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ABSTRACT

Nonlinear dynamic models for gated radar range trackers are developed and applied
to the range resolution problem. Two common types of tracking loop dynamics, as well
as the automatic gain control (AGC), are accounted for in the models. The null detector
is formulated in a general way that encompasses many important error detector laws,
including centroid and leading-edge. Both discrete-time and continuous-time dynamic
models are presented for each class of tracking loop. The discrete-time models are
derived using an analytical description of the pulse-to-pulse dynamics of the tracker.
The continuous-time models are approximations of their discrete-time counterparts for
sufficiently small values of the pulse repetition interval. Each of the models is analyzed
for a deterministic target return condition. General criteria for asymptotic stability of
equilibrium points of the models are obtained. The most striking of the stability criteria
is a sign requirement on the slope of a ‘‘range error curve.”” These criteria are used in a
two-target example to draw conclusions on a tracker’s ability to resolve closely spaced
targets as a function of target separation. These conclusions are compared with previ-
ously reported conclusions on resolvability obtained using Woodward’s ‘‘ambiguity func-
tion” approach.
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I. INTRODUCTION

The primary goal of this paper is to establish nonlinear dynamic models for an
important class of automatic range tracking systems, namely gated range trackers. A
second goal is to use the resulting models to gain insight into radar range tracking
behavior in multiple target environments. The class of range trackers addressed in this
work includes the ‘‘split-gate” system, which involves the generation of two gates, the
“early” and the ‘“late’” gates. These gates are positioned in time so that a portion of the
echo pulse passes through each gate. The tracking system adjusts the split gates so as to
drive an associated error voltage to zero [8, pp. 114-115]. The performance of such range
tracking systems is well-understood in the single target environment, but erroneous
tracks can result in the presence of several interfering targets. Nonlinear dynamic models
such as those derived here can prove helpful in the study of such behavior.

By studying the response of this class of dynamical tracking systems under multiple
target conditions, we hope to identify or characterize the ability of this feedback system
to distinguish or resolve individual targets or target groups. For example, if we imagine a
situation in which two targets are separating from one another, we are interested in
characterizing the tendency of the tracker to ultimately focus on one target in preference
to another. This behavior can be thought of as a ‘‘resolving capability” or “resolving
power”’ of the tracker, and bears an interesting relationship to the information-theoretic
notion of resolvability (which has been discussed at length in other sources; see for
instance [9] and references therein, and [5, Chap. 7], [10] ). The latter notion is that of
an ultimate limit based on properties intrinsic to the composite returned signal, as
opposed to the former notion, which concerns the resolving power of an actual tracker.
Although the performance of the class of trackers under study indeed may not be
optimum, they are nevertheless of considerable interest. In what follows, we use the
phrase resolving power to describe a property of a particular tracker or class of trackers,
while we use the term resolvability in referring to properties of the received data itself
without regard to the tracker. Note that the term ‘‘resolving power” has also been used
to refer to the ability of a lens system to separate images of two objects in close proxim-
ity to one another (1, p. 37].

An important benefit of analytical modeling of tracker dynamics is the possibility
of predicting track statistics and probability of target selection at formula speeds several
orders of magnitude faster than currently used pulse-to-pulse simulations. This paper
lays the foundation for such rapid predictions by setting up a mathematical modeling
framework amenable to analysis by powerful control systems methods. While the focus
here is on deterministic analysis, the dynamical equations are also valid under conditions
of randomly fluctuating signals.

This paper follows what can be called a “control systems approach,” in the sense
that gated range trackers are modeled as nonlinear feedback control systems aiming
toward an understanding of nonlinear effects and stability. The first step in this
approach is to carefully construct a dynamical model for the range trackers under study.
Control systems tools are highly relevant to the study of tracker performance in a multi-
ple target environment. Questions of track point stability (both deterministic and sto-
chastic), probability of tracking a given target, and optimal tracker design are readily



posed in the language of control systems. More importantly, once the system dynamic
model is constructed, powerful analytical and computational tools from control systems
can be applied.

