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In this paper, we introduce DSPMD, discretely sampled process with pre-
specified marginals and pre-specified dependence, and SRLMD, series representation
for Levy process with pre-specified marginals and pre-specified dependence.

In the DSPMD for Levy processes, some regular copula can be extracted from
the discrete samples of a joint process so as to correlate discrete samples on the
pre-specified marginal processes. We prove that if the pre-specified marginals and
pre-specified joint processes are some Levy processes, the DSPMD converges to
some Levy process. Compared with Levy copula, proposed by Tankov, DSPMD
offers easy access to statistical properties of the dependence structure through the
copula on the random variable level, which is difficult in Levy copula. It also comes
with a simulation algorithm that overcomes the first component bias effect of the
series representation algorithm proposed by Tankov. As an application and exam-
ple of DSPMD for Levy process, we examined the statistical explanatory power of

VG copula implied by the multidimensional VG processes. Several baskets of equi-



ties and indices are considered. Some basket options are priced using risk neutral
marginals and statistical dependence.

SRLMD is based on Rosinski’s series representation and Sklar’s Theorem for
Levy copula. Starting with a series representation of a multi-dimensional Levy pro-
cess, we transform each term in the series component-wise to new jumps satisfying
pre-specified jump measure. The resulting series is the SRLMD, which is an exact
Levy process, not an approximation. We give an example of a-stable Levy copula
which has the advantage over what Tankov proposed in the follow aspects: First,
it is naturally high dimensional. Second, the structure is so general that it allows
from complete dependence to complete independence and can have any regular cop-
ula behavior built in. Thirdly, and most importantly, in simulation, the truncation
error can be well controlled and simulation efficiency does not deteriorate in nearly
independence case. For compound Poisson processes as pre-specified marginals, zero

truncation error can be attained.
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Chapter 1
Introduction

1.1 Background

The modeling of dependence among financial assets is essential in many fi-
nancial engineering problems, such as the dependence modeling in CDO pricing in
the credit derivative market, basket option pricing in the equity market and risk
management of assets with dependence, to name but a few.

In recent years, copula has been successfully introduced to the math finance
world. Among them, Gaussian, Student-t, Clayton copula, etc, are widely used in
pricing structured products in the credit market and the equity market. We refer
readers to a comprehensive analysis in this direction by Burtschell, Gregory, and
Laurent [16] and an excellent paper by Laurent and Gregory [17].

The strongest argument for using copula approach is that one can separate
the dependence structure from the marginal distribution completely. In the finan-
cial modeling, it is a big advantage to have the property of separation. With this
separation, the choice of dependence modeling is independent from the choice of
modeling of the marginals. This adds great flexibility to the modeling of financial
products that depend on the joint law. In the framework, the change in dependence
does not disturb the marginal behavior. In a lot of cases, it means efficiency in cali-

bration procedures. Examples are basket options pricing and CDO pricing. Also, it



offers the access to the statistical property of the dependence alone, eliminating the
effect of marginal distribution. The goodness-of-fit test of the dependence, not the
full joint distribution with marginal information, can be carried out in the copula
framework.

However, copulas deal with random variables not stochastic processes. Static
modeling of single name cannot meet the need of more complex products. Con-
sequently, the dependence modeling of processes, in particular, Levy processes, is
desired. Examples in this direction include the followings: Madan and Schoutens
[22] uses one-sided Levy processes to model CDS, Credit Default Swap. Moos-
brucker [26] used some correlated VG processes to model CDO, collateralized debt
obligation. Both of these work are based on a structural model by Merton 1974
[25] . Joshi and Stacey [18] used Gamma processes to model CDS and CDO in a
stochastic intensity model. Xia [32] proposed to use a linear combination of VG
processes to model multi-asset problems in equity. All these work took a dynamic
modeling approach but none of them are in a copula type structure.

The difficulty of modeling Levy processes using regular copula is that it is
unclear which copula function constructs a Levy process. Infinite divisibility of a
probability distribution is not invariant under a copula structure in general. Tankov
[30] generalized the idea of copula for random variables to Levy copula for Levy
processes. Levy copula is defined on the level of Levy measure. It connects marginal
Levy measures to build the joint Levy measure. The benefit of using Levy copula is
that the resulting processes are guaranteed to be Levy processes. A set of theorems

that are parallel to regular copulas have been developed by Tankov and many other



authors. For details, we list some useful references [6] [2] [31] and [20].

As a newly introduced concept, there are some issues regarding Levy copula.
This dissertation is trying to address the following two issues. Firstly, in this Levy
Copula setting, statistical inference is difficult in general. Because Levy copula is
defined on the infinitesimal level while copula function is a probability distribution.
Finding its implied copula is equivalent to solving a multi-dimensional PDE in gen-
eral. The connection between Levy copula and the implied regular copula remains
uninvestigated.

Another issue about Levy copula is its implementation. The algorithm for sim-
ulating Levy processes with Levy copula is given by Tankov, which uses Rosinsky’s
series representation theory [27]. To my best knowledge, there is no other algorithm
to simulate Levy copula based multi-dimensional Levy processes. We confirm in
theory as well as in practice that this algorithm has a first component bias effect,
which leads to significant loss of jump mass when dependence level is low. In addi-
tion to the bias effect, because the algorithm is based on a conditional probability
argument, high dimensional extension requires recursively applying conditional law
which is expensive to carry out numerically.

For the first issue, we introduces, in Chapter 2, DSPMD, discretely sampled
process with pre-specified marginals and pre-specified dependence. A DSPMD is
a discrete time process, whose increments come from some pre-specified marginal
processes and are correlated through some copula embodied by the discrete time
sample of some pre-specified joint process. In short, in a DSPMD, the pre-specified

marginals are coupled using the joint law of the pre-specified joint process. Here we



are going to prove that if the pre-specified marginal and pre-specified joint processes
are some Levy processes, a DSPMD converges to a Levy process, under certain
technical conditions. And the Levy copula of the limiting process can be written
in terms of the tail integral of the Levy measure of the pre-specified joint process
and pre-specified marginal processes. In that respect, DSPMD can be viewed as the
discrete version of the Levy copula.

The advantage of DSPMD is that it uses a copula structure on the random
variable level so that one can have access to its statistical property. Also, it comes
with a simple simulation algorithm that avoids the deficiency of the series represen-
tation method by Tankov.

In Chapter 3, we discuss the choice of the pre-specified joint process. We
focused on the subordination of Brownian motion, for example VG, with an ap-
plication in equity. In the class of copula implied by subordination of Brownian
motion, closed form of copula function is often available, which makes possible ef-
ficient statistical inference. Within this construction, we introduce the concept of
Stochastic Stressing of the Gaussian copula, which provides a conventional perspec-
tive on this new class. And at last, VG copula, a particular example of this class
is presented and statistical test was performed on a basket of equity names. Pair-
wise Chi-squared test shows that it is a very competitive copula against many other
popular copulas for modeling dependence of equity names.

In Chapter 4, we introduce SRLMD, series representation for Levy processes
with pre-specified marginals and pre-specified dependence in order to address the
second issue of Levy copulas, the simulation algorithm. SRLMD is also based on

4



Rosinski’s series representation, but it avoids Tankov’s conditional probability argu-
ment. In the example of a-Stable Levy Copula, we show that it has the advantage
over Tankov’s Levy copula function in the following aspects: First, it is naturally
high dimensional. Second, the structure is so general that it allows from complete
dependence to complete independence and can have any regular copula behavior
built in. Thirdly, and most importantly, in any case, the truncation error can be
well controlled and simulation efficiency does not deteriorate in nearly independence
case. For compound Poisson processes as pre-specified marginals, zero truncation

error can be attained.

1.2 Overview of Multi-dimensional Levy processes

The main subject of this dissertation is multi-dimensional Levy processes.
In this section, we are going to review the existing ways to construct a multi-
dimensional Levy process. Since multi-dimensional Brownian motion has been well
studied and understood, we will focus our discussion on pure jump Levy processes
throughout this section and the rest of the dissertation.

In general, there are three well known methods to construct a multi-dimensional
Levy process: subordination of multi-dimensional Brownian motion, linear transfor-
mation of independent Levy processes and multi-dimensional Levy measure.

Subordination of multi-dimensional Brownian motions constructs multi-dimensional
Levy processes. Most of its one-dimensional version are well studied and applied in

all kinds of problems in finance. Examples are Variance Gamma processes 23], NIG



processes [1], etc. However, problems associated with such construction in multi-
dimensional version is that the heavy tail behavior are very similar in all marginals.
For example, in multi-dimensional VG processes, kurtosis are almost identical in all
marginal processes, which makes it difficult to model multi-name asset problems. A
simple explanation for this effect is that all marginals share the same subordinator
which is the source of all heavy tail behavior.

Linear transformation of independent Levy processes produces Levy processes
with dependence. This method is very popular with, but not limit to, building
correlated compound Poisson processes. The main idea is to construct the marginal
processes as some idiosyncratic process plus some common process. The dependence
comes from the common process while the idiosyncratic process makes it possible
to match some pre-specified marginals. The dependence can be carefully designed
to meet vairous needs of dependence behavior such as tail dependence and skewness
in dependence. Various books and papers used this method to model multi-name
problems such as CDO and basket option pricing such as [32], [19], [26], [18], [26].
However, it is not a copula type approach. One cannot separate the dependence part
from the marginals. Whenever the dependence is changed, i.e, the common process
is changed, the entire marginal process is also changed. In almost all applications
in Finance, marginal processes are pre-specified. In such a model, one has to adjust
for the idiosyncratic process to match the pre-specified marginals for any changes in
the dependence. This procedure is inefficient. The worst case is that the common
process dominates the idiosyncratic process such that one cannot match the pre-

specified marginals.



At last, one can construct a multi-dimensional Levy measure directly to obtain
a multi-dimensional Levy process. One example of such Levy process is a-Stable
process. The Levy measure of a-Stable process in R? has a spherical or euclidean
decomposition. It can be viewed as a one-dimensional a-Stable process multiplied
by a random vector from a probability measure in R¢. For any B C R?, the Levy

measure of a-stable v can be written as

vB) = [ ) [ a0

where ) is the probability measure in R? and o € (0,2). The concept of Levy
copula is the new development in this direction. Tankov generalized copula for the
probability measure to Levy measure, so that one can build joint Levy measure with
arbitrary marginal Levy measure. This dissertation is trying to extend and improve
this idea in various ways. First, we propose DSPMD, which can be understood
as an extension of Levy copula in a discrete time random variable level. In this
way, it makes an connection with regular copula so that one can perform statistical
inference. It also comes with a simulation algorithm, which does not suffer from the
first component bais in what Tankov proposed. We also propose SRLMD and its
example a-Stable Levy copula which overcomes the weakness in Tankov’s simulation

algorithm.

1.3 Review of Levy Processes, Copula and Levy Copula

In order to make this dissertation self-contained, this section is devoted to the
review of the basic concepts about Levy processes, copula and Levy copula.
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1.3.1 Levy Processes and Infinitely divisible distribution

All definition and theorems in this section can be found in the book by Cont
and Tankov [6]. For proofs and more rigorous treatment of the basic knowledge of
Levy processes and infinitely divisible distribution, we refer the readers to the book

by Sato [28].

Definition A stochastic process {X;;¢ > 0} on a probability space (€2, F, P) is a

Levy process if the following properties are satisfied:

1. X; has independent increments: Vn > 1 and 0 < t5 < t; < ... < t,, the

random variables X, Xy, — Xy, ..., Xt, — X3, , are independent.
2. X, has stationary increment: the law of X;,, — X; does not depend on t.
3. Xo = 0 almost surely.

4. X, is stochastically continuous: V¢ > Oand Ve > 0,
;lliir(l] P(| Xen — Xi| > €) =0.
5. X, is right-continuous with left limits almost surely
Levy process is closely related to infinitely divisible distribution.

Definition A random variable X taking values in R? is infinitely divisible, if for

all n € N, there exists i.i.d. random variable Yl("), ., Y™ such that

X2y 4y,



Another way to state the definition is that F' is an infinitely divisible distri-
bution if the n-th convolution root is still a probability distribution for any n.

Given an infinitely divisible distribution F', it is easy to see that for any n > 1
by chopping it into n i.i.d. components, we can construct a random walk model on
a time grid with step size 1/n such that the law of the position at ¢t = 1 is given
by F'. In the limit, this procedure can be used to construct a continuous time Levy

process (X;)i>o such that the law of X, is given by F.

Proposition 1.3.1 Let (X;) be a Levy process. For every t, X, has an infinitely
divisible distribution. Conversely, if F' is an infinitely divisible distribution then

there exists a Levy process (X;) such that the distribution of X1 is given by F.

