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There is ample historical data to suggest that log returns of stocks and indices 

are not independent and identically distributed Normally, as is commonly assumed. 

Instead, the log returns of financial assets are skewed and have higher kurtosis.  To 

account for skewness and excess kurtosis, it is necessary to have a distribution that is 

more flexible than the Gaussian distribution and accounts for additional information 

that may be present in higher moments. 

The federal government’s Thrift Savings Plan (TSP) is the largest defined 

contribution retirement savings and investment plan in the world, with nearly 3.6 

million participants and over $173 billion in assets.  The TSP offers five assets 



  

(government bond fund, fixed income fund, large-cap stock fund, small-cap stock 

fund, and international stock fund) to U.S. government civilian employees and 

uniformed service members.  The limited choice of investments, in comparison to 

most 401(k) plans, may be disappointing from a participant’s perspective; however, it 

provides an attractive framework for empirical study. 

In this study, we investigate how the optimal choice of TSP assets changes 

when traditional portfolio optimization methods are replaced with newer techniques.  

Specifically, the following research questions are posed and answered: 

 (1)  Does use of a non-Gaussian factor model for returns, generated with 

independent components analysis (ICA) and following the Variance Gamma (VG) 

process, provide any advantage over conventional methods with returns assumed to 

be Normally-distributed, in constructing optimal TSP portfolios? 

 (2)  Can excess TSP portfolio returns be generated through rebalancing to an 

optimal mix?  If so, does changing the frequency of rebalancing from annual to 

monthly or even daily provide any further benefit that offsets the increased 

computational complexity and administrative burden? 

 (3)  How does the use of coherent measures of risk, with corresponding 

portfolio performance measures, in place of variance (or standard deviation) as the 

traditional the measure for risk and Sharpe Ratio as the usual portfolio performance 

measure affect the selection of optimal TSP portfolios? 



  

We show through simulation that some of the newer schemes should produce 

excess returns over conventional (mean-variance optimization with Normally-

distributed returns) portfolio choice models.  The use of some or all of these methods 

could benefit the nearly 4 million TSP participants in achieving their retirement 

savings and investment objectives.  Furthermore, we propose two new portfolio 

performance measures based on recent developments in coherent measures of risk.
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Chapter 1: Introduction 

 

1.1 Overview 

There is ample historical data to suggest that log returns of stocks and indices 

are not independent and identically distributed Normal, as is commonly assumed.  

(Cootner 1964; Fama 1965; Lo and Mackinlay 1988; Mandelbrot 1963; Mitchell 

1915; Osborne 1959; Praetz 1972)  Instead, the log returns of financial assets are 

skewed and have higher kurtosis.  To account for skewness and excess kurtosis, it is 

necessary to have a distribution that is more flexible than the Gaussian distribution 

and accounts for additional information that may be present in higher moments.  

(Harvey et al. 2004) 

The federal government’s Thrift Savings Plan (TSP) is the largest defined 

contribution retirement savings and investment plan in the world, with nearly 3.6 

million participants and over $173 billion in assets as of Dec 31, 2005.  (Federal 

Thrift Retirement Investment Board 2006)  The TSP offers five assets (a government 

bond fund, a fixed income fund, a large-cap stock fund, a small-cap stock fund, and 

an international stock fund) to U.S. government civilian employees and uniformed1 

service members.  The limited choice of investments, in comparison to most 401(k) 

                                                 

1 Uniformed, not uninformed.  Uniformed services include the five military services (Army, Navy, Air 
Force, Marine Corps, and Coast Guard) plus the National Oceanic and Atmospheric Administration 
Commissioned Corps and Public Health Service Commissioned Corps. 
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plans, may be disappointing from an investor’s perspective; however, it provides an 

attractive framework for empirical study in an academic setting. 

In this study, we investigate how the optimal choice of TSP assets changes 

when traditional portfolio optimization methods are replaced with newer techniques.  

Specifically, the following research questions are posed and answered: 

 (1)  Does use of a non-Gaussian factor model for returns, generated with 

independent components analysis (ICA) and following the Variance Gamma (VG) 

process, provide any advantage over conventional methods with returns assumed to 

be Normally-distributed, in constructing optimal TSP portfolios? 

 (2)  Can excess TSP portfolio returns be generated through rebalancing to an 

optimal mix?  If so, does changing the frequency of rebalancing from annual to 

monthly or even daily provide any further benefit that offsets the increased 

computational complexity and administrative burden? 

 (3)  How does the use of coherent measures of risk, with corresponding 

portfolio performance measures, in place of variance (or standard deviation) as the 

traditional measure for risk and Sharpe Ratio as the usual portfolio performance 

measure affect the selection of optimal TSP portfolios? 

We show through simulation that some of the newer schemes should produce 

excess returns over conventional (mean-variance optimization with Normally-

distributed returns) portfolio choice models.  The use of some or all of these methods 

could benefit the nearly 4 million TSP participants in achieving their retirement 
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savings and investment objectives.  Furthermore, we propose two new portfolio 

performance measures based on recent developments in coherent measures of risk. 

 

1.2 Thrift Savings Plan 

1.2.1 General 

The TSP was authorized by the United States Congress in the Federal 

employees’ Retirement System Act of 1986 and is administered by the Federal 

Retirement Thrift Investment Board (FRTIB), an independent Government agency.  It 

was first offered to civilian employees in 1988 as an integral part of the Federal 

Employee Retirement System (FERS).  Later, the plan was opened to members of the 

uniformed services and civilians covered by the older Civil Service Retirement 

System (CSRS) that FERS replaced.  The purpose of the TSP is to provide Federal 

employees a tax advantaged savings and investment plan similar to those provided by 

many private companies with 401(k) plans.  The TSP is primarily a defined 

contribution plan funded by voluntary contributions by the participant but can also 

include matching contributions from the government.  This is a significant difference 

from defined benefit plans like military retirement, CSRS, or the basic benefit portion 

of FERS, where contributions are borne entirely by the government.  The TSP is tax 

advantaged in two ways— employee contributions are made from pre-tax pay and 

taxes on contributions and earnings are deferred until withdrawal.  In addition to the 

tax benefits, because there is no minimum vesting period for most TSP assets, they 
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are portable if a service member or employee leaves government service before 

reaching retirement eligibility. 

1.2.2 Core Investment Funds. 

TSP participants are offered five investment funds:  the Government 

Securities Investment Fund (G Fund), the Fixed Income Investment Fund (F Fund), 

the Common Stock Index Investment Fund (C Fund), the Small Capitalization Stock 

Index Investment Fund (S Fund), and the International Stock Index Investment Fund 

(I Fund).  The G, F, and C funds formed the totality of investment options when the 

TSP began in 1988 while the S and I funds were added in May 2001. 

The G Fund invests in short-term non-marketable U.S. Treasury securities that 

are issued only to the TSP.  By law, the G Fund earns an interest rate that is equal to 

the average market rates of return on outstanding U.S. Treasury marketable securities 

with four or more years to maturity.  (5 USC §8438 (a))  The implication of this is 

that, unless the yield curve is inverted, the G Fund is a riskless asset with an above-

market rate of return.  (Redding 2007)  However, although it is riskless in one respect 

(guaranteed to not have a negative return), it is not riskless with regards to having no 

variance, the usual definition of “riskless” in portfolio theory. 

Fund Description Invests In or Tracks Assets 
G Government Short-term U.S. Treasury Securities $66.6B (39.2%) 
F Fixed-Income Lehman Brothers U.S. Aggregate Index $10.2B (6.0%) 
C Common Stock Standard & Poor’s 500 Stock Index $66.7B (39.3%) 

S Small Cap Stock Dow Jones Wilshire 4500 Completion 
Index $13.7B (8.1%) 

I International 
Stock 

Morgan Stanley Capital International 
(MSCI) Europe, Asia, Far East (EAFE) 
Index 

$12.6B (7.4%) 

Table 1.  Core TSP Funds. 
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The F, C, S, and I funds are managed by Barclays Global Investors.  Each of 

these four funds tracks a popular index, as shown in Table 1.  (Federal Thrift 

Retirement Investment Board 2006)  As of Dec. 31, 1985, the F Fund approximately 

consisted of the following asset mix:  39% mortgage-backed securities (primarily 

guaranteed by Government National Mortgage Association, Fannie Mae, and Freddie 

Mac), 23% investment-grade corporate securities (both U.S. and non-U.S.), 25% 

Treasury securities, 11% Federal agency securities, and 2% asset-backed securities 

and taxable municipals.  The C, S and I funds are passive in nature; each attempts to 

track its respective index by holding the same weights of stocks of the companies 

represented in the index.  In order to cover withdrawals and loans from the TSP, each 

of these funds maintains a liquidity reserve that is invested in instruments similar to G 

Fund holdings.  The historical correlation between each fund and its tracked index 

exceeds 0.99, indicating that the fund managers are performing well against their 

benchmarks. 

Note the percentages shown in the ‘Assets’ column of Table 1.  These 

represent what participants are doing in aggregate; we will call this mix (39% G fund, 

6% F fund, 39% C fund, 8% S fund, and 8% I fund) the TSP “Market Portfolio” (TSP 

MP).  Although no individual investor may actually be investing their funds in this 

manner, this is the overall distribution of monies in the TSP funds. 

Employees can make payroll contributions to any of the TSP investment funds 

in whole percentage increments.  Also, they can make daily inter-fund transfers to 

redistribute existing account balances at no direct costs.  Any rebalancing costs are 
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covered internally by the fund manager and spread across all investors in the fund as 

lowered returns.  An investor who rebalances daily incurs no greater cost than an 

investor who makes no trades.  This is one instance where the actuality of real-world 

investing actually mirrors the idealistic “no transaction costs” assumption of 

academia.  This will become important for some of our analysis concerning dynamic, 

multi-period portfolio models with rebalancing at various intervals. 

1.2.3 Lifecycle Funds 

In 2005, the TSP added five additional investment options, called the 

Lifecycle (or L) Funds.  The intent of the L Funds is to provide the highest possible 

rate of return for the risk taken, given an individual’s retirement time horizon.  The L 

fund managers use mean-variance optimization to allocate assets to the five core TSP 

funds described above by seeking the maximum expected returns for a specified level 

of risk.  An individual’s retirement time horizon is also considered, as each L fund 

corresponds to a date range of ten years.  Investors are encouraged to pick the L fund 

that corresponds to their planned retirement date, as shown in Table 2. 

Choose If your time horizon is: 

L 2040 2035 or later 

L 2030 2025 through 2034 

L 2020 2015 through 2024 

L 2010 2008 through 2014 

L Income Sooner than 2008 

Table 2.  L Fund Selection Criteria. 
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Figure 1 shows the initial allocation of the L Funds to the five core TSP funds.  

(Federal Thrift Retirement Investment Board 2005)  The L fund allocations to the five 

core funds adjust quarterly.  Notice how the proportion invested in the G fund 

increases as the retirement horizon nears (moving from left to right), while allocations 

to the more risky (but potentially more rewarding) F, C, S, and I funds decrease as 

time passes to reflect the change in investment objective from growth to preservation 

of assets.  Once the target retirement date is reached the percentages do not change 

since rebalancing among the asset classes (funds) no longer occurs.  A new dated L 

fund will be introduced every 10 years as an existing, dated L fund becomes the L 

Income fund.  For example, the L2050 fund should be introduced in 2015 for 

investors with a retirement time horizon of 2045 or later, once the L2010 allocations 

match the L Income percentages. 

Figure 1.  L Fund Allocations to Core TSP Funds. 

