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Low phytic acid (LPA) is a mutation causing phosphorus to be stored as 

unbound phosphorus in the seed.  LPA mutants show a high inorganic phosphorus 

(HIP) phenotype.  Previous studies had indicated that LPA might be linked to the 

myo-inositol (3) phosphate synthase (MIPS) gene; this research attempted to associate 

a soybean HIP mutant with the MIPS gene. 

The parental and the F2 genotypes were tested in four ways: 1) SNP detection 

using the LCR protocol; 2) polymorphism detection with PCR; 3) high inorganic 

phosphorus (HIP) phenotype detection; and 4) oil and protein concentration. 

The two parental genotypes could not be differentiated in the LCR study. A 

PCR-based polymorphism was heritable in the F2 genotypes.   HIP assay indicated 

multiple genes control the LPA mutant. A polymorphism was associated to the HIP 

phenotype.  The three types of HIP phenotypes were not statistically different in oil 

and protein concentrations allowing implementation into a breeding program.  

  



 
 
 
 
 
 
 
 
 

CHARACTERIZATION OF THE MYO-INOSITOL (3) PHOSPHATE SYNTHASE 
GENE (MIPS) AND MAPPING OF A LPA MUTANT IN SOYBEAN (GLYCINE 
MAX (L.) MERRILL). 

 
 
 
 

By 
 
 

Katherine Diane Salmon 
 
 
 
 
 

Thesis submitted to the Faculty of the Graduate School of the  
University of Maryland, College Park, in partial fulfillment 

of the requirements for the degree of 
Masters of Sciences 

2004 
 
 
 
 
 
 
 
 
 
 
Advisory Committee: 
Professor William J. Kenworthy, Chair 
Associate Professor Jose M. Costa 
Dr. Perry Cregan 
 
 

  



 

Dedication 

This thesis is dedicated to my mother, Patsy Anne Hayes, and my 

grandmother, Mildred Katherine Hayes, both who taught me to preserver through 

difficult times.  Their love and support has been instrumental in achieving all my 

successes.  

 ii 
 



 

Acknowledgements 

The completion of this dissertation was made possible through the assistance 

and support extended by several persons.  I would like to express my thanks to my 

advisors, Dr. William Kenworthy and Dr. Jose Costa, who shared with me their 

expertise and advice throughout my graduate studies.  Thanks to Dr. Costa for the 

chance to work as a lab technician in your breeding lab and your further help when I 

decided to pursue my masters’ degree.  Thanks to Dr. Perry Cregan for sharing his 

knowledge as valuable member of my committee.   

I would also like to thank Justin Kerns.  Without his support I would not have 

gotten through my masters program.  

 iii 
 



 

Table of Contents 
Dedication ..................................................................................................................... ii 
Acknowledgements...................................................................................................... iii 
Table of Contents......................................................................................................... iv 
List of Tables ............................................................................................................... vi 
List of Figures ............................................................................................................. vii 
List of Figures ............................................................................................................. vii 
Introduction................................................................................................................... 1 
Literature Review.......................................................................................................... 3 

Soybean Importance in the Poultry Industry ............................................................ 3 
Phytic Acid................................................................................................................ 3 

Phytic Acid: Storage ............................................................................................. 3 
Phytic Acid: Soil Interaction................................................................................. 5 
Phytic Acid: Nutrient Interactions ........................................................................ 6 
Phytic Acid: Phytase ............................................................................................. 8 

Myo-inositol biosynthesis and MIPS gene ............................................................... 8 
Nutritional Issues Concerning Phytate.................................................................... 10 

Phytic Acid: Human Issues................................................................................. 10 
Phytic Acid: Zinc ................................................................................................ 11 
Phytic Acid: Iron................................................................................................. 11 
Phytic Acid: Calcium.......................................................................................... 12 
Phytic Acid: Diet................................................................................................. 12 

Poultry Issues .......................................................................................................... 13 
Pollution Concerns.................................................................................................. 14 
Solutions for the Poultry Industry for Phytate ........................................................ 15 
Low Phytate Acid Mutations .................................................................................. 17 

Generation of Mutations ..................................................................................... 17 
Germination of  Mutations.................................................................................. 21 
Mutant Genotypes............................................................................................... 21 
LPA1 Mutants..................................................................................................... 22 
LPA2 Mutants..................................................................................................... 22 

High Inorganic Phosphorus (HIP) Phenotype......................................................... 23 
LPA mutants: solutions for feed nutrition and pollution problems?....................... 23 
LPA mutations associated with the MIPS gene...................................................... 24 
Single Nucleotide Polymorphism ........................................................................... 25 
Ligase Chain Reaction (LCR)................................................................................. 25 
Genomic Mapping .................................................................................................. 27 

Materials and Methods................................................................................................ 29 
DNA Population...................................................................................................... 29 
HIP Phenotype Assay ............................................................................................. 29 
DNA Extraction ...................................................................................................... 31 
MIPS-Based Primer Design.................................................................................... 33 
MIPS Polymerase Chain Reaction (PCR) Amplification ....................................... 33 
Nested PCR............................................................................................................. 34 
Cloning of MIPS..................................................................................................... 34 

 iv 
 



 

Alignment of MIPS sequence ................................................................................. 35 
Ligase Chain Reaction (LCR)................................................................................. 36 

Results and Discussion ............................................................................................... 38 
High Inorganic Phenotype Assay............................................................................ 38 
Oil and Protein Concentration ................................................................................ 41 
PCR and Nested PCR for Cloning .......................................................................... 43 
Cloning and sequence alignment ............................................................................ 53 
LCR Primer Design and Reaction........................................................................... 64 
Marker Design and F2 Analysis .............................................................................. 68 

Conclusions................................................................................................................. 72 
Literature Cited ........................................................................................................... 74 

 
 
 
 
 
 
 
 

 v 
 



 

List of Tables 
 

Table 1: Phenotypic classification of F2 genotypes by the HIP soybean assay 
conducted on F3 seeds......................................................................................... 38 

 
Table 2:  Primers designed based on the published MIPS sequence using Primer3 

program for use in PCR-based cloning............................................................... 44 
 
Table 3:  LCR primers designed for SNP detection. .................................................. 65 
 
Table 4: Presence/absence of 700bp fragment from a PCR reaction with primer pair 4.

............................................................................................................................. 69 
 
Table 5:  Polymorphism with primer 4, observed and expected HIP phenotype in the 

F2 population derived from a cross of a HIP mutant and a wild-type................ 70 

 vi 
 



 

List of Figures 

Figure 1: Basic Structure of the stable bound form of phosphorus, phytic acid .......... 4 
 
Figure 2: Phytic Acid Interactions ................................................................................ 7 
 
Figure 3: Ethylmethane sulfonate is an alkylating agent that induces a point mutation.

............................................................................................................................. 19 
 
Figure 4:  Generation of M153 and M766, both LPA putative mutants..................... 20 
 
Figure 5: Using LCR for SNP detection creates a positive/negative product on an 

agarose gel. ......................................................................................................... 27 
 
Figure 6:  High Inorganic Phosphorus Phenotype (HIP) assays were preformed on six 

seeds for each genotype. ..................................................................................... 31 
 
Figure 7:  MIPS soybean cDNA sequence from NCBI Blast website........................ 37 
 
Figure 8: Oil and Protein Concentrations of the two parental genotypes and the three 

HIP types............................................................................................................. 42 
 
Figure 9:  Three types of readable results were produced on an agarose gel with the 

primer pairs designed.  ....................................................................................... 50 
 
Figure 10: Sequenced fragment of the MIPS gene composed of the two contigs which 

were homologous to the Hegeman et al. (2001) published cDNA sequence...... 57 
 
Figure 11: Alignment of contig and three published sequences using MultAlin. ...... 60 
 
Figure 12:  A PCR fragment was designed from the sequenced MIPS fragment in 

which all SNPs between the two parental genotypes were included between the 
two primer pairs. ................................................................................................. 67 

 
Figure 13: Agarose gel electrophoresis showing polymorphism observed using primer 

4........................................................................................................................... 68 

 vii 
 



 

Introduction 

Soybean (Glycine max) is an important crop for the economy of the United 

States as well as for the local economy of Maryland.  The main use of soybeans is in 

the production of a protein supplement used in feed for agrarian animals.  The 

increased production of poultry in recent years has increased the amount of soybean 

grain used in Maryland.  One of the wastes produced by using soybean feed in the 

diet of monogastric animals is phosphorus-rich manure.  Phosphorus in soybean grain 

is found primarily in a bound form, phytic acid, which is indigestible to monogastric 

animals such as poultry. The majority of phosphorus ends up in the manure of 

monogastrics, when the manure is continually applied to fields near poultry 

production farms, excess phosphorus in the manure on these farms can build up in the 

soil and run-off into nearby water systems. This pollutant is the major cause of algae 

blooms. These blooms have been linked to both an extinction of aquatic life and 

human environment-linked health problems.  

     To reduce excess phosphorus in poultry manure, a mutation in a soybean 

genotype was created; phytic acid in these mutants is not the main form of 

phosphorus in soybean seed.  Mineral elements normally bound to phytic acid are 

available in the low phytic acid mutant genotype.  To help understand how the low 

phytic acid (LPA) mutation is inherited, the location of the mutation in the soybean 

genome needs to be determined. The knowledge of the genome position would also 

be helpful in marker assisted breeding.  

LPA mutants similar to the one in the soybean genotype have been linked to a 

gene coding for myo-inositol (3) phosphate synthase (MIPS); a major component of 
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the phytic acid synthesis pathway.  To determine a relationship between LPA and the 

MIPS gene a marker needs to be designed that links the two. 

An SNP (single nucleotide polymorphism) mutation on the MIPS gene might 

stop the production of phytic acid.  A fragment of the gene was sequenced from a 

wild-type genotype and an LPA mutant genotype and a population derived from the 

cross of the two was compared for an SNP.  A primer designed from the published 

cDNA sequence of MIPS showed a polymorphic difference between the two parental 

genotypes. This difference was tested on F2 genotypes to determine heritability.  The 

polymorphism was a dominant marker in the F2 genotypes fitting the 3:1 ratio. 

There were four objectives: 1) test the phenotype, 2) clone the MIPS gene, 3) 

create a marker that was associated the HIP phenotype with a genotype difference 

between two parental genotypes, and  4) determine the effect of HIP type on protein 

and oil content.  The phenotype of each genotype was determined using a HIP assay, 

which classified the genotype as HIP positive, HIP negative, or HIP intermediate.  

The MIPS gene was PCR-cloned from both the wild-type parent and the LPA parent.  

The sequence information from the cloning was used to test SNPs between the two 

parental genotypes using the ligase chain reaction (LCR).  A primer that showed a 

polymorphism between the two parental genotypes was also used to determine the 

association of HIP type to the MIPS gene.  Protein and oil content of each type of HIP 

was compared to each other in order to determine whether the mutation produced a 

negative effect on these two agriculturally important traits in the three HIP classes.  

These four objectives were used to characterize the MIPS gene and map the LPA 

mutant in soybean.  
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Literature Review 

Soybean Importance in the Poultry Industry 

Five thousand years ago soybeans, along with rice (Oryza sativa), wheat 

(Triticum sativum), barley (Hordeum vulgare), and millet (Pennisetum squamulatum), 

were named as the five sacred plants of China. Since this illustrious beginning, 

soybeans have become a major agricultural crop.  The first commercial crop of 

soybeans was planted in the United States in 1929 and it is a vital crop in the U.S. 

agricultural economy.   

How important are soybeans to the American economy?  Over thirty million 

hectares of soybeans were planted in the United States in the year 2000 with a total 

crop value of 12 billion U.S. dollars (American Soybean Association).  One of the 

main uses for soybeans in the United States is as a protein source for the poultry 

industry.  Phosphorus in soybeans has remained an untapped resource because of the 

chemical form in which phosphorus stored in the soybean grain.  Farmers not only 

have to supplement feed with phosphorus, but they have to be concerned with the 

effect of the unused phosphorus in the manure on the environment.   

Phytic Acid 

Phytic Acid: Storage 

 
Phosphorus in soybean seed is stored primarily as phytic acid (myo-inositol 

1,2,3,4,5,6-hexakisphosphate).  Phytic acid (Figure 1), identified in 1855, is an 
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inositol ring with six phosphate groups attached and is the most stable form of 

phosphorus (Oatway et al., 2001).  Phytic acid is found in cereal grains, legumes, 

nuts, oilseeds, tubers, pollen, spores, and organic soils (Oatway et al., 2001).       