Summation of independent random variables corresponds to the convolution of their
probability distribution function. On the Fourier side, convolution becomes multi-
plication, which is an ideal tool for studying Levy processes and infinitely divisible
distributions. The characteristic function of an probabiity distribution is simply the

Fourier transform of its density function. Or precisely,
o(u) = Ele™¥].

Given the relation between an infinitely divisible distribution and its implied Levy

process, we can define the characteristic function of X; as
Uy (u) = Ble™).

As a direct result of continuity and multiplicative property, we can assert that 1;(u)

is an exponential function.



Proposition 1.3.2 Let X; be a Levy process on R?. There exists a continuous

function ¢ : R* — R called the characteristic exponent of X, such that:
EleXt] = W 4 ¢ R4

So, clearly, the law of (X}) is determined by the law of X;. One can define the
Levy process from any given infinitely divisible distribution through its characteristic
function. We will use this property extensively in the later sections. One thing to
notice is that not all infinitely divisible distribution is closed in its parametric family
under convolution. For example, the summation of two Student’s t distribution is
not a t distribution. Nonetheless, Student’s t distribution is infinitely divisible and
its Levy process is well defined in terms of its characteristic function. See P46 in
[28].

The celebrated Levy-Khinchin representation theorem reveals the structure of

its characteristic function and its local structure of the path.

Theorem 1.3.3 Let (X;) be a Levy process on R with characteristic triplet (A, v, )

then

E[eiuXt] — 6t1/1(u)

with

1 .
Y(u) = —§uAu + iyu + /Rd(emx — 1 —urly<i)v(de),

where A is a symmetric positive n X n matriz, v € R? and v is a positive Radon

measure on R\{0} verifying

/ |z|?v(dr) < oo,/ v(dr) < oo.
<1 e>1

10



v 1s called the Levy measure of the Levy process..

According to Levy-Khinchin, a Levy process can be decomposed into three
parts, deterministic drift, continuous Brownian motion and pure jump part. The
continuous part, or multi-dimensional Brownian motion is well studied and under-
stood. For this dissertation, we are interested in multi-dimensional structure in the
pure jump part. Without loss of generality, we are going to focus on some of the
pure jump Levy processes.

There are many different ways to build a Levy process. One can specify the
Levy measure, which dictates the jump structure directly. Or one can specify the
distributional property of some small time interval, which is infinitely divisible.
Another well known way is subordination of Brownian motion. A subordinator is a
Levy process with non-decreasing paths. Subordination to Brownian motion means
that the time variable is replaced by the subordinator, or the Brownian motion is
evaluated at random time change by a subordinator. The Variance Gamma processes
by Madan and Senate [23], Normal Inverse Gaussian process by Barndorff-Nielsen
[1], CGMY process by Carr, Geman, Madan, Yor [8], among many others, belong to
this category. Subordination also provides a natural way to extend one dimensional
Levy process to higher dimensions. It is simply subordination of multi-dimensional
Brownian motion.

For example, Variance Gamma process is defined as a Brownian motion subor-

dinated by a unit rate Gamma process. Let b(t;0,0) = 0t + oW (t) be the Brownian

11



motion with drift 6 and volatility o. Let v(¢;1,v) be the gamma process.
Xe=0b(y(t;1,v),0,0) = 0y(t) + W(y(1)),

where gamma process is a subordinator. It is the process of independent gamma
increments over non-overlapping intervals of time. The density over (¢,t+h) is given
by fu(g) = Lg"/ ”_1%. For more details on VG processes, please see [23] and
[24]. For more theory and examples of subordinated Levy process, please see [6] and

[28].

1.3.2 Copula and Levy copula

The concept of copula was introduced by Sklar [29]. Copula functions uniquely
specify the structure of dependence of multivariate distributions. It separates the
marginal distributions from its core dependence part. In finance, it provides a tool

that enables us to model the dependence independently from the marginals.
Definition Definition: A copula is a function C: [0, 1]* — [0, 1] such that
e C(u) =0 whenever u € [0,1]™ at least one component equal to 0.

e C(u) = u; whenever u € [0,1]" has all the components equal to 1 except the

i-th one, which is equal to u;.
e ('(u) is n-increasing.(Any n-dimensional distribution function is n-increasing)

In other words, a copula function is a multivariate distribution function with
uniform marginals. The following theorem reveals the the relation between the
multivariate distribution and a copula function.

12



Theorem 1.3.4 Sklar’s Theorem: Let X and Y be random wvariables with joint
distribution function H and marginal distribution functions F' and G, respectively.

Then there exists a copula C such that
H(z,y) = C(F(x),G(y))

forallx, yin R. Conversely, if C is a copula and F' and G are distribution functions,
then the function

H(z,y) = C(F(z),G(y))
1s a joint distribution function with margins F and G.

Sklar’s theorem shows that for each of the multivariate distribution, one can
extract its copula function by transforming the marginals into uniform distribution
by applying its marginal CDF. Then one can construct a new multivariate distribu-
tion using the copula function with any other marginal CDF. Examples of copula
are Gaussian copula, Student’s t copula, Clayton copula, etc.

Among those copulas, factorized copulas are very popular. For example, one
factor Gaussian copula is the industry standard in modeling default times for credit
names, which was introduced by Li [12]. Let Z;, Z,i = 1,..N be the i.i.d standard
normal distribution.

Xi = pZ +\/1—-p*Z;.
In this way, X;’s are correlated normal random variable through the common factor
7. Here, conditional on the common factor Z, all X;’s are independent. This special
structure allows tractability in computing joint distribution or other expressions
depending on the joint law.

13



A very important concept in dependence is called tail dependence. Let (X,Y)
be a random pair with joint cumulative distribution function F' and marginals G for

X and H for Y. The upper tail dependence is given by

Av = lim P(G(X) > t|H(Y) > t),

t—1—

and the lower tail dependence is given by

Ao = lim P(G(X) < t|H(Y) < t).

t—0t

If C' is the copula for (X,Y’), which is unique when G and H are continuous, we

have
)\L = lim C(t’t),
t—0t t
and
1-2
Ay = lim t—l—C(t,t)'
t—1— ]_ — t

For example, Gaussian copula has zero tail dependence when p < 1. Clayton copula
has a lower tail dependence A\, = 27'/% for # > 0 and no upper tail dependence. For
more examples and tail dependence, we refer the readers to [16].

The concept of Levy copula was introduced by Tankov in [6] and discussed in
Chapter 5 from his book [30] and many other literatures such as [15] [2] [10]. The
idea is that one can construct a Levy copula function that glues together marginal
Levy measures to build joint Levy measure. As an extension of regular copula,
one can separate the marginal Levy processes from its dependence part. Also,
it is a natural way to build multi-dimensional Levy processes since Levy copula
guarantees that the resulting process is a Levy process. When the dimensionality

14



is low, Levy copula is suitable for PDE approach since it defines the infinitesimal
generator directly. One can also use Monte Carlo simulation for high dimensional
problem. In the end, in theory, one can retrieve the implied distributional property
of a Levy copula by doing the inverse transform of characteristic function, but, in
practice, multi-dimensional FFT procedures are numerically expensive.

The following definitions and theorems come from the book by Cont and
Tankov [6]. For more rigorous treatment of Levy copula, we refer the readers to
[30] and [20]. In order to define the Levy copula, we will first introduce the concept

of tail integral. It is the counterpart of the CDF of a probability measure.

Definition Let X be a R%valued Levy process with Levy measure p. The tail
integral of the Levy measure, or T.I.L of X is the function U : (R¢/{0}) — R

defined by

where for every x € R, I(z) = [z,00) if z > 0; I(z) = (—o0,2) if x < 0:

Unlike a probability measure, the Levy measure can have a total mass of

infinity and is undefined at 0. By defining the tail integral, one can avoid 0.

Definition A function F': R? — R is called Levy copula if

3. F is d-increasing.

15



4. F'(u) =wuforany i € 1,.......d,u € R.
Theorem 1.3.5 Sklar’s Theorm for Levy Copula

1. Let U be the n-dimensional tail integral and U; be its ith marginal tail integral.

There exists a Levy Copula F' such that
U(zyy...,ty) = F(U(x1),...,U(xy)).
If U;s are continuous, then F is unique.
2. If F is a Levy Copula and U;s are one-dimensional tail integral, then
U(zy,...,xy) = F(Ui(21), ..., Un(z4))
define a n-dimensional tail integral.

We can see that the definition and theory for Levy copula is very similar in
spirit to regular copula. Here is some examples of Levy copula

Independence Levy Copula

Independent Levy process means no common jumps at one jump event, a.s. Each
process jumps individually.

Completely dependent or comonotonic Levy Copula
Fy (@1, 2a) = min(|aa], .. [2al).

Comonotonic Levy process means all the jumps happen at the same time and in
the same direction, a.s. Jump sizes are the subset of all strictly ordered set, which
implies that it can be determined by any component.
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a-Stable Levy Copula: X is a-Stable if and only if its components X!, ...X¢
are a-stable and if it has a Levy Copula F that is a homogeneous function of order
1. ie.

F(ruy, ....rug) = rF(uq, ..., uq).

Tankov proposed Clayton Levy copula. The function form is very similar to

the regular Clayton Copula.

F(ug, oooug) = (O 7)™,
=1

where @ is interpreted the same way as in the regular Clayton Copula. When 6 = 0,
it becomes the independent Levy copula. When # = 1, it becomes an comonotonic

Levy copula.
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Chapter 2
DSPMD For Levy Processes

2.1 Motivations and Ideas

A well known way to build multi-dimensional Levy processes is through subor-
dination. For example, one dimensional VG is a Brownian motion under a gamma
process time change. Then, the natural multi-dimensional extension for VG is a
multi-dimensional Brownian motion under a common gamma process time change.
However, this construction has its limitation since the marginal processes have al-
most identical kurtosis, which makes it unrealistic for practical purposes.

There is a demand to use some type of copula structure to model processes. As
introduced in the Chapter 1, the concept of Levy copula was introduced to solve this
problem. We recognize that Levy copula by Tankov is a very general way to build
multi-dimensional Levy processes. It keeps the copula property which separates the
dependence part from the marginals. And in the same time, the resulting process is
automatically Levy process, which avoided the question of infinitely divisibility one
will have to face when use regular copula.

Tankov proposed the following way to construct a Levy copula in [6] and [30].
One can abstractly construct the Levy copula function that satisfies the definition
of Levy copula, examples such as Clayton Levy copula. Alternatively, one can

construct the Levy copula by a transformation to change the domain of the regular
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copula. For more details, we refer the reader to [6] and Chapter 5 from [30].

There are some drawbacks for this approach. First, the construction shows
no connection between the Levy copula and the implied copula structure which
is required for statistical inference purpose. Second, for simulation, the existing
algorithm given in [6] and [30] has first component bias effect, which makes this
algorithm practically useless. See Chapter 5 or [10] for more details on this issue.

To fix this problem, we propose DSPMD. DSPMD represents discretely sam-
pled process with pre-specified marginals and pre-specified dependence. A two-
dimensional DSPMD on [0, 7] can be constructed in the following way: One starts
with two pre-specified marginal processes and discretely sample the increments on
sub-intervals by the generalized inverse function of its tail integral of probability
measure using correlated uniform random variables. The correlated uniform ran-
dom variables are embodied by some pre-specified discretely sampled joint processes
on the same sub-intervals in the form of its tail integral copula. So in a DSPMD,
the pre-specified marginals are coupled using the joint law of the pre-specified joint
process. The advantage of DSPMD is that it uses a copula structure on the random
variable level so that one can have access to its statistical property. Here we are
going to prove that if the pre-specified marginal and pre-specified joint processes are
some Levy process, a DSPMD converges to a Levy process, under certain technical

conditions. In that respect, DSPMD is the discrete version of the Levy copula.

19



2.2 Preliminaries

In order to be self-contained in this chapter, we recall the definition of T.I.L.,

tail integral of Levy measure.

Definition Let X be a R?valued Levy process with Levy measure v. The tail

integral of X is the function U : (R\{0})¢ — R defined by

where for every z € R, I(z) = [x,00) if x > 0; I(z) = (—o0,2] if x < 0. T.LLL. is

short for tail integral of the Levy measure

Since T.LL. is only defined on (R\{0})%, it does not determine the Levy mea-
sure uniquely (unless we know that the latter does not charge the coordinate axes).

However, Levy measure is completely determined by its T.I.L. and all its marginal

T.I.L.. See [20].

Definition Let X be a R? -valued Lvy process and let I C {1, ...,d} non-empty.

