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Soybeans have diverse uses in foods and are known for their health-beneficial 

properties.  Research has shown that consumption of soybeans or their components 

may help to prevent or alleviate chronic illnesses including heart disease, some 

cancers, and osteoporosis. Foods made from soybeans can develop flavors or odors 

that are unfavorable, in part because of lipid oxidation.  Approaches to prevent lipid 

oxidation include modification of soybean traits such as fatty acid composition or 

lipoxygenase enzyme levels. Soybeans with modified α-linolenic acid (18:3n3) and 

soybeans with reduced lipoxygenase were analyzed to determine if there was an 

unintentional effect of modification on health-beneficial components.  The effects of 

genotype and growing environment on nutraceutical components were analyzed for 

the modified 18:3n3 soybeans. Additionally, an assay for measurement of 

lipoxygenase-1content in soybean meal was developed for high-throughput analysis 

using fluorescein as a fluorescent probe. The results showed a significant effect of 

genotype of at least P < 0.05 for fatty acid composition, isoflavone levels, lutein, and 



  

tocopherol levels in the modified 18:3n3 soybeans. Environment had significant 

effect on certain fatty acids, lutein, tocopherols, and oxygen radical absorbance 

capacity (ORAC).  The effect of genotype × environment was significant for total 

phenolic content (TPC) and antioxidant activity against hydroxyl radical, as well as 

isoflavone composition, fatty acid composition, lutein, and tocopherol composition. 

Soybean lines with modified-lipoxygenase content contained similar or higher 

isoflavone levels compared to non-modified soybeans. The results of this research 

demonstrated that soybean modifications for improved oil stability did not adversely 

affect the health-enhancing components. Additionally, genotype or growing 

environment may be a factor in selecting the best soybean lines for nutraceutical 

development.   
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Introduction 
 

 Soybean is a legume with diverse uses in foods and several health-enhancing 

components.  This study aims to examine the health-beneficial properties of 

Maryland-grown soybeans that have been modified for specific traits.  The first 

objective is to study low 18:3n3 soybean lines for antioxidant capacity and 

phytochemical composition, and identify effects of genotype, grown environment, 

and their interaction on these properties. The second objective is to study modified-

lipoxygenase soybean lines grown in Maryland for nutraceutical properties including 

antioxidant capacity and phytochemical composition.  Soybean lines with notable 

composition may be selected for further study or development of functional foods. 

The third objective is to investigate an improved chemical assay for identification of 

the soybean LOX enzyme.  This will help to determine the effectiveness of LOX-

modification efforts and identify soybean lines that may be useful for further 

breeding.  
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Chapter 1: Literature Review 

 

1.1. Overview 

 

Soybeans and their components comprise a considerable portion of animal and 

human food products in the United States.  Soybeans comprise 90% of oilseeds 

grown in the U.S., and in 2005 were the second-largest crop in area and value (Ash et 

al., 2006).  The majority of soybean meal (98%) is used for animal feed, with the 

remaining meal used in human food products.  Soybean oil, however, is extracted and 

used extensively in human foods.  The U.S. Food and Drug Administration allowed a 

health claim for soy protein in 1999 (Ash et al., 2006) and this helped to increase 

public awareness of soy as a health beneficial food. The current American use of soy 

includes traditionally Asian foods (tofu, tempeh, natto, miso, and soymilk) (Golbitz & 

Jordan, 2006), as well as vegetarian foods and mock meats.  Additionally, soy 

components such as oil, protein, lecithin, fiber, and sterols are used in processed 

foods for both functionality and nutrition (Sugano, 2006).  

 In addition to the health benefits, soy food consumption can be promoted 

because increased emphasis on plant-based proteins in place of animal-based proteins 

may reduce the environmental impact of current agricultural practices.  According to 

Carlsson-Kanyama & Gonzalez (2009), when comparing the overall grams protein 

obtained per kg of greenhouse gases produced, cooked soybeans yield 12 times more 

protein per kg than beef, and 2 times that of chicken.  It may therefore be 

economically and environmentally efficient to increase consumer demand for soy 

foods. 
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 Despite increased consumer interest in functional foods, many soy-based 

foods are considered “health” foods, and appeal to certain groups but not to the 

general American population.  As reported by the consumer research group Mintel, 

the market for soy foods decreased from 2008 to 2010 and is expected to continue 

decreasing through 2012.  While some consumers like the taste of soy foods, 45% of 

those that avoid soy say they dislike the flavor (Mintel, 2011).   

 Some soy foods have odors or flavors that are disagreeable to consumers, 

although food processing can help to reduce them (Macleod & Ames, 1988; Yuan & 

Chang, 2007).  High content of polyunsaturated fats and oxidative enzymes found 

naturally in soybeans may partially contribute to the perceived poor flavor of soy 

products.  Consumers usually consider flavor first when deciding to purchase a food.  

However, consumers are also more likely to purchase a functional food if they know 

its health benefits (Wansink et al., 2004).  Increased knowledge of the health 

components of soy, as well as improved flavors, may help to increase the 

consumption of this versatile food. 

 

1.2. Soybean Composition, Use in Foods, and Nutritional Properties 

1.2.1. Soybean Oil 

 

 Soybean oil is consumed more than any other type of edible oil in the United 

States and the rest of the world (Eckel et al., 2007).  It is used to produce cooking oils 

and margarines, and is used in all types of packaged and processed foods.  The 

ubiquitous use of soybean oil draws concerns over its health effects.  Soybean oil 

consists of a high amount of polyunsaturated fats, which are generally considered 
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more healthful than the saturated fats found in animal products.  However, these 

polyunsaturated fats decrease the oxidative stability of the oil in processed foods.  

Hydrogenated soybean oil is more resistant to oxidation, so it is included in packaged 

foods to improve the shelf-life (DiRienzo et al., 2008). 

 1.2.1.1. Soybean Oil Composition 

 

Oil consists of triacylglycerol molecules that contain 3 fatty acids attached to 

a glycerol backbone.  Fatty acids contain a carboxylic acid and an aliphatic tail 

(Nawar, 1996).  Short-chain fatty acids have 2-6 carbons, medium-chain fatty acids 

have 8-12 carbons, and long-chain fatty acids have 14 or more carbons.  During 

exposure to heat or enzymes, the triacylglycerol may be hydrolyzed, and the fatty 

acids released.  The free fatty acids are more susceptible to oxidation than the 

triacylglycerol (Nawar, 1996).  

  Soybean contains on average 15 to 20% oil by weight.  The major fatty acids 

consist of palmitic (16:0), stearic (18:0), oleic (18:1), linoleic (18:2), and α-linolenic 

(18:3) (Sugano, 2006).  The percentage of each fatty acid may vary depending on the 

genotype of soybean.  Some genotypes are bred to contain altered quantities of certain 

fatty acids.  The typical soybean that has not been modified contains 10% palmitic, 

4% stearic, 23% oleic, 53% linoleic, and 8% linolenic fatty acids (Snyder & Kwon, 

1987).  Unprocessed soybean oil also contains phytosterols, phospholipids, 

tocopherols, carotenoids, and chlorophyll (Snyder & Kwon, 1987).  Oil processing 

includes degumming and bleaching steps that remove many of the phytochemicals.  
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1.2.2. Soy Protein 

 

 Soy protein is available in multiple forms for use in processed foods.  

Commercial soy protein products are available as soy flour, soy protein concentrate, 

and soy protein isolate, and protein content of each product depends on the 

production method (Paulson et al., 2006; Singh et al., 2008).  Soy flour is higher in 

protein and lower in carbohydrate than wheat flour.  The flour can be produced in 

full-fat or defatted lines.  Soy flour is added to baked goods to improve moisture 

content and texture.  Soy flour added to wheat products can also help to bleach 

undesirable colors due to activity from the soybean lipoxygenase enzyme.  Soy 

protein concentrate and isolate are added to products such as nutritional bars, 

powdered protein shakes, and meat analogs (Singh et al., 2008) 

  

1.2.2.1. Soy Protein Nutritional Properties 

 

 Soy protein contains all of the essential amino acids for humans, which makes 

it unique among plant-based proteins (Singh et al., 2008).  Protein makes up 40% dry 

weight of the soybean.  Soy protein prior to processing is not highly bioavailable due 

to inhibition factors such as trypsin inhibitors, urease, and hemagglutitin.  Even 

traditional soy foods such as tofu or edamame are processed with heat before they are 

consumed.  Soy protein isolate can be processed to have protein digestibility amino 

acid score comparable to animal protein (Singh et al., 2008).  These factors make soy 

protein a good choice for addition to vegetarian food products and nutritional 

supplements. 
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1.2.2.2. Soy Protein Effect on Serum Cholesterol 

 

 Observational studies have shown a reduced incidence of cardiovascular 

disease (CVD) correlated with soy protein intake (Vega-Lopez & Lichtenstein, 2005).  

Elevated levels of total serum cholesterol and LDL-cholesterol (LDL) are traditional 

risk factors for CVD.  A 1995 meta-analysis of randomized controlled trials by 

Anderson et al. showed a significant reduction in total cholesterol, LDL, and 

triglycerides from soy protein compared with animal protein (Anderson et al., 1995).  

Intake of 25 g per day is recommended to meet the U.S. Food and Drug 

Administration-approved a health claim for soy protein and risk of coronary disease 

(FDA, 2011).  This amount is equivalent to 3 cups of soy milk or 10 ounces firm tofu.  

Interestingly, a review by Messina et al. (2006) indicates that typical intake of soy 

protein in Japan is 8-11 g per day, and this population still appears to obtain health 

benefits from dietary soy.  However, this data reflects the total population on average.  

Older people in Japan have more traditional diets with higher levels of soy protein 

(Messina et al., 2006).  Since the approval of the health claim, a large number of 

clinical trials have been conducted on dietary intake of soy protein (Sirtori & 

Johnson, 2006; Xiao, 2008; Zhan & Ho, 2005).  Many studies have found a larger 

LDL reduction in hypercholesterolemic subjects as opposed to those with normal 

serum cholesterol (Anderson et al., 1995; Zhan & Ho, 2005). 

 The mechanism of soy protein effect on LDL reduction has been attributed to 

reduced absorption of intestinal cholesterol, reduced cholesterol synthesis, or 

stimulation of LDL receptor transcription (Cho et al., 2008).  An in vitro study of soy 
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protein hydrolysate on human liver cell lines showed significant increase of LDL 

receptor transcription (Cho et al., 2007).  This would then increase uptake of LDL-

cholesterol in the liver and reduce serum levels.  The same study did not find a high 

bile acid binding capability in soy protein hydrolysate, and found that at high levels 

the soy protein hydrolysate actually stimulated cholesterol synthesis.  Thus more 

research is needed to identify how soy protein exerts an effect on serum cholesterol.    

 A 2006 analysis by the American Heart Association nutrition committee 

found that the effect of soy protein on cholesterol levels was not as significant as 

previously thought (Sacks et al., 2006).  The authors found that in well-controlled 

studies, LDL cholesterol reduced only 2 to 7 percentage points with intake of soy 

protein compared with animal protein.  The announcement of the results cast doubt 

upon the previous health claim.  The AHA nutrition committee concluded that soy 

remains a heart-healthy food due to its low-saturated fat content.  However, the 

cholesterol-reducing effects may not be sufficient to warrant high consumption of soy 

protein for that purpose.  Soy protein intake has also not shown clear effect on 

hypertension, or on the high-density lipoprotein (HDL) (Xiao, 2008).   

 Some evidence from in vitro and animal studies shows that soy protein can 

reduce adiposity and promote greater percentage of lean body mass (Bhathena & 

Velasquez, 2002).  Mechanisms for the impact of soy protein on obesity include 

increased satiety, improved insulin sensitivity, lipid metabolism, and hormonal 

effects.  Studies in humans have not shown a clear reduction in body weight or fat 

mass with soy protein when compared with animal protein.  However, the soy protein 
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diets in the studies did improve serum LDL and triglycerides more effectively than 

animal protein diets (Bhathena & Velasquez, 2002). 

1.2.3. Phenolics 

 

 Soybeans contain several types of phenolic compounds, including phenolic 

acids and isoflavones (Sakthivelu et al., 2008; Snyder & Kwon, 1987).  Phenolics are 

plant compounds consisting of an aromatic ring and hydroxyl group.  Phenolic acids 

are known to possess anti-radical and antioxidant activity, due to donation of the 

hydrogen from the hydroxyl group (Sroka & Cisowski, 2003).  In fact, they are one of 

the most effective antioxidants from natural sources, more potent in vitro than other 

dietary antioxidants such as ascorbic acid, α-tocopherol, and β-carotene (Rice-Evans 

et al., 1996).  The number and position of the hydroxyl groups on the phenolic ring 

has been correlated with the antioxidant activity of the particular phenolic compound 

(Sroka & Cisowski, 2003). 

 Polyphenols in plants are composed of aromatic rings with 2 or more hydroxyl 

groups, and are associated with plant coloring and defense against environmental 

stress.  Polyphenols in the human diet are linked to health benefits such as prevention 

of cardiovascular disease (Hooper et al., 2008; Manach et al., 2005).  Most initial 

evidence for the health benefits of polyphenols was from epidemiological studies 

observing dietary intake of polyphenol-rich foods (Manach et al., 2005).  Some 

proposed mechanisms for the effect of these compounds are inhibition of LDL-

cholesterol oxidation, inhibition of blood platelet aggregation, improved endothelial 

wall function, and reduction of oxidative stress and inflammation (Manach et al., 

2005; Rice-Evans et al.,1996).  Flavonoids are the largest subclass of polyphenols.  
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Flavonoids in particular have shown to improve endothelial elasticity and to improve 

flow-mediated dilation of arteries (Duffy & Vita, 2003). While many in vitro and 

animal studies have confirmed the benefits of polyphenols, it is unclear what the 

actual impact dietary intake of polyphenols confers to humans.  There is wide 

variation in the bioavailability of ingested polyphenols, and often they are 

metabolized and excreted quickly in the urine.  Often the levels of phenolic 

compounds used in animal or in vitro studies are not feasible for dietary intake in 

humans (Manach et al., 2005).  Metabolites of the polyphenols are not always 

measured, and these may have their own biological activity, such as through cell 

signaling pathways (Crozier et al., 2009). 

1.2.4. Isoflavones 

 

 Isoflavones are flavonoids found in mainly in legumes, and in highest 

amounts in soybeans.  Soybeans typically contain from 0.1 to 5 mg total isoflavones 

per gram of whole bean (Jian, 2009; Larkin et al., 2008).  Many health effects of 

soybeans are speculated to be related to the isoflavones.  Isoflavone levels are 

associated with the protein content of the soybean.  After protein extraction from soy 

meal, the isoflavone level of the protein is similar to that of the whole bean prior to 

extraction (Larkin et al., 2008). 

 There are three forms of soy isoflavones: genistein, daidzen, and glycitein.  In 

whole soybeans and many soy foods, isoflavones exist as hydrophilic glucoside 

conjugates:  6”-O-malonylglucosides, 6”- O-acetylglucosides, and β-glucosides 

(Larkin et al., 2008).  During digestion, these are hydrolyzed to the more bioavailable 

aglycone form (Cassidy et al., 2006; Koh & Mitchell, 2007).  Fermentation and some 
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types of food processing also produce the aglycone form prior to food consumption 

(Villares et al., 2011). 

 The specific isomers of isoflavones may have different bioactive properties 

(Lakshman et al., 2008; Pavese et al., 2010).  For example, in several studies, the 

isoflavone genistein has shown activity against hormone-related cancers in vitro 

(Pavese et al., 2010).  Additionally, different levels of each are noted within soybean 

seeds.  For example, Sakthivelu et al. (2008) found that as total isoflavones increased, 

the percentage of genistein increased compared to daidzein.  Riedl et al. (2007) found 

that the Ohio soybeans had increased daidzein over genistein when total isoflavones 

increased.  This increase in one isomer over the others was proposed to be related to 

the soybean growing conditions such as moisture and temperature.  Identification of 

the isoflavone profile is important in understanding the potential health benefits of 

different soybean lines. 

  

1.2.4.1. Health Benefits of Isoflavones – Cardiovascular 

 

 The isoflavone content of foods varies by type of food and processing 

conditions (Villares et al., 2011).  In studies of isoflavones separated from soy 

protein, the isoflavones do not have significant effect on reducing serum LDL (Sirtori 

& Johnson, 2006).  However, soy protein without isoflavones retains its 

hypocholesterolemic properties (Sirtori & Johnson, 2006).  Most evidence shows a 

synergistic effect of soy isoflavones and soy protein on reduction of LDL cholesterol 

(Sirtori & Johnson, 2006).  A meta-analysis of flavonoids by Hooper et al. (Hooper, 

et al., 2008) found that soy protein isolate significantly reduced LDL cholesterol and 

diastolic blood pressure, while other soy products did not. 
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 Soy isoflavones can, however, provide antioxidant activity that may protect 

against cardiovascular disease.  LDL oxidation (ox-LDL) is known to promote 

aggregation of fatty streaks in arteries (Stocker & Keaney, 2004).  In vitro, animal, 

and human studies indicate that inhibition of lipid peroxidation by soy isoflavones 

may reduce risk of atherosclerosis (Fritz et al., 2003; Sirtori & Johnson, 2006).  

Kapiotis et al. (1997) reported that genistein is capable of inhibiting LDL oxidation in 

vitro under initiation by two separate oxidation systems:  copper (2
+
) and a 

superoxide/nitric oxide radical system (O2
•-
/NO

•
).  Genistein was also able to prevent 

oxidation of LDL in endothelial cells, and prevent damage to the cells by ox-LDL.    

Yamakoshi et al. (2000) fed New Zealand rabbits a cholesterol-containing diet 

supplemented with two doses of isoflavone-rich extracts of fermented soy (0.33 and 

1g isoflavone aglycones/100 g food).   After 8 weeks, HPLC analysis of cholesteryl 

ester hydroperoxides demonstrated an increase in resistance to Cu-induced LDL 

oxidation with the isoflavone-supplemented diets.  The high dose produced a 

significant reduction in hydroperoxides (-94%), while the low dose produced a 

reduction that was not significant (-37%).   Additionally, atherosclerotic lesions in the 

aortic arch were significantly decreased by both isoflavone treatment levels, but no 

difference in serum cholesterol levels was seen.  In human studies, supplementation 

of the diet with a soy food resulted in a significantly prolonged lag phase of LDL 

oxidation as compared to control diets (Ashton et al., 2000; Scheiber et al., 2001; 

Tikkanen et al., 1998; Wiseman et al., 2000), with effective doses ranging from 15 g 

soy protein/50 mg isoflavones per day (Wiseman, et al., 2000) to 33 g soy protein/86 

mg isoflavones per day (Kendall et al., 2002).  The length of dietary interventions 
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ranged from 2 to 12 weeks.  Based on the above studies, the antioxidant effect of soy 

isoflavones against LDL-cholesterol may be their largest benefit against 

cardiovascular disease.  

 

1.2.4.2. Health Benefits of Isoflavones – Cancer Prevention 

 

 Isoflavones are classified as phytoestrogens that can bind to estrogen receptors 

in the body.  Much of their unique biological activity is related to the ability to act as 

an estrogen agonist or antagonist (Setchell, 1998).  Isoflavones have been shown to 

lower serum estrogen and lengthen menstrual cycles in premenopausal women 

(Yamamoto & Tsugane, 2006). 

 Research has focused on soy in the prevention of some types of cancer, 

primarily breast, prostate, and colon cancers (MacDonald et al., 2005; Yamamoto & 

Tsugane, 2006).  The initial association was based on epidemiological studies that 

showed societies with higher soy intake had lower incidence of certain cancers (Wu 

et al., 2008).  For example, it was reported that the incidence of breast cancer in Japan 

was 32 per 100,000 women, while it was 107.5 per 100,000 among Japanese women 

living in Hawaii (Messina et al., 2006).  It is known that the traditional Japanese diet 

is much higher in soy than Western diets and this may have partially explained the 

difference in cancer incidence in that study. 

 Breast cancer risk related to intake of isoflavones focuses on the estrogen-

binding activity of isoflavones.  In vitro studies have shown anti-cancer effects at 

supraphysiological levels (Yamamoto & Tsugane, 2006), however not at normal 

physiological levels.  Studies of animals have shown dietary isoflavones reduced 

formation of tumors (Setchell, 1998).  Evidence from human studies remains 
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inconclusive (Xiao, 2008; Yamamoto & Tsugane, 2006).  While many studies have 

shown an inverse relationship between soy intake and premenopausal breast cancer, 

the association between soy and postmenopausal breast cancer is unclear (Yamamoto 

& Tsugane, 2006).  Animal studies and epidemiological study have indicated that 

intake of soy early in life predicts lower risk of breast cancer as an adult (Yamamoto 

& Tsugane, 2006). 

 In prostate cancer, isoflavones have shown to delay the growth of tumors in 

vitro and in animal studies (Messina, 2003; Pavese et al., 2010).  Genistein has shown 

the largest effect (Jian, 2009).  Lakshman et al.(2008) showed inhibition of prostate 

cancer metastasis in mice with dietary intake of genistein at physiological levels.  

Some epidemiologic studies have shown inverse relationship of soy intake and 

prostate cancer, however very few populations have a significant intake of soy foods.  

It is difficult to conduct case-control studies in Western cultures, for example.  

However, studies of Seventh-Day Adventists in the United States, and others of 

Japanese and Chinese men have shown a reduced risk of prostate cancer with intake 

of soy foods (Jian, 2009). 

 In relation to colon cancer, case-control studies in Japan showed inverse 

correlation between dietary isoflavone intake and risk of disease (Akhter et al., 2009; 

Budhathoki et al., 2011).  However, studies of animal models have not shown a 

conclusive effect from intake of isoflavones (Cooke, 2006).  In an in vitro study, 

Slavin et al. (2009b) demonstrated an antiproliferative effect of soy meal aglycone 

extracts against HT-29 colon cancer cells. The soy extracts showed stronger 
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inhibition compared to an aglycone mixture of the same concentration, suggesting 

that the extract contained inhibitory compounds beyond isoflavones. 

  

1.2.4.3. Soy Isoflavones as a Hormone Replacement Alternative 

 

 Isoflavone-rich foods have been studied as an alternative to hormone therapy 

in menopausal women.  Decreasing estrogen levels at menopause can lead to bone 

density reduction, and many studies have investigated the effect of phytoestrogens on 

bone health.  There has been epidemiological correlation between soy intake and 

increased spinal bone density in Asian countries.  It is not known if the effects are 

from soy protein, isoflavones, or both (Messina, 2003).  Recent research has shown 

that dietary isoflavones can reduce markers of bone resorption and preserve spinal 

column bone mass (Ma et al., 2008).  A meta-analysis by Liu et al. (2007) reported 

that diet supplementation with soy isoflavones significantly increased spinal bone 

mineral density, and the effect was greatest with consumption of more than 90 mg/ 

day.  A study by Piastowska-Ciesielska et al. (Piastowska-Ciesielska & Gralak, 2010) 

found that a genistein supplement equivalent to 1% soybean in the diet increased the 

femoral bone mineralization in growing rats.  Most human intervention studies of soy 

isoflavones and bone mass have been inconclusive, possibly due to variation in the 

dose and composition of the isoflavones. 

 1.2.5. Carotenoids 

 

 Carotenoids are pigment compounds in plants, and serve as protective 

antioxidants to plant tissues (von Elbe & Schwartz, 1996).  β-carotene is a precursor 

to vitamin A in animals.  Other carotenoids present in mammalian serum include 
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lutein, lycopene, and β-cryptozanthin. The carotenoid structure consists of an 

isoprene backbone.  A large number of double bonds make the structure susceptible 

to oxidation.  However, this double bond allows scavenging of free radicals through 

acceptance of a hydrogen molecule (Kiokias & Oreopoulou, 2006). 

 Carotenoids have been researched in prevention of chronic disease with mixed 

results.  Lutein and zeaxanthin have been associated with prevention of age-related 

macular degeneration and cataracts (Ma & Lin, 2010; Ribaya-Mereado & Blumberg, 

2004).  Epidemiological studies show that intake of high-carotenoid foods can reduce 

cardiovascular disease risk, but randomized control trials with dietary supplements 

have not verified this.  In some cases, carotenoid supplementation increased incidence 

of lung cancer and cardiovascular disease.  These results may be related to high levels 

of supplementation and may not reflect the effects of natural levels of dietary 

carotenoids (Lichtenstein, 2009). 

 The carotenoid content of soybeans can vary with the genotype and color 

(Simmone et al., 2000).  Previous studies of mature yellow soybeans showed lutein as 

the main carotenoid.  β-carotene has been detected in green colored soybeans and in 

immature soybeans.  However, few lines of yellow soybeans have been found to 

contain β-carotene (Monma et al., 1994; Slavin et al., 2009a).  Crude soybean oil is 

processed to eliminate carotenoids due to color preferences (Snyder & Kwon, 1987).  

However, foods made from whole soybeans will contain carotenoids that may be 

beneficial to human health. 



 

 15 

 

  

1.2.6. Tocopherols 

 

 Tocopherols are lipophilic compounds in biological membranes that are 

produced in photosynthetic organisms (Gregory, 1996; Lampi et al., 2008).  They are 

known for antioxidant activity, especially in maintaining oil stability.  They contain a 

chromanol ring and an isoprene side chain.  Tocopherols are able to donate hydrogen 

atoms to lipid peroxyl radicals and thus interrupt the propagation of lipid oxidation 

(Lampi et al., 2008). 

 α-Tocopherol is the primary tocopherol responsible for vitamin E activity in 

animals (Gregory, 1996; Kim et al., 2007).  Tocopherol levels in soybean oil have a 

maximum concentration at which optimum stability is maintained.  Above this level, 

the tocopherols can form peroxyl and oxy radicals, hydroxyl radicals, and singlet 

oxygen.  Thus they become pro-oxidants and the oil can oxidize more rapidly (Kim et 

al., 2007). Up to 50% of tocopherols may be lost with during deodorization of crude 

soybean oil (Snyder & Kwon, 1987).  While the tocopherol level helps to maintain 

oxidative stability of oil during frying, over time tocopherol levels are dramatically 

reduced due to the high temperature (Normand et al., 2003). 

 The tocopherol content of soybeans is also important nutritionally, because 

Vitamin E is an essential human nutrient.  In the United States, the average dietary 

intake of vitamin E has been shown to be less than the recommended amount (Maras 

et al., 2004).  Some studies have shown vitamin E intake to be preventive against 

cardiovascular disease and certain cancers.  However, other studies have shown that 

high levels of vitamin E supplementation may have little effect, or even adverse 
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health effects (Dutta & Dutta, 2003; Saremi & Arora, 2010).  For example, in persons 

that smoke cigarettes, Vitamin E supplementation along with a high PUFA diet has 

shown increased LDL oxidation (Weinberg et al., 2001).  However, levels of 

tocopherols in soybean are not sufficient to cause the same effects as dietary 

supplementation. 

 As discussed above, soybeans provide a nutritious food source and many of 

the components have potential added health benefits.  It is therefore of interest to 

further develop soybeans for use as functional foods.  

1.3. Oxidative Stability of Soybean Oil 

1.3.1. Lipid Oxidation 

 

 Lipid oxidation is a major concern in food production as it can cause poor 

odor and flavor and reduce shelf-life.  Lipid oxidation leads to formation of 

hydroperoxides which break down to further undesirable compounds such as 

aldehydes, ketones, and dienals (Cherrak et al., 2003; Choe & Min, 2006; Wilson, 

2004).  Autoxidation is a self-catalytic reaction with molecular oxygen (Choe & Min, 

2006; Nawar, 1996).  This is thought to be the primary reaction in breakdown of 

lipids.  Other mechanisms for oxidation include exposure to elevated temperature, 

photochemical reactions, catalysis by metal ions, and enzymatic reactions.  The 

process of lipid autoxidation involves 3 steps:  initiation of a free radical, 

propagation, and termination (Nawar, 1996). 

 Antioxidants inhibit the propogation reaction by acting as hydrogen atom 

donors or acceptors.  Tocopherols in soybean oil are considered the most important 

compound to prevent lipid oxidation (Choe & Min, 2006).  Phenolic structures are 
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also useful antioxidants because they form stable resonance structures and prevent 

attack of the free radical by oxygen (Nawar, 1996). 

 The high α-linolenic (18:3n3) content of regular soybean oil makes it 

susceptible to autoxidation.  The 18:3n3 molecule contains 3 double bonds, and thus 

it can deteriorate easily during processing and storage.  18:3n3 oxidizes twice as 

quickly as linoleic acid (18:2n-6) in stable conditions.  At high temperatures during 

cooking, it can degrade even more rapidly (Wilson, 2004).   

 The poor stability of natural soybean oil creates a need for hydrogenation in 

order for the products to remain stable on the shelf or at the high temperatures used in 

frying (Eckel et al., 2007).  The process of hydrogenation changes the double bond 

structure of the fatty acid, from cis to trans.  The resulting structure is more stable in 

food products against oxidation and hydrolysis during cooking. 

 

1.4. Modified Soybeans 

 

 Soybeans used for human foods have been bred to select for specific traits, 

especially in the fatty acid profile.  Some are bred for low-saturated fat content, some 

for low α-linolenic acid (18:3n3) content, and others for high-oleic (18:1n-9) content 

(Ash et al., 2006; Fehr, 2007; Sugano, 2006).  Soybean fatty acids may be modified 

through traditional cross-breeding or genetic engineering.  Low levels of unstable 

polyunsaturated fatty acids are desirable to help reduce the need for hydrogenation 

(Fehr, 2007).  In 2006, the FDA mandated labeling of trans-fats in foods, and demand 

for soybeans with reduced 18:3n3 is increasing (Fehr, 2007).  
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1.4.1. Value of Low α-Linolenic Soybeans 

 

 Low α-linolenic soybeans contain less than 3% 18:3n3 versus the 7% in non-

modified soybeans (Sugano, 2006).  Some low α-linolenic cultivars contain less than 

1% 18:3n3.  In commercial baked and fried food products, the desired 18:3n3 content 

is 2% of total fatty acids to maintain stability without hydrogenation (Wilson, 2004) 

(Table 1).  In order to compete with other stable oils, low α-linolenic soybean oil 

should be used in food production. A 2009 study compared expeller pressed low α-

linolenic soybean oil to other common cooking oils in the stability of tortilla chips 

over time (Warner, 2009).  Chips were fried for 5 and 35 hours and then stored for 4 

months.  Hexanal formation was measured to determine fatty acid oxidation.  With 5 

hours of frying, low α-linolenic soybean oil performed as well as high-oleic 

sunflower oil, corn oil, and hydrogenated soybean oil.  With 35 hours of frying, low 

α-linolenic soybean oil had significantly less hexanal formation than regular soybean 

oil, however had more than high oleic sunflower oil and hydrogenated soybean oil. 

