 2000; 

Daniels et al., 2000; Ansaruzzaman et al., 2005).  In addition to its notoriety as a 

causative agent of human infection, the organism is also an autochthonous member of the 

marine and brackish water microbial communities and, like other Vibrio spp., plays an 

important role in the carbon cycle by degrading chitin (Kaneko and Colwell, 1974; 

Kadokura et al., 2007).  One of its main virulence factors, the type three secretion 

system-2 (TTSS2), plays an important role in preventing predation of its host by higher 

organisms, suggesting virulence factors evolved in the environment (Matz et al., 2011).  

Little work has been done on non-anthropocentric roles of this organism, but its ubiquity 

and association with animals demonstrate its ecology extends beyond the human body. 

 Several virulence factors are associated with V. parahaemolyticus pathogenicity.  

The majority of clinical strains encode the thermostable direct hemolysin (TDH) within 
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the Vibrio parahaemolyticus pathogenicity island (Vp-PAI) (20), one of the virulence 

factors of V. parahaemolyticus responsible for enterotoxicity (Honda, 1993; Guang-Qing 

et al., 1995).  However, some clinical isolates do not encode TDH, but other hemolysins 

instead, such as the TDH-related hemolysin (TRH) and all strains encode the 

thermolabile hemolysin (TLH).  It has also been reported that two of type three secretion 

systems (TTSS1 and TTSS2) are involved in pathogenicity of V. parahaemolyticus 

(Bhattacharjee et al., 2006; Ono et al., 2006; Kodama et al., 2007; Matlawska-Wasowska 

et al., 2011). The TTSS1 found in all V. parahaemolyticus strains examined to date has 

been shown to translocate an effecter protein (VP1686) into the cytosol of macrophages 

and induce DNA fragmentation and VP1680 has been shown to play a role in cytotoxicity 

in eukaryotic cells (Bhattacharjee et al., 2006; Ono et al., 2006).  This secretion system is 

similar in genetic sequence and structure to that of Yersinia pestis and has been found to 

be functional in V. parahaemolyticus (Makino et al., 2003).  Interestingly, V. 

parahaemolyticus strains lacking TDH, TRH, and TTSS2 have frequently been isolated 

from patients who are not colonized by TDH-, TRH-, and TTSS2-positive strains, 

suggesting either the TTSS1 or some other not yet identified virulence factor(s), or both, 

are responsible for illness in humans (Suthienkul et al., 1995; Okuda et al., 1997; 

Vuddhakul et al., 2000; Laohaprertthisan et al., 2003; Cabanillas-Beltran et al., 2006; 

Bhoopong et al., 2007; Meador et al., 2007; Serichantalergs et al., 2007; García et al., 

2009; Harth et al., 2009; Chao et al., 2009; Chao et al., 2010; Shalu et al., 2010).  Studies 

have shown that up to 11.5% of clinical cases are caused by strains that do not encode 

any of these virulence factors, suggesting these TDH-, TRH-, and TTSS2-negative strains 
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are responsible for significant morbidity (Suthienkul et al., 1995). These strains are 

ubiquitous in saline environments and should be considered potential pathogens. 

 Multiple serogroups of V. parahaemolyticus are associated with human infections 

and 13 O serogroups and 71 K serotypes have been described with 75 O:K combinations 

identified to date (Nasu et al., 2000) and regional dominance of specific serogroups also 

reported (Chatterjee and Sen, 1974; Abbott et al., 1989; Nair et al., 2007).  Since 1996, 

there has been an increase in isolation of serogroup O3:K6 from clinical cases worldwide, 

notably from the majority of clinical cases in Asia, Europe, Africa, and Latin America.  

Pandemic strains are characterized by molecular features such as ORF8 marker of the 

f237 lysogenic phage (Nasu et al., 2000), a seven base pair polymorphism in the toxRS 

sequence detected by group-specific PCR (GS-PCR) (Matsumoto et al., 2000), histone-

like DNA binding protein (HU-ɑ ORF), and a unique arbitrarily primed PCR pattern (AP-

PCR) (Okuda et al., 1997; Matsumoto et al., 2000).  Recently, serovariants of pandemic 

strains positive for the GS-PCR sequence but lacking ORF8 marker have been isolated 

from clinical cases, suggesting gene transfer between strains occurs on a global scale 

(Okura et al., 2003). 

 V. parahaemolyticus frequently has been isolated from water samples collected 

from the Black Sea and sporadic cases of gastroenteritis caused by this bacterium and 

related vibrios have been reported in the Sea of Azov region (Libinzon et al., 1974; 

Libinzon et al., 1980; Libinzon et al., 1981; Shikulov et al., 1980; Clark et al., 1998; 

WHO, 2011).  Based on the increasing incidence of infection in Europe, Baker-Austin et 

al. (2010) have called for monitoring both environmental and seafood-borne V. 

parahaemolyticus.  The objective of this study reported was to model occurrence of V. 
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parahaemolyticus on the coast of the Black, Georgia (Former Soviet Union), related to 

environmental parameters and to characterize phenotypic and molecular diversity of this 

population of bacteria. 

 

Materials and Methods 

Sample Collection and Processing 

Routine surveillance of the aquatic environment of Georgia, a former member of 

the Soviet Union (FSU) and the Commonwealth of Independent States (CIS), was 

conducted from June, 2006, to October, 2008.  Water samples were collected monthly, 

except July to September when water was collected biweekly, from five stations on the 

coast of the Black Sea (Figure 8.1).  One hundred liters of water were filtered through 

200- and 64-µm plankton nets, to separate size fractions of plankton.  Simultaneously, 

one-liter of the plankton filtrate, the water fraction, was collected in sterile bottles and all 

samples were transported to the laboratory and processed within 6 hrs of collection.  

Water temperature, salinity, pH, and dissolved oxygen were recorded at the time of 

sampling.   The water fraction (100 ml) was filtered using a 0.45 µm nitrocellulose 

membrane, which was incubated in alkaline peptone water (APW) at 37ºC for 24 hrs.   

An aliquot (1 to 5- ml) of each plankton fraction (64- and 200- µm) was also inoculated 

and incubated in APW at 37 C for 24 hrs.  A 10 microliter loop of the enrichment cultures 

were streaked onto thiosulfate citrate bile salts (TCBS) agar plates which were incubated 

overnight at 37 C.  All colonies that appeared yellow to green at 24 hrs were considered 

presumptive Vibrio spp., picked with a sterile toothpick, and streaked to isolate colonies 

on Luria-Bertani (LB) agar.  Presumptive V. parahaemolyticus colonies were confirmed 
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by streaking onto CHROMagar
TM

 Vibrio (mauve colonies) the latter were confirmed by 

PCR (Table 8.1). 

 

Virulence Factors 

Virulence factors and pandemicity were detected employing PCR for tdh, trh, tlh, 

Mtase, ORF8 sequence of the f237 phage, pandemic group-specific toxRS sequence (GS-

PCR), histone-like DNA binding protein (HU-ɑ ORF), 850-bp fragment region of O3:K6 

isolates, VP1346 (yop) and VP1339 (escC) of TTSS2 and VP1680 and VP1686 of TTSS1 

(Table 8.1).  DNA (25.0 ng) was mixed with 2.5 mM of dNTP, 15 mM of PCR buffer, and 

5 U µL
-1
 of Taq DNA polymerase, using 20 µm of appropriate primer for each analysis.  

Amplicons were visualized on 1.5% agarose gel stained with ethidium bromide and 

examined under a UV transilluminator. 

 

Estimation of Molecular Diversity by REP-PCR 

To determine the molecular diversity of the V. parahaemolyticus isolates rep-PCR 

was executed on a randomly selected subset of strains following the methods of 

Chokesajjawatee et al. (2007).  PCR products were separated on a 1% agarose gel in TAE 

buffer.  The resulting fingerprint patterns were documented using the GelDoc-It
™
 

Imaging System (Ultra-Violet Products, Upland, CA). 

 

Phenotypic Analyses 

To determine the hemolytic activity on Wagatsuma agar, cells were first streaked 

for isolation on nutrient agar supplemented with 7% NaCl at 37ºC for 18 to 24 hours.  A 
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single colony was removed and incubated at 37ºC and 100 rpm for 18 to 24 hours in 

nutrient broth supplemented with 7% NaCl.  Ten microliters of this inoculum were then 

thinly streaked across Wagatsuma agar in a straight line and incubated at 37ºC for 18 to 

24 hours.  Cells causing β-hemolysis of red blood cells were determined to be Kanagawa 

Phenomenon (KP) positive.  Urease activity was evaluated by inoculating isolated 

colonies into urea agar base supplemented with urea (Oxoid, Hampshire, England).  

Antibiotic susceptibility assays were conducted by growing isolates overnight in Heart-

Infusion broth, swabbing each culture uniformly across plates with Mueller-Hinton agar 

(Becton Dickinson and Company, Franklin Lakes, NJ, USA), allowing the inoculated 

plates to dry and then placing antibiotic disks on top of the agar.  Plates were incubated 

overnight and the diameters of inhibitions were measured and interpreted as per the 

manufacturer’s specification.  All media were supplemented with 2% NaCl. 

 

Serotype Determination 

Strains were streaked on LB agar with 3% NaCl and incubated overnight at 37ºC.  

One 10 µl loopful of growth was homogenized in 1 mL of saline solution (0.9% NaCl).  

This solution was divided into two 500 µl tubes, one of which was boiled for 2 hours.  

Ten microliters of the boiled cell solution was then mixed with 10 µl of each O-antisera 

and 10 µl of the cell suspension that had not been boiled was mixed with 10 µl of K-

antisera on a glass slide and agglutination visually determined (Denka Seiken Co., 

Niigata-ken, Japan). 
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Statistical Analyses 

Differences between frequency of recovered serotype and the frequency of 

isolation between sampling sites were evaluated using a χ
2
 test.  Predictive models of V. 

parahaemolyticus detection determined by examining the relationship between 

presence/absence (dependent variable) and recorded environmental parameters 

(independent variables) at the time of sample collection.  These data were transformed to 

determine distance from optimality by determining median values of all parameters for 

those samples in which V. parahaemolyticus had been detected (optimal parameters) and 

subtracting this value from all observations.  The absolute values of differences were 

used as independent variable in binary logistic regression analysis.  For all measures of 

association, p values < 0.05 were considered significant.  Statistical analyses were 

conducted on R and SAS software (Cary, NC, USA).  

