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ABSTRACT

A model js developed and analyzed for the study of interference on satel-
lite channels. It is utilized in performance evaluation of RS-BCH concatenated
codes and BCH single-stage codes on a satellite channel corrupted by co-channel
interference. A coherent phase-shift keyed (CPSK) system is assumed. Results
obtained utilize earlier work on performance analysis of an m-phase CPSK system

in the presence of random Gaussian noise and non-Gaussian interference.
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Earlier work on performance evaluation of concatenated codes on an equierror
channel is also utilized. Our model incorporates features that account for
the burst behavior of the interference sources. Results show that the use of
RS-BCH concatenated codes provide significant performance improvement over the
case of no coding as well as over that of single-stage BCH codes. In addition,
the use of single-stage BCH codes is shown to provide performance improvement

over no coding.

SECTION 1

1. INTRODUCTION

The ever increasing demand for satellite communications capacity is
motivating the search for techniques to enhance the utilization efficiency of
the preferred geostationary orbit. Since this orbit is a naturally fixed
-resource, the search clearly points to the need for reducing intersatellite
spacing which manifests intersatellite interference such as co-channel and
adjacent channel interference. The problem of modeling non-Gaussian interfer-
ence on a satellite channel or at an earth station has been considered in
previous works [1-6]. Prabhu analyzed the performance of an m-phase CPSK
system in the presence of additive random Gaussian noise and co-channel inter-
ference [1]. Goldman determined the statistical properties of an nadimensiéna]
Gaussian random vector plus the sum of M vectors having random amplitudes and
independent, arbitrary orientations in n-dimensional space. Goldman's results

are directly applicable to CPSK systems operating in the presence of M
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co-channel interferers modeled by a sum of constant amplitude sinusoids with
independent, uniformly distributed phase angles [2]. The results of Prabhu

and Goldman are useful because they permit»performance evaluation of any given
CPSK system when the received signal is corrupted by both interference and
random Gaussian noise. Those results are limited, however, in that they did
not address the question of performance evaluation under system enhancements,
which may be required or preferred, in order to achieve reliable point-to-point
communications when interference is present. For example, error-control codes
provide an attractive and effective alternative to high signal power, which is

expensive and not always available.

There are two fundamentally different types of error-control codes:
algebraic block codes, and probabilistic tree codes. Of the many classes of
these codes, single-stage BCH block codes and RS-BCH concatenated codes are
considered here. Single-stage BCH codes are selected for two reasons. First,
a simply impiemented decoding algorithm for BCH codes was devised by Peterson
[7] and later made more powerful by Berlekamp [8] and Massey [9]. Second, BCH
codes provide satisfactory, although not necessarily optimal, inner codes for
concatenated codes. The outer codes of the concatenated codes we investigate
are Reed-Solomon (RS) codes which are non-binary BCH codes. RS-BCH concat-
enated codes are selected, rather than RS-tree concatenated codes, because

performance analysis is simpler. In fact, we can utilize directly Forney's
model for performance evaluation of concatenated codes on an equierver
channel [10]. Forney originated the idea of concatenated coding in which the
encoder consists of two encoders placed back-to-back, and the decoder consists

of two decoders placed back-to-back. This idea permits the construction of very
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long codes for which the probability of error on a memoryless channel decreases

exponentially, while decoder complexity increases only as a small power of the

block length.

This paper combines the approaches of Prabhu and Forney by addressing the
application of RS-BCH concatenated codes and BCH single-stage codes in a binary
CPSK system to combat co-channel interference plus additive random Gaussian
noise on a satellite channel. The results obtained here provide simple expres-
sions with which to evaluate the performance of the selected codes in the given
system. They also permit the incorporation of burst interference behavior in

the model following the approach developed in [11 - 14].

This paper is organized as follows:

In Section 2, the model for co-channel interference is
presented. Section 2 also provides the performance analysis for
single-stage BCH codes and RS-BCH concatenated codes on a satellite
channel with co-channel interference. Both fixed and random inter-
ference are considered. In Section 3, performance results for no
coding, single-stage BCH coding, and RS~BCH concatenated coding are
presented and compared. In Section 4, conclusions are drawn and

future applications of the model are suggested.