 

Table 1.1. Preferred Fatty Acid Composition of Cooking Oils* 

Fatty Acid Unmodified Oil Frying Baking 

Saturated (16:0 + 18:0) 15% 7% 42% 

Oleic (18:1) 23% 60% 19% 

Linoleic (18:2) 53% 31% 37% 

α-Linolenic (18:3) 9% 2% 2% 

Table modified from: Wilson, R. Seed composition. In Boerma & Specht (eds.), 

Soybeans: Improvement, Production, and Uses, 2004, 621. 

 

  

 

1.4.1.1. Safety of Trans Fat 

 

 When compared with unsaturated fatty acids, trans fats have an undesirable 

effect on low-density lipoprotein (LDL) cholesterol and high-density lipoprotein 
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(HDL) cholesterol.  The ratio of total cholesterol to HDL cholesterol is a marker of 

cardiovascular disease risk.  Multiple studies have shown an unfavorable ratio of 

cholesterol:HDL when trans fats are increased in the diet, even compared to high-

saturated fat diets.  It has been estimated that increasing dietary trans fat by 2% may 

increase coronary disease risk by 23% (Eckel et al., 2007).  In recent years, 

restaurants and food manufacturers have taken measures to reduce trans fatty acids in 

their food products.   

 The reduction of 18:3n3 content naturally increases the relative levels of other 

fatty acids in the soybean.  The 18:3n3 may be replaced with oleic (18:1n-9), linoleic 

(18:2n-6), stearic (18:0), or palmitic (16:0) fatty acids.  For health considerations, an 

increase in the monounsaturated oleic acid would be desirable.  However, when 

18:3n3 is reduced, there is often an increase in saturated fatty acids.  This contributes 

to the stability of the oils, but a higher intake of palmitic acid may have deleterious 

health effects (Warensjo et al., 2008).  An increase in dietary stearic acid intake has 

been evaluated as non-significant to cardiovascular risk, even though it is a saturated 

fatty acid (Baer et al., 2003; Warensjo et al., 2008).  Cultivars have been developed 

with both low palmitic and low α-linolenic traits (Cherrak et al., 2003).  This is a 

good combination of traits from the perspective of health value, because saturated fats 

as well as trans fats are reduced in the final food product. 

 

 1.4.1.2. Health Effects of Lipid-Modified Soybeans – Long Chain  

Polyunsaturated Fatty Acids (PUFA) 

 

 α -Linolenic acid is an omega-3 fatty acid, as the first double bond is at the 

third carbon from the methyl group on the carbon backbone.  Omega-3 fats are the 



 

 20 

 

subject of much research due to their potential for reducing inflammatory diseases in 

humans (Kris-Etherton, 2010).  The recommended ratio of omega-6 to omega-3 fats 

in the human diet is approximately 3 to 1.  This ratio in non-modified soybean oil is 7 

to 1.  When modified to 3% 18:3n3, the ratio becomes approximately 18 to 1.  From 

this perspective, reduction of 18:3n3 will further decrease the intake of beneficial 

omega-3 fats, particularly in light of the large intake of soybean oil in the American 

diet.  However, it has been reported that the benefit of reducing trans fats likely 

outweighs the harm of reducing a-linolenic acid intake (Lichtenstein et al., 2006). 

  

 1.4.1.3. Health Effects of Lipid Modified Soybeans – Tocopherols 

 

 Previous research has shown that low α-linolenic soybeans have reduced 

tocopherol content, and indicated that there is a linear correlation between 

tocopherols and 18:3n3 levels (Almonor et al., 1998; Dolde et al., 1999; McCord et 

al., 2004).  Normand et al. (2003) reported a lower initial level of tocopherols in low 

α-linolenic soybean oil compared to regular soybean oil.  Additionally, after frying, 

the tocopherols in the low α-linolenic oil degraded more quickly, and the oil produced 

more polar compounds (oxidation products) than the regular soybean oil.  However, 

McCord et al. (2004) reported that some low- α-linolenic genotypes did have an 

equivalent tocopherol level as standard soybeans, and that selection for high levels of 

tocopherol in these soybeans may be possible. 

1.4.2. Additional Lipid-Modified Soybeans Through Breeding 

Efforts 

 

 Decreasing saturated fatty acids (18:0 and 16:0) through breeding efforts and 

genetic modification has been a goal for some soybean producers.  Foods must 
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contain 1 gram or less saturated fat per serving to be labeled as low in saturated fat 

(Fehr, 2007).  Soybean oil should contain less than 7% 16:0 and 18:0 combined to 

meet this guideline (Fehr, 2007).  The first low-saturated soybean oil available 

commercially was sold in 1997, and was used by the USDA National School Lunch 

Program.  However, canola oil remains lower in total saturated and is less costly to 

produce.  Thus the use of low-saturated soybean oil has not gained commercial 

popularity (Fehr, 2007).  

 Increased oleic acid (18:1n-9) is also a goal of soybean breeding programs, 

due to the stability of this monounsaturated fatty acid (Fehr, 2007).  Soybean oil with 

50% 18:1n-9 and 1% 18:3n3 was developed by Iowa State University.  This oil 

demonstrated oxidative stability of 15 hours, while the reduced 18:3n3 with normal 

18:1n-9 content had only 9 hours of oxidative stability (Fehr, 2007).  High oleic 

(18:1n-9) soybeans have also been produced with 80-90% oleic acid content.  This oil 

has demonstrated good stability, but Warner & Gupta (2005) found it had poor flavor 

in sensory tests of fried potato chips.  Mixing high-oleic and low- α-linolenic in a 1:1 

ratio proved the best combination for stability and flavor in that study.  The Pioneer 

seed brand has produced a high-oleic soybean with 75% 18:1n-9, and 3% 18:3n3, 

which was approved for cultivation in 2010 (Pioneer Hi-Bred International, 2011).  

The company reports extended frying time of 2 to 3 times that of conventional 

soybean oil and extended shelf life measured by peroxide value. 

1.4.3. Lipoxygenase-Modified Soybeans 

 

 Soybean lipoxygenase catalyzes the oxidation of unsaturated fatty acids that 

contain a cis, cis-1,4-pentadiene moiety (Robinson et al., 1995).  The presence of this 
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enzyme is sometimes considered desirable in soy flour, as it can bleach wheat flour to 

improve the color in baking (Wolf, 1975).  The unfavorable result of the LOX-fatty 

acid reaction is the formation lipid hydroperoxides.  These hydroperoxides are broken 

down by hydroperoxide lyase into hexanal and hexanol compounds that have an 

undesirable odor and flavor (Wang et al.,1997).  These sensory characteristics are 

detectable in products when soy flour is greater than 2 to 4 % of the ingredients 

(Wolf, 1975).  The beany or grassy flavor is easy to recognize in unprocessed soy 

foods, and may discourage consumers from using soy products (Wolf, 1975).  The 

free radical compounds that are produced by the LOX reaction can also destroy the 

beneficial health components of the soy flour such as tocopherols and carotenoids 

(Nishiba & Suda, 1998).  The soybean LOX enzyme can be inactivated by heat 

processing or acid treatment.  Typically soy meal or flour is treated with heat to 

inactivate anti-nutritional factors such as trypsin inhibitor, and this will also reduce 

the lipoxygenase activity.  However, the same processes may reduce the 

phytochemical content of soy flour or reduce the protein quality (Wolf, 1975).   

 There are three major LOX isoenzymes (LOX-1, 2, and 3) known in soybeans 

(Axelrod et al., 1981).  LOX-1 is most active at pH 9, while LOX-2 and LOX-3 are 

active between pH 6 and 7.  LOX-1 is the most prevalent isoenzyme in soybeans and 

is the most heat-stable (Matoba et al., 1985).  Although LOX-1 is most prevalent, 

LOX-2 has demonstrated higher production of hexanal than other isoenzymes 

(Matoba et al., 1985).  Interestingly, Hildebrand et al. (1990) reported that presence of 

LOX-3 reduced the formation of hexanal in soybean homogenate.  These authors 
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suggested that LOX-3 converts hydroperoxylinoleic acid into products that are not 

available to hydroperoxide lyase, so that hexanals cannot be formed. 

 The level of LOX in soybean has been positively correlated with the level of 

hexanal volatiles detected in soymilk (Achouri, et al., 2008).  There has been an effort 

to breed soybean cultivars that are null for one or more LOX isoenzymes in the hope 

of improving the taste of soy foods.  Some studies have indicated that LOX-null 

products do have reduced hexanal content and improved sensory acceptability (Furuta 

et al., 1996; Tran et al., 1992; Yuan et al., 2008).  Others have indicated that the off-

flavors persist even in LOX-null soy products.   Iassonova et al. (2009) reported the 

presence of another enzyme that uses phospholipids as a substrate and produces 

volatile compounds similar to the LOX products.  Additionally, Matoba et al. (1985) 

found continued hexanal production in soy homogenate after the heat-deactivation of 

LOX.  Lei & Boatright (2008) reported that hexanal was formed in soy protein isolate 

without LOX activity when reducing agents were present.  They also found that 

transition metals, and iron in particular, acted as catalysts for hexanal formation. The 

combined evidence suggests that inactivation or elimination of LOX may improve 

soy food flavor, but may not completely eliminate hexanal volatiles.  Additional 

enzymes, such as peroxidase, and other soy protein components may be partly 

responsible for volatile components in soy foods. 

 The soybean line, food ingredients, and processing conditions may all affect 

the particular activity of LOX in a food product (Kumar et al., 2003; Yuan et al., 

2008).  For example, cultivar and environmental conditions have shown to effect 

LOX activity in soybeans (Kumar et al., 2003).  The processing pH may also affect 
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the isozyme activity and subsequent hexanal production.  Additionally, the LOX 

enzyme prefers free fatty acids as a substrate, while soybeans contain mostly 

triacylglycerols (Matoba, et al., 1985).  The addition of free fatty acids as food 

ingredients can increase the production of hexanal in a soy-based food. 

 

1.4.3.1. Health Aspects of Lipoxygenase-Modified Soybeans 

 

 There is little published data about the effect of lipoxygenase modification on 

the nutrient and phytochemical profile of soybeans.  Oliveira et al. (2007) reported 

that LOX-null soybeans in Brazil contained higher levels of total isoflavones than the 

non-modified parent soybean cultivar.  Nishiba & Suda (1998) reported that non-

modified soybeans lost vitamin and antioxidant capacity much more rapidly than 

LOX-null soybeans when homogenated in water.  Based on these findings, it may be 

possible that LOX-null soybeans have higher initial levels of health-beneficial 

components.  It is also possible that the phytochemicals are better preserved against 

degradation in LOX-null soybeans.  It is of interest to study Maryland-grown soybean 

lines with modified LOX content to determine variation in antioxidant capacity and 

chemical composition.  These lines could be useful for improved flavor and stability 

in functional soy foods. 

1.5. Influence of Genotype and Environment 

 

 It is accepted that the traits of agricultural crops vary by genotype and by the 

environmental conditions in which they are grown (Moore et al., 2006a; Wang & 

Zheng, 2001).  Additionally, there is frequently an interaction shown between 

genotype and environment.  Moore et al. (2006a) described the effect of genotype and 
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environment on the antioxidant properties of winter wheat bran.  They found that 

genotype, environment, and their interaction had significant influence on the 

antioxidant capacity.   In soybeans, there have been several studies on the effects of 

genotype and environment on isoflavones (Hoeck et al., 2000; Riedl et al., 2007; 

Seguin et al., 2004; Wang & Murphy, 1994).  The effects of these variables on 

protein and oil content, as well as fatty acid composition, have also been investigated.  

Additional studies have discussed tocopherols, lutein, and antioxidants (Dolde et al., 

1999; Kanamaru et al., 2006; Lee et al., 2004; Prakash, Upadhyay, Singh, & Singh, 

2007). 

 Eldridge and Kwolek (1983) described variation in the isoflavone levels of 

defatted soy flour in different lines grown at the same location.  They also reported 

variation in the same line grown at different locations, and also variation by growing 

season. Wang and Murphy (1994) found that growing season had more effect on 

isoflavone levels than growing location.  Several groups have reported interactions 

between genotype, location, and year that affected isoflavone levels (Hoeck et al., 

2000; Lee et al., 2003; Riedl et al., 2007; Seguin et al., 2004).  In most cases it was 

still possible to identify genotypes that typically produced high or low isoflavone 

levels.  

  The differences between locations and years are often related to the effects of 

temperature and precipitation.  Tsukamoto et al. (1995) studied 7 lines with four 

different planting dates within one season.  They reported that earlier planting dates 

resulted in lower levels of total isoflavones.  This early planting corresponded to 

higher temperatures during seed development.  Britz et al. (2011) also found that 
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soybeans from early maturity groups were most likely to be influenced by growing 

season and location compared to late maturity groups (due to more fluctuation in 

temperature or precipitation at critical growth stages).  Rasolohery et al. (2008) 

demonstrated that soybeans grown at low temperature (13-23 °C) in a controlled 

environment had significantly higher isoflavone levels than those grown at 18-28 °C 

or 23-33 °C.  Riedl et al. (2007) did not report a significant effect of temperature, but 

showed that increasing precipitation levels correlated with increased isoflavones.  

Bennett et al. (2004) found that applied irrigation increased isoflavone levels by as 

much as 2.5 times.  Overall, literature supports the findings that soybean isoflavone 

levels increase with lower temperatures and higher levels of irrigation or precipitation 

during the seed development. 

 Several studies have reported the variation in antioxidant activity by genotype 

of soybean (Lee et al., 2004; Prakash et al., 2007; Tepavcevic et al., 2010).  Few have 

discussed antioxidant activity in relation to growing environment or year.  However, 

isoflavones are a strong predictor of some measures of antioxidant activity and much 

data already exists for these as indicated above.  Riedl et al. (2007) measured DPPH 

radical scavenging capacity as well as total phenolic content (TPC) in Ohio soybeans, 

and compared them among locations.  TPC did show significant variation by growing 

locations, which is expected because the TPC was also highly correlated to isoflavone 

level.  That study did not find a significant effect of growing location on the DPPH 

radical scavenging capacity. 

 The total oil and individual fatty acid levels are also affected by temperature 

during development of the soybean. Ray et al. (2008) found that early planting date 
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(higher temperature during seed fill) resulted in higher oil content and higher palmitic 

acid (16:0), yet lower levels of 18:3n3 fatty acid.  Genotype × planting date 

interactions were also observed.  Previous studies have also confirmed the 

relationship between growing temperature and 18:3n3 level (Oliva et al., 2006; 

Wilcox & Cavins, 1992). 

 The tocopherol composition of soybeans is known to be variable by both 

genotype and environment.  Dolde et al. (1999) reported that genotype and growing 

location had an effect on tocopherol levels, and the genotype had a stronger effect 

than location.  They found that total tocopherols were elevated at lower growing 

temperatures.  Almonor et al. (1998) found opposite results in low-linolenic modified 

soybeans.  Britz and Kremer (2002) found that soybeans grown at higher 

temperatures and in drought conditions increased the level of α-tocopherol compared 

to δ-tocopherol.  Seguin et al. (2010) reported an increase in α-tocopherol levels in 

seeds with an early planting date (mid-May), and higher δ-tocopherol at later planting 

dates (mid- to late June).  Results were still highly variable over the 6 environments 

in the study.  While there is a correlation between environment and tocopherol levels, 

it has not been consistent in previous research.  This may be explained by an 

interaction between genotype and environment.  

  The variation of lutein content of soybeans has been described in some 

studies.  Kanamaru et al. (2006) found significant variation in lutein among different 

soybean genotypes.  Lee et al. (2009) reported significant variation in the same 

genotypes across 4 environments, although year and planting date did not have 

significant effect.  The proposed reason for environmental variation was not 
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addressed in that study.  The same group also found that lutein level was positively 

correlated with 18:1n-9 and negatively correlated with 18:3n3.  Seguin et al. (2011) 

studied lutein content of soybeans among 4 environments and over 2 growing 

seasons.  Seeding date and environment were significant factors in lutein variation, 

but no consistent trend was identified.  The specific environmental effects on lutein 

level of soybeans have yet to be determined. 

 In summary, soybeans contain several bioactive components that may 

positively affect human health.  The literature has shown that multiple factors may 

influence the composition of soybeans.  Soybeans modified for specific traits such as 

reduced LOX and 18:3n3 may have improved stability and sensory properties 

compared to non-modified soybeans.  It is of interest to determine the factors that 

affect nutritional quality and health benefits of soybeans grown in Maryland.  

Previous research has not specifically addressed the potential effect of genotype and 

environment on isoflavone composition and antioxidant capacity of reduced 18:3n3 

soybeans.  There is also little previous research on nutraceutical composition of 

modified-LOX soybeans.  Study of these modified soybean lines is necessary to 

determine how they can be effectively used for development health beneficial foods. 

1.6. Methods for Soybean Research 

 1.6.1. Gas Chromatography for Fatty Acid Characterization 

 

 Gas chromatography (GC) is a commonly used technique for identification of 

fatty acids in oil.  Helium is the carrier gas, and a fused silica capillary column is the 

stationary phase.  A flame ionization detector (FID) fueled by hydrogen gas detects 

compounds as they are eluted from the column.  The FID is best suited to detect 
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carbon-carbon or carbon-hydrogen bonds (Reineccius, 2003).  To create a volatile 

sample, the triacylglycerols are saponified and esterified to form fatty acid methyl 

esters (FAMEs) (Reineccius, 2003).  Compounds analyzed through gas 

chromatography must be volatized at high temperatures of 250 degrees C.  Lipids are 

suited to this method after preparation. 

 An advantage of GC with FID is high sensitivity in analysis.  A disadvantage 

is that time-consuming sample preparation is required, which may alter the sample 

components (Reineccius, 2003).  

1.6.2. High Performance Liquid Chromatography for Isoflavone 

Analysis 

 

 High performance liquid chromatography (HPLC) is a pressurized system that 

separates compounds based on partition between the stationary phase in the column 

and liquid solvent(s) (Rounds & Gregory, 2003).  In normal phase HPLC, the 

stationary phase is polar and the mobile phase is non-polar.  Reversed-phase HPLC 

uses a non-polar stationary phase (such as an octadecyl chain), and a polar mobile 

phase   Solutes are retained in the column based on hydrophobicity.  Increasing the 

percentage of organic solvent in the mobile phase will decrease retention time 

(Rounds & Gregory, 2003).  For isoflavone separation, reversed-phase HPLC with 

ultraviolet-visible (UV-vis) detection is typically used.  Water and a polar solvent 

such as acetonitrile or methanol compose the mobile phase (Collison, 2008; Klump et 

al., 2001; Penalvo et al., 2004). 

 Advantages of HPLC analysis are speed of analysis, and high sensitivity if the 

appropriate detector is used.  A disadvantage is the requirement for volatile solvents 



 

 30 

 

in the mobile phase.  Another disadvantage is that samples usually require preparation 

and filtering prior to analysis (Rounds & Gregory, 2003). 

 Extraction conditions for isoflavone analysis have been thoroughly 

investigated by several authors (Lin & Giusti, 2005; Luthria et al., 2007; Murphy et 

al, 2002).  As isoflavones exist in different forms, the solvent choice can affect the 

quantification of each form depending on hydrophobicity.  Hydrolysis with base will 

cleave acetyl- and malonyl- groups, leaving only β-glucosides and aglycones.  

Complete acid hydrolysis will leave only aglycones present.  The current preference 

is to avoid hydrolysis and measure all 12 isoflavone forms (Collison, 2008).  

However, the hydrolysis step simplifies quantification and reflects the composition of 

isoflavones after digestion.  

  Murphy et al. (2002) reported that aqueous acetonitrile (53%) was the most 

favorable extraction solvent for isoflavones compared to the same concentration of 

acetone, ethanol, or methanol.  Lin and Giusti (2005) found that 58% acetonitrile was 

better than 80% methanol or 83% acetonitrile.  However, Luthria et al. (2007) 

reported that dimethyl sulphoxide:ethanol:water (5:75:25, v/v/v) was an optimal 

extraction solvent.  The method of extraction also significantly influenced total 

isoflavone recovery, with pressurized liquid extraction or sonication producing the 

highest levels.  The choice of extraction method and solvent may depend on the food 

matrix and the overall purpose of the analysis.  

1.6.3. Tocopherol and Carotenoid Analysis 

 

 Reversed-phase HPLC is also described in the literature for detection of 

tocopherols and carotenoids.  Often samples are saponified to reduce extraneous 
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compounds in the oils prior to analysis.  However, the process of saponification 

exposes the samples to heat and a strong base, which may result in loss of some of the 

carotenoids.  Tocopherols and carotenoids are not soluble in water, so a polar organic 

solvent is more suitable for the mobile phase (Gimeno et al., 2000).  Methods for 

simultaneous detection of tocopherols and carotenoids have been described (Darnoko 

et al., 2000).  If UV detection is used, tocopherols are detected at 295 nm and 

carotenoids at 450 nm.  However, some UV detectors cannot read both wavelengths 

simultaneously and another detection system is required. 

 1.6.4. Antioxidant Analysis 

 

Antioxidant capacity has been defined as the ability of a substance to prevent 

or delay deterioration by oxygen (Huang et al., 2005).  There are multiple types of 

free radicals and different sources of antioxidants within a biological system.  While 

there are several assays that can determine aspects of antioxidant capacity, but there is 

not one single assay to determine total antioxidant capability (Prior et al., 2005).  

There is also lack of standardization in antioxidant assays between laboratories.  The 

results of one assay reported by a laboratory are only true under specific conditions, 

which may not correlate to a biological system (Huang et al., 2005).  Several 

antioxidant assays are required to determine the scope of antioxidant capacity of a 

single compound. 

 Assays for antioxidant capacity typically measure either single electron 

transfer reactions (SET) or hydrogen atom transfer reactions (HAT).  HAT reactions 

occur during the chain-breaking reactions during the propagation stage of 

autoxidation, and thus can inhibit formation of peroxyl radical.  Assays involving 
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HAT reactions include oxygen radical absorbance capacity (ORAC), total radical 

trapping antioxidant parameter (TRAP), Crocin bleaching, and LDL oxidation 

inhibition.  SET reactions include Trolox equivalent antioxidant capacity (TEAC), 

total phenolic content assay (TPC), and 2,2-diphenyl-1-picryhydrazyl (DPPH) 

(Huang, et al., 2005).  Assays have been developed to detect scavenging of ROS or 

reactive nitrogen species (RNS) using mechanisms other than those previously 

described.  These include hydroxyl radical scavenging capacity (HOSC), singlet 

oxygen scavenging capacity, and peroxynitrite scavenging capacity (Huang et al., 

2005). 

 In measuring antioxidant capacity of food compounds, it is recommended to 

choose assays that quantify physiological radicals.  In this respect, ORAC and HOSC, 

and LDL oxidation inhibition assays are advantageous.  Huang et al. (2002) identified 

the area under the curve (AUC) quantification method as a recommended measure in 

some antioxidant assays. 

  

1.6.4.1. Total Phenolic Content 

 

 The total phenolic content is measured in an assay with the Folin-Circlet (FC) 

reagent (phosphomolybdate and phosphotungstate).  The TPC assay is an electron 

transfer reaction; under basic conditions the phenol becomes a phenolate anion and 

reduces the FC reagent (Huang et al., 2005).  The reagent color turns from yellow to 

blue upon reduction.  After 2 hours, the reaction is measured with a 

spectrophotometer at 765 nm. 

 Singleton and Rossi developed a standardized TPC method to produce 

consistent results (Singleton & Rossi, 1965).  The method includes reaction time, 
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temperature, and ratio of reagent volumes.  The phenolic content of the samples is 

calculated based on a standard curve using gallic acid.  The TPC assay is widely 

performed in antioxidant studies and has good correlation with other assays such as 

Trolox Equivalent Antioxidant Capacity (TEAC) (Huang et al., 2005).  However, 

many other organic and inorganic compounds can interfere in the reaction (Prior et 

al., 2005). 

  

1.6.4.2. Hydroxyl Radical Scavenging Capacity (HOSC) 

 

 The hydroxyl radical (·OH) is a highly reactive physiological molecule that 

can damage lipids, proteins, and DNA (Huang et al., 2005).  The HOSC assay 

developed by Moore et al. (2006) measures antioxidant capacity against OH radical 

generated by the Fenton reaction of Fe(II) and H2O2.  Fluorescein is the fluorescent 

probe, and the reaction can be measured in a 96-well plate reader.  The antioxidant 

prevents degradation of the fluorescein by the ·OH.  The antioxidant activity is 

calculated by the area under the curve of fluorescein degradation compared with the 

blank (Cheng et al., 2006).   

 The method described by Moore et al. (2006) has been verified by ESR.  The 

HOSC method is a hydrogen atom transfer assay (HAT), which is similar to the 

physiological lipid peroxidation reaction.  Additionally, the HOSC assay is conducted 

at a physiologic pH and may be a good reflection of radical scavenging under 

physiologic conditions (Cheng et al., 2006). 



 

 34 

 

  

 

 

 

1.6.4.3. Oxygen Radical Absorbing Capacity (ORAC) 

 

  The oxygen radical absorbing capacity assay was first developed by Cao et al. 

(1993).  The method detects the radical scavenging ability of a chain-breaking 

antioxidant against peroxyl radical.  The radical is generated by 2,2' -azobis(2-

amidinopropane) dihydrochloride (AAPH) (Ou et al., 2001).  Cao and Cutler used B-

phycoerythrin (B-PE) as a fluorescent probe.  Later, Ou et al. developed a method 

using fluorescein as the fluorescent probe that is accurate when conducted with a 96-

well plate reader (Ou et al., 2001).  AAPH degrades the fluorescent capacity of 

fluorescein over time at 37 degrees C.  The antioxidant capacity of a sample is 

measured by the area under the curve of fluorescein degradation compared with the 

blank (Ou et al., 2001).  Trolox, a vitamin E analog, is used as the standard to 

compare antioxidant activity of the sample.   

 The ORAC assay measures scavenging of a physiological radical, which 

makes it more relevant than some other antioxidant testing methods (Moore & Yu, 

2008).  It is also conducted at a physiological pH (7.4).  The described method 

measures only hydrophilic antioxidant capacity, whereas another method would be 

needed to measure hydrophobic antioxidant capacity (Ou et al., 2001). 

  

1.6.4.4. Relative DPPH· Scavenging Capacity (RDSC) 

 

 2,2-diphenyl-1-picryhydrazyl (DPPH) is a commercially available, stable free 

radical.  When reduced by an antioxidant compound, the color of the DPPH· solution 

decreases.  The decreased light absorbance is measured by a spectrophotometer over 
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time to quantify the rate of the reaction (Huang et al., 2005).  DPPH radical 

scavenging value has typically been reported as percent DPPH· scavenged over time, 

however there is little consistency between laboratories due to differences in methods 

(Cheng et al., 2006).  Cheng et al. (2006) reported a high-throughput DPPH· 

scavenging assay measured in Trolox equivalents that can be compared between 

laboratories.  Absorbance of standards and samples is measured at equal time points 

and the AUC is determined.  Trolox equivalent is determined by a standard curve of 

known Trolox concentration (Cheng et al., 2006). 

 The DPPH· assay can be measured in different solvents, both polar and non-

polar (Cheng et al., 2006).  It is also a simple and quick assay to perform, if a micro-

plate reader is used.  A disadvantage is that it is not a physiological radical, so results 

do not correlate well with assays such as ORAC or OH radical scavenging.  It may 

also have a reversible reaction with some phenols, such as eugenol, and so the 

accurate reaction rate may not be determined (Huang et al., 2005). 

  

1.6.5. Lipoxygenase Measurement in Soybean 

 

 Programs that breed modified LOX seeds require efficient methods for LOX 

testing.  Most of the popular methods measure the color change of a probe after 

reaction with linoleic hydroperoxide.  In the method described by Axelrod et 

al.(1981), purified LOX is combined with linoleic acid in a buffer solution.  The 

hydroperoxide formation is measured by a spectrophotometer at 234 nm.  The pH of 

the reaction mixture is 9.0 for LOX-1, 6.1 for LOX-2, and 6.5 for LOX-3.  Suda et al. 

(1995) developed a method to measure the bleaching of methylene blue and β-

carotene by linoleic hydroperoxide.  This method uses soybean aqueous extract and 
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linoleic acid.  Methylene blue is used as a probe for LOX-1 and LOX-2, and β-

carotene is used for LOX-3.  The time is measured until bleaching begins to quantify 

the strength of the LOX.  Other colorimetric methods have been reported, such as 

measurement of the Fe
3+

 - xylenol orange complex (Waslidge & Hayes, 1995) or the 

DMAB-MBTH method (Anthon & Barrett, 2001).  These methods are not 

quantitative and impurities in the samples may interfere with absorbance.  The uptake 

of O2 as measured by electrode is also described by Axelrod et al. (1981).  Although 

it is quantitative, the authors note that this method is not always accurate in 

measuring LOX-2 and LOX-3.   



 

 37 

 

Chapter 2: Effect of Genotype and Environment on 

Nutraceutical Properties of Low α-Linolenic Soybeans 
 

Adapted from Whent et al., J. Agric. Food Chem. 2009, 57, 10163-10174 

 

 

2.1. Abstract 

 

 Soybeans contain several health-enhancing nutrients and phytochemicals, 

including isoflavones, carotenoids, and essential fatty acids.  Previous research has 

shown that these properties may vary by soybean genotype and growing conditions.  