 

Results 

Detection of V. parahaemolyticus 

In total, 170 isolates of V. parahaemolyticus were recovered from Black Sea 

water and plankton samples collected at stations located along the Georgian coast.  All 

yellow, green or olive colonies on TCBS agar and magenta on CHROMagar
TM 

Vibrio that 

were oxidase positive were purified for biochemical analyses and identification by PCR.  

A total of 101 V. parahaemolyticus isolates were recovered from water and from 

plankton.  From plankton samples, 30 isolates were from the 64 µm fraction and 39 from 

the 200 µm fraction (Figure 8.2).  
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  V. parahaemolyticus was isolated from 40 water samples and 19 and 26 of 64- 

and 200- µm plankton fractions.  Based on Cochran’s Q test, water samples yielded V. 

parahaemolyticus significantly more frequently than either of the plankton fractions.  The 

difference in V. parahaemolyticus isolation frequency was not significantly different 

between plankton fractions.  When these distributions were binned to water temperature 

quartiles (11, 19.8, and 25.8°C), water samples collected between 11 and 19.8°C were 

significantly more likely to yield V. parahaemolyticus than plankton.  Median 

temperatures for V. parahaemolyticus-positive water samples and V. parahaemolyticus-

negative plankton, both water and plankton V. parahaemolyticus-positive, and water V. 

parahaemolyticus-negative and plankton V. parahaemolyticus-positive were 20.3, 25.8, 

and 26.7°C, respectively (Table 8.2).  Isolates were more frequently recovered in warmer 

summer months than cooler winter months, at which time the water temperature was 

significantly higher (P < 0.001). 

 

Serodiversity 

Twenty-seven serotypes of V. parahaemolyticus were detected: the majority of 

these being O2:K28 (8 isolates), O3:K31 (7), O3:KUT (7), O4:KUT, and untypeable (24) 

(Table 8.2), The untypeable strains were most frequently isolated (Friedman’s χ
2
, 

p<0.05).  V. parahaemolyticus O3 O-antigenic type was the most common, comprising 

35% of the isolates.  .   

 V. parahaemolyticus of the O3 O-antigenic type were recovered only from 

samples collected in the Supsa Estuary, Batumi Boulvard, Green Cape, and Choroki 

Estuary sites.  The serotype O2:K28 isolates were more common in the Supsa Estuary 
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and O3:K31 isolates in the samples collected at Batumi Boulvard, O4:KUT from the 

Supsa Estuary, and untypeable strains from Green Cape.  However, it is concluded that 

the V. parahaemolyticus serotypes were distributed randomly between sites based on 

results of Friedman’s χ
2 

analysis. 

 

Virulence Factors and Markers of Pandemic Clones 

None of the strains of V. parahaemolyticus carried the gene for thermostable 

direct hemolysin (tdh), hence all were Kanagawa Phenomenon –negative and also were 

urease-negative (Table 8.2).  None of the isolates possessed thermostable-related 

hemolysin (trh), TTSS-2, or MTase.  Seven carried the ORF8 marker of the f237 

filamentous phage but only four also carried the 850-bp pandemic sequence and no other 

pandemic markers.  Two of the ORF8-positive strains were serotyped both were 

untypeable (UT).  Nineteen strains carried the pandemic GS-PCR marker (toxRS 

sequence of pandemic strains), but only seven were 651 bp and 12 were ca. 750 bp.  

Three of the 651 bp, GS-PCR-positive strains were also positive for the 850 bp pandemic 

sequence, whereas six of the 750 bp, GS-PCR-positive isolates also encoded this region.  

Each of the 650 bp, GS-PCR-positive isolates were different serotypes and typed as 

O1:KUT, O3:KUT, O3:K31, O3:K33 O3:K65, and UT, the most notable was the 

O1:KUT, a type to exhibit pandemicity.  This isolate was also positive for the 850 bp 

pandemic sequence but lacked all other markers of virulence except TTSS1. 
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REP-PCR 

Long range rep-PCR was performed on 45 of the strains (Figure 8.3).  A 

dendrogram of banding patterns revealed 45 distinctive bands. 

 

Predictive Modeling 

Using binary logistic regression a model was constructed which best fit the 

observed data for occurrence of V. parahaemolyticus water temperature since it had been 

found to be the single significant predictor (Table 8.3).  For all sites combined, 37.3% of 

the variance in isolation of V. parahaemolyticus was explained by water temperature.  In 

the Chorokhi and Supsa estuaries, only 22 and 32.1%, respectively, of the variance in V. 

parahaemolyticus isolation was explained by water temperature, a relationship higher for 

Batumi Bulvard and Green Cape sites (43.2% and 70.1%, respectively) (Table 8.3).  

 

Discussion 

Vibrio parahaemolyticus is a bacterium halophilic, autochthonous to marine and 

estuarine environments, and found in coastal environments worldwide.  Although 

commonly isolated from brackish waters, its presence indicates public health concern 

since inhabitants of regions harboring the pathogen experience sporadic cases of illness, 

related to seafood with which the bacterium is associated.  This risk is high regardless of 

whether pathogenicity islands are present since infections are caused by isolates lacking 

tdh, trh, and TTSS2.  Sporadic outbreaks caused by V. parahaemolyticus historically have 

been reported around the Black Sea, indicating the value of monitoring for V. 

parahaemolyticus (Libinzon et al., 1974; Zakhariev, 1975).  
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 The strains which were isolated represented 9 O-antigens and 27 k-antigens, as 

well as untypeable strains, a measure of the antigenic diversity of the natural isolates in 

this region.  Gram-negative bacteria are capable of frequent mutations within antigen 

coding regions of the genome as well as lateral transfer possibly allowing strains to adapt 

to microenvironments of the environment (Lerouge et al., 2001; Woo et al., 2001).  

Molecular divergence was indicated by heterogeneity among O3:K31 and O2:K28 strains 

in rep-PCR analysis.  This genomic indicates a need to classify strains by methods other 

than serology, which represents ca. 1% of the genome.  The high degree of divergence 

among environmental V. parahaemolyticus strains in the Black Sea is corroborated by 

similar findings in geographically distant regions (Wong et al., 1999(a); Wong et al., 

1999(b); Wong et al., 1999(c): Matsumoto et al., 2000; Alam et al., 2009). 

 V. parahaemolyticus seasonality was found to be a predictable pattern at all sites, 

with a clear trend of increasing numbers as water temperatures increased, May to 

September.  V. parahaemolyticus was isolated from water samples, the temperatures of 

which was 8 C, a low temperature, but >93% of strains were isolated in waters > 17 C 

(Table 8.2).  The statistical model for detection of V. parahaemolyticus pointed to water 

temperature at all sites with concordance highest at Green Cape (concordance = 70%, P < 

0.05). 

In conclusion, an antigenically diverse population of V. parahaemolyticus inhabits 

the Georgian coast of the Black Sea.  Although none of the strains collected during this 

study Kanagaw phenomena-positive or tdh and trh-positive, the presence of TTSS1 

effector proteins and thermolabile hemolysin were encoded, including a serovariant of the 

V. parahaemolyticus O3:K6 pandemic clone.  These results, together with 
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epidemiological data showing strains lacking pathogenicity islands can cause disease 

suggest a risk can be associated with the occurrence of V. parahaemolyticus in the Black 

Sea coastal waters of Georgia.  The warmer temperatures in the spring and summer lead 

to increased populations of V. parahaemolyticus. 
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Table 8.1. PCR primers used in this study 

 

 

F-TGCGAATTCGATAGGGTGTTAACC

R-CGAATCCTTGAACATACGCAGC

F-GAAAGTTGAACATCATCAGCACGA

R-GGTCAGAATCAAACGCCG

F-GTAAAGGTCTCTGACTTTTGGAC

R-TGGAATAGAACCTTCATCTTCACC

F-TTGGCTTCGATATTTTCAGTATCT

R-CATAACAAACATATGCCCATTTCCG

F-AAAGCGGATTATGCAGAAGCACTG

R-GCTACTTTCTAGCATTTTCTCTGC

F-TAATGAGGTAGAAACA

R-ACGTAACGGGCCTACA

F-GTTCGCATACAGTTGAGG

R-AAGTACAGCAGGAGTGAG
~700Orf8 Nasu et.al., (2000)

Target gene Sequence (5’-3’) Amplicon size (bp) Reference

387

271

269

tlh Bej et.al. (1999)

GS-PCR Matsumoto et.al. (2006)

450

651

trh Bej et.al. (1999)500

pR72H element Lee et al (1995)

collagenase Di Pinto et al (2006)

tdh Bej et.al. (1999)
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Table 8.2.  Molecular characterics of serotyped strains. 