L2040 L2030 L2020 L2010 L Income 

25%

18% 42%
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12%
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Although there are only five actual L Funds, they can be seen as a continuum of 

portfolios, because of the quarterly rebalancing described above.  Using linear 

interpolation between the five portfolios results in the view given in Figure 2. 
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Figure 2.  Continuous View of L Funds Over Time. 
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 1.3 Description of Returns Data 

1.3.1 General 

There are two common definitions of rate of return.  Let ,i tr  denote the return of the 

i-th asset at time t and ,i tS  be the price of the i-th asset at time t.  In our analyses, all 

returns are calculated as being continuously compounded as log2 returns, 

  ,
, , , 1

, 1

ln( ) ln( ) ln i t
i t i t i t

i t

S
r S S

S−
−

⎛ ⎞
= − = ⎜ ⎟⎜ ⎟

⎝ ⎠
, (1) 

instead of the holding-period returns, 

 , , 1
,

, 1

i t i t
i t

i t

S S
r

S
−

−

⎛ ⎞−
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 (2) 

For the purposes of our analyses, each method is more appropriate in at least one 

case.  However, in an effort to combine the three major themes of this research, one 

standard technique is necessary.  Log returns are generally preferred for a couple of 

reasons.  First, log returns over a period of length ks are just the sum of the log returns 

of k periods of length s.  Additionally, most continuous-time models for the stock 

price ,i tS  include an exponential of some stochastic process, so continuously-

compounded log returns are the obvious choice.  Furthermore, returns calculated 

using log differences are approximately the same as those computed as a percentage 

                                                 

2 All references to logarithms in this work refer to the natural logarithm, i.e. ln( )xe x= , regardless of 
the use of the symbols ‘ln’ or ‘log’. 
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change; it can be shown by a Taylor series expansion that ln(1 )x x+ ≈  for x  near 

zero.  So, even for those analyses where the holding period return may be more 

suitable, the form chosen is a sufficiently close estimate. 

At the time of this research, data from at least some funds or indices were 

available from January 1988 until August 2006.  In order to maintain commonality 

between annual, monthly, and daily returns, the 17-year period from January 1, 1989 

to December 31, 2005 was selected.  Data from the start of the TSP in January 1988 

through the end of 1988 were excluded because daily data is not available for the 

Lehman Brothers Aggregate (LBA) in this time period.  Also, data from 2006 were 

not used, because annual returns were not yet available when this research was begun.  

For dates prior to 2001, since the S and I funds did not exist, the returns data for their 

tracked indices is used, as their tracking since their inception has show correlation 

exceeding 0.99.  Finally, because the MSCI EAFE index includes equities from 

multiple exchanges located in different time zones and with different trading days and 

holidays, some daily observations were deleted.  After matching, we have 4235 daily, 

204 monthly, and 17 annual returns. 

1.3.2 Annual and Monthly Returns 

Annual and monthly returns data are available from the Thrift Savings Plan 

website.  Figure 3 shows the compound annual returns for each of the core TSP 

funds/indices over the period 1988-2005.  As shown by the horizontal dashed line, all 

five funds outpaced inflation (2.9%) but some performed better than others. 
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Figure 3.  Annual Returns of TSP Core Funds.  Horizontal line shows inflation rate during this time period. 

1.3.3 Daily Returns 

The Thrift Savings Plan website does not provide daily historical price or 

returns data.  As previously mentioned, the correlation between each of the TSP funds 

and the tracked indices is quite high.  Fortunately, daily price and returns data were 

available for each of the tracked indices.  Historical daily data for the S&P 500, DJ 

Wilshire 4500, and MSCI EAFE indices were obtained via Bloomberg, while the 

LBA data was provided to the author by the Lehman Brothers Family of Funds.   

The G Fund daily returns were computed by starting from the monthly returns 

and assuming a constant return for each day in the month.  Let dr  be the daily rate 

and mr  the monthly rate, and n  days in a month, 

 (1 ) 1n
m dr r= + − , (3) 

or equivalently 

 
1

(1 ) 1n
d mr r= + − . (4) 
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For example, if the monthly return was 2% and there are 21 trading days in the 

month, the daily return would be 

 
1
21(1 0.02) 1 .0009434 or .09434%dr = + − =  (5) 

 

1.4 Investment Horizon 

For our analyses, the point of military retirement, not ultimate retirement (and 

complete reliance on investment income) will be used for two reasons.  First, upon 

military retirement, the investor’s opportunities greatly increase because the retiree 

can move assets from the TSP into other qualified plans, e.g. IRA or 401(k) plans, 

which have a far broader range of investment options.  Also, post-military retirement 

employment options vary greatly by individual.  Some will have no employment after 

military retirement; others will choose a lower paying but otherwise rewarding 

second career (e.g. teacher); and some will have a high-paying position (e.g. 

government contractor).  The investment problem faced at that time, although similar 

in general, is significantly more complex and beyond the scope of this research.   

The current military retirement system encourages a military career of 20 

years.  (U.S. Department of Defense 2006; Warner 2006)  As a result, most TSP 

investors face an investment horizon of 20 years or less; a minority have a planning 

horizon that is 30 years or longer.  For the purposes of our analyses, a representative 

horizon of 20 years will be used. 
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1.5 Utility and Risk Aversion 

1.5.1 Utility Functions 

A utility function maps preferences among alternative choices into measurable 

utility.  Utility functions have two properties—they are order preserving and can be 

used to rank combinations of risky alternatives.  (Copeland and Weston 1988)  A 

concave utility function for a risk averse-investor is shown in Figure 4.  In summary, 

a risk-averse investor with less wealth will obtain a greater amount of utility from the 

same amount of wealth as a risk-averse investor starting with greater wealth. 

 

Figure 4.  Utility Function for Risk-Averse Investors.  Investor with low initial wealth wL gets greater utility 
VL from same amount of additional wealth (M) than investor with higher initial wealth wH. 
 

There are a number of commonly-used utility functions to choose from, as 

shown in Table 3.  We will use the negative exponential utility function, which has 

constant absolute risk aversion, for ease of computation.  Exponential utility is 

sometimes bypassed in favor of other utility functions, like logarithmic or power, 
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because it has constant absolute risk aversion or no “wealth effect.”  As a result, all 

investors with the same degree of risk aversion who maximize exponential utility will 

hold the same portfolio, regardless of their initial wealth. 

 

Name U[w] A[w] R[w] 
Risk Neutral w  0  0  
Negative Exponential we γ−−  γ (constant) wγ  

Quadratic 
2 1, [0, ]

2
ww wγ

γ
− ∀ ∈  

1 w
γ
γ−

 
1

w
w

γ
γ−

 

Power , 1 0w and
γ

γ γ
γ

< ≠  
1

w
γ−

 1 γ−  

Logarithmic ln( )w  
1
w

 1 (constant) 

Table 3.  Examples of Utility Functions, A[w] = absolute risk aversion,  
R[w] = relative risk aversion, w = wealth, γ = risk aversion coefficient. 

 

However, the variation in wealth among TSP investors is relatively limited.  

After all, they are all government employees earning somewhat modest salaries with 

limited bonus potential.  The vast majority of TSP participants are neither below the 

poverty line nor multi-millionaires.  Considering this, together with the computational 

tractability advantage, makes exponential utility a reasonable choice in this situation. 

1.5.2 Risk Aversion Parameter 

Risk aversion is a measure of the risk premium (additional expected return to 

compensate for risk) required by an investor for choosing a riskier investment over a 

guaranteed return.  Risk aversion may be measured in absolute or relative terms.  For 

a utility function ( )U w , the absolute risk aversion is defined as ( )( )
( )

U wA w
U w

′′
= −

′
 and 
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the relative risk aversion is given by ( )( ) ( )
( )

wU wR w wA w
U w

′′
= = −

′
; instances for 

specific utility functions are shown in Table 3.  An estimated 74% of household net 

worth is estimated to be invested in a broad array of risky assets.  Assuming that this 

portfolio has similar reward-to-risk characteristics as the S&P 500 since 1926 (a risk 

premium of 8.2% and standard deviation of 20.8%), the implied coefficient of risk 

aversion is 2.6.  (Bodie, Kane and Marcus 2005)  Other studies taking into account a 

wide range of available assets estimate the degree of risk aversion for representative 

investors at 2.0 to 4.0.  (Friend and Blume 1975; Grossman and Shiller 1981)  As 

many in the military will also have retirement income from a defined benefit pension, 

it is reasonable to conclude that they will fall at the lower (riskier) end of this range.  

The reason for this is that the value of their military retirement may be considered 

“pseudo-bonds,” as they are backed by the U.S. government and indexed for inflation.  

(Jennings and Reichenstein 2001; Nestler 2007)  This idea is shown graphically in 

Figure 5. 

 

Figure 5.  Impact of Considering Defined Benefit Pension as "Pseudo-Bonds" in Expanded Portfolio. 
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With discounting at Treasury Inflation Protected Securities (TIPS) rates, the 

net present value of a military retirement with 20 years of service ranges between 

$450K and $900K.  As a result of considering this asset as part of their total 

investment portfolio, those expecting a military retirement can afford to be less risk 

averse in their TSP and other investments.  (Nestler 2007)  Therefore, our analyses 

will use the lower end of the identified range, i.e. a risk aversion parameter of 2.0. 

 

1.6 Organization 

Chapter 2 develops a non-Gaussian factor model (called VG-ICA) for returns 

using ICA with components assumed to follow the VG distribution.  In Chapter 3, 

different measures of risk and portfolio performance are considered, including two 

new measures.  Chapter 4 presents the results of applying the techniques outlined in 

the earlier chapters to the TSP portfolio optimization problem, while Chapter 5 

concludes and discusses future work. 
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Chapter 2: The VG-ICA Model 

 

2.1 Motivation and Overview of Approach 

Historical data suggest that log returns of stocks and indices are not 

independent and identically distributed Normally, as is commonly assumed. (Lo and 

Mackinlay 1988; Praetz 1972)  Instead, the log returns of financial assets are skewed 

and have higher kurtosis.  To account for skewness and excess kurtosis, it is 

necessary to have a distribution that is more flexible than the Gaussian distribution 

(i.e. not completely described by the first two moments), but is still based on a 

stochastic process that has independent and stationary increments, like Brownian 

motion.  Processes with these characteristics are known as Lévy processes.  

Distributions which meet the criteria described above include Variance Gamma (VG), 

Normal Inverse Gaussian (NIG), and Generalized Hyperbolic Model.  (Schoutens 

2003) 

  In the manner of Arbitrage Pricing Theory (Ross 1976), a factor model for 

returns is given by: 

 ( )R XB
D XB

μ ε
ε

− = +
= +
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where R  is a vector of asset returns with means μ , D  is a vector of de-meaned asset 

returns, X  is a subset of the zero mean, unit variance, orthogonal factors identified 

using ICA, and ε  is the noise component.  The only use of the average returns is to 

de-mean the data.  The noise component will be modeled as having multivariate 

Gaussian density, as this is the finite variance, zero mean RV with the maximum 

uncertainty in terms of entropy. 