A major outcome of the present work is a collection of analytical models which are
useful in predicting a range tracker’s behavior even when several targets are in the same
range gate. These are nonlinear dynamic models given in state space form which sum-
marize the pulse-to-pulse dynamics of the tracker. The nonlinearity of the models is an
essential feature, since track points within a range gate are then identified simply as cer-
tain ‘nvariant sets of the appropriate model. Indeed, it will be seen below that track
points correspond to equilibrium points of the new models if random pulse-to-pulse varia-
tion of the received radar signal can be neglected.

To illustrate the potential benefits of the approach presented here, interesting new
results are obtained giving stability criteria for track poi'nts within the same range gate.
These criteria may be interpreted as tracker resolving power criteria in range, for targets
in one range gate. The criteria are analytical in nature. By considering the results of
this paper in the light of resolvability results, one can see how well the tracker performs
relative to the theoretical limits.

The remainder of this paper is organized as follows. Section II concerns modeling
and analysis of the gated range tracker assuming a first order track loop, while in Sec-
tion III the practically more significant case involving a second order track loop is stu-
died. Section II.1 contains the derivation of a novel fourth order discrete-time model of
a gated range tracker (Model DT1). In Section IL.2, stability results for track points
assuming this model are derived. An example illustrating the application of the results of
Sections II.1 and I1.2 to the centroid problem is given in Section II.3. Section II.4 is con-
cerned with the derivation and analysis of a second order continuous-time model (Model
CT1) which approximates Model DT1 when the pulse repetition interval is sufficiently
small. The development of Section III, in which the case of a second order tracker loop
is considered, parallels that of Section II. In particular, Section III contains the deriva-
tion of two models, Model DT2 and Model CT2, which are the natural extensions of
Models DT1 and CT1, respectively, to the setting of Section III. Conclusions and some
directions for further research are discussed in Section IV.

II. GATED RANGE TRACKER WITH A SINGLE INTEGRATOR
IN THE TRACK LOOP

II.1. Discrete-Time Model DT1
Block Diagram and Notation

The block diagram in Figure 1 is the starting point for the derivation below of
Model DT1.! DT1 is the discrete-time nonlinear gated range tracker model for the case
of a single integrator in the track loop. The block diagram of Fig. 1 has been chosen
since it includes the essential components of real gated range trackers, with a minimum

IDT1 is an abbreviation for Discrete-Time 1.



of complexity. Both the AGC system and the null tracker are depicted in the diagram.2

The notation of Figure 1 is as follows. All signals are functions of the continuous
time ¢ . The signal E (¢) is the received sum channel voltage signal analytic envelope
after passing through the receiver IF filter but before AGC normalization. The scaled
signal U(t):= ¢ (¢ )E (t) results upon passage through the AGC, where g (f) denotes
the time-varying AGC gain.

Remark. In reality, the AGC and the IF filtration are performed by the same receiver
stages. For convenience, however, these functions appear separated in the block
diagram.

In a tracking radar, the aim of the range tracker is to lock on to and track a target
in range, as opposed to obtaining a precise estimate of actual target range. The latter is
the function of an instrumentation radar [1, Chap. 3]. The estimate of the target slant
range in a tracking radar will therefore be referred to here as the estimated relative
range, and will be denoted by p(f ) (see Fig. 1).

The quantity p(f) is fed back at the end of each epoch to define the time reference
for the sum and difference (or error) detector (or correlator) blocks associated with the
range tracker, typical weighting patterns for which are shown in Fig. 1, and, in more
detail, in Fig. 4. The sum detector law provides a measure of signal strength which
drives the AGC, while the error detector law senses the ‘“‘null”” of the tracker. The
difference, or error, detector law block in Figure 1 summarizes the effect of the standard
range null sensing subsystem consisting of an early gate, a late gate, and a comparator
(3, Art. 10-31], {8, pp. 114-115]. The postulated equations governing the sum and
difference detector blocks are introduced below.