Eight soybean genotypes grown in 3 environments in Maryland were analyzed for 

total phenolic content (TPC), antioxidant capacity, isoflavone composition, lutein, 

tocopherols, and fatty acid composition.  Soybean samples consisted of 7 low α-

linolenic acid (18:3, n-3) genotypes and 1 standard genotype for comparison.  Fatty 

acid composition, isoflavones, lutein, tocopherols, and specific antioxidant assays had 

significant variation by genotype (P < 0.05).  Environment had a significant effect on 

fatty acids, lutein, individual tocopherols, oxygen radical absorbing capacity 

(ORAC), and the isoflavone glycitein (P < 0.05).  Analysis of interaction between 

genotype and environment showed a significant effect on antioxidant capacity, 

isoflavones, lutein, tocopherols, and fatty acids (P < 0.05).  18:3 n-3 content was 

positively correlated with palmitic acid (16:0) (r = 0.519, P < 0.001), and with total 

isoflavones (r = 0.422, P < .001).  The results of this study show that the genotype, 

growing environment, and their interactions in Maryland-grown low α-linolenic acid 

soybeans may alter the levels of specific health-enhancing properties.   
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2.2. Introduction 

 

Soybeans contain numerous compounds that are beneficial to human health.  

In recent years, soy compounds have been evaluated for their role in prevention of 

cardiovascular disease, cancer, osteoporosis, and other diseases (Xiao, 2008).  Soy is 

used in a line of food products, and many people select soy foods out of desire for a 

healthier diet (Schyver & Smith, 2005). 

 Soybean oil composes a large portion of the American diet, mainly due to its 

presence in processed foods (Ash et al., 2006).  Soy oil contains 7% α-linolenic acid 

(18:3n3), an unstable fatty acid that can be easily oxidized (Wilson, 2004).  With this 

level of 18:3n3, soy oil is hydrogenated during processing to prevent the off-flavors 

associated with autoxidation (Wilson, 2004).  Hydrogenation of oil may produce 

harmful trans fatty acids that are associated with the increased risk of cardiovascular 

diseases (Eckel et al., 2007).  Through cross-breeding and genetic modification, 

soybeans have been developed with reduced levels of 18:3n3.  The oil of these 

soybeans can be used in processed foods without the need for hydrogenation (Fehr, 

2007).  Because the FDA has mandated labeling of trans-fats in foods, demand for 

soybeans low in 18:3n3 has increased (Fehr, 2007).  Our previous research has 

demonstrated that low 18:3n3 soybean genotypes grown in Maryland may possess 

similar antioxidant capacity, isoflavone, tocopherol, and carotenoid composition to 

the non-modified genotypes (Slavin et al., 2009).  

It has previously been shown that the nutrient composition in food crops is 

affected by genotype (G), environment (E), or interaction between G and E (G × E) 

(Wang & Murphy, 1994; Moore et al., 2006; Riedl et al., 2007).  Moore et al. (2006) 
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reported an effect of G, E, and G × E on phenolic acid composition and antioxidant 

capacity in hard winter wheat grain.  They also observed an effect of elevated 

temperature on total phenolic content in wheat lines grown in Colorado.  G, E, and 

interaction between G and E are known to cause variation in soybean components 

(Wang & Murphy, 1994).  In 1994, Wang & Murphy found that the ratio of 

isoflavone isomers in soybeans varied due to differences in G.  They also found that 

growing season and location had an effect on the levels of isoflavones.  Britz et al. 

(2008) reported variation in soybean tocopherol levels related to growing season, 

genotype, and location.  Lee et al. (2009) reported the effect of environmental 

conditions on lutein content in soybeans.  However, no previous study has examined 

the effect of G, E, and their interaction on antioxidant properties and other health-

enhancing components of soybeans bred for low α-linolenic acid.  

Individual environmental factors such as temperature and 

precipitation/irrigation have been shown to affect the isoflavone composition of 

soybeans (Riedl et al., 2007).  Furthermore, the effects of growing conditions on 

soybean isoflavone contents depended on the soy genotype, and genotype of soybean 

accounted for the potential for isoflavone production.  The study of Ohio soybeans by 

Riedl et al. (2007) found that precipitation rather than temperature was correlated 

with isoflavone levels.  Soybean fatty acid composition may also vary by exposure to 

environmental conditions.  It was found that warmer growing temperatures might 

increase α-linolenic acid (18:3n3) and linoleic acid (18:2n6), but might decrease the 

levels of oleic acid (18:1n9) (Wilson, 2004).  Ray et al. (2008) found that soybeans 

with an earlier planting date had reduced 18:3n3 compared to those with a later 
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planting date.  These previous research data indicated possible effects of G, E, and G 

× E on chemical compositions in soybeans with reduced α-linolenic acid content.  

Therefore, the present study was conducted to determine whether and how G, E, and 

G × E may alter the selected health components and antioxidant properties of 

Maryland-grown low α-linolenic soybeans.  This research is part of our continuous 

effort to enhance the value-added production of Maryland-grown soybeans. 

2.3. Materials and Methods 

2.3.1. Materials and Chemicals 

 

Whole soybeans from the 2007 growing season were collected by Dr. William 

Kenworthy of the Department of Plant Sciences and Landscape Architecture, 

University of Maryland, College Park.  Seven genotypes were modified for reduced 

18:3n3 and one was a non-modified cultivar commonly grown in Maryland.  The 

soybeans were products of a traditional breeding program.  The selected soybeans 

were grown at two locations in Maryland, one of which had both a full season and a 

double crop planting. Thirty percent ACS-grade hydrogen peroxide was purchased 

from Fisher Scientific (Fair Lawn, NJ).  2,2’-azobis(2-aminodopropane) 

dihydrochloride (AAPH) was purchased from Wako Chemicals USA (Richmond, 

VA).  Fluorescein (FL), iron (III) chloride, 2,2-diphenyl-1-picryhydrazyl radical 

(DPPH), and 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) were 

purchased from Sigma-Aldrich (St. Louis, MO).  All other chemicals and solvents 

were of the highest commercial grade and used without further purification. 
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2.3.2. Oil Extraction 

 

 Whole soybeans were ground to particle size 20-mesh using a handheld coffee 

bean grinder.  Five grams of ground soybeans were combined in a tube with 10 mL of 

petroleum ether.  Tubes were vortexed for 15 seconds, and held 20 hours at ambient 

temperature in the dark.  The supernatant was removed and stored.  The extraction 

was repeated twice.  The petroleum ether was evaporated overnight under nitrogen, 

and the remaining oil was weighed.  The oil samples were stored in the dark until 

further testing. 

2.3.3. Antioxidant Extraction 

 

 The defatted soy flour that remained following oil extraction was air-dried 

overnight at ambient temperature.  One gram of each soy flour sample was combined 

in a test tube with 10 mL 50% acetone.  The tubes were vortexed 3 times for 15 

seconds each, and kept in the dark at ambient temperature overnight.  The supernatant 

was removed and filtered, and stored in the dark until further testing. 

2.3.4. Fatty Acid Composition 

 

 The soybean oil was prepared for gas chromatography (GC) analysis 

according to a previously described procedure (Yu et al., 2002).  The soybean oil was 

saponified and methylated to form fatty acid methyl esters (FAME), and dissolved in 

iso-octane.  GC analysis was performed with a Shimadzu GC-2010 with FID.  

Helium was the carrier gas at a flow rate of 2.2 mL/min.  The stationary phase was a 

fused silica capillary column SP
TM

-2380 (30 m × 0.25 mm with a 0.25 µm film 
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thickness) from (Supelco, Bellefonte, PA).  Injection volume was 1 µL at a split ratio 

of 10/1.  Oven temperature started at 136 ºC, increased by 6 ºC/min until 184 ºC and 

held for 3 minutes, then increased by 6 ºC/min to a final temperature of 226 ºC.  Fatty 

acids were identified by comparing FAME retention time with that of known 

standards.  The FAMEs were quantified by calculating the area under the curve of 

each identified peak. 

2.3.5. Total Phenolic Content (TPC) 

 

The total phenolic content of each soy flour extract was determined according 

to a previously described laboratory procedure (Moore & Yu, 2008).  The final 

reagent mixture contained 50 µL of soy flour extract or standard, 250 µL of Folin-

Ciocalteu reagent, 1.5 mL of 20% sodium carbonate, and 1.5 mL of ultra-pure water, 

using gallic acid as a standard.  After 2 hours reaction time at ambient temperature, 

absorbance was read at 765 nm.  The reactions were conducted in duplicate and 

results reported in mg gallic acid equivalents (GAE) per gram of whole soybean. 

2.3.6. Isoflavone Composition 

 

 Three mL of soy flour extracts in 50% acetone were combined with 0.75 mL 

36% hydrochloric acid and heated for 2 hours in a water bath at 55 °C.  This step was 

performed to hydrolyze isoflavones to the aglycone form. The acetone was then 

evaporated under nitrogen.  The remaining solution was extracted 3 times with 4 mL 

ethyl ether/ethyl acetate (1:1, v/v), and washed with 3 mL distilled water.  The ethyl 

ether/ethyl acetate was removed using a nitrogen evaporator.  The remaining soy 

extract was quantitatively re-dissolved in 0.5 mL methanol and filtered through a 0.45 
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µm filter prior to HPLC analysis.  HPLC was performed according to a previously 

described method (Lee et al., 2007), using a Shimadzu LC-20AD with autosampler.  

The column was a Phenomenex C18 (150 × 4.6 mm, 5 µm). The eluent consisted of 

99.9% distilled deionized water with 0.1% acetic acid (v/v) (Solvent A) and 99.9% 

acetonitrile with 0.1% acetic acid (v/v) (Solvent B).  The gradient progressed from 

25% to 32% solvent B over 20 minutes.  The detection wavelength was set at 254 nm.  

Oven temperature was 30 °C.  Peak area of samples was compared to that of known 

standards to quantify isoflavone content. 

 2.3.7 Lutein Content 

 

The soybean oil samples and standards were diluted in 

methanol/acetonitrile/chloroform (7:7:6, v/v/v) and filtered through a 0.45 µm filter.  

Soybean oil was diluted 1:5 to fall within the standard curve with lutein concentration 

range of 1-10 µg/mL.  HPLC analysis was performed according to a previously 

described method (Su et al., 2002) using a Phenomenex C-18 column (250 × 4.6mm, 

5µm) with a Phenomenex security guard cartridge.  The mobile phase was isocratic, 

using methanol/acetonitrile/chloroform (45:45:10, v/v/v) with 0.05% ammonium 

acetate (w/v) in the methanol and 0.1% triethylamine (v/v) in the acetonitrile.  50 µL 

of each standard or sample was injected and run time was 10 minutes, with each 

sample conducted in duplicate.  A standard curve was developed from the known 

standards, and peak area of unknown samples was compared to this for quantification. 
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2.3.8. Tocopherol Composition 

 

Soybean oil and tocopherol standards were diluted 1:10 in methyl-tert-butyl 

ether and filtered through a 0.45 µm filter.  Reversed-phase HPLC with UV detection 

was performed according to a previously described procedure (Darnoko et al., 2000) 

with modifications.  The stationary phase was a Waters C-30 column (250 × 4.6 mm, 

5 µm).  The mobile phase consisted of methanol/MTBE/water, (81:15:4, v/v/v) 

(solvent A), and MTBE/methanol (91:9, v/v) (solvent B).  The mobile phase was run 

from 0 to 16% solvent B in 13 minutes, 100% solvent B from 13 to 23 minutes, and 

re-equilibrated with 100% solvent A from 23 to 32 minutes.  Flow rate was 1.0 

mL/min., and injection volume was 30 µL.  The UV detector wavelength was 295 

nm.  Each standard and sample was run in duplicate. 

2.3.9. Relative DPPH Radical Scavenging Capacity (RDSC) 

 

DPPH scavenging capacity was determined according to a previously 

described laboratory procedure (Cheng et al., 2006), using a Victor
3
 multilabel plate 

reader (PerkinElmer, Turku, Finland).  DPPH radical solution (0.2 mM) was prepared 

in 50% acetone and filtered through a P5 grade filter paper (Fisher Scientific).  Trolox 

standards were prepared in 50% acetone at concentrations of 6.25 µM, 12.5 µM, 25 

µM, 37.5 µM, and 50 µM.  Each final reaction mixture contained 100 µL soybean 

extract, Trolox standard, or 50% acetone (control), and 100 µL 0.2 mM DPPH 

solution.  The absorbance was read at 515 nm.  The radical scavenging capacity 

(RDSC) was calculated from the area under the curve and reported in µmol Trolox 

equivalents (TE) per gram whole soybean. 
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2.3.10. Oxygen Radical Absorbing Capacity (ORAC) 

 

The ORAC values were determined using a previously reported laboratory 

procedure with fluorescein (FL) as a fluorescent probe (Moore & Yu, 2008).  Trolox 

standards were prepared in 50% acetone at concentrations of 20, 40, 60, 80 and 100 

µM.  The other reagents were prepared in 75 mM phosphate buffer.  In the initial 

reaction, 225 µL 8.16 × 10
-8

 M FL was combined with 30 µL of sample, standard, or 

blank in a 96-well plate.  The plate was heated at 37 °C for 20 minutes in a Victor
3
 

multilabel plate reader (PerkinElmer, Turku, Finland).  25 µL of 0.36 M AAPH was 

added to each well and the fluorescence of the mixture was recorded every 2 minutes 

over a 40-minute period at 37 °C.  Excitation and emission wavelengths were 485 and 

535 nm, respectively.  The results were reported as micromoles of Trolox equivalents 

(TE) per gram whole soybean, based on area under the curve calculations (Ou et al., 

2001). 

2.3.11. Hydroxyl Radical Scavenging Capacity (HOSC) 

 

The HOSC assay was conducted using a previously reported laboratory 

procedure (Moore et al., 2006).  Trolox prepared in 50% acetone was used as the 

standard at concentrations of 20, 40, 60, 80, and 100 µM.  Fluorescein was used as a 

fluorescent probe and the assay was performed using a Victor
3
 multilabel plate reader 

(PerkinElmer, Turku, Finland).  3.43 M iron (III) chloride and 0.1999 M hydrogen 

peroxide were prepared in ultra-pure water.  9.28 × 10
-8 

 M FL was prepared in 75 

mM sodium phosphate buffer (pH 7.4).  The reaction mixture consisted of 170 µL of 

9.28 × 10
-8 

 M FL, 30 µL of sample, standard, or blank, 40 µL of 0.1999 M hydrogen 

peroxide, and 60 µL of 3.43 M iron (III) chloride.  The fluorescence was recorded 
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every 4 minutes for 4 hours.  Antioxidant capacity was calculated by area under the 

curve (AUC) described by Moore et al. (2006).  Results were reported as micromoles 

of Trolox equivalent per gram of whole soybean. 

2.3.12. Data on Environmental Conditions 

 

 The precipitation at each location during the growing season was reported by 

Kenworthy and others of the Maryland Cooperative Extension in “Agronomy Facts 

No. 32” (Kenworthy et al., 2008).  Daily temperature highs, lows, and averages were 

obtained from records kept by National Oceanic and Atmospheric Administration 

(NOAA) weather stations in the vicinity of the soybean fields. 

2.3.13. Statistical Analysis 

 

Data was analyzed using SPSS (SPSS for Windows, Version Rel. 10.0.5., 

1999, SPSS Inc., Chicago, IL).  Factorial design analysis of variance (ANOVA) was 

performed on the data using a general linear model (GLM) with three replicates, 

using genotype and environment as fixed effects. Replicates were samples from each 

test plot at each location.  Tukey’s post-hoc test was used to determine differences 

between means after ANOVA analysis.  Correlation was analyzed using a two-tailed 

Pearson’s correlation test.  Statistical significance was noted for values of p < 0.05 (α 

> 0.95). 

2.4. Results and Discussion 

 

 The soybeans used in this study were grown in 3 environments in Maryland: 

the Wye Research Center near Queenstown (full season crop), and 2 environments at 

the Poplar Hills field near Salisbury, MD (both full season and double crop soybeans 
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were analyzed and considered different environments).  The present study evaluated 

the chemical compositions and antioxidant properties of eight soybean cultivars 

grown at the three different environmental conditions.  The effects of environmental 

conditions (E), genotype (G), and the interaction between G and E (G × E) on 

chemical compositions and antioxidant properties of soybeans were also investigated.  

The environmental conditions including the precipitation and temperature highs, lows 

and averages at each location during the growing season are summarized in Table 

2.1.  In addition, the correlation between each examined chemical component and 

antioxidant property was calculated. 

2.4.1. Chemical Compositions of the Eight Soybean Cultivars 

Grown in Three Maryland Environments 

  

2.4.1.1. Oil Content and Fatty Acid Composition 

 

Oil content of the soybeans ranged from 14.0 to 18.2 g/100 g among all genotypes 

from the 3 growing locations under the experimental conditions (Table 2.2).  The 

fatty acid profiles of the soybeans under the different growing conditions might differ 

significantly (Table 2.2).  MD 05-6377 had lowest 18:3n3 concentration ranging 

from 1.04 to 1.20%, which was significantly lower than all other soybean cultivars 

from all growing locations.  AG2091V, AG3521V, and MD 05-6381 soybeans had 

18:3n3 content between 2.1-2.5%, which was significantly higher than that in MD 05-

6377 cultivar at all three locations.  This range was significantly lower than that in 

MD 04-6006, MD 05-5656, and MD 04-5217 soybeans grown at Poplar Hills (double 

cropped) in Salisbury (PD), and that in MD 04-6006, MD 05-5656 at the Wye 

Research Center location in Queenstown, Maryland (Table 2.2).  MD 05-6377  
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 Table 2.1. Environmental Conditions During Soybean Growing Season by Genotype and Environment* 

  

 

 

 

 

 

 

 

 

 

 

 

*Temperatures reported for each location and genotype represent absolute high, absolute low, average high, average and  

  overall average in ° C during 2007 season from planting to harvest. Precipitation is reported in inches. Differences among 

  genotypes at the same location are due to differing number of days to maturity.  PF: Poplar Hills full season crop  

  (Salisbury, MD), PD: Poplar Hills double cropped (Salisbury, MD), W: Wye Research Center (Queenstown, MD). 

 Abs. High (°C) Abs. Low (°C) Avg. High (°C) Avg. Low (°C) Overall Avg. (°C) Precipitation (in.) 

AG2091V /PF 36.7 6.1 29.4 15.0 22.3 9.39 

AG2091V /PD 36.7 6.1 29.6 15.2 22.5 8.68 

AG2091V/ W 37.8 11.7 28.9 20.2 24.5 9.14 

AG3521V/ PF 36.7 6.1 29.4 15.0 22.3 9.39 

AG3521V /PD 36.7 6.1 29.6 15.2 22.5 8.68 

AG3521V/ W 37.8 11.7 28.9 20.1 24.5 9.14 

MD 04-6006/ PF 36.7 6.1 29.4 15.0 22.3 9.39 

MD 04-6006 /PD 36.7 6.1 29.6 15.2 22.5 8.68 

MD 04-6006/ W 37.8 11.7 28.9 20.1 24.5 9.14 

MD 05-5656/ PF 36.7 6.1 29.4 15.0 22.3 9.39 

MD 05-5656/ PD 36.7 6.1 29.6 15.2 22.5 8.68 

MD 05-5656 /W 37.8 11.7 28.9 20.2 24.5 9.14 

MD 05-6377/ PF 36.7 6.1 29.4 15.0 22.3 9.39 

MD 05-6377/ PD 36.7 6.1 29.6 15.2 22.5 8.68 

MD 05-6377/ W 37.8 11.7 28.9 20.2 24.5 9.14 

MD 05-6381/ PF 36.7 6.1 29.4 15.0 22.3 9.39 

MD 05-6381/ PD 36.7 1.7 29.1 14.6 22.0 9.95 

MD 05-6381/ W 37.8 11.7 28.7 19.9 24.3 9.14 

MD 04-5217/PF 36.7 6.1 29.4 15.0 22.3 9.39 

MD 04-5217/ PD 36.7 6.1 29.6 15.2 22.5 8.68 

MD 04-5217/ W 37.8 11.7 28.9 20.1 24.5 9.14 

Manokin/ PF 36.7 6.1 29.4 15.0 22.3 9.39 

Manokin/ PD 36.7 1.7 29.1 14.6 22.0 9.95 

Manokin /W 37.8 11.7 28.7 19.9 24.3 9.14 
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Table 2.2.  Oil Content and Fatty Acid (FA) Composition of Soybeans* 

*Data are expressed as mean of 3 replicate plots, each tested in duplicate, ± SD (N= 6).  Oil is expressed as g/100 g of whole soybean.  

Fatty acids are expressed as g/100 g oil. All genotypes are low 18:3n3, except Manokin, which is a non-modified genotype.  Values 

marked by the same letter within each fatty acid group are not statistically different (p < 0.05).  PF: Poplar Hills full season (Salisbury, 

MD); PD: Poplar Hills double cropped (Salisbury, MD); W: Wye Research Center (Queenstown, MD). 

 

 Oil 16:0 18:0 18:1n-9 18:2n-6 18:3n3 
AG2091V /PF 18.2e ± 0.1 10.7j-l ± 0.1 4.6b-d ± 0.2 31.0ef ± 2.1 51.4d ± 2.12 2.3bc ± 0.0 
AG2091V /PD 17.3de ±1.3 11.1lm ± 0.4 6.1f-h ± 0.3 26.9cd ± 1.4 55.0gh ± 1.4 2.5cd ± 0.1 
AG2091V/ W 16.6b-e ±0.5 10.8j-l ± 0.1 4.2ab ± 0.1 32.3fg ± 0.5 50.6d ± 0.5 2.2b ± 0.0 
AG3521V/ PF 16.9c-e ± 0.2   10.5jk ± 0.2 5.0d ± 0.6 26.0c ± 1.4 56.5hi ± 2.2 2.5cd ± 0.1 
AG3521V /PD 17.5de ± 2.0  10.6jk ± 0.1 4.8d ± 0.0 22.0ab ± 0.3 59.7h ± 0.2 2.5de ± 0.1 
AG3521V/ W 16.7b-e ± 0.5    10.5j ± 0.1 3.8a ± 0.0 26.5c ± 0.6 56.7hi ± 0.6 2.5cd ± 0.1 
MD 04-6006/ PF 14.6a-c ± 1.3        6.8f ± 0.1 6.3g-i ± 0.1 36.5 i ± 0.7 47.2c ± 0.7 3.1ef ± 0.1 
MD 04-6006 /PD 14.6a-c ± 0.4    7.6g ± 0.2 5.5e ± 0.1 27.9cd ± 1.2 55.1gh ± 1.1 3.5fg ± 0.1 
MD 04-6006/ W 16.1a-e ± 3.7       6.8f ±  0.1 4.6b-d ± 0.1 41.4l ± 1.2 43.9a ± 0.9 3.6hi ± 0.2 
MD 05-5656/ PF 14.0a  ± 1.0     6.0e  ± 0.1 5.9e-h ± 0.3 37.4jk ± 1.5 47.6c ± 1.6 3.1ef ± 0.1 
MD 05-5656/ PD 15.7a-e  ± 2.3  5.8c-e ± 0.2 6.7l ± 0.1 39.9l ± 0.3 44.1ab ± 0.2 3.5fg ± 0.1 
MD 05-5656 /W 14.3ab  ± 0.2     6.0e ± 0.1 4.6b-d ± 0.1 39.3kl ± 0.8 46.5c ± 0.9 3.6hi ± 0.2 
MD 05-6377/ PF 16.3a-e ± 0.2     4. 3a ± 0.1 5.0ef ± 0.3 34.3gh ± 0.1 54.7f-h ± 0.3 1.0a ± 0.04 
MD 05-6377/ PD 17.2de ± 0.4      4.7b  ± 0.2 5.0d ± 0.0 27.0 c ± 0.2 62.2k ± 0.2 1.0a ± 0.05 
MD 05-6377/ W 15.2a-d ± 0.5      4.2a ± 0.2 4.6b-d ± 0.1 37.7jk ± 0.5 52.3de ± 0.5 1.2a ± 0.17 
MD 05-6381/ PF 16.3a-e ± 0.2  5.5c ± 0.3 5.7ef ± 0.3 30.2ef ± 0.5 56.6hi ± 0.6 2.1b ± 0.2 
MD 05-6381/ PD 17.2de ± 0.4 5.9de ± 0.3 4.8d ± 0.1 26.5c ± 0.5 60.6jk ± 0.8 2.2bc ± 0.2 
MD 05-6381/ W 15.2a-d ± 0.5 5.6cd ± 0.1 4.2ab ± 0.1 29.2de ± 0.6 58.7ij ± 0.3 2.3bc ± 0.3 
MD 04-5217/PF 17.2de ± 0.7 9.5l±  0.2 6.3hi ± 0.5 34.0hi ± 1.2 46.2bc ± 1.5 3.0de ± 0.1 
MD 04-5217/ PD 17.0c-e ± 0.4 9.8 ± 0.2 5.8e-g ± 0.5 26.8c ± 2.0 54.0efg ± 2.1 3.4f-h ± 0.2 
MD 04-5217/ W 16.2a-e ± 0.5 9.2h ± 0.2 4.3a-c ± 0.1 39.3kl ± 1.6 44.2ab ± 1.4 3.3ef ± 0.2 
Manokin/ PF 16.6b-e ± 0.6 10.9k-m ±  0.1 4.8cd ± 0.1 23.2ab ± 0.2 54.1e-g ± 0.1 7.0j ± 0.1 
Manokin/ PD 15.3a-d ±0.4 10.7jk ± 0.2 5.5e ±  0.1 23.7b ± 0.3 52.6d-f ± 0.1 7.5k ± 0.1 
Manokin / W 15.4a-d ±0.5 11.2m ± 0.1 4.5b-d ± 0.1 21.1a ± 1.0 55.2gh ± 0.5 8.1l± 0.4 
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soybean from all three locations also had significantly lower palmitic acid (16:0) 

level, with a range of 4.2-4.7 g/100g fatty acids, than the other soybeans grown at all 

tested locations.  Interestingly, all seven low-linolenate soybeans grown at Wye 

Research Center had higher or same concentration of oleic acid (18:1n9) compared to 

the same genotype grown at the other two locations (Table 2.2).  These data 

suggested that both genotype and growing environment could alter oil content and 

fatty acid composition in soybeans.   

 

 2.4.1.2. Total Phenolic Content 

 

Phenolics are potential antioxidative components (Sroka & Cisowski, 2002). 

Total phenolic content of the soybeans was between 1.6 and 2.1 mg GAE/g whole 

soybean (Figure 2.1).  These values are consistent with previously reported levels of 

soybean TPC value of 1.5 - 5.4 mg GAE/g (Riedl et al., 2007; Slavin et al., 2009).  

AG3521V and Manokin grown at the Wye Research Center location significantly 

differed in their TPC values, suggesting the possible effect of genotype on TPC.  No 

difference in TPC was observed in any tested soybean genotype grown at the 

different locations. 
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Figure 2.1. Total Phenolic Content (TPC) of Soybeans* 
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*Data are expressed as mg gallic acid equivalent (GAE)/g soybean.  Values represent 

mean of 3 replicate plots ± SD (n = 6).  Values marked by the same letter are not 

statistically different (p < 0.05).  Poplar full season, Poplar double crop, and Wye 

indicate growing environment. 

 

 

 

2.4.1.3. Isoflavone Composition 

 

The total and individual isoflavones were estimated and reported in their 

aglycone levels.  Total isoflavones in the soybean samples ranged from 0.37 to 0.90 

µmol/g soybean among all genotypes grown at different environments (Table 2.3).  

This total isoflavone content is lower than that reported previously.  Riedl et al. 

(2007) found total isoflavones in Ohio soybeans in a range of 1.6 and 7.1 µmol/g 

when extracted from soy flour with acidic acetonitrile.  Slavin et al. (2009) found 0.9-

2.4 µmol/g in Maryland-grown soybeans from the 2005 growing season.  This  

difference might be partially due to the different extraction solvent, extraction 

procedures, growing seasons, and different soybean cultivars or lines.   
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Table 2.3. Isoflavone Composition of Soybeans*   

 

*Data are expressed as mean of 3 replicate plots, each tested in duplicate, ± SD (N= 6).   

  Daidzein, genistein, and glycitein are expressed as µg/g whole soybean. Total isoflavones are   

  expressed as µmol/g whole soybean. All genotypes are low 18:3n3, except Manokin, which is   

  a non-modified genotype.  Values marked by the same letter within each component are not  

  statistically different (p < 0.05).  PF: Poplar Hills full season (Salisbury, MD); PD: Poplar   

  Hills double cropped (Salisbury, MD); W: Wye Research Center (Queenstown, MD). 

 

 

 

 

 

 

 

 

 

 Daidzein Glycitein Genistein Total Isoflavones 

AG2091V/ PF 31.2ab ± 9.6 68.4d-g ± 16.2 21.6ab ± 6.4 0.45a ± 0.01 

AG2091V/ PD 38.5b-d ± 9.4 58.2b-g ± 17.6 39.8a-d ± 9.8 0.50ab ± 0.12 

AG2091V/ W 34.2ab ± 3.2 95.8g ± 7.6 30.9a-d ± 4.4 .59a-c ± 0.05 

AG3521V/ PF 34.1ab ± 7.6 84.6 ± 7.8 31.6a-d ± 10.0 0.55 a-c ± 0.08 

AG3521V/ PD 31.2ab ± 1.3 44.6a-f ± 3.9 33.1a-d ± 2.1 0.40a ± 0.01 

AG3521V/ W 33.2ab ± 3.2 61.0c-g ± 3.1 34.4a-d ± 1.4 0.47a ± 0.02 

MD 04-6006/ PF 41.0a-d ± 1.6 75.1fg ± 11.0 25.3ab ± 2.7 0.52ab ± 0.03 

MD 04-6006 /PD 63.8a-e ± 4.4 33.7a-c ± 1.12 46.5a-d ± 5.3 0.54ab ± 0.04 

MD 04-6006/ W 53.8a-e ± 11.8 74.3e-g ± 32.9 38.3a-d ± 13.0 0.62a-c ± 0.21 

MD 05-5656/ PF 78.2d-f ± 7.5 49.9a-g ± 5.4 52.9b-e ± 6.7 0.68a-c ± 0.07 

MD 05-5656/ PD 58.3a-e ± 18.6 41.7a-d ± 6.3 43.0a-d ± 14.7 0.54ab ± 0.14 

MD 05-5656 / W 84.2ef ± 22.9 78.2g ± 10.5 61.9a-d ± 18.9 0.83bc ± 0.18 

MD 05-6377/ PF 29.3a ± 8.4 61.2c-g ± 25.9 15.3a ± 5.3 0.39a ± 0.14 

MD 05-6377/ PD 38.8a-d ± 3.5 35.3a-c ± 4.5 36.0a-d ± 3.0 0.41a ± 0.04 

MD 05-6377/ W 32.4ab ± 3.7 46.3a-f ± 10.5 22.2ab ± 2.2 0.37a ± 0.04 

MD 05-6381/ PF 44.2a-d ± 6.4 55.6a-g ± 12.2 18.9a ± 3.8 0.44a ± 0.06 

MD 05-6381/ PD 33.7ab ± 5.1 35.3ab ± 4.5 30.0a-d ± 2.6 0.34a ± 0.03 

MD 05-6381/ W 39.2a-c ± 5.4 46.3a-c ± 7.5 26.7a-d ± 2.2 0.36a ± 0.03 

MD 04-5217/PF 39.0a-c ± 16.0 88.4g ± 10.3 28.8a-d ± 11.4 0.57a-c ± 0.09 

MD 04-5217/ PD 40.0a-c ± 9.9 43.9a-e ± 9.8 36.1a-d ± 7.7 0.45a ± 0.10 

MD 04-5217/ W 45.1a-d ± 1.8 61.6c-g ± 12.4 39.3a-d ± 3.1 0.54ab ± 0.05 

Manokin/ PF 107.7e ± 76.0 47.8a-g ± 36.2 83.0e ± 61.1 0.90c ± 0.66 

Manokin/ PD 70.5b-e ± 12.2 25.8a ± 4.3 58.9c-e ± 6.2 0.56a-c ± 0.08 

Manokin/ W 69.5b-e ± 11.2 41.2a-d ± 23.4 51.4b-e ± 8.9 0.61a-c ± 0.10 
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Also noted was that there were high standard deviations in isoflavone levels 

among replicates of the same location and genotype, suggesting that possible effects 

of other factors might have contributed to the variation. Glycitein, daidzein, and 

genistein were detected in all tested soybean samples with a concentration of 25.8-

95.8 µg/g for glycitein, 29.3-107.7 µg/g for daizein, and 15.3-83.0 µg/g for genistein 

(Table 2.3).  On a per weight basis, glycitein was the primary isoflavone compound 

in AG2091V, AG3521V, and MD 04-5217 soybeans, but not in MD 05-5656 and 

Manokin genotypes grown at all three tested locations in Maryland (Table 2.3).   