Figure 1: Basic Structure of the stable bound form of phosphorus, phytic acid 
(ChemDraw ultra 8.0, Adept Scientific Inc, Bethesda).   
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The phytic acid as a percent total phosphorus in cereal grains, oilseeds, and 

legumes ranges from 60 to 97%, whereas phytic acid only represents 21 to 25% of the 

phosphorus in roots and tubers suggesting that phytic acid might have a role in seed 

germination.  The proportion of phytic acid in the seeds of grain crops ranges from 

0.4 to 10.7% of the  total weight of the seed (Oatway et al., 2001).  Only trace levels 

of lower inositol phosphates and other inorganic phosphorus (<5%), and organic 

phosphorus in forms of DNA, RNA, free nucleotides, phospholipids, sugar 

phosphates (10 to 20%) are found in agricultural seed (Larson et al., 2000). 
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Phytate is influenced by genetics, environmental fluctuations, location, 

irrigation conditions, soil type, year, and fertilizer application (Oatway et al., 2001).  

Phytic acid is stored in grains and legumes in a range of 60-97% of the total 

phosphorus (Oatway et al., 2001).  Phytic acid concentrations vary depending on the 

food type and the processing of the grain.  Phytic acid contents can be reduced by 

over 50% by processing of the grain.   

In maize kernels, 90% of the phytic acid is accumulated in the embryo and 

10% in the aleurone layer.  In rice, barley, and wheat 90% of the phytic acid is found 

in the aleurone layer and 10% in the embryo (Shi et al., 2003).  Phosphorus from 

phytate serves several functions including second messenger ligand, DNA double  

strand break repair, RNA export, ATP metabolism, phosphorus and mineral storage, 

as well as a role in the physiological response of guard cells to ABA (Raboy, 2001).    

Phytic Acid: Soil Interaction 

Phytic acid is a major source of phosphorus in agricultural systems.  The total 

amount of phosphorus in soil can be very high but the majority of the phosphorus is 

not available to plants because of soil-phosphorus interactions.  Up to 80% of 

phosphorus in fertilizer becomes unavailable to plants due to soil interactions (Grotz 

and Guerinot, 2002) and over 50% of all fertilizer phosphorus is converted into 

phytate which plants normally do not take up from the soil (Raboy, 2001; 

Schachtman et al., 1998).  Manure with a high concentration of phosphorus can be 

applied to fields and plants can still be phosphorus deficient if the majority of the 

manure’s phosphorus is in the bound form. 
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Phytic Acid: Nutrient Interactions 

Since phytic acid has twelve replaceable protons it is a chelating agent.  It is a 

negatively charged molecule which binds metal ions making them unavailable for 

digestion by monogastric animals.  The majority of phytate is a mixture of phytate 

and mineral cations forming phytin salts.  When phytic acid binds to minerals, 

proteins, and starch; the interaction will alter the solubility, functionality, digestion, 

and absorption of these components to some degree (Figure 2) (Oatway et al., 2001). 

Two of the nutrients that most limit plant growth (iron and phosphorus) are often 

abundant in soil but not available for uptake because phytic acid bonds must be 

broken to release both iron and phosphorus into the soil (Grotz and Guerinot, 2002).  

These chelating functions of phytic acid have serious nutrient effects for both human 

and poultry diets. 
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Figure 2: Phytic Acid Interactions with (A) mineral ions, (B) proteins, and (C) 
starch. 
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Phytic Acid: Phytase 

Phytase (myo-inositol hexakisphosphate phosphohydrolase) is an enzyme that 

hydrolyses phytate releasing phosphorus and minerals from the inositol ring.    During 

germination, phytase enzymes break down the phytin salts enabling the plant to use 

phosphorus and minerals for growth (Raboy, 2001).  Inositol phosphates (IP1-IP5) 

and myo-inositol phosphates formed by breaking the inositol ring can be used 

throughout germination for the plant’s phosphorus needs (Oatway et al., 2001; 

Hegeman et al., 2001). 

Phytase is poorly understood biochemically and its exact role in phytic acid 

biosynthesis and other biosynthetic pathways is not completely understood (Viveros 

et al., 2000).   Two types of phytase, 3-phytase and 6-phytase, play a role in the 

breakdown of phytic acid.  Three-phytase is observed in microorganisms and 6-

phytase is in seeds of higher plants.  Both phytases are pH dependent and most active 

at slightly acidic levels (pH 5.1) (Oatway et al., 2001).   

Phytase in cereal grains are present primarily in the aleurone layer of the grain 

and are not activated until germination. Therefore it cannot break down the phytic 

acid in animal feed since phytase is inactivated in dried seed. 

Myo-inositol biosynthesis and MIPS gene 

Myo-inositol is a precursor to many compounds whose function in plants is 

phosphorus storage, signal transduction, stress protection, hormonal homeostasis, and 

cell wall biosynthesis (Hegeman et al., 2001). The myo-inositol biosynthesis pathway 

has important roles in plant metabolism including the synthesis of phytic acid.  A 

complete elimination of the myo-inositol pathway would stop the formation of phytic 
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acid, but it would also disrupt many other biochemical pathways needed for 

germination. 

The first step in myo-Inositol biosynthesis is the conversion of D-glucose-6-

phosphorus to 1L-myo-inositol-phosphorus (Loewus and Murthy, 2000) by the 

isomerase D-myo-inositol-3-phosphate (MIPS).  The source of inositol ring to convert 

glucose-6-phosphate to inositol 3 is the enzyme myo-inositol(3)phosphate synthase 

gene (MIPS) (Hegeman et al., 2001).  There is evidence that the inositol backbone for 

phytic acid might be derived from MIPS activity (Raboy et al., 2000).   

The complete DNA sequence of the MIPS gene as well as the cDNA sequence 

has been determine in a number of sources such as Saccharomyces cerevisiae, 

Spirodela polyrrhiza, Arabidopsis thaliana, Citrus paradisii, Nicotiana tabacum, 

Glycine max (L.) Merr., Zea mays, and Hordeum vulgare.  All of these sequences 

show regions of high conservation at the nucleotide level (Hegeman et al., 2001).  

Some plant species have the MIPS region comprised of gene families.  A gene family 

is a group of paralogous genes.   Maize has seven MIPS genes (Larson and Raboy, 

1999), Arabidopsis two regions, and soybean has at least four regions (Hegeman et 

al., 2001).   

A MIPS cDNA (GmMIPS1) sequence of soybean was isolated.  GmMIPS1 is  

1729 base pairs in length with a 1533 open reading frame.  The open reading frame 

encodes a protein of 510 amino acids with the predicted molecular mass of 56.5 kD.  

The cDNA sequence showed a high homology to other published MIPS sequences 

(Hegeman et al., 2001).   

 9 
 



 

Nutritional Issues Concerning Phytate 

Phytic Acid: Human Issues 

Micronutrient malnutrition affects more than a third of the world’s population 

and iron deficiency affects over 3.5 billion people (Mendoza, 2002).  The primary 

cause of nutrient deficiency is the poor bioavailability of nutrients from plant-based 

diets consumed in low income countries.  Phytate binds to proteins and minerals 

affecting their digestibility.  Anionic phosphate groups of phytate bind to the cationic 

groups of proteins, especially the basic amino acids.  Phytate also binds trypsin and 

chymotrypsin.  Once protein is bound to phytate the ability of animals to digest the 

protein is reduced (Biehl and Baker, 1997).   Phytate also binds minerals such as 

potassium, magnesium, calcium, iron and zinc; the bound minerals cannot be digested 

by humans unless the phytic acid structure is broken.  The ability of phytic acid to 

bind minerals and protein reduces the ability of grains to provide a balanced diet 

based solely on these grains. 

In third world countries phytate consumption can cause mineral deficiency in 

humans (Raboy, 2001).  The reduction of bioavailability of minerals and phosphorus 

in the diet of humans and livestock it is considered to be an anti-nutritional 

component of grain crops (Shi et al., 2003).  In 1990, the World Health Organization, 

United Nations Children’s Fund, and the World Summit for Children advocated the 

elimination of micronutrient malnutrition by the year 2000 (Gibson and Hitz, 2001).  

To eliminate micronutrient malnutrition either a more diverse diet must be made 

available to third world countries or phytic acid present in the diet must be reduced to 

enable more proteins and minerals to be utilized. Dietary phytate can have both 
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positive and negative effects in terms of human health depending on the diet of the 

individual consumer.      

Phytic Acid: Zinc 

The amount of zinc needed in the diet depends on how balanced the daily diet 

is, if there has been major blood loss, or stresses imposed by puberty or pregnancy.  

The major determinant of the amount of zinc absorbed from plant material is phytic 

acid.  A concentration of phytic acid of 15 molar to one molar of zinc has serious 

negative effects on zinc absorption (Lopez et al., 2002).  Zinc becomes bound to the 

inositol ring structure when there are five or more phosphate groups attached to the 

ring and a high concentration of phytic acid and low concentration of zinc means that 

the majority of the zinc will be bound (Gibson and Hitz, 2001). 

One of the common approaches used to improve zinc absorption is 

fermentation.  Organic acids (acetic, citric, lactic, and malic acids) in the fermentation 

process form soluble connections to zinc; reducing the zinc: phytic acid structure 

(Lopez et al., 2002).  Zinc becomes bound to the fermentation acids rather than to 

phytic acid. 

Phytic Acid: Iron 

Iron absorption is affected by the concentration of phytic acid in bread (Lopez 

et al., 2002).  Iron chelated to inositol rings with three or more phosphate groups is a 

major issue in diets because 30% of the world’s population is iron deficient (Gibson 

and Hitz, 2001).   
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The ability of phytic acid to chelate iron makes it an excellent antioxidant, 

which makes it a good food preservative. Phytate, though not on the “generally 

recognized as safe” (GRAS) list prepared by the Food and Drug Administration of the 

United States in 1995, is used as a food additive outside of the United States.  Phytic 

acid is added to meats, canned seafood, fruits, vegetables, cheese, miso, soy sauce, 

juices, alcoholic beverages, and other food to prevent discoloration, increase 

nutritional quality and prolong shelf life.  In 1997, sodium phytate was listed as 

GRAS and is used as a preservative for baked goods in the U.S. (Oatway et al., 2001). 

Phytic Acid: Calcium 

The relationship between phytic acid and calcium has not been completely 

determined.  Some researchers have found that phytic acid inhibits calcium 

absorption but others have not found the same negative relationship (Lönnerdal et al., 

1989; Miyazawa et al., 1996).  A high concentration of calcium can hinder phytic 

acid breakdown.  Calcium is needed in the diet but, too much can cause kidney 

calcifications.  Phytic acid-rich foods can help maintain an adequate calcium level in 

the urine thereby reducing calcifications (Lopez et al., 2002).  By balancing the 

amount of calcium absorption, phytic acid can help maintain a healthy diet. 

Phytic Acid: Diet 

Phosphorus in the phytate form is not available for human consumption until 

the phosphate groups are removed from the inositol molecule (Oatway et al., 2001).  

High concentration of phytate in commercial soy protein isolates may affect the 

bioavailability of proteins and trace minerals such as, zinc and iron, because of the 
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chelating mechanism (Brooks and Charles, 1984).  Functional properties of soy 

proteins in commercial food products can be adversely affected by phytase (Brooks 

and Charles, 1984).  Since humans do not have phytase naturally in their system, 

humans depend on food processing to degrade phytic acid.  Cooking or processing 

can degrade phytic acid; milling of wheat and polishing of rice grains decreases 

phytic acid by up to 90%; soaking legume seeds reduces phytic acid by 20%; and 

germination of the seed reduces phytic acid by 50% (Hurrell et al., 2002).  Studies 

have found some food processes will increase the insolubility of the phytic acid 

complex further decreasing mineral availability.  For example, extrusion cooking of 

starches rich in phytate inactivates phytase enzymes (Oatway et al., 2001).   

Phytic acid should not be completely taken out of the diet; phytic acid’s 

ability to bind minerals can actually help in a balanced diet to ensure that one does 

not get diseases associated with excess minerals.  Phytic acid has been described as 

hypocholerolemic, an antioxidative, anticarcinogenic and hypolipidemic (Oomah et 

al., 1996).  Phytic acid in the diet could have the same positive effect as a high-fiber 

diet in a situation where the population is able to attain a well-balanced diet, but in 

low-income areas the positive aspects of phytic acid in the diet is overshadowed by 

the negative aspects.   