 

2.2 Independent Component Analysis 

2.2.1 General 

Independent Component Analysis (ICA) is a statistical technique for 

extracting useful information from a complex dataset through decomposition into 

independent components.  The intent is to find the underlying factors behind a set of 

observed data.  ICA is a linear transformation method that originated in the signal 

processing field.  (Hyvarinen, Karhunen and Oja 2001)  The basic idea behind the 

technique is to find a representation of data that is suitable for some type of analysis, 

like pattern recognition, visualization, removal of noise, or data compression with the 

goal of extracting useful information.  ICA can be considered a type of blind source 

separation (BSS), with the word blind indicating that the method can separate data 

into source signals even if very little is known about their nature.  ICA works by 

exploiting the fact that the source signals are independent from one another.  If two 

(or more) signals are statistically independent, then knowing the value of one signal 
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provides no information about the value of the others.  Numerous overviews of ICA 

are available.  (Cardoso 1998; Hyvarinen 1999; Hyvarinen, Karhunen and Oja 2001; 

Stone 2004) 

2.2.2 Comparison with Other Methods 

ICA is closely related to the better known, classical, linear transformations 

like principal component analysis (PCA), factor analysis (FA), and projection pursuit.  

However, it differs from each of these methods in at least one assumption.  PCA and 

FA both rely on data that is assumed to be Gaussian, but ICA does not.  These second 

order methods (PCA and FA) make this assumption so that the higher moments are 

not considered (since the Normal distribution is completely described by its first two 

moments, the mean and variance).  To account for higher moments, ICA requires (or 

assumes) complete statistical independence, while PCA and FA rely on the weaker 

assumption of uncorrelated (or linearly independent) signals.  Projection pursuit and 

ICA both allow for non-Gaussian data and use information beyond second order, but 

projection pursuit does not permit a noise term in the model; ICA does. 

2.2.3 ICA in Finance 

Similar to an example on the FTSE3 100 (Stone 2004), consider the prices of 

the 500 stocks comprising the S&P 500 index to be a set of time-varying 

measurements.  Each of these depends on some relatively small number of factors 

                                                 

3 The letters F-T-S-E are no longer an acronym that stands for anything.  Originally, it represented that 
FTSE was a joint venture between the Financial Times (F-T) and London Stock Exchange (S-E). 
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(e.g. unemployment, retail sales, weather, etc.) with each series of stock prices 

viewed as some mixture of these factors.  If the factors can be extracted using ICA, 

they can then be used to predict the future movement of these stock prices.  More 

details on the use of ICA in finance are available in the literature.  (Back and 

Weigend 1997; Malaroiu, Kiviluoto and Oja 2000; Oja, Kiviluoto and Malaroiu 

2000) 

2.2.4 Theory and Mechanics of ICA 

Consider the matrix equation x = As , where x  is the data matrix that is 

believed to be a linear combination of non-Gaussian, independent components s  and 

A  is the unknown mixing matrix.  The goal of ICA is to find a de-mixing matrix W  

such that y = Wx .  If -1W = A , then y = s , or the original source signals have been 

perfectly recovered in the independent components y .  Usually, this is not the case 

and it is only possible to find W  such that WA = PD  where P  is a permutation 

matrix and D  is a diagonal matrix.  Figure 6 shows a schematic representation of the 

ICA process.  (Back and Weigend 1997) 

 

 

Figure 6.  ICA Process Overview. 
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As previously mentioned, ICA assumes that the independent components are 

non-Gaussian.  So, the rotation chosen should be the one that maximizes non-

Gaussianity.  Substituting in for x  above, we have y = Wx = WAs .  So, s  is a linear 

function of x .  With appropriate regularity conditions, the Central Limit Theorem 

tells us that y = WAs  is more Gaussian than s , unless -1W = A , and y = s  as 

previously mentioned.   

In information theory, entropy is the degree of information that observing a 

random variable (RV) provides.  In other words, larger entropy implies more 

randomness.  For continuous RVs, the differential entropy H is defined as: 

 ( ) ( ) ln ( )Y YH f f d= −∫y y y y  (6) 

where ( )Yf ⋅ is the density function of Y.  The Gaussian RV has the largest entropy 

among all RVs of equal variance.  (Cover and Thomas 1991)  The negentropy J of a 

RV Y (or random vector y) is defined as the difference between the entropy of a 

Gaussian RV and the entropy of y, or  ( ) ( ) ( )GaussianJ H H= −y y y .  Thus, maximizing 

J will result in y being as non-Gaussian as possible.  Note that the only case where 

negentropy equals zero is when y is Gaussian.  As actually computing entropy (and 

therefore negentropy) can be difficult, several approximations have been developed.  

For ICA, where the objective is to find one independent component ′y = w x  at a 

time, the form of the approximations is: 

 2( ) ( ( ( )) ( ( )))G GaussianJ c E G E G′≈ −w w x y  (7) 
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constrained by 2(( ) ) 1E ′ =w x , with G a non-quadratic function and c a constant. 

All ICA computations in this paper were performed using the FastICA 

package for R; FastICA is a fixed point iteration algorithm that is also available for 

Matlab.  (Marchini, Heaton and Ripley 2006)  The first step in the process is to center 

the data by subtracting the mean of each column of the data matrix x .  Next, it is 

whitened by projecting the data onto its principal component directions, →x xK , 

where K  is a pre-whitening matrix.  Finally, the algorithm estimates a matrix W  

such that xKW = s .  The function G used in the negentropy approximation is 

 1( ) ln cosh( ), with 1 2G x cx c
c

= ≤ ≤ . (8) 

2.2.5 ICA Examples 

Figure 7 gives an example of how ICA can be used to un-mix two 

independent uniform distributions that were mixed with a deterministic mixing 

matrix.  (Marchini, Heaton and Ripley 2006) The first panel shows the mixed 

distributions; the second panel shows the limitations of PCA (rotation by maximizing 

explained variance); the third panel shows good separation by ICA.   
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Figure 7.  Example of un-mixing two independent uniform distributions using ICA. 
 

Figure 8 shows an example of ICA as blind source separation.  (Marchini, 

Heaton and Ripley 2006)  The two leftmost figures show the original source signals, a 

sine wave and a saw tooth wave.  The two center figures show the mixed signals that 

were provided to the ICA algorithm; the two figures on the right show the resulting 

un-mixed estimates of the original signals. 
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Figure 8.  Example of un-mixing two source signals using ICA. 
 

2.3 The Variance Gamma (VG) Process and Distribution 

2.3.1 Motivation and History 

Looking at stock price movements, it becomes obvious that they do not look 

very much like a Brownian motion.  Instead of moving continuously, they make lots 

of finite up and down movements.  It has long been observed that empirical data 

shows that, in comparison to the Normal distribution, returns have fatter tails and a 

higher center that is more peaked.  (Fama 1965; Praetz 1969)  Early efforts provided 

the use or development of several distributions to account for this, including the 

scaled t-distribution (Praetz 1972), the stable Paretian family of distributions  

(Mandelbrot 1969), and the compound events model  (Press 1967).  However, these 
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efforts lacked the development of underlying continuous-time stochastic processes 

that are required for option pricing.  (Madan and Seneta 1987)  Some models do rely 

on established processes, like the Black-Scholes and Merton diffusion  (Black and 

Scholes 1973; Merton 1973), the pure jump process of Cox and Ross (Cox and Ross 

1976) and the jump diffusion of Merton  (Merton 1976).  These models do provide 

continuous paths, except at jump events, but are of infinite variation.  However, it 

appears that index returns tend to be pure jump processes of infinite activity and finite 

variation, as the index return processes seem to have diversified away diffusion risk 

that may be present in individual stock returns.  (Carr et al. 2002)  Jump components 

are important in stock price modeling because pure diffusion models suffer from 

problems with volatility smiles in short-dated options.  (Bakshi, Cao and Chen 1997) 

The VG model endeavors to tackle this shortcoming by modeling the 

evolution of stock prices by considering “experienced time” as a RV.  The original 

model (Madan and Seneta 1990) did not allow for skewness, but an extension 

(Madan, Carr and Chang 1998) does provide this additional control.  The VG 

formulation came from considering the distribution of the reciprocal of variance of a 

zero-mean Normal to be gamma distributed (Praetz 1972) but with the modification 

that the variance itself is gamma distributed; hence the name “Variance Gamma.” 

There is evidence that estimated independent components (ICs) produced 

from financial time series fall into two categories:  (i) infrequent, large shocks that are 

responsible for major stock price moves, and (ii) frequent, small changes that 

contribute very little to the changes in stock prices.  (Back and Weigend 1997)  For 
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this reason, use of the VG distribution to the estimated ICs seems ideal.  In many 

respects, the approach used in this chapter follows a recent dissertation (Yen 2004) 

and papers by authors at the University of Maryland. (Madan 2006; Madan and Yen 

2004)  However, it is different in that TSP portfolios can only consist of long 

positions; short sales are not allowed.  A similar model was used in another recent 

work on pricing multi-asset products.  (Xia 2006) 

2.3.2 Gamma Random Variables 

From an information perspective, the market does not forget information, so 

the process used should be monotonically non-decreasing.  The family of Gamma 

distributions, with two parameters, the mean, μ, and the variance, ν, and density 

function:  

 

2

2 1

2

exp( )
( ) , for 0

( )

h
h

h

x x
f x x

h

μ
μ ν
ν

μ
μ ν

μν
ν

−
−⎛ ⎞= >⎜ ⎟

⎝ ⎠ Γ
. (9) 

is one such model that is useful. 

 

2.3.3 Lévy Processes 

A stochastic process { ( ) : 0}X X t t= ≥  is a Lévy process if it:  (i) X  has 

independent increments, (ii)  (0) 0X =  almost surely, (iii) X  has stationary 

increments, (iv) X  is stochastically continuous, and (v) X is right continuous with 

left limits almost surely.  (Schoutens 2003)  
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The characteristic function ( )X uφ  of the distribution ( ) ( )F x P X x= ≤  of a 

RV X is defined as: 

 ( ) [exp( )] exp( ) ( ).X u E iux iux dF xφ
∞

−∞

= = ∫  (10) 

A probability distribution with characteristic function ( )X uφ  is infinitely divisible if, 

for any positive integer n, 1( ) ( ) n
n u uφ φ=  is also a characteristic function.  The Lévy-

Khintchine formula gives the unique characteristic function of any infinitely divisible 

function.  Shown here is the log characteristic function for such a distribution. 

 2 2
{ 1}

1( ) ln ( ) (exp( ) 1 1 ) ( ),
2 xu u i u u iux iux dxψ φ γ σ ν

∞

<
−∞

= = − + − −∫  (11) 

with Rγ ∈ , 2 0σ ≥ , and ν is a measure on \{0}R .  Notice that the Lévy-Khintchine 

formula has three constituents:  a deterministic part with drift coefficient γ, a 

Brownian piece with diffusion coefficient σ, and a pure jump component (the last 

term). 

 

2.3.4 Variance Gamma Process 

The VG process is a pure jump Lévy process; it contains no deterministic or 

Brownian motion components.  There are two representations of the VG process:  as 

a time-changed Brownian motion with a Gamma subordinator, and as a difference of 

two Gamma processes.  For the first representation, start with a Brownian motion 

( ( ), 0)W t t ≥  with drift θ and volatility σ.  That is, ( ; , ) ( )B t t W tθ σ θ σ= + .  Using an 
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independent Gamma process ( ( ; , ), 0)G t tν σ ≥  with mean rate 1 and variance rate ν 

for the increment ( ) ( )G t h G t+ −  given by the gamma density previously given to get 

the following VG process:  ( ; , , ) ( ( ;1, ), , )X t B G tν θ σ ν θ σ= . 