Furthermore, glycitein was the primary isoflavone compound in MD 04-6006 and 

MD 05-6377 soybeans grown at Poplar Hills (full season) and the Wye Research 

Center locations, but not necessarily the major one of these two soybean lines grown 

at Poplar Hills (double cropped).  On the other hand, daidzein was the major 

isoflavone compound in MD 05-5656 and Manokin soybeans. 

The ratio of isoflavones also varied by genotype and environment.  In the 

AG2091V soybean, the ratio of daidzein/glycitein/genistein was 1:2:1.5 in the Poplar 

Hills full season environment, but was 1:2.8:0.9 in the Poplar Hills double cropped 

and 1:3:1 in the Wye Research Center environments, respectively.  In the MD 05-

6377 double cropped soybeans, the ratio of daidzein/glycitein/genistein was 

approximately 1:1:1.  Taken together, these results indicated the possible effects of 

genotype and growing environment on soybean isoflavones, providing background 

for further investigation into the effects of each and their potential interaction on 

soybean phytochemicals. 
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2.4.1.4. Lutein Content 

  

 Lutein has been identified previously as the predominant carotenoid in 

soybeans (Slavin et al., 2009).  In the present study, lutein levels ranged from 10.4 to 

27.2 µg/g oil (Table 2.4).  Lutein was highest in the MD 05-6381 and MD 04-5217 

genotypes, and lowest in MD 05-5656 soybeans across all tested locations, suggesting 

the effect of genotype on soybean lutein concentration.  A trend in environment was 

seen in five of the eight soybean lines, with the highest lutein levels in the Poplar 

Hills full season environment followed by the double cropped, and with lowest levels 

in the Wye environment (Table 2.4).  In addition, the highest lutein level in the full 

season and double cropped environment was in the MD 05-6381 genotype, whereas 

the highest level found in the at the Wye Research Center location was in the MD 04-

5217 line.  These results showed the possible effect of genotype and environment 

interaction on lutein content in soybeans. 

  

2.4.1.5. Tocopherol Composition 

 

There have been several studies on the tocopherol levels of soybeans, 

including those with modified fatty acids (Almonor et al., 1998; Dolde et al., 1999; 

McCord et al., 2003; Britz et al., 2008;).  In the present study, α, γ, and δ-tocopherols 

were detected in all soybean samples (Table 2.4).  Total tocopherols ranged from 2.3 

to 3.1 µmol/g oil, and α-tocopherol ranged from 259.5 and 317.7 µg/g oil.   

The α-tocopherol levels and total tocopherols were generally lower than those 

reported for Maryland-grown soybeans by Slavin et al. (2009), but are consistent with 

levels reported for Indian soybeans by Rani et al. (2007).  The soybeans evaluated by 
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Slavin et al. were grown in Maryland during the 2005 season, and this may partially 

account for differences in tocopherol levels.  Other studies have reported tocopherols 

on per gram of soybean basis, so are not necessarily comparable due to different 

extraction procedures.  

MD 04-6006 soybeans had similar or higher levels of total tocopherol, while 

the MD 04-5217 genotype contained the highest α-tocopherol across all tested 

environments (Table 2.4). Four soybean lines had the highest amount of total 

tocopherols in the Poplar Hills full season environment, and the other three soybean 

lines produced greatest total tocopherols in the Wye Research Center environment.  

Furthermore, α-tocopherol was most abundant in four of the soybean lines at Poplar 

Hills full season, while three others had higher levels in the double cropped 

environment.  MD 05-6377 was the only line that produced the highest level of α-

tocopherol in the Wye Research Center location. 
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Table 2.4.  Lutein Content and Tocopherol Composition of Soybeans* 

*Data are expressed as mean of 3 replicate plots, each tested in duplicate, ± SD (N= 6).  Lutein, α-, γ-, and δ-tocopherol are expressed as µg/g oil.  

Total tocopherol is expressed as µmol/g whole soybean.  All genotypes are low 18:3n3, except Manokin, which is a non-modified genotype.  

Values marked by the same letter within each component are not statistically different (p < 0.05).  PF: Poplar Hills full season (Salisbury, MD); 

PD: Poplar Hills double cropped (Salisbury, MD); W: Wye Research Center (Queenstown, MD).

 Lutein αααα-tocopherol γ-tocopherol δ-tocopherol Total tocopherol 

AG2091V/ PF 15.6de ± 2.4  286.9a-e ± 21.6 384.7a-d ± 55.9 403.4c-f ± 46.9 2.67a-e ± 0.17 

AG2091V/ PD 17.0de ± 1.2 290.1a-e ± 14.2 368.2a-d ± 38.0 347.2a-e ± 38.2 2.49a-c ± 0.12 

AG2091V/ W 17.5de ± 0.6 272.0ab ± 23.2 326.2a ± 45.4 394.6b-f ± 42.5 2.48a-c ± 0.21 

AG3521V/ PF 18.2de ± 1.1 291.1b-e ± 32.6 400.5a-e ± 66.0 339.9a-e ± 32.2 2.55a-c ± 0.25 

AG3521V /PD 15.2c-e ± 1.0 306.0c-e ± 13.2 429.2a-f ± 66.3 301.3a ± 48.0 2.55a-c ± 0.28 

AG3521V/ W 14.0a-d ± 0.6 268.9ab ± 5.4 371.1a-d ± 20.5 362.7a-f ± 35.8 2.49a-c ± 0.09 

MD 04-6006/ PF 18.6c-e ± 1.1 296.1b-e ± 11.0 524.6f ± 44.8 419.7ef ± 46.2 3.08e ± 0.22 

MD 04-6006/ PD 18.0c-e ± 1.0 276.9a-c ± 12.0 471.0c-f ± 6.9 360.0a-f ± 44.6 2.74b-e ± 0.07 

MD 04-6006/ W 14.9a-d ± 0.6 280.1a-d ± 8.3 414.1a-f ± 43.9 441.1f ± 63.9 2.83b-e ± 0.22 

MD 05-5656/ PF 12.3a-c ± 1.9 269.4ab ± 10.5 352.1ab ± 83.5 403.7d-f± 51.8 2.56a-c ± 0.30 

MD 05-5656/ PD 10.6ab ± 0.6 281.7a-d ± 13.5 390.5a-e ± 47.1 445.6f ± 51.0 2.79b-e ± 0.15 

MD 05-5656/ W 10.4a ± 1.5 269.5ab ± 3.7 391.3a-e ± 27.6 427.5ef ± 42.4 2.71a-e ± 0.08 

MD 05-6377/ PF 17.5de ± 1.4 277.1a-c ± 6.8 498.0ef ± 26.2 357.8a-f ±39.6 2.80b-e ± 0.12 

MD 05-6377/ PD 17.1de ± 2.2 273.9ab ± 12.1 478.9d-f ± 53.1 337.3a-e ± 36.3 2.69a-e ± 0.18 

MD 05-6377/ W 14.3a-d ± 1.6 289.1a-e ± 6.4 501.0ef ± 38.3 406.3d-f ± 43.2 2.97de ± 0.13 

MD 05-6381/ PF 25.0h-j ± 1.0 283.1a-d ±13.0 442.5b-f ± 48.2 311.8a-c ± 35.9 2.56a-c ± 0.18 

MD 05-6381/ PD 27.2ij ± 0.9 274.7ab ± 13.0 401.9a-e ± 71.3 305.8ab ± 29.3 2.43ab ± 0.22 

MD 05-6381/ W 19.9c-e ± 0.8 279.1a-d ± 18.0 412.9a-e ± 25.3 347.4a-e ± 37.2 2.57a-d ± 0.11 

MD 04-5217/ PF 24.8ij ± 2.8 317.7e ± 18.4 472.3c-f ± 71.5 370.6a-f ± 53.3 2.87c-e ± 0.25 

MD 04-5217/ PD 23.0g-j ± 5.8 308.4de ± 11.2 383.8a-d ± 93.9 336.9a-e ± 37.9 2.54a-c ± 0.27 

MD 04-5217/ W 22.8f-j ± 3.0 294.7a-d ± 10.5 374.8a-d ± 24.7 408.8d-f ± 43.2 2.68a-e ± 0.09 

Manokin/ PF 21.1e-i ± 6.6 270.4ab ± 17.0 346.0ab ± 55.2 325.9a-d ± 33.8 2.33a ± 0.20 

Manokin/ PD 17.0b-e ± 1.5 270.4ab ± 8.6 363.0a-c ± 23.5 397.1b-f ± 34.0 2.48a-c ± 0.08 

Manokin/ W 19.4d-g ± 1.2 259.6a ± 7.5 383.0a-d ± 43.3 390.2a-f ± 26.9 2.54a-c ± 0.17 
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2.4.1.6. Antioxidant Properties 

 

All genotypes under all growing conditions demonstrated scavenging capacity against 

DPPH (RDSC value), hydroxyl (HOSC), and peroxyl (ORAC) radicals (Figures 2.2-2.4).  

RDSC value ranged from 0.6 to 1.5 µmol TE/g among the genotypes at all locations (Figure 

2.2).  A greater RDSC value is associated to a stronger DPPH radical scavenging capacity.  The 

soybean line that had the greatest RDSC value at one growing location did not necessarily show 

the highest DPPH radical scavenging capacity in a different growing environment (Figure 2.2). 

Other groups have previously reported DPPH radical scavenging capacity of soybean extracts 

(Xu & Chang, 2008), however it is difficult to compare the results from different laboratories 

since not all results were reported as relative DPPH radical scavenging capacity using a 

standard antioxidant such as Trolox in the present study.   

 Hydroxyl radical scavenging capacity (HOSC) values varied from 20.1 and 40.1 µmol 

TE/g whole soybeans under the experimental conditions (Figure 2.3).  AG3521V soybean in 

the Poplar Hills full season environment showed a 11% stronger HOSC than its counterpart in 

the Poplar Hills double cropped environment, whereas MD 04-5217 line grown in the double 

cropped environment had about 90% higher HOSC value than that in the full season 

environment (Figure 2.3).  ORAC values also varied by genotype and environment, as seen in 

Figure 2.4.  ORAC values ranged from 22.4 to 58.4 µmol TE/g.  These ORAC values were 

within the range previously reported level of 21.2-91.3 µmol TE/g for yellow soybean by Xu 

and Chang (2008).  Interestingly, the soybean with the greatest ORAC value, which was 

Manokin in the Poplar Hills full season environment, did not necessarily exhibit strongest 

DPPH and hydroxyl radical scavenging capacities in the same environment (Figures 2.2-2.4).  

These radical scavenging capacity results suggested that each soybean line or cultivar may 
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respond to environment differently.  These results also indicated that each antioxidant property 

may respond to individual environmental factors differently.  Therefore, the contribution of 

genotype, environment, and their interaction were evaluated for their effect on chemical 

components and antioxidant properties. 

 

 

 

 

Figure 2.2. Relative DPPH· Scavenging Capacity (RDSC) of Soybeans*   
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*Data are expressed as µmol Trolox equivalent (TE)/g soybean.  Values represent mean of 3 

replicate plots ± SD (n = 6).  Values marked by the same letter are not statistically different  

(p < 0.05).  Poplar full season, Poplar double crop, and Wye indicate growing environment. 
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Figure 2.3.  Hydroxyl Radical Scavenging Capacity (HOSC) of Soybeans* 
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Figure 2.4.  Oxygen Radical Absorbing Capacity (ORAC) of Soybeans* 
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*Data are in Fig. 2.3 and 2.4 are expressed as µmol Trolox equivalent (TE)/g soybean. Values 

represent mean of 3 replicate plots ± SD (n = 6).  Values marked by the same letter are notstatistically 

different (p < 0.05).  Poplar full season, Poplar double crop, and Wye indicate growing environment. 
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2.4.2. Effects of Genotype (G), Environment (E), and the Interaction 

between G and E (G ×××× E) on Soybean Composition and Antioxidant 

Property 

 

 2.4.2.1. Oil Content and Fatty Acid Composition 

  

The percent of total mean square for each variable (G, E, and G × E) was determined 

to quantify the contribution of each variable to soybean components and antioxidant 

properties.  G accounted for the most variations in soybean oil content (60%, p < 0.001).  E 

accounted for 27% variation in soybean oil content (p < 0.01), while G × E contributed 13% 

of that (p < 0.01).  For the majority of fatty acids, G had a larger effect on variation than E 

(Table 2.5).  Genotype showed the largest effect of 98.8% and 97.5% (p < 0.001),  

respectively, on 16:0 and 18:3n3 contents.  The line MD 05-6377 contained the lowest 

18:3n3 levels at all locations (1.0-1.2 g/100 g oil).  This line also contained the lowest level 

of 16:0 at all locations (4.20-4.72 g/100 g oil).  This line may be noted for future analysis, 

because soybean oil with low 18:3n3 and low 16:0 is desirable for reduced-trans and 

saturated fat consumption (Fehr, 2007).  G also was the major contributor for total saturated 

fat (79%, p < 0.001). 

 E had a large effect (84.3%) on stearic acid (18:0) (p < 0.001), while G had more 

effect on the other fatty acids.  When comparing averages by environment, 18:3n3 and 16:0 

were both lowest in the Poplar Hills full season environment (earlier planting date) and 

highest in the Poplar Hills double cropped environment (later planting date) at statistically 

significant levels.  Ray et al. (2008) also found lower 18:3n3 levels in non-modified 

soybeans with an earlier planting date.  The same study found that 16:0 was lower at a later 

planting date, which was not observed in our results. The double cropped soybeans  
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contained the lowest level of 18:1n9 and highest level of 18:2n6 compared to other 

environments.  The differences observed by planting date likely reflect changes in 

temperature or other environmental conditions (Tsukamoto et al., 1995).  In addition, E had 

significant effect on total saturated fat in soybeans (20%, p < 0.001) (Table 2.5). 

Oleic acid (18:1n9) is a desirable component of edible oil due to its benefits to 

cardiovascular health and stability in foods (Tarrago-Trani et al., 2006).  The full season 

soybeans in this study appeared to have a more desirable fatty acid profile compared to the 

double cropped soybeans, due to lower 18:3n3 and higher 18:1n9. 

 

Table 2.5.  Effect of G, E and G ×××× E on Soybean Composition
a
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
a
Effect of genotype (G), environment (E), and genotype × environment (G × E) on 

soybean composition and antioxidant properties expressed as percent of total mean 

square.  * = p < 0.05, ** = p < 0.01, *** = p < 0.001.  Values without asterisks are not 

significant at p < 0.05.

 % Genotype % Environment % G × E 

Oil Content 60.15*** 27.01** 12.84** 

Total Sat 78.99*** 20.01*** 1.00*** 

16:0 98.81*** 0.93*** 0.26*** 

18:0 10.24*** 84.27*** 5.49*** 

18:1n-9 53.34*** 40.82*** 5.84*** 

18:2n-6 55.85*** 36.93*** 7.23*** 

18:3n3 97.45*** 2.11*** 0.44*** 

TPC 40.64 5.78 53.58** 

Daidzein 88.52*** 1.67 9.81* 

Genistein 78.64*** 8.99 12.37** 

Glycitein 26.38*** 64.82*** 8.80*** 

Total ISF 67.19*** 21.28* 11.52 

Lutein 78.26*** 17.63*** 4.11** 

α-Tocopherol 57.17*** 30.81** 12.02** 

γ- Tocopherol 70.25*** 19.08* 10.67** 

δ- Tocopherol 42.94*** 49.04*** 8.01* 

Total Tocopherol 69.09*** 16.70 14.21** 

RDSC 38.56* 12.16 49.28*** 

HOSC 47.92** 5.96 46.12*** 

ORAC 21.37 55.77* 22.86 
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The percent variation due to G × E was low in the fatty acids, ranging from 

0.3 – 5.8% (Table 2.5) (p < 0.001).  In both Poplar Hills environments, 18:1n9 was 

highest in the genotype MD 05-5656 (9.3-39.9 g/100 g oil).  However, at the Wye 

Research center environment, 18:1n9 was highest in the MD 04-6006 genotype 

(41.4g/100 g oil).  The line AG2091V produced the highest oil content in the Poplar 

Full season environment, but AG3521V contained the highest levels in the other 2 

environments, though the differences are not statistically significant (Table 2.2).   

 

2.4.2.2. Total Phenolic Content 

 

 There was not a significant effect of G or E individually on variation in 

soybean TPC; however there was a significant effect of G × E interaction (p < 0.05).  

For example, the genotype MD 04-5217 demonstrated a high TPC level in the Poplar 

Hills double cropped environment, while the AG2531V genotype had a significantly 

lower level in the same environment.  The effect of G × E interaction accounted for 

53.6% of variation in TPC levels (p < 0.01) (Table 2.5).  When analyzing wheat lines 

from Colorado, Moore et al. (2006a) found that E accounted for most of the variation 

in TPC (79.5%).  Riedl et al. (2007) reported significant variation in soybean TPC by 

environment.  However, the present study did not find a similar effect. 

  

2.4.2.3. Isoflavone Content 

 

Others have reported significant differences in soy isoflavone level based on 

genotype (Wang & Murphy, 1994).  In the present study, there was significant 

variation by G in the isoflavone levels (p < 0.01).  Overall, the Manokin soybean 

with regular 18:3n3 concentration contained the highest levels of total isoflavones.  
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Among the reduced 18:3n3 genotypes, MD 05-5656 contained the highest average 

levels of total isoflavones, daidzein, and genistein across the different environments.  

Daidzein and genistein had the most variation attributed to G (88.5 and 78.6% 

respectively, p < 0.001). The variation in isoflavones due to environmental 

differences is also well documented in the literature (Wang & Murphy, 1994; 

Tsukamoto et al., 1995; Riedl et al., 2007). Our current study found that the total 

isoflavone levels and the isomer glycitein showed significant variation by 

environment (p < 0.05).  This variation was demonstrated by reduced levels in the 

Poplar Hills double cropped environment. Of the isoflavone isomers, only glycitein 

had the majority of percent variation attributed to E (64.8%, p < 0.001) (Table 2.5). 

There was a small effect of G × E, ranging from 8.8 to 12.4% (p < 0.05) for 

total and individual isoflavones.  The G × E combination with the highest total 

isoflavone level was MD 05-5656 at the Wye Research Center location (0.83 µmol/g 

whole soybean), but G × E interaction was not statistically significant (p = 0.069).   

 

2.4.2.5. Lutein Content 

 

A few studies have reported that lutein content in soybeans might significantly 

vary across genotypes (Wang & Murphy, 1994; Kanamaru et al., 2006) and 

environments (Lee et al., 2009).  Our results showed that G accounted for 78.6% of 

variation in lutein levels (p < 0.001) (Table 2.5).  MD 05-6381 and MD 04-5217 

were the lines with the highest overall lutein levels, ranging from 19.9 to 27.2 µg/g
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oil.  Environment also accounted for about 18% of the variation in lutein level (p < 

0.001), with higher mean levels at the Poplar Hills location than at the Wye Research 

center location.  The combination of G and E that produced the highest lutein level 

was MD 05-6381 in the Poplar Hills double cropped environment (27.2 µg/g oil) 

(Table 2.4).  Based on proportion of total mean squares, the effect of G × E 

accounted for only 4.1% of the variation (p < 0.01). 

  

2.4.2.6. Tocopherol Composition 

 

α-, γ-, δ-, and total tocopherols showed significant variation by G (p < 0.01) 

(Table 2.5).  The genotype MD 04-5217 contained the highest α-tocopherol levels at 

all locations.  G contributed to the largest amount of variance in α-, γ-, and total 

tocopherols based on proportion of mean squares (57.1-70.3%, p < 0.001) (Table 

2.5).  Individual tocopherol isomers also showed significant variation by E.  E 

contributed to the majority of variance in δ-tocopherol (51.2%, p < 0.001), and about 

30 % of that in α-tocopherol (p < 0.01) and 20% of that in γ-tocopherol (p < 0.05).  

An environmental effect on soybean tocopherols was also noted by Britz et al. (2008) 

and Dolde et al. (1999), although in both studies G was responsible for more variation 

than E.  In addition, G × E showed significant contribution to α-, γ- and total 

tocopherols (p < 0.01), and to δ-tocopherol (p < 0.001).    

  

2.4.2.7. Antioxidant Capacity 

 

There was a significant effect of G on RDSC (p < 0.05) and HOSC (p < 0.01).  

The largest proportion of variation in the HOSC assay was attributed to G (47.9%) 
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(Table 2.5).  G contributed to 38.6% of the variation in soybean RDSC levels.  

Moore et al. (2006a) examined variation in antioxidant capacity of hard winter wheat, 

and reported the variation of RDSC in winter wheat samples was attributed mainly to 

G (88.6%).  Thus food crops may have varying factors that influence antioxidant 

capacity, suggesting the possibility of improving the antioxidant properties in food 

crops such as soybeans and wheat through breeding effort or genetic modification. 

There was significant variation by environment in the ORAC levels when 

averaged among all genotypes (p < 0.05).  The double crop soybeans had a higher 

ORAC level on average than the other environments.  The largest variation in ORAC 

was attributed to E (55.8%, p < 0.05).  The other antioxidant assays did not 

demonstrate significant variation by environment.  This finding was in agreement 

with that for wheat by Moore et al. (2006a).  They found that the ORAC value of 

winter wheat was more affected by E (51.8%) than G, which is similar to the effect 

found on soybeans in the current study. 

In addition, G × E might significantly alter RDSC and HOSC (p < 0.001).  

The effect of G × E interaction contributed the most variation to RDSC (49.3%, p < 

0.001) (Table 2.5).  This differs from the findings of Moore et al. (2006a), who 

reported that either G or E had a larger effect than G × E for most antioxidant 

properties in hard winter wheat lines.  No effect of G × E on ORAC was detected in 

the current study. 
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2.4.3. Effects of Individual Environmental Conditions on Soybean 

 Composition and Antioxidant Properties   

 

 The effects of environment (E) on chemical composition and antioxidant 

properties in soybean were observed in the present and previous studies (Wang & 

Murphy, 1994).  It is interesting to know whether and how individual environmental 

conditions may alter which chemical composition and antioxidant property in 

soybeans grown in Maryland.  This information could be used to improve the 

agricultural practices to enhance the nutritional value of soybeans in Maryland and 

other locations worldwide. 

  

2.4.3.1. Oil Content and Fatty Acid Composition 

 

Oil content on soybeans was positively correlated with average high 

temperature with a Pearson’s correlation coefficient (r) value of 0.199 (p < 0.05), and 

negatively correlated with overall average and average low temperatures, with r-

values of -0.182 (p < 0.05) and -0.190 (p < 0.05).  No correlation between oil content 

and precipitation was detected.  In the present study, correlation analysis of air 

temperature and fatty acid levels showed a strong positive correlation between stearic 

acid (18:0) and average high air temperature (r = 0.690, p < 0.01), and the reverse for 

average low temperature (r = -0.699, p < 0.01) and overall average temperature (r = -

0.689, P < 0.01) (Table 2.6).  This finding may explain the large effect of E on 18:0 

levels (Table 2.5).  Small positive correlations were observed between overall 

average and average low air temperatures and 18:1n9 level in soybean oil (p < 0.01).  
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In contrast, 18:2n6 level was negatively correlated with overall average and average 

low air temperatures (p < 0.01), and 18:3n3 level was negatively correlated with 

average high air temperature (p < 0.01).  Precipitation had a positive correlation with 

α-linolenic acid (r = 0.22, p < 0.01), but had no influence on other fatty acid 

concentrations. 

 

2.4.3.2. Total Phenolic Content 

 

Total phenolic content of soybeans had significant correlation with 

precipitation (p < 0.05).  There were no significant correlations between TPC and 

individual environmental factors (Table 2.6). 

 

2.4.3.3. Isoflavone Composition 

 

Previous research has shown negative correlation between isoflavones and air 

temperature during seed development (Tsukamoto et al., 1995).  In the present study, 

total isoflavones, genistein, and daidzein did not have a significant correlation with 

air temperature (Table 2.6).  Only glycitein was positively correlated with overall 

average air temperature (r = 0.204, p < 0.05) and average low temperature (r = 0.204, 

p < 0.05).  Other reports have indicated that irrigation or precipitation during seed fill 

may influence soybean isoflavone levels (Riedl et al., 2007).  Overall precipitation 

levels did not have significant correlation with isoflavone levels in the present study, 

however precipitation is known only for the total growing season rather than seed fill 

dates.  
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2.4.4.4. Lutein Content 

 

Lutein content was negatively correlated with overall average air temperature 

(r = -0.243, p < 0.01) and average low temperature (r = -0.222, p < 0.01), and was 

positively correlated with precipitation levels (r = 0.312, p < 0.01) (Table 2.6).  In 

review of the literature, we did not find previous studies examining correlation of 

individual environmental factors with lutein accumulation in soybean oil.  Based on 

our current results, further investigation of this relationship may be warranted. 

 

2.4.4.5. Tocopherol Composition 

 

α-tocopherol had a positive correlation with average high temperature (r = 0.313, p < 

0.001), while δ-tocopherol had a positive correlation with overall average temperature 

(r = 0.321, p < 0.001) and average low temperature (r = 0.320, p <0.001) (Table 2.6). 

No effect of precipitation has been observed for tocopherol composition in soybeans 

in the present study.  This suggests that increased air temperature may increase the 

level of α-tocopherol, while reducing the δ-tocopherol concentration.  Britz et al. 

(2008) also found elevated α-tocopherol levels in warmer temperatures and with full 

season planting dates.  Low 18:3n3 soybeans have been previously shown to have 

higher α-tocopherol content in warmer temperatures (Wilson, 2004).  As previously 

noted, the Poplar Hills locations had the highest α-tocopherol levels on average.  This 

location did not have the highest average air temperatures, so there may be other 

factors involved in the production of α-tocopherol.   
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2.4.4.6. Antioxidant Capacity 

 

Large effects of specific weather conditions on antioxidant capacity were not 

observed in the selected genotypes of soybeans.  This may be due in part to the fact 

that selected growing locations were not exposed to extremely different weather 

conditions.  The crops grown at Poplar Hills were exposed to lower temperatures than 

the crops at Wye Research Center, but high temperatures were similar throughout the 

growing season.  The weather information used for analysis was collected, from data 

available in records.  Concurrent observation of specified weather conditions during 

crop growth may provide more accurate data for specific crop locations. 
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Table 2.6. Correlation Between Soy Components, Antioxidant Capacity, and Weather Conditions* 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Data expressed as Pearson’s correlation coefficient (r-value),* = p < 0.05, ** = p < 0.01, *** = p < 

0.001.  Values without asterisks are not significant at P < 0.05.  Absolute high and low temperatures 

had similar correlations as the average high and lows so are not reported here.  TPC = total phenolic 

content, RDSC = relative DPPH· scavenging capacity, HOSC = hydroxyl radical scavenging 

capacity, ORAC = oxygen radical absorbance capacity.

 Precipitation Average High Temp Overall Average Temp. Average Low Temp. 

     

Oil Content -0.009 0.199* -0.182* -0.190* 

16:0 -0.024 0.011 -0.015 -0.017 

18:0 -0.024 0.690** -0.686** -0.699** 

18:1n-9 -0.055 -0.148 0.309** 0.298** 

18:2n-6 -0.016 0.144 -0.247** -0.241** 

18:3n3 0.220** -0.180** -0.032 -0.009 

TPC  0.167* -0.068 -0.056 -0.040 

Daidzein 0.098 -0.045 -0.018 -0.009 

Glycitein 0.064 -0.119  0.204* 0.197** 

Genistein 0.010 -0.021 0.002 0.004 

Total Isoflavones 0.074 -0.093 0.098 0.101 

Lutein  0.312** 0.024 -0.243** -0.222** 

Total Tocopherols -0.113 0.036 0.078 0.067 

α-Tocopherol -0.157  0.313** -0.192* -0.211* 

γ-Tocopherol -0.054  0.182* -0.140 -0.147 

δ-Tocopherol -0.094 -0.258**  0.321** 0.320** 

RDSC -0.068 -0.031 0.052 0.048 

HOSC 0.010 0.052 -0.057 -0.059 

ORAC -0.035 0.100 -0.091 -0.094 
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Additional environmental factors that were not measured in this study may have 

affected soybean composition.  For example, statistical analysis showed that ORAC 

values had 55% variation due to E, but they did not have a significant correlation when 

compared with air temperature or precipitation.  This may indicate that other 

environmental factors are responsible for ORAC variation.  Soil conditions or solar 

radiation are factors not measured by this study that may be responsible for crop 

variation (Moore et al., 2006a). 