Poultry Issues 

Deficiencies in phosphorus limit growth and bone development in poultry 

(Waldroup et al., 2000). Micronutrients are drastically reduced in livestock feed as a 

consequence of phytic acid chelating metal ions such as iron, zinc, calcium, 

potassium, sodium, chlorine, and magnesium (Erdman, 1981; Wilcox et al., 2000).  
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Poultry, like all nonruminant animals, have a limited amount of phytase to breakdown 

phytic acid.   Poultry farmers need to combat the problem of limited phosphorus in 

the poultry diet in order to produce healthy birds. Since most of the phosphorus 

present in soybeans is phytate phosphorus; inorganic phosphorus has historically been 

added to poultry feed to supplement their diet (Huff et al., 1998).  

Pollution Concerns 

After the second world war (WWII) excess phosphorus in manure became a 

serious problem in agricultural systems.  Before WWII, farming communities only 

supported the local economy, therefore, the phosphorus sink and source were in the 

same locale and manure nutrients were recycled.  The excess phosphorus in the 

manure of animals was a small enough that manure could be used on local fields 

without the excess becoming a detriment to the water supply.  After WWII 

agricultural systems became more specialized, separating the grain and animal 

producing areas (separating the sink and source of phosphorus).  Animal products 

have become the main component in the agrarian economy and most of the soybean 

industry focuses on feed for animals.  Since 1995 livestock has increased 10 to 30% 

whereas farms have decreased 40 to 70% (Sharpley et al., 2001).  The concentration 

of phosphorus entering the soil has increased dramatically leading to concerns about 

farmlands as a major source of pollution. 

Eutrophication is a condition where waters are rich in mineral and organic 

nutrients promoting a proliferation of plant life which reduces dissolved oxygen 

which forces the extinction of some marine organisms.  Excess nutrients in water 

runoff can potentially cause algal blooms, which produce toxins harmful to both the 

 14 
 



 

environmental system and humans (Preusch et al., 2002).  Massive blooms of 

cyanobacteria cause fish kills, unpalatable water, and the formation of carcinogens 

when water is chlorinated (Sharpley et al., 2001). 

In 1996, the Environmental Protection Agency (EPA) of the U.S. identified 

eutrophication as the most widely spread impairment to water sources in the US with 

agriculture being a major contributor of phosphorus (www.EPA.gov).   Nitrogen and 

phosphorus are nutrient-limiting for algae growth in the Chesapeake Bay watershed 

(Preusch et al., 2002).   The poultry industry in Maryland has placed pressure on the 

Chesapeake Bay watershed by the quantities of fresh poultry litter (FPL) produced 

near the water-system. In 1999, over 680,000 Mg of FPL were applied to farmland 

surrounding the Delmarva region (Delaware, Maryland, and Virginia) and 425,666 

Mg of FPL in the Virginia farmland region (Preusch et al., 2002).  The Chesapeake 

Bay region must now try to solve water quality issues arising from the disposal of 

poultry wastes in a way that is cost effective for the industry.  

Solutions for the Poultry Industry for Phytate 

There are two current ways to deal with the low availability of phosphorus to 

monogastric animals and the excess phosphorus in the waste of monogastrics: 1) the 

addition of microbial phytase to the diets to increase available phosphorus; and 2) 

genetic alteration of the grain used in the poultry industry (Li et al., 2000).   

In the 1960s scientists at the International Minerals and Chemicals 

Corporation determined the amount of supplemental inorganic phosphorus in 

monogastric animals could be greatly reduced by adding phytase enzyme to the feed 

(Huff et al., 1998).  Adding extra phytase enzyme to a broiler’s diet increases the 
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availability of phosphorus to poultry (Nelson et al., 1971; Waldroup et al., 2000).  

Commercial development of  phytase enzyme for the animal industry has resulted in a 

decrease of phosphorus in animal manure (Huff et al., 1998).  Phytase supplements 

can break down up to 50% of feed phytate reducing the amount of phosphorus waste 

in the manure (Raboy, 2001).   

Phytase from Asperigillus niger was isolated and used in poultry feed to help 

reduce the amount of phosphorus wasted in poultry production.  The use of phytase in 

poultry feed has improved the absorption of phosphorus by poultry (Lan et al., 2002).  

Using phytase in broiler hens feed allows 56.8 to 59.1% more phosphorus from the 

seed to be digested (Lan et al., 2002).  As phytic acid in the seed is broken down by 

phytase the availability of minerals such as calcium, iron, and zinc will also increase 

(Lan et al., 2002).  Minerals released from the bond with phytic acid can be used in 

seed germination by the plant or absorbed in the digestive tract by animals.  Lei et al. 

(1993) showed that supplementing swine diets with phytase also reduced fecal 

phosphorus.   

There are three approaches to genetically alter grain crops for increased 

micronutrient availability: 1) increase concentration of micronutrients in plants; 2) 

increase concentration of promoter compounds; and 3) decrease anti-nutrients.  

Increasing micronutrients in plants has been attempted in rice.  Three constructs were 

expressed in the endosperm of rice.  Phaseolus phytoferritin was expressed to 

increase the concentration of the micronutrient of iron in the plant.  A cysteine-rich 

metallothionein-like protein is in the pathway to create iron.  Overexpression of this 

promoter increased iron concentrations in rice.  Aspergillus fumigatus phytase is 
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inserted into the rice genome in order to decrease phytate, an anti-nutrient.  By 

decreasing phytate, the concentration of iron that can be absorbed in human 

consumption is increased (Mendoza, 2002).  This engineered rice has not been tested 

yet for human consumption, but it has the potential to alleviate iron deficiencies in 

areas where rice is the main diet staple.   

The second approach is to increase the concentration of promoter compounds.  

It is hoped that by increasing the amount of proteins there will be an increase in 

mineral utilization.  Increasing the concentration of cysteine and lysine has been seen 

to have a positive effect on the absorption of zinc (Mendoza, 2002).    Breeding is 

currently being done to increase promoter compounds, but it is not known if a higher 

concentration of proteins rich in cysteine and lysine will negatively affect other 

functions of the plant.   

The third approach is the development of cultivars with lower levels of 

micronutrient chelating agents such as phytate. Breeders have started producing 

plants with decreased concentrations of phytic acid.  Since phytic acid is one of the 

main inhibitors of iron and zinc it was hypothesized that a reduction in the level of 

phytic acid would increase mineral absorption.   

Low Phytate Acid Mutations 

Generation of Mutations 

Ethylmethane sulfonate (EMS) induces point mutations in DNA. It is an 

alkylating agent, which adds an alkyl group to the O-side chain of guanine and 

thymine.  Alkylated guanine pairs to thymine instead of cytosine when the DNA 

structure is altered by EMS (Figure 3).  EMS mutates each cell of the seed embryo 
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independently of other cells.  Seeds are typically soaked in EMS for 10 to 20 hours, 

washed, and grown.  The M1 generation of plants contains chimeras and only 

mutations in their reproductive tissue are inherited in the developing seed (M2 

generation) (McCallum et al., 2000).  The M2 generation of seeds are grown and 

screened for the desired mutation. 

Wilcox et al. (2000) generated a soybean mutation line by soaking seeds of 

CX1515-4 for 24 hours in 18mM solution of EMS.  Seeds were then rinsed with 

water and planted.  M3 seeds were tested for HIP phenotype and two progenies were 

classified putative LPA mutations, M153 and M766 (Figure 4).  Both of these two 

independent, heritable, and nonlethal mutants are phenotypically similar to lpa1-1 

type.   
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Figure 3: Ethylmethane sulfonate is an alkylating agent that induces a point 
mutation.  
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Figure 4:  Generation of M153 and M766, both LPA putative mutants (Wilcox et 
al., 2000). 
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Germination of  Mutations 

Is germination compromised by lower concentrations of phytic acid?  

Soybeans have higher phytate stores than are needed for normal seed functions in 

germination.  Without compromising normal germination, phytic acid can be reduced  

by two-thirds in soybean seed (Hegeman et al., 2001).  This indicates that low phytic 

acid mutants can be grown and used as feed. 

Using phosphate starvation during seed development it was shown that 

soybean seeds with reduced phytic acid still germinate; indicating high levels of 

phytate in soybean seeds is not necessary for seedling growth (Raboy and Dickinson, 

1987).   Phytic acid is the main storage of phosphorus in seeds and serves to prevent 

phosphorus and mineral leaching.  However, the high levels of phytic acid are not 

necessary for germination of domesticated crops (Larson et al., 2000). 

Mutant Genotypes 

LPA mutant genotypes of corn (Zea mays), rice (Oryza sativa), barley 

(Hordeum vulgare), and soybean (Glycine max) have been isolated.  These mutants 

have genetically reduced amounts of phytic acid of at least 70% (reductions range 

from 50% to 95%) in the seed.  Reduction of phytic acid in these mutants corresponds 

to an equal increase of inorganic phosphorus.  Alleles with reductions of greater than 

90% cause severe loss of plant growth functions (Raboy, 2001).   

There are two types of loss-of-function mutations; low phytic acid 1-1 is the 

first recessive allele of the lpa1 locus and low phytic acid 2-1 is the first recessive 

allele of the lpa2 locus.  Both of the mutant types produce normal levels of total 

phosphorus.  A hypothesis has been proposed that the difference in the types of 
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phosphorus that increase in the mutant seeds are based on the mutation’s location in 

the phytate synthesis pathway.  LPA1 mutations are from a change in the gene 

encoding substrate supply early in the pathway whereas LPA2 mutations occur in late 

in the inositol phosphate pathway.  Both mutations reduce phytic acid content in the 

seed, but each mutant accumulates different inositol phosphorus types because the 

mutants affect different parts of the pathway.   

LPA1 Mutants 

In seed of lpa1-1 mutants the phytate concentration is reduced by two-thirds 

compared to the wild-type and has an equivalent increase in inorganic phosphorus.  

The lpa1-1 phenotype has low phytic acid, but it does not accumulate inositol 

polyphosphates (IP3 to IP5) (Raboy et al., 2000).  The maize lpa1-1 mutation has 

reduced phytic acid that is matched by a molar equivalent increase in phosphorus 

(Dorsch et al., 2003). It has been suggested that the low phytate phenotype described 

by Wilcox et al. (2001) is the result of two mutations (Oltmans et al., 2004).   

LPA2 Mutants 

LPA 2 mutants are apparently located later in the phytic acid biochemical 

pathway after myo-inositol formation.  In the maize lpa2-1 mutant, the reduction of 

phytic acid is coupled with an increase in both phosphorus and inositol phosphate 

with five or fewer phosphorus esters (IP3 to IP5) (Dorsch et al., 2003).  In the typical 

wild-type seeds, inositol phosphates with six or more phosphorus esters are present 

more frequently than five or fewer phosphorus esters (Raboy, 2001). 
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Shi et al. (2003) used a Mutator insertion to knockout ZmIpk, a maize inositol 

phosphate kinase gene.  After ZmIpk was silenced, seeds showed reduced phytic acid 

and increased myo-inositol phosphates (IP3 to IP5) similar to the low phytic acid 

mutant lpa2-2 observed in maize.  Shi et al. (2003) cloned and sequenced the ZmIpk 

gene from the lpa2-2 maize genotype and observed that the allele had a nucleotide 

mutation causing premature termination of the ZmIpk open reading frame.  The lpa2-

2 mutation in maize might be from a mutation in the ZmIpk gene, which correlates 

with the theory that lpa2-2 mutations affect the phytic acid biosynthesis pathway after 

formation of myo-inositol.   

High Inorganic Phosphorus (HIP) Phenotype 

The high Inorganic Phosphorus (HIP) phenotype is associated with a 

homozygous LPA mutation. Normal seeds have low levels of inorganic phosphorus, 

typically less than 0.5 mg inorganic phosphorus per gram.  A simple color assay has 

been developed using a Chen reagent (Chen et al., 1956) that detects the different 

concentrations of inorganic phosphorus allowing selection of high inorganic 

phosphorus genotypes in plant breeding programs (Raboy, 2002).   

LPA mutants: solutions for feed nutrition and pollution problems? 

Human diets could be enhanced by using LPA seeds in a limited nutrition diet.  

Mendoza (2002) studied the effect of low phytic acid mutants on mineral absorption 

in humans.  The absorption in humans of iron, zinc, and calcium from their diet was 

tested to determine if there was a difference between wild-type maize and low phytic 

acid maize.  There was an increase in the absorption of all three minerals when using 
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the low phytic acid maize.  Maize low phytic acid mutants could be incorporated into 

the diet to increase mineral absorption.    