Since the VG process is of finite variation, it can be expressed as a difference 

of two independent Gamma processes.  (Geman, Madan and Yor 2001)  This comes 

from the fact that the VG process is of finite variation.  In other words, 

( ; , , ) ( ; , ) ( ; , )VG p p p n n nX t G t G tθ ν σ ν μ ν μ= − , where ( )pG t is for the positive changes 

and ( )nG t is for the negative move, where
2

21 2
2 2p

σ θμ θ
ν

= + + , 

2
21 2 ,

2 2n
σ θμ θ
ν

= + −   2 2and ,p p n nν μ ν ν μ ν= =   The characteristic functions of the 

two independent Gamma processes are: 

 

2 2

1 1( ) and ( )
1 1

p n

p n

p n

t t

G G
p p n n

u u
iu iu

μ μ
ν ν

φ φ
ν μ ν μ

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠

. (12) 

Then, the characteristic function of the difference of the two Gamma processes pG  

and pG  is: 

 
2

1( )
1

p n

t

G G
p pn n

p n p n

u
iu u

ν

φ
ν νν ν
μ μ μ μ

−

⎛ ⎞
⎜ ⎟
⎜ ⎟

= ⎜ ⎟⎛ ⎞⎜ ⎟− − +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

. (13) 
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Each representation has an advantage over the other.  Viewing the VG process 

as a time-changed Brownian motion is useful for determining the characteristic 

functions and density, as shown above.  This is useful for fitting the VG distribution 

to data.  However, considering the VG process to be a difference of two gamma 

processes provides a basis for more efficient simulation of observations from a fitted 

or hypothesized VG distribution.  (Avramidis and L'Ecuyer 2006) 

The VG distribution is closely related to other, better known distributions.  

For example, the Laplace distribution is a special case of the symmetric (i.e. θ = 0) 

VG distribution.  Similarly, the t- distribution may be considered to be a 

generalization of the Cauchy distribution.  As a result of similarity in structure of the 

Laplace and Cauchy distributions, the VG and t- distributions are virtually 

indistinguishable from one another in terms of tail structure.  (Fung and Seneta 2006)  

The parameter σ affects the spread of the distribution in usual way; the effect of the 

parameters ν and θ can be seen in Figure 9 and Figure 10. 

A useful economic interpretation of the parameters can be obtained by re-

parameterizing the model in terms of realized quadratic variation (or volatility), a 

directional premium, and a size premium.  (Madan and Yen 2004)   They also note 

that the Gaussian model is a special case that results from allowing the variance of the 

Gamma process approach zero (or letting the kurtosis level approach 3). 
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Figure 9.  Effect of Parameter ν on VG Distribution. 
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Figure 10.  Effect of Parameter θ on VG Distribution. 
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2.3.5 Simulating From the VG Distribution 

 There are at least three ways to simulate from the VG distribution.  (Fu 2007)  

The first two methods are exact and come from the representations of the VG 

process—a time-changed Brownian motion with a Gamma subordinator and as a 

difference of two non-decreasing (Gamma) processes.   

To simulate VG as Brownian motion with a Gamma time-change, let VGX  be 

a VG process with parametersσ , ν , and θ , or ( )VGX g W gθ σ= + .  ( )
d

W g gZ=  

and Z  is a standard Normal RV that is independent of g .  To obtain a sample path 

of VGX , first simulate a gamma process g  with shape parameter 1 ν  and scale 

parameterν .  Then, independently simulate a standard Brownian motion, or random 

numbers with zero mean and variance 2gσ .  Combine these as shown above and you 

have VGX , the desired VG process. 

To simulate VG as the difference of two independent Gamma processes, let 

VGX  be a VG process with parametersσ , ν , and θ .  ( ) ( ) ( )VG p nX t G t G t= −  where 

( )pG t  and ( )nG t  are two independent Gamma processes with mean rates pμ , nμ , and 

variance rates pν , nν , respectively.  To obtain a sample path of VGX , simulate pG  with 

shape parameter 2
p pμ ν  and scale parameter p pν μ ; and nG  with shape parameter 

2
n nμ ν  and scale parameter n nν μ .  Take the difference as described above and the 

result is VGX , the desired VG process. 
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The remaining method is an approximation based on a compound Poisson 

process.  Newer methods including bridge sampling (starting from the end and filling 

in as needed) have recently been introduced.  (Avramidis and L'Ecuyer 2006)  Also, 

general variance reduction techniques used in simulation are useful in some 

situations.  (Fu 2007) 

 

2.4 VG Stock Price Model 

 To construct the VG price for stocks (or factors), replace the Brownian motion 

in the Black-Scholes model by the VG process.  With a continuously compounded 

risk free rate r, we then have:  exp( ( ))( ) (0)
[exp( ( ))]

VG

VG

rt X tS t S
E X t

+
= .  Therefore, 

[ ( )] (0)exp( )E S t S rt= .  More specifically, 

2

exp( ) [exp( ( ))] ( ) exp( ln(1 ))
2VG VG

twt E X t t
v

σ νφ θν− = = = − − − .  So, 

( ) (0)exp(( ) ( ))VGS t S r w t X t= + +  where 
21 ln(1 )
2

w σ νθν
ν

= − − , the convexity 

correction.  It is then possible to determine ln ( ) ( )S t uφ from ( )VG tφ  as follows: 

 

ln ( )

2

2 2
2

( ) (exp( ln ( ))]

exp( ln( (0) ln(1 )) ( )
2

exp( ln( (0) ln(1 ))(1 )
2 2

S t

VG

t
v

u E iu S t

tiu S rt u

tiu S rt iu u

φ

σ νθν φ
ν

σ ν σ νθν θν
ν

=

= + + − −

= + + − − − −

 (14) 
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The density function for VG is obtained by using Fourier inversion on this 

characteristic function, resulting in: 

 

1
2 2 2 4

2 2 2
12 2 2
2

2exp( / ) 1( ) (2 / )
2 /2 ( )

t

t
t

x xh z K xt
ν

ν ν

θ σ σ ν θ
σ ν θ σν πσ

ν

−

−

⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟+ ⎝ ⎠⎝ ⎠Γ
 (15) 

with 2ln(1 / 2)tx z mt θν σ ν
ν

= − − − −  and where 1
2

tK
ν

−
 is the modified Bessel 

function of the second (third) kind with the indicated number of degrees of freedom.  

(Madan, Carr and Chang 1998)  For a single period, say one day (t=1), these simplify 

to:   

 
12 2

2
ln (1)

1( ) exp( ln( (0) ln(1 )))(1 )
2 2
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 34 

 

 

Chapter 3:  Measures of Risk and Portfolio Performance 

 

3.1 Overview 

When considering various investment options and selecting portfolios under 

uncertainty, there are two common approaches.  (De Georgi 2002; Stoyanov, Rachev 

and Fabozzi 2005)  One method for comparison is to use the concept of stochastic 

dominance, which is closely linked to utility theory.  Unfortunately, this approach 

often results in optimization problems that are difficult to solve, so it may not result in 

useful information.  More commonly seen is the use of a portfolio performance 

measure in the form of a reward-to-risk ratio that evaluates the balance between 

expected reward and risk.  One portfolio is preferred to another if it has higher 

expected reward and lower risk.  Of course, there is usually a tradeoff involved; 

generally, with higher returns come higher risk.  One must first settle on an 

appropriate measure of risk, which, judging by the number of measures proposed to 

date is clearly not an easy task.  If possible, use of stochastic dominance is desirable 

because risk measures (which assign a single number to a random wealth) have 

difficulty summarizing all distribution information, whereas stochastic orders 

compare cumulative distribution functions.  (Ortobelli et al. 2005) 
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3.2 Stochastic Dominance 

 Stochastic dominance (SD) generalizes utility theory by eliminating the need 

to explicitly specify a utility function.  Instead, general statements about wealth 

preference, risk aversion, etc. are used to decide between investment alternatives.  

(Heyer 2001)  SD is one tool that can be used to address the balance between risk and 

reward when considering different investment alternatives.  It is an analytical tool that 

is intuitive, easy to implement when presented with empirical output from simulation 

models.  One of the challenges when using utility theory is that there is no way to 

assess the overall acceptability of competing options as there is no objective, absolute 

scale for utility.  It is completely dependent on the specification of the utility function.  

This makes utility theory notionally elegant but largely ineffective in practice.  Most 

investors do not have the willingness or means to select and parameterize their own 

utility function.  SD allows us to use features from utility theory (like increasing 

wealth preference, risk aversion, etc.) without using a specific utility function. 

3.2.1 First-Order Stochastic Dominance (FOSD) 

FOSD assumes only monotonicity (that investors like more money rather than 

less money and are non-satiated); as it has the weakest assumptions, it is the strongest 

result among the various orders of SD.  When comparing two return distributions, It 

is easy to see when FOSD occurs by comparing the cumulative distribution functions 

(CDFs)..  Given two random variables A and B, with CDFs ( )AF x  and ( )BF x , 

respectively, A dominates B, if and only if, ( ) ( ),B AF x F x x≥ ∀ , with at least one strict 

inequality.  This can be seen graphically in Figure 11 since ( )BF x  is above ( )AF x  
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everywhere (or equivalently, ( )AF x  is to the right of ( )BF x everywhere), the 

probability of getting at least x is higher under ( )AF x than ( )BF x . 
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Figure 11.  First-Order Stochastic Dominance (FOSD). 

 

3.2.2  Second-Order Stochastic Dominance (SOSD) 

SOSD adds risk aversion to the lone assumption of FOSD.  This implies that 

expected utility is less than or equal to the utility of expected returns.  Since Jensen’s 

Inequality holds, a risk-averse investor will not play a fair game and will be willing to 

pay for insurance. 
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Graphically, if the curves of ( )AF x and ( )BF x cross on the CDF plot, then it is 

obvious that FOSD does not apply and neither investment option results in higher 

wealth at every level of probability.  However, is unclear whether either distribution 

dominates the other in other ways.  A stochastically dominates B in a second order 

sense, if and only if, [ ( ) ( )] 0,
x

B AF u F u du x
−∞

− ≥ ∀∫ , with at least one strict inequality.  

Once again, this can be easily seen by comparing a graph of the CDFs of A and B.  

As shown in Figure 12, although neither distribution has FOSD over the other (since 

the curves cross), A does have SOSD over B because the area indicated by I is larger 

than the area labeled II, so the constraint integral in the definition of SOSD is 

satisfied.  This can be interpreted as option A providing a uniformly higher partial 

expected value at every wealth limit.  Alternatively, A has “uniformly less downside 

risk at every level of probability”.  (Heyer 2001) 
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Figure 12.  Second-Order Stochastic Dominance (SOSD). 
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3.2.3 Implications Between Orders 

 As lower (numbered) orders of SD have fewer assumptions than higher 

orders, they are stronger results and, therefore, imply the higher orders.  So, FOSD 

implies SOSD.  However, the implications do not go the other way; SOSD does not 

imply FOSD.  Dominance is also transitive, meaning that if A dominates B and B 

dominates C, then A also dominates C. 

3.2.4 Empirical Application 

One of the advantages of using SD when comparing alternatives is the ease 

with which it can be applied to empirical data.  The following is a straightforward 

procedure for testing the presence of each of the orders of SD.  (Heyer 2001)  Given n 

terminal wealth outcomes or cash flows produced by simulation under two 

investment alternatives: 

(1)  Sort the outcomes for each in ascending order to produce empirical 

estimates of the CDFs.   

(2)  Test for FOSD by computing the difference between each percentile of 

option A and option B, placing the differences in vector S1.  If every 

element of S1 is positive, then FOSD and SOSD both apply. 