”»
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SECTION 2

2. MODEL

CPSK is an efficient technique for trading bandwidth for signal-to-noise
ratio (SNR) and is, therefore, well suited for satellite communications systems.
The performance of CPSK systems traditionally has been investigated for the
additive random Gaussian noise channel. Here we consider the use of binary CPSK

modulation on a satellite channel that is corrupted by both additive random

Gaussian noise and interference. The interference imparts memory to the channel.

We assume that the memory has duration no longer than one symbol, where a symbol
is a suitably long string of bits, so that interference results in a burst of
bit errors no longer than one symbol. Coding techniques can then be utilized

to improve system performance.

Assume also that the interference is due to M co-channel interferers. The
total interference from the co-channel interfering signals is modeled by a sum
of constant amplitude sinusoids with independent, uniformly distributed phase
angles [2]. Let K be the total interference level defined as the sum of the

powers of the individual interferers, i.e.,

,*

M
Cath @

where Ii = power in the ith co-channel interfering signal, and M = total number

of co-channel interferers.
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M will be considered fixed initially. Thus the total interference level will
be constant at a value K during a symbol. For such a constant interference
level, we will be able to calculate the probability of decoding error. Then
by considering the statistics according to which the interferers are trans-
mitting or are silent (burstiness), we can obtain average unconditional error

probability performance.

Prabhu provides a theoretical analysis of the performance of an m-phase
CPSK system operating in the presence of random Gaussian noise and co-channel
interference [1]. In his analysis, a symbol is defined as a bit. Then the
channel bit error rate for a fixed level of interference K is computed at
specific values of SNR. Results from Prabhu for a binary CPSK system abpear
in Figure 1. SNR is defined as the signal power per bit per noise spectral
density. In Section 3, we show the relationship between this parameter and

the more traditional Eb/No, the energy bit per noise spectral density.

The expression from which these results were obtained are rather complex
and their subsequent use in the error control code analysis would lead to
unnecessary mathematical complication. To avoid this, we choose instead to

curve-fit these results by the use of a much simpler analytical expression.

Define,
Pe = Pr [bit error due to interference and noise], ~
S = received signal power,
02 =  ‘noise power,
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—z =  signal-to-noise ratio (SNR),

=
]

code rate for single-stage BCH code or inner code rate for

RS-BCH concatenated code,

K = total interference level as defined in expression (1),
—%— = signal-to-interference ratio (SIR).

_nC
Let, pe = 10710 , (2)
where, C=(C; +C; [02/(RS) + K/ST71)

We use mathematical expression (2) for Pe and curve-fit Prabhu's results to
it to obtain the values of C; and C;. Expression (2) was selected over num-
erous other attempts because it provides less curve-fitting error than do the
other expressions tried. Furthermore, it contains the critical channel

parameters.

The parameters C, and C, are constants that depend on the value of S/K.
The values of C; and C, for the six practically representative values of S/K
in Figure 1 appear in Table 1. By changing the values of C; and C, according
to this table, curve-fitting error remains negligible. Figures 2 and 3 provide
curves for S/K versus C; and S/K versus Cz, respectively, from which C; and C;

can be determined for values of S/K not specified in Figure 1.
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The parameter R in expression (2) equals 1.0 for curve-fitting since
Prabhu's results hold only for the uncoded case. R affects SNR but not SIR
because R is a normalization factor which depends on the choice of codes .

investigated. These codes will be discussed in detail in Section 3.

We now assume hard decisions are made and that the channel is equierror
with Pe as in expression (1). Thus the modulator, demodulator, and detector
are considered to be part of a discrete memoryless channel with q inputs, g

outputs, and average bit probability Pe in one use of the channel.

Consider the use of binary signaling and the use of a single-stage BCH
block code to improve system performance. Assume that the code is primitive,
the decoder does errors-only (as opposed to errors-erasures) decoding, and the
correction process does not add errors when more than the correctable number of

errors per code word is present.

Earlier we assumed that the channel memory has duration no longer than
a symbol. For a single-stage BCH code we can let a symbol be a bit. Then the
bit error probability due to co-channel interference and noise, Pe, can be
utilized along with the equierror channel model in order to compute the prob-
ability of decoder error with fixed interference for single-stage BCH codes.
Define,

P(IE/K) = Pr [code word error at the output of the decoder given interfer-

ence level K].
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Then,

L N-L
Pr(IE/K) = 2 ('ﬁ) (Pe). (1-Pe) , 3)
L=T+1

where:

Pe is given by expression (2),
N = total number of bits in a code word, and

T = bit error correction capability of code.