LPA mutants also have been shown to have a positive effect on dietary 

problems in swine and poultry.  LPA seeds could both alleviate excess phosphorus in 

manure and also incorporate nutrients from feed in the animal diets.  Bird weight was 

shown to increase by 16% when compared to a diet that included only normal seed.  

Calcium absorption increased in some poultry experiments (blood calcium from 29 to 

36% and bone calcium from 11 to 13%) (Mendoza, 2002).  Phosphorus absorption 

was also enhanced by the use of low phytic acid mutants (blood phosphorus from 28 

to 36% and bone phosphorus of 10%) (Mendoza, 2002).  Fecal waste phosphorus was 

reduced from 9% to 40%; this reduction helps alleviate the excess of phosphorus 

found in the environment.   

LPA mutations associated with the MIPS gene 

One copy of the maize MIPS gene mapped to the same location as the lpa-1 

trait on chromosome 1S (Larson and Raboy, 1999).  A mutation affecting MIPS 

expression could be the cause of the low phytate accumulation in the seeds (Hegeman 

et al., 2001).   

Hitz et al. (2002) characterized a mutation in soybean that decreased both 

phytic acid and raffinosaccharide production.  The mutation was linked to a single 

base change in the myo-inositol 1-phosphate synthase gene which caused a decrease 

in the viability of the gene but not the complete loss of function.   

The association between the MIPS gene and the LPA phenotype is not always 

present in other cereals.  In barley and rice the LPA phenotype is not associated with 
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mutations in known MIPS regions.  One hypothesis is that barley and rice contain 

cryptic copies of genes encoding MIPS activity.  Also, it could be that the LPA 

phenotype is a mutation in regulatory genes affecting MIPS expression and not the 

actual MIPS gene itself (Hegeman et al., 2001).  

Single Nucleotide Polymorphism 

A locus is deemed a single nucleotide polymorphism (SNP) when it exists in 

at least two variants and the allele frequency of the most common variant is less than 

99% (Landegren et al., 1998).  There are four reasons for the use of SNPs as markers 

in genetic analysis: 1) SNPs are prevalent in the sequence and therefore large sets of 

markers can be found near most loci of interest; 2) some SNPs in the gene sequence 

can directly affect protein structure and expression levels, and manipulation of the 

SNP can alter genetic mechanisms of disease; 3) SNPs are stable and inherited unlike 

many repeated sequences used as markers; and 4) SNPs can be used to analyze 

sequences with large throughputs (Landegren et al., 1998).  There are various 

strategies that are in use for SNP determination.  One of the more popular is 

mismatch distinction by polymerases and ligases.  Polymerization reactions have very 

stringent requirements on correct base pairing at the 3’ end of hybridizing primers.  

This idea can be used to amplify one allele of a SNP (Landegren et al., 1998).  Once a 

SNP is determined it could be used as a marker in breeding.  

Ligase Chain Reaction (LCR) 

The ligase-mediated gene detection technique can be used to detect a 

difference of a single base pair between two genotypes.  This procedure has been 
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used to detect mutations that cause sickle cell anemia and is used as a procedure to 

screen for other diseases (Weiss, 1991).  Ligase chain reaction (LCR) uses two 

adjacent oligonucleotides which when ligated will form a complementary strand to 

the target DNA.  Oligonucleotides are designed to completely cover the target DNA 

sequence.  The 3’ end of one oligonucleotide is adjacent to the 5’ end of the other 

oligonucleotide.  The oligonucleotides are perfectly base-paired with the target DNA 

and are 20 to 25 base pairs in length (Barany, 1991).  These oligonucleotides are 

incubated with the DNA sample and ligated.  If there is a base pair difference 

between the DNA and the oligonucleotides then the ligation will not be complete 

(Karthigesu et al., 1995). 

     LCR is a cyclic two-step reaction (Figure 5).  Double-stranded DNA is unwound 

to become single-stranded during a melting step.  Then in a cooling step two adjacent, 

complementary oligonucleotides anneal to the single-stranded target and ligate 

together.  This product is the template for the next ligation reaction cycle.  If the 

sequence is present without a SNP mutation then the oligonucleotides align to the 

DNA perfectly.  Ligase interprets the two oligonucleotides as a complementary copy 

of the target DNA and welds the two oligonucleotides together creating permanent, 

covalent bonds that create a full length copy a DNA complementary sequence.  After 

numerous cycles many copies of the complementary sequence are made and can be 

viewed visually on an agarose gel.  If there is a mutation in the sequence, then the 

oligonucleotides might anneal to the DNA, but the SNP creates a mismatch between 

the oligonucleotide and the target DNA and therefore ligase does not create a 

complementary copy.  This mismatch allows the wild-type to be visualized on an 
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agarose gel as a positive band whereas the mutant sequence will have no band (a 

negative result) (Weiss, 1991). 

Figure 5: Using LCR for SNP detection creates a positive/negative product on an 
agarose gel. 
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a variation that is important.  In other words, if there is a mutation of interest and one 

has a marker that is linked to this mutation then other genotypes can be screened to 

determine if they too have this mutation.  The goal in marker design is to have a 

marker that is completely linked to the gene of interest.  The marker must be on the 

same chromosome and close to the gene of interest in order for both the marker and 

the gene of interest to be inherited together.  If a marker is on the same chromosome, 

but not close to the gene of interest then the linkage between the two is known as 

partial linkage.  In partial linkage the marker and gene of interest might be inherited 

together or they might segregate independently from each other.  If the marker only 

has partial linkage then it can not be used to test for the gene of interest. 
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Materials and Methods 

DNA Population 

 A low phytate mutant (LPA) soybean genotype (CX1834-1-2) from Purdue 

University was crossed with an adopted elite line (MD96-5722).  Phenotypic marker 

traits (such as flower color) were used to confirm that the F1 plants were the result of 

successful crosses. The F2 generation of this cross was grown at the Wye Research 

and Education Center near Queenstown, Maryland. F2 leaves and F3 seeds were 

harvested individually from 115 plants. 

HIP Phenotype Assay 

Six F3 seeds from each of the 115 F2 plants were individually crushed with a 

hammer.  Each crushed seed was extracted overnight in 2.5mL of 12.5% (v/w) 

TCA:25 mM MgCl2 at 4° C with gentle shaking.   Extracts were allowed to settle for 

30 minutes at room temperature the next morning.  Aliquots of each single-seed 

extract were assayed for inorganic phosphorus by a modified version of the Chen et 

al. (1956) protocol.  A 10 µl aliquot of each single-seed extract, 90 µL of DD H2O, 

and 100 µL of the colorimetric reagent were placed in a microtitire plate well.  The 

colorimetric reagent consisted of one volume of 3M H2SO4, one volume of 2 mM 

ammonium molybdate, one volume of 10%(v/v) ascorbic acid and two volumes of 

DD H2O. Assays were incubated at room temperature for 2 hours.  The assays of the 

extraction mixture were visually scored for presence or absence of HIP.  In general a 

dark blue color indicates a presence of HIP, whereas, a clear is a negative for the HIP 
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phenotype.  The five phosphorus standards used in the assay were made by diluting 

1mM K2HPO4 to 0.0 µg P; 0.15 µg P; 0.46 µg P; 0.93 µg P, and 1.39 µg P.   

The two parental genotypes were assayed and the results were used to 

determine the classification of each of the F2 genotypes (Guttieri et al., 2004).  The 

inorganic phosphorus standard closest to the wild-type genotype inorganic 

phosphorus concentration was used to label HIP negative seeds (clear color assay).  

The inorganic phosphorus standard closest to the LPA genotype inorganic phosphorus 

concentration was used to label HIP positive seeds (dark color assay). The 

concentrations between the parental genotypes were classified as intermediate.  The 

range of intermediate concentrations was divided in half based on concentration of 

inorganic phosphorus.  The lower half of the range was classified as HIP negative 

intermediates (light blue assay) and the top half of the range was classified as HIP 

positive intermediates (blue assay) (Figure 6).  

F2 genotypes were classified into the three HIP phenotypes based on five 

classifications (Guttieri et al., 2004).  1) HIP negative: all the seeds tested HIP 

negative 2) HIP heterozygous: at least one seed was classified HIP negative and one 

seed was classified HIP positive. 3) HIP heterozygous: at least one seed was 

classified as HIP positive and the rest of the seeds were classified as HIP negative 

intermediates. 4) HIP positive: none of the seeds tested HIP negative and all were 

HIP positive intermediates. 5) HIP positive: all the seeds tested HIP positive.     
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Figure 6:  High Inorganic Phosphorus Phenotype (HIP) assays were preformed 
on six seeds for each genotype.   

 

 
 

Oil and Protein Concentration 

The concentration of both oil and protein from dry-weight analysis of each 

parental and F2 genotypes were measured using the Infratech model 1255 feed and  

food analyzer.  Two standards, one with high oil concentration and one with high 

protein concentration, were used to ensure that the infrared machine was adjusted 

properly.   

DNA Extraction 

Genomic DNA from the two parental genotypes and the F2 population was 

extracted by a phenol/chloroform method.  Leaves were collected from plants grown 

at the Wye Research and Education Center approximately six weeks after planting.  
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One hundred to 150 micrograms of leaves of each genotype were ground using a 

micropestle attached to a cordless drill.    One milliliter of extraction buffer, 

composed of 50mM Tris (pH 8.0), 10mM EDTA (pH 8.0), 100mM LiCl, 2% SDS, 

and 10µg/ml proteinase K (Sigma Aldrich) was heated to 50°C and added to the 

ground leaves.  The solution of extraction buffer and leaves were mixed for 15 

minutes using an orbit rotator.  The mixture was then centrifuged for 15 minutes at 

8000 rpm.  The supernatant was spilt into two tubes and RNase A (10µg/µl) was 

added.  The mixture was incubated at 37ºC for 2 hours.  Five hundred microliters of 

99% phenol was added and the solution was inverted 10 times.  The solution was then 

centrifuged for 2 minutes at 10,000 g.  The supernatant was placed into a new tube 

and 500µl of chloroform:isoamyl alcohol (24:1) was added.  The solution was again 

mixed and spun at 10,000 g.  The supernatant was collected and 250µl phenol and 

250µl chloroform:isoamyl alcohol (24:1) was added.  This mixture was again mixed 

and spun.  The supernatant was collected into a fresh, sterile tube.  DNA was 

precipitated by adding 0.25 volumes of 10M ammonium acetate and two volumes of 

100% ethanol.  The solution was kept at -20ºC for at least 8 hours to precipitate the 

DNA.  The solution was centrifuged for 15 minutes at 12,000 g.  The resulting pellet 

was washed with 500µl of 70% ethanol.  The DNA pellet was air dried until ethanol 

the residue had evaporated.  Thirty microliters of 10mM Tris (pH 8.0) was added to 

dissolve the pellet.  DNA concentration was measured by a Spectronic Genesys 2 

spectrophotometer or a Biomate 3 thermospectronic spectrophotometer and diluted to 

a final concentration of 50ng/µl.  The DNA was stored at -20ºC until needed.  
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MIPS-Based Primer Design 

Based on the soybean MIPS cDNA sequence (GI 13936690) primers were 

designed to sequence the genomic sequence of the MIPS gene in the two parental 

genotypes.  The primers were designed using the program Primer 3 

(http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi/) covering the entire 

cDNA sequence.   

MIPS Polymerase Chain Reaction (PCR) Amplification 

DNA from the parental genotypes was used with primers designed to amplify 

segments of the MIPS gene genomic sequence.  The total volume for each PCR 

reaction was 50µL which included: 50 ng/µL DNA template, 1X PCR Buffer (10 mM 

KCl, 10 mM (NH4)2SO4, 20 mM MgSO4, 0.1% Triton X-100 (pH 8.8)), 1.75-2.0 mM 

MgCl2, 100-150 µM dNTP mix (equal parts dATP, dCTP, dGTP, dTTP), 0.2 µM of 

each primers; and 0.3 µL of NEB Taq DNA polymerase (5 units/µL) or 0.1 µL of  lab 

generated Taq DNA polymerase.  PCRs were run in a PTC 100 MJ Research 

(Waterton, MA) machine.  An initial denaturation at 93 ºC for 3 minutes, then 25 

cycles of denaturation 93 ºC for 30 seconds; 53ºC-65ºC annealing for 45 seconds; and   

72ºC for 45 seconds for extension, and a 10 minute 72ºC extension.   