Serotype
# of 

Isolates

W/P
a 
 

(64/200)
b

tdh KP tlh trh VP1680 VP1686 ORF8
GS-

PCR

O1:K32 1 1/0 0 0 1
c
 (100)

d 0 1 (100) 1 (100) 0 0

O1:K58 1 0/1 (0/1) 0 0 1 (100) 0 1 (100) 1 (100) 0 0

O1:KUT 1 0/1 (0/1) 0 0 1 (100) 0 1 (100) 1 (100) 0 1 (100)

O2:K28 8 6/2 (0/2) 0 0 7 (87.5) 0 7 (87.5) 7 (87.5) 0 0

O2:KUT 1 0/1 (0/1) 0 0 1 (100) 0 1 (100) 1 (100) 0 0

O3:K5 1 1/0 0 0 1 (100) 0 1 (100) 1 (100) 0 0

O3:K31 7 3/4 (3/1) 0 0 7 (100) 0 7 (100) 7 (100) 0 1 (1)

O3:K33 1 1/0 0 0 1 (100) 0 1 (100) 1 (100) 0 1 (100)

O3:K51 2 0/2 (1/1) 0 0 2 (100) 0 2 (100) 2 (100) 0 0

O3:K65 2 1/1 (1/0) 0 0 2 (100) 0 2 (100) 2 (100) 0 1 (50)

O3:KUT 7 2/5 (3/2) 0 0 7 (100) 0 7 (100) 7 (100) 0 1 (14)

O4:K12 1 1/0 0 0 1 (100) 0 1 (100) 1 (100) 0 0

O4:K34 1 1/0 0 0 1 (100) 0 1 (100) 1 (100) 0 0

O4:K37 1 0/1 (0/1) 0 0 1 (100) 0 1 (100) 1 (100) 0 0

O4:KUT 7 2/5 (2/3) 0 0 7 (100) 0 7 (100) 7 (100) 0 0

O5:K68 2 1/1 (0/1) 0 0 2 (100) 0 2 (100) 2 (100) 0 0

O5:KUT 2 2/0 0 0 2 (100) 0 2 (100) 2 (100) 0 0

O6:KUT 1 1/0 0 0 1 (100) 0 1 (100) 1 (100) 0 0

O8:KUT 2 2/0 0 0 2 (100) 0 2 (100) 2 (100) 0 0

O10:K61 1 1/0 0 0 0 0 0 0 0 0

O10:K60 1 1/0 0 0 1 (100) 0 1 (100) 1 (100) 0 0

O10:KUT 1 0/1 (1/0) 0 0 1 (100) 0 1 (100) 1 (100) 0 0

O11:KUT 1 1/0 0 0 1 (100) 0 1 (100) 1 (100) 0 0

OUT:K27 1 0/1 (0/1) 0 0 1 (100) 0 1 (100) 1 (100) 0 0

OUT:K33 2 2/0 0 0 2 (100) 0 2 (100) 2 (100) 0 1 (50)

OUT:K52 1 1/0 0 0 1 (100) 0 1 (100) 1 (100) 0 0

UT 24 19/5 (3/2) 0 0 23 (95.8) 0 23 (95.8) 24 (100) 0 1 (4)

a W = water, P = plankton

b plankton fraction size in µm

c number of positive isolates

d percent of total isolates of that serotype
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Table 8.2.  Recorded environmental parameters when V. parahaemolyticus was/was not detected for each sample type. 

 

 

Media Statistic Salinity (‰) Water Temp (ºC) pH DO (mg/L)

Min 3.4 A / 3.6 B 8 / 7.7 6.2 / 6.3 2.1 / 2

Max 20.8 / 20.8 28.5 / 29.7 8.6 / 8.5 7.2 / 7 

Mean 12.9 / 12 22.8 / 16.5 7.7 / 7.8 4.4 / 4.3

Median 15.7 / 13 24.25 / 13 7.8 / 7.9 4.3 / 4.6

Std Dev 5.0 / 7.3 4.9 / 7.3 0.7 / 0.6 1.2 / 1.3

Min 5 / 3.6 19.3 / 7.7 6.5 / 6.2 2 / 2

Max 17.4 / 20.8 28.5 / 29.7 8.4 / 8.5 6.8 / 7.2

Mean 13.6 / 12.3 25.4 / 17.3 7.9 / 7.8 4.1 / 4.4

Median 16.5 / 14.2 26.6 / 17 8.2 / 7.9 4.2 / 4.5

Std Dev 4.6 / 4.9 2.9 / 7 0.6 / 0.6 1 / 1.2

Min 3.4 / 3.6 18 / 7.7 6.2 / 6.5 2.1 / 2

Max 20.8 / 20.8 29 / 29.7 8.4 / 8.5 7.2 / 7.2

Mean 12.8 / 12.3 24.6 / 17 7.6 / 7.8 4.4 / 4.3

Median 14.9 / 14 25.6 / 14.2 7.6 / 8 4.1 / 4.4

Std Dev 5.4 / 4.7 3 / 7 0.7 / 0.5 1.3 / 1.2

Min 3.4 / 3.6 18 / 7.7 6.2 / 6.5 2 / 2

Max 20.8 / 20.8 29 / 29.7 8.4 / 8.5 7.2 / 7.2

Mean 13.2 / 12.3 25 / 16.2 7.7 / 7.8 4.2 / 4.3

Median 16 / 14.1 25.8 / 13.6 7.8 / 8 4.1 / 4.5

Std Dev 5 / 4.8 3 / 6.8 0.7 / 0.5 1.2 / 1.2

Min 3.4 / 3.6 8 / 7.7 6.2 / 6.5 2 / 2

Max 20.8 / 20.8 29 / 29.7 8.5 / 8.5 7.2 / 7

Mean 12.7 / 12 22.7 / 15.3 7.7 / 7.8 4.4 / 4.3

Median 15.2 / 13.2 24 / 12.4 7.7 / 8 4.4 / 4.6

Std Dev 5 / 4.9 4.9 / 6.9 0.7 / 0.5 1.2 / 1.2

A = statistic when V. parahaemolyticus was detected

B = statistic when V. parahaemolyticus was not detected

Environmental Conditions when V. parahaemolyticus  was Detected / Not Detected

All Sample Types

All Plankton

P200

P64

Water



 

204 

 

 

Table 8.3.  Results of binary logistic regression analysis between V. parahaemolyticus and water temperature. 

 

 

 

 

 

 

 

 

 

 

Statistics All Sites Chorokhi Batumi Bulvard Green Cape Supsa

Parameter

Coefficient 0.27 0.19 0.32 0.53 0.24

Concordance 37.33 22.01 43.18 70.08 31.23

P-value < 0.0001 < 0.001 < 0.01 < 0.01 < 0.01

Deviance 112.93 35.47 25.98 12.32 30.16

Temperature
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Figure 8.1.  Map showing locations of sampling sites along Black Sea and freshwater lakes near Tbilisi. 
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Figure 8.2.  Water temperature (black diamonds) and V. parahaemolyticus detection in water (blue bars) and plankton (200 µm 

[green bars] and 64 µm [magenta bars]).  
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Figure 8.3. rep-PCR dendrogram of a subset of randomly selected strains in this study.  

Serotypes of the analyzed strains are shown at tree leaves. Asterisks indicate strains that 

were positive for GS-PCR 
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Chapter 9:  Detection of Vibrio cholerae in Environmental Waters 

Including Drinking Water Reservoirs of Azerbaijan 

 

Abstract 

Cholera, a globally prevalent gastrointestinal disease, remains a persistent 

problem in many countries including the former Soviet republics of the Caucasus region 

where sporadic outbreaks occurred recently.  Historically, this region has experienced 

cholera during every pandemic since 1816, however, no known comprehensive 

evaluation of the presence of Vibrio cholerae in surface waters using molecular methods 

has been done.  Here we present the first report of the presence of V. cholerae in surface 

waters of Azerbaijan and its seasonality, using a combination of bacteriological and 

molecular methods. Findings from the present study indicate a peak in the incidence of V. 

cholerae in warmer summer months relative to colder winter months.  In the Caspian Sea, 

water temperature when optimal for growth of V. cholerae was significantly associated 

with detection of V. cholerae.  V. cholerae was simultaneously detected at freshwater 

sites including two water reservoirs.  Most importantly, detection of V. cholerae in these 

water reservoirs, source of municipal drinking water poses a potential health risk to the 

population due to the limited and insufficient treatment of water in Azerbaijan.  Routine 

monitoring of environmental waters used for recreational purposes, and especially 

drinking water reservoirs is highly recommended as measure for public health safety. 
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Introduction 

Vibrio cholerae, the causative agent of cholera, has been isolated from marine, 

estuarine, and fresh surface waters throughout the world.  Historically, epidemic cholera 

was caused only by toxigenic strains of the O1 serogroup.  In 1992, a new serogroup, 

O139, emerged and caused more than 10,000 deaths in India and Bangladesh (ICDDRB, 

1993; Ramamurthy et al., 1993).  V. cholerae non-toxigenic non-O1/non-O139 strains 

may also cause small outbreaks and sporadic cases of cholera, as well as extra-intestinal 

infections (Safrin et al., 1988; Ko et al., 1998; Lukinmaa et al., 2006; Shannon and 

Kimbrough, 2006; Chatterjee et al., 2009).  These mild cases often go undiagnosed.  

Furthermore, inadvertently missed and inadequate disease reporting systems in even 

highly developed countries and failure of many sick individuals to seek medical attention 

for episodes of diarrhea result in considerable underreporting of intestinal infections on a 

global scale (Brabazon et al., 2008; MacDougall et al., 2008).  Thus, it is reasonable to 

conclude that the global burden of illness caused by V. cholerae, along with other 

infectious agents, is significantly underestimated, therefore, potentially more cases occur 

than are revealed in the reports.   

In Azerbaijan, a former Soviet Union (FSU) republic and currently a member of 

the Commonwealth of Independent States (CIS) in the Caucasus region, cholera has been 

reported sporadically with large outbreaks occurring at times (Gurbanov et al., 2012).  

This country reported the 4
th

 most cases of cholera of all the Soviet republics during 

Soviet era of the ongoing 7
th

 cholera pandemic (1961 to 1991) (Narkevich et al., 1993).  

Historically, cholera outbreaks in this country have been repeatedly linked to drinking 

water reservoirs that serve the majority of the urban populations (1985, 1993, and 1995) 
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(Gurbanov et al., 2012).  The Caucasus region as a whole experiences cholera and other 

Vibrio infections, but available data and literature on these diseases and their causative 

agents in this region remain scarce (Narkevich et al., 1993).  Overall, water resources in 

Azerbaijan are poor (Gurbanov et al., 2012) (Ewing, 2010) and information on water 

quality and quantity in this country are limited.  Although a significant portion of the 

population in urban areas has access to piped-water, rural inhabitants do not, and 

therefore,  water treatment often times occurs in one’s household (Rosa and Clasen, 

2010).  This poor water quality motivated the United Nations to include Azerbaijan in the 

list of countries aiming to improve clean water access to the general public as one of its 

millennium development goals.  