The I -marginal tail integral U of X is the tail integral of the process X7 = (X%);c;.

Tankov proved the following lemma in [20]

Lemma 2.2.1 Let X be a R? -valued Levy process. Its marginal tail integrals
{U . T c {1,..,d}non — empty} are uniquely determined by its Levy measure v.
Conwversely, its Levy measure is uniquely determined by the set of its marginal tail

integrals.
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Follow the definition of tail integral of Levy measure, we introduce the tail

integral of probability measure, or T.I.P..

Definition Let X be a R? random variable with probability measure P. The tail

integral of X is the function U : (R)? — [—1, 1] defined by

where for every z € R, I(z) = [x,00) if x > 0; I(z) = (—o0,z] if x < 0. T.I.P. is

short for the tail integral of the probability measure.

The tail integral of probability measure, or T.I.P., uniquely determine the
probability measure including all the mass on the axis and the origin. When X is
one dimension, we have U(0) — U(0—) = 1. Further, if X does not have mass on

the origin, we have lim, o U(x) = U(0), i.e. U(0+) = U(0—) = 1.
Definition Generalized inverse function of F': R — R is defined as
F~ u) =inf{z :u > F(z)}

Since one dimensional T.I.P. and T.I.L. are monotonically decreasing on R~

and R* respectively. We define the generalized inverse of the tail integral as

inf{x >0:u>F(x)} ifu>0
F~H(u) =

inf{r <0:u>F(x)} ifu<0
Lemma 2.2.2 Let X and Y be random wvariables on R* U {0} with the T.I.P.

U(x),V(x), which are monotonic. We define a mapping F: RT U {0} — R* U {0}



the following are true:

i) if X and Y has no atom at 0, then F is continuous at 0 and F(X) =Y in
distribution.

i) if P(X = 0) < P(Y =0), or in terms of the T.I.P., U(0) — U(0+) < V(0) —

V(0+4), F is continuous at 0, and F(X) =Y in distribution.

Proof: i)
Since X and Y don’t have atom at 0, then U(0+) = U(0) = 1, and V(0) = V(0+) =

1. It is easy to check that

lim F(z) =V (1) =0

z—0+

so F'(z) is continuous at 0.

For x >0

P(F(X)>ux)=PV HU(X) > x) (2.1)
=PUX) < V(x)) (2.2)
=V(x) (2.3)

so /(X)) have the same tail integral as Y, and F'(X) does not have atom at 0. We
conclude that F(X) =Y in distribution.

i)
A note: the result from ) is included in i)

Because P(X =0) < P(Y =0), U(0+) > V(0+),

lim F(z) =V 1 (U(0+))

z—0+
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By the definition of generalized inverse, we have
VHU(0+)) =inf{z : U0+) >V (2)} =0

The proof of F(x) =Y in distribution is similar as in 7).

Q.E.D.

We quote the following important result from Sato [28] P45 Corollary 8.9.
It shows the connection between the probability measure of a infinitely divisible

distribution with its Levy measure.

Proposition 2.2.3 For any bounded continuous function f that vanishes at a neigh-
borhood of 0, if v is the Levy measure of an infinitely divisible distribution p, then

we have

t,' Rdf(x)ut”(dfﬁ) — [ fl@)v(dr),t, — 0

Rd

p' denotes the t,th fold convolution of u.
The proof of the following proposition is given by [20] Theorem 5.1, step 3 to

step 5, which is basically an application of the above proposition.

Proposition 2.2.4 Let X; be a pure jump Levy process with T.I.P. at time t U'(x)

and T.1.L. u(x), then

as t — 0 point-wise on the continuous points of u(x). In addition, if U'(x) and
u(zx) are absolutely continuous with respect to Lebesque measure everywhere except
at zero, then

U, ()

el
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where UL(z) is the p.d.f. and u.(x) is the Levy density.

Corollary 2.2.5 Let {X;} and{Y;} be two compound Poisson processes on RTU{0}
with the T.LP. at time t U'(x), V'(z), And with T.LL. u(z),v(x). We define a
mapping F* : R — R

F'(z) = V'™ (U (x))

then, ast — 0, we have

F'(z) = v~ (u(x))

point-wise on the continuous points of v~ (u(x)).

Proof:

By Proposition 2.2.4, as t — 0, we have

This limit is of point-wise convergence on the continuous points of u(z). Same for

Vi(z)
7

— v(z) point-wise. Under the definition of generalized inverse function, it is

casy to check that V™' (xt) — v~'(2) point-wise as t — 0. So, we have

F'(z) = V' (U'(2))) (2.4)
=Vt % (Utix))) (2.5)
— v (u(z)) as t — 0 (2.6)

Q.E.D.
The following result holds for compound Poisson process on the whole real
line, with a slightly different definition of F*(x)
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Lemma 2.2.6 Let X; and Y; be the compound Poisson Random variables on R with
the T.I.P. U'(x),V'(x). It also has the T.I.L. u(x) and v(x). We define a mapping

F:R— R
F'(z) = Vt—l(Ut(x) — U(0) + V*(0) + p—u(0-)t _ e‘”(o_)t)

Then the following is true:
i) if u(0+) > v(0+) and u(0—) > v(0—), whent is small enough, F*(x) is continuous
at 0 in z, and F(X) =Y in distribution.

i) Fi(x) — v (u(x)), ast — 0

Proof:
i)
To show F'(x) is continuous at 0 in z, we need to prove that lim, .o F'(z) =
lim, o4 F*(z) = 0. From the definition of generalized inverse function, we know
that V' (VH(0+) + ¢1) = 0, VI (VE(0—) — ¢3) = 0, where ¢y, ¢o are any non-

negative number.

lim F*(x) = VI UH0=) — U (0) + VH0) 4 e74O0) — gm0ty (2.7)

= VI U 0-) — (14 UH0-)) + (1 + VE(0-)) (2.8)

4 e U0t om0 (2.9)

= VITH(VH(0-) + 707 — 700t (2.10)

Since e~07)t — ¢=v(0)t < (0 by the definition of generalized inverse function, we

have lim, g = V™ (V(0—) 4 ¢ H0) — =01 — 0
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lim F'(z) = V' (UH04) — U0) + VE(0) + e 078 — g=v(0-)8) (2.11)

20+
= V7N U 0+) — U(0+) — P(X, = 0) + VH(0+) + P(Y, =0)  (2.12)
+ e u0)t _ gmv(0)h (2.13)
_ Vt—l(vt(0+) — e~ @(0F)+u(0-))t + ¢~ (©(0+)+v(0-))t + e~ u0-)t _ 6—v(0—)t)
(2.14)
Next, we are going to show that —e~(“(0H)+u(0=)t 4 o=@WOH)+v(0=)t 4 e—u(0-)t _
e~ > 0 when ¢ is small enough. Let z(t) = —e~ (01 Fu0))t 4 o=(0H)+v(0=) 4
e 0t _ o=v(09)t and 2(t) € C® . 2'(t) = u(0+) — v(0+) > 0, so there exists a
small neighborhood of 0, such that z'(t) > 0. z(0) = 0 implies that there exist a
small neighborhood of 0, such that z(¢) > 0. So lim,_o, F*(z) = 0.
At last, it is easy to verify that F'(0) = 0. We conclude that F*(z) is contin-
uous at 0 in x when ¢ is small enough.
i)
Firstly, we use Proposition 2.2.4, and get

U'(z)
t
V()
t

— u(2)

— v(2)

point-wise. By the definition of generalized inverse function, it is easy to check that

Vi (xt) — v~ (z) point-wise as t — 0 for z € R\{0}. So, we have

Fi(z) = V" U (@) — UY0) + VE(0) + e 40t — 207y (2.15)

U'e) UY0) = V(D) , e — 6_”(0_)t) (2.16)

_ gt
=V (tx( ; ;
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We have U(0) = U(0+) + e~ @OH+u0)t and VH(0) = VH(0+) + e~ @O +u0-)1
Consequently, we have

U'(0) = V')

- _ t—l(Ut((H_) . Vt(0+) + 6—(u(0+)+u(0—))t . e—(v(0+)+v(0—))t (2.17)

+ 70t _ gmv(0)t (2.18)

— u(0+) — v(0+) — (u(0+) + u(0—)) + (v(0+) + v(0—))  (2.19)

—u(0—)+v(0—)ast—0 (2.20)

=0 (2.21)
Now we have for any x € R\{0}, ast — 0

F'(z) — v (u(z))

Q.E.D

Next proposition is from Sato [28] P123 Proposition 19.5

Proposition 2.2.7 Let (0, B, p) be a measure space with p(©) < oo and {N(B), B €
B} be a Poisson random measure with intensity measure p. Let ¢ be a measurable

function from © to R% and define

Y(w) = /@ S(O)N(d0, o).

then, Y is a random variable on R® with compound Poisson distribution satisfying

B[] = eap / (€7 — 1)(pp")(da)]

Rd
for z € RY.
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2.3  Main Results

In this section, we are going to prove that if the pre-specified marginal pro-
cesses are Levy processes and the copula is embodied by some multi-dimensional
pure jump Levy processes, then DSPMD converges to some Levy process. We prove
this result in several scenarios. We first prove for the case of compound poisson
processes with only positive jumps. Then we generalize the case to compound pois-
son processes supported on the whole real line. For most of our practical use, this
result can be used in an asymptotical sense since all Levy processes can be viewed
as some compound Poisson process approximation after truncating infinitely fre-
quent small jumps. In the end, we prove the result for general subordinator type of
Levy processes. For the most general case of Levy process, the proof is still under

investigation.

Theorem 2.3.1 A DSPMD converges to a compound poisson process almost surely,
as N — o0, if the pre-specified marginals and pre-specified joint processes are com-
pound poisson processes with pure positive jumps and if the jump intensity on the
pre-specified processes are no greater than the ones on the marginals of the joint
process, respectively. The marginals of DSPMD are the exact discretely sampled
processes of the pre-specified marginal processes, and the T.1.L. of the limiting pro-
cess is the T.I.L. of the pre-specified marginal processes coupled by the Levy copula

of the pre-specified joint process.

Proof:
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For j = 1,2, let G;, and g; be the T.LP. and the T.I.L. of the pre-specified
marginal compound Poisson processes with positive jumps. Let (X;,Y;) be the pre-
specified joint process, which is a compound Poisson processes with positive jumps,
with its T..P. F*(x,y) and marginal T.L.P. F} at time ¢, and its T.I.L. f(x,y) and
marginal T.LL. f;(z). ¢;(0+) < f;(0+) for j =1, 2.

We make a partition on [0,7] into N equal length sub-intervals and we can

get a discretely sampled process from (X, Y;) as:

N(t)
(XN, v =3 (x y

i=1
where N(t) = inf{i € Z : {T/N > t} We want to transform the increment

( xT/N yTIN

;Y7 into correlated uniforms by its T.I.P. and transform it back to the in-

crement of the DSPMD by the generalized inverse function of the G;F/ N for Jj=12

-1
This can be done by introducing a transformation PjT/ Nz) = G]T/ NUE ]-T/ N(z)) for

7 =1,2. So the DSPMD can be written as

N(#)
UM v =S @ v

i 7
i=1

, where UZ.T/N = PIT/N(XZ.T/N), VZ.T/N = PQT/N(YZ.T/N). That is, P7/N transforms the
increment of (X}, Y,") into the increment of (U}, V,) component-wise. By Lemma
222 fori=1,..,N, PIT/N(XZT/N) has distribution function G?/N. The same goes
for P, / N(YiT/ V) with G;F/ V. So we have proved that, at discrete time, it is an exact
discrete time process of the pre-specified marginal process for any discretization step
size.

Now, we are going to prove that in the limit, it is again a compound poisson

process.
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The sample path of compound Poisson processe {X;} on [0, 7] has only finite
number of jumps and two jumps never happen at the same time, almost surely .
For any w €  fixed, we look at the sample path of the discrete process X}¥(w) =
ZiN:(f) XZ-T / N(w). When N is large enough, only fixed number of XZ-T / N(w) are non-
zero. So there exists a sub-sequence {i;} of {i}, such that Xii /N contains only one
jump from {X;}, and XZ-T/N =0, for i ¢ {ir}. So we denote the non-zero terms as
XN = J¥ (W), k = 1..K(w). Let K(t) = sup{k : i), < N(#)}, which counts the
total number of jumps up to time ¢, which depends on w. We do the same thing for
{Y;}, and denote the non-zero terms as J) (w),l =1, ..., L(w), and L(t) counts the
total number of jumps up to t.