PCR products were visualized on a 1.7% agarose gel stained with ethidium 

bromide.  Bands between 300bp and 1.5kb were excised from the agarose gel and 

cleaned for cloning using the protocol of QIAPrep Gel Extraction kit. 
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Nested PCR 

Nested PCR was also used to produce fragments for analysis from regions 

where multiple bands were too numerous to extract singly.  A PCR was run with a 

single pair of primers and the results were checked on an agarose gel.  Then this PCR 

was used as the template for a second PCR using primer pairs which are nested inside 

the first.  In this way instead of getting numerous multiple bands, only a single band 

was produced.  These reactions were also visualized using a 1.7% agarose gel.  All 

reactions that gave a 500bp to 1.5kbp band size were kept for further analysis.   

Cloning of MIPS 

The Topo-TA cloning kit (Invitrogen) was used to clone PCR products that 

were previously isolated.  The PCR products are ligated into a pCR 2.1-TOPO vector.  

One to four microliters of fresh PCR product were added to 1 µL salt solution and 1 

µL of the TOPO vector.  This was incubated for 15 minutes at room temperature.  

Two microliters of the reaction was added to One Shot chemically competent E. coli 

and this mixture was incubated on ice for 15 minutes.  The cells are then heat shocked 

by placing in a 42° C water bath for 30 seconds.  Two hundred and fifty micro liters 

of SOC medium were added to the reaction and shaken at 37° C, 200rpm for 1 hour.  

The cells were then plated on LB medium, which contained kanamycin and x-gal.   

These plates were incubated at 37° C for at least 24 hours until colonies of cells were 

observed.  White cells and whitish-blue cells were taken from the plates and cultured 

overnight.   The white cells were placed in a solution of 5mL LB broth with 15 µL 

kanamycin (200mg/mL) and grown overnight at 37° C with shaking at 250 rpm.  
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Plasmid DNA was isolated using the genelute plasmid mini-prep kit (Sigma-

Aldrich).  The cells were pelleted from the overnight culture by centrifugation 

(Sorvall RC 26 Plus) at 12000 g for 5 minutes.  The cells were resuspended, lysed, 

neutralized, and washed using the protocol provided with the genelute kit.  Plasmid 

DNA was analyzed by restriction digestion to determine the size of the cloned DNA 

fragment.  

A restriction digest was performed using 10 µL plasmid DNA, 1 µL ECORI 

enzyme, and 1X ECORI buffer in a total reaction solution of 20 µL.  The reaction 

solution was incubated at 37° C for 2 hours.  The reaction solution was run on a 1.7% 

agarose gel for 1.5 hours at 90 volts.  Plasmid DNA, the same size as the cloned PCR 

product was selected.  For each PCR product, two colonies were examined. 

Plasmid DNA (150-200 ng/µl) was then sent to the University of Maryland 

College Park DNA sequencing facility in the Center for Biosystems Research (CBR) 

for sequence analysis.  Sequence analysis was determined using an Applied 

Biosystems DNA sequencer (model 3100).  Each sequence fragment was analyzed 

twice with a forward primer and a reverse primer (a total of four sequences). 

Alignment of MIPS sequence 

Fragments were processed by CBR sequencing facility and screened using the 

NCBI Vector Screen program to eliminate any vector sequence contamination.  The 

fragment was run through BLAST to see if it had a high match to the published 

soybean cDNA MIPS gene sequence (Figure 7).  The two forward and two reverse 

sequences were aligned and scanned for mismatches.  If three of the four sequences 

had the same nucleotide then it was assumed that the fourth was a sequencing error.  
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If the sequences did not agree on one nucleotide, a code for possible nucleotides was 

inserted.  For example, if two of the sequences had the nucleotide adenosine and the 

other two had tyrosine then Y, unspecified pyrimidine nucleoside, was used for the 

combined sequence.  The sequence from each parental genotype was compared to one 

another and mismatches between the parental were highlighted for further study.   

Sequencher program (Gene Codes Corporation, Michigan) was used to 

combine fragments into contigs.  A contig is a group of fragments that represent 

overlapping regions of the sequence.  These contigs were further analyzed for 

similarity to published MIPS sequences. 

Ligase Chain Reaction (LCR)  

The ligation reaction was a 25 µL reaction volume containing 50 pmol of each 

oligonucleotide designed to flank the mismatch nucleotide, 25 ng DNA template, 1X 

Ampligase reaction buffer (20 mM Tris-HCL (pH 7.6), 25 mM potassium acetate, 10 

mM magnesium acetate, 10 mM DTT, 600 µM nicotinamide adenine dinucleotide 

(NAD), 0-1% Triton X-100), and 50 units Ampligase (Stratagene, California).  These 

reactions were heated at one cycle of 92° C for 4 minutes and 60° C to 70°C for 3 

minutes; then 30 cycles of: denaturing at 92° C for 1 minute, and ligation at 60° C to 

70° C for 1 minute.   
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Figure 7:  MIPS soybean cDNA sequence from NCBI Blast website (Hegeman et 
al., 2001).   
      
GTGAAAAATAATGTTCATCGAGAATTTTAAGGTTGAGTGTCCTAATGTGA
AGTACACCGAGACTGAGATTCAGTCCGTGTACAACTACGAAACCACCGAA
CTTGTTCACGAGAACAGGAATGGCACCTATCAGTGGATTGTCAAACCCAA
ATCTGTCAAATACGAATTTAAAACCAACATCCATGTTCCTAAATTAGGGG
TAATGCTTGTGGGTTGGGGTGGAAACAACGGCTCAACCCTCACCGGTGGT
GTTATTGCTAACCGAGAGGGCATTTTCATGGGCTACAAGGACAAGATTCA
ACAAGCCAATTACTTTGGCTCCCTCACCCAAGCCTCAGCTATCCGAGTTG
GGTCCTTCCAGGGAGAGGAAATCTATGCCCCATTCAAGAGCCTGCTTCCA
ATGGTTAACCCTGACGACATTGTGTTTGGGGGATGGGATATCAGCAACAT
GAACCTGGCTGATGCCATGGCCAGGGCAAAGGTGTTTGACATCGATTTGC
AGAAGCAGTGGAGGCCTTACATGGAATCCATGCTTCCACTCCCCGGAATC
TATGACCCGGATTTCATTGCTGCCAACCAAGAGGAGCGTGCCAACAACGT
CATCAAGGGCACAAAGCAAGAGCAAGTTCAACAAATCATCAAAGACATC
AAGGCGTTTAAGGAAGCCACCAAAGTGGACAAGGTGGTTGTACTGTGGA
CTGCCAACACAGAGAGGTACAGTAATTTGGTTGTGGGCCTTAATGACACC
TGGAGAATCTCTTGGCTGCTGTGGACAGAAATGAGGCTGAGATTTCTCCT
TCCACCTTGTATGCCATTGCTTGTGTTATGGAAAATGTTCCTTTCATTAAT
GGAAGCCCTCAGAACACTTTTGTACCAGGGCTGATTGATCTTGCCATCGC
GAGGAACACTTTGATTGGTGGAGATGATTTCAAGAGTGGTCAGACCAAAA
TGAAATCTGTGTTGGTTGATTTCCTTGTGGGGGCTGGTATCAAGCCAACAT
CTATAGTCAGTTACAACCATCTGGGAAACAATGATGGTATGAATCTTTCG
GCTCCACAAACTTTCCGTTCCAAGGAAATCTCCAAGAGCAACGTTGTTGA
TGATATGGTCAACAGCAATGCCATCCTCTATGAGCCTGGTGAACATCCAG
ACCATGTTGTTGTTATTAAGTATGTGCCTTACGTAGGGGACAGCAAGAGA
GCCATGGATGAGTACACTTCAGAGATATTCATGGGTGGAAAGAGCACCAT
TGTTTTGCACAACACATGCGAGGATTCCCTCTTAGCTGCTCCTATTATCTT
GGACTTGGTCCTTCTTGCTGAGCTCAGCACTAGAATCGAGTTTAAAGCTG
AAAATGAGGGAAAATTCCACTCATTCCACCCAGTTGCTACCATACTCAGC
TACCTCACCAAGGCTCCTCTGGTTCCACCGGGTACACCGGGTGTGAATGC
ATTGTCAAAGCAGCGTGCAATGCTGGAAAACATAATGAGGGCTTGTGTTG
GATTGGCCCCAGAGAATAACATGATTCTCGAGTACAAGTGAAGCATGGGA
CCGAAGAATAATATAGTTGGGGTAGCCTAGCTGAATGTTTTATGTTAATA
ATATGTTTGCTTATAATTTTGCAAGTGTAATTGAATGCATCAGCTTCATTA
ATGCTTTAGAGCGGGGCATATTCTGTTTACTAGGAACATGAATGAATGTA
GTATAATTTT GTGTAAAAAAAAAAAAAAAAAAAAAA    
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Results and Discussion 

High Inorganic Phenotype Assay 

The high inorganic phosphorus (HIP) phenotype assay is a quick way to 

determine if a genotype can be considered to possess a low phytic acid genotype 

(Raboy et al., 2000).  A genotype with low phytic acid stores phosphorus as inorganic 

phosphorus, which gives a positive HIP phenotype result.  Inorganic phosphorus 

extracted from each genotype was measured in the F3 seeds of a cross between the 

wild-type and the LPA mutant.  A ratio of 64 wild-types: 34 intermediate types; 17 

LPA types was observed (Table 1).  This ratio did not fit the 1:2:1 ratio anticipated 

for a single gene segregation (χ2= 58.96, P= 0.001, 2 df.).  This indicated that more 

than one gene controlling the low phytic acid mutations in the LPA soybean 

genotype, but the results do not fit typical ratios associated with multiple genes.   

Table 1: Phenotypic classification of F2 genotypes by the HIP soybean assay 
conducted on F3 seeds*. 
 
 

HIP Phenotype† HIP -/- HIP +/- 

 

HIP +/+ 

Observed 64 34 17 

Expected 28.5 57 28.5 

 

* χ2=  58.96   P < 0.001  , 2 df. 
† HIP -/- = HIP Negative 
  HIP +/- = HIP Intermediate 
  HIP +/+ = HIP Positive 
 

There were two main areas for experimental errors: the procedural execution, 

and the scoring constraints.  Using a hammer to break the seeds for inorganic 
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phosphorus extraction produced pieces of seed that were relatively large and not 

uniform.  Pilu (2003) and Larson et al. (2000) both used the HIP phenotype assay for 

primary determination of mutants.  Larson et al. (2000) ground rice seeds using a 

hammer, whereas, Pilu (2003) extracted uniformly by grinding maize seeds 

individually with mortar and pestle.  The extraction of inorganic phosphorus could 

have been effected by the size of the seed pieces used.  The extraction buffer will 

interact with more surface area if the fragments are small, potentially affecting the 

amount of inorganic phosphorus extracted.   

The definition of a positive HIP phenotype may bring error into the HIP 

phenotype assay method.  Larson et al. (2000) indicated that for the HIP assay seeds 

testing higher than the third standard (0.49µg) were HIP positive and lower than the 

third standard were HIP negative. Raboy et al. (2000) classified HIP positive seeds as 

those that had a dark blue color and HIP negative as a clear.  Larson et al. (2000), and 

Raboy et al. (2000) both  stated that wild-type seeds had an inorganic phosphorus 

concentration of less than 0.15µg/µl and low phytic acid seeds have inorganic 

phosphorus concentrations higher than 0.7µg/µl.  

In the studies of Raboy et al. (2000) and Larson et al. (2000) the HIP 

phenotype was controlled by one gene. The HIP phenotype assays had clear 

differences between the three phenotypic classes.  In studies with more than one gene, 

intermediate types can affect the category into which a particular line is placed.  

Guttieri et al. (2004) developed a classification system to categorize the intermediates 

into the three HIP phenotypes.  In this study, only six seeds per genotype were 

assayed.  If more than one gene is involved in the LPA mutation some genotypes 
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labeled HIP negative might have been mislabeled and are HIP heterozygous.  The 

mislabeling could have occurred because more than six seeds would have to be 

analyzed to ensure that all genotypic variations of the F3 seeds were observed.  The 

mislabeling of HIP negative could be the reason that a typical ratio could not be 

determined for the HIP types.   

Oltmans et al. (2004) used a mutant line provided by Wilcox et al. (2000) as 

one of the parental genotypes in a cross between wild-type and mutant. In 2001 she 

crossed CX1834-1-6 (LPA mutant) to A00-711013 at the Agricultural Engineering 

and Agronomy Research Center in Iowa.  CX1834-1-6 used in the Oltmans et al. 

(2004) study is from the cross of Anthow and M153 preformed by Wilcox et al. 