The occurrence of cholera and the epidemiologic features of this disease, its 

ability to spread globally and the periodicity of outbreaks are influenced by 

environmental factors that enhance the growth of V. cholerae in natural waters (Colwell, 

1996; Binsztein et al., 2004; Huq et al., 2005; Pruzzo et al., 2008).  Ecological studies of 

V. cholerae aid in the discernment of environmental factors that influence its growth and 

subsequent increased numbers in the environment.  From this information, forecasts can 

be made that allow prediction of cholera on a global scale thus allowing public health 

officials get prepared in anticipation of an outbreak of cholera and work proactively for 

prevention.  Several studies during the past two decades indicate that cholera epidemics 

can be predicted (Lobitz et al., 2000; Huq et al., 2005; Colwell, 2006). 

To evaluate the presence and seasonality of V. cholerae in surface waters of Azerbaijan, 

water and plankton samples were collected from freshwater rivers and lakes and from the 
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Caspian Sea and subjected to modern bacteriological investigation, and the findings are 

reported here. 

 

Materials and Methods 

Samples were collected each month from nine sites, including a reservoir, lakes, a 

river, and the Caspian Sea, as shown in Figure 9.3 over a 15 month period, from May, 

2010 to July, 2011.  Water and air temperature, pH, salinity, and conductivity were 

measured on site, using a portable water meter (YSI Incorporated, Yellow Springs, Ohio). 

Surface water samples (100 ml) were collected by filling a sterile 4-liter bucket, the 

contents of which were subsequently passed through 20-μm and 64-μm plankton nets.  

The fractions were transferred to sterile bottles at the collection site. One liter of water 

was passed through a 20-μm net, providing “plankton-free” water sample (FW).  After 

transport to the laboratory, the two plankton fractions were filtered using a 0.22-μm 

polycarbonate membrane and the filter was transferred into a 100-ml conical flask 

containing 25 ml alkaline peptone water (APW).  One milliliter of FW was subsequently 

passed through a 0.22-μm polycarbonate membrane, which was also placed in 25 ml of 

APW.  Each plankton fraction (5 ml) was homogenized with a sterile glass tissue grinder, 

passed through a 0.22-μm polycarbonate membrane, and placed in 25 ml APW.  All 

APW inoculations were incubated for 37°C for 18 to 24 h without shaking.  The 

microaerophilic pellicle that formed at the top of the tube of the APW (10 µl) was 

streaked onto TCBS, and incubated at 37°C for 18 to 24 h.  Five to 15 yellow colonies 

were selected from each plate as presumptive V. cholerae, based on color and colony 

morphology, streaked onto gelatin agar, and incubated at 37°C for 18 to 24 h. From each 



 

213 

plate, a colony was selected and tested for oxidase and inoculated into Luria-Bertani 

broth overnight at 37°C.  After incubation, 0.5 ml of the culture was transferred to a 

cryovial amended with sterile glycerol to a final concentration of 25%.  Biochemical 

profiles of each isolate was determined using standard bacteriological methods (Huq et 

al., 2006).  Strains that appeared to be V. cholerae were examined further using O1 and 

O139 anti-sera and confirmed to be V. cholerae by PCR by targeting the intergenic 

spacer unit (Chun et al., 1999).  Strains were further tested for the presence of CTXФ, 

tcpA, nanH, and nag-ST by PCR.  Distance from optimal water temperatures were 

determined by binning water temperatures to the nearest 1°C and examination of the 

frequency distribution of V. cholerae detection.  The subsequent median value (optimal 

water temperature) was then subtracted from the observed salinities and the absolute 

values of these differences were the distances from optimal water temperatures (Jacobs et 

al., 2010).  Logistic regression was employed using the recorded environmental 

parameters and distances from optimal parameters (R). 

 

Results and Discussion 

Sampling sites were classified as freshwater or saline waters for purposes of this 

study (Figure 9.1).  Water and plankton samples were collected from four fresh water 

sites; Kura River, Lake Karkhana, Jeyranbatan reservoir, and Mingachevir reservoir, and 

five sites along the Caspian Sea; Buzovnah, Bikgah, Novkhani, Shikhov, and Khanlar.  

The Kura River is the largest river in Azerbaijan and its head waters are a group of 

streams in northeastern Turkey.  The river runs through Turkey and Georgia and bisects 

Azerbaijan where it flows southeast and joins the Araz River, the second largest river of 
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this country, before emptying into the Caspian Sea.  Mingachevir and Jeyranbatan 

reservoirs are the 1
st
 and 6

th
 largest reservoirs, respectively, in this country in terms of 

volume and capacity.  Mingachevir reservoir is primarily a source of irrigation water and 

Jeyranbatan provides municipal waters for Baku and other cities on the Absheron 

peninsula.  The Caspian Sea is the largest inland water body by area in the world, is 

directly east of Azerbaijan where it is also bordered by Russia, Iran, Turkmenistan, and 

Kazakhstan.  It is fed by over 130 rivers including the Volga River which is the largest in 

Europe.  This water body serves as a source of seafood for the region as well as globally, 

and it overlays significant reservoirs of gas and oil making it a geopolitically sensitive 

region for its bordering countries. 

Physical and chemical parameters were measured, such as,  pH, conductivity, 

salinity, and water and air temperature at all sampling sites, both saline and fresh water, 

at the time of sample collection (Figure 9.1).  Median water temperature, conductivity, 

and pH were not significantly different between Caspian Sea sites while salinities were 

significantly (Kruskall-Wallis, P < 0.05).  Median salinities were significantly lower at 

Bilgah (10.2 ‰) than at Khanlar (10.7 ‰) and Shikov (10.75 ‰).  When the freshwater 

sites were compared, median water temperatures at Jeyranbatan reservoir were 

significantly lower (14.4°C) than those at Lake Karkhana sites (28.3°C) (Kruskal-Wallis, 

P < 0.05).  Median salinity at Mingachevir reservoir (0.2 ‰) was significantly lower than 

those at Jeyranbatan reservoir (0.4 ‰) and Lake Karkhana (1.1 ‰) (Kruskal-Wallis, P < 

0.05).  Median salinity at Lake Karkhana (1.1 ‰) was also higher than that at Kura River 

(0.3 ‰).  Median conductivity readings were significantly lower at Lake Karkhana (711 

µS) than all other sites and median pH values were significantly higher at Mingachevir 
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reservoir (8.3) than at Kura River (8.2) and Jeyranbatan reservoir (7.9) (Kruskal-Wallis, P 

< 0.05).  At Caspian Sea sites, temperatures in February (10°C) and March (10°C) were 

significantly lower than June (27°C) and August (28°C) 2010 (Kruskal-Wallis, P < 0.05).  

Other parameters recorded in the Caspian Sea were not significantly different by month 

(Table 9.1).  

 A battery of biochemical tests led to identification of presumptive V. cholerae 

(oxidase positive, non-swarming, yellow colonies on thiosulfate citrate bile-salts sucrose 

[TCBS] agar and revealed a seasonal variation metabolic diversity of presumptive V. 

cholerae isolates (Figure 9.2).  Strains utilizing rhamnose and fermenting lactose and 

inositol were more frequently isolated in winter and spring months of the year, 

respectively, while arabinose-utilizing strains peaked in occurrence in the spring (Figure 

9.2).  These data suggest a shift in the availability of nutrients and subsequent shifts in 

bacterial metabolic diversity in the Caspian Sea.  

 To confirm the presence of V. cholerae, molecular test, polymerase chain 

reactions (PCR) targeting the V. cholerae-specific intergenic spacer unit, was performed 

on a subset of presumptive V. cholerae isolates.  Confirmed V. cholerae isolates were 

further tested for virulence factors by PCR and all were negative for the cholera toxin 

(ctxA), tcpA of Vibrio pathogenicity island-1 (VPI-1), nanH of Vibrio pathogenicity 

island-2 (VPI-2), and the non-agglutinating heat-stable enterotoxin (nag-ST).  All isolates 

were also evaluated for the O1 and O139 serogroup wbe* regions by PCR and all were 

determined to be V. cholerae non-O1/non-O139.  V. cholerae was confirmed to be most 

frequently isolated during July 2010, with an occurrence of 80% in the plankton and 

water samples (Figure 9.3).  Detection of V. cholerae was less frequent after July, but V. 
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cholerae could be detected well into the cooler winter months, with an anomalous peak in 

number in the Jeyranbatan reservoir in November 2010. It should be noted that V. 

cholerae was not readily detected at other sites during this same month or previous 

months.  The frequency of V. cholerae detection peaked again during the warmer months 

of 2011, but not to the same level as observed during the previous year (Figure 9.3).  

Environmental parameters were compared when V. cholerae was detected and not 

detected and these analyses show that water temperatures were significantly higher at 

times when the organism was detected compared to water temperatures when it was not 

detected for the Caspian Sea sites (Kruskal-Wallis, P < 0.05).  The median temperature at 

times of detection in this environment was 20.9ºC and 14.2ºC when not detected.  These 

temperature relationships (V. cholerae-positive versus V. cholerae-negative water 

temperatures) were not significantly different for the fresh water sites.  There were no 

significant differences in other environmental parameters when these data were compared 

for both the Caspian Sea and fresh water sites. 

Of the three types of samples collected (20-μm plankton fraction, 64-μm plankton 

fraction, and water), V. cholerae was isolated from the water fraction less frequently than 

the plankton samples (14, 13, 11, 7, and 10 isolates of V. cholerae in the 20-µm plankton 

fraction [PL20], 64-µm plankton fraction [PL64], homogenized 20-µm plankton fraction 

[HOM20], homogenized 64-µm plankton fraction [HOM64], and the < 20-µm plankton 

fraction [FW], respectively).  However, these data were not significant at the P < 0.05 

level (Cochran’s Q) but they do reaffirm the role of plankton as a reservoir of V. cholerae 

in the aquatic environment (Huq et al., 1983; Huq et al., 1990; Huq et al., 1995; Turner et 

al., 2009; Martinelli-Filho et al., 2011).  Homogenized plankton fractions yielded slightly 
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lower numbers of V. cholerae by culture.  Because homogenized plankton fractions allow 

enumeration of both the exterior and interior portions of plankton, enhanced detection of 

V. cholerae relative to non-homogenized plankton fractions would be expected.  It has 

been observed previously that bacteria attached to the surface of zooplankton (copepods) 

will enter into a viable but nonculturable (VBNC) state whereby conventional 

bacteriological culture media do not support growth and can be detected only by direct 

detection methods (Huq et al., 2000).  This phenomenon reduces the probability that V. 

cholerae can be isolated on TCBS agar, rather than reflecting an actual decrease in the 

number of V. cholerae present in a sample. 