(3)  Test for SOSD but computing the running sums of S1.  (i.e., for each 

element of S1, compute the sum of that element and every prior element of 
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S1) and place it in a vector S2.  If every element of S2 is positive, then 

SOSD applies.  

 

3.3  Cash Flow, Gains, and Losses 

For the purposes of this study, and the following definitions of various risk 

measures, we shall define X as the discounted loss obtained from a particular 

realization of an investment strategy.  That is, X is the negative of the difference 

between the final portfolio value at the end of the investment horizon and the value of 

the corresponding riskless investment at the end of the same period.  A positive 

(negative) value of X means that the strategy under- (out-) performed the riskless 

portfolio over the same horizon.  Much of our analysis will consider various statistics 

and measures on the distribution of the portfolio loss (or gain) over a large number of 

simulated sample paths, as opposed to looking at the returns. 

 

3.4 Risk Measures 

There are two common types of risk measures—dispersion risk measures, or 

measures of variability, and safety risk measures, which focus on potential losses.  

(Ortobelli et al. 2005) 
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3.4.1 Dispersion Risk Measures 

Traditionally, variance (or really, standard deviation) has been used as the 

measure of risk.  However, it has numerous flaws; foremost among these is that it 

equally weights positive and negative deviation from the mean.  Markowitz actually 

acknowledged this and proposed semi-variance as a way to account for this 

deficiency.  Others have proposed other measures that were variations on this theme. 

(Fishburn 1977; Konno and Yamazaki 1991; Markowitz 1959)  However, for a 

variety of reasons, none really ever caught on as a standard. 

3.4.2 Safety Risk Measure:  Value at Risk 

First introduced by J.P. Morgan (now J.P. Morgan Chase) under the 

proprietary name of RiskMetrics ® in 1994, Value at Risk (VaR) became the standard 

risk measurement throughout the financial industry over the past two decades. 

(Krause 2002)  It was written into the Basel II Accords, which govern the capital 

reserve requirements for banks and other financial institutions.  (Federal Reserve 

Board 2007)  VaR has three parameters:  the time horizon of interest, the confidence 

level λ, and the appropriate currency unit.  Common levels of λ are .95 and .99.  VaR 

is an attractive measure because it is easy to understand.  It can be interpreted as the 

expected maximum loss over a fixed horizon for a given confidence level.   

With the discounted portfolio loss X as described above (and not as often 

used, with losses defined as positive), VaR is defined as follows: 

 1( ( ))P X VaR Xλ λ−≥ =  (18) 
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So, if we choose λ to be .05 or 5%, then 95%VaR would represent the 

magnitude of the loss that could be expected 5% of the time.  However, VaR itself 

has several shortcomings.  When applied to non-Gaussian returns, VaR is not sub-

additive, as shown by examples where the VaR of a portfolio is not less than the sum 

of the VaRs of the individual assets .  The economic interpretation is that VaR does 

not, in general, reward diversification, which has long been known to reduce risk. 

(Warnung 2007)  Also, as shown in Figure 13, (Cherny and Madan 2006) it is 

possible for two distributions to have the same VaR1−λ, but yet be quite different, 

even in the left tail.  Clearly, the distribution on the right is “better” than the 

distribution on the left, even though their λ-quantiles (qλ) and therefore VaR1-λ are 

identical.  This is because VaR only accounts for the size (and not the shape) of the 

tail. 

 

Figure 13. Different Distributions With Same VaR. 

From a mathematical perspective, standard deviation and VaR have 

significant weaknesses. (Artzner et al. 1999)  To get past these shortcomings requires 

the use of what are termed “coherent” measures of risk.   

 



 

 42 

 

3.4.3 Coherent Measures of Risk 

 Coherent measures of risk satisfy four axioms:  translation invariance (adding 

riskless wealth causes a decline in wealth at risk), monotonicity (more wealth is 

preferred to less wealth), subadditivity (aggregated risk of investments is lower than 

the sum of the individual risks), and positive homogeneity (multiplying wealth at risk 

by a positive factor causes risk to grow proportionally).  (Artzner et al. 1999) 

3.4.4. Conditional Value at Risk 

Conditional Value at Risk (CVaR), is defined as: 

 1 1( ) [ | ( )]CVaR X E X X VaR Xλ λ− −= > . (19) 

In words, CVaR is the expected value of all losses, given that they exceed the VaR 

level for a specified λ.  So, 95% ( )CVaR X  would be the average of all losses greater 

than 95% ( )VaR X .  CVaR is known by many names, including Tail VaR, expected 

shortfall (ES), expected Tail Loss (ETL) and Average VaR.  The origins of CVaR are 

relatively recent; it appears to have appeared in the literature simultaneously in 

several sources.  (Acerbi, Nordio and CSirtori 2001; Rockafellar and Uryasev 2001)  

One sign of its acceptance is that it is part of the Solvency II framework,  the 

replacement for the Basel II Capital Adequacy Accord.  Another way to consider 

CVaR is as follows: 

 
1

1
1( ) ( )

1 uCVaR X VaR X duλ
λλ− =

− ∫ . .(20) 
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What this means is that CVaR considers the shape of the tail into account by putting 

all VaR measurements in the tail of the distribution into one number.  (Warnung 

2007)  As defined here, CVaR will always be greater than VaR for a fixed value of λ.  

It has been shown that CVaR is the largest alternative coherent risk measure to VaR. 

(Delbaen 1999) 

To estimate CVaR using Monte Carlo simulation, the following procedure can 

be used.  Given n (e.g. 1000) samples of the cash flow X at the investment horizon: 

(1)  Compute VaR for the desired level of λ.   

(2) Find all instances of X greater than VaR1-λ.   

(3) Compute their average.  This is CVaR1-λ..   

The disadvantage of this method is that it requires finding VaR1-λ, which involves 

calculating the quantiles of X.  An alternative estimation technique that does not 

require determining VaR1-λ exists; this would be useful if one only wished to consider 

CVaR and not VaR.  (Warnung 2007)  CVaR also has favorable properties that allow 

linearization of what is ordinarily a nonlinear optimization problem.  (Krokhmal, 

Palmquist and Uryasev 2001; Rockafellar and Uryasev 2001) 

Although CVaR does address both the size and shape of the tail, it does not 

consider the rest of the distribution.  Figure 14 shows two distributions with not only 

the same λ-quantiles (qλ) and VaRλ, but also identical CVaRλ.  However, the rest of 

the distributions are very different.  The distribution on the right has a higher 

expected value and longer upper tail than the one on the left; if this were 
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representative of cash flows, the distribution on the right is plainly preferable to the 

one on the left. 

 

Figure 14.  Different Distributions with Same CVaR. 

 

In some cases, as in the TSP problem at hand, the rest of the distribution is of interest. 

The potential upside should certainly be considered when making portfolio allocation 

decisions, not just the loss tail.  It is necessary to look at the complete distribution to 

consider higher-order statistics like skewness and kurtosis, as preferences for these 

vary among individual investors.  In general, there is a preference for skewness, or at 

least a dislike for negative skewness.  (Harvey et al. 2004)  Also, it is noted that 

kurtosis comes from two sources, peakedness and tailweightedness, which typically 

have opposite effects on preferences.  (Eberlein and Madan 2007)  Although this 

realization is not new, attempts to address it by including information about the entire 

distribution have only recently been introduced.   

3.4.5 Weighted VaR 

Weighted VaR is a coherent risk measure, defined as follows: 

 
[0,1]

( ) ( ) ( )WVaR X CVaR X dμ λ μ λ= ∫  (21) 
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where μ is a probability measure on [0,1] and CVaR is as previously defined.  The 

function μ serves to “distort” CVaR in a way that emphasizes the portions of interest.  

WVaR has some nice properties that CVaR does not; primarily, it is “smoother” than 

CVaR. (Cherny 2006) 

A particular instance of Weighted VaR is Beta VaR (BVaR). (Cherny and 

Madan 2006)   BVaR measures risk by the expectation of the average of the β 

smallest of α independent copies of the random cash flow.  For example, if α = 50 

and β = 5, then BVaR(50,5) is the average of the 5 smallest of 50 independent copies 

of the random cash flow.  The advantage of BVaR over other risk measures is that it 

depends on the entire distribution of X and not just on the tail, as is the case for 

CVaR.  The effect of varying α and β can be seen in Figure 15 and Figure 16. 
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Figure 15.  Effect of Varying α With β = 1. 
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Figure 16.  Effect of Varying β with α = 50. 
 

In addition to these desirable properties, BVaR is faster to estimate than CVaR, as 

it does not require the complete ordering of the cash flow realizations.  It can be 

applied to a wide variety of models, as it uses no assumptions on the structure of the 

cash flow evolution.  The procedure to estimate BVaR is straightforward and simple 

to implement, as given here.    (Cherny and Madan 2006; Warnung 2007)  

(1) Simulate α cash flows, X1, … , Xα. 
(2) Sort the sample and pick the β smallest cash flows X(1:α), … , X(β:α). 

(3) Calculate their average ( : )
1

1
k i

i
BVaR X

β

αβ =

= ∑ . 

(4) Estimate Beta VaR by 
1

1ˆ
n

k
k

BVaR BVaR
n =

= ∑  

A special case of BVaR (with β = 1)  is Alpha VaR (AVaR), which measures 

risk by the expectation of the smallest of α independent copies of the random cash 
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flow.  So, AVaR(50) is the expectation of the smallest of 50, independent copies of 

the random cash flow. 

Four recently introduced (Cherny and Madan 2007) distortions which could 

be considered are:  MINVaR, MAXVaR, MAX MINVaR, and MINMAXVaR.  The 

distortion function for each is shown below.  In each case, [0,1]x and y+∈ ∈ . 

 

1

1
1

1
1 1

1
11

1 (1 )

(1 (1 ) )

1 (1 )

x

x

x x

xx

MINVaR y

MAXVaR y

MAXMINVaR y

MINMAXVaR y

+

+

+ +

++

− −

− −

− −

 (22) 

MINVaR considers the expectation of the minimum of (1+x) independent draws from 

the distribution.  MAXVaR looks at finding the distribution G(x) from which (1+x) 

draws are made and taking the best outcome to get the distribution F(x).  The other 

two combine the first two methods to construct worst case outcomes and stress cash 

flows prior to taking the expectations. 

 To summarize the recent developments in risk measures, the more features of 

a distribution that can be put into one number (the risk measure), the better it can 

capture risk preferences in a convincing manner.  (Warnung 2007) 
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3.5 Portfolio Performance Measures 

 Portfolio performance measures that take the form of a Reward-to-Risk ratios 

usually have some measure of reward, typically expected return (or cash flow), in the 

numerator and a measure of risk in the denominator.  Thus, a higher ratio is 

considered better. 

  3.5.1 Sharpe Ratio 

The Sharpe Ratio, or reward-to-variability ratio, been used for over 40 years. 

(Sharpe 1966)  It is fully compatible with Normally-distributed returns (actually all 

elliptical distributions), but it can lead to incorrect decisions when returns exhibit 

skewness and kurtosis. (Biglova et al. 2004)  Notice that it is essentially the inverse 

of the coefficient of variation from statistics. 