(2000), which is the same lineage as the LPA mutant used in this study.  Oltmans et 

al. (2004) progeny test resulted in 127 phenotypic of normal phytate types, 73 

phenotypic of intermediate types, and 10 phenotypic of low phytate types.  These 

results, similar to current study, did not fit a 1:2:1 ratio expected for a single gene 

affecting HIP.   

Oltmans et al. (2004) speculated that the low phytate mutation could be 

controlled by recessive alleles at two independent loci exhibiting duplicate dominant 

epistasis, but there were insufficient F3 seeds to test the two-gene model.  Reciprocal 

crosses of the wild-type and the mutant were made and in the F2 generation 197 seeds 

had normal phytate and 13 low phytate (15:1 ratio); indicating recessive alleles at two 

independent loci both showing dominant epistasis (Oltmans et al., 2004). 

Though Oltmans et al. (2004) and this study used a LPA mutant genotype 

from Wilcox’s et al. (2000) program, the ratios of the three HIP phenotypes differed.   
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The choice of wild-type parent might have affected the results of the HIP assay.  

Oltmans et al. (2004) also changed the methodology used to extract inorganic 

phosphorus, reducing the time the ground pieces of seeds incubated in the extraction 

buffer. Different soaking times of the seeds in TCA: magnesium chloride could have 

affected the amount of inorganic phosphorus extracted from each seed.  No tests have 

been conducted to determine if a reduction in extraction time will affect the amount 

of inorganic phosphorus eluted from a seed.  If more than one gene is involved in the 

mutation in soybeans, it could affect how the HIP phenotypes are classified.  Both 

studies did find that more than one gene might be controlling the LPA trait in 

soybean.   

To determine if the phenotypes of HIP were correctly classified, a ferric 

phosphate assay can be performed.  Pilu (2003) and Larson (2000) both used this 

assay to further evaluate LPA mutants.  This test was used to ensure that the 

genotypes which were classified as HIP positive were also low in phytic acid.  A 

ferric phosphate assay would allow the classification of the intermediates and might 

alter the ratio of phenotypic classes.   

Oil and Protein Concentration 

Oil content and protein content were evaluated in a population segregating for 

the HIP phenotype.  An ANOVA was done using SAS (SAS Institute, Inc 1996) and 

no statistical difference among the three classes of HIP phenotypes: HIP negative, 

HIP intermediate, and HIP positive in oil and protein concentration was observed (P= 

0.5 oil; P=0.866 protein) (Figure 8).  
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Figure 8: Oil and Protein Concentrations* of the two parental genotypes and the 
three HIP types†. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
* Differences between the three phenotypes are not statistically significant for either oil or protein (P= 
0.5 oil; P=0.866 protein). 
† HIP -/- = Negative HIP 

   HIP +/+ = Positive HIP 

   HIP +/- = Indeterminate HIP 

 

Soybeans are grown for two reasons: protein and oil.  Soybeans supply a 

quarter of the world’s edible oil and two-thirds of protein meal (Li and Burton, 2002).  

Soybeans are used as feed for poultry because of the seeds high protein content 

(Oatway et al., 2001), if protein content in a genotype is reduced that genotype will 

not be used. The main goal of any breeding program, therefore, is to increase these 

two components or at least not sacrifice the ability of the plant to produce high 
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quantities for the sake of another characteristic.  Low phytic acid plants could be used 

in a breeding program without reduction of protein or oil concentrations.   

PCR and Nested PCR for Cloning 

To determine genetic differences in the MIPS gene between both parental 

genotypes, the gene was cloned from each genotype and the sequences were 

compared.  A published cDNA sequence (Hegeman et al., 2001) was used to design 

primers for the genomic sequencing of the MIPS gene.  This cDNA sequence was 

isolated using reverse transcriptase polymerase chain reaction (RT-PCR) with RNA 

from developing soybean seeds.  Comparing the sequence to published sequences, it 

had high identity to other published MIPS sequences; and was most similar to the 

tobacco MIPS sequence.   

The MIPS cDNA sequence (GI 13936690) from soybean was used to generate 

PCR products using the Primer3 program.  PCR products were generated to help 

design a marker from a MIPS sequence that is related to the HIP phenotype.  A total 

of 56 primer pairs were created from the original published cDNA sequence (Table 

2).  These primers produced three types of results using the wild-type parental DNA 

and the mutant parental DNA as templates: 1) single bands; 2) multiple bands; and 3) 

smears (Figure 9). 
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Table 2:  Primers designed based on the published MIPS sequence using 
Primer3 program for use in PCR-based cloning.   
 

Primer Pair Comments* 
1 
TAAGGTTGAGTGTCCTAATG 
TTCCATTAGGACACTCAACC 
 

 
Cloned 
1.2 kb 

4 
TGGAGGCCTTACATGGAATC 
GAGCCTTGGTGAGGTAGCTG 
 

 
Polymorphic 

5 
CAGAATATGCCCCGCTTCG 
GCTTCATTAATGCTTTAGAG 
 

 
Cloned 
700bp 

13 
CTTGTGGGGGCTGGTAGC 
TAAAGCATTAATGAAGCTGATG 
 
13-Nested Primer Pair 
ATTCCAACTCACAGGATTACC 
CTCGCCCCGTATAAGACAAA 
 

 
Cloned 
500bp 

15 
TAAACAGAATATGCCCCGC 
GCGGGGCATATTCTGTTTAG 
 

 
Cloned 
400bp 

20 
TAAGGTTGAGTGTCCTAATG 
TACTCATTAGGACACTCAACC 
 

 
Cloned 
1Kb 

21 
TAAGGTTGAGTGTCCTAATG 
CATTAGGACACTCAACCTTA 
 

 
Cloned† 

800bp 
 

22 
GAATCCTCGCATGTGTTGTGGC 
CCATTAGGACACTCAACCTTA 
 

 
Cloned 
350bp 
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Primer Pair Comments* 
23 
TATTCCTTTTGTAATTTCATTC 
GAATCCTCGCATGTGTTGTG 
 
23-Nested Primer Pair 
TAAGGTTGAGTGTCCTAATG 
GACACTCAACCTTAACATTAG 
 

 
Cloned† 

700bp, 500bp 
 

24 
GAATCCTCGCATGTGTTGTGG 
GCCACAACACATGCGAGGATTC 
 

 
Cloned† 

1Kb 
 

25 
TTNGAGCGGATAACANTTTCC 
GACATTAGGACACTCAACTTA 
 

 
Cloned† 

750bp 
 

26 
CTCTAAAGCATTAATGAAGCT 
CCAAACACAATGTCGTCAGGG 
 

 
Cloned 
450bp 

27 
CAGCATAATGAAGCTGATGCAAT 
CAAACACAATGTCGTCAGGG 
 

 
Cloned† 

650bp 
 

28 
AGCTCAGCACTAGAATCGAGT 
GCTTCATTAATGCTTTAGAG 

 
Cloned† 

650bp 
 

29 
CTTGTGGGGGCTGGTATCAAG 
TGGTCCNTCTTGCTGANCTCAC 
 

 
Cloned† 

600bp 
 

30 
GTCCTTCACCGACCGATCCAAAC 
GAGCGGGGCATATTCTGTTTA 
 

 
Cloned† 

750bp 
 

31 
CCCTGACGACATTGTGTTTGTC 
CATCAGCTTCATTATGCTG 
 

 
Cloned† 

450bp 
 

32 
TGCAGAATTCGCCCTTCCCTG 
GCTTCATTAATGCTTTAGAG 
 

 
Cloned† 

400bp 
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Primer Pair Comments* 
33 
CTTGGAGATTTCCTTGGAGAAC 
CTAGTANTTATCAACAACATTTT 
 

 
Cloned† 

650bp 

34 
CGTAGGGGACAGCAAGAGAGG 
GAAATTACAACTTTATAGGCC 
 

 
Cloned† 

650bp 
 

35 
CGTAGGGGACAGCAAGAGAGGC 
GAACCTTGCCTTCTTTCATGCT 

 
Cloned† 

650bp 
 

36 
CTGCCAACCAAGAGGAGCGTGC 
GGATGATTTCCTTGTGGGGGT 
 

 
Cloned† 

650bp 
 

37 
ACGTAGGGGACAGCAAGAG 
CTTCATTAATGCTTTAGAGAAG 
 

 
Cloned 
300bp 

38 
GAATCCTCGCATGTGTTGTGG 
CATTAGGACACTCAACCTTA 
 

 
Cloned 
500bp 

39 
CTCTAAAGCATTAATGAAGCTG 
TCAAACACAATGTCGTCAGGG 
 

 
Cloned 
900bp 

40 
CTCTAAAGCATTAATGAAGCTG 
CAAACACAATGTCGTCAGGG 
 

 
Cloned† 

700bp 
 

41 
CTCTAAAGCATTAATGAAGCT 
TCAAACACAATGTCGTCAGGG 
 

 
Cloned† 

950bp 
 

42 
TAAACAGAATATGCCCCGCTAC 
GTCTCTTGCTGTCCCCTACGT   
 

 
Cloned† 

450bp 
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Primer Pair Comments* 
43 
GGATTCTCTTCTTTATTCCTTTG 
CTGGGTGGAATGAGTGGAAT 
 
43-Nested Primer Pair 
AAACAGAATATGCCCCGCTTCG 
GCTTCATTAATGCTTTAGAGA   
 

 
Cloned† 

650bp 
 

44 
GCCCTTCCCTGACGACATTGTG 
GCTTCATTAATGCTTTAGAG 
 

 
Cloned† 

800bp 
 

45 
GGATTCTCTTCTTTATTCTTTTG 
CTTGGAGATTTCCTTGGA 
 
45-Nested Primer Pair 
AAGAGGAGCGTGGGTCCC 
GCCACACTGGCAGGTCGG 
 

 
Cloned† 

600bp, 1Kb 
 

46 
GGATTCTCTTCTTTATTCCTTTG 
CTTCCAGGGAGAGGAAATC 
 
46-Nested Primer Pair 
CCCTGACGACATTGTGTTTG 
CTCCAATTCTGGACCCA 
 

 
Cloned† 

650bp, 1Kb 
 

47 
GAATGTGTCATGGAGGGTGT 
CTCTCTTGCTGTCCCCTAGC 
 
47-Nested Primer Pair 
GGAGATTTCCTTGGAAACAT 
GCTAGGGACAGCAAGAGAG 
 

 
Cloned 
300bp 

48 
CTCTAAAGCATTAATGAAGC 
GATAATAGGAGCAGCTAGAGG 
 

 
Cloned 
750bp 

49 
GGATTCTCTTCTTTATTCCTTTG 
CTCTCTTGGTGTCCCCTAGC 
 

 
Cloned 
200bp 
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Primer Pair Comments* 
50 
ACGTAGGGGACAGCAAGAGA 
TAACAGAATATGCCCCGCT 
 
50-Nested Primer Pair 
CTGCCAACCAAGAGGAGCGTG 
GTGGGGGGNCTGGGAATCA 

 
Cloned† 

600bp, 900bp 
 

51 
GAATCCTCGCATGTGTTGTGGC 
GCCCATTAGGACACTCAACCT 
 

 
Cloned† 

400bp 
 

52 
GGATTCTCTTCTTTATTCCTTTTG 
CTCTAAAGCATTAATGAAGCTGATG 
 
52-Nested Primer Pair 
TAAGGTTGAGTGTCCTAATG 
GACCTTATAAGTGAAATGGAGA 
 

 
Cloned† 

850bp, 500bp 
 

53 
CCTTCCAGGGAGAGGAAATC 
CTCTAAAGCATTAATGAAGCTGATG 
 
53-Nested Primer Pair 
CCGACCTTAAGCGGGAATTTG 
GTAATTACGAAATCTCTTCCCG 
 

 
Cloned† 

650bp 
 

54 
CCTTCCAGGGAGAGGAAATC 
CTCTAAAGCATTAATGAAGCTGATG 
 
54-Nested Primer Pair 
ATTTGTCTTATACGGGGCG 
GTCAGAGAACGACAGGGGATGC 
 

 
Cloned† 

400bp 
 

55 
CCTTCCAGGGAGAGGAAATC 
CTCTAAAGCATTAATGAAGCTGATG 
 
55-Nested Primer Pair 
GCCAACCAAGAGGAGCGTGC 
TTTATGCTAATTCATTA 
 

 
Cloned 
500bp 
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Primer Pair Comments* 
56 
TAAACAGAATATGCCCCGCTTC 
CAGCTTCATTAATGCTTTAGAG 
 

 
Cloned† 

700bp 
 

 
* Cloned= TOPO-TA cloning of the PCR fragment 
   Bp= size of the band(s) cloned 
 
† Band(s) were extracted from an agarose gel and then cloned
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Figure 9:  Three types of readable results were produced on an agarose gel with 
the primer pairs designed.  (a) Single:  the PCR product is a single fragment (b) 
Smear with an extractable band (c) Smear used in a nested PCR to produce an 
extractable single band  
 
 
 

(a) 
LPA Wild-type 100bp ladder

1.2 Kb
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LPA Wild-type100bp ladder

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1.0 Kb 

(b) 

Band extracted 
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LPA 
Nested

Wild-type 100bp  Nested
ladder

800bp 

(c) 

500bp

LPA  
Smear

 

Nested PCR Smear*

*The smear PCR product is used as the  template for 

 
the nested PCR.  This nested PCR produced two 
bands (800bp and 500bp) that were extracted from
the gel. 
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Twenty-one of the primer pairs used in a PCR reaction produced single 

fragments which were visualized on an agarose gel.  These reactions were directly 

cloned into a vector and sequenced. 