The signal V (¢) is the AGC loop voltage, as identified in Figure 1. The positive
constants 3, K, and T ,;c are, respectively, the (internal) fixed AGC gain, tracker gain,
and AGC time constant. Sample-and-hold operations are represented by the symbol
ZOH (for zero order hold), with sampling performed at time instants £ = kT pg;. Here
k is any positive integer and T pg; is the pulse repetition interval (also referred to as
interpulse period, epoch length, pulse-to-pulse duration). The ZOH immediately follow-
ing the sum detector block in Figure 1 yields as output a measure of overall signal
strength which drives the AGC loop, while the output of the ZOH following the
difference detector is the difference between early and late gate outputs. Each of these
ZOH outputs is a constant during any epoch, the value of which is determined by the
evolution of the input voltage variables over the immediately preceding epoch, and by
the estimated relative range at the conclusion of the that epoch. (This will be made pre-
cise in the sequel.) The appearance of the third ZOH in Figure 1, namely that immedi-
ately preceding the detector blocks, amounts to invoking the following reasonable
assumption: The error drive to the detector blocks (i.e., the relative range estimate used
as a reference for the kernels in the associated integrations) is updated at the end of
each epoch, regardless of the precise pulse arrival time within an epoch.

2A simpler model Incorporating only the null tracker was presented in 1958 by Amiantov and Tikhonov [11] .
There, the emphasis was on the effects of nolse, and the model used was first order and linear.



Analytical modeling of the gated range tracker based directly on the block diagram
of Figure 1 is complicated by the following difficulty. Although we are mainly interested
in summarizing the dynamics on a pulse-to-pulse (i.e., discrete-time) basis, Figure 1 leads
to an analog model. Solving this model on a pulse-to-pulse basis is seldom possible (this
depends on the detector laws), and even in cases where it is possible. the resulting
discrete-time model can be unwieldy. This observation is in part based on lengthy com-
putations which need not be reproduced here.

Two steps are now taken to deal with this difficulty. Typically, the mass of the sum
weighting pattern is concentrated in an interval of length much less than the size of the
pulse repetition interval, I pg;. Therefore the AGC gain g (¢) does not vary significantly
over a single epoch. This is true even for fast AGC systems. Thus, we can insert an
artificial zero order hold operator following the AGC loop integrator block ( (T gcs ™)
in the block diagram (see Figure 3). Next, waveforms are divided into their components
during epochs, i.e., for ¥ = 0,1,2,..., define the k-th epoch I, as

[k ::{t: kTPRISt<(k +1)TPRI}

More precisely, for any continuous-time variable ¢ (£ ), we introduce the notation

(1)

g(r + (k + 0.5) Tpgrp: for -T, <7< T,
q(rk):= 0, otherwise,

for £ = 0,1,2,..., where
T,:=05Tpg.

The notation introduced in Eq. (1) was chosen to simplify manipulations arising in the
sequel. Regarding this notation, note that the fact that 7 can take negative values does
not present a problem. Indeed, for 7==-T,, physical time is given by
t =7 + (k+0.5)T pr; = kT pgry, which is never negative. In using this notation, it is
convenient to redraw Fig. 1 as in Fig. 3, which is to be construed as depicting Fig. 1
within epoch I, modified to include the artificial zero order hold operator in the AGC
loop.

The following additional notation will be useful. For any variable ¢ ({), and any
integer k > 1, denote by ¢ [k ] the value of variable ¢ ({) at the end of epoch [, _,. More
precisely, ¢q [k ] denotes the following limit taken as 7 approaches T, from the left:

qlk]= 4T q(rk-D)

lim

= 71T, q (7 + (k-0.5)T pgy)

= q((kTpgp) 7). (2)

where the superscript ¢ — * signifies that in case the function ¢ (¢ ) has a discontinuity at
t = kT pr;, we take the limit from the left. For instance, p[k | means p((kT pg;) ~). and
Vik] means V ((kT pry) ~). This notation will be useful in writing a discrete-time model
for the range tracker based on Figure 3. The notation lends itself to graphical interpre-
tation as in Figure 2, where a “raster’” type of sketch for functions ¢ (7,k) is employed.



In this representation, each epoch corresponds to exactly one raster line. The signals
q (1,k) vary continuously on the raster lines, while signals ¢ [k | vary discretely and sum-
marize functional values at the right end points of the raster lines, with the limit taken
as 7 increases to its final value T, on each raster line.