The ultimate goal of ecological studies of V. cholerae is to anticipate the 

occurrence of this organism in natural water in an attempt to prevent illness.  Such 

predictions require long-term analyses, typically 3 years or longer, because of seasonal 

variation in year to year.  However, short-term data can be useful in estimating the role of 

the environment on V. cholerae detection for the study period covering that specific data 

set, which was done in this study.  Based on the principle of parsimony, we chose the 

simplest models to explain the observed data by using binary logistic regressions.  For the 

Caspian Sea, models were built that used the data from all sites in different compositions 

(Table 9.2).  This approach of combining sites was necessary due to the size of the data 

set and the variations of sites for model development were explored because V. cholerae 

isolation had occurred at anomalously low temperatures at Bilgah, Buzovnah, and 

Novkhani suggesting that V. cholerae dynamics are different between sites in this 

environment.  The Khanlar and Shikhov-only (K,S) model was developed as these sites 

have similar salinities. We therefore, built alternative models using data, more typical for 
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V. cholerae isolation, based on global isolation patterns, and we present all 4 sets of 

models in this report.  Similar to other studies, inclusion of fresh water and saline water 

data in the same model resulted in a poor model, so the two sets of data were separated 

for separate analyses (Louis et al., 2003).  For the “all Caspian model” (all Caspian Sea 

sites included) several models that significantly explained the variations in the V. 

cholerae presence were fitted to the data, and water temperatures or distances from the 

optimal water temperature were at the core of all models excluding the two weakest, yet 

significant, models (not shown) (lowest two Akaike’s Information Criteria [AIC] values) 

(Table 9.2).  As water temperature increased, so did the detection of V. cholerae and 

when distance from optimal water temperature increased, detection of V. cholerae 

decreased.  For the alternative Caspian Sea models the model fitted the data better, but 

the variation in V. cholerae detection explained by the model remained relatively low.  In 

these two models temperature or distance from optimal temperature remained at the core 

of each model.  At the Khanlar-Shikhov-Bilgah sites (K, S, Bi), when distance from 

optimal conductivity was added to the model, distance from optimal water temperature, 

the variation in V. cholerae described by the model improved from 31.7% to 50.4% 

(Table 9.2).  For the freshwater sites alone no significant explanatory variables were 

found, which is similar for other studies (Louis et al., 2003). 

For the Caspian Sea, we determined the predicted probabilities of V. cholerae 

detection based on the computed odds-ratios for the model of water temperature fitted to 

the V. cholerae detection data.  Water temperatures were chosen as opposed to optimal 

water temperatures since historical water temperature data collected at the Caspian Sea 

could be fitted to these results.  Predictive probabilities of V. cholerae detection 
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demonstrate a clear increase as water temperatures increases and ranges from p = 0.045 at 

the lowest recorded temperature (4°C) to     p = 0.56 at the highest recorded temperature 

(28.4°C) (Figure 9.4).  Quartiles of water temperatures recorded at time of collection 

were superimposed on this histogram (black bars) to demonstrate the increased 

probability of V. cholerae detection during seasonal shifts in water temperatures.  

Applying historical averages of water temperatures recorded in the Caspian Sea to this 

model suggests that historically V. cholerae can be detected most frequently in July, 

August, September, and October (Gurbanov et al., 2012).  Our V. cholerae isolation data 

demonstrates that the organism was detected in 50% of sites sampled in July 2010, 66% 

of sites in July 2011, 40% of sites sampled in August, but at no sites in October.  It 

should be noted that although the probability of V. cholerae detection increases with 

increasing temperatures and is highest in these months, it is still only 0.56 at its highest 

prediction based on water temperature.  However, these data do demonstrate a clear trend 

that is confirmed by other studies in other parts of the world (Louis et al., 2003; Huq et 

al., 2005; Constantin de Magny et al., 2008; Constantin de Magny et al., 2009; Turner et 

al., 2009). 

The detection of V. cholerae in Jeyranbatan reservoir water was a significant 

finding, since this is the source of drinking water for Baku and the entire Absheron 

peninsula.  We detected V. cholerae during 3/7 (27%) sampling rounds. A second water 

reservoir, the Mingachevir reservoir, located in northern Azerbaijan, was also positive for 

V. cholerae in July, 2010.  Although these isolates were not “epidemic strains”, however, 

they are a significant because studies have shown, mobile genetic elements such as 

integrating filamentous phage CTXφ,  encoding the cholera toxin  (CT) gene, can make a 
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lateral transfer  to nontoxigenic V. cholerae  transforming to toxigenic (Waldor and 

Mekalanos, 1996). In addition, there have been reports on morbidity and mortality 

worldwide caused by non-toxigenic V. cholerae non-O1/non-O139 (Safrin et al., 1988; 

Ko et al., 1998; Lukinmaa et al., 2006; Shannon and Kimbrough, 2006; Chatterjee et al., 

2009).  When municipal waters are not treated prior to public distribution, and these 

reservoirs were the source of water, there were cholera outbreaks in Azerbaijan 

(Gurbanov et al., 2012).  It is concluded that the bodies of water in Azerbaijan should be 

monitored as V. cholerae  appears to be widely distributed in the aquatic environment of 

Georgia (Grim et al., 2010).  It was interesting to note that water temperature and 

conductivity can significantly explain some deviance in the detection of V. cholerae in 

the Caspian Sea with predictive probabilities of V. cholerae detection increasing as 

temperatures increase.  Applying historical averages of water temperatures recorded in 

the Caspian Sea to this model suggests that detection rates should be highest in August 

when condition are favorable it’s  growth.  Results from a retrospective study on the data 

collected over 28 years, showed an increase of air temperatures directly corresponds to 

increased detection of V. cholerae (Gurbanov et al., 2012).  

  Our models fit the data with highly significant, albeit relatively low pseudo-R
2
 

values (% variation in V. cholerae explained by the environmental parameter) suggesting 

there are other factors not accounted for in this study may influence V. cholerae detection 

in this environment other than temperature.  Pollution in this region is known to have a 

dramatic influence on macrobiota in the Caspian Sea and it may greatly influence 

microbial diversity in this environment as well (Dumont, 1995).  There is evidence that 

pollution similar to that which occurs in the Caspian region influences aquatic microbial 
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communities and these sources of pollution, such as polyaromatic hydrocarbons (PAHs), 

can have as significant an influence on microbial communities as do seasonal shifts in 

environmental parameters (Djhanguiri et al., 1997; Lemke et al., 1997; Langworthy et al., 

1998; Tolosa et al., 2004).  However, evidence of this is lacking in the Caspian Sea due 

lack of research of this topic, primarily due to the loss of funding for scientific research 

after the fall of the Soviet Union.  As previous models of some infectious diseases have 

utilized data on accelerated climate change due to industrial pollution future studies and 

models of aquatic bacterial pathogens should attempt to identify and quantify sources of 

pollution other than those which influence global air and water temperatures and estimate 

their influence on the ecological dynamics of these pathogens.  In conclusion, we suggest 

employing appropriate method, it is important to monitor environmental waters, used for 

recreational purposes, and especially if it is a source of drinking water as a preventive 

measure for public health safety. 
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Figure 9.1.  Samples were collected from nine sites, including a reservoir, lakes, a river, 

and the Caspian Sea, as shown in Figure 9.4 over a 15 month period, from May, 2010 to 

July, 2011.  Bilgah, Buzovnha, Shikhov, Khanlar and Novkhani are located along the 

Caspian Sea, on or near the Absheron peninsula where Baku is located and the majority 

of the Azerbaijani population lives.  Novkhani is located near the city of Sumqayit, a 

heavily polluted industrial town developed during the Soviet era (Islamzade, 1994).  

Capsian Sea sites were sampled monthly.  Fresh water sites are the Kura River, Lake 

Karkhana, and Jeyranbatan and Mingachevir reservoirs.  The Kura River, Lake 

Karkhana, and Mingachevir reservoir sites were sampled from May to October and the 

Jeyranbatan site was sampled monthly.  Approximate locations of the three largest cities, 

Baku (the capitol), Sumqayit, and Ganja are bordered by a black box. 
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Figure 9.2. Seasonality in biochemical profiles of the presumptive V. cholerae strains.   
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Figure 9.3. Monthly variation in V. cholerae detection at sampling locations in Azerbaijan.  Freshwater location are indicated 

in th top figure and Caspian Sea locations are on the bottom figure.  Stacked colored bars indicate the presence of V. cholerae 
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in < 20 μm free water fraction (FW, grey bars), 20-μm plankton fraction (PL20, white bars), 64-μm plankton fraction (PL64, 

diagonally striped bars), homogenized 20-μm plankton fraction (HOM20, black bars), and homogenized 64-μm plankton 

fraction (HOM64, horizontally striped bars).  The black line (Y-axis on the right side) indicates percent of pooled locations 

positive for V. cholerae for each month. 
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Figure 9.4. Predicted probabilities of V. cholerae detection (Y-axis) based on water temperatures (°C) in the Caspian Sea (X-

axis).  Hashed vertical lines demark quartiles of water temperatures and historical monthly temperature averages (Gurbanov et 

al., 2012), are assigned to the corresponding quartile to estimate the predicted probability of V. cholerae detection per month. 
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A
  based on Huseynov and Malikov (2009)(Huseynov and Malikov, 2009) 

Saline/Fresh   Season 
A Month

Water Temperature 

(°C)