We also define p;(x) = g;7'(f;(z)) for j = 1,2. By Lemma 2.2.5, for j =

1,2, PjT/N(x) converge point-wise to p;(z) as N — oo. By Lemma 2.2.2, with

the condition ¢;(0+) < f;(0+), we have pr

2"7(0) = 0 and continuous at 0. And

pj(z) — 0 as x — 0. We can assign p;(0) = 0. Therefore, in the summation, 0 are
transformed to 0 under the mapping PJ-T/ N and p;(x). Now for any fixed w and any

fixed t, let N — oo,we have

K(t)

UM (w) — Ul(w Zm I (w

and

V(W) = Vi(w sz I (w

Now, (U, V;) are again compound Poisson process. By Proposition 2.2.7, we
assert that (U, V;) has the Levy measure f(f1 "' (g1), f5 '(g2)) where the pre-specified
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marginal Levy measures are coupled by the pre-specified Levy copula.

Q.E.D.

Remark: The DSPMD is an approximation of (U, V;) which is a compound
Poisson process with the marginal process from G} and G and dependence structure
from F'(z,y). In case of pure positive jumps, tail integral of a probability measure
is exactly the same as survival function of the probability measure. And for each
increment, we basically used the survival copula of F’ t(Ff_l(x), th_l(y)). Basically,
this theorem makes sure that if one use the survival copula implied by the compound
Poisson distribution to build a discretely sampled process, then in the limit, it
converges to a compound Poisson. We can work with the random walk to get its
local copula information and do estimation on it as long as the time step is small.
Then, as an approximation, we can say something about the copula at a longer time
horizon.

We can drop the restriction of the positive jumps and extend this theorem to
the general compound Poisson process on R? with a slightly different definition of

P*(z) with some technical conditions.

Theorem 2.3.2 A DSPMD converges to a compound poisson process almost surely,
as N — 00, if the pre-specified marginals and pre-specified joint processes are com-
pound Poisson processes and if the intensity of the positive and negative jumps on
the pre-specified marginal processes are no greater than the ones on the marginals of

the joint process, respectively and component-wise. The marginals of DSPMD are
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the exact discretely sampled processes of the pre-specified marginal processes, and
the T.I.L. of the limiting process is the T.I.L. of the pre-specified marginal processes

coupled by the Levy copula of the pre-specified joint process.

Proof:
For j = 1,2, let G;, and g; be the T.I.P. and the T.I.L. of the pre-specified marginal
compound Poisson processes. Let (X;,Y;) be the pre-specified joint process, which
is also a compound Poisson process, with its T.I.P. F*(z,y) and marginal T.L.P. F}
at time ¢, and its T.I.L. f(z,y) and marginal T.LL. f;(x). ¢;(04+) < f;(04) and
g;(0—) < f;(0—) for j = 1,2. We make a partition on [0,7] into N equal length

sub-intervals and we can get a discretely sampled process from (X;,Y;) as:

N(t)
(XN V) =& v

% 7
i=1

where N(t) = inf{i € Z : iT/N > t} We want to transform the increment

( xT/N yT/N

3 ? T

) into correlated uniforms by its T.I.P. and transform it back to the in-
crement of the DSPMD by the generalized inverse function of the G;F/ N for 7 =12
This can be done by introducing a transformation P]-T/ N(m) for 7 = 1,2. The exact

form of PjT/ N () will be given shortly. So the DSPMD can be written as

N(t)
CARANED (RN e

i=1
, where U™ = PI/N(XT/Ny vV = PIN(y; Ny, That is, PT/N transforms the
increment of (X¥, V") into the increment of (U}, V/Y) component-wise.
The difficulty here is the choice of the mapping PT/N. The T.I.P. maps the

increment of the joints into uniforms on a subset of [—1,1]%. In order to transform
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back to the pre-specified marginal for any finite N, one has to match up the domain
-1
of the uniforms and the domain of G;F/ N Since there is probability mass at 0, the

matchup is not unique. We choose the following form:

-1
PN (@) =GN (F N (@) — FIN0) + G (0) 4+ e H0E — emas(00)y

such that P]-T/N(O) = 0 and continuous at 0 and PIT/N(XZ-T/N) and PJ/N(YZ-T/N) have
the same distribution as the increment of the pre-specified marginal Gf/ N and GQT/ N
These statements have already been proven in i) of Lemma 2.2.6 . So, at discrete
time, it is an exact discrete time process of the pre-specified marginal process for

any discretization step size.

In addition, by Lemma 2.2.6 ii), we have

PN (@) = pi(a) = g7 (f3(@))

point-wise, as N — oo, for j = 1,2

From here, the proof follows exactly the same as in the first theorem.

Q.E.D.

Remark: The DSPMD is an approximation of (U, V;) which is a compound
Poisson process with the marginal process from G* and G% and dependence structure
from F*(x,y). For the construction shown in the proof, the marginals are the exact
discretely sampled processes. The dependence at the discrete time level is, however,
an approximation in general and exact for some special cases. Notice that the
transformation on the random variable level is not always strictly co-monotonic,
hence the dependence structure from the joint processes is not exactly preserved after
the transformation into the pre-specified marginals. We say it an approximation
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because the limiting process is precisely given by the Levy copula from the joint
processes, which characterizes the dependence structure of the joint process, a direct
result by Sklar’s Theorem for Levy copula.

DSPMD can be constructed with a different P7/N, which is given by

PN (z) = g7 (f(2))

In this case, the transformation is co-monotonic, hence the dependence structure
from the joint process is precisely preserved after the transformation. So at discrete
time, the dependence structure for DSPMD is exact. The marginals at the discrete

time level is, however, an approximation. By Proposition 2.2.4, we have

, and we have the following approximation
Ul(z) ~ u(x) x t

when ¢ is small enough. It can be proved that when t goes to 0, DSPMD converges
to the same limiting process as the shown in the theorem above. Furthermore, this
construction can be applied to the case of infinite activity. The idea of proof is the
same as the one shown below.

In summary, when constructing a DSPMD for the Levy processes with both
positive and negative jumps, one can have the choice of exact marginals and ap-
proximated dependence or approximated marginals and exact dependence. In some
special case, using the construction given by the theorem above, one can have exact
marginals and exact dependence. In both cases, the limiting process is given by the
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marginal Levy measure of the pre-specified marginals and the Levy copula from the
pre-specified joint process.

Now we are going to extend this theorem in a different way. We will prove
that instead of compound Poisson process, for a general Levy process with pure
positive jumps, which allows for infinite activity, the result still holds. Without loss

of generality, we limit ourselves to the case of the infinitely activity.

Theorem 2.3.3 A DSPMD converges to a Levy process in law, as N — oo, if the
pre-specified marginals and pre-specified joint processes are Levy processes with pure
positive jumps and if the ratio of Levy densities on the marginals of the joint process
versus the pre-specified marginals are bounded as jump size goes to 0, respectively.
The marginals of DSPMD are the exact discretely sampled processes of the pre-
specified marginal processes, and the T.I.L. of the limiting process is the T.I.L. of
the pre-specified marginal processes coupled by the Levy copula of the pre-specified

joint process.

Proof:
For j = 1,2, let G;, and g; be the T.I.P. and the T.I.L. of the pre-specified marginal

Levy processes with positive jumps. Let (X, Y;) be the pre-specified joint process,

| < ooforj=1,2. Wemake

which is a Levy process with positive jumps, with |£ j EOJF)

0+)

a partition on [0,7] into N equal length sub-intervals and we can get a discretely

sampled process from (X, Y;) as:

N(t)
(XtN’ YtN) _ Z(XiT/N, YT/N)

7
i=1
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where N(t) = inf{i € Z : {T'/N > t} We want to transform the increment

( xT/N yTIN

2 Y 7N into correlated uniforms by its T.I.P. and transform it back to the in-

crement of the DSPMD by the generalized inverse function of the G;F/ N for 7 =12
— GgT/N -1

This can be done by introducing a transformation PjT/ Nz) = i (F]T/ N(2)) for

7 =1,2. So the DSPMD can be written as

N(t)
UN, VN =S (W v

1 %
i=1

, where UZ-T/N = PK/N(Xf/N),%T/N = PQT/N(Y;T/N).That is, PT/N transforms the
increment of (X}¥,Y;") into the increment of (U}, V/Y) component-wise.

For any small € > 0, the sample path of pure positive jump processes on [0, 7]
has only finite number of jumps that are greater than € and jumps never happen at
the same time, almost surely. For any w €  fixed, when N is large enough, only

fixed number of XZ-T / N(w) contain at most one single jump that is greater than e. So

there exists a subsequence i, C 1,.., N,k =1, ..., K., depending on w, such that

XM (w) = JE ) + 0N () ()

where |JX| > ¢ and nf,{ V() is the sum of the jumps in the i,th sub-interval that
are less than e. K. is the number of jumps of X; on [0, 7] that are greater than e.
Notice that K. depends only on €, not on N, if N is large enough but finite. We
denote K.(t) = sup{k : ix < N(t)}, which counts the total number of large jumps

before time t, which depends on w.
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For any t € [0,7], we can rewrite the sum as

Kc(t) N(t)
RED SRS SRR
k=1

(2.22)
i=1,i¢{ix}
K(t) N(t)
T/N T/N
oD I CARS A (5) R N (2.23)
k=1 i=1,i¢{ir}
(2.24)

Now, we apply the transformation P7/N on each individual sub interval

N(t)

ol =3 PN (X (2.25)
i=1

K(t) N(t)
T/N T/N, t/N
=Y B )+ > B E)
k=1 i=1,i¢{ir}

From the smoothness property (Sato [28] P189) for G% and F}, we know that Pj(x)

(2.26)
is smooth, too. For k =1, ..., K., i < N(t), we have

dPI™ (2
PIN R ) = PR + P e 0

where & € (Ji¥, Ji¥ +n;,(€)). And for i =1,...,N(t),i # i

By Lemma 2.2.2, we have pIx

(0) = 0 and continuous at 0. Together with

the smoothness property of P(z), we have

P () (2.27)
= P (" (€) (2.28)
=o+§5%¥9@mf”@> (2.29)
where &; € (0, nl-T/N(e)). The summation can be rewritten as:
0 = SN + T ey S ) o
k=1

i=1,i¢{ix}
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After re-arranging the terms:

-3 A (2.30)
dPlT/NU R AP E)
—|Z Eom@+ Y PG g @
i=1ig{ix}
T/N N(t)
<1, oy (@ >0 @) (2.32)

Since (X;) contains only positive jumps without diffusion , it is of finite variation,

SV (@) (n?/N(e)) contains all the small jumps of X that are less than € on [0,t]. We

=1 )

can also rewrite it as

N(t)

TNV w) = rzJx(dx x ds)(w
S0 (€) () / el

1=1

where Jx is a Poisson random measure on [0,7] x R with intensity f;(dz)dt.
We define p;(x) = g;7*(f;j(x)) for j = 1,2. So by Lemma 2.2.5, for j = 1,2,

P]-T/N(a:) converge point-wise to p;(z) as N — oco. By Lemma 2.2.2, p;(z) — 0 as

x — 0 for the case of infinite activity. So we can assign p;(0) = 0 to be a continuous

function at the neighborhood of 0

t/N(LE)

By 2.2.4, we have dFjdx _ dfy( )

point-wise as N — oco. From the composi-

tion of I}, G% and f;, g;, we assert that
dry _, dp;
dx dx

, as N — oco. In addition, from the smoothness assumption of P{ and p;(z) and

|§JE81 | < o0, dlzjéix) and dpéix) is bounded on (0, 1]

Let Sx(w) = max;—q,. N(J]-X(w)), Firstly,

T/N T/N
s (D<) (B oy

Z:1 ..... (07SX
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We have

MZJ'V—>MJ‘: sup {dp]()

M <
SCE(O,S)(] dx }

as N — oo.

We follow the same procedure for (Y;) and we have the following

Ko(t)

Y = > (BN < My wJx (dx x ds)
k=1 |z|<e,s€[0,t]
Le(?)

Vi - Z(Pg/N(JlY)\ < |MR|| yJy (dy x ds)
=1 ly|<e,s€[0,t]

Now, let N — oo, for any fixed w, we have
Ke(t) Le(t)
PN BN — (U6 Vi), as
k=1 =1
where (Uy(€),V*(€)) is a compound Poisson process with characteristic function

Ve(u) = E[e=VSYD7] = cap(t / (e — 1)v(dx))

|zi|>€,j=1,2
where v(dz) = f(fi " (g1(dzy), f5 '(g2(dx)) by Proposition 2.2.7.
We have

U, — Uy(e)] < |MY] v Jx(dz x ds)|

|z| <e,s€[0,¢]

Ve — Ui(e)| < [M7] yJy (dy x ds)]

ly|<e,s€[0,1]

Now, let € — 0,

(). — P(u) = exp( / (<>~ 1)u(dz))

R2

where v(dz) = f(fi” (ga(d). f5 ™ (ga(dr2)) and also | [, oy o Tx(dx x ds)] — 0

almost surely. So, we can see that U — U, V! — V' in distribution by the
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convergence of the characteristic functions, and therefore, (UY,V,N) — (U, V;) in
distribution.