In the sequel, in keeping with the notation introduced above, the same variable
name will be used for differing representations of a signal. The representation used is
implied by the manner in which arguments of the signal are denoted. That is, ¢ (¢) is
always understood to be a continuous-time signal with time ¢t being any nonnegative
real number; ¢ (7,k ) is a representation of ¢ (£ ) in the raster form shown in Fig. 2, and is
thus a mixed continuous-discrete representation; and ¢ k] is a discrete-time signal,
obtained by sampling the raster signal ¢ (r,k ) as discussed above and illustrated in Fig.
2. The following terminology is introduced for the various independent time variables: ¢
is real time, k is epoch time, and 7 is intra-epoch time.

Before deriving the desired discrete-time model, the relationships governing the sum
and difference detector blocks must be stated. For the sum detector block, denoted Wjg
in Figure 3, we have

T
S(rk)= [ |U(ok)Puws(c - plk]) do. (3)
_ Tl
As for the difference detector block, denoted Wp in Figure 3, we have

T

D(rk)= fT U (o,k )Fwp (0 — plk]) do. (4)

The forms of detector laws given by (3) and (4) above are very versatile and power-
ful in that a wide variety of systems can be modeled by adopting suitable sum and
difference kernels (weighting patterns) wg and wp . For example, when wg is chosen to
be an even pattern, and w; an odd pattern, as depicted in Figure 4, then detectors (3)
and (4) implement a common form of centroid tracker. The shape of wg determines the
range gate width or aperture. In common radar terminology, the lobe occurring for o
negative in Figure 4d represents the ‘“‘early gate,”
called the ““late gate.”’

and, likewise, the lobe for o positive is

According to Egs. (2), (3) and (4), the discrete-time variables S [k ], D [k] are given by

T,

Stkl= [ U(o.k-1)Puws(c - plk-1]) do, (5)
-T,
T,

Dikl= [ |U(ek-1)Puwp(c — plk-1]) do. (6)
-T,

Eqgs. (5) and (6) will prove useful in the model derivation, which is pursued next.



Dertvation of Model DT1

With notation now established, we proceed with the derivation of a model in state

equation form describing the discrete-time dynamics of Figure 3. The variables of most
interest in Figure 3 are the relative slant range estimate p[k] and the AGC voltage
V [k]. Figure 3 can be used to write dynamical equations satisfied by these variables.

For instance, it is clear from the block diagram that

U(rk) = E(r.,k)g k]

= B E(rk)e VIl

(7)

Also, from the (T ,gcs )™ integrator block, accounting for the fact that V [k] is the ini-
tial value of V (r,k) at the beginning of the k -th epoch, and noting the effect of the zero

order hold following Wy in Figure 3, we have

tf(r,lc)=a“{‘f1‘w (V(e.k-1)} + Tl [(Sk] - ndo
1 AGC -T,

= Vik] + T+ (S[k] - 1)

T AGC

Therefore,

Vik+1] = Tl%“}l V(rk)

l

_ T pgi
= VIk] + o (S[k] - 1).

AGC
Now, Egs. (5) and (7) imply that S [k] is given by
Tl
Skl= [ |Uk-1)Pws(c - plk-1)do

-T,

T,
= Fre VI [ |E (0.k-1)Pws (o - plk-1])do.

-T,

Eqg. (10) is now substituted in (9), yielding
T,

Vik+1] =V[k] + -?Tﬂ‘—(ﬁ%-?"f’c-” [ E@.k-1)Fws (o - plk-1])d o - 1).