Nine primer pairs’ reactions produced multiple fragments.  The individual 

fragment bands produced on the agarose gel were extracted.  Multiple fragments were 

produced when primers annealed to more than one part of a genome.  Which 

fragments were used to clone and sequence?  The distance between primers could be 

estimated based on the MIPS cDNA sequence.  The genomic sequence produced was 

the size of the cDNA sequence or greater than the cDNA sequence because of 

included introns.  The excised fragments which met that size requirement were cloned 

and sequenced.   

Twelve PCRs produced reactions which were visualized on agarose gels as 

smears. A smear occurs when numerous fragments are produced by a PCR reaction to 

such a degree that it is not possible to distinguish individual fragments.  This PCR 

reaction was used as a template in a second reaction with another set of primers 

(nested PCR).  The nested PCRs which produced single fragments were cloned. 

Primer pair 4 produced a 700bp fragment in the wild-type parental genotype 

but not in the mutant parental genotype. Primer 4 was tested with F2 genotypes to 

determine if there was a linkage between the HIP phenotype and the polymorphism. 

Cloning and sequence alignment 

 Larson et al. (2000) showed a link between the lpa1-1 mutation and the MIPS 

gene in rice, barley, and maize.  The MIPS gene in all three of these species was 
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mapped to chromosomes that contain orthologous regions, and the lpa1-1 mutation in 

each of these species were mapped to MIPS regions.   

Pilu (2003) characterized a low phytic acid mutant (lpa241) in maize and 

determined that the mutation originally assigned to lpa2-1 type mutation is more 

similar to lpa1-1 type mutations.  Pilu (2003) used RT-PCR to compare MIPS 

expression between wild-type and mutant seedlings; a lower level of expression was 

observed in the mutant.  Pilu (2003) sequenced MIPS cDNA from the mutant 

seedling; a 3’ 925bp sequence was produced with 100% homology to the published 

MIPS sequence (AF056326).  The 5’ prime end of the sequence, however, could not 

be amplified using primers designed in the 5’UTR region.  This suggested a mutation 

of the MIPS gene on the 5’ prime end which could affect transcript processing of the 

MIPS gene (Pilu 2003). 

A change in the MIPS gene might be the cause of the lpa1-1 mutation in 

soybean and could be the result of a SNP between the two parental genotypes.  If 

there is a link between the MIPS gene and lpa1-1 mutation as Larson et al. (2000) and 

Pilu (2003) suggest, evaluating the MIPS gene for genetic differences between the 

parents would help determine if the lpa1-1 mutation in CX1834-1-2 is a mutational 

change of the MIPS gene.   

Thirty seven PCR products were cloned in order to compare the genetic 

differences of the MIPS sequences between the mutant and wild-type parental 

genotypes.  Each fragment was run through the BLAST program (Altschul et al., 

1990) to ensure a low e-value with the published cDNA MIPS sequence (Hegeman et 
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al., 2001).  If the fragments did not show similarity to the published sequence more 

plasmids from that clone were sequenced and analyzed.   

Each fragment was sequenced four times, two colonies both sequenced in the 

reverse direction and forward direction.  One hundred twenty-six fragments were 

sequenced and 58 fragments had similarity to the published cDNA MIPS gene 

sequence.  The fragments sequenced from each parental genotype were compared.  

Any base differences between the two were highlighted.  

Sequences from each parental genotype were assembled into contigs.  A 

contig is a group of fragments that represent overlapping regions of similar 

sequences.  The Sequencher program (Gene Codes Corporation, Michigan) trimmed 

the ends of the fifty-eight fragments that had similarity to the published sequence.  

These fragments were then processed with a 80% match percentage and minimum 

overlap of 20bp constraint that produced fifteen contigs.   

The MIPS gene is part of a multigene family (Hegeman et al., 2001) so a 

contig can be produced which has similarity to the gene but is not an actual fragment 

of the specific MIPS gene of interest.  For instance, many contigs had sequence 

similarities to the beginning of the published cDNA sequence and to the end of that 

sequence.  These contigs were less than a kilobase in length; it is doubtful that one 

contig spanned the length of the gene.  It was more likely the primers used to produce 

the contig annealed to other locations on the genome similar to the MIPS gene.  Two 

contigs showed similarity to the published cDNA sequence that made sense based on 

the size of the contig and where the contig were homologous to the published 

sequence (Figure 10).  For each of these sequences, the contig would have perfect 
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homology to a part of the cDNA sequence that was considered one of the exons, then 

there was a part on the contig that did not match the published sequence (indicative of 

an intron) and then it was perfectly aligned to the next exon on the published 

sequence (Figure 10).   
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Figure 10: Sequenced fragment* of the MIPS gene composed of the two contigs 
which were homologous to the Hegeman et al. (2001) published cDNA sequence.   
 
CTGCCAACCA AGAGGAGCGT GCCAACAACG TCCATCAAGG GCACAAAGCA 
 
AGAGCAAGTT CAACAAATCA TCAAAGACAT CAAGTATGCC CTACTTCAAT 
 
AATAATCTAC AAAATCATCA TGATATGTGT GATCAGTATG TATTTTTTTT 
 
TCAGCTTCTA ACTGTTGACA TGATTATGAA CTCAGGGCGT TTAAGGAAGC 
 
CACCAAAGTG GACAAGGTGG TTGTACTGTG GACTGCCAAC ACAGAGARGT 
 
CAGTAATTTG GTTGTGGGCC TTAATGACAC CATGGAGAAT CTCTTGGCTG 
   A 
CTGTGGACAG AAATGAGGCT GAGATTTCTC CTTCCACCTT GTATGCCATT 
 
GCTTGTGTTA TGGAAAATGT TCCTTTCATT AATGGAAGCC CTCAGAACAC 
 
TTTTGTACCA GGTTGGATGC TTGCCNTTTA TGTTCCCCTC CACCAACYTT 
                         A 
TAAATTGKTT GNATTTATGC TAATTCATTT AATTAACCTT GGGCTTGKGG 
            C 
NTTGNCAACA GGSCTGGATT GGATCTTTGN CCATCGCGAG GGAAAACNTT 
 
TGGATTGGTG NGGAAGATGA CTTTCAAGAG GKGGYCNAAA CCAAAATGAA 
        TG   T           A 
AATCTGGNGK TGGGNWKGAN TTNCCTCTTG GGGGKNCTGG GTATCAAGGT 
 
ACATTGATTT TATACTAATG TCATATCATT GGTGTTATTT TTACTAGCAC 
 
TATCTACCTT TGCATGCTTT GTTTAAAATT TATGCATTGT GCTAATTTTA 
 
TATGGCAAAA ATGGAGAAAC TAGTTGATTT TTTCAAATGT TCTGTTGATG 
 
ATTGGCAGCC AACATCTATA GTCAGTTACA ACCATCTGGA AACAATGATG 
 
GTATGAATCT TTCGGCTCCA CAAACTTTCC GTTCCAAGGA AATCTCCAAG 
 
AGCAACGTTG TTGATGATAT GGTCAACAGC AATGCCATCC TCTATGAGCC 
 
TGGTGAACAT CCAGACCATG TTGTTGTTAT TAAGGTAAAT TTTGTTTCAC 
 
CCATTTTTCT GTTTCTTTCT CTTGTCAGGG CTTTGATTAT TCTATCTGCT 
 
TTGTTGCCTT TGCAGTATGT GCCTTACGTA GGGGACAGCA AGAGAGCCAT 
 
GGGATGAGTA CACTTCAGAG ATATTCATGG GTGGAAAGAG CACCATTGGT 
                                   G 
TTTGCACAAC ANATGCGAGG ATTCCCCCTC TAACTGCTCC TATTAYNTNG 
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GACTTGGTCC NTCTTGSTGA NCTTCASCNC TAGAATCGAG TTTAAAGCTG 
 
            T 
AAAATGAGGT CTGTATGCAT TGCTAAATAA TTTCATTGCT GGATTGTATT 
 
AGTCATTGTA TTTTTTTTCA GCCTTCTGAG GTCCACTATG TTGGTGGTGA 
 
TTGCTGCAGG GAAAAATTCC ACTCATTCCC MCCCAGTTGC TACCATCCTT 
 
CAGCTACCTC ACCAAGGCTC CTCCTGGTGA GTTTAATCTA ATCTTATTCC 
 
AATGATGATT GATGAGTACA TATCCTTATT TCTATATAGG AATTAAGTTG 
 
AAAGAAACAT ATCCTCTGAA TTTTAGTATC GAGATAAAAT TGTTCCAATT 
 
GTGAAGTTAA ATCATTGTTG TTCAGTGAAT TTCCCTTTTT TGTCCTTATG 
 
ATTTTTTTTT ATCAAAAGTT GGCAAGGTTA CTCACAACAG TACTCTCACA 
 
GGTTCCACCG GGTACACCAG TGGTGAATGC ATTGTCAAAG CAGCGTGCAA 
 
TGCTGGAAAA CATAATGAGG GCTTGTGTTG GATTGGCCCC AGAGAATAAC 
 
ATGATTCTCG AGTACAAGTG AAGCATGGGA CCGAAGAATA ATATAGTTGG 
 
GGTAGCCTAG CTGAATGTTT TATGTTAATA ATATGTTTGC TTATAATTTT 
 
GCAAGTGTAA TTGAATGCAT CAGCTTCATT AATGCTTTAG AG 
 
     * Exon segments were labeled by the dark blue font type.  These parts of the sequence correspond 
directly to the published cDNA sequence (Hegeman et al., 2001).  The areas of maroon are places 
where the wild-type parent differed from the mutant parent.  In these areas the letter above the 
sequence indicates the base pair that was observed in the mutant parent.   

 

Hegeman et al. (2001), using conserved primers from homologous regions of 

published MIPS sequences, partially sequenced a genomic fragment of the MIPS 

gene.  This fragment was compared to the cDNA to determine the location of the 

exons; a total of nine were determined.  The two contigs in this study covered seven 

regions of the nine exons from Hegeman et al. (2001).   

There was difficulty in aligning fragments into a single contig because the 

fragments were not solely fragments of the one MIPS gene. Hegeman et al. (2001) 

used Southern blot analysis with a hybridization probe to show there are four or more 
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loci with MIPS homology. Two contigs which showed similarity to the published 

cDNA sequence were joined by running the Sequencher program (Gene Codes 

Corporation, Michigan) at a 70% match percentage.  The combined contigs were of 

1892bp in length and begin at the 621 base pair site of the published soybean cDNA 

sequence (Figure 11).   

The MIPS fragment composed of the two aligned contigs was run with the 

BLAST program (Altschul et al.,1990), and three sequences matched with the contig: 

1) Phaseolus vulgaris 1L-myo-inositol-1-phosphate synthase gene (GI 14582466) 

(Johnson et al., unpublished), 2) Glycine max myo-inositol-1-phosphate synthase 

mRNA (GI 14764465) (Hitz et al., 2002), and 3) Glycine max myo-inositol-3-

phosphate synthase mRNA (GI 13936690) (Hegeman et al., 2001).  The three 

published sequences and the contig were aligned using MultAlin (Figure 11) (Corpet, 

1998).  The consensus sequence indicated that there was a high degree of similarity 

between all four sequences and the contig sequence showed homology to published 

MIPS sequences.   
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Figure 11: Alignment of contig and three published sequences* using MultAlin† (Corpet 1989). 
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* Phaselous = Phaseolus vulgaris 1L-myo-inositol-1-phosphate synthase gene (GI 14582466) (Johnson 
et al., unpublished); Contig = Partial sequence of MIPS gene sequenced in this research; Hitz = 
Glycine max myo-inositol-1-phosphate synthase mRNA (GI 14764465) (Hitz et al., 2002); Hegeman = 
Glycine max myo-inositol-3-phosphate synthase mRNA (GI 13936690) (Hegeman et al., 2001) 
†  Black = no base pairs in other sequences to compare to or the base pair does not match to any other 
base pair in the other sequences. 
  Red = All four sequences match at the base pair location 
  Blue = At least two sequences have the same base pair at the specific location. 
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Base pairs in which the parental genotypes differed could be differences 

caused by the EMS mutation (especially the guanine to thymidine mutations) (Figure 

10).  The differences could also be mutations between the two parents which have 

happened by random chance and do not affect the gene.   