 
( ) ( )orp f

X

E r r E XSR SR
σ σ

−
= =   (23) 

3.5.2 STARR Ratio 

The STARR (Stable Tail Adjusted Risk Ratio) is the ratio of the expected 

excess return and the CVaR.  (Martin, Rachev and Siboulet 2003)  It penalizes 

downside risk but does not take into account the upside potential.  Essentially, it 

replaces the symmetric, non-coherent standard deviation as the risk measure with the 

coherent downside Conditional VaR. 
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( ) ( )

( ) ( )
p

p

E r r E XSTARR or STARR
CVaR r CVaR Xγ γ

−
= =    (24) 

3.5.3 Rachev’s R- Ratio 

The Rachev Ratio (R-Ratio) can be interpreted as the ratio of the expected tail 

return above a certain threshold level λ1, divided by the expected tail loss beyond 

some threshold level λ2.  The part of the distribution between λ1 and λ2 is not 

considered.  (Rachev et al. 2005)  It does reward extreme rewards adjusted for 

extreme losses, so it enables modeling different levels of an investor’s risk aversion 

or tolerance. 

 1 1

2 2

( ) ( )
or

( ) ( )
f p

p f

CVaR r r CVaR X
R R

CVaR r r CVaR X
λ λ

λ λ

− −
= =

−
 (25) 

The idea behind the R-ratio is to try to simultaneously maximize the level of return 

and get insurance for the maximum loss.  (Biglova et al. 2004) 

One thing to note is that the STARR and R-Ratio only assume finite mean of 

the return distribution and require no assumption on the second moment.  So, they can 

evaluate return distributions of assets with heavy tails.  In comparison, the Sharpe 

ratio is defined for returns having a finite second moment, which limits its usefulness.  

The STARR and R-Ratios exhibit better risk-adjusted performance because they are 

compliant with the ability of their respective coherent risk measures to capture 

distributional features of data, including the part of risk due to heavy tails; the R-

Ratio also adds the ability to adjust for upside reward and downside risk 

simultaneously.  (Rachev et al. 2005) 
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3.5.4 Alpha VaR Ratio and Beta VaR Ratio 

As Cherny & Madan suggested Alpha VaR as a substitute for CVaR, it is 

logical to develop a reward-to-risk measure using Alpha VaR.  Following in the 

manner of Rachev’s R-Ratio (by using Alpha VaR on both the loss and gain tails), we 

therefore propose a new portfolio performance measure, the AVaR-Ratio (AVR), 

defined as follows: 

 1 1

2 2

( ) ( )
or

( ) ( )
f p

p f

AVaR r r AVaR X
AVR AVR

AVaR r r AVaR X
α α

α α

− −
= =

−
 (26) 

Going one step further, using Beta VaR results in another proposed measure, BVaR-

Ratio (BVR), as shown here: 

 1 1 1 1

2 1 2 1

, ,

, ,

( ) ( )
( ) ( )

f p

p f

BVaR r r BVaR X
BVR or BVR

BVaR r r BVaR X
α β α β

α β α β

− −
= =

−
 (27) 

.They too are based on coherent measures of risk, but they have advantages over 

CVaR, as previously outlined in the section on risk measures.  By careful choice of 

parameters, nearly any investor’s risk preferences for both gains and losses can be 

attained.  These performance measures will be considered, along with the others 

discussed, using the TSP portfolio optimization problem.  
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Chapter 4:  Results 

 

4.1  Overview of Empirical Work 

To provide an answer to research question 1, two portfolios are constructed 

using models where returns are assumed to be Gaussian.  First, the TSP “Market 

Portfolio” described earlier is developed, as this is what TSP participants as a whole 

are actually doing with their money.  Admittedly, this includes a wide range of 

investors, from new employees to those already retired.  Also, the large allocation to 

the G Fund may reflect the fact that this is the default fund for new TSP participants.  

What if they instead were to invest as the FRTIB suggests, using the appropriate L 

Fund?  For someone entering the service and planning on a 20-year career, the L 2030 

Fund would be most appropriate.   This is the second Gaussian portfolio used for 

comparison with the proposed VG-ICA portfolio, whose construction is described 

below. 

 

4.2  VG-ICA Model for TSP Funds 

4.2.1 Daily Return Data 

Daily data (as opposed to monthly or yearly) is used because they can better 

capture the distributional properties .  (Rachev et al. 2005)  Figure 17 shows the time 

series of 4235 daily returns for each of the five core TSP funds for the period 1989-
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2005.  The G fund appears as a flat line because all five time series have been created 

on the same vertical scale to show scaling relative to one another.  A rescaled version 

of the G fund returns are shown in Figure 18. 
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Figure 17. Time series of core TSP fund returns, 1989-2005.   
Note:  Horizontal axis units are days; vertical axis units are daily returns. 

 

Even with appropriate scaling, the returns for the G fund appear much different than 

for the other funds.  Notice that they are all positive and more stable than the returns 

of the other four funds.  Due to the riskless nature of the G fund, this is somewhat to 

be expected.  The difference is exaggerated by the fact that only monthly returns data 

were available for the G fund.  These were converted to daily returns as described 
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earlier.  From a macro level, the G fund returns illustrate the decline of riskless rate 

over the time period considered. 
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Figure 18.  Time series of G fund returns, 1989-2005. 
Note:  Horizontal axis units are days; vertical axis units are daily returns. 

 

Shown in Table 4 are the first four moments of the daily returns for each of 

the five core TSP funds.  Notice that all funds have positive means over the time 

period of interest.  Also, the funds generally increase in variance, the traditional 

measure of riskiness, in the order listed (with the exception of the I fund). 

 

Fund Mean Variance Skewness Kurtosis
G Fund 0.00020 0.00000 -0.14865 2.54154
F Fund 0.00031 0.00001 -0.26061 5.14093
C Fund 0.00033 0.00010 -0.15973 7.08139
S Fund 0.00035 0.00011 -0.41086 9.12962
I Fund 0.00009 0.00009 -0.13723 6.24030  

Table 4.  Moments of Daily TSP Fund Returns, 1989-2005. 

 

As expected, the returns of the G Fund (the risk-free, government bond fund) 

are approximately Normal, as can be seen in Figure 19, where a histogram and kernel 

density estimate (KDE) of the daily returns are shown, with a Normal distribution 

having the same mean and variance provided for comparison purposes. 



 

 54 

 

G Fund

Daily Return

O
cc

ur
re

nc
es

0.00010 0.00015 0.00020 0.00025

0
20

00
40

00
60

00
80

00
10

00
0

12
00

0

G Fund KDE
Normal

 

Figure 19.  Distribution of Daily Returns for G Fund. 
 

As expected, each of the risky funds has slight negative skewness and excess 

kurtosis relative to the Normal distribution (i.e. greater than 3).  This can be seen in 

the peaked modes and heavier tails of histograms of the returns of the risky assets (F, 

C, S, and I funds), as shown in Figure 20 through Figure 23.  As before, the solid line 

represents a smoothed kernel density function of the returns; a Normal density with 

the same mean and variance is overlaid with a dashed line for comparison purposes. 
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Figure 20.  Distribution of Daily Returns for F Fund. 
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Figure 21.  Distribution of Daily Returns for C Fund. 
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Figure 22.  Distribution of Daily Returns for S Fund. 
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Figure 23.  Distribution of Daily Returns for I Fund. 
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4.2.2 Construction of Independent Components 

ICA is then used to generate five independent components (IC), using the 

ln(cosh) function described in Equation (8) as the measure of non-Gaussianity.  The 

first four moments of each of the ICs are shown in Table 5.  By design, the ICs have 

zero mean, unit variance, and are orthogonal.   

IC# Mean Variance Kurtosis Skewness 
1 0 1 14.4 -0.589 
2 0 1 7.3 -0.055 
3 0 1 6.1 -0.098 
4 0 1 5.5 -0.258 
5 0 1 2.54 -0.144 

Table 5.  First Four Moments of Individual Components. 

 

To estimate the coefficient matrix B and the covariance matrix of the residuals 

Σ, we performed a regression of the four risky assets on the retained factors (ICs). 

 

# ICs Kept F Fund C Fund S Fund I Fund 
5 1 1 1 1 
4 .9980 .9994 .9998 .9949 
3 .0611 .8983 .9652 .9869 
2 .0611 .8962 .9629 .1276 

Table 6.  Adjusted R2 values from regression of de-meaned returns on IC1-IC4. 

 

As seen in Table 6, keeping all 5 ICs gives a perfect fit of the data and should lead to 

good predictive ability.  However, it results in a completely specified model, which 
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for other applications (e.g. with a significantly greater number of assets) would not be 

feasible.  In this case, there is no need for dimension reduction, but it appears that 

keeping 4 ICs should result in adequate results.  Keeping 3 or less ICs has significant 

problems with the F Fund; dropping to 2 ICs or fewer results in a poor fit of the I 

Fund.  Here is the resulting coefficient matrix: 

 

G fund F fund C fund S fund I fund
Intercept 0 0 0 0 0

IC1 .000002 .0000087 .003369 .008446 .001584
IC 2 .000003 .000613 .008905 .005761 .002988
IC3 .000003 .000008 .000462 .000492 .008761
IC 4 0 .002411 .003196 .001938

W
− − −

=
− − −

− − − −
− − − −.000846

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

Figure 24.  Matrix of Coefficients From Regressing Core Funds on ICs. 

 

Figure 25 is the ICA analogy to a scree plot4 in PCA, except that kurtosis 

instead of percent variance explained (or eigenvalues) is shown on the vertical axis.  

Using the kurtosis level of the Gaussian distribution, three, as a cutoff (shown as the 

dashed, horizontal line) suggests four ICs be retained in the factor model (IC1-IC4).  

This means that we will not have a Gaussian noise term in our model as originally 

hypothesized.  This is fine, as the number of factors is small and no dimension 

reduction is required for computational tractability. 

                                                 

4 Scree is the little rocks and pieces of soil that accumulate at the bottom of a steep hill.  In PCA, one 
of the standard ways to decide how many components to keep is to look for the bend in the curve. 
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Figure 25.  Kurtosis of Independent Components. 

 

Confirmation of the decision to keep four ICs is provided by the fact that all entries in 

the covariance matrix of the residuals are relatively small in magnitude, as shown in 

Figure 26 
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Figure 26.  Covariance Matrix of Residuals. 
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4.2.3 Fitting VG Distribution to Components 

So, with four ICs retained, the VG distribution is fit to each of them by 

maximum likelihood estimation (MLE) using the closed form of the VG density 

function.  (Madan, Carr and Chang 1998)  For each of the components, Figure 27 

shows the data (small, black circles) overlaid with the fitted VG distribution (dashed 

blue line) and a Normal(0,1) distribution (dotted red line) for comparison. 
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Figure 27.  Independent Component Histograms Overlaid with Fitted VG and N(0,1). 
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While visually comparing the fit of the VG and Gaussian distributions to the IC data 

using their densities or a Q-Q plot is useful, the use of a goodness-of-fit test provides 

a formal assessment of whether the data are an independent sample from a specific 

distribution.  One of the more commonly used goodness-of-fit tests is the chi-square 

(χ2) test of Pearson; as we have a large number of data points, this test may be more 

appropriate than other tests, like the Kolmogorov-Smirnov or Anderson-Darling tests. 

(Law and Kelton 2000)  The first step in the procedure is to bin the data into k 

adjacent intervals.  Let Nj be the number of observed data points in the j-th interval.  

Also required is the expected proportion pj of the data points that would fall in the j-th 

interval if sampling from the hypothesized distribution.  Then, with n sample data 

points, npj is the number of points that would be expected to fall in the j-th interval.  