Q.E.D.

Remark: The condition for convergence in finite variation case is only a suffi-
cient condition. One can actually drop the boundedness of the ratio of Levy densities
on the marginals of the joint process versus the pre-specified marginals at the right

limit of 0, and just keep the smoothness assumption.

2.4 Simulation Algorithm For DSPMD

In general, there are two ways to simulate Levy processes. One way is to
simulate the i.i.d increment as random variables on small time intervals. The other
way is to simulate the jumps directly. In one dimensional case, both methods
are well-studied. For multi-dimensional case, a few special multi-dimensional Levy
processes can be simulated in both ways. However, with Levy copula, Tankov
proposed series representation method to simulate correlated jumps, which failed
to control the error from the truncation of the series. Here, DSPMD is a way to
simulate a multi-dimensional Levy process by correlating the increments by a regular
copula on some time grid. The approximation is stable and on the marginals, it is
always an exact simulation regardless of the time step size.

We will take a multi-dimensional Levy process and call it the joint process. It
is required that the increment of the joint processes can be simulated. To extract

and apply its copula on each small time interval, one can transform the increment
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of the marginals of the joint process into uniforms and transform back to the pre-
specified marginal Levy processes. We call it an approximation because the joint
distribution of the increments are not infinitely divisible. However, as stated in the
theorem, the DSPMD converges to a Levy processes as the time step size goes to
zero. Notice that the marginal processes are always Levy processes regardless of the
time step size.

By Theorem 2.3.2 and the discussion of the simplified version, we have the

following simulation algorithm for Levy processes constructed with a regular copula.

Simulation of DSPMD for Levy processes
Let Gz- be the T.I.LP. of the pre-specified marginal Levy process. Let F' be the
T.I.P. of the pre-specified joint process. Let Z(t;) be the DSPMD for i = 1,...n,

with hz = ti+1 - ti

1. Simulate n independent random vector (X, Y/") with F"(X,Y’) where h; =

ti - ti—l-
2. AZ(t) = (G5 (FR (X)) Gy (P ()

3. The discretized trajectory is given by Z(t;) = 22:1 AZ;
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Chapter 3

VG Copula and Stochastic Stressing of Gaussian Copula

In finance, physical dependence structure is of great importance. For example,
one important issue in risk management is to find out the physical dependence
structure and calculate the VaR from the physical measure. This procedure requires
estimation, goodness of fit test,etc. Another example is that when pricing basket
options, one may want to use the physical dependence measure and risk neutral
marginal to price basket options. The same procedure is required. In short, when
one wants to answer such questions as which Levy copula is right for the market, we
offer the access to some type of copula on the random variable level so that one can
conduct statistical inference procedure . This question was unanswered or avoided
in previous literatures regarding Levy copula.

One of the purpose to use a regular copula to couple Levy processes is that
one can easily perform the statistical inference on the joint structure. As shown in
the previous chapter, if we choose the copula coming from some joint pure jump
Levy processes, the limiting DSPMD is again a Levy process. One of the well known
way to construct a joint Levy process is subordination to Brownian motion. In this
class, we can name a few popular models: VG processes, CGMY processes, NIG

processes, etc.

42



3.1 Statistical Property of VG Copula

In the general N-dimensional VG process, it has the following density function

at time ¢:

t/v—1

exp(—g/v)
vt/ T(t/v) d

70 = [ otxio. 27"
It is expressed as a N-D normal density function conditional on the realization of
the gamma time change g. This is a semi-analytical form of the density function.
Like its one dimensional version, it has a closed form in terms of modified Bessel

function of the second kind. Let A = /Y719, B = X'S71X,C =021 X

2

2+ Av
(2m) N 2[5[1/2

D(t/v)v'/veC Bo

F(X) = YNA=H @) Bes(N/2—t /v, \/(B(A+2/v)))

The copula function can be obtained by the following procedure: Let Fj(x,y)
be the C.D.F of two dimensional V.G. processes at time ¢. And C(u,u,) be the
VG copula function.

Clug, uy) = F(Fy' (o), Fy' (uy))

For the purpose of statistical test, we would like to have the density function of the

copula.
O*C  O*F OFy' OFy!
Ou,0u, © 0xz0y Ouy Ou,

0*C OPF 1 1
Ju.ou (Um, Uy) = m‘uzzFx(x),uy:Fy(y)W‘UIZFX(x)W‘uyZFy(y)
2Oty Y o oy

In the above formula, we need the two dimensional density, the one dimensional
density and the inverse of one dimensional C.D.F of VG process at time ¢. Notice
that this formula can be extended very easily to high dimensional case. It is simply
the product of the joint density of VG and its marginal density.
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Two dimensional density can also be obtained, in theory, by doing a two
dimensional fourier transform from the characteristic function. In practice, we found
it’s very computationally intensive. Instead, we will use the bessel function form to
calculate the points on the grid. The range and spacing of the grid depend on the
data set and some accuracy criteria.

From the structure of VG copula, we can see that it is similar to Gaussian
copula in the sense that it is based on a multivariate Gaussian. It also has tail
dependence which comes from the common Gamma process. Higher volatility in the
Gamma process implies higher tail dependence. Parameter 0 dictates the skewness
of the tail dependence. With a positive 6, one can have a higher tail dependence
in the upper co-movement than the down co-movement. Various plot of the density
function of VG copula shows these properties. Please see figures 3.1, 3.2, 3.3, 3.4,

for details.

3.2 Stochastic Stressing of Gaussian Copula

Gaussian Copula is the copula implied by multi-variate Gaussian distribution.
The correlation matrix uniquely determines the copula function. As a simplified
version and for ease of use, the factor form of Gaussian Copula is popular in the
industrial world and among a lot of academic work. It was firstly introduced to
the financial world by David Li in 2000 [12] for modeling default times of a pool of
credit names in CDO pricing.

To construct one factor Gaussian copula, let Z;, Z i = 1,..n be the i.i.d stan-
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Scatter Plot for simulated VG-Copula Seeds (0.2 0.2 0.0035 0.5 0.5 0.8)
1 T T T T

08—

0.7~

Figure 3.1: This figure is the scatter plot for simulated pairs of uniform
random variable from VG copula with parameters 8, = 6, = 0.2, v =
0.0035,01 = 09 = 0.5,p = 0.8. We can see that it is very similar
to Gaussian copula simulated seeds except that there are more points
gathering around the upper and lower corners.
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VG Copula Density Function 2D plot (0 0 0.0035 0.5 0.5 0.7)
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Figure 3.2: A 2D plot of VG Copula Density Function.Parameter value
91 = 92 = 0, VvV = 00035, 01 = 09 = 05,p =0.7.
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VG Copula Density 2D Plot Low Tail (0 0 0.0001 0.5 0.5 0.7)
14

12

10

Figure 3.3: A 2D plot of VG Copula Density Function with Low Tail
Dependence. The shape is very similar to that of Gaussian copula. Pa-
rameter value ¢, =6, =0,v = 0.0001,0; = 09 =0.5,p =0.7.
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VG Copula Density 2D plot Positive Skewed (3 3 0.0035 0.5 0.5 0.7)
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Figure 3.4: A 2D plot of VG Copula Density Function with Positively
Skewed Tail Dependence. The upper corner has more probability mass
than the lower corner when both 6 are positive. Parameter value 6;

02

0.5, p=0.7.

3,v =0.0035, 0y
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dard normal distribution.

Xi=piZ +1\/1 =} Z;

Then , the C.D.F of (®(X;),..., P(X,,)) is the one factor Gaussian Copula, where
®(z) is the standard CDF of Gaussian distribution. In this construction, X,’s are
correlated normal random variables through the common factor Z. Here, conditional
on the common factor Z, all X;’s are independent. Conditional independence allows
tractability in computing joint distribution or other expressions depending on the
joint law. One factor Gaussian Copula can be viewed as a special parameterization
of the correlation matrix in the general Gaussian Copula.

In the VG process, at any finite time, it is a VG distribution. As discussed
previously, VG distribution can be viewed as a Gaussian distribution condition on
a Gamma random variable as its volatility. So the Gamma random variable can
be viewed as a stochastic stressing factor on the Gaussian Copula structure. We
can construct a one factor VG copula as follows: let Z;, Z,7 = 1,..N be the i.i.d
standard normal distribution and g be the Gamma random variable with mean 1

and variance v.

Then , the C.D.F of (F(X4),..., F(X,)) is the one factor VG Copula, where F'(x)
is the CDF of VG distribution with (0, 1, ). Conditional on the common factor Z
and g, all X;’s are independent. We can have the same tractability as in Gaussian

copula. To uncondition, one needs to integral out Z as well as g. We have two

sources of dependence, Z offers the linear correlation, similar to Gaussian copula,
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while g creates tail dependence. The one factor VG copula is uniquely determined
by the correlation parameters p; and v. It is also a special parameterization of
general VG copula.

We generalize the above method as Stochastic Stressing of Gaussian cop-
ula, when ¢ is some heavy tailed positive random variable. Furthermore, when g
is infinitely divisible distribution, the stochastic stressing of Gaussian copula has a
corresponding Levy process in the form of subordination to Brownian motion, which
can serve as the joint process of DSPMD.

To get back to the correlated uniforms, we need the marginal CDF for X;. For
tractability, most Levy process of this type has an explicit form in characteristic
function and Fourier transform for one dimensional case is easy and fast. As for

VG, closed form is also available.

3.3 Empirical Study of VG Copula For Multi-asset Return

The single asset return, i.e. the one dimensional problem, in equity has been
well studied. The analysis of univariate time series data on financial asset shows that
log returns are skewed and have heavy tails when compared with Normal distribu-
tion. Levy processes were introduced to model the single names due to its capability
to model skewness and kurtosis, and for the most part, it still behaves similar to
Brownian Motion. Among them, the Variance Gamma process by Seneta and Madan
[23] successfully explains the physical returns on single name from historical data

and also nicely captures the risk neutral measure from the option surface.
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As for the case of multi-asset, evidence of tail dependence is present in the his-
torical data. However, the dependence structure implied by multivariate Gaussian
has zero tail dependence when p is not zero. From there, various types of copula
structure were investigated, for example, Student’s t copula, Clayton copula, etc.
However, none of them can work with Levy process directly. In the mean time,
multi-variate VG has a limitation on its marginals. As we discussed in the intro-
duction, marginals of multidimensional VG process have similar kurtosis, which is
not suitable to model multi-asset products.

Now, we have presented a new way to use multi-dimensional VG. We extract
its copula structure on small time intervals and we proved that it is one of those
regular copulas that construct infinitely divisible distribution. So it can work with
Levy process. With all those tools, we are ready to answer this question: Is VG
copula a good model for multi-asset returns?

We first model the marginals with VG process according to Madan Carr and

Chang in [24]. The stock price dynamics is given by

S(t) = S(0)exp(mt + X (t; 05, v5.05) + wst),

where the subscript s on the VG parameters indicates that these are the statistical
parameters, ws = 1/v,In(l — 0,5 — 02v,/2) and m is the mean rate of return on
the stock under the statistical probability measure. Next, we are going to estimate
the parameters in the VG component by MLE. The density function can be found
by the closed form or FFT of the characteristic function. We found it fast by doing

FFT. We pre-process the data by take the log return and de-mean it. In [24], it
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indicates that the estimation of the mean of the daily return is not stable. So the
estimated parameters do not include m. The estimated parameters for the marginals
are reported in Table 3.1.

The second step is to transform all the daily log demeaned returns into uniform
random variables. We use the estimated parameters to get the CDF and apply it
J

on the log return. u/ = F(r]

7), where r; is the ith daily log return for name j.

(u},...,ul) are uniformly distributed on the hyper-cube. This step is to remove

77

the information from the marginals. The random vector (ul,...,ul) contains the

dependence information only.