2.4.5. Correlation Between Individual Chemical Compositions and 

 Antioxidant Properties  

 

Table 2.7 shows the Pearson correlation coefficients between each chemical 

composition and antioxidant properties conducted in this research.  Interestingly, level 

of 16:0 was positively correlated with 18:3n3 concentration (r = 0.519,  

p <0.01) and negatively correlated with 18:1n-9 (r = -0.538, p < 0.01).  This suggested 

the possibility of obtaining soybean lines low in α-linolenic and palmitic acids through 

breeding effort to enhance shelf stability of soybean oil without hydrogenation and to 

improve its nutritional value.  Level of 18:3n3 was positively correlated with daidzein, 

genistein, and total isoflavones (P < 0.01), but negatively correlated with glycitein 

content (p < 0.01), indicating the possible effect of reducing 18:3n3 on isoflavones in 

soybeans.  Also noted was a significant high correlation between oleic acid (18:1n9) and 

δ-tocopherol.  There was a negative correlation between 18:3n3 and α-, γ-, and total 

tocopherol, indicating that reducing the 18:3n3 level may be related to increased 

tocopherols in the selected genotypes.  The results of Almonor et al. (1998) support the 

finding that reduced 18:3n3 soybeans produce relatively higher amounts of α-tocopherol
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Table 2.7.  Correlation Between Soybean Composition and Antioxidant Assays* 

 

*Data expressed as Pearson’s correlation coefficient (r-value).  * = p < 0.05, ** = p < 0.01, *** = p < 0.001.  Values without asterisks are not significant 

 at p < 0.05.  TPC = total phenolic content, RDSC = relative DPPH· scavenging capacity, HOSC = hydroxyl radical scavenging capacity, ORAC = oxygen 

radical scavenging capacity, Daid. = daidzein, Glyc. = glycitein, Geni. = genistein, T. ISF = total isoflavone, Toco. = tocopherol.

 Oil 16:0 18:0 18:1 18:2 18:3 TPC RDSC HOSC ORAC Daid. Glyc. Geni. T. ISF Lutein α-Toco. γ-Toco. δ-Toco. 

16:0  .305**                  

18:0 -.077 -.164                 

18:1n-9 -.233** -.538**  .196*                

18:2n-6  .220**  .037 -.270** -.803**               

18:3n3 -.189*  .519**  .003 -.388** -.133              

TPC -.129 -.073 .189*  .032 -.089 .140             

RDSC -.070  .195*  .009 -.018 -.130 .161  .097            

HOSC  .023  .002  .117  .015 -.039 .037  .232** .005           

ORAC -.123  .089  .225** -.061 -.091 .202*  .673** .123 .123          

Daid. -.288**  .122  .031  .032 -.219** .584**  .266** .087 .082 .201*         

Glyc.  .159  .162 -.023  .381** -.411** -.221**  .046 .128 -.090 -.046  .045        

Geni. -.220**  .287** -.036 -.163 -.139 .591**  .269** .107 .074 .272**  .936** .025       

T. ISF -.164  .225**  .008  .116 -.370** .422**  .292** .126 .069 .210*  .853** .499** -.222**      

Lutein  .238**  .106  .028 -.277  .247** .021 -.007 .082 .141 -.041 -.240** -.036 -.237**     -.222**     

α-Toco.  .206*  .091  .291**  .129 -.154 -.245** -.014 .028 -.045  .007 -.387** .258** -.335** -.179* -.340**    

γ-Toco. -.159 -.447**  .185*  .160  .084 -.318**  .061 -.050 -.154 -.097 -.259** .068 -.358** -.212* .137 .487**   

δ-Toco. -.326** -.176*  .031  .710** -.755** .046  .072 .122 -.144 -.021 .182* .289**  .090  .273** -.485** -.021 .176*  

T. Toco. -.264** -.380**  .196  .491** -.350** -.240**  .076 .032 -.187* -.076 -.157 .239** -.262** -.040 -.088 .505** .866** .621** 
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than non-modified soybeans.  However, later research by McCord et al. (2003) 

demonstrated proportional changes in tocopherol isomers with changes in 18:3n3.  

The relationship between tocopherols and 18:3n3 may be due primarily to similar 

environmental conditions that exert effects on both (Dolde et al., 1999).   

Lutein also had negative correlation with α- and δ-tocopherols.  Based on 

findings from Lee et al. (2009) and Dolde et al. (1999) these correlations may be 

primarily related to the effects of external conditions.  These data suggest that in 

some cases, selection for one soybean component may occur under conditions that 

reduce levels of other desirable components.  However, Wang et al. (2008) 

demonstrated that α-tocopherol and lutein are highly heritable in soybeans, and that 

through genetic manipulation soybeans may be produced that contain elevated levels 

of each component.  Lutein and α-tocopherol were negatively correlated with the 

majority of isoflavones in the present study.   

Among antioxidant properties, ORAC was highly correlated with TPC, which 

is consistent with the results of previous studies on agricultural products (2006a).  

TPC was also positively correlated with HOSC (r = 0.232, p < 0.01).  ORAC and 

TPC were also positively correlated with daidzein, genistein, and total isoflavones, as 

isoflavones are phenolic compounds with known antioxidant activity (Lee et al., 

2007).   

In conclusion, the health components and antioxidant properties of soybeans 

were affected by genotype, environment, and the interaction between genotype and 

environment.  Each chemical component or antioxidant property may respond to 

genotype, environment, and their interaction at different levels.  Furthermore, each 
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soybean component and antioxidant property may respond to individual 

environmental factors differently.  Among the soybeans studied, there was not one 

particular genotype or environment that produced outstanding levels of all health 

components.  However, it may be possible to select the ideal genotype and 

environment for an enhanced level of a specific component.  Continuation of this 

analysis over multiple growing seasons would provide a better indication of the best 

combination of genotype and environment for nutraceutical, chemical, and nutritional 

properties in these soybeans.   
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Chapter 3: Isoflavone Composition and Antioxidant 

Properties of Lipoxygenase-Modified Soybeans 
 

Adapted from Whent et al., J. Agric. Food Chem. 2011, 59, 12902-12909 

 

3.1. Abstract 

 

 Maryland-grown soybean lines modified for low lipoxygenase-1 (LOX-1) 

content and a traditional non-modified cultivar were analyzed for fatty acid 

composition, total phenolic content (TPC), isoflavone composition, relative DPPH· 

scavenging capacity (RDSC), and hydroxyl radical scavenging capacity (HOSC).  

Soybean lines included black, brown, and yellow soybeans.  TPC of all soybean lines 

ranged from 2.84 to 4.74 mg Gallic acid equivalents (GAE)/g flour.  Total isoflavones 

were between 2.78 and 8.66 µmol/g flour.  RDSC of all lines was between 0.48 and 

14.62 µmol Trolox equivalents (TE)/g flour, and HOSC ranged from 53.57 to 135.52 

µmol TE/g flour.  Some modified-LOX genotypes demonstrated antioxidant capacity 

and/or isoflavone content that was similar to or higher than the non-modified cultivar 

(p < 0.05).  Black colored soybeans demonstrated higher TPC and RDSC than most 

yellow soybean lines, although did not have higher isoflavone content.  The results 

demonstrate that modification of the LOX trait did not necessarily alter antioxidant 

capacity or chemical composition of the experimental soybean lines when compared 

with a non-modified cultivar.  These soybean lines may be studied further for 

nutraceutical properties and use in functional foods. 
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3.2. Introduction 

 

 Soybeans and their food products are widely consumed by humans, and they 

provide a nutritious component of the diet.  In addition to protein and essential fatty 

acids, soybeans contain nutraceutical components that may enhance human health.  

Soybeans are known sources of phenolics, including isoflavones.  They also contain 

tocopherols and carotenoids, which provide antioxidants as well as vitamins to the 

diet.  Oxidative stress is believed to be a factor in chronic disease, and previous 

research has shown soy foods to have high antioxidant activity in vitro and in vivo (de 

Santana et al., 2008; Wang et al., 2011).  Soy foods have been studied for their role in 

chronic disease prevention, specifically against osteoporosis, coronary heart disease, 

and some types of cancer (Isanga & Zhang, 2008).   

Although recognized as a health-enhancing food, soybeans and foods produced 

from them can develop sensory properties that make them less desirable to consumers 

(Wolf, 1975).  Lipoxygenase (linoleate: oxygen oxidoreductase, EC 1.13.11.12) is a 

catalyst for oxidation of polyunsaturated fatty acids that contain a cis,cis-1,4-

pentadiene moiety.  This enzyme is contained in soybean seed, and after 

homogenization the reaction leads to formation of secondary volatile carbonyl 

compounds (Hildebrand & Kito, 1984).  Soymilk is particularly susceptible to LOX-

catalyzed reactions due to the homogenization of seeds with water during production 

(Torres-Penaranda et al., 1998).  There are 3 iso-enzymes of lipoxygenase (LOX) that 

are active at different pH.  The enzyme can be inactivated by heat, and this method is 

typically used in food processing as it also reduces anti-nutritional factors contained 
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in soybean.  However, there is interest in reducing the lipoxygenase content in 

soybean seeds through breeding, in order to further reduce the possibility of poor 

odors or flavors (Robinson et al., 1995).  

Soybeans have been modified through breeding for elimination of one or more 

LOX iso-enzymes.  Studies of these modified soybeans in food products have shown 

mixed results for sensory improvement.  Torres-Penaranda et al. (1998) reported that 

soymilk made with LOX-null soybeans had less astringency and cooked beany flavor 

and aroma compared with soymilk from non-modified soybeans. However, LOX-null 

soymilk was reported to be more yellow-colored by sensory panelists.  Yuan & 

Chang (2007) reported that LOX-null soybeans produced soymilk with less odor-

causing compounds as identified by gas chromatography, although it was not 

evaluated by a sensory panel.  This effect was seen in both raw soymilk and after 20 

minutes of boiling. Thus the LOX-null soymilk contained fewer volatile compounds, 

even after heat denaturation of the normal-LOX soymilk.  There is also possibility of 

improved nutritional quality in modified LOX soybeans.  Nishiba & Suda (1998) 

reported that soybeans with normal LOX content lost vitamins and antioxidant 

capacity much more rapidly than LOX-null soybeans when homogenated in water.

 It is known that modification of soybean for a specific trait may affect other 

traits. For example, modification for fatty acid content has been associated in some 

studies with altered tocopherol levels (Dolde et al., 1999; Scherder et al., 2006).  

Oliveira et al. (2007) reported that reduced LOX soybeans contained greater levels of 

isoflavones than the parent non-modified soybeans.  There is relatively little research 

on the chemical composition and antioxidant capacity of modified-LOX soybeans.  
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The purpose of this study is to evaluate modified-LOX soybeans grown in Maryland 

for chemical composition and antioxidant capacity, and to identify experimental lines 

that may provide improved sensory properties as well as nutraceutical benefits. 

3.3. Materials and Methods 

3.3.1. Plant Materials and Chemicals 

 

 Whole soybeans from the 2009 growing season were collected by Dr. William 

Kenworthy of the Department of Plant Sciences and Landscape Architecture, 

University of Maryland, College Park.  Thirty-six lines were experimental genotypes 

that were modified for LOX-1 content through traditional breeding methods.  An 

additional experimental line (08-5865) was of normal LOX-1 content.  In addition, 

the low-LOX cultivar Japan-L1L2L3 and the traditional Manokin cultivar of 

Maryland were among the studied soybeans.  Thirty percent ACS-grade hydrogen 

peroxide was purchased from Fisher Scientific (Fair Lawn, NJ).  2,2’-azobis(2-

aminodopropane) dihydrochloride (AAPH) was purchased from Wako Chemicals 

USA (Richmond, VA).  Fluorescein (FL), iron (III) chloride, 2,2-diphenyl-1-

picryhydrazyl radical (DPPH), 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic 

acid (Trolox), isoflavone standards, tocopherol standards, and carotenoid standards 

were purchased from Sigma-Aldrich (St. Louis, MO).  All other chemicals and 

solvents were of the highest commercial grade and used without further purification. 

3.3.2. Lipoxygenase-1 Content 

 

 Lipoxygenase-1 (LOX-1) content of soybeans was determined according to 

the method described by Whent et al. (2010) using a Victor
3
 multilabel plate reader 



 

 79 

 

(PerkinElmer, Turku, Finland).  Briefly, soybeans were ground to particle size 20-

mesh and 0.020 g meal was mixed in 10 mL distilled water in a 15 mL tube.  Tubes 

were held at 4 °C for 1 hour, then centrifuged for 5 min.  1 mL supernatant was 

removed and held on ice for testing.  15-lipoxygenase Type 1 (from soybean) was 

diluted with pH 9.0 sodium borate buffer to 5 concentrations between 5 and 25 kilo-

units (KU).  100 µL of 200 nM fluorescein working solution or pH 9.0 buffer (blank) 

was added to each well using a multichannel pipet.  120 µL of pure LOX-1 enzyme, 

soybean extract, or buffer (control) was added.  Finally, 80 µL sodium linoleate 

substrate was added to the wells using a multichannel pipet to initiate the enzyme 

reaction.  Fluorescence was recorded continuously for 6 minutes.  Excitation and 

emission wavelengths were 485 and 515 nm, respectively.  AUC calculations were 

performed to determine % fluorescein remaining, which measures hydroperoxide 

formation.  LOX-1 presence was determined based on % fluorescein remaining 

compared to the standard curve.  The limit of detection to declare positive presence of 

LOX-1 was 30 KU/g meal based on standard curve of purified enzyme. 

3.3.3. Oil Extraction 

 

 Whole soybeans were ground to particle size 20-mesh using a handheld coffee 

bean grinder.  Five grams of ground soybeans were combined in a tube with 20 mL of 

petroleum ether.  Tubes were vortexed 3 times each for 30 seconds, and held 20 hours 

at ambient temperature in the dark.  The supernatant was removed and stored.  The 

extraction was repeated twice with 10 mL petroleum ether.  The petroleum ether was 

evaporated overnight under nitrogen, and the remaining oil was weighed.  The oil 

samples were stored in the dark until further testing. 
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3.3.4. Antioxidant Extraction 

 

 The defatted soy flour that remained following oil extraction was air-dried 

overnight at ambient temperature.  0.5 gram of each soy flour sample was combined 

in a test tube with 5 mL 50% acetone.  The tubes were vortexed 3 times for 15 

seconds each, and kept in the dark at ambient temperature overnight.  The tubes were 

centrifuged, and the supernatant was removed and filtered, and stored in the dark until 

further testing. 

 3.3.5. Fatty Acid Composition 

 

 The soybean oil was prepared for gas chromatography (GC) analysis 

according to a previously described procedure (Yu et al., 2003).  The soybean oil was 

saponified and methylated to form fatty acid methyl esters (FAME), and dissolved in 

hexane.  GC analysis was performed with a Shimadzu GC-2010 with FID.  Helium 

was the carrier gas at a flow rate of 2.2 mL/min.  The stationary phase was a fused 

silica capillary column SP
TM

-2380 (30 m × 0.25 mm with a 0.25 µm film thickness) 

from (Supelco, Bellefonte, PA).  Injection volume was 1 µL at a split ratio of 10/1.  

Oven temperature started at 136 ºC, increased by 6 ºC/min until 184 ºC and held for 3 

minutes, then increased by 6 ºC/min to a final temperature of 226 ºC.  Fatty acids 

were identified by comparing FAME retention time with that of known standards.  

The FAMEs were quantified by calculating the area under the curve of each identified 

peak and reported as relative percent of total fatty acids. 
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3.3.6. Total Phenolic Content (TPC) 

 

 The total phenolic content of each soy flour extract was determined according 

to a previously described laboratory procedure (Moore & Yu, 2008).  The final 

reagent mixture contained 50 µL of soybean extract, 250 µL of Folin-Ciocalteu 

reagent, 1.5 mL of 20% sodium carbonate, and 1.5 mL of ultra-pure water, using 

Gallic acid as a standard.  After 2 hours reaction time at ambient temperature, 

absorbance was read at 765 nm.  The reactions were conducted in triplicate and 

results reported in mg Gallic acid equivalents (GAE) per gram of soy flour. 

 3.3.7. Isoflavones Composition 

 

 0.5 grams of defatted soy flour were combined with 5 mL 58% acetonitrile, 

vortexed 3 times for 15 seconds each, and held overnight in the dark for 18 hours.  

The tubes were centrifuged, and the supernatant was collected and held for further 

testing.  Based on the method of Klump et al. (2001) with modification, 300 µL of 2N 

NaOH was added to each tube and tubes rested for 15 minutes.  100 µL of pure acetic 

acid was added to each tube and gently mixed.  0.5 mL was collected and filtered 

through a 0.45 µm syringe filter and stored at -20 °C until HPLC analysis.  HPLC was 

performed according to a previously described method (Achouri et al., 2005), using a 

Waters 600 HPLC, 996 photodiode array detector, and Waters 717 autosampler.  The 

column was a Phenomenex C18 (250 × 4.6 mm, 5 µm) with a Phenomenex C18 

guard cartridge. The eluent consisted of 99.9% distilled deionized water with 0.1% 

acetic acid (v/v) (mobile phase A) and 99.9% acetonitrile with 0.1% acetic acid (v/v) 

(mobile phase B).  The gradient was 15% solvent A for 5 minutes, increasing to 30% 

A over 10 minutes, held at 30% A for 10 minutes, increased to 50% A over 10 



 

 82 

 

minutes, held for 5 minutes, returned to 15% A over 5 minutes, and held for 10 

minutes to re-equilibrate.  Injection volume was 10 µL.  The detection wavelength 

was set at 254 nm.    

 3.3.8. DPPH Radical Scavenging Capacity Estimation 

 

 Relative DPPH· scavenging capacity (RDSC) was determined according to a 

previously described laboratory procedure (Cheng et al., 2006), using a Victor
3
 

multilabel plate reader (PerkinElmer, Turku, Finland).  DPPH radical solution (0.2 

mM) was prepared in 50% acetone and filtered through a P5 grade filter paper (Fisher 

Scientific).  Trolox standards were prepared in 50% acetone at concentrations of 6.25 

µM, 12.5 µM, 25 µM, 37.5 µM, and 50 µM.  Each final reaction mixture contained 

100 µL soybean extract, Trolox standard, or 50% acetone (control), and 100 µL 0.2 

mM DPPH· solution.  The absorbance was read at 515 nm.  The radical scavenging 

capacity (RDSC) was calculated from the area under the curve and reported in µmol 

Trolox equivalents (TE) per gram soy flour. 

3.3.9. Hydroxyl Radical Scavenging Capacity (HOSC) 

 

 The HOSC assay was conducted using a previously reported laboratory 

procedure (Moore et al., 2006).  Trolox prepared in 50% acetone was used as the 

standard at concentrations of 20, 40, 60, 80, and 100 µM.  Fluorescein was used as a 

fluorescent probe and the assay was performed using a Victor
3
 multilabel plate reader 

(PerkinElmer, Turku, Finland).  3.43 M iron (III) chloride and 0.1999 M hydrogen 

peroxide were prepared in ultra-pure water.  9.28 × 10
-8 

M FL was prepared in 75 mM 

sodium phosphate buffer (pH 7.4).  The reaction mixture consisted of 170 µL of 9.28 
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× 10
-8 

M FL, 30 µL of sample, standard, or blank, 40 µL of 0.1999 M hydrogen 

peroxide, and 60 µL of 3.43 M iron (III) chloride.  The fluorescence was recorded 

every 4 minutes for 4 hours.  Antioxidant capacity was calculated by area under the 

curve (AUC) described by Moore and others (2006).  Results were reported as 

micromoles of TE per gram of soy flour. 

 3.3.10. Statistical Analysis 

 

 Data was analyzed using SPSS (SPSS for Windows, Version Rel. 10.0.5., 

1999, SPSS Inc., Chicago, IL).  One-way ANOVA was conducted using data 

obtained in triplicate.  Tukey’s post-hoc test was used to determine differences 

between means after ANOVA analysis.  Correlation was analyzed using a two-tailed 

Pearson’s correlation test. Statistical significance was noted for values of p < 0.05 (α 

> 0.95).       

3.4. Results and Discussion 

 3.4.1. Lipoxygenase-1 (LOX-1) Content 

 

 Experimental soybean genotypes were modified through traditional breeding 

methods for the absence of the LOX-1 enzyme.  Presence of LOX-2 or LOX-3 was 

not determined in this study. The line 08-5865 and the Manokin cultivar were bred 

with normal LOX-1 content.  Soybeans were tested to determine the presence of 

LOX-1, with results seen in Table 3.1.  Although the lines were bred for absence of 

LOX-1, some individual seeds of the modified genotypes may not be missing the 

LOX-1 allele, and therefore LOX-1 was found to have activity in some of the  



Table 3.1. LOX-1 Presence in Soybean
 a
 and Fatty Acid Compositionb of Soybean Oil 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a
Data represent detection of LOX-1 in mean of 3 replicates. + indicates LOX-1 present, - indicates LOX-1 not detected. 

b
Results are 

 

reported as mean ± SD (n = 3). Individual fatty acids are expressed as a relative percent of the total fatty acids. SFA = saturated fatty acids,  

MUFA = monounsaturated fatty acids, PUFA = polyunsaturated fatty acids. Genotypes are yellow soybeans unless otherwise indicated.  

Manokin is a non-modified cultivar. Significant difference between genotypes is noted by different letters within each column as indicated  

by ANOVA with Tukey’s HSD post-hoc test (p < 0.05). 

Genotype LOX-1 16:0 18:0 18:1n-9 18:2n-6 18:3n3 SFA MUFA PUFA 
09-5876 Black - 11.74h-m ± 0.10 2.69a-e ± 0.06 18.55a-c ± 1.24 54.79b ± 0.95 12.24p-v ± 0.31 14.43 18.55 67.02 

09-5878 Black + 12.05j-n ± 0.23 2.52ab ± 0.14 18.37-c ± 0.28 55.08ab ± 0.22 11.97o-v ± 0.03 14.57 18.37 67.05 

09-5883 Black - 12.05j-n ± 0.13 3.05c-k ± 0.12 19.15a-c ± 0.29 53.97b ± 0.21 11.78n-u ± 0.10 15.10 19.15 65.75 

09-5880 Brown - 12.15j-o ± 0.08   2.76a-i ± 0.05  16.19a-c ± 0.24  56.18b-f ± 0.24 12.72s-v ± 0.03 14.91 16.19 68.90 

09-5880 Yellow - 12.28k-o ± 0.15 2.79a-i ± 0.13 15.52ab  ± 0.35 56.66b-g ± 0.18 12.75s-v ± 0.17 15.07 15.52 69.41 

09-5877 - 11.82i-m ± 0.17 2.61a-d ± 0.08  17.57a-c ± 0.27 55.11ab ± 0.23 12.90t-v ± 0.08 14.43 17.57 68.00 

09-5879 - 6.65a ± 0.07 2.57a-c ± 0.06 19.92a-c ± 1.22 57.90b-g ± 0.79 12.96uv ± 0.37 9.22 19.92 70.86 

09-5881 - 12.73no ± 0.15 2.86a-j ± 0.10 15.88ab ± 0.27 55.48b-d ± 0.20 13.05v ± 0.03 15.59 15.88 68.53 

09-5882 - 12.49m-o ± 0.09 2.76a-i ± 0.13  21.62a-d ± 1.17 57.14b-g ± 0.88 5.99b ± 0.15 15.25 21.62 63.13 

08-5424 - 7.70b ± 0.04 2.86a-j ± 0.17 27.23d ± 1.25 54.32b ± 0.80 7.89cd ± 0.26  10.56 27.23 62.20 

08-5043 - 10.68de ± 0.08 3.44k-m ± 0.11 21.71b-d ± 1.16 54.66b ± 0.86 9.51fg ± 0.13 14.11 21.71 64.17 

08-5083 - 9.90cd ± 0.05  2.65a-e ± 0.03 21.29a-d ± 0.20 55.86b-e ± 0.16 10.30g-l ± 0.05 12.55 21.29 66.16 

08-5040 - 11.41e-j ± 0.12  3.12e-j ± 0.14 16.00ab ± 0.23 57.79b-g ± 0.17 11.69m-t ± 0.07 14.52 16.00 69.48 

08-5059 - 11.74h-m ± 0.02 2.74a-i ± 0.08 17.93a-c ± 0.24 54.38b ± 0.24 13.20v ± 0.06 14.48 17.93 67.58 

08-5053 - 12.04j-n ± 0.12  2.59a-d ± 0.03 16.28a-c ± 0.22 58.63b-g ± 0.11 10.46h-m ± 0.06 14.63 16.28 69.09 

96-5978 + 11.14e-i ± 1.36   3.22h-m ± 0.46 15.67ab ± 0.19  61.18fg ± 0.14  8.27c-e ± 0.01  14.36 15.67 69.45 

08-5865 + 9.47c ± 0.16 3.65lm ± 0.07 38.48e ± 1.21 44.04a ± 0.86  4.36a ± 0.15  13.12 38.48 48.40 

08-5074 - 11.94j-n ± 0.15 2.89b-j ± 0.10 16.03ab ± 0.20 57.71 b-g ± 0.12 11.43l-r ± 0.04 14.83 16.03 69.14 

08-5073 - 11.65h-l ± 0.11 2.40a ± 0.06 17.90a-c ± 0.26 57.30b-g ± 0.13 10.75i-o ± 0.09 14.05 17.90 68.06 

08-5089 + 10.84e-g ± 0.10 3.67m ± 0.60 16.23a-c ± 0.25 58.23b-g ± 0.36 11.03j-p ±  0.36 14.51 16.23 69.26 

08-5069 - 11.43e-j ± 0.12 2.83a-j ± 0.05 17.56a-c ± 0.23 58.03b-g ± 0.13 10.14g-k ± 0.11 14.26 17.56 68.18 

08-5076 + 11.52f-k ± 0.14 2.52ab ± 0.02 14.79a ± 0.20  60.09c-g ± 0.10 11.07j-p ± 0.04 14.05 14.79 71.16 

08-5075 - 11.42e-j ± 0.01 2.73a-g ± 0.13 17.50a-c ± 0.52 55.78b-d ± 0.51  12.56q-v ± 0.18  14.15 17.50 68.34 

08-5082 - 11.10e-i ± 0.14 2.71a-f ± 0.04 15.54ab ± 0.18 58.86b-e ± 0.09 11.80n-u ± 0.06 13.81 15.54 70.66 

08-5052 - 11.65h-l ± 0.18 2.55ab ± 0.11 16.25a-b ± 0.24 56.89b-g ± 0.23  12.66r-v ± 0.11 14.20 16.25 69.55 

08-5085 - 10.77ef ± 0.09 2.73a-g ± 0.07 18.17a-c ± 0.20  57.66b-g ± 0.12 10.66h-n ± 0.07 13.50 18.17 68.33 

08-5042 - 11.44e-j ± 0.04 2.83a-j ± 0.11 16.37a-c ± 0.13  57.10b-g ± 0.13  12.26p-v ± 0.04 14.27 16.37 69.36 

08-5078 - 11.41e-j ± 0.10 3.06d-k ± 0.04 19.73a-c ± 0.44  55.93b-f ± 0.27 9.87f-j ± 0.14 14.47 19.73 65.81 

08-5071 - 10.96e-h ± 0.10 2.49ab ± 0.05 16.96a-c ± 0.14 58.22b-g ± 0.15  11.37k-q ± 0.08 13.45 16.96 69.59 

08-5050 - 10.97e-h ± 0.03 2.49ab ± 0.06 16.90a-c ± 0.18 58.30b-g ± 0.14 11.34k-q ± 0.07 13.46 16.90 69.64 

08-6166 - 11.69h-m ± 0.14 3.24i-m ± 0.19 20.73a-d ± 0.22 54.58b ± 0.19 9.75f-i ± 0.06  14.94 20.73 64.33 

03-6610 - 12.42l-o ± 0.08 2.75a-h ± 0.06 16.41a-c ± 0.20 55.49b-d ± 0.15  12.93uv ± 0.06 15.16 16.41 68.42 

07-08WN 8 + 12.07j-n ± 0.03 3.18f-l ± 0.02 15.45ab ± 0.16 57.84b-g ± 0.13 11.46l-r ± 0.02 15.25 15.45 69.30 

07-08WN 44 + 9.83c ± 0.10 3.20g-m ± 0.02 21.69b-d ± 0.36 61.03fg ± 0.27  4.26a ± 0.04 13.03 21.69 65.28 

96-5981 + 11.55f-k ± 0.05 3.28j-m ± 0.03 14.91ab ± 0.24 61.61g ± 0.23 8.66d-f ± 0.01 14.82 14.91 70.27 

96-5979 - 11.60g-k ± 0.11 3.18f-m ± 0.14 16.23a-c ±  0.23 60.96e-g ± 0.26 8.02c-e ± 0.06 14.79 16.23 68.99 

96-5980 - 11.40e-j ± 0.10 3.23i-m ± 0.05 16.95a-c ± 0.16 60.48d-g ± 0.19  7.94cd ± 0.12 14.63 16.95 68.42 

Japan-L1L2L3 - 12.88o ± 0.12 2.82a-j ± 0.09 17.29a-c ± 0.25 55.41b-d ± 0.15 11.60m-s ± 0.05 15.70 17.29 67.01 

Manokin + 11.74h-m ± 0.07  3.45k-m ± 0.09 18.31a-c ± 0.11 57.64b-g ± 0.26 9.19e-g ± 0.13  15.19 18.31 66.83 
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genotypes.  As the lines were experimental, in some cases the elimination of LOX-1 

was not complete. 

 3.4.2. Fatty Acid Composition 

 

Fatty acid composition of soybean oil is shown in Table 3.1.  Linolenic acid 

(18:3n3) is an essential fatty acid in the human diet.  However, it is usually desired 

for soybean oil to have reduced levels of 18:3n3 to improve stability in processing 

and to reduce the requirement for hydrogenation (Fehr, 2007).  Typical non-modified 

soybeans contain an average of 8% 18:3n3 out of total fatty acids (Sugano, 2006).  