The channel assumptions also permit the use of Forney's results for con-
catenated codes on an equierror channel [10]. Assume that we use a concatenated
code in which the inner code is a primitive BCH block code and the outer code
is an RS block code. Let the number of bits per inner code word equal the
number of bits per outer code symbol. Assume that both inner and outer
decoders do errors-only (as opposed to errors-erasures) decoding. Also assume
that neither the error correction process of the outer nor that of the inner
decoder adds errors when more than the correctable number of errors per
respective code word is present. For a single-stage code, a bit was considered
to be a symbol or a character. A bit takes on an identity only when we bring
the outer decoder into the picture. Now a symbol is an inner code word.
Therefore, a symbol error refers to the case where an inner code word, i.e., a
sequence of bits, is in error. This definition of symbol error would. provide
pessimistic results when considering only the inner decoder or a single-stage
decoder. To compute probability of decoder error with fixed interference for

RS-BCH concatenated codes, define,

10
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Pr(OE/K) = Pr [outer code word error at the output of the outer decoder

given interference level K].

Then,

n . .
PrOE/K) = 2 () [PrIE/KT [1-Pr(IE/OI™ 4
i=t+

where,

Pr(IE/K) = Pr [inner code word error at the output of the inner decoder

given interference level K] as given by expression (3),

n = total number of symbols in an outer code word,
and
t = symbol error correction capability of outer code.

Thus far we have considered the case of fixed interference level K. The
approach to modeling random, i.e., bursty, interference and to applying error-
control coding to correct errors due to such interference was inspired by
recent work done by Pursley et. al. [11, 12] and Ephremides et. al. [13, 14].
For the case of random interference, the error statistics vary from symbol to
symbol, although they remain constant for the duration of a particular symbol.
The error statistics vary because a different number of interferers is present
per inner code word for concatenated codes or per bit for single-stage codes.
To account for these differences, we average the error statistics by weighting
the conditional probability of decoding error. The probability of decoding

error with random interference for single-stage BCH codes is computed in this

11
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way by combining Pr[IE/K] from expression (3) with the probability distribution

of the level of interference, Pr(K). Define,

Pr(IE) = Pr [code word error at the output of the decoder], i.e., the

unconditional, average probability of decoding error.

Pr(IE) = ﬁ Pr(K) Pr(IE/K). (5)

The probability of decoding error with RS-BCH concatenated coding and

random interference is computed similarly. Define,

Pr(OE) = Pr [outer code word error at the output of the outer decbder]

]

ﬁ Pr(K) Pr(OE/K), (6)

where Pr(0E/K) is given by expression (4), and Pr(K) is defined as the prob-
ability distribution of the level of interference, K. Although Pr(K) can be
any probability distribution, we assume the uniform distribution for per-
formance evaluation. This choice ideally must be motivated by the burstiness
profile of the interfering users, including any multiple access protocol con-

straints that may be present.

s
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SECTION 3

3. PERFORMANCE EVALUATION

Performance results are computed for the single-stage BCH and RS-BCH
concatenated codes appearing in Table 2. These codes are considered to be the
best errors-only, single-stage BCH codes and RS-BCH concatenated codes because
they provide a given performance with less error correction capability and a
comparatively shorter block length than other codes with the same code rate in
their respective classes [10]. Each of these codes provides probability of
decoder error with no interference, i.e., Gaussian noise only, equal to
approximately 1076 when the channel bit error probability equals 1072. This
is the reason that R is a normalization parameter that affects only S/6? in the

mode)l of interference.