Now we can perform MLE to estimate VG copula using the transformed data
on the hyper-cube. The density function of VG copula is given by the density
function of the joint VG distribution and the inverse of its marginal CDF. There are
four parameters in VG copula to be estimated. That is 6, o, v and p, the correlation
matrix. In simulation experiments, where we perform MLE on simulated data points
from VG copula to back out the parameters, we find that the estimation of 6,0 is
not stable. It could be the reason that the likelihood function is pretty flat on these
dimensions at some reasonable range. We do find that v and p, the correlation
matrix, can be estimated very easily and results are accurate and stable. So, in our
estimation exercise, we fix the value of # to be 0 and value of ¢ to be 0.5. The
estimated parameters for the VG copula are reported in Table 3.2.

We use a Chi-squared test to test goodness-of-fit of VG copula against some of
the most popular copulas available. In higher dimensions, one need a large number

of data points to make the test valid and in most cases, it is not possible. We

02



carry out the test on a pair-wise fashion. We understand that chi-squared test is
an approximate test and the accuracy and stability is subject to the size of the
partition and the number of data points. We divide the unit square into 10x10,
15x15 and 20x20. We toss away the small squares where the expected number of
observation is less 5. Like in the MLE, we did a simulation validation test to verify
the effectiveness of chi-squared test for VG copula. Then, we do the test on the
actual data. The results of the Chi-squared test of VG copula against a basket of
popular copulas are reported in Table 3.3, Table 3.4, Table 3.5, Table3.6, Table 3.7,
Table 3.8. We also show, in the Figure 3.5, Figure 3.6, the plots of the estimated
VG copula against the histogram of the transformed data on the unit square.
Chi-squared test on VG copula for pairs of equity returns show that it is a very
competitive copula compared against Gaussian, Clayton, Frank, Gumble copula.
Firstly, in all cases, Gaussian copula are strongly rejected in the Chi-squared test
of 95% level. It is well known that Gaussian copula doesn’t have tail dependence
when p < 1 and the evidence of tail dependence is present in financial data. Failure
to model the tail dependence leads to the rejection of the model. Clayton and
other Archimedean copula were also rejected. Clayton copula has a strong tail
dependence only in one corner and its ability to model linear correlation, which is
of Gaussian type, is poor. From the histogram of pairs of equity names, a major
part of dependence can be seen around the mean and is similar to that of Gaussian.
Clayton copula has been studied in the context of multi-asset returns. For example,
Madan [13] has studied rotated Clayton with Gaussian in the center. In credit

derivative modeling, Clayton copula and other Archimedean copulas enjoyed some
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success compared to Gaussian, please see [17] [16] for a comprehensive comparative
analysis of various of Copulas in CDO pricing.

The only comparable copula to VG copula is Student’s t copula. This is within
our expectation. Student’s t distribution is from the same family as VG distribution,
which is generalized hyperbolic distribution[3]. Basically, Student’s t as a distribu-
tion can be regarded as a normal random variable divided by a Gamma random
variable, versus the case of VG, where it is a normal random variable multiplied
by a Gamma random variable. From a Levy process perspective, Student’s t is a
Brownian motion subordinated by the inverse Gamma process. VG is a Brownian
motion subordinated by Gamma process. Like VG copula, Student’s t copula can
be regarded as a stochastically stressed Gaussian copula, where the stressing is the
reciprocal of Gamma random variable. Similarly, it has tail dependence in both up-
per and lower corner. The problem with Student’s t in application is that the finite
time distribution of its Levy process is not closed in the parametric family. It means
that if one assumes the daily joint return is Student’s t copula, then at other time
horizon, the dependence structure is not of Student’s t copula type. Nonetheless,
one can get its distribution or copula from its characteristic function, but not trivial
in computation. In VG, in all time horizon, the finite time distribution is closed in
one parametric family, thus in practice it is much easier to use VG than Student’s
t. Here, we will also expect that other types of copula implied by the family of
generalized hyperbolic distribution have similar performance on multi-asset return

modeling, e.g. Normal Inverse Gaussian, etc.
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Fitted VG Copula Density Function 2-D plot MSFT DELL 102/121

Figure 3.5: A 2D plot of VG Copula Density Function estimated using
MLE on pairs of daily return from DELL and MSFT. The original data
on which the MLE was performed is the pairs of daily return, shown
here in the histogram. Estimated Parameters: v and p. yx?*=102. 95%
critical value:121. Data Set: Data Set: 01/02/2001-12/29/2006.
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Fitted VG Copula density 2D plot for IBM INTC Chi2 117/120

Figure 3.6: A 2D plot of VG Copula Density Function estimated using
MLE on pairs of daily return from IBM and INTC. The original data on
which the MLE was performed is the pairs of daily return, shown here
in the histogram. Estimated Parameters: v and p. x2=117. 95% critical
value:120. Data Set: Data Set: 01,/02/2001-12/29/2006.
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Table 3.1: MLE on the Marginal Distribution

Ticker 0 v o
DELL | -0.8439 | 0.0052 | 0.3628
IBM | -0.1606 | 0.0017 | 0.2637
INTC |-0.9817 | 0.0028 | 0.4191
MSFT | -0.9673 | 0.0035 | 0.2914
GS -0.2989 | 0.0024 | 0.2645
JPM | -0.9757 | 0.0152 | 0.1416
LEH | -0.9404 | 0.0028 | 0.3300
MER | -1.0032 | 0.0029 | 0.3142
NASDQ | -1.0102 | 0.0036 | 0.2943
SPX | -0.0361 | 0.0031 | 0.1774

MLE on the marginal distribution for daily return. Data Set:
01/02/2001-12/29/2006

3.4 Pricing Basket Options Using VG Copula

The payoff of european basket options on n names is defined as maxz(S; + Sz +
... +S,, K) at maturity 7', which depends on the joint law of the underlying equity
names. Dependence is a central part of such products. It has been approached
in several ways. Xia [32] used linear combination of independent VG processes to
model multi-asset and price basket options. They also used physical measure which
is obtained by perform an ICA on the historical data. This methodology overcame
the limitation of multi-dimensional VG processes for modeling multi-asset. However,
one can not separate the dependence part from the marginal part easily. To order to
keep the marginal process risk neutral, a measure change procedure was performed

on the marginal processes. Also, it is unclear whether the dependence structure
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Table 3.2: MLE for VG Copula on Pairs

Pair p v Pair p v

DELL VS IBM 0.5323 | 0.0026 | GS VS JPM 0.6690 | 0.0024
DELL VS INTC | 0.6570 | 0.0021 | GS VS LEH 0.8255 | 0.0022
DELL VS MSFT | 0.5659 | 0.0031 | GS VS MER | 0.8096 | 0.0023
IBM VS INTC 0.5945 | 0.0032 | JPM VS LEH | 0.6682 | 0.0027
IBM VS MSFT | 0.6198 | 0.0036 | JPM VS MER | 0.7051 | 0.0026
MSFET VS INTC | 0.6363 | 0.0027 | LEH VS MER | 0.7915 | 0.0019

Estimation for pair-wise daily return with VG Copula. 8 = 0,0 = 0.5

Data Set: 01/02/2001-12/29/2006
implied by linear combination of VG processes is the right structure for multi-asset
returns in the physical measure.

Here, we are going to use the general form of VG copula to price basket options.
Previous sections have shown that VG copula is a good copula for describing the
physical dependence. The basket options are priced by risk neutral marginals as
VG processes and physical dependence modeled by VG copula. From there, we are
going to focus on the impact of tail dependence and skewness from the dependence
and leave the marginals unchanged.

For the marginal dynamics, we model the stock price processes by
S(t) = S(0)exp(rt + X (t;0,v.0) + wt),

where r is the risk-free interest rate. This process is regarded as the risk neutral
process and the parameters are calibrated to the option surface. We follow [7] to
use FFT procedure to obtain a set of out-of-money calls and puts and use some
optimization procedure to minimize the L? norm of the difference between model
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price and market price. Here, we only calibrate to option prices of one maturity.
The maturity is chosen to be the closest date after the maturity of the basket option.
VG distribution fits fairly well on most of the single names. We report the calibrated
parameters on the marginals in Table 3.9

For the dependence, we follow the same procedure as mentioned in the previous
section to get the physical dependence information from the MLE using VG copula
at daily horizon. We report the estimated parameters on a basket of DELL, IBM,
INTC and MSFt in Table 3.10. Then, we can scale the time horizon of the VG
copula to the maturity of the basket option. From there, we use simulation to
price basket options. We report the prices from simulation in the table 3.11 for

out-of-the-money Call options and table 3.12 for out-of-the-money put options.
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Table 3.3: Chi-squared Test on Copulas

DELL VS IBM IBM VS INTC

Copula Y2 Critical Value Y2 Critical Value
VG 136.8 123.2 119.0 123.2
Student’s t 136.9 120.9 128.0 120.9
Gaussian 196.1 119.8 188.7 119.8
Clayton 306.8 122.1 296.1 122.1
Frank 222.1 122.1 214.4 122.1
Gumble 186.7 122.1 167.1 122.1

Comparison of Chi Squared Test on different types of copula function.
All estimation are done by MLE on daily return. Data Set: 01,/02/2001-
12/29/2006

Table 3.4: Chi-squared Test on Copulas

DELL VS INTC IBM VS MSFT

Copula 2 Critical Value 2 Critical Value
VG 115.8 123.2 112.2 123.2
Student’s t 122.6 120.9 117.7 120.9
Gaussian 147.8 115.3 206.3 119.8
Clayton 280.2 122.1 312.4 122.1
Frank 201.6 119.8 229.5 122.1
Gumble 175.0 119.8 185.4 122.1

Comparison of Chi Squared Test on different types of copula function.
All estimation are done by MLE on daily return. Data Set: 01,/02/2001-
12/29/2006
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Table 3.5: Chi-squared Test on Copulas

DELL VS MSFT INTC VS MSFT

Copula X2 Critical Value X2 Critical Value
VG 103.0 123.2 124.2 123.2
Student’s t 116.7 120.9 126.9 120.9
Gaussian 176.9 119.8 183.0 119.8
Clayton 281.5 122.1 294.5 122.1
Frank 219.1 122.1 228.8 119.8
Gumble 169.5 122.1 177.9 119.8

Comparison of Chi Squared Test on different types of copula function.
All estimation are done by MLE on daily return. Data Set: 01,/02/2001-

12/29/2006
Table 3.6: Chi-squared Test on Copulas

GS VS LEH GS VS JPM

Copula X2 Critical Value | 2 | Critical Value
VG 95.2 123.2 135.3 123.2
Student’s t 95.6 122.1 139.3 120.9
Gaussian 335.2 123.2 150.6 115.3
Clayton 368.4 123.2 352.3 122.1
Frank 240.0 123.2 232.7 119.8
Gumble 133.7 123.2 160.5 119.8

Comparison of Chi Squared Test on different types of copula function.
All estimation are done by MLE on daily return. Data Set: 01,/02/2001-

12/29/2006
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Table 3.7: Chi-squared Test on Copulas

GS VS MER LEH VS JPM

Copula X2 Critical Value X2 Critical Value
VG 112.6 123.2 112.3 123.2
Student’s t 112.1 122.1 122.3 122.1
Gaussian 348.1 123.2 244.3 123.2
Clayton 396.5 123.2 337.3 123.2
Frank 243.8 123.2 225.20 123.2
Gumble 152.3 123.2 152.9 123.2

Comparison of Chi Squared Test on different types of copula function.
All estimation are done by MLE on daily return. Data Set: 01,/02/2001-

12/29/2006
Table 3.8: Chi-squared Test on Copulas
LEH VS MER LEH VS MER

Copula 2 Critical Value 2 Critical Value
VG 122.0 123.2 151.1 123.2
Student’s t 126.2 122.1 147.8 122.1
Gaussian 240.9 123.2 333.6 123.2
Clayton 365.0 123.2 369.1 123.2
Frank 260.5 123.2 253.4 123.2
Gumble 155.5 123.2 210.0 123.2

Comparison of Chi Squared Test on different types of copula function.
All estimation are done by MLE on daily return. Data Set: 01,/02/2001-

12/29/2006
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Table 3.9: Calibrated Parameters For Marginal Processes

DELL | IBM INTC | MSFT
0 | -0.5626 | -0.4907 | -0.5766 | -0.3387
o | 0.2752 | 0.0758 | 0.1134 | 0.2783
w| 0.1071 | 0.1175 | 0.0971 | 0.1487

Data date: 12/26/2006 Calls and puts whose strikes are within 40% out
of the money. Time-to-Maturity 207 days.