Air Temperature 

(°C)
Salinity (ppt) Conductivity pH

Percentage of Sites 

Positive for V. cholerae

Spring May 2010 16 20.5 10.6 15.9 8.3 50

June 27.5 32.7 10.6 18.5 8.3

July 27.7 32 14.6 14.6 8.3

August 27.2 33 10.7 18.5 8.3

October 17.7 22.8 10.4 16.6 8.3

November 14.9 14 10.1 15.5 8.3

December 12.0 13.4 10.9 16.4 8.3

January 2011 9 10.2 10.6 15.2 8.3

February 5.6 5.2 10.1 14.1 8.3

March 5.8 6.2 10.4 13.6 8.2

April 10.9 12.3 10.6 15.6 8.1

May 16.6 20.3 10.7 16.8 8.2

June 22 27.8 10.2 18 8.2

July2011 25 27 10.8 18.2 8.2

Spring May 2010 18 24.0 0.4 735.5 7.9 10

June 25.4 28.3 0.6 481.9 8.0

July 26.9 28 0.5 447.0 8.0

August 28.7 32 0.3 699.5 8.1

October 19.8 23.3 0.5 461.8 8.0

November 14.4 16 0.4 664.5 7.9

December 11.3 13.0 0.4 686.0 8.3

January 2011 13 13.0 0.4 615.0 7.9

February 6.2 4.0 0.4 718.5 7.9

March 8.8 8.0 0.4 711.0 8.8

April 12.5 15.1 0.3 519.8 8.3

May 15.6 20.0 0.3 548.0 8.3

June 25 30.0 0.2 443 8.3

July2011 26 34 0.5 516.3 8.2

C
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sh
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Winter 25

Spring 20

Summer 0

17

57

Summer 43

Autumn 40

50
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Table 9.1.  Average monthly environmental parameters and percentage of sampled sites that were positive for V. cholerae (far 

right column) at Caspian Sea and Freshwater sites.  Seasons in Azerbaijan as determined by Huseynov and Malikov (2009) are 

listed in the second column from the left.  The figure is shaded by quartiles of recorded water temperatures.  The darkest shade 

represents the coldest recorded water temperatures with decreasing darkness of shade representing increasing water 

temperatures. 
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Table 9.2.  Statistical models of V. cholerae detection with logististic regression.  Bu 

= Buzovnah, Bi = Bilgah, N = Novkhani, K = Khanlar, S = Shikhov.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sites Environmental Parameters Coefficient P-Value
Deviance 

Explained (%)

Distance from Optimal Water Temperature -0.1907 0.0085 14.61

Water Temperature 0.1255 0.0075 13.34

Distance from Optimal Water Temperature -0.2948 0.00976 25.43

Water Temperature 0.14178 0.01336 16.96

Distance from Optimal Water Temperature + -0.7903 0.00612

     Distance from Optimal Conductivity 1.7112 0.02685

Distance from Optimal Water Temperature -0.03518 0.00772 31.7

Water Temperature 0.1779 0.00724 23.02

Distance from Optimal Water Temperature -0.4405 0.0111 43.76

Water Temperature 0.2 0.009 27.8

50.39

Bu, Bi ,N ,K, S

K,N,S

K, S, Bi

K,S
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Chapter 10:  Comparison of Methods for Quantifying Bacterial 

Indicators in an Urban Brackish Water Environment 

 

Abstract 

The United States EPA and European Community Bathing Water Directive 

recommend testing the levels of Escherichia coli and enterococci in surface waters as 

proxies for the presence of human enteric pathogens.  Similarly, international and 

United States regulations for ships’ ballast water discharge include acceptable limits 

for E. coli and enterococci.  In this report we present the results of a comparative 

study of standard membrane filtration methods and recently developed enzyme 

substrate methods, Colilert and Enterolert (IDEXX Laboratories, Inc.), for detection 

of E. coli and enterococci in an urban brackish water environment at the Port of 

Baltimore.  Enterolert and Colilert assays showed significant and positive correlation 

with analogous membrane filtration methods, ρ = 0.60 for modified mTEC44.5ºC, and, 

ρ = 0.55 for mEA-BEA44.5ºC.  Microbial concentrations were significantly higher for 

membrane filtration assays incubated at Enterolert and Colilert recommended 

temperatures (41ºC and 35ºC, respectively), thereby producing stronger correlations, 

ρ = 0.89 for modified mTEC35ºC and ρ = 0.65 for mEA-BEA41.5ºC. These results 

indicate that the membrane substrate methods, Enterolert and Colilert, can 

overestimate the target bacterial populations because of lower incubation 

temperatures compared to standard methods, most likely by allowing growth of non-

fecal bacteria. 
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Introduction 

Waterborne outbreaks of gastroenteritis are typically associated with exposure 

to anthroponotic and zoonotic pathogens in recreational, drinking, and irrigation 

waters.  Many of these organisms are autochthonous to the aquatic environment while 

others are not and both types have been shown to persist and remain infectious for 

extended periods of time in these environments (Buswell et al., 1998; Fayer et al., 

1998, Mezrioui et al., 1995).  Some of these pathogens have been suggested to be 

introduced into the aquatic environment via urban and agricultural runoff, as well as 

from the presence of wildlife and their utilization of watersheds (Haley et al., 2009; 

Lipp et al., 2001: MacKenzie et al., 1994).  However, viability and culturability of 

these pathogens may vary outside of the host.  This presents a problem when 

attempting to predict the overall public health safety of the aquatic environment, with 

respect to pathogenic micoorganisms.  To address this problem, suites of bacteria of 

fecal-origin, such as E. coli and enterococci, are used as proxies for the presence of 

enteric pathogens of human and animal origin.   

 In 1976 the USEPA and the European Community Bathing Water Directive 

called for the use of coliforms as indicators of water quality; however it has been 

demonstrated that environmental samples contain a large fraction of these bacteria 

that are not of fecal origin, such as Klebsiella and Citrobacter (Leclerc et al., 2001), 

thus making their use as indicators of water quality questionable.  Epidemiological 

studies later demonstrated that the numbers of enterococci and Escherichia coli 

bacteria in samples collected at several freshwater and coastal beaches were directly 
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related to cases of gastroenteritis in the aquatic environment.  Based on the results of 

these studies the USEPA adopted the use of enterococci and Escherichia coli as 

proxies for estimating public health safety of recreational water.  Escherichia coli has 

been suggested to be a specific indicator of fecal pollution because of its abundance 

in fecal matter (10
9
 g

-1
) and inability to replicate outside the host under certain 

environmental conditions, while persisting at least the same length of time as other 

fecal pathogens discharged into aquatic environments.  Enterococci are considered to 

be reliable indicators of fecal pollution because of their limited host range (humans, 

dogs, and chickens) (Wheeler et al., 2002), but this has been disputed and is currently 

under scrutiny (Jackson et al., 2007; Roslev et al., 2004). 

 To examine the abundance of E. coli and enterococci in the aquatic 

environment, several methods have been developed to improve accuracy and speed of 

detection.  Erroneous high estimates of the concentrations of fecal indicator bacteria 

can lead to unnecessary closing of recreational waters causing substantial economic 

losses, while erroneous low concentrations will pose a public health threat for those 

exposed to the water.  Current USEPA and European Union methods call for 

membrane filtration and incubation of the filters on selective media specific for 

growth of either enterococci or E. coli.  Improvements in the test methods over have 

increased the specificity of detection, as well as reduced the time of analysis.  For 

example, currently approved USEPA methods include the use of membrane-

thermotolerant E. coli agar (mTEC) (USEPA Method 1103.1) and modified 

membrane-thermotolerant E. coli agar (modified mTEC) (USEPA Method 1603) for 

detection of thermotolerant E. coli.   These tests require media preparation and quality 
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control testing prior to use.  Furthermore, prepared media have a relatively short shelf 

life requiring media to be repeatedly prepared over time.  To address this issue, rapid 

microbiological test kits for detection and quantification of E. coli and enterococci in 

water samples have been developed and are commercially available.  The Enterolert 

and Colilert kits (IDEXX Laboratories, Inc., Westbrook, ME) involve two steps, 

inoculation of sample in dehydrated selective media and incubation of this inoculum 

in a sealed, multiwelled tray, yielding an estimation of cell concentration by the Most 

Probably Number (MPN) method. 

 This study compares two standard membrane filtration methods for 

quantification of thermotolerant E. coli and enterococci with Colilert and Enterolert 

systems.  Results of each method are compared with heterotrophic bacteria (HPC) 

counts, thus the objective of this study was to determine whether the cell 

concentration estimations could be correlated and thereby provide the same results. 

 

Materials and Methods 

Sample Collection 

Water samples were collected twice weekly between August and October 

2008 and between April and May 2009 from the Maritime Environmental Resource 

Center (MERC) ballast water treatment test facility, located onboard the M/V Cape 

Washington docked in the Port of Baltimore, Patapsco River, Maryland, USA.  Five 

replicate one liter samples were collected at each sample collection time in sterile 1 
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liter polypropylene bottles and transported on ice.  Samples were processed in the 

laboratory for microbial examination within four hours of sample collection. 

 

Enumeration of Escherichia coli on Modified mTEC Agar 

Following USEPA Method 1603; volumes of 1mL, 10 mL and 100 mL of 

water were passed through a 0.45 µm nitrocellulose membrane filter which was then 

placed on modified thermotolerant E. coli agar (modified mTEC) (Becton Dickson, 

Sparks, MD).  Plates containing membranes were pre-incubated for two hours at 35ºC 

to enhance recovery of injured and stressed cells and incubated in a sealed Whirl-

Pack® bags (Nasco, Fort Atkinson, WI) at 44.5ºC in a waterbath for 22-24 hours.  

The protocol was followed in parallel, except that the final incubation temperature 

was 35 ºC, to employ the same incubation conditions as for the IDEXX Colilert 

detection kit.  After incubation, red and magenta colonies were enumerated as E. coli 

and recorded as E. coli colony forming units per 100 mL (CFU 100 mL
-1

) of sample 

water. 