The parameter S/o2? in expression (2) is defined as the signal power per
bit per noise spectral density. If we consider the case of no coding, S/0? is
the signal power per information bit per noise spectral density, and the
relationship between S/0% and Eb/No can be derived. Eb/No is defined as the

energy per information bit per noise spectral density. For the uncoded case,

E (Ac2/2) 1 .. -
b - ’e (7)
R~ WTEr |

13
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TABLE III.1 “BEST" SINGLE STAGE BCH AND RS-BCH
CONCATENATED CODES

CODE RATE RS-BCH CONCATENATED CODE BCH CODE

(n,k), (N,K) * (N,K)

1.0 No Coding No Coding

0.3 (9,5), (7,4) (30,10)

0.4 (28,24), (15,7) (94,38)

0.5 (31,23), (31,21) (112,56)

0.6 (63,53), (63,45) (230,138)

0.7 (123,115), (255,191) (784,549)

0.75 (286,272), (511,403) (1672,1254)

*A specific RS-BCH concatenated code is identified as an
"(n,k), (N,K) code" where the first code is the outer
RS code, and the following code is the inner BCH code.
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where,

Ac2/2 = carrier power = § ,

total noise power entering the demodulator = o2,

ot
]

bit duration,

BW = bandwidth.

Assume that BW =

A=

Then,

Eb/N0 = §/o? (8)

For the coded case, R(5/02) is the signal power per transmitted bit per noise
spectral density which is present at the input to the decoder. Likewise,
R(Eb/No) is the energy per transmitted bit per noise spectral density, which is

present at the input to the decoder, and the following relationship holds:

R(E,/N,) = R (5/02). (9)

Note that when no coding is present, R = 1.0. For R < 1.0, S/02 > R (5/0%2)
'because, for the same signal power, an increased number of bits mustsbe trans-
mitted for the coded case. At the output of the decoder, only information bits
are present, and S/02 is the correct parameter to account for the signal power
per bit per noise spectral density. In this paper we present computed results

for probability of error at the output of the decoder versus S/o2.

14
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Throughout this section, specific codes are identified by code rate and
class. We begin performance evaluation by computing the probability of decoder
error with fixed interference for single-stage BCH codes. To do so we utilize
Pr(IE/K) from expression (3). Results for the rate 0.3, 0.4, 0.5, and 0.7 BCH
codes of Table 1 appear in Figures 4, 6, 8, and 10, respectively. In thesé
figures, the relationship between Pr(IE/K), values of SNR ranging 8 dB to 20 dB,
and five values of S/K ranging from 5 dB to infinity (i.e., only Gaussian noise
present on the channel) can be observed. The horizontal axis represents SNR in
decibels, and the vertical axis represents Pr(IE/K) in log;o (-10g;o) scale.
This scale is used in Figures 4 through 13 and is due to the form of the pro-
bability of bit error, Pe, as given in expression (2). Results for the rate
0.6 and 0.75 BCH codes and RS-BCH concatenated codes are available but not

presented here for brevity.

Corresponding values of the probability of error with fixed interference
for RS-BCH concatenated codes, Pr(0E/K), are calculated from expression (4) and
results for the rate 0.3, 0.4, 0.5, and 0.7 RS-BCH concatenated codes of Table 1
appear in Figures 5, 7, 9, and 11, respectively. The values of probability of
error with random interference for single-stage BCH codes, Pr(IE), are cal-
culated from expression (5) and for RS-BCH concatenated codes, Pr(OE), from
expression (6). The level of interference, K, is assumed to be uniformly
distributed. These results appear in Figures 12 through 15 for the rate 0.3,
0.4, 0.5 and 0.7 codes of Table 1. e

The effectiveness of RS-BCH concatenated codes and single-stage BCH codes
on an interference-plus-noise satellite channel can be demonstrated by analyz-

ing and comparing computed performance results. For example, Table 3 compares

15
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TABLE 2. PROBABILITY OF ERROR WITH FIXED
INTERFERENCE WITH RATE 0.3 RS-BCH
CONCATENATED CODING, RATE 0.3 BCH
CODING, AND NO CODING

Pr(OE/K) PrlE/K)
SNR Rate 0.3 Rate 0.3
(dB) | SIR (dB)| Concatenated Code BCH Code No Coding
17 5 0.331 x 10~20 0.365 x 108 5.0 x 107
14 10 0.168 x 10~22 0.166 x 10~'2 | 1.0 x 1077
13 15 0.166 x 1022 0.336 x 10~13 | 1.0 x 108
10 20 0.216 x 10~ 15 0.619 x 10712 | 1.0 x 10°°
12 | Infinity 0.268 x 10—23 0.232 x 107 | 1.0 x 1078