Table 3.10: Estimated Parameters For VG copula On the Basket

v 0.001148

p DELL | IBM | INTC | MSFT
DELL 1.00 0.63 | 0.73 0.66
IBM 0.63 1.00 | 0.68 0.70
INTC 0.73 0.68 | 1.00 0.71
MSF'T 0.66 0.70 | 0.71 1.00

Data Set Data Set: 01/02/2001-12/29/2006. v comes from the common
Gamma part and rho is the correlation matrix from the Gaussian part.
We fix # =0 0 = 0.5 in the MLE procedure.
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Table 3.11: Basket Call Option Prices By Simulation

Moneyness ATM | 10%0TM | 20%0TM | 30%O0TM | 40%0TM | 50%0TM
v=0.001160 =0 12.5430 | 4.8783 1.2798 0.2070 0.0202 0.0011
v =0.00850 =0 12.5185 4.8335 1.2622 0.2085 0.0242 0.0021
v =0.008560 = —0.1 | 10.3111 | 3.7034 0.8834 0.1224 0.0114 0.0007
v =0.00850 = —0.2 | 8.3309 2.7917 0.6005 0.0783 0.0057 0.0002
Table 3.12: Basket Put Option Prices By Simulation
Moneyness 50%0TM | 40%0TM | 30%O0TM | 20%0TM | 10%O0TM | ATM
v =0.00110 =0 0.0011 0.0182 0.1410 0.7278 2.6982 | 7.3389
v=0.00850 =0 0.0024 0.0183 0.1467 0.7453 2.7233 | 7.3389
v =0.00850 =—0.1 | 0.0042 0.0359 0.2438 1.1214 3.6975 | 5.1316
v=0.008560 =—-0.2 | 0.0100 0.0707 0.3966 1.5936 4.8657 | 3.1513




Table 3.11 and 3.12 shows an array of out-of-the-money calls and puts with
different strikes at one maturity. The first line of each table is the prices with physical
dependence estimated from the historical data. Then we kept correlation matrix
unchanged and vary the value of v and 6 to see the price change and sensitivity.
Notice that we only change the information from the dependence not the marginals.
This copula based pricing technique enables us to separate the dependence modeling
from the marginal modeling. This kind of feature is desired in the practical use. In
many cases, single names are very liquid assets and can be priced or hedged fairly
easily. But the basket options are usually over-the-counter. No matter it is for
hedging, pricing or risk management, it is fairly easy to handle the change coming
from the marginals but difficult to deal with the ones from the dependence. With VG
copula, it is helpful to understand various behaviors of the price dynamics coming
from the dependence, such as linear correlation, tail dependence and skewness.

From the specification of the model, we understand that v controls the level
of tail dependence and € controls the skewness. From the simulated prices, we can
see that the prices of options are not sensitive to the change of v unless it is deep
out of the money, in which case both calls and puts are very sensitive to the change
of v. This again confirmed that v changes the tail behavior of the sum of the
stock price. All prices are sensitive to the skewness in the dependence. Negative
value of 6 implies downside co-movement are more likely to happen than the upside
co-movement. The simulation experiments confirmed this effect. Notice that this

doesn’t change the skewness from the marginals.
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Chapter 4

Simulation By Series Representation

Tankov proposed a simulation algorithm for Levy processes constructed by
Levy copula based on the series representation of Levy processes. As the only
simulation algorithm proposed by Tankov, it has a first component bias effect which
suffers loss of jumps, especially in a nearly independent case. In this chapter, we are
going to first review series representation of Levy process and its one dimensional
simulation algorithm. Then, we are going to review Tankov’s method and explain
the source of the problem. At last, we propose SRLMD, series representation for
Levy process with pre-specified marginals and pre-specified dependence. Examples

of VG copula and a-stable Levy copula will be discussed in detail.

4.1 Simulation of Levy Processes By Series Representation

Any pure jump Levy process can be written as a sum of independent identically
distributed jumps, according to Levy-Ito decomposition. Series representation of
Levy process writes the Levy process as a sum of jumps ordered from large to small.
When Levy process is compound Poisson process, the series is finite. When it is
not finite variation, one needs to introduce a centering term to compensate the
small jumps. For simplicity, we are going to deal with finite variation type, such as

subordinators, and some finite variation a-Stable processes.
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First, we will give the series representation of a subordinator, which serves as

a basic model for other type of Levy processes.

Theorem 4.1.1 Let (Z;);~0 be a subordinator whose Levy measure v(dx) has tail
integral U(z) = [ v(dz). Let T; be a sequence of jumping times of a standard
Poisson process and U; be an independent sequence of independent random variable,
uniformly distributed on [0, 1], Z is representable in law, on the time interval [0, 1],

as

Z, = fj UV ()<,
i=1

The jumps, which are represented as U9 (I;), are ordered from large to small.
In simulation, when there are infinitely many jumps, one needs to truncate the
infinite series. The order of the jumps in this series makes sure that the truncated
tails only contains jumps smaller than the truncation level. With this property,
one can carry out the same procedure as compound Poisson approximation of Levy
process, where small jumps are replaced by Brownian motion. What one should not
be confused with is that the actual timing of the jump is irrelevant to the order in
the series. The timing of the jumps are uniformly distribution on the time interval
[0, 1].

In the actual implementation, the series must be truncated. The right thing to
do is not to keep a fixed number of terms for each simulation path, but to fix some 7
and keep a random number N(7) of terms where N(7) = inf{i : I'; > 7}. One can
see that N(7) follows a Poisson distribution. It counts the number of jumps on [0, 1]

whose size is greater than U(~Y (7). In one dimensional case, there is no fundamental
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difference from simulating the compound Poisson process that approximates the
Levy process. Obviously, compound Poisson process can be simulated exactly in
series representation.

To better understand series representation, one can think of the example of
compound Poisson. Here I'; is the arrival time of a Poisson process. It is a basic
result that the arrival time of a unit rate Poisson process on [0, 7] is the order
statistic of uniform random variables on [0, 7]. Here U~Y(T;) represents the jump
size. Recall the inverse CDF approach to simulate a random variable. We call I';s
the Gamma seeds which are just uniform random variables except that they are
ordered. In this way, U1 (T;) can be viewed as the order statistics of the jumps
sizes, since T.I.L of subordinators are monotonically decreasing.

To simulate a subordinator on [0, 7], one can follow the algorithm given below:
Set i =0

While I'; < 7
l.i=i+1
2. Il =T}, + E;, where E; is exp(1/T)
3. Generate V; from Uniform [0, T

The simulated path is given by

Ztk = Z Ui(_l) (Pf)]-Vi<t> k= ]-7 2

i=1

where U; is the T.I.P of the Levy process.
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Rosinski [27] showed a general series representation theorem for multi-dimensional
Levy process. The series representation for Brownian motion subordinated by a sub-
ordinator can be obtained by applying Rosinski’s result. More details can be found

in [30].

Theorem 4.1.2 Series representation for subordinated Brownian motion. Let (St)
be a subordinator without drift and with continuous Levy measure v and let X, =
W (S;), where W is a d-dimensional Brownian motion, be a subordinated Levy pro-
cess on R®. The characteristic triplet of (X;) is (0,0, vx) withvx (A) = [J° ™= (A)v(ds)
where (1 1s the probability measure of a Gaussian random variable with mean 0 and
variance sY, where Y is the correlation matriz. The tail integral of v is given by
U(z) = [Fv(dt). Let Vi to be a series of independent standard normal random
vectors. Let I'; be a sequence of jumping times of a standard Poisson process and U;

be an independent sequence of independent random wvariable, uniformly distributed

on [0,1]. we have the series representation for X,

Xe =) VU T)Vily,<
i=1

For one dimensional case with Brownian motions with drift x4 and volatility o,

we have
X, =Y (VU T)oVi+ U (Tl
i=1

We conclude that the jumps from X; can be represented as (\/UT(FZ')UVZ' +
U=YT;)u). On the marginals, jumps are not ordered from the large to small, but
VU-I(T;) are still ordered from large to small. In the case of VG, U~!(z) is the
inverse of tail integral of the Gamma Levy measure, which exponentially decays. In
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simulation, there is some nonzero probability of loss of jumps that are larger than
the cutoff value. With the exponential decay of jumps from the subordinator, one
can easily reduce the probability of loss of jumps by simulating just a few more
terms. In other words, the probability of loss beyond the truncation level can be
controlled. Future work in this direction involves the study of the distributional

property or quantitative property of the error.

4.2 Series Representation For Levy Copula And First Component
Bias

In the series representation, in order to correlate the jump event and jump
sizes, one should start with constructing correlated I'; from different components
directly. Tankov showed the following result to generate correlated I'; sequence. For

more details, see [6] Theorem 5.5 and [20].

Theorem 4.2.1 Let (X},...,X") be a N-dimensional Levy process with positive
Jumps, having marginal T.I.L. U; for j = 1,..,N and Levy copula F', Let AX]} be

the sizes of jumps of the ith components at time t. Define

0

Fxl(l'l, ...,1’2) = 8—;51F(I1’I2’ ...,LE‘N)

Then, if Uy has a non-zero density at x, Fy,(,) is the distribution function of random

vector (U;(AX})); conditionally on AX}! =z

FUl(m)(xla ...,1'2) = P(UQ(AXE) S T2y .uny UN(AXtN) S [L’N|AXt = [L’)
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So given the T'}, the conditional distribution of I'?,...,T'Y is Fy, (71, Ta, ..., Tx).
So from there, Tankov proposed the following procedure: I'} are generated as unit
rate Poisson jump times as usual. Then Fg for j = 2,..., N are generated from the
conditional joint distribution function given the I'}. In a two dimensional case, I'?
can be simulated using inverse CDF method directly.

The above idea is summarized in the follow theorem by Tankov.

Theorem 4.2.2 Let v be the Levy measure on R® for Levy processes Z,, with
marginal tail integrals Ug, k = 1,...,d and Levy copula F(x1,...,xq). Let {V;} be
a sequence of independent random variables, uniformly distributed on [0, 1]. Intro-

duce d random sequence {T'}},....{T'¢}, independent from {V;}.
e {T'!} is the jump times of a Poisson process at unit rate.

e Conditionally on T}, the random vector (I}, ..., T¢) is independent from T%

with j # k and all k and is distributed with C%(xl, iy Tg)

Then, in law, on time interval [0, 1]
(ZH) =Y UV Ty k=1,...d
i=1

This method is very general. It works for all types of Levy copula functions.
However, it does have some issues in the actual implementation. Let’s take a two
dimensional case as an example. In all simulation algorithms, the series must be
truncated as described in the first section. The first component in this algorithm is
just like any other one-dimensional series representation. I'} are strictly increasing

and the jump sizes are strictly decreasing. When the tail of the series is truncated,
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only small jumps are tossed away and the error are well controlled. Especially, if it
is compound Poisson, the simulation is exact. For the second component, however,
['? are not strictly increasing at all, hence the jumps sizes in the series are NOT
ordered from large to small. What’s worse is that if it is nearly independent, for
example @ in Clayton Levy copula is close to 0, small values of I'} corresponds
to large values of I'?. If translated in terms of jump sizes, large jumps on first
component correspond to small jumps on the second components. In such a case,
we know that the large jumps are all kept in the tail of the series rather than the
first N(7) terms. Truncation of the series will lead to big loss of jump mass. This
is true even for simulating compound Poisson processes. We call it first component
bias, because only the first component is simulated well while other components
suffer from uncontrolled loss of jump mass.

In addition to the first component bias, there are some other issues. For high
dimensional case, the random vector (I'?, ..., I'¢) is hard to sample. The general way
would be recursively using the conditional probability argument, which is computa-
tionally intensive. One would hope to find some factor structure in the conditional
joint distribution function. Efforts have been made in this direction for some special
case such as Clayton Levy copula. In [10], a transformation is found to broil down
the conditional distribution function from Clayton levy copula to a regular Clayton
copula, in which case an one factor structure was discovered. However, this won’t
change the first component bias effect

In the next section, we propose our method and introduce two examples.
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4.3 SRLMD

In order to avoid first component bias effect and the high-dimensional difficulty,
we introduce SRLMD, series representation of Levy processes with pre-specified
marginals and pre-specified dependence. Instead of working with the explicit form
of Levy copula function. We start out with the series representation of some multi-
dimensional Levy process, where the pre-specified dependence is defined. Examples
of such series representation include subordinated Brownian motion and a-stable
Levy process, which will be covered in detail in the later sections. Then we perform
a transformation on the jump sizes by applying its marginal T.I.L to get correlated
Gamma Seeds in the intensity space. At last, we use the correlated Gamma Seeds
to generate the correlated jumps by the inverse T.I.P of the pre-specified marginals.
The validity of such method is explained by the Sklar’s Theorem for Levy copula and
Rosinski’s Theorem. We can see that this scheme is in spirit the same as DSPMD
except that this is done on the infinitesimal level and the resulting process is an
exact Levy process not an approximation. We summarize the above idea in the

following theorem.