AGC -T,

Similarly, Eqs. (6) and (7) imply that D [k ] is given by
T,

Dk]= [ |U(ok-DPwp(c - plk-1)do
_T1

(8)

(9)

(10)

(11)



T,

= B ~2VEN [ B (0,k-1)Pwy (0 — plk-1))do. (12)
-T,

From the blocks in Figure 3 corresponding to the tracker, we obtain
pirk) =plk) + K(r + T)D [k]. (13)

Taking Tl}n]l‘ of Eq. (13) gives
1

plk+1] = plk] + K TpgD [k]. (14)
Using (12) in (14) now yields
T,
plk+1] = plk] + KB Tore 2V [ |E(0k-1)Pwp (0 - plk-1)do.  (15)
~-T,

Egs. (11) and (15) are a coupled pair of second order difference equations for the
variables V' [k ] and p{k]. Tor ease of reference, these two equations are collected to form
the first representation of the dynamics of the range tracker of Fig. 3:

Tl
plk+1] = plk] + KB Tpge V-1 [ |E(ok-1)Pwp (@ - plk-1)do,  (16a)
-T

1

Tl
VIik+1] =V (k] + PR (gg2V b [ IE (0 k-1)Pws (o - plk-1))do ~1).  (16b)
T rce -T,

System (16) is a self-contained description of the evolution of the variables plk ], V [k .
and its solution requires knowledge only of the initial conditions on these variables and
of the received signal F (1,k ).

For many considerations, including those related to questions of stability, it is often
useful to recast difference equation models such as (16) in the so-called state space form.
In this form, only first order difference equations appear. To derive a state space
representation from Eq. (16), we introduce unit-delayed signals associated with plk ] and
V [k ]. These are given by

palk] == plk-1] (172)
and
Vylk] = Vik-1], (17b)

respectively. Model DT1 is given by the following system of four first order difference
equations. This is a state space representation for the dynamics of Fig. 3, and is indeed
equivalent to the pair (16) of second order difference equations:



Model DT1:

T,
BV OB ok —)Pwp (0~ palk]do (18a)
- T,

plk+1] = plk] + K B°Tpge

palk +1) = plk ] (18b)

T,
Vik+1]=Vk] + _Z{E}_(ﬂze—2V¢[k] f IE (0,k —1)fwg (0 — pg[k))do - 1)  (18c)
T sce °r,

Valk+1] = V[k]. (18d)

System (18) is the desired four-dimensional discrete-time model describing the gated
range tracker for the case of a single integrator in the track loop. The model is written
in state equation form, with state vector (p[k], pg k], VK], V4[k]).

It is important to note that the echo return signal F has been treated in a very
general way in the derivation of this model, which allows both deterministic and stochas-
tic signals . In the case of a stochastic return signal, £ in (18) is a stochastic process,
the outputs of the error detector laws are stochastic processes, and the model (18) should
be treated as a system of stochastic difference equations.

In the next section, this model is employed to derive criteria for deterministic sta-
bility of track points in a flxed range gate.

II.2. Track Points and Stability of Model DT1

Intuitively, we might expect that track points of the gated range tracker of Fig. 3
correspond to equilibrium points of Model DT1.2 In reality, however, (18) may fail to
have equilibrium points due to the (random) variation of the received radar signal
E (0,k -1) between epochs. Track points can then be thought of as trajectories of the
model (18) in which plk]| = a constant = p, [k], but V[k] is allowed to vary with
E (0,k-1). These trajectories, when they exist, are invariant sets of Eq. (18). To sim-
plify the analysis below, it will be assumed that the received signal £ has no pulse-to-
pulse variation. It will be seen that under this assumption, track points can be identified
with equilibrium points of Eq. (18). First, the equations for an equilibrium will be
derived.

At an equilibrium point of DTI1, if one exists, we require plk+1] = plk],
pglk+1] = pylk], Vk+1) = V[k], and V,[k+1] = V;[k]. Referring to Eq. (18), it
follows that an equilibrium (p", pd*, V* V) satisfles

* x

P == pd , (193.)
vt =vVvy, (19b)
3An equilibrium point (or fized point) of a discrete-time system z [k +1] = f (z [k]) Is defined as a vector £ for

which § = f (£).



as well as
T,
[ |E(ok-1)fwp(c - p")do =0, (19¢)
-7
T,
eV [ |E@k-1)Pwso - p")do - 1=0. (19d)
-T,

To solve for an equilibrium, we would first solve Eq. (19¢) for p*, giving, perhaps, multi-
ple solutions. Next, these values are substituted for p* in (19d), and we attempt to solve
for the equilibrium voltage V .