Soybeans modified for fatty acid may contain as little as 1% 18:3n3 of total fatty 

acids.  The desirable levels of 18:3n3 for baking and frying oil are usually less than 

3% (Wilson, 2004).  The modified LOX soybeans in this study contained 18:3n3 

ranging from 4.26 to 13.20% of total measured fatty acids.  Genotypes 0708WN 44 

and 08-5865 contained significantly lower 18:3n3 (p < 0.05) than the other soybean 

genotypes at 4.26 and 4.36% of total fatty acids, respectively.  Our research found 

that both of these lines contained measurable LOX-1 (this is expected in line 08-5865 

that was bred as normal-LOX).  Of modified-LOX soybeans, line 09-5882 contained 

the lowest level of 18:3n3 (5.99% of total fatty acids), however this level is higher 

than the desired level for improved oxidative stability.  In the soybean lines overall, 

there was a negative correlation between LOX-1 presence and 18:3n3 (r = -0.231, p < 

0.05) (Table 3.2).   

Oleic acid (18:1n9) is considered a desirable fatty acid for soybean oil.  As a 

monounsaturated fatty acid it is beneficial for heart health (Bermudez et al., 2011).  It 

also contributes to improved stability of soybean oil if it replaces the polyunsaturated 
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fatty acids.  The 18:1n9 content of the studied soybeans was between 14.79 and 

38.48% of total fatty acids.  The experimental line 08-5865 contained the highest 

level, followed by 08-5424 (27.23%).  The genotype 08-5865 also contained a low 

level of 18:3n3, and the combination with higher 18:1n9 may produce oil of higher 

stability than the other experimental lines. That particular line, however, is normal in 

LOX-content.  Low 18:3n3 and elevated 18:1n9 is a desirable trait in oilseeds and 

some breeding programs have specialized in this combination (Fehr, 2007), although 

those seeds can achieve 18:1n9 levels of 80% of total fatty acids.  Overall there was a 

negative correlation among all studied soybean lines between 18:1n9 and 18:3n3 (r = 

-0.641, p < 0.01) (Table 3.2).  There was a positive correlation between LOX-1 and 

18:1n9 (r = 0.243, p < 0.01), indicating that modification of the LOX-1 trait may have 

affected the level of certain fatty acids.  

 Palmitic acid (16:0) is a saturated fatty acid in food oils.  Although it provides 

stability to foods, dietary intake may increase risk of cardiovascular disease 

(Warensjo et al., 2008).  The 16:0 level of the soybeans ranged from 7.70 to 12.88 % 

of total fatty acids, which is near the reported average level of 10 % (Sugano, 2006).  

Genotype 08-5424 contained the lowest level of 16:0, although this level is not as low 

as that obtained in soybeans modified for saturated fatty acid content (Fehr, 2007).  In 

this study, 16:0 levels were negatively correlated with 18:1n9 (r = -0.536, p < 0.01) 

(Table 3.2) and positively correlated with 18:3n3 (r = 0.304, p < 0.01).  A similar 

correlation was seen in a previous study of low 18:3n3 soybeans (Whent et al., 2009). 
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Table 3.2. Correlations Between Soybean Antioxidant Capacity, Isoflavones, and Fatty Acids
a 

   TPC RDSC HOSC Total  

ISF 

Daidzein Glycitein Genistein 16:0 18:0 18:1n9 18:2n6 18:3n3 

RDSC   0.645**            

HOSC   0.471**   0.443**           

Total ISF 0.220*  -0.133 0.353**          

Daidzein 0.227*  -0.130 0.297** 0.908**         

Glycitein  -0.132  -0.357**  0.115 0.484** 0.461**        

Genistein 0.212*  -0.073 0.326** 0.829** 0.657** 0.384**       

16:0   0.106   0.212*  0.202* 0.014  -0.011   0.058    0.109      

18:0  -0.134  -0.072 -0.051 -0.048  -0.126  -0.065   -0.061 -0.104     

18:1n9   0.018  -0.012 -0.165 -0.142  -0.120  -0.263**   -0.347** -0.536**  0.383*    

18:2n6  -0.239**  -0.189*  0.260 0.040   0.060 0.246**    0.181   0.163 -0.215* -0.787**   

18:3n3  0.251**   0.176  0.182* 0.224*   0.181   0.152   0.379**   0.304** -0.537** -0.641** 0.115  

LOX-1   0.073  -0.030 -0.030 0.088  -0.113  -0.079   -0.004  -0.106 0.394**  0.248**  -0.187* -0.231* 
a
Data represents r-value of Pearson’s two-tailed test.  * = p < 0.05, ** = p < 0.01. ISF = Isoflavone.
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3.4.3. Total Phenolic Content (TPC) 

 

 Phenolic compounds are known to contribute to the antioxidant capacity of a 

food.  Diets high in phenolics are associated with reduced risk of heart disease and 

some types of cancer (Crozier et al., 2009).  Phenolic compounds found in soybeans 

include benzoic acids, cinnamic acids, flavonols, and anthocyanins (black soybeans) 

(Xu & Chang, 2008a).  The TPC of the modified soybeans ranged from 2.84 to 4.74 

mg Gallic acid equivalents (GAE)/g flour (Figure 3.1).  Of yellow soybeans, 

genotypes 08-5075 and 08-5052 contained the highest TPC, at 3.69 and 3.66 mg 

GAE/g, respectively.  These soybeans were also confirmed to be null for LOX-1.  

However, there was no significant correlation identified between LOX-1 presence 

and TPC.  Black colored soybeans contained significantly higher levels than yellow 

soybeans (p < 0.05), which is consistent with the literature.  According to previous 

studies, cyanidin-3-glucose is the major anthocyanin found in the black soybeans and 

contributes to the TPC level (Xu & Chang, 2008a; Slavin et al., 2009a). 

 3.4.3. Isoflavones Composition 

 

Although many solvent systems have been described for isoflavone extraction, 

58% acetonitrile was selected for this study as it was previously determined to be an 

effective extraction solvent by Lin & Giusti (2005).  Murphy et al. (2002) and 

Collison (2008) have also described aqueous acetonitrile as a good solvent for 

determining isoflavone composition.  Extracts were hydrolyzed under basic 

conditions to measure β-glucosides and aglycones, which were available as 

commercial standards.  The total isoflavone content (Table 3.3) is described in  
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Figure 3.1. Total Phenolic Content (TPC) of Soybean* 
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*Data expressed as mg Gallic acid equivalent (GAE)/g soy flour.  Each bar represents 

mean ± SD (n = 3). Significant difference between genotypes is noted by different letters 

above each bar as indicated by ANOVA with Tukey’s HSD post-hoc test (p < 0.05). 

Genotypes are yellow soybeans unless otherwise indicated. Manokin is a non-modified 

cultivar. 

 

 

µmol/g flour due to differing molecular weights of the individual isoflavone forms. 

   The individual aglycone equivalents were calculated and are reported as µg/g 

flour.  Total isoflavones ranged from 2.78 to 8.66 µmol/g flour (730.99 to 2230.15 µg/g 

in aglycone equivalent).  This is in the range of previously reported isoflavone levels in 

soy flour extracted with aqueous acetonitrile.  Murphy et al. (2002) reported 7.3 µmol/ g, 

and Lin & Giusti (2005) reported 3.9 µmol/g. In this study, the highest total isoflavone 

levels were found in yellow-colored soybean genotypes as opposed to the black-colored 

soybeans, which differed from the TPC results.  This finding has previously been
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reported in literature (Xu & Chang, 2008a) and suggests that phenolic compounds 

other than isoflavones (likely anthocyanins) are contributing to the high TPC of black 

soybeans.  In fact, a previous study of black soybeans demonstrated that most 

phenolics are contained in the seed coat while the isoflavones are contained in the 

cotyledon (Xu & Chang, 2008b).  In the current study, TPC was weakly correlated 

with total isoflavones (r = 0.220, p < 0.05) (Table 3.2).  Genotype 08-5052 and 08-

5075 contained the highest total isoflavones at 8.66 and 8.22 µmol/g  

flour, respectively.  These genotypes were null for LOX-1 and also contained the 

highest TPC of the yellow soybeans.  The non-modified soybean (Manokin) 

contained 6.86 µmol/g flour, and the normal-LOX experimental line 08-5865 

contained 3.3 µmol/g. The results show that some soybean genotypes with modified 

LOX contain the same or higher levels of isoflavones when compared with non-

modified genotypes, although a statistically significant correlation was not identified. 

Individual isoflavone content was positively correlated with the total 

isoflavones by genotype (p < 0.05).  Of the individual isoflavones, genistein and 

daidzein are found in higher amounts than glycitein (Murphy et al., 2002; Lin & 

Giusti, 2005).  Total daidzein ranged from 360.0 to1367.0 µg/g flour, glycitein was 

between 32.0 and 129.2 µg/g flour, and genistein was detected at 327.9 to 922.3 µg/g 

flour.  Many genotypes demonstrated similar levels of genistein and daidzein by 

weight (in aglycone equivalents), while others had one isoflavone in much higher 

levels than the other.  For example, genotype 96-5978 contained 1112.28 µg/g flour 

of total daidzein and only 649.03 µg/g flour of total genistein.     
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Table 3.3. Isoflavone Composition of Soybean
* 

Genotype Daidzein  

(µµµµg/ g flour) 

Glycitein  

(µµµµg/ g flour) 

Genistein  

(µµµµg/ g flour) 

Total 

Isoflavone 

(µµµµmol/ g 

flour) 

09-5876 Black    611.9a-i ± 14.3 38.2ab ± 4.6  568.1a-g ± 51.0 4.6b-g ± 0.2 

09-5878 Black 548.9a-f ± 54.6 37.7ab ± 3.1 427.0a-c ± 61.7 3.9a-e ± 0.3 

09-5883 Black 502.3a-e ± 47.9 40.8a-c ± 3.5 598.8a-h ± 74.2  4.3a-g ± 0.2 

09-5880 Brown 567.0a-g ± 42.6 75.0a-f ± 3.5 649.4c-j ± 20.9  4.9b-h ± 0.2 

09-5880 Yellow 526.1a-f ± 51.8 66.7a-f ± 9.8 495.9a-f ± 103.1  4.1a-f ± 0.5 

09-5877 535.9a-f ± 26.1  32.0a ± 10.4 487.4a-e ± 103.2 4.0a-f ± 0.5  

09-5879 800.5c-k ± 69.1 87.7a-g ± 16.4 570.4a-g ± 74.5 5.6g-m ± 0.5 

09-5881 694.4a-i ± 105.1  117.3e-g ± 23.8 592.6a-h ± 111.0 5.3d-k ± 0.8 

09-5882 484.3a-e ± 73.5 85.6a-g ± 20.9 409.2a-c ± 24.8  3.7a-d ± 0.3 

08-5424 580.7a-g ± 60.0 84.9a-g ± 1.7 491.6a-f ± 55.5 4.4a-g ± 0.3 

08-5043 829.5e-k ± 33.9 113.7e-g ± 34.0 904.7ij ± 25.8  6.7i-n ± 0.6 

08-5083 613.8a-i ± 16.4 70.7a-f ± 28.2  583.5a-h ± 97.2 4.9b-h ± 0.3 

08-5040 336.6a ± 31.5 59.3a-e ± 10.7 539.8a-g ± 86.7 3.5a-c ± 0.2 

08-5059 975.6i-k ± 130.0 

 
167.4g ± 24.4 668.4a-j ± 42.8 6.8j-n ± 0.7 

08-5053 719.4b-j ± 54.8 103.8b-g ± 21.0 739.3d-j ± 92.8 5.9h-m ± 0.5 

96-5978 1112.3k ± 154.6 107.3c-g ± 58.9 799.8ij ± 64.5  7.7n ± 0.4 

08-5865 525.5a-f ± 46.7 45.4a-d ± 16.3 320.8ab ± 18.0  3.3ab ± 0.1 

08-5074 586.1a-g ± 30.8 128.3fg ± 21.1 526.7a-g ± 45.6  4.7b-g ± 0.0 

08-5073 360.0ab ± 12.7 55.9a-e ± 8.2 553.5a-g ± 32.0 3.8a-d ± 0.1 

08-5089 459.2a-d ± 19.5 97.8a-g ± 4.9 692.9c-g ± 107.7  5.1b-j ± 0.8 

08-5069 594.1a-h ± 70.1 69.1a-f± 4.4 550.6a-g ± 72.5 4.6b-g ± 0.5 

08-5076 529.5a-f ± 57.6 94.2a-g ± 23.7 498.0a-f ± 87.4 4.3a-g ± 0.5 

08-5075 1122.9k ± 59.2 110.7d-g ± 10.8 922.3j ± 97.2 8.2n ± 0.4 

08-5082 926.5a-i ± 63.8 110.9d-g ± 7.8 931.8j ± 142.5 7.5l-n ± 0.5 

08-5052 1367.7k ± 113.2  118.3e-g ± 13.0 744.2d-j ±49.5 8.7n ± 0.5  

08-5085 609.7a-i ± 80.1  101.7b-g  ± 17.3 669.1c-j ± 99.2 5.2c-k ± 0.7 

08-5042 512.5a-e ± 40.3 82.5a-g ± 26.1 615.8b-I ± 38.0 4.6b-g ± 0.2 

08-5078 433.0a-c ± 18.1 93.1a-g ± 16.6 423.8a-c ± 16.9  3.6a-d ± 0.1 

08-5071 601.6a-h ± 66.7 92.4a-g ± 10.4 682.1c-j ± 47.1 5.2c-g ± 0.4 

08-5050 607.7a-i ± 73.8 103.7b-g ± 14.3 671.4c-j ± 43.8 5.2c-g ± 0.2 

08-6166 551.0a-f ± 82.1 91.4a-g ± 12.3 554.5a-g ± 58.7 4.5a-g ± 0.6 

03-6610 1077.2jk ± 163.3 94.6a-g ± 16.7 880.3 h-j ± 79.6 7.8n ± 0.9 

07-08WN 8 743.3c-j ± 37.8 105.5c-g ± 31.1 901.9ij ± 117.7 6.6h-n ± 0.7 

07-08WN 44 834.1d-k ± 119.9 84.9a-g ± 5.2 584.7a-h ± 33.4 5.7h-l ± 0.6 

96-5981 548.3a-f ± 26.8 94.6a-g ± 12.2 443.6a-d ± 81.7 4.1a-f ± 0.4 

96-5979 365.5ab ± 51.9 57.7a-e ± 10.6  307.9a ± 42.4 2.8a ± 0.3 

96-5980 531.2a-f ± 41.0 71.9a-f ± 6.5 455.9a-d ± 44.7 4.0a-f ± 0.3 

Japan-L1L2L3 544.9a-f ± 15.9 129.2fg ± 17.9 442.0a-d ± 56.2 4.5a-g ± 0.4 

Manokin 961.3h-k ± 41.7 59.5a-e ± 5.4 782.1e-g ± 62.1 6.9k-n ± 0.1 
*
 Data represent mean ± SD (n = 3). Significant difference between genotypes is noted by 

different letters within each column as indicated by ANOVA with Tukey’s HSD post-hoc 

test (p < 0.05).  Daidzein, glycitein, and genistein are expressed in aglycone equivalents as 

µg/g flour.  Total isoflavone is expressed as µmol/g flour. Genotypes are yellow soybeans 

unless otherwise indicated. Manokin is a non-modified cultivar. 
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 3.4.4. Antioxidant Activity of Soybeans 

 

 3.4.4.1. Relative DPPH· Scavenging Capacity 

 

 DPPH
•••• is a stable free radical that can be used to measure single electron 

transfer (SET) reactions (Huang et al., 2005).  RDSC was determined by the method 

of Cheng et al. (2006), which compares antioxidant activity to a standard curve of TE.  

Black soybean RDSC was between 6.93 and 14.61 µmol TE/ g flour, while the 

yellow soybean ranged from 0.48 to 2.38 µmol TE/g flour (Figure 3.2).  These values 

are similar to those reported by Whent et al. (2009) for modified fatty acid yellow 

soybeans (0.6-1.5 µmol TE/g soybean) and Xu & Cheng (2008a) for North Dakota 

soybeans (0.36 – 1.16 µmol TE/g dry weight for yellow, 16.39-17.86 µmol TE/g for 

black soybeans).  Other studies have reported DPPH
•••• scavenging capacity of soybean 

extracts, however cannot be directly compared due to varied experimental and 

reporting methods (Riedl et al., 2007; Slavin et al., 2009b).  Several of the yellow 

soybean lines had similar or higher RDSC values compared to the non-modified 

Manokin line, which suggests that the antioxidant capacity was not altered by 

modification of the LOX enzyme.  RDSC demonstrated positive correlation with TPC 

(r = 0.645, p < 0.01), however there was no significant correlation with total 

isoflavones.  Phenolic compounds other than isoflavones are likely contributing to the 

RDSC in the studied soybeans. 
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Figure 3.2. Relative DPPH
•••• Scavenging Capacity (RDSC) of Soybean* 
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*Data expressed as µmol TE/g soy flour. Each bar represents mean ± SD (n = 3). 

Significant difference between genotypes is noted by different letters above each bar 

as indicated by ANOVA with Tukey’s HSD post-hoc test (p < 0.05). Genotypes are 

yellow soybeans unless otherwise indicated. Manokin is a non-modified cultivar. 

 

 

 3.4.4.2. Hydroxyl Radical Scavenging Capacity (HOSC) 

 

 Hydroxyl radical (
••••OH) is a highly reactive physiological free radical that can 

damage cellular DNA (Jomova & Valko, 2011).  HOSC of the soybean extracts was 

between 53.57 and 135.52 µmol TE/g flour (Figure 3.3).  This is near the range 

reported by Slavin et al. (2009b) (68.3-109.5 µmol TE/g flour) for Maryland yellow 

soybeans.  The black colored soybeans were in the higher range of HOSC levels, but 

were still similar to many of the yellow colored genotypes.  Several of the yellow 

modified-LOX soybeans had similar HOSC levels as the Manokin non-modified 

soybean, and some were higher at statistically significant levels (p < 0.05).  HOSC 

was positively correlated with TPC (r = 0.471, p < 0.01), RDSC (r = 0.443, p < 0.01), 
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and total isoflavones (r = 0.353, p < 0.01) (Table 3.2), indicating that phenolics such 

as isoflavones may contribute to scavenging of 
••••OH. 

 

Figure 3.3. Hydroxyl Radical Scavenging Capacity (HOSC) of Soybean* 
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*Data expressed as µmol TE/g soy flour. Each bar represents mean ± SD (n = 3).  

Significant difference between genotypes is noted by different letters above each bar 

as indicated by ANOVA with Tukey’s HSD post-hoc test (p < 0.05).  Genotypes are 

yellow soybeans unless otherwise indicated. Manokin is a non-modified cultivar. 

 

 In conclusion, this study has provided characterization of Maryland-grown 

soybeans with modified LOX content.  The TPC, antioxidant activity, fatty acid, and 

isoflavone content were comparable to those previously reported for normal-LOX 

soybeans.  Some specific genotypes were identified with isoflavone content similar to 

or higher than the Maryland-grown non-modified soybean.  Soybean composition can 

be affected by growing location and year (Wang & Murphy, 1994; Lee et al., 2003), 

and studies over several growing seasons would be beneficial to confirm the findings 

for individual genotypes. Overall, these modified-LOX soybeans have been shown to 
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contain health-beneficial properties and may be useful as ingredients in functional 

foods.  They also have potential to produce soy foods with improved oxidative 

stability and sensory properties, although further research needs to be conducted in 

that area with these selected genotypes. 
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Chapter 4: High-Throughput Assay for Detection of 

Soybean Lipoxygenase-1  
 

Adapted from Whent et al., J. Agric. Food Chem. 2010, 58, 12602-12607 

 

4.1. Abstract 

 

A high-throughput assay was developed to detect soybean lipoxygenase-1 

(LOX-1) activity using a multilabel plate reader. The assay was also adapted to a 

single cell fluorometer.  Fluorescein is degraded by linoleic hydroperoxide produced 

from soybean lipoxygenase and linoleic acid.  The decrease in fluorescence is 

measured over time and the area-under-the-curve (AUC) is used to quantify the LOX-

1 content of soybean extract.  A dose-dependent response is seen with varied dilutions 

of pure LOX enzyme or soybean extracts.  Percent recovery was between 97% and 

108%, and relative standard deviation was 4.3%.  Advantages of the assay include the 

reduced preparation time of samples and reduced use of reagents in the high-

throughput assay.  Multiple samples can be measured in a single run with a multilabel 

plate reader. 

4.2. Introduction 

 

 Soy foods are recognized for their health beneficial properties.  Soy food 

consumption has been associated with the reduced risk of cardiovascular disease, 

osteoporosis, and some types of cancer (Isanga & Zhang, 2008).  Replacing some 

dietary animal protein with soy protein has been recommended for lower risk of 

chronic disease (Anderson, 2008).  Although soy foods are widely consumed in many 

Asian countries, they are less popular in the United States.  One possible reason for 
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the dislike of soy products is the distinct “beany” flavors that they possess (Yuan & 

Chang, 2007). These undesirable flavor components are primarily the peroxidation 

products of polyunsaturated fatty acids catalyzed by lipoxygenase and hydroperoxide 

lyase. 

Soybean lipoxygenase (linoleate: oxygen oxidoreductase, EC 1.13.11.12) is a 

hydroperoxidase and catalyzes the oxidation of unsaturated fatty acids containing a 

cis,cis-1,4-pentadiene moiety.  Conventional soybean seeds generally have three LOX 

isozymes including LOX-1, LOX-2 and LOX-3.  The resulting products of the 

oxidation are converted to the undesirable odors and flavors associated with soy foods 

through a number of other reactions (Wolf, 1975).  Processing treatments at high 

temperatures are used to inactivate the lipoxygenase (LOX) enzyme; however the 

heat may denature proteins and destroy other nutrients or health components such as 

isoflavonoids (Yuan et al., 2008; Euston et al., 2009).  Through selective breeding, 

soybean lines have been developed that are null for one or more LOX isozymes.  The 

goal for cultivation of these soybeans is to develop soy food products with reduced 

fatty acid oxidation and therefore improved flavor. 

   Rapid detection of the LOX enzymes is important to soybean breeding 

programs.  Several colorimetric methods that can be measured visually or 

spectrophotometrically have been developed to detect the presence of lipid 

hydroperoxides that result from the LOX enzyme activity in soybeans or other plants 

(Suda et al., 1995; Waslidge & Hayes, 1995; Anthon & Barrett, 2001).  One of the 

earliest methods involved the spectrophotometric measurement of conjugated diene 

generated from the LOX catalyzed peroxidation reaction of unsaturated fatty acid 
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substrates at 234 nm (Axelrod et al., 1981).  A colorimetric method described by 

Suda et al. (1995) uses the bleaching of methylene blue or β-carotene as a 

spectrophotometric or visual indicator to determine the three isozymes of LOX .  The 

methylene blue and β-carotene bleaching method was modified by Narvel et al. 

(2000) for use with small chips of soybean sample, which reduces sample preparation 

time.  This modification of the method allows more rapid analysis, but can provide 

only a qualitative measure of the enzyme through a visual color change.  The iodine-

starch method and DMAB-MBTH method allow for relative quantification of LOX 

among samples.  The iodine-starch method and DMAB-MBTH methods can measure 

activity of LOX in crude vegetable homogenate, and absorbance is read once after a 

specified time (Romero & Barrett, 1997; Anthon & Barrett, 2001).  However, the 

presence of the LOX enzyme is measured by color change after a pre-determined 

time, which does not account for the benefits of the measuring reaction, and may not 

be as accurate as those accounting for reaction thermodynamics and kinetics such as 

the quantification using AUC.  Measurement of blood platelet 12-lipoxygenase with 

ferrous oxidation of xylenol orange has been adapted to a high-throughput format 

(Waslidge & Hayes, 1995), and could possibly be adapted as a method for LOX 

detection in plants.  But, one drawback of this method is that it may result in a false 

positive if the sample is able to chelate iron.  This problem is more likely when using 

antioxidant-containing material such as soybeans.  The presence of pigments may 

also interfere with the estimation of LOX using these colorimetric methods.  In 

addition, measurement of O2 consumption by electrode is another method that can 

quantify the LOX activity, although special equipment is required (Axelrod et al., 
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1981). To date, the possibility to develop a fluorescence assay for LOX determination 

has not been investigated. 

 Rapid and efficient measurement of LOX activity is desirable for screening 

LOX-null soybean cultivars, and will be useful for soybean breeding programs.  

Despite the number of available detection methods, there is still a need for an 

efficient and quantitative method for measurement of LOX activity in soybeans.  The 

purpose of this study was to develop a fluorescence assay for measurement of 

soybean LOX  activity that can be adapted for high-throughput analysis and therefore 

improve the screening and quantification of LOX in modified soybeans.   

4.3. Materials and Methods 

4.3.1. Materials and Chemicals 

 

 Whole soybeans were provided by Dr. William Kenworthy in the Department 

of Plant Science and Landscape Architecture at the University of Maryland, College 

Park.  Lines included Manokin, Japan 123 (Null for LOX-1, LOX-2, and LOX-3), 

and experimental lipoxygenase-null lines.  Fluorescein, methylene blue, linoleic acid, 

and Tween 20 were obtained from Sigma Aldrich (St. Louis, MO).  15-lipoxygenase 

Type 1 (from soybean) was obtained from Cayman Chemical (Ann Arbor, MI).  All 

other reagents were of highest commercial grade. 

 4.3.2. Soybean Extract 

 

 Soybeans were ground to 20-mesh using a household coffee grinder.  For the 

methylene blue assay and single-cell fluorometric assay, 0.10 g of soy meal was 

combined in a 15 mL test tube with 10 mL ultra-pure water and vortexed twice for 15 



 

 100 

 

seconds.  For the 96-well high-throughput fluorescein assay, 0.020 g soy meal was 

combined with 10 mL ultra-pure water in a 15 mL test tube and vortexed twice for 15 

seconds.  Test tubes were held at 10 °C for 1 hour and then centrifuged at 1500 rpm 

for 5 minutes.  The supernatant was collected and used immediately. 

 4.3.3. Lipoxygenase-1 Assay With Methylene Blue 

 

 The methylene blue assay for soybean lipoxygenase-1 activity was conducted 

according to the method previously described by Suda et al (1995) and Narvel et al 

(2000) with minor modification.  Commercially purchased 15-lipoxygenase Type 1 

(from soybean) was diluted in 200 mM pH 9.0 sodium borate buffer to 5 

concentrations and held on ice until use.  Sodium linoleate substrate was prepared 

with 90 mg linoleic acid, 40 µL Tween 20, 875 µL 0.5 M sodium hydroxide, and 

ultra-pure water in a final volume of 25 mL.  The final reaction mixture contained 

500 µL 200 mM pH 9.0 sodium borate buffer, 100 µL 200 mM methylene blue 

solution, 100 µL 12.6 mM sodium linoleate solution, 200 µL ultra-pure water, and 

100 µL soybean extract or pure enzyme in a 1.5 mL cuvette.  Absorbance was read at 

660 nm and recorded at 10-second intervals for 6 minutes.  

4.3.4. Lipoxygenase-1 Assay With a Single Cell Fluorometer Using 

Fluorescein as the Probe 

 

 Fluorescein stock solution was prepared at a concentration of 0.1 mM in pH 

9.0 sodium borate buffer and stored at 0 ºC.  Secondary stock solution was prepared 

by diluting the original stock solution to 0.01 mM.  The secondary stock solution was 

diluted to 100 nM in pH 9.0 buffer to make the working solution.  Pure soybean 

lipoxygenase was diluted in pH 9.0 sodium borate buffer to 5 concentrations and held 
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on ice until use. The final reaction mixture contained 600 µL 100 nM fluorescein 

working solution, 225 µL pH 9.0 buffer, 100 µL 12.6 mM sodium linoleate solution, 

and 75 µL soybean extract or pure enzyme in a 1.5 mL cuvette.  A blank was 

prepared with buffer in place of fluorescein to determine the baseline fluorescence of 

the mixture.  The fluorescence was read in a single-cell fluorometer and recorded at 

10-second intervals for 6 minutes.  The excitation and emission wavelength was 485 

and 515 nm, respectively.  Fluorescence of the blank was subtracted from the 

fluorescence of the standard or sample to obtain net fluorescence.  Area under the 

curve (AUC) was calculated for net fluorescence as described by Moore et al. (2006):  

AUC = 0.5 + f1/f0 + f2/f0 + f3/f0 + ... + fi-1/f0 + 0.5(fi/f0) 

where f0 is the fluorescence at 0 minutes and fi is the final reading.  The concentration 

of the commercially purchased enzyme dilutions was plotted against the calculated 

AUC and a standard curve was determined by linear regression.  The concentration of 

LOX-1 in soybean extract was calculated using the equation derived from the 

standard curve. 

4.3.5. High-throughput Lipoxygenase-1 Assay Using Fluorescein as 

the Probe 

 

 15-lipoxygenase Type 1 (from soybean) was diluted with pH 9.0 sodium 

borate buffer to 5 concentrations between 5 and 25 kilo-units (KU).  The dilutions 

were prepared immediately before use and held on ice.  200 nM fluorescein working 

solution was prepared from the 0.01 mM secondary stock solution (described above).  

Sodium linoleate was prepared as described above.  100 µL 200 nM fluorescein 

working solution or pH 9.0 buffer (blank) was added to each well using a 
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multichannel pipet.  120 µL pure LOX-1 enzyme, soybean extract, or buffer (control) 

was added.  Finally, 80 µL 12.6 mM sodium linoleate solution was added to each well 

using a multichannel pipet to initiate the enzyme reaction. Fluorescence was recorded 

continuously for 6 minutes using a Victor
3
 multilabel plate reader (Perkin-Elmer).  

Excitation and emission wavelengths were 485 and 515 nm, respectively.  AUC 

calculations were performed as described above. 

 4.3.6. Statistical Analysis 

 

 SPSS (version 10.0.5, 1999, SPSS Inc., Chicago, IL) was used to conduct 

statistical analysis.  Means were compared by one-way analysis of variance with 

Tukey's post-hoc test.  Statistical significance was declared at p < 0.05. 

  

4.4. Results and Discussion 

4.4.1. Development of LOX-1 Assay Using Fluorescein as the Probe 

 

 The first step in developing a high throughput method was determining the 

appropriate probe for LOX activity detection. Lipoxygenase has both dioxygenase 

and hydroperoxidase activity.  Many assays currently used for LOX measurement 

were developed based on the lipid peroxidation reaction catalyzed by LOX.  Peroxide 

radicals are generated during the oxidative chain reaction with or without LOX.  