 

Enumeration of Enterococci on mE and BE Agar 

For enumeration of enterococci by membrane filtration, 10 mL and 100 mL of 

water were passed through a 0.45 µm nitrocellulose membrane, which was then 

transferred onto mEnterococcus agar (mEA, Becton Dickson, Sparks, MD) and 

incubated at 44.5ºC  for 48 hours.  Membranes containing light and dark red colonies 

were transferred to bile-esculin agar (BEA, Becton Dickson, Sparks, MD) and 

incubated for 4 hr (Figueras et al., 1996).  The process was followed in parallel, with 
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a final incubation temperature of 41ºC to employ the same incubation conditions of 

the IDEXX Enterolert detection kit.  After incubation, dark colonies with a black halo 

were scored as enterococci and reported as enterococci colony forming units per 100 

mL (CFU 100 mL
-1

). 

 

Enumeration of Escherichia coli and Enterococci Using IDEXX Kits 

E. coli and enterococci concentrations were also estimated using the IDEXX 

Colilert and Enterolert kits, respectively (IDEXX Laboratories, Inc., Westbrook, 

ME).  One-hundred milliliters of sample water were mixed in IDEXX resuspension 

bottles with one pack of the appropriate media for each test.  This mixture was poured 

into a Quantitray and sealed.  Enterolert trays were incubated at 41 ± 0.5ºC for 24 

hours.  Colilert trays were incubated at 35 ± 0.5ºC for 24 hours.  When E. coli 

metabolizes 4-methyl-umbelliferyl-B-D-glucuronide (MUG), the nutrient-indicator, 

in the enrichment medium, the sample fluoresces.  When enterococci metabolizes 4-

methyl-umbelliferyl-B-D-glucoside (MUD), the nutrient-indicator, in the enrichment 

medium, the sample fluoresces.  Fluorescence, determined with a 6-watt, 365 nm 

hand-held UV lamp within 5 inches of the sample in a dark environment, indicated a 

positive score for the presence of both enterococci and E. coli.  Indicator densities 

were recorded as Most Probable Number (MPN) per 100 mL. 
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Enumeration of Heterotrophic Bacteria 

Heterotrophic bacteria were enumerated by plating a three-fold serial dilution 

of water sample, in triplicate, onto heterotrophic plate count (HPC) agar in 100 µl 

volumes.  HPC agar plates were subsequently incubated at 30ºC for five days and 

heterotrophic bacteria densities were reported as CFU 100 ml
-1

. 

 

Statistical Analyses 

Data were tested for normality using the Kolmogorov-Smirnov and Anderson-

Darling tests.  Subsequently no data were determined to be normally distributed, even 

after logarithmic and square root transformations, (P < 0.05 for all analyses).  

Therefore non-parametric statistical analyses were performed on all data.  To evaluate 

correlation between methods, Spearman’s rank order correlations were determined 

between all enterococci detection methods and all Escherichia coli methods.  

Wilcoxon’s signed ranks test was used to determine if different methods yielded 

different microbial concentrations.  For all analyses, P-values less than 0.05 were 

considered statistically significant. 

 

Results and Discussion 

In this study E. coli concentrations were higher than enterococci densities in 

48% of the samples collected, while enterococci levels were higher than E. coli in 

13% of samples collected.  Thirty-four percent of the samples tested for E. coli 
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exceeded 100 MPN 100 mL
-1

 using the Colilert test and 5% and 0% of samples using 

membrane filtration at 35ºC and 44.5ºC, respectively.  Moreover, 5% of the samples 

exceeded E. coli concentrations of 1,000 MPN 100 mL
-1

 and 1% were recorded at the 

upper detection limit of 6,867 MPN 100 mL
-1

, using the Colilert test.  Enterococci 

concentrations were relatively low and did not exceed 100 MPN 100 mL
-1

 with 

Enterolert or 22 CFU 100 mL
-1

 with membrane filtration.  Neither bacterial indicator 

at both incubation temperatures was detected in 42% of the samples in which all 

IDEXX and membrane filtration assays were run, which usually corresponded to 

treated water samples.  Heterotrophic bacteria were detected in all samples including 

those in which enterococci and E. coli were not detected.  The mean HPC count for 

all samples was 2.5 x 10
4
 CFU mL

-1
 and mean HPC concentration for samples in 

which no other bacterial indicator was detected was 5.5 x 10
2
 CFU 1 mL

-1
 (Table 

10.1).   

 

Comparison of IDEXX Dilutions 

Following recommendations of the IDEXX system for analysis of water with 

greater than 5 ppt salinity, one 10-fold dilution (10-1) assay for each IDEXX assay 

was run in parallel with one undiluted (100) assay for eleven Enterolert samples and 

seventeen Colilert samples.  Results of Wilcoxon’s signed rank test showed no 

significant difference in microbial concentrations between dilutions for each assay. 
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Enterococci Densities 

The number of enterococci ranged from undetectable to 22 CFU 100 ml
-1

 at 

44.5ºC (n = 134) and 21 CFU 100 ml
-1

 at 41.5ºC (n = 116) on mEA-BEA (limit of 

detection = 1 CFU 100 ml
-1

) and from undetectable to 93.5 MPN 100 ml
-1

 (n = 134) 

using the Enterolert test (limit of detection = 1 MPN 100 ml
-1

) (Table 10.1).  These 

data suggest that water samples collected in this study were below the threshold for 

safe water since the enterococci counts did not exceed the one-time sampling 

maximum threshold of 104 CFU 100 mL
-1

 for recreational beaches or the thresholds 

for moderately used marine waters which have less stringent standards .  By the 

Wilcoxon Signed Rank test, enterococci counts were significantly higher on mEA-

BEA plates incubated at 41.5ºC (mean = 1.6 CFU 100 mL
-1

) than on mEA-BEA 

plates incubated at 44.5ºC (mean = 1.2 CFU 100 mL
-1

) (P < 0.0001).   

 Thirty-seven percent of the Enterolert assays did not detect enterococci, while 

68% of mEA-BEA assays incubated at 41.5ºC and 44.5ºC, respectively, did not detect 

enterococci.  There were 53 samples in which the Enterolert assay detected 

enterococci (range = 1 to 53.3 MPN 100 ml
-1

, mean = 9.4 MPN 100 ml
-1

) and the 

mEA-BEA assay incubated at 41.5ºC did not detect enterococci and 32 samples in 

which the Enterolert assay detected enterococci (range = 1 to 63.5 MPN 100 ml
-1

, 

mean = 11.4 MPN 100 ml
-1

) and mE-BEA44.5ºC did not detect enterococci.  There 

were only four assays in which mE-BEA44.5ºC detected enterococci (1 to 4 CFU 100 

ml
-1

) and the Enterolert assay did not detect enterococci.  There were no assays in 

which mE-BEA41.5ºC detected enterococci and the Enterolert assay did not.  

Enterococci numbers determined by membrane filtration at both temperatures were 
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weakly correlated with each other as determined by Spearman’s rank order 

correlation (ρ = 0.60, P < 0.0001). 

 

Escherichia coli Densities 

E. coli numbers ranged from undetected to 157 CFU 100 100 ml
-1

 at 35ºC (n = 

116) and 58 CFU 100 ml
-1

 (n = 134) at 44.5°C on modified mTEC, and from 

undetected to >6.8 x 10
3
 MPN 100 ml

-1
 (n =129) using Colilert (lower limit of 

detection = 1 MPN 100 mL
-1

, upper limit of detection = 6.8 x 10
3
 MPN 100 mL

-1
) 

(Table 10.1).  By the Wilcoxon Signed Rank test, the E. coli numbers were 

significantly higher on modified mTEC35ºC (mean = 25.4 CFU 100 mL
-1

) than 

modified mTEC44.5ºC (mean = 6.1 CFU 100 mL
-1

) (P < 0.0001).  The E. coli numbers 

as determined by both methods correlated weakly with each other by Spearman’s 

rank order correlation (ρ = 0.68, P < 0.05). 

 Thirty-six percent of Colilert assays did not detect E. coli while 43% and 53% 

of modified mTEC assays incubated at 35ºC and 44.5ºC, respectively, did not detect 

E. coli.  There were twenty-six samples in which Colilert detected E. coli and 

modified mTEC44.5ºC did not detect E. coli (range = 1 to 6867 MPN 100 mL
-1

, mean = 

550.7 MPN 100 mL
-1

).  There were five samples in which Colilert detected E. coli 

and the modified mTEC35ºC assay did not detect E. coli (range = 1 to 2 MPN 100 mL
-

1
, mean = 1.2 MPN 100 mL

-1
).  There was one sample in which the mTEC35ºC assay 

detected E. coli (10 CFU 100 ml
-1

) and the Enterolert assay did not detect E. coli. 

Excluding this one sample, all Colilert counts that detected E. coli were higher than 

mTEC counts for plates incubated at both temperatures.  Similar observations have 
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been made in microcosm experiments comparing IDEXX, membrane filtration, and 

multiple tube fermentation assays (Noble et al. 2003). 

 

Correlation between Methods 

From the results of the statistical analyses employing Spearman’s rank order 

correlation, the Enterolert and Colilert MPN methods of detection were correlated 

with the analogous membrane filtration method (mEA-BEA and modified mTEC) at 

all evaluated incubation temperatures (P < 0.0001) (Figures 10.1 and 10.2).  The 

correlations were stronger between Colilert and modified mTEC (ρ = 0.89 for 

modified mTEC35ºC, ρ = 0.60 for modified mTEC44.5ºC) (Figure 10.1) (Table 10.2) 

than between Enterolert and mEA-BEA (ρ = 0.65 for mEA-BEA41.5ºC, ρ = 0.55 for 

mEA-BEA44.5ºC) (Figure 10.2) (Table 10.2).  To investigate whether the low 

correlations were due to low microbial concentrations in the samples for which 

IDEXX detected the target and MF methods did not, all sample-points in which 

IDEXX detected a target and MF methods did not were removed and the analyses 

redone.  Correlations in this second round of analyses showed only a moderately 

stronger correlation between enterococci methods (ρ = 0.69 and 0.56 for analyses at 

41.5ºC and 44.5ºC respectively).  However, for E. coli the analyses showed a weaker 

correlation (ρ = 0.61, P < 0.0001 for mTEC35ºC) and non-significant correlation for 

mTEC44.5ºC (P > 0.05).  The data indicate the IDEXX and MF assays were 

inconsistent in detection if either bacterial indicator was present near the limit of 

detection, an inconsistency that did not influence  the correlation between methods, 

however. 
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Correlation between Incubation Temperatures 

Although neither was strong, the correlation between Enterolert and mEA-

BEA44.5ºC was weaker (ρ = 0.55) than the correlation between Enterolert and mEA-

BEA41.5ºC (ρ = 0.65), suggesting incubation of mEA-BEA plates at the incubation 

temperature for Enterolert (41.5ºC) yielded results more consistent with Enterolert 

MPN concentrations.  Correlations between Colilert and modified mTEC were 

moderately high at both temperatures but stronger for modified mTEC incubated at 

35ºC (ρ = 0.89 mTEC35ºC and ρ = 0.60 for mTEC44.5ºC).  The USEPA standard method 

recommends incubating modified mTEC plates at 44.5ºC to select for thermotolerant 

E. coli strains theoretically originating from the gut of warm-blooded animals, as 

opposed to environmentally adapted strains that may grow at lower temperatures.  