Theorem 4.3.1 The SRLMD for Wy on R? x [0, 1] with pre-specified marginal with
finite variation pure jump T.I.L Gx and Gy and pre-specified dependence implied
by Z; is given by

WX =" G Hx ()
=1

W)Y =" Gy (Hy (J) <
i=1
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where Zy is a two-dimensional finite variation pure jump Levy processes with joint
T.I.L H(z,y) and marginal T.I.L Hx(x), Hy (y), and its jumps on [0, 1] occurred at

U; can be represented as (JX) and (JY).

Idea of the proof:
By definition, the T.LL of W, can be written as F(z,y) = H(Hy' (Gx(x)), Hy (Gy (y))).
This is a direct result from Sklar’s Theorem. From there, Rosinski’s result can be
applied to obtain the series representation of W;, and convergence is guaranteed by

Rosinski’s Theorem

Q.E.D

In the infinite variation case, the series representation introduces a centering
term. We refer to [27] for more details.

With the above theorem, the simulation algorithm for subordinated Brownian
motion Levy copula is readily available.

Simulation of jumps from W; on [0, 1], a finite variation pure jump Levy process
with joint T.LL F(z,y) = H(Hy' (Gx(x)), Hy'(Gy(y))), where H(z,y) is the joint
T.I.L of a Brownian motion subordinated by a subordinator with T.I.LL U. Gx and
Gy are the marginal T.I.L. of W}

While I'; < 7
l.i=i+1
2. Il =T}, + E;, where E; is exp(1/T)

3. Generate (V;X,V.Y') from multivariate Normal distribution with zero mean and
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covariance matrix >,

4. Generate U; ~ Uniform|0,T].
WX =3 G HEx (VU )V ) o<
=1
WY =" G (Hy (VU T) V) y,<
=1

This algorithm can be easily extended to higher dimensional case. When the
subordinator is a Gamma process, we get the series representation for VG Levy
copula.

In this case, we have already avoided the problem of high dimensionality dif-
ficulty in Tankov’s algorithm. Also, we don’t have first component bias because
this algorithm treat every component equally. However, this is not the best way to
show this property, since subordinated Brownian motion Levy copula do not have a
complete independence case. Even if the the Brownian motion part is independent,
the resulting Levy processes is still correlated through the common subordinator.
Next, we are going to construct a special case of a-stable Levy copula such that it

include complete dependence and complete independence.

4.4 «-stable Levy Copula and SRLMD

In this section, we are going to introduce a special case of a-Stable Levy process
which can be served as the joint process embodying the pre-specified dependence for
SRLMD. It has the advantage over Tankov’s Levy copula function in the following

aspects: First, it is naturally high dimensional. Second, the structure is so general
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that it allows from complete dependence to complete independence and can have
any regular copula behavior built in. Thirdly, and most importantly, in any case,
the truncation error can be controlled and simulation efficiency does not deterio-
rate in nearly independence case. For compound Poisson processes as pre-specified

marginals, zero truncation error can be attained.

4.4.1 Construction of a-Stable Levy Process And Its Levy Copula

Recall that the Levy measure of a-stable process has the following decom-
position form. For any B C RY, the Levy measure of a-stable v can be written

as

vB) = [ ) [ a5

where \ is the probability measure in B¢ and o € (0, 2)
For o € (1,2), a-stable is not finite variation if the probability measure in R?
is asymmetric around the origin. For simplicity, we limit ourselves to the case of

finite variation and let o € (0, 1). We have the following result by LePage, see [4]:

Theorem 4.4.1 Let X; be a sequence of independent and identically distributed
random variables on R? with the distribution \. Let T'; be a sequence of arrival times
of a Poisson process of unit rate. V; be an independence sequence of independent
random wvariables, uniformly distributed on the interval [0,1]. Then the «-stable
process admits the following series representation, with a € (0,1):

irfl/aXilvi«

i=1
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We firstly interpret the structure of the series representation of a-stable. The
1th term in the series is the jump size, I'; Y ¢, from an one dimensional a-stable Levy
process, which we call the Central Process, multiplied by a random vector X; € R¢
from probability measure A\. Given a jump event i, i.e. the ith term in the series,
the components of X; projects the jump size on the central process to the jumps
of the marginal processes by scaling. One can suppress the jump on a particular
marginal j by setting the value of Xij close to 0. Likewise, one can enforce a jump
on a marginal j by setting the value of Xij away from 0. Also, the correlation on the
jumps can be induced by not only the central process but also the regular copula
implied by random vector Xj.

We specify the distribution of {X;} in the following way. j follows a discrete
uniform distribution of [1,2,...,d].Let X; be iid random vector distributed as B;
random vector, where each component is a Z distribution random variable correlated
by a regualr copula Y, except for the jth component being 1. Z is some distribution
on [—1, 1] for general case and |0, 1] for positive jumps only. In such a construction,
each realization of X, a randomly selected component j is 1. All other components
follows some joint distribution with marginal distribution Z and copula Y. For
simplicity, we only discuss the case of pure positive jump case. The general case can
be followed similarly.

So the marginal p.d.f of X;’s component is given by

d—1
d

F@) = 26,(2) +

y fz(z)

where fz(z) is the p.d.f of Z. Let v be the Levy measure of the central process and
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J be the jumps from the central process. The marginal T.I.P of the a-stable process
is given by

Ulk)=v(XJ>zx)=v(J>z/X)= //Xu(dz)

So, the Levy measure conditioning on X scaling given by
v(de|X) =1/Xv(z/X)dz
If X follows distribution P(z), then the marginal Levy measure is given by
(@) = [ rld)dP(x)
vx(de) = | <v(d~

For v(dz) = -25dz, a € (0,1), we have

A (7
ox = 2 / XdP(z)

which is still a a-stable Levy measure with a different constant. In our case, X has

a p.d.f of

d —
d

F(@) = So(@) + =L paw)

d

so the Levy density of the marginal of X is given by

A 1 d-1
VX(af):W(aﬂL p Ez[X?])

The T.I.L is given by

A1 d-1
U0 =gt 3

Ez[X?])

In order to construct SRLMR, we are ready to recover the correlated Gamma
seeds from the correlated jumps from a-stable process.

. A 1 d-1
Fi:UX[(ﬁ)l/ Xi] =T:X; (3+ p

Ez[X?])
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4.4.2 Error Bound For Truncated Series Representation

The most important advantage of using this method is that we can workout
an explicit error bound for the truncated series representation which Tankov failed
to do in his method. We overcome this problem by doing two things right. First, for
each jump event, we randomly sample a component from the random vector X and
assign 1. Second, we choose our distribution Z to be bounded on finite interval. The
reason for this is due to the fact that if the scaling factor X is bounded by 1, jump
size can be only scaled down, not scaled up. After truncation on the central process.
jumps from the truncated tail are no larger than the specified level. In other words,
jumps of sizes over a certain level are guaranteed to be in the first N(7) terms,
although the jump sizes in general are not ordered. For a certain truncation level on
the jump size of the processes being simulated, we find the corresponding truncation
level for the central process. If compound Poisson process are correlated using this
Levy copula, the series representation can actually be exact. We consider the series
representation for a- process and number of terms N(7) = max{i : I'; < 7}. For

i > N(7),ie I'; > 7, we have
U_l(Fi) < U_I(T)

Random vector X ~ B; is bounded from above by 1 uniformly. So, component-wise,

we have
U)X <U Y )X <U (1)

For the Gamma seeds vector I'}, we have component-wise

I = Ux (U (D)X] > Ux (07() = 75+ T By (X))
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Let X be the intensity of the compound Poisson process as the pre-specified marginal
process. If 7‘(% + d%‘llEZ[Xa]) > A, I'f will be mapped to no jumps. So for 7 >
M (L + ELEZ[X°]) > A, the simulation is exact for compound Poisson process.
For infinite activity case, the truncation on the series will be exact to the level of

compound Poisson process approximation.

4.4.3 Dependence and Independence in a-stable Levy copula and
Efficiency

The stable index «, the mean and variance of distribution Z and the copula
parameters control the dependence level of the Levy copula.

The nearly independence case is treated as a limiting scenario of complete
independence. For each jump event ¢, the jump size of the randomly sampled com-
ponent ¢ is not altered while other components are suppressed to be small jumps.
In order to realize that, the mean of distribution Z should be set to be low. The
variance is set to control the dispersion. The dependence inside random vector X
should be low as well. If the marginals are compound poisson process, jumps on the
a- stable process are mapped to no jumps if the jumps size is below some threshold.

The nearly dependence case is treated as a limiting scenario of complete de-
pendence. In such a case, at one jump event, jumps across the components are
almost identical. The mean of distribution of Z should be close to 1 and the depen-
dence inside random vector X; should be high. In this way, the randomly picked

component has almost the same scaling factor as all other components.

80



Of course, for exactly independence and complete dependence, we can just
assign 0 and 1 for all other components, instead of sampling from Z distribution.
However, such cases are easy without series representations, too.

Put together the understanding from the error bound, we make a remark on
the reason why we choose to always first pick a random component of X; to be 1.
Generally speaking, for each jump event, we want to make sure there is at least one
component jumping if it jumps at all. For nearly independence case, the mean is
set to be very close to 0, implying E[X ] being close to 0. The truncation level for
A is given by

d—1

r =g+ 2 EX)

which is bounded by d x A\. Without the special random picking procedure, the error
bound is

7= \/E[X°]

which goes to infinity in the nearly independence case. So by picking the random

component of X; to be 1, one can greatly improve the simulation efficiency.

4.4.4 Examples of Series representation For a-Stable Levy Copula

Here we illustrate a concrete example of a-stable Levy copula and its series
representation. We choose Z to be Kumaraswamy distribution on [0,1]. It is as
versatile as Beta distribution and it has an analytical inverse CDF function which

makes the use of the copula easy!'. The p.d.f of Kumaraswamy distribution is given

I This is exactly the reason why we didn’t choose Beta distribution with which people are more

familiar. Beta distribution does not have an analytical form of inverse CDF
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f(z;a,b) = abx® (1 — 2)°*

where a > 0,b > 0, and it admits a simple form of CDF
F(z;a,b) =1 — (1 —z%)°

This made easy the inverse transform method to simulate Kumaraswamy random
variables. In order to correlate these Kumaraswamy random variables, we will first
generate d-dimensional uniform random vectors using some copula function. The

moments of Kumaraswamy distribution are given by

(L +n/a)T(b)
my, = TUtbtnja bBeta(l +n/a,b)

So the marginal T.I.LL of the a-stable Levy process is given by

Uy () = 2

axr®

1+d—1
d d

M)

And the implied correlated Gamma seeds are given by

. 1 d-1
Fi = FZXZ (g + Tma)

Now, we are ready to give the simulation algorithm.
Main routine:

While I'; < 7
l.i=1+1
2. T} =T} | + E;, where E; is exp(1/T)

3. Generate j ~ discrete uniform [1,2, ..., d|

82



4. Generated d-dimensional random vector X;(0) ~ K;(6), where the j-th compo-

nent is 1, and all other components are identically distributed as Kumaraswamy(a,b)

and they are correlated by Copula(6) with parameter 6. See sub-routine for de-

tails. @ and b are given by the system of equiation my(a,b) = p, my—m? = o>

5. The ith Gamma seeds vector is given by

1 d-1
T =TX,(5 + ——ma
7 7 (d_l_ d m)

6. Generate V; ~ Uniform[0,T], the jump time for the ith term in the series/

1th jump event.

END

The truncation for compound Poisson process with intensity A as marginal

processes is given by 7 = A/(5 + df;lma)

Sub-routine for generate correlated Kumaraswamy random vectors using one

factor Marshal-Olkin Copula
1. Generate V ~ exp(a), and V ~ exp(l —a),i =1, ...,d

2. Generate the correlation uniforms by U = exp(—min(V, (V)

3. Xi = (1-(1-UY") x1/a, fori = 1,...,d gives the correlated Kumaraswamy

random variables with Marshall-Olkin copula

END
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To simulate correlated Kumaraswamy random vectors using regular copula is
not our focus in this paper as it is a very standard application of Sklar’s theorem and
regular copula. The above algorithm is for illustrative purpose. A brief description
can be found in [16]

In conclusion, this algorithm has a wide range of application. It is suitable for
modeling CDO pricing. CDO, collateralized debt obligation, is a tranched pool of
credit names as underlying. It is a high-dimensional problem in natural and requires
dynamic modeling on the marginals, as well as the dependence. The dependence
implied from the traded tranches shows complicated skewness and heavy tail behav-
ior. a-stable Levy copula, flexibility and versatility show great potential to model

this kind of products.
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