Fluorescein (C20H12O5) has been used as a probe for free radical scavenging capacity 

assays, as it is degraded by peroxyl radical (ROO
•
).  This reaction is used as a probe 

in the oxygen radical absorbance capacity (ORAC) assay (Ou et al., 2001) and 

hydroxyl radical scavenging capacity (HOSC) assay (Moore et al., 2006b).  

According to Ou et al. (2001) and Moore et al. (2006b), fluorescein is stable and 
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resists degradation by light in the plate reader, so it may serve as an ideal probe for 

use in a fluorometric assay of LOX activity.   

Figure 4.1 (A) shows the dose-response of fluorescein at different levels of 

the pure LOX-1 enzyme, and measures degradation of fluorescein in the presence of 

hydroperoxides.  The pattern of Figure 4.1 (A) is very similar to that of Figure 4.1 

(B), which shows the dose-response of methylene blue at the selected pure LOX-1 

concentrations, indicating that fluorescein may be used as a quantitative probe for 

LOX-1.  Another reaction was conducted with fluorescein and LOX-1 without the 

sodium linoleate substrate, and no change in fluorescence was observed over time 

(data not shown).  This indicated that fluorescence was not affected by LOX-1 in the 

absence of the PUFA substrate.  There are multiple LOX isozymes known, and LOX 

1, 2, and 3 are most prevalent (Axelrod et al., 1981).  These three isozymes are active 

at different pH levels.  Assays to detect the presence of all enzymes must therefore be 

conducted at the three pH levels.  Linoleic acid is commonly used as a substrate for 

lipoxygenase-1 (LOX-1).   Lipoxygenase 2 and 3 (LOX-2 and LOX-3) are most 

active at pH 6-7, and it can be difficult to distinguish them based on pH alone 

(Axelrod et al., 1981).   

The use of fluorescein for detection of soybean LOX-1 was modeled using the 

previous methylene blue bleaching method (Suda et al., 1995).  The methylene blue 

LOX assay measures the bleaching of methylene blue by hydroperoxides formed by 

the radical-mediated enzymatic oxidation of linoleic acid (Toyosaki, 1992).  The new 

fluorescein assay measures the decrease in fluorescence of fluorescein as it is 

degraded by hydroperoxide radical attacks.  This test was conducted at pH 9.0 to  
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Figure 4.1. (A) Fluorescein LOX-1 Assay* 
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Figure 4.1. (B) Methylene Blue LOX-1 Assay* 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 3 4 5 6 7

Time (minutes)

A
b
s
o
rb
a
n
c
e
 a
t 
6
6
0
 n
m

158 KU

126.4 KU

94.8 KU

63.2 KU

21.6 KU

0 U (control)

 
*Comparison of A) fluorescein LOX-1 assay, and B) methylene blue LOX-1 assay.  

The reagents were A) 225 µL 200 mM pH 9.0 sodium borate buffer, 600 µL 100 nM 

fluorescein, 100 µL 12.6 mM sodium linoleate solution, 75 µL of 15-lipoxygenase 

(varied concentrations) and B) 500 µL 200 mM pH 9.0 sodium borate buffer, 100 µL 

200 mM methylene blue, 100 µL 12.6 mM sodium linoleate solution, 100 µL of 15-

lipoxygenase (varied concentrations) and 200 µL ultra-pure water.  Absorbance or 

fluorescence were measured for 6 min., each assay was measured in triplicate.  FIU = 

fluorescence intensity units. 
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measure the LOX-1 isozyme.  This isozyme was chosen because it was available 

commercially while LOX-2 and LOX-3 were not.   LOX-1 also has stronger catalytic 

activity than the other isozymes according the observations of Suda et al (1995).  Ou 

et al. (2001) stated that a fluorescein solution will lose its fluorescence intensity 

below pH 7.  Therefore, detection of the LOX-2 and LOX-3 isozymes with this 

fluorescein probe may have less definitive results than detection of LOX-1.  Because 

lipoxygenase also has dioxygenase activity, a measurement of conjugated diene 

formation was performed according to the spectrophotometric method of Axelrod et 

al. (1981) and compared to the fluorescein lipoxygenase assay (figure not shown).  

The increase in absorbance at 234 nm coincided with the decay of fluorescein over 

time, and confirmed the LOX-1 activity. 

 Interestingly, it was discovered during assay development that Tween 20 

contributed to fluorescence and therefore the amount added to the substrate was 

decreased to the point where there was sufficient emulsification in the solution but 

little fluorescence.  Fluorescence of compounds in the blank solution was accounted 

by subtracting the blank reading from the sample readings. 

 Five minutes is the time recommended for bleaching of methylene blue by 

LOX-1 (Suda et al., 1995).  Six minutes was an appropriate time for the degradation 

of fluorescein when using the quantities of reagents described above.  After the initial 

degradation of fluorescein with peroxide radicals, products of lipid oxidation are 

formed which can increase the fluorescence of the solution.  Therefore, the 

fluorescein assay has a cut-off point at which measurement was stopped.  Higher 

enzyme concentrations begin to produce lipid oxidation products more quickly, and 
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the assay measurement was ended when the fluorescence of the strongest 

concentration reached its lowest level, which occurred after 6 minutes.   

4.4.2. High-throughput Fluorescein LOX-1 Assay 

 

 A high-throughput quantitative assay is needed to rapidly screen the large 

soybean seed samples from the breeding program. The assay was modified for use in 

a Victor
3
 multilabel plate reader. Figure 4.2 (A) shows dose-response of fluorescein 

at different levels of the pure LOX-1.  An excellent linear relationship (R
2
 = 0.9906) 

between LOX-1 concentration and the area under curve of the FIU-time plot was 

observed (Figure 4.2 (B)), indicating that the high-throughput fluorescence assay 

may be used to quantify LOX-1 activity. This facilitates the measurement of multiple 

soybean samples as well as the creation of the standard curve using the pure LOX-1 

enzyme, since 4-5 dilution levels of the LOX-1 standard as well as 27-28 soybean 

samples can be tested in triplicates using one 96-well plate within 6 minutes.  This is 

an advantage over previous methods that use a single-cell spectrophotometer, as they 

require up to 5 minutes for the measurement of each sample.  These previous methods 

may take hours when measuring multiple samples.   The high-throughput method also 

reduces the quantity of sample and reagents used.  More importantly, the high-

throughput assay is more sensitive and could detect a lower level of LOX-1 (Figure 

4.1 and Figure 4.2 (A)).  

The addition of additional buffer solution and water was eliminated for the 

high-throughput assay.  This reduced the reagents to only fluorescein (200 nM) in pH 

9.0 buffer, pure enzyme or soybean extract, and substrate solution.  The substrate  
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Figure 4.2. (A) High-throughput Fluorescein LOX-1 Assay* 

140000

190000

240000

290000

340000

390000

440000

0 2 4 6 8

Time (minutes)

F
IU

25 KU

20 KU

15 KU

10 KU

5 KU

 
 

Figure 4.2. (B) Standard Curve of High-throughput Fluorescein LOX-1 Assay* 
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*A) High-throughput fluorescein LOX-1 assay.  The reagents were 100 µL 200 nM 

fluorescein in pH 9.0 buffer, 120 µL varied concentration of 15-lipoxygenase, and 80 

µL 12.6 mM sodium linoleate solution.  Fluorescence was measured for 6 minutes.  

Each lipoxygenase concentration was measured in triplicate.  B) Standard curve of 

high-throughput fluorescein LOX-1 assay.  Concentration of 15-lipoxygenase (from 

soybean) is plotted against the area under the curve of fluorescence at 6 minutes of 

reaction time.  All measurements were conducted in triplicate.  FIU = fluorescence 

intensity units. 
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solution must be the last addition to the wells as the reaction will begin as soon as the 

substrate is added.  The plate must then be placed in the plate reader quickly so that 

readings can begin before fluorescence begins to decrease.  Six minutes was 

determined as the appropriate time for measurement in the multilabel plate reader.  

This allowed substantial degradation of fluorescein at the selected LOX-1 dilution 

levels.   

4.4.3. Quantification 

 

 The use of the area under the curve (AUC) calculation for fluorescence allows 

for quantification of the LOX-1 enzyme based on the amount of hydroperoxide 

produced within the allotted time.  The AUC of fluorescence of the samples over time 

was compared to a standard curve based on the fluorescence of pure LOX-1 enzyme 

of known quantity.  There are other methods that quantify LOX activity.  For 

example, the methylene blue assay quantifies the enzyme by measuring time until 

bleaching begins (Toyosaki, 1992).  Measuring the AUC of fluorescence allows for 

more objective and accurate quantification.  A potential difficulty in this 

quantification method is the instability of the pure LOX-1 enzyme that is used as a 

standard.  The commercially purchased pure enzyme can lose activity quickly with 

time, even when held on ice.  The enzyme was stored at -80 °C and used immediately 

after thawing in order to obtain a consistent result.  The aqueous extract of soybean 

meal was less sensitive to changes in temperature and time.    
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4.4.4. Linearity and Range 

 

 For the high-throughput assay, the linear range of soybean LOX-1 (plotting 

concentration versus AUC) was determined at 5-25 KU (Figure 4.2 (B)).  The results 

of 6 repeats of this assay are shown in Table 4.1.  Soybean extract should be diluted 

to fall within this range if quantification is desired.  Soybean extract from the 

Manokin line (normal LOX) at a concentration 2 mg/mL was appropriate to fit within 

this range upon measurement with the high-throughput fluorescein assay. 

 

Table 4.1.  Linearity of LOX-1 Fluorescein Assay* 

 

 

 

 

 

 

 

 

 

*Measurements were conducted under conditions for the high-throughput fluorescein 

LOX-1 assay in a 96-well plate.  Measurements were conducted in triplicate. 

 

4.4.5. Validity 

 

 Figure 4.1 demonstrates the validity of the fluorescein LOX-1 assay 

compared with the traditional methylene blue LOX-1 assay when using the pure 

LOX-1 enzyme.  In Figure 4.3, the selected LOX-1-null soybeans as well as non-

modified soybeans were tested and compared using the high-throughput fluorescein 

assay and the methylene blue assay.  The results demonstrated the validity of the 

high-throughput fluorescein assay for measuring LOX-1 in soybean extract in 

 R
2 

Day 1 0.9906 

Day 2 0.9652 

Day 3 0.9494 

Day 4 0.9675 

Day 5 0.9872 

Day 6 0.9915 



 

 110 

 

comparison with the methylene blue LOX-1 assay.  It is clear that each soybean 

extract shows a similar reaction in the two assays.   

 Additionally, the assay has shown to be specific for the LOX-1 enzyme.  In 

Figure 4.1 (A), fluorescence does not decrease in the control reaction where there 

was no LOX-1 enzyme present in the mixture.  In Figure 4.3 the LOX-null soybean 

extracts do not have an effect on fluorescence when compared to the normal-LOX 

lines.  Although experimental LOX-null lines are demonstrated in Figure 4.3, this 

reaction was also tested with the Japan 123 soybean that is known to be null for LOX 

(data not shown).  This demonstrates that it is the LOX-1 enzyme and not another 

component of soybean extract that causes the degradation of fluorescein. However, it 

is acknowledged that LOX-2 or LOX-3 may have some activity under the conditions 

of this assay, so results should be expressed in terms of LOX-1 equivalents. 

Figure 4.4 shows the calculated LOX-1 concentration per gram of flour when 

multiple concentrations of extract from one soy meal sample were analyzed.  The 

calculated LOX-1 content of the soybean was not significantly affected by the 

concentration of the enzyme.  Calculated values had a relative standard deviation 

(RSD) of 9.4%. These data indicated that the ratio of extraction solvent to soybean 

sample weight may not be very critical for LOX-1 activity estimation using the high-

throughput fluorescein assay, and the high potential of this assay for practical 

utilization. 

4.4.6. Reproducibility 

 

 The interday reproducibility of the high-throughput fluorescein LOX-1 assay 

was determined by measuring the AUC (at 6 minutes) of the reaction of an aqueous  
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extract of soybean meal from the Manokin line (2 mg/mL).  This test was repeated 6 

times within 6 days (Figure 4.5).  Fresh soybean extract and sodium linoleate were  

freshly prepared each day.  The RSD of 4.3% demonstrates an excellent 

reproducibility of the assay. 

4.4.7. Accuracy and Precision 

 

 Soybean LOX-1 was analyzed at 3 different concentrations (10, 15, and 20 

KU) on 3 separate days to determine the accuracy of the high-throughput assay 

(Table 4.2).  The measured concentration was compared to expected concentration to 

determine the percent recovery.  Average percent recovery varied from 97 to 108%, 

which demonstrates good accuracy.  The RSD of pooled samples was between 4.62 to 

7.35% which indicates excellent precision. 
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Figure 4.3 (A) High-throughput Fluorescein LOX-1 Assay* 
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Figure 4.3 (B) Methylene Blue LOX-1 Assay* 
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*Comparison of the A) high-throughput fluorescein LOX-1 assay and B) methylene 

blue LOX-1 assay using the extracts of six soybean lines.  The reagents were A) 100 

µL 200 nM fluorescein in pH 9.0 buffer, 120 µL of soybean extract, and 80 µL 12.6 

mM sodium linoleate solution, and B) 500 µL 200 mM pH 9.0 sodium borate buffer, 

100 µL 200 mM methylene blue, 100 µL 12.6 mM sodium linoleate solution, 100 µL 

soybean extract and 200 µL ultra-pure water.  Fluorescence or absorbance at 660 nm 

was measured for 6 minutes.  Each extract concentration was measured in triplicate.   

FIU = fluorescence intensity units. 
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Figure 4.4. Effect of the Ratio of Solvent to Soybean in Extraction on LOX-1 

Activity Estimations* 
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*The LOX-1 equivalent of Manokin soybean was estimated using three ratios of 

solvent volume to soybean weight. The reagents were 100 µL 200 nM fluorescein in 

pH 9.0 buffer, 120 µL soybean extract, and 80 µL 12.6 mM sodium linoleate 

solution.  Fluorescence was measured for 6 minutes.  Each extract concentration was 

measured in triplicate.  Columns with the same letter indicate no statistical difference 

at p < 0.05. 

 

 

 

 

Figure 4.5. Reproducibility of the High-throughput LOX-1 Fluorescein Assay* 
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*0.020 g of Manokin soy flour was extracted in 10 mL distilled water and measured 

daily for 6 days.  Measurements were conducted under conditions for the high-

throughput fluorescein LOX-1 assay in a 96-well plate.  Measurements were 

conducted in triplicate.  Columns with the same letter indicate no statistical difference 

at p < 0.05. 
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Table 4.2.  Accuracy and Precision of Quality Control (QC) Samples* 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* Measurements were conducted under conditions of the high-throughput fluorescein LOX-1 assay in a  

96-well plate in triplicate.

 QC1 QC2 QC3 

Nominal Lipoxygenase 

Concentration (KU) 

 

10  

 

15 

 

20 

Run 1    

intra-mean 12.75 15.94 20.92 

SD 1.11 1.50 0.33 

% RSD 8.68 9.43 1.61 

% Rec 127.5 106.3 104.6 

N 3 3 3 

Run 2    

Intra-mean 9.69 14.70 18.85 

SD 0.85 0.42 0.85 

% RSD 8.78 2.87 4.51 

% Rec 96.1 98.0 94.3 

N 3 3 3 

Run 3    

Intra-mean 10.03 15.31 18.83 

SD 0.46 0.70 1.63 

% RSD 4.58 4.59 8.64 

% Rec 100.3 101.9 94.1 

N 3 3 3 

Pooled Runs    

Inter-mean 10.82 15.15 19.53 

SD 0.82 0.87 0.94 

% RSD 7.35 5.63 4.92 

% Rec 108.0 101.8 97.67 

N 9 9 9 
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4.4.8. Advantages and Limitations of the Fluorescein LOX-1 Assay 

 

 The purpose of the described method is to quickly measure the presence of 

LOX-1 in soybean extract.  This method requires less preparation time than some 

other frequently used spectrophotometric methods.  The direct soybean extract can be 

used without additional filtration and purification steps.  Using a multilabel plate 

reader, multiple soybean samples can be tested within 6 minutes.  The time is much 

reduced from the previous methylene blue method where each individual sample will 

require at least 15 minutes to be measured in triplicate.  Sample extracts may be 

compared against each other, or quantified using the standard curve of the purified 

enzyme, which makes the comparison of cross-laboratory data possible. 

No expensive reagents are required, and the high-throughput assay reduces the 

amount of reagents used. Additionally, only a small amount of ground soybean is 

required for the tests.  This method can be used as a screening tool for soybean 

breeding programs as they select for seeds that are low in LOX-1.  The method can 

potentially be modified for use with other soy foods and may assist in quality control 

during food processing.  However, it needs to be pointed out that the assay depends 

on the peroxide radical attack to fluorescein, and presence of antioxidants such as 

reducing agents and radical scavengers in the sample may lead to under-estimation of 

LOX-1 activity or level.   
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Chapter 5: Summary and Significance 
 

 The first objective of this study was to evaluate the effect of genotype and 

environment and their interaction on the selected nutraceutical components in low 

18:3n3 soybeans. The results showed a significant effect (p < 0.05) of genotype on 

nearly every measured component, except for TPC and ORAC.  Genotype also had a 

larger effect than environment on many of the soybean components.  Environment 

showed the largest effect on certain fatty acids, tocopherols, the isoflavone glycitein, 

and ORAC.  The interaction between genotype and environment was significant for 

nearly every measured component, and the largest effect was seen for antioxidant 

capacity assays such as TPC, HOSC, and RDSC.  There was correlation between 

temperature and precipitation during the growing season and certain soybean 

components such as fatty acids, lutein, and tocopherols.  It is important to note that 

the soybean samples were all grown within the state of Maryland, which has low 

climate variability, so the full effect of environmental differences on these soybean 

lines may not have been demonstrated in this study. 

 The second objective was to evaluate selected nutraceutical components of 

modified lipoxygenase (LOX) soybeans to determine if these soybeans may be of 

benefit for functional foods.  The study showed no significant difference overall 

between among the LOX-modified or non-modified soybeans in relation to isoflavone 

content or antioxidant capacity.  In this respect, the LOX-modified soybeans may be 

useful for value-added foods, but further study of these soybeans as a food ingredient 

is required.  Additional study over several growing seasons is also required. 
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 The final objective was development of an improved assay for detection of 

LOX content in soybean. A preliminary assay was developed which detected 

hydroperoxide formation (an indicator of lipid oxidation) using fluorescein as a 

fluorescent probe.  The assay was developed for use in a 96-well plate reader in order 

to analyze several soybean samples at one time.  Using a purified LOX-1 enzyme as a 

standard, the qualitative content and the quantitative activity of LOX-1 in the soybean 

sample can be measured.  The assay is currently developed to detect LOX-1, and 

further research is needed to use this method for LOX-2 or LOX-3 specifically.  

 In summary, modifications to fatty acid or enzyme levels in soybeans can be 

achieved without major changes to the health-enhancing components.  These 

components can potentially be affected by differences in genotype or growing 

environment to select for desired traits.  Further studies are recommended to evaluate 

the stability of these soybeans in functional food products.



 

 118 

 

Literature Cited 

 

Achouri, A.; Boye, J.; Zamani, Y. Soybean line and storage effects on soymilk 

flavour and quality. International Journal of Food Science and Technology 2008, 

43, 82-90. 

Akhter, M.; Iwasaki, M.; Yamaji, T.; Sasazuki, S.; Tsugane, S. Dietary isoflavone and 

the risk of colorectal adenoma: a case-control study in Japan. British Journal of 

Cancer 2009, 100, 1812-1816. 

Almonor, G.; Fenner, G.; Wilson, R. Temperature effects on tocopherol composition 

in soybeans with genetically improved oil quality. Journal of the American Oil 

Chemists Society 1998, 75, 591-596. 

Anderson, J. W. Beneficial effects of soy protein consumption for renal function. Asia 

Pacific Journal of Clinical  Nutrition  2008, 17, 324-328. 

Anderson, J.; Johnstone, B.; Cook-Newell, M. Meta-analysis of the effects of soy 

protein intake on serum lipids. New England Journal of Medicine 1995, 333, 276-

282. 

Anthon, G. E.; Barrett, D. M. Colorimetric method for the determination of 

lipoxygenase activity. Journal of Agricultural and Food Chemistry 2001, 49, 32-

37. 

Ash, M.; Livezey, J.; Dohlman, E. Soybean backgrounder. Electronic Outlook Report 

from the Economic Research Service, United States Department of Agriculture.  

2006. 



 

 119 

 

Ashton, E. L.; Dalais, F. S.; Ball, M. J. Effect of meat replacement by tofu on CHD 

risk factors including copper induced LDL oxidation. Journal of the American 

College of Nutrition 2000, 19, 761-767. 

Axelrod, B.; Cheesbrough, T.; Laakso, S. Lipoxygenase from soybeans. Methods in 

Enzymology 1981, 71, 11. 

Baer, D.; Judd, J.; Kris-Etherton, P.; Zhao, G.; Emken, E. Stearic acid absorption and 

its metabolizable energy value are minimally lower than those of other fatty acids 

in healthy men fed mixed diets. Journal of Nutrition 2003, 133, 4129-4134. 

Bennett, J.; Yu, O.; Heatherly, L.; Krishnan, H. Accumulation of genistein and 

daidzein, soybean isoflavones implicated in promoting human health, is 

significantly elevated by irrigation. Journal of Agricultural and Food Chemistry 

2004, 52, 7574-7579. 

Bermudez, B.; Lopez, S.; Ortega, A.; Varela, L. M.; Pacheco, Y. M.; Abia, R.; 

Muriana, F. J. G. Oleic acid in olive oil: from a metabolic framework toward a 

clinical perspective. Current Pharmaceutical  Design 2011, 17, 831-843. 

Bhathena, S. J.; Velasquez, M. T. Beneficial role of dietary phytoestrogens in obesity 

and diabetes. American Journal of Clinical Nutrition 2002, 76, 1191-1201. 

Britz, S. J.; Kremer, D. F. Warm temperatures or drought during seed maturation 

increase free alpha-tocopherol in seeds of soybean (Glycine max L. Merr.). 

Journal of Agricultural and Food Chemistry 2002, 50, 6058-6063. 

Britz, S.J.; Kremer, D.F.; Kenworthy, W.J. Tocopherols in soybean seeds: genetic 

variation and environmental effects in field-grown crops. Journal of the American 

Oil Chemists Society 2008, 85, 931-936. 



 

 120 

 

Britz, S. J.; Schomburg, C. J.; Kenworthy, W. J. Isoflavones in seeds of field-grown 

soybean: variation among genetic lines and environmental effects. Journal of the 

American Oil Chemists Society 2011, 88, 827-832. 

Budhathoki, S.; Joshi, A. M.; Ohnaka, K.; Yin, G.; Toyomura, K.; Kono, S.; et al. 

Soy food and isoflavone intake and colorectal cancer risk: The Fukuoka 

Colorectal Cancer Study. Scandinavian Journal of Gastroenterology 2011, 46, 

165-172. 

Cao, G.; Alessio, H.; Cutler, R. Oxygen-radical absorbence capacity assay for 

antioxidants. Free Radical Biology and Medicine 1993, 14, 303-311. 

Carlsson-Kanyama, A.; Gonzalez, A. D. Potential contributions of food consumption 

patterns to climate change. American Journal of Clinical Nutrition 2009, 89, 

S1704-S1709. 

Cassidy, A.; Brown, J.; Hawdon, A.; Faughnan, M.; King, L.; Millward, J.; Zimmer-

Nichemias, L.; Wolfe, B. Factors affecting the bioavailability of soy isoflavones 

after ingestion of physiologically relevant levels from different soy foods. Journal 

of Nutrition 2006, 136, 45-51. 

Cheng, Z.; Moore, J.; Yu, L. High-throughput relative DPPH radical scavenging 

capacity assay. Journal of Agricultural and Food Chemistry 2006, 54, 7429-7436. 

Cherrak, C.; Pantalone, V.; Meyer, E.; Ellis, D.; Melton, S.; West, D.; Mount, J. Low-

palmitic, low-linolenic soybean development. Journal of the American Oil 

Chemists Society 2003, 80, 539-543. 

Cho, S.; Juillerat, M.; Lee, C. Cholesterol lowering mechanism of soybean protein 

hydrolysate. Journal of Agricultural and Food Chemistry 2007, 55, 10599-10604. 



 

 121 

 

Cho, S.; Juillerat, M.; Lee, C. Identification of LDL-receptor transcription stimulating 

peptides from soybean hydrolysate in human hepatocytes. Journal of Agricultural 

and Food Chemistry 2008, 56, 4372-4376. 

Choe, E.; Min, D. B. Mechanisms and factors for edible oil oxidation. Comprehensive 

Reviews in Food Science and Food Safety 2006, 5, 169-186. 

Collison, M. W. Determination of total soy isoflavones in dietary supplements, 

supplement ingredients, and soy foods by high-performance liquid 

chromatography with ultraviolet detection: Collaborative study. Journal of AOAC 

International 2008, 91, 489-500. 

Cooke, G. M. A review of the animal models used to investigate the health benefits of 

soy isoflavones. Journal of AOAC International 2006, 89, 1215-1227. 

Crozier, A.; Jaganath, I. B.; Clifford, M. N. Dietary phenolics: chemistry, 

bioavailability and effects on health. Natural Product Reports 2009, 26, 1001-

1043. 

Darnoko, D.; Cheryan, M.; Moros, E.; Jerrel, J.; Perkins, E. G. Simultaneous HPLC 

analysis of palm carotenoids and tocopherols using a C-30 column and 

photodiode array detector. Journal of Liquid Chromatography & Related 

Technologies 2000, 23, 1873-1885. 

de Santana, M.; Mandarino, M.; Cardoso, J.; Dichi, I.; Dichi, J.; Carmargo, A. et al. 

Association between soy and green tea (Camellia sinenesis) diminishes 

hypercholesterolemia and increases total plasma antioxidant potential in 

dyslipidemic subjects. Nutrition 2008, 24, 562-568. 



 

 122 

 

DiRienzo, M.; Lemke, S.; Petersen, B.; Smith, K. Effect of substitution of high stearic 

low linolenic acid soybean oil for hydrogenated soybean oil on fatty acid intake. 

Lipids 2008, 147, 451-456. 

Dolde, D.; Vlahakis, C.; Hazebroek, J. Tocopherols in breeding lines and effects of 

planting location, fatty acid composition, and temperature during development. 

Journal of the American Oil Chemists Society 1999, 76, 349-355. 

Duffy, S. J.; Vita, J. A. Effects of phenolics on vascular endothelial function. Current 

Opinion in Lipidology 2003, 14, 21-27. 

Dutta, A.; Dutta, S. Vitamin E and its role in the prevention of atherosclerosis and 

carcinogenesis: A review. Journal of the American College of Nutrition 2003, 22, 

258-268. 

Eckel, R.; Borra, S.; Lichtenstein, A.; Yin-Piazza, S. Understanding the complexity of 

trans fatty acid reduction in the American diet - American heart association trans 

fat conference 2006 - report of the trans fat conference planning group. 

Circulation 2007, 115, 2231-2246. 

Eldridge, A.; Kwolek, W. Soybean isoflavones - effect of environment and line on 

composition. Journal of Agricultural and Food Chemistry 1983, 31, 394-396. 

Euston, S. R.; Al-Bakkush, A. A.; Campbell, L. Comparing the heat stability of soya 

protein and milk whey protein emulsions. Food Hydrocolloid 2009, 23, 2485-

2492. 

Fehr, W. Breeding for modified fatty acid composition in soybean. Crop Science 

2007, 47, S72-S87. 



 

 123 

 

Fritz, K.; Seppanen, C.; Kurzer, M.; Csallany, A. The in vivo antioxidant activity of 

soybean isoflavones in human subjects. Nutrition Research 2003, 23, 479-487. 

Furuta, S.; Nishiba, Y.; Hajika, M.; Igita, K.; Suda, I. DETBA value and hexanal 

production with the combination of unsaturated fatty acids and extracts prepared 

from soybean seeds lacking two or three lipoxygenase isozymes. Journal of 

Agricultural and Food Chemistry 1996, 44, 236-239. 

Gimeno, E.; Calero, E.; Castellote, A.; Lamuela-Raventos, R.; de la Torre, M.; 

Lopez-Sabater, M. Simultaneous determination of alpha-tocopherol and beta-

carotene in olive oil by reversed-phase high-performance liquid chromatography. 

Journal of Chromatography A 2000, 881, 255-259. 

Golbitz, P.; Jordan, J. Soyfoods: market and products. In Soy Applications in Food, 

Riaz, M. A., Ed. CRC Press: Boca Raton, FL, 2006; pp 1-21. 

Gregory, J. Vitamins. In Food Chemistry, 3
rd
 Edition, Fennema, O., Ed. Marcel 

Dekker, Inc.: New York, 1996; pp 531-616. 

Health claims: soy protein and risk of heart disease. In Code of Federal Regulations: 

2011; Title 21 section 101.82. 

Hildebrand, D. F.; Hamiltonkemp, T. R.; Loughrin, J. H.; Ali, K.; Andersen, R. A. 

Lipoxygenase-3 reduces hexanal production from soybean seed homogenates. 

Journal of Agricultural and Food Chemistry 1990, 38, 1934-1936. 

Hildebrand, D. F.; Kito, M. Role of lipoxygenases in soybean seed quality. Journal of 

Agricultural and Food Chemistry 1984, 32, 815-819. 

Hoeck, J.; Fehr, W.; Murphy, P.; Welke, G. Influence of genotype and environment 

on isoflavone contents of soybean. Crop Science 2000, 40, 48-51. 



 

 124 

 

Hooper, L.; Kroon, P.; Rimm, E.; Cohn, J.; Harvey, I.; Le Cornu, K.; Ryder, J.; Hall, 

W.; Cassidy, A. Flavonoids, flavonoid-rich foods, and cardiovascular risk: a 

meta-analysis of randomized controlled trials. American Journal of Clinical 

Nutrition 2008, 88, 38-50. 

Huang, D.; Ou, B.; Hampsch-Woodill, M.; Flanagan, J.; Prior, R. High-throughput 

assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid 

handling system coupled with a microplate fluorescence reader in 96-well format. 

Journal of Agricultural and Food Chemistry 2002, 50, 4437-44. 

Huang, D.; Ou, B.; Prior, R. The chemistry behind antioxidant capacity assays. 

Journal of Agricultural and Food Chemistry 2005, 53, 1841-1856. 