If the only variation in £ between epochs is a scaling of some base waveform, then
Figure 4d indicates that a solution of (19c) for p* may exist. However, in this case Eq.
(19d) will not be solvable for V. Thus, the relative slant range may in principle be
estimated without convergence of the AGC. This is an example of a track point which is
not an equilibrium point of Eq. (18).

Now assume that the received pulses in all epochs are identical waveforms. Then
E (7,k) is independent of k, and we can write

E(r,k) = E(1,0) for all 1.k

=: E (7). (20)
Egs. (19¢), (19d) for an equilibrium can now be simplified to yield
Fp(p")=0 (21a)
BPe2V Fg(p®) - 1 =0, (21b)
where Fp (p) is the range error function
Tl
Fp (p) = fT |E o(0)fwp (0 - p)do, (22a)
-T
and Fg(p) is defined as
T,
Fg(p) == fT |E (0)Pws (0 - pydo. (22b)
-T

With Assumption (20), it is clear from Figure 4 and Eq. (21) that equilibria will typically
exist, and that the number of equilibria depends on the waveform E (7) and the null
detector curve wp (o). Moreover, since Eq. (21b) can have no more than a single solution
for V* corresponding to a given value of p*, it follows that track points may be
identified with equilibrium points under Assumption (20).

It is interesting to note that if the received pulses are identical up to a time shift,
as in Eq. (20), the dynamical equations (18) are aufonomous. That is, F 4(7) does not
appear as an external input, but rather as an integral part of the dynamics. Only pulse-
to-pulse variations in E (r,k) (i.e., variation of F (r,k ) with & ) could represent external
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inputs to the model.

To study equilibrium point stability under assumption (20), it is convenient to
rewrite the model (18) in the light of (20) and the notation (22). We have

Model DT1 for Periodic Received Waveform:

ple+1] = plk] + K Togfe ™ "1 Fp (o4 k1) (23a)
palk +1] = plk] (23b)
T _
Vik+1] = Vik] + —2 (g " poo k) - 1) (23¢)
T yac
Vilk+1] = V]k]. (23d)
The Jacobian matrix of Eq. (23) evaluated at an equilibrium, denoted J, is given
by
1a00
_l1000 i
I o= ob1l1c} (24)
0010

where the scalars a,b,c are defined as follows (here a prime denotes differentiation with
respect to the argument of a function):

a = KB Tpge '2V.F’D(p*), (25a)
2T -2v*
o BT -
AGC
_2@2T —2V*
c = F T e Fs(p"). (25¢)

T AGC

A classical stability theorem [12, Appendix A] implies that the equilibrium
(p* ,p*,V*,V*) is asymptotically stable if each eigenvalue of J lies (strictly) within the
unit circle in the complex plane. If any eigenvalue has magnitude greater than unity, the

equilibrium is unstable.*
The matrix J is seen to be block lower triangular, so that its eigenvalues are those

of the lower right and upper left 2X2 blocks. The characteristic polynomial of the lower
right block is

2 —oV
2% T pgye

P =X% — X\
! TAGC

Fs(p), (26)

while that of the upper left block is

“Cases in which at least one eigenvalue lies on the unit circle are known as critical cases in stability. These require
nonlinear analysis to determine even the local stability properties. Note that arbitrary small perturbations in the model
force critical eigenvalues off the unit circle. Hence, If a robust form of asymptotic stability is desired, it Is necessary and
sufficient that all the eigenvalues lie within the unit circle.
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PaN) =2 — X — KB Tppe ™ Fih(p"). (27)
Determination of conditions for stability of these characteristic polynomials is facili-
tated by the following result (see, for instance, {12] ).

Lemma 1 (Jury’s Test for Second Order Systems). A necessary and sufficient condition
for the zeros of the polynomial

p\) = a, N + a N + a, (28)

(ag > 0) to lie within the unit circle 1s

p(1) > 0, (29a)
p(-1) > 0, and (29b)
|a ol < a,. (29¢)

Applying Lemma 1 to p,(A), we see that (29a) and (29b) are trivially satisfied due
to the positivity of [ (o) and wg (o — p*) (see Figure 4), and that (29¢) is equivalent to

2 -2V?*
25° T pgye

T Fs(p*) < 1. (30)
AGC

The equations for an equilibrium allow simplification of (30) to
T pac > 2T pgr- (31)

Eq. (31) is usually satisfied in practical systems, so that it does not represent a critical
test for stability. However, it is interesting to note that Eq. (31) does represent a neces-
sary condition for the existence of at least one stable equilibrium point under the
assumption of a periodic received signal: The AGC loop time constant must be greater
than twice the length of the pulse repetition interval.