N



the probability of error with fixed interference performance results of the
rate 0.3 RS-BCH concatenated code, the rate 0.3 BCH code, and no coding. For
the operating parameters selected, the rate 0.3 concatenated code improve§
performance by a factor ranging from 10! to 10'€ over no coding and by a
factor ranging from 103 to 10!2 over the same rate BCH code. Results vary
depending upon operating parameters. However, in all cases, except at low
values of SNR for each SIR, performance improves significantly when con-
catenated coding is employed. At low values of SNR for each SIR, the inner
decoder for the concatenated code frequently fails to properly decode and,
thus, the probability of inner codeword error at the output of the inner de-
coder, Pr(IE/K), will be high. This has the effect of making the probability
of outer code word error at the output of the outer decoder, Pr(0E/K), higher.
Table 3 also shows that single-stage BCH codes improve performance by a factor

ranging from 102 to 10° over no coding.

The effect of higher-rate RS-BCH concatenated codes and BCH codes at SNR
of 9 dB and SIR of 10 dB is shown in Table 4. These results indicate that,
for code rates above 0.4, performance improves by a factor ranging from 103 to
107 per 0.1 increase in code rate for RS-BCH concatenated codes and by a factor
ranging from 102 to 10® per 0.1 increase in code rate for BCH codes. This
behavior follows from the fact that increasing the coding rate, R, has the
effect of increasing the ratio of signal power per information symbol to noise
spectral density, thereby reducing the probability of bit error, Pe;igiven in
expression (2). Thus, as the coding rate increases, the probability of error
with fixed interference decreases [15]. This result is based on constant signal
power per transmitted bit. In support of this conclusion, Pr(OE/K) with rate 0.5

RS-BCH concatenated coding is <10738 for each SNR and SIR combination considered

16
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in Table 3. Likewise, Pr(IE/K) with rate 0.5 BCH coding is <1038 for each SNR
and SIR considered in Table 3 with the exception of SNR = 10 dB and SIR = 20 dB.
For this combination, Pr(IE/K) = 0.488 x 10720, This example shows that higher-
rate RS-BCH concatenated codes and higher-rate BCH codes improve probability

of error with fixed interference performance at each SIR considered. The
results also indicate that the amount of performance improvement due to
increases in RS-BCH concatenated code rate is greater than that due to equal

increases in BCH code rate.

Due to computational limitations, when Pr(OE/K) < 10738, Pr(OE/K) is
assigned a value of 0.00, and when (1.00 - Pr(OE/K) > (1.00 - 10738), Pr{OE/K)
is assigned the value of 1.00. The same computational limitation hold.for
Pr(IE/K), Pr(OE), and Pr(IE). These limitations are more than adequate for

all practical appiications of the model presented here.

For code rates below 0.4, the above conclusions do not hold. For example,
Pr(OE/K) for the rate 0.4 (28,24), (15,7) RS-BCH concatenated code is worse
than Pr(OE/K) for the rate 0.3 (9,5), (7,4) code for SNR = 9 dB and SIR = 10 dB
as shown in Table 4. This result is not surprising because the SNR is so low
for the given interference level, that the rate 0.47 inner decoder of the rate
0.4 concatenated code fails to properly decode more frequently than the rate
.0.57 inner decoder of the rate 0.3 concatenated code. Thus, the rate 0.47 inner
decoder passes on a higher Pr(IE/K) to the outer decoder than does the rate
0.57 inner decoder. Even though the outer code rate for the inner decoder of
the rate 0.4 concatenated code is greater than that of the rate 0.3 concatenated
code, the higher Pr(IE/K) passed on by thf inner decoder of the rate 0.4 con-

catenated code is not fully offset, thus yielding the result stated and
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TABLE 3. PROBABILITY OF ERROR WITH FIXED
INTERFERENCE WITIHH RS-BCH CONCATENATED
CODING AND BCH CODING AT SELECTED
OPERATING PARAMETERS

y s

-

-
e

(

-

[

1 A2

|

SNR = 9dB, SIR = 10dB SNR = 9dB, SIR = Infinity i,
Code | Pr{OE/K) RS-BCH Pr(lE/K) Pr(OE/K) RS-BCH PrilE/K)
Rate Concatenated Code BCH Code Concatenated Code BCH Code
1.0 0.6 x 10-5 0.6 x 10-5 0.3 x 10-6 0.3 x 10-6
0.3 | 0.164 x 10-5 0.123 x 102 | 0.459 x 10~15 0.182 x 10~ 12
0.4 0.102 x 10-3 - 0.147 x 10-2 | 0.321 x 10~18 0.123 x 10-16
0.5 0.224 x 10-° 0.242 x 104 0.118 x 10-32 0.607 x 1020
06 | 0146 x 10-12 0.684 x 10-6 | =< 10-38 0.950 x 10-26
0.7 0.154 x 10~ 19 0.124 x 10-10 | < 10-38 < 10-38
0.75 <10-38 0.192 x 10-16 | < 10-38 < 10-38