Iassonova, D. R.; Johnson, L. A.; Hammond, E. G.; Beattie, S. E. Evidence of an 

enzymatic source of off flavors in "lipoxygenase-null" soybeans. Journal of the 

American Oil Chemists Society 2009, 86, 59-64. 

Isanga, J.; Zhang, G. Soybean bioactive components and their implications to health – 

a review. Food Reviews International 2008, 24, 252-276. 

Jian, L., Soy, isoflavones, and prostate cancer. Molecular Nutrition & Food Research 

2009, 53, 217-226. 

Jomova, K.; Valko, M. Advances in metal-induced oxidative stress and human 

disease. Toxicology 2011, 283, 65-87. 

Kanamaru, K.; Wang, S. D.; Abe, J.; Yamada, T.; Kitamura, K. Identification and 

characterization of wild soybean (Glycine soja Sieb. et Zecc.) strains with high 

lutein content. Breeding Science 2006, 56, 231-234. 



 

 125 

 

Kapiotis, S.; Hermann, M.; Held, I.; Seelos, C.; Ehringer, H.; Gmeiner, B. M. K. 

Genistein, the dietary-derived angiogenesis inhibitor, prevents LDL oxidation and 

protects endothelial cells from damage by atherogenic LDL. Arteriosclerosis 

Thrombosis and Vascular Biology 1997, 17, 2868-2874. 

Kendall, C. W. C.; Jenkins, D. J. A.; Connelly, P. W.; Parker, T.; Faulkner, D.; Josse, 

R. G.; Jackson, C. J. C. Effects of high and low isoflavone soy foods on blood 

lipids, oxidized LDL, homocysteine and blood pressure in hyperlipidemic men 

and women. American Journal of Clinical Nutrition 2002, 75, 385S-385S. 

Kenworthy, W.J.; Ikenberry, B.L.; Hailegiorgies, N.; Duvelsaint, M. 2008. Agronomy 

Facts No. 32. Maryland Cooperative Extension, Department of Plant Science 

and Landscape Architecture, University of Maryland, College Park, obtained 

May 28, 2008 from http://www.mdcrops.umd.edu/soybeans/2007AF32.doc 

Kim, H.; Lee, H.; Min, D. Effects and prooxidant mechanisms of oxidized alpha-

tocopherol on the oxidative stability of soybean oil. Journal of Food Science 

2007, 72, C223-C230. 

Kiokias, S.; Oreopoulou, V. Antioxidant properties of natural carotenoid extracts 

against the AAPH-initiated oxidation of food emulsions. Innovative Food Science 

& Emerging Technologies 2006, 7, 132-139. 

Klump, S. P.; Allred, M. C.; MacDonald, J. L.; Ballam, J. M. Determination of 

isoflavones in soy and selected foods containing soy by extraction, saponification, 

and liquid chromatography: Collaborative study. Journal of AOAC International 

2001, 84, 1865-1883. 



 

 126 

 

Koh, E.; Mitchell, A. Urinary isoflavone excretion in Korean adults: comparisons of 

fermented soybean paste and unfermented soy flour. Journal of the Science of 

Food and Agriculture 2007, 87, 2112-2120. 

Kris-Etherton, P. M, Trans-fats and coronary heart disease. Critical Reviews in Food 

Science and Nutrition 2010, 50, 29-30. 

Kumar, V.; Rani, A.; Tindwani, C.; Jain, M. Lipoxygenase isozymes and trypsin 

inhibitor activities in soybean as influenced by growing location. Food Chemistry 

2003, 83, 79-83. 

Lakshman, M.; Xu, L.; Ananthanarayanan, V.; Cooper, J.; Takimoto, C.; Helenowski, 

I.; Pelling, J.; Bergan, R. Dietary genistein inhibits metastasis of human prostate 

cancer in mice. Cancer Research 2008, 68, 2024-2032. 

Lampi, A.; Nurmi, T.; Ollilainen, V.; Piironen, V. Tocopherols and tocotrienols in 

wheat genotypes in the HEALTHGRAIN diversity screen. Journal of Agricultural 

and Food Chemistry 2008, 56, 9716-9721. 

Larkin, T.; Price, W.; Astheimer, L. The key importance of soy isoflavone 

bioavailability to understanding health benefits. Critical Reviews in Food Science 

and Nutrition 2008, 48, 538-552. 

Lee, J. D.; Shannon, J. G.; So, Y. S.; Sleper, D. A.; Nelson, R. L.; Lee, J. H.; Choung, 

M. G. Environmental effects on lutein content and relationship of lutein and other 

seed components in soybean. Plant Breeding 2009, 128, 97-100. 

Lee, J. H.; Renita, M.; Fioritto, R. J.; St Martin, S. K.; Schwartz, S. J.; Vodovotz, Y. 

Isoflavone characterization and antioxidant activity of Ohio soybeans. Journal of 

Agricultural and Food Chemistry 2004, 52, 2647-2651. 



 

 127 

 

Lee, S.; Yan, W.; Ahn, J.; Chung, I. Effects of year, site, genotype and their 

interactions on various soybean isoflavones. Field Crops Research 2003, 81, 181-

192. 

Lee, Y.; Kim, J.; Zheng, J.; Kyung, H.R. Comparisons of isoflavones from Korean 

and Chinese soybean and processed products. Biochemical Engineering Journal 

2007, 36, 49-53. 

Lei, Q.; Boatright, W. Lipoxygenase independent hexanal formation in isolated soy 

proteins induced by reducing agents. Journal of Food Science 2008, 73, C464-

C468. 

Lichtenstein, A., Nutrient supplements and cardiovascular disease: a heartbreaking 

story. Journal of Lipid Research 2009, 50, S429-S433. 

Lichtenstein, A.; Matthan, N.; Jalbert, S.; Resteghini, N.; Schaefer, E.; Ausman, L. 

Novel soybean oils with different fatty acid profiles alter cardiovascular disease 

risk factors in moderately hyperlipidemic subjects. American Journal of Clinical 

Nutrition 2006, 84, 497-504. 

Lin, F.; Giusti, M. M. Effects of solvent polarity and acidity on the extraction 

efficiency of isoflavones from soybeans (Glycine max). Journal of Agricultural 

and Food Chemistry 2005, 53, 3795-3800. 

Liu, K. M.; Ma, G. D.; Lv, G. F.; Zou, Y.; Wang, W. C.; Liu, L. H.; Yan, P.; Liu, Y. 

N.; Liu, Z. Y. Effects of soybean isoflavone dosage and exercise on the serum 

markers of bone metabolism in ovariectomized rats. Asia Pacific Journal of 

Clinical Nutrition 2007, 16, 193-195. 



 

 128 

 

Luthria, D. L.; Biswas, R.; Natarajan, S. Comparison of extraction solvents and 

techniques used for the assay of isoflavones from soybean. Food Chemistry 2007, 

105, 325-333. 

Ma, D.; Qin, L.; Wang, P.; Katoh, R. Soy isoflavone intake increases bone mineral 

density in the spine of menopausal women: Meta-analysis of randomized 

controlled trials. Clinical Nutrition 2008, 27, 57-64. 

Ma, L.; Lin, X. M. Effects of lutein and zeaxanthin on aspects of eye health. Journal 

of the Science of Food and Agriculture 2010, 90, 2-12. 

MacDonald, R.; Guo, J.; Copeland, J.; Browning, J.; Sleper, D.; Rottinghaus, G.; 

Berhow, M. Environmental influences on isoflavones and saponins in soybeans 

and their role in colon cancer. Journal of Nutrition 2005, 135, 1239-1242. 

Macleod, G.; Ames, J. Soy flavor and its improvement. Critical Reviews in Food 

Science and Nutrition 1988, 27, 219-400. 

Manach, C.; Mazur, A.; Scalbert, A. Polyphenols and prevention of cardiovascular 

disease. Current Opinion in Lipidology 2005, 16, 77-84. 

Maras, J.; Bermudez, O.; Qiao, N.; Bakun, P.; Boody-Alter, E.; Tucker, K. Intake of 

alpha-tocopherol is limited among US adults. Journal of the American Dietetic 

Association 2004, 62, 567-575. 

Matoba, T.; Hidaka, H.; Narita, H.; Kitamura, K.; Kaizuma, N.; Kito, M. 

Lipoxygenase-2 isozyme is responsible for generation of normal-hexanal in 

soybean homogenate. Journal of Agricultural and Food Chemistry 1985, 43, 852-

855. 



 

 129 

 

McCord, K.; Fehr, W.; Wang, T.; Welke, G.; Cianzio, S.; Schnebly, S. Tocopherol 

content of soybean lines with reduced linolenate in the seed oil. Crop Science 

2004, 44, 772-776. 

Messina, M. Soyfoods and disease prevention: Part II - Osteoporosis, breast cancer, 

and hot flushes. Agro Food Industry Hi-Tech 2003, 14, 11-13. 

Messina, M.; Nagata, C.; Wu, A. Estimated Asian adult soy protein and isoflavone 

intakes. Nutrition and Cancer-an International Journal 2006, 1-12. 

Mintel Press Release. In the shadow of competition, the soy market slumps. Obtained 

July 15, 2011 from http://www.mintel.com/press-centre/press-releases/696/in-the-

shadow-of-competition-the-soy-market-slumps 

Monma, M.; Terao, J.; Ito, M.; Saito, M.; Chikuni, K. Carotenoid components in 

soybean seeds varying with seed color and maturation stage. Bioscience 

Biotechnology and Biochemistry 1994, 58, 926-930. 

Moore, J.; Liu, J. G.; Zhou, K. Q.; Yu, L. L. Effects of genotype and environment on 

the antioxidant properties of hard winter wheat bran. Journal of Agricultural and 

Food Chemistry 2006a, 54, 5313-5322. 

Moore, J.; Yin, J.; Yu, L. Novel fluorometric assay for hydroxyl radical scavenging 

capacity (HOSC) estimation. Journal of Agricultural and Food Chemistry 2006b, 

54, 617-26. 

Moore, J.; Yu, L. Methods for antioxidant capacity estimation of wheat and wheat-

based food products. In Wheat Antioxidants, Yu, L., Ed. John Wiley & Sons: New 

Jersey, 2008; pp 118-166. 



 

 130 

 

Murphy, P. A.; Barua, K.; Hauck, C. C. Solvent extraction selection in the 

determination of isoflavones in soy foods. Journal of Chromatography B-

Analytical Technologies in the Biomedical and Life Sciences 2002, 777, 129-138. 

Narvel, J. M.; Fehr, W. R.; Weldon, L. C. Analysis of soybean seed lipoxygenases. 

Crop Sci. 2000, 40, 838-840. 

Nawar, W. Lipids. In Food Chemistry, 3rd Edition, Fennema, O., Ed. Marcel Dekker: 

New York, 1996; pp 225-320. 

Nishiba, Y.; Suda, I. Degradation of vitamin E, vitamin C, and lutein in soybean 

homogenate: A comparison of normal soybean and lipoxygenase-lacking (triple-

null) soybean. Journal of Agricultural and Food Chemistry 1998, 46, 3708-3712. 

Normand, L.; Eskin, N. A. M.; Przybylski, R. Comparison of the frying stability of 

regular and low-linolenic acid soybean oils. Journal of Food Lipids 2003, 10, 81-

90. 

Oliva, M.; Shannon, J.; Sleper, D.; Ellersieck, M.; Cardinal, A.; Paris, R.; Lee, J. 

Stability of fatty acid profile in soybean genotypes with modified seed oil 

composition. Crop Science 2006, 46, 2069-2075. 

Oliveira, M. I. P.; Piovesan, N. D.; Jose, I. C.; Barros, E. G.; Moreira, M. A.; 

Oliveira, L. O. Protein, oil, and isoflavone contents in lipoxygenase- and Kunitz 

trypsin inhibitor-deficient soybean seeds. Chromatographia 2007, 66, 521-527. 

Ou, B.; Hampsch-Woodill, M.; Prior, R. Development and validation of an improved 

oxygen radical absorbance capacity assay using fluorescein as the fluorescent 

probe. Journal of Agricultural and Food Chemistry 2001, 49, 4619-26. 



 

 131 

 

Paulson, P.; Welsby, D.; Huang, X. Ready-to-drink soy protein nutritional beverages. 

In Soy Applications in Food, Riaz, M., Ed. Taylor & Francis Group: Boca Raton, 

FL, 2006; pp 199-226. 

Pavese, J. M.; Farmer, R. L.; Bergan, R. C. Inhibition of cancer cell invasion and 

metastasis by genistein. Cancer and Metastasis Reviews 2010, 29, 465-482. 

Penalvo, J.; Nurmi, T.; Adlercreutz, H. A simplified HPLC method for total 

isoflavones in soy products. Food Chemistry 2004, 87, 297-305. 

Piastowska-Ciesielska, A. W.; Gralak, M. A. Influence of a low dose of dietary 

soybean on bone properties and mineral status in young rats. Biofactors 2010, 36, 

451-458. 

Pioneer Hi-Bred International, Inc. Plenish high oleic soybeans provide benefits from 

growers to consumers. Obtained November 5, 2011 from 

http://www.plenish.com/about_plenish.aspx  

Prakash, D.; Upadhyay, G.; Singh, B. N.; Singh, H. B. Antioxidant and free radical-

scavenging activities of seeds and agri-wastes of some lines of soybean (Glycine 

max). Food Chemistry 2007, 104, 783-790. 

Prior, R.; Wu, X.; Schaich, K. Standardized methods for the determination of 

antioxidant capacity and phenolics in foods and dietary supplements. Journal of 

Agricultural and Food Chemistry 2005, 53, 4290-4302. 

Rani, A., Kumar, V., Verma, S.K., Shakya, A.K., Chauhan, G.S. Tocopherol content 

and profile of soybean: genotypic variability and correlation studies. Journal of 

the American Oil Chemists Society 2007, 84, 377-383. 



 

 132 

 

Rasolohery, C.; Berger, M.; Lygin, A.; Lozovaya, V.; Nelson, R.; Dayde, J. Effect of 

temperature and water availability during late maturation of the soybean seed on 

germ and cotyledon isoflavone content and composition. Journal of the Science of 

Food and Agriculture 2008, 88, 218-228. 

Ray, C.; Shipe, E.; Bridges, W. Planting date influence on soybean agronomic traits 

and seed composition in modified fatty acid breeding lines. Crop Science 2008, 

48, 181-188. 

Reineccius, G. A. Gas chromatography. In Food Analysis, Third Edition, Nielsen, S., 

Ed. Springer: New York, NY, 2003; pp 479-502. 

Ribaya-Mereado, J. D.; Blumberg, J. B. Lutein and zeaxanthin and their potential 

roles in disease prevention. Journal of the American College of Nutrition 2004, 

23, 567S-587S. 

Rice-Evans, C.; Miller, N.; Paganga, G. Structure-antioxidant activity relationships of 

flavonoids and phenolic acids. Free Radical Biology and Medicine 1996, 20, 933-

956. 

Riedl, K.; Lee, J.; Renita, M.; St Martin, S.; Schwartz, S.; Vodovotz, Y. Isoflavone 

profiles, phenol content, and antioxidant activity of soybean seeds as influenced 

by cultivar and growing location in Ohio. Journal of the Science of Food and 

Agriculture 2007, 87, 1197-1206. 

Robinson, D. S.; Wu, Z. C.; Domoney, C.; Casey, R. Lipoxygenases and the quality 

of foods. Food Chemistry 1995, 54, 33-43. 

Romero, M. V.; Barrett, D. M. Rapid methods for lipoxygenase assay in sweet corn. 

Journal of Food Science 1997, 62, 696-700. 



 

 133 

 

Rounds, M.; Gregory, J. Liquid chromatography. In Food Analysis, Third Edition, 

Nielsen, S., Ed. Springer: New York, NY, 2003; pp 461-478. 

Sacks, F.; Lichtenstein, A.; Van Horn, L.; Harris, W.; Kris-Etherton, P.; Winston, M. 

Soy protein, isoflavones, and cardiovascular health - A summary of a statement 

for professionals from the American Heart Association Nutrition Committee. 

Arteriosclerosis Thrombosis and Vascular Biology 2006, 26, 1689-1692. 

Sakthivelu, G.; Devi, M.; Giridhar, P.; Rajasekaran, T.; Ravishankar, G.; Nikolova, 

M.; Angelov, G.; Todorova, R.; Kosturkova, G. Isoflavone composition, phenol 

content, and antioxidant activity of soybean seeds from India and Bulgaria. 

Journal of Agricultural and Food Chemistry 2008, 56, 2090-2095. 

Saremi, A.; Arora, R. Vitamin E and cardiovascular disease. American Journal of 

Therapeutics 2010, 17, E56-E65. 

Scheiber, M. D.; Liu, J. H.; Subbiah, M. T. R.; Rebar, R. W.; Setchell, K.D.R. Dietary 

inclusion of whole soy foods results in significant reductions in clinical risk 

factors for osteoporosis and cardiovascular disease in normal postmenopausal 

women. Menopause-the Journal of the North American Menopause Society 2001, 

8, 384-392. 

Scherder, C.W.; Fehr, W.R.; Welke, G.A.; Wong, T. Tocopherol content and 

agronomic performance of soybean lines with reduced pamitate. Crop Science 

2006, 46, 1286-1290. 

 



 

 134 

 

Schyver, T.; Smith, C. Reported attitudes and beliefs toward soy food consumption of 

soy consumers versus nonconsumers in natural foods or mainstream grocery 

stores. Journal of Nutrition Education and  Behavior 2005, 37, 292-299. 

Seguin, P.; Tremblay, G.; Pageau, D.; Liu, W. C. Soybean tocopherol concentrations 

are affected by crop management. Journal of Agricultural and Food Chemistry 

2010, 58, 5495-5501. 

Seguin, P.; Tremblay, G.; Pageau, D.; Liu, W. C.; Turcotte, P. Soybean lutein 

concentration: impact of crop management and genotypes. Crop Science 2011, 

51, 1151-1160. 

Seguin, P.; Zheng, W. J.; Smith, D. L.; Deng, W. H. Isoflavone content of soybean 

cultivars grown in eastern Canada. Journal of the Science of Food and 

Agriculture 2004, 84, 1327-1332. 

Setchell, K. Phytoestrogens: the biochemistry, physiology, and implications for 

human health of soy isoflavones. American Journal of Clinical Nutrition 1998, 

68, 1333S-1346S. 

Simmone, A.; Smith, M.; Weaver, D.; Vail, T.; Barnes, S.; Wei, C. Retention and 

changes in soy isoflavones and carotenoids in immature soybean seeds 

(edamame) during processing. Journal of Agricultural and Food Chemistry 2000, 

48, 6061-6069. 

Singh, P.; Kumar, R.; Sabapathy, S. N.; Bawa, A. S. Functional and edible uses of 

soy protein products. Comprehensive Reviews in Food Science and Food Safety 

2008, 7, 14-28. 



 

 135 

 

Singleton, V.; Rossi, J. Colorimetry of total phenolics with phosphomolybdic-

phosphotungstic acid reagents. American Journal of Enology and Viticulture 

1965, 16, 144-158. 

Sirtori, C.; Johnson, S. Soy proteins, cholesterolemia, and atherosclerosis. In Soy in 

Health and Disease Prevention, Sugano, M., Ed. CRC Press: Boca Raton, FL, 

2006; pp 18-41. 

Slavin, M,; Cheng, Z.; Luther, M.; Kenworthy, W.; Yu, L.; Antioxidant properties 

and phenolic, isoflavone, tocopherol, and carotenoid composition of Maryland-

grown soybean lines with altered fatty acid profiles. Food Chem. 2009a, 114, 20-

27. 

Slavin, M.; Kenworthy, W.; Yu, L. L. Antioxidant properties, phytochemical 

composition, and antiproliferative activity of Maryland-grown soybeans with 

colored seed coats. Journal of Agricultural and Food Chemistry 2009b, 57, 

11174-11185. 

Snyder, H. E.; Kwon, T. W. Soybean Utilization. Van Nostrand Reinhold Company: 

New York, 1987; pp 64-113. 

Sroka, Z.; Cisowski, W. Hydrogen peroxide scavenging, antioxidant and anti-radical 

activity of some phenolic acids. Food and Chemical Toxicology 2003, 41, 753-

758. 

Stocker, R.; Keaney, J. Role of oxidative modifications in atherosclerosis. 

Physiological Reviews 2004, 84, 1381-1478. 

Su, Q.; Rowley, K.G.; Itsiopoulos, C.; O’Dea, K. Identification and quantitation of 

major carotenoids in selected components of the Mediterranean diet: green leafy 



 

 136 

 

vegetables, figs and olive oil. European Journal of Clinical Nutrition 2002, 56, 

1149-1154. 

Suda, I.; Hajika, M.; Nishiba, Y.; Furuta, S.; Igita, K. Simple and rapid method for 

the selective detection of individual lipoxygenase isozymes in soybean seeds. 

Journal of Agricultural and Food Chemistry 1995, 43, 742-747. 

Sugano, M. Nutritional implications of soybean. In Soy in Health and Disease 

Prevention, Sugano, M., Ed. CRC Press: Boca Raton, FL, 2006; pp 3-16. 

Tarrago-Trani, M.; Phillips, K.; Lemar L.; Holden, J. New and existing oils and fats 

used in products with reduced trans-fatty acid content. Journal of the American 

Dietetic Association. 2006, 106, 867-880. 

Tepavcevic, V.; Atanackovic, M.; Miladinovic, J.; Malencic, D.; Popovic, J.; Cvejic, 

J. Isoflavone composition, total polyphenolic content, and antioxidant activity in 

soybeans of different origin. Journal of Medicinal Food 2010, 13, 657-664. 

Tikkanen, M.; Wahala, K.; Ojala, S.; Vihma, V.; Adlercreutz, H. Effect of soybean 

phytoestrogen intake on low density lipoprotein oxidation resistance. Proceedings 

of the National Academy of Sciences of the United States of America 1998, 3106-

3110. 

Torres-Penaranda, A. V.; Reitmeier, C. A.; Wilson, L. A.; Fehr, W. R.; Narvel, J. M. 

Sensory characteristics of soymilk and tofu made from lipoxygenase-free and 

normal soybeans. Journal of Food Science 1998, 63, 1084-1087. 

Toyosaki, T. Bleaching of methylene-blue as an index of lipoxygenase activity.  

Journal of AOAC International 1992, 75, 1124-1126. 



 

 137 

 

Tran, Q. K.; Takamura, H.; Kito, M. Dried soymilk with low content of normal 

hexanal. Bioscience Biotechnology and Biochemistry 1992, 56, 519-520. 

Tsukamoto, C.; Shimada, S.; Igita, K.; Kudou, S.; Kokubun, M.; Okubo, K.; 

Kitamura, K. Factors affecting isoflavone content in soybean seeds - changes in  

isoflavones, saponins, and composition of fatty-acids at different temperatures 

during seed development. Journal of Agricultural and Food Chemistry 1995, 43, 

1184-1192. 

Vega-Lopez, S.; Lichtenstein, A. Dietary protein type and cardiovascular disease risk 

factors. Preventative Cardiology 2005, 8, 31-40. 

Villares, A.; Rostagno, M.; Garcia-Lafuente, A.; Guillamon, E.; Martiez, J. Content 

and profile of isoflavones in soy-based foods as a function of the production 

process. Food and Bioprocess Technology 2011, 4, 27-38. 

von Elbe, J.; Schwartz, S. Colorants. In Food Chemistry, 3
rd
 Edition, Fennema, O., 

Ed. Marcel Dekker: New York, 1996; pp 651-772. 

Wang, H.; Murphy, P. Isoflavone composition of American and Japanese soybeans in 

Iowa - effects of line, crop year, and location. Journal of Agricultural and Food 

Chemistry 1994, 42, 1674-1677. 

Wang, S.; Kanamaru, K.; Li, W.; Abe, J.; Yamada, T.; Kitamura, K. Simultaneous 

accumulation of high contents of α-tocopherol and lutein is possible in seeds of 

soybean. Experimental Botany 2008. 63, 39-48. 

Wang, S.; Melnyk, J. P.; Tsao, R.; Marcone, M. F. How natural dietary antioxidants 

in fruits, vegetables and legumes promote vascular health. Food Research 

International 2011, 44, 14-22. 



 

 138 

 

Wang, S. Y.; Zheng, W. Effect of plant growth temperature on antioxidant capacity in 

strawberry. Journal of Agricultural and Food Chemistry 2001, 49, 4977-4982. 

Wang, Z.; Dou, J.; Macura, D.; Durance, T.; Nakai, S. Solid phase extraction for GC 

analysis of beany flavours in soymilk. Food Research International 1997, 30, 

503-511. 

Wansink, B.; van Ittersum, K.; Painter, J. E. How diet and health labels influence 

taste and satiation. Journal of Food Science 2004, 69, S340-S346. 

Warensjo, E.; Sundstrom, J.; Vessby, B.; Cederholm, T.; Riserus, U. Markers of 

dietary fat quality and fatty acid desaturation as predictors of total and 

cardiovascular mortality: a population-based prospective study. American Journal 

of Clinical Nutrition 2008, 88, 203-209. 

Warner, K. Oxidative and flavor stability of tortilla chips fried in expeller pressed low 

linolenic acid soybean oil. Journal of Food Lipids 2009, 16, 133-147. 

Warner, K.; Gupta, M. Potato chip quality and frying oil stability of high oleic acid 

soybean oil. Journal of Food Science 2005, 70, S395-S400. 

Waslidge, N.; Hayes, D., A colorimetric method for the determination of 

lipoxygenase activity suitable for use in a high-throughput assay format. 

Analytical Biochemistry 1995, 231, 354-358. 

Weinberg, R.; VanderWerken, B.; Anderson, R.; Stegner, J.; Thomas, M. Pro-oxidant 

effect of Vitamin E in cigarette smokers consuming a high polyunsaturated fat 

diet. Arteriosclerosis, Thrombosis, and Vascular Biology 2001, 21, 1029-1033. 

Whent, M.; Hao, J. J.; Slavin, M.; Zhou, M.; Song, J. Z.; Kenworthy, W.; Yu, L. L. 

Effect of genotype, environment, and their interaction on chemical composition 



 

 139 

 

and antioxidant properties of low-linolenic soybeans grown in Maryland.  Journal 

of Agricultural and  Food Chemistry  2009, 57, 10163-10174. 

Whent, M.; Lv, J.; Luthria, D.; Kenworthy, W.; Yu, L. Isoflavone composition and 

antioxidant capacity of modified-lipoxygenase soybeans grown in Maryland. 

Journal of Agricultural and  Food Chemistry 2011, 59, 12902-12909. 

Whent, M.; Ping, T.; Kenworthy, W.; Yu, L. L. High-throughput assay for detection 

of soybean lipoxygenase-1. Journal of Agricultural  and  Food Chemistry  2010, 

58, 12602-12607. 

Wilcox, J.; Cavins, J. Normal and low linolenic acid soybean strains - response to 

planting date. Crop Science 1992, 32, 1248-1251. 

Wilson, R., Seed composition. In Soybeans: Improvement, Production, and Uses, 

Boerma, H.; Specht, J., Eds. American Society of Agronomy, Inc. Crop Science 

Society of America, Inc., Soil Science Society of America, Inc.: Madison, WI, 

2004; pp 621-677. 

Wiseman, H.; O'Reilly, J. D.; Adlercreutz, H.; Mallet, A. I.; Bowey, E. A.; Rowland, 

I. R.; Sanders, T. A. B. Isoflavone phytoestrogens consumed in soy decrease F-2-

isoprostane concentrations and increase resistance of low-density lipoprotein to 

oxidation in humans. American Journal of Clinical Nutrition 2000, 72, 395-400. 

Wolf, W. J. Lipoxygenase and flavor of soybean protein products. Journal of 

Agricultural and Food Chemistry 1975, 23, 136-141. 

Wu, A. H.; Yu, M. C.; Tseng, C. C.; Pike, M. C. Epidemiology of soy exposures and 

breast cancer risk. British Journal of Cancer 2008, 98, 9-14. 



 

 140 

 

Xiao, C. Health effects of soy protein and isoflavones in humans. Journal of Nutrition 

2008, 138, 1244S-1249S. 

Xu, B. J.; Chang, S. K. Antioxidant capacity of seed coat, dehulled bean, and whole 

black soybeans in relation to their distributions of total phenolics, phenolic 

acids, anthocyanins, and isoflavones. Journal of Agricultural and Food 

Chemistry 2008, 56, 8365-8373. 

Xu, B.; Chang, S.K. Characterization of phenolic substances and antioxidant 

properties of food soybeans grown in the North Dakota-Minnesota region.  

Journal of Agricultural and Food Chemistry 2008, 56, 9102-9113. 

Yamakoshi, J.; Piskula, M. K.; Izumi, T.; Tobe, K.; Saito, M.; Kataoka, S.; Obata, A.; 

Kikuchi, M. Isoflavone aglycone-rich extract without soy protein attenuates 

atherosclerosis development in cholesterol-fed rabbits. Journal of Nutrition 

2000, 130, 1887-1893. 

Yamamoto, S.; Tsugane, S. Soy and breast cancer prevention. In Soy in Health and 

Disease Prevention, Sugano, M., Ed. CRC Press: Boca Raton, Fl, 2006; pp 43-

72. 

Yu, L.; Adams D.; Gabel M  Conjugated linoleic acid isomers differ in their free 

radical scavenging properties. J. Agric. Food Chem. 2002, 50, 4135-4140. 

Yu, L. L.; Adams, D.; Watkins, B. A. Comparison of commercial supplements 

containing conjugated linoleic acids. Journal of Food Composition Analysis 

2003, 16, 419-428. 



 

 141 

 

Yuan, S. H.; Chang, S. K. C. Selected odor compounds in soymilk as affected by 

chemical composition and lipoxygenases in five soybean materials. Journal of 

Agricultural and Food Chemistry 2007, 55, 426-431. 

Yuan, S. H.; Chang, S. K. C.; Liu, Z. S.; Xu, B. J. Elimination of trypsin inhibitor 

activity and beany flavor in soy milk by consecutive blanching and ultrahigh-

temperature (UHT) processing. Journal of Agricultural and Food Chemistry 

2008, 56, 7957-7963. 

Zhan, S.; Ho, S. Meta-analysis of the effects of soy protein containing isoflavones on 

the lipid profile. American Journal of Clinical Nutrition 2005, 81, 397-408. 

 

 

 

 

 

 