The k intervals should be chosen so that k > 3, npj > 5, and they are equi-probable 

rather than equally spaced.  The chi-square test statistic is then calculated as: 

 
2

2

1

( )k
j j

j j

N np
np

χ
=

−
= ∑  (28) 

Since we needed to estimate the three parameters of the VG distribution, the 

number of degrees of freedom is approximately k-m-1, where m is the number of 

parameters estimated.   Table 7 gives the results of the chi-square test on the ICs for 

both the Normal(0,1) and VG with estimated parameters.  The test was conducted 

with k = 20 intervals, so the degrees of freedom for the chi-square RV is 20 – 3 – 1 = 

16.  Clearly, the VG distribution does a much better job of fitting the IC data than the 

Normal(0,1) distribution.   
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IC# 
Fitted VG Parameters (Annualized) 

χ2 Statistic 
(χ2.01,17 = 33.41) 

σ ν Θ VG(σ,ν,θ) Normal(0,1)
IC1 14.814 0.00385 -3.774 99.01 546.89 
IC2 15.558 0.00326 -0.222 13.37 295.73 
IC3 15.704 0.00232 -1.019 34.94 171.70 
IC4 15.739 0.00186 -1.149 25.29 118.07 

Table 7.  Fitted VG Parameters and Χ2 Goodness of Fit Test Statistics. 

 

4.2.4 Scaling Law 

 Construction of independent components and fitting of VG distributions has 

all been done with daily return data.  Let dX  be the VG distribution for daily returns 

with parameters , , and .d d dσ ν θ   In some cases, we wish to examine other periods, 

like months, or years.  In these cases, we use a scaling law that says the distribution 

for any time horizon h is h dX hX∼ .  So, dX  is VG with h d hσ σ= , h dν ν= , and 

h d hθ θ= .  For example, 252year dX X∼ , as there are 252 trading days in a year on 

average.  Similar scaling relationships can be derived for a month using 21 trading 

days. 

4.2.5 Choice of Risk Aversion Parameter 

Confirmation of our assumed risk aversion parameter was obtained as follows.  

By performing mean-variance optimization on the annual returns data, the expected 

return and standard deviation of each of the five L funds portfolios were calculated.  

Then, given the investment horizon of 20-30 years (represented by the L2020, L2030, 
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and L2040 portfolios), the implied risk aversion coefficient range of 2 to 3 is 

obtained, as indicated by the arrows in Figure 28. 
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Figure 28.  Implied Risk Aversion Parameter from L Funds Standard Deviation. 

 

4.2.6 Optimal VG-ICA Portfolios 

The optimal VG-ICA portfolio is computed by maximizing expected utility of 

a negative exponential utility function with risk aversion parameter 2, as previously 

outlined in section 1.5.  The procedure used is provided as Theorem 6.2 in Yen.  (Yen 

2004)  The choice of the optimal position, iy , in each asset i is found by maximizing 

the expected exponential utility with risk aversion coefficient η , or the function: 
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 '( ) ' '( ) '1 [ ] 1 [ ]y r y x y u r y Ase E e e E eη μ η η η− − − − − =− = − , (29) 

where r is the riskless rate, s are the independent components and matrix A is as 

described in Section 2.2.4, the introduction to ICA.  The resulting optimal position for 

each independent component i is given by: 

 
2

2 2

1 1 2

i
i

i i
i

i i i i i i i i i

y

θζ
θ θ η
ν ηζ ν σ ηζ ν ζ σ ν

+
⎛ ⎞

= − ± − +⎜ ⎟
⎝ ⎠

, (30) 

with 1 rA μ θζ
η η

− −
= − .  The only modification was to limit any assets from optimal 

short positions by constraining them to zero (one at a time, starting with the most 

negative) and re-optimizing until all positions were long.  The resulting position is 

then normalized (by dividing by the sum) so that allocations in terms of percentages 

were identified.  Although the optimal positions iy  varied with changes in the risk 

aversion parameter η , the optimal portfolio allocations (in terms of percentages) did 

not. 

Table 8 shows:  optimal VG-ICA portfolios, including the one computed from 

daily data and those scaled to annual and 20-year horizons; the riskless portfolio; the 

TSP “Market Portfolio”; the L 2030 portfolio (the recommended L Fund for those 

with this investment horizon); and the L 2040 portfolio (the L Fund that is closest in 

composition to the VG-ICA portfolio).  Due to the similarity of the scaled VG-ICA 

portfolios and the computational tractability of the daily model, the scaled portfolios 

were not used. 
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Model G Fund F Fund C Fund S Fund I Fund 

VG-ICA 
(Daily) 0% 1% 43% 30% 26% 

VG-ICA 
(Scaled to Annual) 0% 1% 44% 40% 25% 

VG-ICA 
(Scaled to 20 years) 0% 0% 46% 31% 23% 

Riskless 100% 0% 0% 0% 0% 

TSP 
“Market Portfolio” 39% 9% 49% 8% 8% 

L 2030 16% 9% 38% 16% 21% 

L 2040 5% 10% 42% 18% 25% 

Table 8. All Portfolios for Comparison. 

 

4.2.7 Scenarios for Simulation 

 Three different scenarios are used to compare the portfolios under 

consideration, as outlined below: 

(1) Scenario 1:  $10,000 initial investment; no further contributions; no 

rebalancing during investment period. 

(2) Scenario 2:  Same as Scenario 1, but rebalancing the VG-ICA portfolio is 

performed at yearly, monthly, and daily intervals for comparison with the 

un-rebalanced VG-ICA portfolio. 

(3) Scenario 3:  No initial investment, but monthly contributions based on a 

10% of an officer’s base pay savings rate, increasing with promotion and 
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longevity raises (see Figure 29); no rebalancing during investment period.  

Over the 20-year horizon, total contributions would be approximately 

$170K. 

Although Scenario 1 may be unrealistic (as most TSP participants do not have a lump 

sum to invest at the beginning of their career), it was chosen as a simple-to-

understand example.  Also, it serves as a basis for comparison in Scenario 2, where 

rebalancing is considered.  Scenario 3 is the way that most investors contribute to the 

TSP, by allocating a percentage, say 10% (the actual median savings rate of TSP 

participants), of their base pay to be deducted from their monthly paycheck. 
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Figure 29.  Monthly contributions over 20 years for realistic scenario. 
Contributions total nearly $170K for typical military officer. 

 

4.3 Results 

4.3.1 Scenario 1 Results 

As shown in Figure 30, at the 20-year horizon (5040 days), the VG-ICA 

model results in an expected discounted cash flow of $47,362, which is 228% higher 
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than the TSP “Market Portfolio” and 258% higher than the L2030 portfolio.  Also, the 

potential upside is significantly higher than for the other portfolios (182% and 117%, 

respectively).  However, the downside for the VG-ICA model is slightly worse, 

which means it is potentially riskier; this will require further examination. 
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Figure 30.  Portfolio Values Over Time, Scenario 1.  Heavy solid lines indicate expected portfolio values, 
while lighter dotted lines above and below indicate both up- and down-side potential of portfolios. 

 

Figure 31 are the empirical distribution functions of each of the portfolios at 

end of the 20-year simulation.  The dashed vertical lines represent the mean of each 

distribution.  Notice how the right tail of the VG-ICA cash flow is significantly 

longer than the other two.  Also, the red vertical line at 0 represents the performance 

of the riskless asset.   
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Figure 31.  PDF Comparison, Scenario 1.  Red, vertical line at 0 is the value of the riskless portfolio. 
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Figure 32.  CDF Comparison, Scenario 1.  Red, vertical line at 0 is value of the riskless portfolio.
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Although this is interesting to look at to see the general character of each of the 

discounted cash flow distributions, one cannot easily glean all desired information 

from the empirical PDF.  Additional insights can be gained by examining the 

empirical CDFs, including some direct interpretations of risk measures.  For example, 

in Figure 32 it is possible to see that the VG-ICA portfolio (the blue curve) has a 

lower probability of losing money (relative to the riskless portfolio) than the other 

two investment alternatives.  It also appears, at first glance, that perhaps the VG-ICA 

portfolio stochastically dominates the other distributions.  However, zooming in on 

the lower tail of the distributions, as is done in Error! Reference source not found., 

reveals that this is not the case.  Obviously, as all three CDFs cross one another, 

FOSD does not apply.  More details on other stochastic dominance orders will follow 

in a later section. 

It is easy to observe that the VG-ICA portfolio has approximately a 10% 

probability of “losing” money (relative to the riskless portfolio), whereas the 

probability for the other two portfolios are significantly higher, at 26% for the TSP 

“Market Portfolio” and 28% for the L 2030 portfolio.  It is also easy to see, by 

imagining a horizontal line at 0.05), that the 95% VaR for the VG-ICA portfolio will 

be greater (i.e. less negative) than for the other two portfolios. 

This graphical analysis, although enlightening, will now be augmented with 

the more formal techniques for comparing portfolio outcomes as described in Chapter 

3. 
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Figure 33.  Zoomed CDF Comparison, Scenario 3.  Red, vertical line at 0 is value of the riskless portfolio. 

 

4.3.2 Scenario 2 Results 

 As the TSP allows investors to rebalance at no cost, Scenario 2 was designed 

to test if there was an advantage to be gained by periodically rebalancing the VG-ICA 

portfolio to an optimal ratio.  Periods tested included:  yearly, monthly, and daily.  As 

shown in Figure 34, it appears that there is actually a disadvantage to doing so.  The 

expected values of the rebalanced portfolios are 24%-26% lower than the portfolio 

that is not rebalanced.  Also, the potential upside is lowered by 41%-42% relative to 

the portfolio that is not rebalanced.   
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Figure 34.  Simulated Portfolio Values Over Time, Scenario 2.  Heavy solid lines indicate expected portfolio 
values, while lighter dotted lines above and below indicate both up- and down-side potential of portfolios. 

 

Table 9 shows the change in the VG-ICA portfolio after 5040 days (20 years) if not 

rebalanced.  Notice the move away from the I fund and toward the C and S funds. 

 

Portfolio G Fund F Fund C Fund S Fund I Fund 
Original 
VG-ICA 

0% 1% 43% 30% 24% 

After 
20 years 

0% 1% 53% 43% 3% 

Table 9.  Change in VG-ICA Portfolio Over Time. 
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To see what would happen, the process was allowed to continue for another 20 years; 

this time the shift was from the C, with the S fund being the beneficiary, as seen in 

Table 10.  The consistency of this test was verified with different random number 

streams. 

 

Portfolio G Fund F Fund C Fund S Fund I Fund 

After  
20 years 

0% 1% 53% 43% 3% 

After 
40 years 

0% 1% 38% 54% 3% 

Table 10.  Continued Evolution of VG-ICA Portfolio Over Time. 

  

The CDF comparisons in Figure 35 and Figure 36 show that each of the three 

rebalanced portfolios are nearly identical, but have a larger probability (12%) of 

“losing” money (versus the riskless asset) than the VG-ICA portfolio that is no 

rebalanced (9%).  As it appears to be disadvantageous and increases the 

computational requirement, rebalancing is not recommended and is, therefore, not 

considered in Scenario 3. 
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Figure 35.  CDF Comparison, Scenario 2.  Red, vertical line at 0 is value of riskless portfolio. 
 