Applying Lemma 1 to the polynomial p o(}\), we find that (29a) asserts

Fip(p®) <o, (32)
and that this implies (29b) for p 4(7\). Eq. (29¢) is found to assert
) *
I'FD(p )l 1
——— < (K Tpr) . (33)
Fg(p")
Combining (32) and (33) gives the requirement
0< ~Fh(p’) < (K Tep) ' Fs(p"). (34)

Satisfaction of Egs. (31) and (34) guarantees the asymptotic stability of the equili-
brium point (p*,pd*,V*,V;) = (p*,p*,V*,V*) of Eq. (18). Put another way, this
equilibrium point is stable if the following three conditions are satisfied:

n(p") <o, (C1)
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Fo(p® ,
KT pgy ,5(/)*) <0, (C2)
D)
T acc = 2T pgr- (C3)

This form of the stability conditions is easily checked to be equivalent to Egs. (31) and
(34). Considering the shape of the null detector curve wp (o) depicted in Figure 4d, con-
dition (C1) on the slope of the range error curve explicates various observations (e.g.,
[13] ) regarding the relationship of closeness of targets, their relative radar cross sections,
and the tendency of the range tracker to lock on to either of them, or on to an artificial
track point (centroid).

The next theorem summarizes these remarks.

Theorem 1 (Track Point Stability: Model DT1). Under Assumption (20), the equili-
brium point (p* p, VI V) = (p° 2 VI VY)Y of Eq. (18) is asymptotically stable by the
linear approximation if and only if conditions (C1), (C2) and (C3) above hold.

Condition (C2) may be construed simply as providing an upper bound on the
tracker gain K, which is achievable by appropriate choices of tracker parameters. Simi-
larly, (C3) is a blanket condition which must be satisfied, even for the simplest case of a
single target present, for stable tracking to be possible. Hence, a track point for which
only (C1) holds might still be thought of as resolvable in the sense that a modification in
tracker parameters would ensure satisfaction of (C2) and (C3) as well as (C1).

11.3. Two-Target Example using Model DT1

A simple illustration of Theorem 1 will now be presented. Let E (o) consist of a
pair of separated but identical triangular pulses, corresponding to two point scatterers in
a single range gate. The same example is treated in Burdic [2, Sec. 5.2.1] using
Woodward’s [5] autocorrelation-based ambiguity function range resolution index. The
triangular pulse shape reflects the effect of convolution of the IF matched filter impulse
response with an assumed rectangular pulse shape of the received signal. As depicted in
Figure 5, the targets have delays r and r, + u, respectively. For simplicity, suppose the
pulses each have amplitude unity, that they have zero relative phase, and that each has
a pulse width Tp . Theorem 1 may be used to study track points and their stability as a
function of the parameter u, the separation between the targets. For the current illustra-
tion, stability will be examined in detail only for the centroid target. Thus, the conclu-
sions reached will concern the possibility that the tracker converges on this false target.
This possibility undermines the ability of the range tracker to resolve the actual targets.
Figure 6 shows the assumed forms of the sum and difference weighting patterns wg and
wp , respectively. As is clear from the figure, it is assumed that the weighting patterns
are nonzero over a range of length precisely Tp . In addition, it is natural to assume that
condition (C3) holds, i.e., that T ,gc > 27T ppy-

Using Eqgs. (21a), (21b) for an equilibrium, we find that only {wo equilibrium points
occur for u > 2Tp. These correspond to the actual targets, and therefore have delays
p; =1, and py = r, + i, respectively. To study the stability of these equilibria, we
apply Theorem 1. Condition (C1) holds for both pl* and p;. This can be seen by noting
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that
T, T,
U)ID(U') = 26(0’) - 6(0’ — ——2—) - 6(0' + T) (35)
(see Figure 6¢), so that, for p > 2T,
T,
Fop'y= - [ [Eg0)fwh(o-p)do= -2 (36)
-,
for 1 = 1,2. Condition (C2) simplifies to
K < Ty (37)
6T prr

Hence, the targets are resolved for delays p > 2Tp if the tracker gain K is bounded as
in (37).