The stronger correlation between the Colilert assay and modified mTEC35ºC suggests 

that the Colilert assay allows growth of a wider range of E. coli strains and does not 

select for thermotolerant strains. 

 

Correlation of HPC Counts with the Number Enterococci and E. coli 

Heterotrophic bacteria counts showed no significant correlation with mEA-

BEA concentrations at both 41ºC and 44.5ºC.   All other bacterial indicator 

concentrations showed significant correlation with HPC counts, although the 

correlation was weak for enterococci by Enterolert (ρ = 0.39) and E. coli densities 

determined by mTEC44.5ºC (ρ = 0.54) (Table 10.2).  The correlation between E. coli 

determined by mTEC35ºC (ρ = 0.75) and Colilert (ρ = 0.72) was higher (Table 10.2) 
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and was interpreted to reflect enhanced growth of environmental bacteria at the lower 

incubation temperature. 

 

Conclusions 

It is concluded ftom the results of this study that the estimates of the Colilert 

and modified mTEC assay incubated at 35ºC are significantly correlated.  However, 

the USEPA recommends incubation for thermotolerant E. coli on modified mTEC 

agar should be 44.5ºC.  Thus, although the correlation is strong, the Colilert results 

most likely include environmentally adapted enteric E. coli, as well as non-enteric 

(non-thermotolerant) E. coli.  Thus, if one uses the recommended incubation 

temperature of the Colilert manufacturer and the incubation temperature for modified 

mTEC recommended by the USEPA, the thermotolerant E.coli estimates using 

modified mTEC will differ from total E. coli counts using Colilert.  The other 

correlations between IDEXX and MF were significant, but weak, and the same 

observation was also noted for HPC and the bacterial indicator assays.  These results 

demonstrate a serious inconsistency in results of methods recommended for detecting 

the level of indicators of fecal pollution in surface waters, with serious implications 

for the public health safety of bodies of water in the natural environment.  Given the 

state, national, and international regulations for microbial indicators of public health 

significance it is perhaps time to consider substitution of more precise methods for 

direct detection of the human pathogens rather than indicators of their presence.   
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Figure 10.1. Scatter plot of E. coli concentrations using by modified mTEC agar and 

Colilert assays.  
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Figure 10.2. Scatter plot of enterococci concentrations using mEA-BEA agar and 

Enterolert assays. 
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Statistic Enterolert mEA-

BEA 

41.5ºC 

mEA-

BEA 

44.5ºC 

Colilert modified 

mTEC 

35ºC 

modified 

mTEC 

44.5ºC 

HPC 

N 134 
a
 116 

b
 134 

b
 129 

a
 116 

b
 134 

b
 120 

a
 

Mean 9.9 1.6 1.27 385.8 25.3 6.1 16648 

Median 3.5 0 0 12 4 0 454500 

Maximum 

Value 

93.5 21 0 6867 157 58 16648.5 

Minimum 

Value 

0 0 11.0 0 0 0 21.5 

Range 93.5 21 22 6867 157 58 454479 

Standard 

Deviation 

16.7 3.84 3.37 977.1 35.9 11.7 74244 

Percent 

Not 

Detected 

37 68 69 36.4 43 53 0 

a 
= Colony Forming Units 100 ml 

-1 

b
 = Most Probably Number 100 ml 

-1 

Table 10.1.  Descriptive statistics of the bacterial indicator assays used in this study. 
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Assay Enterolert 

mEA-

BEA 

41.5ºC 

mEA-

BEA 

44.5ºC 

Colilert 
modified 

mTEC 35ºC 

modified 

mTEC 44.5ºC 

mEA-BEA 

41.5ºC 
   0.65 

a
 1 0.60 ND ND ND 

mEA-BEA 

44.5ºC 
0.55   0.60 1 ND ND ND 

modified 

mTEC 35ºC 
ND ND ND 0.89 1 0.68 

modified 

mTEC 44.5ºC 
ND ND ND 0.60 0.68 1 

HPC 0.39 NS NS 0.72 0.75 0.54 

  

a
 = Spearman’s rank order correlation ρ-value 

ND = Not Determined 

NS = Not Significant (P > 0.05) 

Table 10.2. Summary of correlation between methods determined by Spearman’s 

rank order correlation analysis. 

 

 

 

 

 

 

 

 

 

 

 



 

247 

Chapter 11:  Summary and Conclusions 

 

Results of this research contribute to knowledge of the environment as a 

natural reservoir of human pathogens from both an ecological and genomic 

perspective.  Genomic analyses demonstrated a high level of similarity between 

genomes isolated from clinical cholera cases and isolates from the environment in 

regions where cholera occurs only sporadically.  Moreover, environmental isolates 

whose genomes diverge significantly from genomes of selected clinical isolates 

encode many virulence factors and pathogenicity islands associated with cholera and 

V. cholerae infections.  A newly identified species, V. metecus, was shown, in this 

study, to have a genome with < 95% nucleotide similarity with V. cholerae, yet 

encodes virulence factors and pathogenicity islands known to be integral to the 

disease cholera.  These results suggest virulence genes are conserved among the 

Vibrionaceae and pathogenicity islands circulate across species boundaries in this 

family which implies they have a primary function in the environment. 

From results of this study it is concluded that clinical V. cholerae isolates 

from the same outbreak are not truly clonal and have SNPs among them as well as 

differential expression of virulence.  This study involved sequencing 73% of the 

clinical cases comprising a cholera outbreak in the United States and determining 

expression of the virulence genes.  Implications drawn from the work involve 

understanding why cholera symptoms are not uniform among those who are infected.  

It is known that both the immune status of the host and the constellation of virulence 

factors of the pathogen contribute to the disease outcome.  Since the outbreak that 
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was studied was not caused by V. cholerae from a human carrier, it is concluded that 

highly clonal strains can arise in the environment without human passage, 

enrichment, or dissemination. 

The ecological analysis of V. cholerae in Iceland, a cholera-free country, 

yielded results showing that virulence genes and pathogenicity islands can be 

expressed at temperatures relevant to the environment from which the pathogen was 

isolated.  For example, the virulence gene, hemaglutinnin/protease, involved in 

movement of V. cholerae in the intestine and in degradation of chironomid eggs was 

shown to be proteolytic at 14 C suggesting this “virulence factor” functions in the 

environment.  Chironomids are frequently found in the intertidal zone along the coast 

of Iceland, where V. cholerae was isolated.  Interestingly, the mobile pathogenicity 

island VPI-2, encoding a sialidase and involved in facilitating attachment of cholera 

toxin to gangliosides in the human intestinal epithelium, was found to be present in 

these strains and functional at 14°C, its environmental habitat temperature.  The 

majority of strains isolated from water samples collected in Iceland were positive for 

this pathogenicity island and its conservation suggests an environmental role serving 

to select for its presence in that harsh environment. 

The ecology of V. metecus in the Chesapeake Bay was studied and the results 

showed it has a different seasonality than V. cholerae.  V. metecus densities were 

highest during colder months in contrast to V. cholerae, the densities of which were 

highest in warmer months of the year.  V. metecus densities showed significant 

negative correlation with water temperature.  Furthermore, although V. metecus could 

be isolated during warm months, in low numbers, it was readily isolated during cold 
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months of the year.  V. metecus also showed a significant negative correlation with 

salinity suggesting it fares best in cold fresh water.  This phenomenon is explained as 

follows.  V. metecus grows more rapidly at temperatures at the lower end of the 

mesophilic temperature range and/or it is out-competed by co-occurring 

microorganisms during warmer months (summer), with higher numbers when these 

competing organisms are fewer (winter).  Without data from both microcosm and 

mesocosm studies controlling for temperatures and inter-species competition it can be 

concluded that the ecology of V. metecus differs from that of V. cholerae. 

The seasonality of V. cholerae in Azerbaijan was determined from studies 

carried out on water samples collected from the Caspian Sea, where it was found to 

be more abundant in the summer months, associated with an increase in water 

temperature.  Results of this study showed that drinking water reservoirs in 

Azerbaijan are sources of cholera, corroborating earlier studies that suggested these 

reservoirs are the source of cholera outbreaks in this country. 

V. parahaemolyticus occurrence in the Black Sea was significantly correlated 

with water temperatures.  The V. parahaemolyticus strains that were isolated in this 

study were genetically diverse and many of the genomes encoded makers of the 

pandemic clone of V. parahaemolyticus but none were positive for major virulence 

factors associated with clinical cases, i.e., thermostable-direct hemolysin (TDH), 

thermostable-direct related hemolysin (TRH), and type three secretion system 2 

(TTSS2).  V. parahaemolyticus was found to be associated with plankton and its 

incidence associated with water temperature, as has been reported for V. cholerae. 
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In conclusion, the ubiquity of virulence factors in pathogenic bacteria in 

regions where associated illnesses are rare or do not occur at all are suggests their 

utility in fitness in the environment.  Future work focused on determining those 

targets in the environment for these virulence factors would be highly informative and 

should yield valuable information about factors which contribute to the maintenance 

of highly pathogenic strains in the natural environment. 
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