1%

-0



explained above. As another example, observe from Table 4 that the rate 0.3
BCH code provides slightly better performance than the rate 0.4 BCH code for
SNR = 9 dB and SIR = 10 dB. This is because the curve-fitting results are not
as accurate at error rates around 1072, However, the curve-fitting error is

relatively small and should have no significant impact in this region.

The case in which only Gaussian noise is present on the satellite channel
is shown in Figures 4 through 9 as the S/K = infinity curve. It may be noted
that this is the lowest curve, which means that performance of both single-stage
BCH codes and RS-BCH concatenated codes is better for the Gaussian noise-only
case than for the Gaussian noise-plus-interference case. In Figures 10 and
11, the curve for S$/K = infinity does not appear because probability of error
with fixed interference < 10728, Table 4 provides a comparison of the per-
formance of RS-BCH concatenated codes with single-stage BCH codes of equal
rate at SNR of 9 dB and SIR of infinity. This table shows that RS-BCH con-
catenated codes provide better performance on a Gaussian noise-only channel
than do single~stage BCH codes of equal rate. For the selected concatenated
codes with rates greater than 0.5, Pr(0E/K) < 10738 when only Gaussian noise
is present on the channel, so a meaningful comparison cannot be made. Notice
also that for the selected RS-BCH concatenated codes at these operating para-
meters, performance steadily improves with increasing code rate. This suggests
that the effect of the inner decoder rate decreases as SIR increases. Likewise,
for single~stage BCH codes at these operating parameters, performancﬂ‘improQés
with each increase in code rate. This implies that the curve-fitting error
diminishes as SIR increases. This trend of improving performance as the code
rate increases does not continue forever as evidenced by the case of no coding,

j.e., code rate R = 1. For the operating parameters of SNR = 9dB and SIR =

18
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infinity, no coding provides worse performance than does any of the selected
codes with R < 1. This is explained by recalling that the normalization effect
of R is based on the codes selected for investigation. Forney found no RS-BCH
concatenated codes with rates above 0.75, which are included in the set of codes
considered here, i.e., codes that provide probability of decoder error = 1076

when the channel bit error probability = 102 on a noise only channel.

A final observation from Table 4 is that performance results are very
good because we considered high values for SNR. We did so because the results
of Prabhu to which we curve-fit did not extend below SNR of 8dB. Therefore,

no judgement of curve-fitting error could be made below this SNR.

Probability of error with random interference performance results appear
in Figures 12 through 16 for the rate 0.3, 0.4, 0.5, and 0.7 RS-BCH concaten-
ated codes and BCH codes of Table 2. The level of interference, K, is assumed
to be uniformly distributed. From the B curves in Figures 12 through 16, the
effect of RS-BCH concatenated code rates on Pr(OE) can be observed. At the
lower values of SNR for each SIR, where Pr(O0E/K) is close to 1.0 for the
uncoded case, Pr(OE) remains constant. Pr(OE) begins to drop at values of SNR
between 11 dB and 13 dB. From these figures, it is evident that Pr(OE) drops
faster as the coding rate increases. As shown by the A curves in Figures 12
through 16, Pr(IE) for single-stage BCH codes also drops faster with increaﬁing

-

coding rate.

Table 5 supports these observations with a comparison of the probability
of error with random interference performance results for the codes of Table 2

at SNR of 13dB and at SNR of 14dB. Results at SNR of 13dB indicate that
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RS-BCH concatenated codes with rates above 0.4 improve performance by a factor
ranging from 101 to 10!2 per 0.1 increase in code rate. BCH codes with rates
above 0.4 also improve performance at SNR of 13dB; however, only by a facfor
ranging from 10! to 104. As was true for fixed interference, these results
are due to the increase in the ratio of signal power per information symbol

to noise spectral density caused by an increase in the code rate R.