To create low phytic mutants, Wilcox et al. (2000) used ethylmethane 

sulfonate (EMS).  EMS indiscriminately changes the guanine base to the thymidine at 

random positions in the genome.  Two of the nucleotide differences observed 

between the two parental genotypes are a change from the guanine nucleotide to the 

thymidine nucleotide (630bp; 1291bp) (Figure 10).  The other base differences 

observed between the two parental genotypes are not the base changes usually 

observed with an EMS mutation (304bp; 474bp; 545bp; 627bp; 628bp; 641bp; 

1193bp) (Figure 10).  These differences could still be used as markers if the changes 

are heritable and are associated with the HIP phenotype (Czarnik et al., 2004).  To 

evaluate if any of these differences can be used as a marker for the HIP phenotype it 

must be determined if the difference is associated with the HIP phenotype.  A genetic 

test for a SNP must then be developed. 

LCR Primer Design and Reaction 

To detect SNPs a test must be able to amplify the target sequences, distinguish 

polymorphic bases, have low background noise, and be easily applied (Barany, 1991).  

Ligase chain reaction (LCR) fits these requirements and was chosen to detect SNP 

differences between the parental genotypes. 

LCR primers were designed for areas where the parental genotypes differed 

(Table 3).  There were nine SNP differences between parental genotypes; five SNPs 

 64 
 



 

were too close to each other or the sequence around the SNP was not unambiguously 

determined and therefore it could not be used in ligase primer design.  The primer sets 

were named based on the location in the MIPS fragment in which there was a SNP 

distinguishing the two parental genotypes. 

Four primers were designed and used with the LCR reaction kit (Stratagene, 

California) based on typical primer constraints (Table 3).  The reaction product was 

run on a 2% agarose gel along with two controls (one positive and one negative) for 3 

hours. The expected band was less than 100bp, but no bands were observed in any of 

the reactions.  This procedure was redone for each primer pair increasing the ligation 

temperature by two degrees each time.  At a ligation temperature of 66° C both 

parental genotypes showed a band, therefore there was no SNP detection between the 

two genotypes.  

Table 3:  LCR primers designed for SNP detection. 
 

Set Name Primer A Primer B Primer C Primer D 
304bp CTTAGAG

AACCGAC
GACA* 

CCTGTCTTCATC
CGACTCTA 

GTCGTCGGTTC
TCTAAG 

TAGAGTCGGAT
GAAGACAGGT 

474bp AACNGGT
AGCGCTC
CCTTT 

TGNAAACCTAAC
CACNCCTTC 

AAGGGAGCGCT
ACCNGTT 

GAAGGNGTGG
TTAGGTTTNCA
A 

1193bp CTCCTAA
GGGGGAG
ATT 

GACGAGGATAA
TRNANCCT 

ATCTCCCCCTT
AGGAG 

AGGNTNYATTA
TCCTCGTCA 

1291bp GATTTATT
AAAGTAA
CGAC 

CTAACATAATCA
GTAACATAA 

TCGTTACTTTA
ATAAATC 

TTATGTTACTG
ATTATGTTAGG 

*Colored base pair indicates a SNP difference between the two parental 

genotypes.
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The LCR reactions did not show a polymorphism between the two parental 

genotypes, which conflicted with sequence data results.  Negative results from LCR 

reaction could be due to the protocol.  The LCR protocol used the entire genome as 

template for the LCR reaction as suggested by Stratagene’s protocol.  The LCR 

primers designed could be annealing to multiple regions of the genome due to the 

multiple regions of MIPS activity (Hegeman et al., 2001). 

PCR-coupled LCR has been shown to improve the results of LCR products 

(Wiedmann et al., 1993).  Instead of using the genome as a template, a PCR is 

performed to produce a target fragment.  This target fragment is then used as a 

template in the LCR reaction.  Ward (1998) amplified a small segment (350bp) of the 

Lactococcus lactis 16S rRNA gene sequence before using the fragment in a LCR 

protocol.  Ward (1998) reduced the amount of mismatching that could occur when 

using LCR primers and was able to get positive results by using a fragment instead of 

a complete genome.   

LCRs using a fragment of the soybean genome as a template were performed.  

Two primers (297R and 1096L) were designed flanking the entire contig sequence to 

amplify a PCR fragment that contained all the predicted SNPs. The primers (Figure 

13) flanked the area on the contig between 297bp and 1096bp which included all the 

SNPs between the two parental genotypes.  The PCR fragment was used as a template 

in the LCR reaction.  Using this technique, oligonucleotide sets 304bp and 1291bp 

both produced bands in both genotypes, and oligonucleotide sets 445bp and 1182bp 

did not produce bands in either genotype.  The LCR reaction did not produce results 
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consistent with the sequence data.  If a test was developed to differentiate between the 

two parental genotypes, the SNP data could be used to test for linkage to the HIP 

phenotype, but the LCR reaction could not differentiate between the parental 

genotypes. 

Figure 12:  A PCR fragment was designed from the sequenced MIPS fragment 
in which all SNPs between the two parental genotypes were included between the 
two primer pairs. 
 
 
 
 

 
 

Hitz et al. (2002) found a SNP caused a change from lysine to asparagine in a 

single, recessive LPA mutation in soybean.  This change in the myo-inositol 1-

phosphate synthase gene reduced phytic acid and raffinosaccharides stored in the 

seed.  A cDNA clone from the mutant genotype and the wild-type genotype were the 

same except for a base change from G to T.  This change affected an amino acid 

which was in a conserved region of the myo-inositol 1-phosphate synthase gene.   

Hitz et al. (2002) designed two sets of primers.  The first set had a G at the 

end of the 3’ end, while the other set had the SNP change of T at the 3’ end.  Both 

 3’ 5’ 
 

SNPs 

 Primer 297L:  Primer 1096R GCTGCTGTGGACAGAAATGA CTCTCTTGCTGTCCCCTAC
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sets of primers were used with the wild-type genotype and the LPA mutant genotype.  

The PCR product had a bigger yield of the 600bp fragment if the primer set perfectly 

matched the template (Hitz et al., 2002).  Tests, such as the one used by Hitz et al. 

(2002), could be used to differentiate the two parental genotypes.  

Marker Design and F2 Analysis 

The goal of this research was to design a marker linked to the HIP phenotype.  

Primer pair 4 showed a polymorphism between the two parental genotypes.  A 700bp 

fragment was observed in the wild-type genotype, but not the LPA genotype.  To use 

the polymorphism as a marker, it first had to be determined if the polymorphism was 

heritable.  One hundred fourteen F2 genotypes were used in PCR reactions with 

primer4 under the same conditions as the parental genotypes (Figure 13).   

Figure 13: Agarose gel electrophoresis showing polymorphism observed using 
primer 4*. 
 

 
*Ladder = 100bp ladder was used to measure the size of the DNA fragments produced. 

W= Wild-type parent genotype 

L= LPA parental genotype 

F2 = F2 genotypes  
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The polymorphic difference observed was measured as a dominant trait (Table 

4).  In a dominant trait the heterozygous type and the homozygous wild-type that can 

not be differentiated; three-fourths of the population show the trait and one-fourth 

does not show the trait; a 3: 1 ratio.  The F2 genotypes tested at an observed 83:31 

ratio which was an excellent fit to the expected 3:1 (χ2= 0.23, P=0.63).  The 

polymorphism was a genetically heritable trait so it could be tested with the HIP 

phenotype to determine if there was a linkage between the two. 

Table 4: Presence/absence of 700bp fragment from a PCR reaction with primer 
pair 4*. 
 
 
 
                                         

700bp Fragment 
 

 Present  Absent  
Observed 83 31 
Expected 86.25 28.75 
 
 
 
* χ2=  0.235   Significant P < 0.001, 1 df. 

The HIP negative phenotype was linked to the presence of the band in the 

primer 4 PCR and the HIP positive phenotype was linked to the absence of a band in 

the primer 4 PCR (Table 5).  Twelve HIP intermediate genotypes had an absence of a 

band while 22 possessed a band in the primer 4 PCR.  HIP intermediate genotypes did 

not associate with the presence or absence of the band.  Some intermediates possessed 

the band while others did not.  The primer 4 polymorphism might be linked to only 

one of the genes controlling the LPA mutant which would explain why the 
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heterozygotes are segregating.  If the genes controlling the LPA mutation segregated 

as a unit then one would expect to observe all the HIP intermediates to possess the 

700bp band. 

Table 5:  Polymorphism with primer 4, observed and expected HIP phenotype in 
the F2 population derived from a cross of a HIP mutant and a wild-type*. 

 

 700bp HIP Type†

Present 83 
 
HIP -/-        61 
HIP +/-       22 
HIP +/+        0 

Absent 31 
 
HIP -/-           3 
HIP +/-        12 
HIP +/+       16 
 

 

 

* Only 16 of the 17 HIP positive genotypes had a PCR that produced results. 
 
† HIP -/- = HIP Negative 
  HIP +/- = HIP Intermediate 
  HIP +/+ = HIP Positive 
 

Is the polymorphism involved with the HIP trait?  The polymorphic fragment 

is heritable and is linked to the HIP positive phenotype. None of the genotypes 

classified as HIP positive possess the primer 4 700bp band.  Larson et al. (2000) has 

previously suggested a link between the MIPS regions of rice, barley, and maize and 

an lpa1-1 mutation.  This linkage is suggested by the polymorphic data and HIP 

phenotype data presented in this study. Since the soybean genome has at least four 

regions of MIPS activity (Hegeman et al., 2000) it is possible that the HIP phenotype 

and the polymorphism both are linked to the MIPS gene family but to different 
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regions of activity.  The polymorphism could be linked to only one gene, and the 

heterozygotes are segregating because at least two genes are involved in the trait.  If 

there are multiple genes involved in the LPA mutation and both have to be recessive 

in order to show a HIP positive phenotype then the genetic polymorphism would have 

segregation in the HIP intermediates.   
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Conclusions 

The introduction of a LPA mutation in soybean could be an important 

breeding goal.  Phosphorus waste can be reduced by using LPA mutants (Mendoza, 

2002).  The LPA mutation could be important trait in a soybean breeding program.  

Eliminating excess phosphorus will reduce pollution in the water systems near farm 

lands.  LPA grain provides farmers a protein supplement that needs no phosphorus 

supplement; reducing feed costs.  It was determined that oil and protein content were 

not reduced making this mutation easily incorporated into a breeding program. 

HIP phenotype assay is a quick method to indirectly estimate phytic acid 

content.  The assay determines if a seed has high amounts of inorganic phosphorus 

content which is typical of LPA seeds.  Conflicts in results stem from the 

determination of phenotype class based on inorganic phosphorus concentration.  

Multiple genes associated with the LPA mutation in soybean could have effected the 

labeling of the HIP phenotypes.   

A MIPS gene fragment was sequenced from both parental genotypes to 

determine single nucleotide polymorphisms between the two.  LCR primers were 

designed around four of the nine SNPs to design a genetic test for SNPs.  The LCR 

did not work for any of the four primers.  This does not mean that there is not a 

difference between the genotypes only that the LCR could not test for the SNPs 

between the parental genotypes. 

A PCR run with primer 4 was polymorphic between the two parental 

genotypes.  This difference was tested with the F2 genotype and found to be heritable, 

and the absence of the band was associated with the HIP positive type.  All but three 
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of the genotypes classified as HIP negative did possess the 700bp band.  The HIP 

intermediates did not show an association to either the presence or absence of the 

band. One of the genes involved with the low phytic acid mutation is linked to the 

primer 4 marker. 

Further study must be done to investigate the relationship between the MIPS 

gene and the HIP phenotype.  A test must be designed that can be used to evaluate the 

SNPs between the parental genotypes.  If this test can be developed, SNPs can be 

tested in the F2 genotypes and a relationship between the SNP and the HIP phenotype 

could be tested.    
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