 

Figure 36.  Zoomed CDF Comparison, Scenario 2.  Red, vertical line at 0 is value of riskless portfolio. 
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4.3.3 Scenario 3 Results 

As shown in Figure 37, the VG-ICA once again has the highest expected 

value at the end of the 20 year horizon.  In this case, it exceeds the expected values of 

both the TSP “Market Portfolio” and L 2030 and L2040 portfolio by approximately 

33%.  As before, the upside is also significantly higher, with the VG-ICA besting the 

TSP “Market Portfolio” by 82% and the L Fund portfolios by 69%.  Also as seen in 

Scenario 1, the downside for the VG-ICA is slightly worse than for the other 

portfolios.  This will be examined both graphically and with reward-to-risk measures. 
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Figure 25.  Simulated Portfolio Values Over Time, Scenario 3.  Heavy solid lines indicate expected portfolio 
values, while lighter dotted lines above and below indicate both up- and down-side potential of portfolios. 
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Figure 37 presents are the empirical distribution functions (PDFs) of each of 

the discounted portfolio values at end of the 20-year simulation.  As before, the 

dashed vertical lines represent the mean of each distribution and the red vertical line 

at 0 represents the performance of the riskless asset.  Once again, the right (gain) tail 

of the VG-ICA cash flow is significantly longer than the other two.   

0e
+0

0
1e

-0
6

2e
-0

6
3e

-0
6

4e
-0

6
5e

-0
6

6e
-0

6

Portfolio 
Value

P
ro

ba
bi

lit
y

LEGEND

VG-ICA
TSP 
MP
L2030

L2040

-250000 0 250000 500000 750000 1000000

 

Figure 37.  PDF Comparison, Scenario 2.  Red, vertical line at 0 is value of riskless portfolio. 

 

Considering the empirical CDFs in this scenario again provides additional 

information.  In Figure 38, it is clear that the VG-ICA portfolio (the blue curve) has a 
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lower probability of “losing” money (relative to the riskless portfolio) than the other 

two investment alternatives.  As was the case with Scenario 1, it is again difficult to 

tell what is going on down in the tails of the distribution, so Figure 39 provides a 

closer look at that area. 
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Figure 38.  CDF Comparison, Scenario 3.  Red, vertical line at 0 is value of riskless portfolio. 

 

In this case, the VG-ICA portfolio has approximately a 13% probability of 

underperforming the riskless portfolio, while this likelihood for the TSP “Market 

Portfolio” and the L 2030 and L2040 portfolio are between 28% and 32%.  Using the 



 

 77 

 

technique previously described, the 95% VaR for the VG-ICA portfolio will be 

approximately the same as for the TSP “Market Portfolio” and greater (i.e. less 

negative) than for L 2030 and L 2040 portfolios. 

 

Figure 39.  Zoomed CDF Comparison, Scenario 3.  Red, vertical line at 0 is value of riskless portfolio. 

 

 

4.4 Comparison Using Stochastic Dominance 

Comparison the portfolios’ performance using stochastic dominance first 

makes sense, as it relies on few assumptions and, therefore, any results obtained are 

strong.  However, it turns out that there are no conclusive results from comparing 
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these portfolios from a stochastic dominance perspective.  In Table 11, each pair of 

letters represents whether the option on the left dominates the alternative in the 

column header in a first-, second-, and third-order sense, respectively.  As shown, 

none of the portfolios considered (VG-ICA, TSP Market Portfolio, L2030, and 

L2040) stochastically dominate each other in a first- or second-order sense. 

 

 VG-ICA TSP “Market 
Portfolio” L 2030 L 2040 

VG-ICA  FF FF FF 
TSP Market 

Portfolio FF  FF FF 

L 2030 FF FF  FF 

L 2040 FF FF FF  

Table 11.  Stochastic Dominance Relationships, Scenarios 1 and 3. 

 

4.5 Comparison Using Reward-to-Risk Ratios 

Turning our attention to the various risk and portfolio performance measures 

described in Chapter 3, the results shown in Table 12 and Table 13 are obtained for 

the portfolios under consideration in Scenario 1.  Although the .05 level of 

significance was used in these examples; others (.01 and .10) were also tested; 

although the numbers are different, the qualitative results are similar. 
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Risk Measure 
(↓ better) VG-ICA TSP “Market 

Portfolio” L 2030 L 2040 

Std Dev $ 52,626 $ 20,647 $ 24,421 $ 26,637 

95% VaR $ 4,906 $ 6,875 $ 9,529 $ 10,575 

95% CVaR $ 9,506 $ 8,456 $ 11,579 $ 12,916 

AVaR(50) $ 11,904 $ 8,956 $ 12,121 $ 13,753 

BVaR(50,5) $ 5,012 $ 6,840 $ 9,359 $ 10,462 

Table 12.  Comparison of Risk Measures, Scenario 1. 

 

Performance 
Measure (↑ better) VG-ICA TSP “Market 

Portfolio” L 2030 L 2040 

Sharpe Ratio 0.90 0.64 0.59 0.60 

STARR Ratio 4.98 5.60 1.25 1.22 

R-Ratio(.05,.05) 20.56 5.29 7.23 7.04 

AVR(50,50) 21.23 9.98 8.83 8.11 

BVR((50,5),(50,5)) 32.21 8.52 7.23 7.08 

Table 13.  Comparison of Portfolio Risk Measures, Scenario 1. 

 

The shaded cells represent the portfolio that had the lowest risk measure (in Table 12) 

or highest portfolio performance measure (in Table 13).  With some of the less 

informed (i.e., rely only on a dispersion measure or only use one tail, as opposed to 

the entire distribution) and non-coherent risk and portfolio performance measures, the 

TSP “Market Portfolio” has the highest ranking.  However, once measures that are 

coherent and consider information about the entire distribution are examined, the VG-
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ICA portfolio dominates the other portfolios, as seen with the R-Ratio and the newly 

proposed AVR and BVR measures.  Of note is that in no case do either of the L Fund 

portfolios (developed using Normally-distributed returns and recommended by the 

Federal Thrift Retirement Investment Board) turn in the best performance.  Similar 

results were not computed for Scenario 2, given the analysis previously conducted 

with the graphs of the distributions.  In the same manner as for Scenario 1, the 

following results obtain in Scenario 3, where there is no initial wealth, but monthly 

contributions over the entire, 20-year period.   

The same risk and portfolio performance measures for Scenario 3 (monthly 

contributions) are given in Table 14 and Table 15.  Once again, the L Fund portfolios 

fail to have the best measure in any instance.  Although the “TSP Market Portfolio” 

seems to have the lowest risk with nearly all measures, once the risk-adjusted rewards 

are considered, the VG-ICA model again outperforms the other models.  The only 

case where this is not true is in the VaR measure, which only accounts for the size of 

the loss tail;  measures that consider the potential gains all favor the VG-ICA model.   

Risk Measure 
(↓ better) VG-ICA TSP “Market 

Portfolio” L 2030 L 2040 

Std Dev $ 168,885 $ 80,890 $ 94,515 $ 105,525 

95% VaR $ 43,382 $ 44,146 $ 60,378 $ 66,910 

95% CVaR $ 68,056 $ 54,789 $ 74,684 $ 82,783 

AVaR(50) $ 77,575 $ 59,250 $ 81,352 $ 87,754 

BVaR(50,5) $ 43,938 $ 44,010 $ 60,203 $ 67,757 

Table 14.  Comparison of Risk Measures, Scenario 3. 
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Performance 
Measure (↑ better) 

VG-ICA TSP “Market 
Portfolio” L 2030 

L 2040 

Sharpe Ratio 0.94 0.63 0.57 0.54 

STARR Ratio 2.33 2.90 0.72 0.69 

R-Ratio(.05,.05) 8.87 2.82 4.10 4.07 

AVR(50,50) 9.35 5.41 4.62 4.67 

BVR((50,5),(50,5)) 11.60 5.05 4.24 4.12 

Table 15.   Comparison of Portfolio Performance Measures, Scenario 3. 

 

When considered in the traditional reward-risk framework of mean-variance 

(or mean-standard deviation), the VG-ICA portfolio lies where it should be expected 

to appear, given that it is predominantly a linear combination of the C, S, and I Funds.  

Also, the TSP “Market Portfolio” falls roughly halfway between the L 2010 and L 

2020 portfolios, which is no surprise, given its composition. 

However, when considered in one of the new proposed reward-risk 

frameworks, specifically, using a version of AlphaVaR as both the measure of risk 

and the measure of reward, the picture changes dramatically, as seen in Figure 41.  

Here, the VG-ICA and F Fund portfolios potentially lie on the hypothesized efficient 

Alpha VaR frontier.  This indicates the fact that different portions of the returns 

distribution have been (de-)emphasized. 
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Figure 40.  All Portfolios Viewed in Traditional Reward-Risk Space. 
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Figure 41.  All Portfolios Viewed in New (Alpha VaR) Reward-Risk Space. 
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Chapter 5:  Conclusions and Future Work 

 

5.1 Conclusions 

 Using the Federal TSP as a framework, this empirical analysis set out to 

answer three questions.  First, “does use of a non-Gaussian factor model for returns, 

generated with independent components analysis (ICA) and following the Variance 

Gamma (VG) process, provide any advantage over conventional methods with returns 

assumed to be Normally-distributed?”  Based on the portfolio optimization and 

simulation performed, “yes, it does.”  Not only is the expected excess cash flow for 

the VG-ICA model noticeably higher, the slightly worse downside is more than offset 

by the significantly greater upside, as demonstrated with the various portfolio 

performance measures. 

 The second question considered looked at whether excess returns could be 

generated through rebalancing to an optimal mix at annual, monthly, and daily 

intervals, considering the increased computational complexity and administrative 

burden involved in such an effort.  The answer to this question is no; for the VG-ICA 

model constructed for the TSP funds, it appears that rebalancing is not advantageous. 

 Finally, as regards the third question, “how does the use of coherent measures 

of risk, with corresponding portfolio performance measures … affect the selection of 

optimal TSP portfolios?”  Although we did not optimize directly against the coherent 

measures of risk and portfolio performance measures (but instead computed optimal 
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portfolios with maximization of expected utility), models for returns with heavy tails 

(specifically the VG-ICA model) performed well against other models when 

compared with these newer, coherent measures  of risk and performance. 

 In addition to the answers to these three questions, this effort also includes the 

following two contributions.  This was the first known application of the VG-ICA 

model of Madan & Yen to a portfolio with no short positions.  By constraining (one 

at a time) any short positions developed in the portfolio to zero, a portfolio that 

included only long (or zero) positions was attained.  Based on the results of Scenarios 

1 and 3, the VG-ICA model seems to perform as well in this environment as it does in 

its natural long-short state.   

 Finally, to reference the second question in “The Only Three Questions That 

Count:  Investing by Knowing What Others Don’t” (Fisher 2007), knowing this 

information about the behavior of the Federal TSP funds may help those interested 

enough to fathom what others cannot.  Keeping in mind the saying that “all models 

are wrong, but some are useful,” I  hope that  this one falls into the latter category. 

5.2 Future Work 

 Several potential avenues for future research were identified in the course of 

this work.  First, rather than determining the optimal VG-ICA portfolio by 

maximizing expected utility, optimization by maximization of expected return subject 

to coherent risk measure constraints AVR and BVR should be considered.  This is 

along the line of work using CVaR for portfolio optimization, either in the objective 
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function or as a constraint.  (Rockafellar and Uryasev 2001)  The TSP portfolio 

problem would also make a for examining the newer classes of weighted risk, like 

MINVaR, MAXVaR, MINMAXVaR, and MAXMINVaR.    Additionally, 

shortcomings in some existing reward-to-risk ratios were identified when they were 

applied to extremely conservative portfolios which had very small probabilities of 

loss.  This too deserves further investigation. 

 Were the VG-ICA model to be used in practice, re-estimation of the VG 

parameters and re-computation of the optimal portfolio of factors (and rebalancing of 

actual fund allocations) should be done periodically using a rolling horizon, rather 

than assuming that they are stationary over the entire 20-year horizon, as was done in 

this work. 
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