Because the inner code of the rate 0.3 RS-BCH concatenated code has a
higher rate than that of the rate 0.4 RS-BCH concatenated code, the Pr(OE)
performance is better for the rate 0.3 concatenated code. Pr(IE) performance
is better for the rate 0.3 BCH code than for the rate 0.4 BCH code. This
slight difference is due to the curve-fitting error that exists at practically
unimportant error rates around 10°. A curve-fitting error this small has no

significance in this region.

As the SNR increases, the Pr(OE) and Pr(IE) performance of RS-BCH concate-
nated codes and single-stage BCH codes, respectively, improves as expected.
This result becomes evident in Table 5 by comparing the SNR = 13dB and
SNR = 14dB entries for a given code at a given rate. For example, Pr(OE) per-
formance of the rate 0.6 RS-BCH concatenated code at SNR = 14dB improves by a
factor of 10'€ over that for the same code at SNR = 13dB. For the rate 0.6
single-stage BCH code, Pr(IE) performance at SNR = 14dB improves by a factor of
106 over that at SNR = 13dB. Table 5 also reveals that the inner détoder rate
of RS-BCH concatenated codes has greater impact on Pr(OE) as SNR increases.
This effect is demonstrated by noting that at SNR = 13dB, the rate 0.3 RS-BCH
concatenated code provides Pr(OF) performance that is a factor of 102 better

than that for the rate 0.4 RS-BCH concatenated code. At SNR = 14dB, the Pr(OE)
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performance difference rises to a factor of 104. The rate 0.3 single-stage BCH
code Pr(IE) performance at SNR = 14dB is slightly worse than that for the rate

0.4 single-stage BCH code. This indicates that the curve-fitting error reduces

as the SNR increases.

Because the B curves lie to the left of the A curves in Figures 12 through
16, we can see that probability of error with random interference performance
results are better for RS-BCH concatenated codes than for single-stage BCH codes
of equal rate when the distribution of K is uniform. The results of Table 5
support this observation for both SNR = 13dB and SNR = 14dB. For SNR = 13dB,
RS-BCH concatenated codes provide performance improvement up to a factor of
1012 over single-stage BCH codes of equal rate. Recall that the parameier SNR

used in this section is the same as Eb/No.
SECTION 4
4, CONCLUSIONS AND SUGGESTIONS FOR FUTURE ANALYSIS

The results show that when RS-BCH concatenated coding is used on an
interference satellite channel, performance is significantly better than when
no coding is employed. In addition, for the selected codes, higher rate
RS-BCH concatenated codes provide better performance than lower rate RS-BCH
concatenated codes on both the noise-only channel and the interferenéé-plus;
noise channel. This performance improvement is greatest on the noise-only
channel. RS-BCH concatenated codes also provide better all-around performance

on an interference channel than do single~-stage BCH codes of equal rate.
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The results presented in this paper are preliminary in that they depend
on assumptions made in the performance model. However, this model does treat
interference in a realistic fashion. By modifying certain assumptions, addi-
tional applications of the model can be made to provide a more comprehensive
set of results. For example, performance results for single-stage RS codes
can be obtained and compared with those generated here to provide an assess-
ment of the effectiveness of these codes versus that of RS-BCH concatenated
codes. Results can also be obtained for concatenated codes where the inner
code is a convolutional code and the outer code is an RS code. Interleaving

results could likewise be examined and compared.

Another example could be to use RS-BCH concatenated codes and erasures-
and-errors decoding. The presented performance model lends itself to extension
for incorporating this decoding strategy in it. Extensive treatment of such

decoding is provided by Forney [10].

The performance model could also be extended to include interference

level probability distributions which are other than uniform.

In addition, interference which is different from co-channel interference
could be considered. One example is the case of frequency-hopping, spread-
spectrum signaling used with QPSK modulation. In this case, the interference
takes the form of a variable number of other users transmitting in the same’
frequency bin at the same time. This topic is thoroughly discussed in the

references [11-14].
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A final suggestion for future analysis would be to investigate
implementation techniques for the concatenated and single-stage codes
discussed here. As part of this effort, incorporation of the implementations

into existing and future systems could be considered.
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