As u is decreased below 2Tp , we expect the appearance of a ‘“‘centroid track point”
at a delay p; between the estimated relative ranges pl* and pg* of the actual targets. We
would expect the centroid to be initially unstable, achieving stability as the separation pu
between the targets is made smaller. Theorem 1 will now be used to quantify this intui-
tion, and indeed to specify the separation p, below which the centroid is stable. The
importance of this question stems from the fact that the centroid track point acquires
stability only at the expense of the degree to which the tracker can resolve the actual
targets.

The centroid track point appears as p is decreased below 2T1,. The delay
corresponding to this track point is, by symmetry, given by

ps =ro + % (38)

See Figure 7. The reason that the centroid track point does not occur for p > 27T, is
simply that there would then be no overlap between the weighting pattern wg (o — p;)
and F (o). Eq. (21b) for an equilibrium would then be unsolvable for the AGC voltage
V" . For the situation depicted in Figure 7, it is easy to check that (C1) is not satisfied,
implying instability of the centroid. Thus, the centroid can only be stable if the triangu-
lar pulses overlap, which occurs for p << Tp. Moreover, condition (C1) must be satisfied
for sufliciently small u, as can be seen by noting that for g == 0 the centroid and the
two targets coincide. Hence, the centroid is a stable track point for a sufficiently small
target separation.

As p is decreased below T, , the quantity on the left side of (C1) (the slope of the
range error curve at the centroid) decreases monotonically. The centroid becomes stable
at the critical value g = g, for which this quantity vanishes. Denoting by P (o) the tri-
angular pulse waveform shown in Figure 8, it follows that p, is the solution to

8P%o - ry) | = 2P0 - ry)| T

123
U=‘~r0+‘; (7="0+—/2t‘—TP (39)

satisfying p < T, . Eq. (39) simplifies to
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f_:_j_‘l’_) (40)

2 By _ p2
4P(2) P 5

Using the graph of P (o) depicted in Fig. 8, this can be rewritten as

4 #-Tp, , 4 M2
4 = - (41
(5 = (o) (41)
P P
which can be simplified to
S, B \2 I
(=) - 2(-F—) + 1=0. (42
4( T ) ( T, ) (42)
Solving Eq. (42), and disregarding the solution with ~1—’,t—>1, we obtain
P
2 §
”‘c - E—TP . '\43)

Hence, the centroid track point is stable for target separations smaller than two-thirds of
the pulse width, but is unstable for greater separations. It is interesting to compare this
result with that obtained by Burdic [2, Sec. 5.2.1] using Woodward’s approach. There, it
was concluded that resolution would be achievable only “with great difficulty’ (if at all)
for separations less than Woodward’s time resolution constant, which for this case hap-

pens to coincide exactly with the figure derived above: %TP. It should be emphasized

that this apparent numerical agreement between the results of the two approaches does
not imply that the same conclusion is reached. The approach presented here results in a
definite yes or no conclusion on resolving power of the range tracker for any target
separation, whereas Woodward’s approach gives a somewhat vague statement of relative
resolvability. (The vagueness of the conclusions reached using ambiguity functions was a
weakness acknowledged by Woodward [5] , and was the primary motivation for subse-
quent work in resolvability.)

I1.4. Approximate Continuous-Time Model CT1
Derwvation of Model CT1

The discrete-time model (18) studied in the foregoing admits a lower order
continuous-time approximation, under the assumption that the size, T pgy, of the pulse
repetition interval is very small in relation to other model parameters. In this section, a
pair of first order ordinary differential equations approximating the model (18) is given
and briefly studied under this assumption. It is convenient to focus on the representation
(16) in terms of a coupled pair of second order difference equations (this is equivalent to
(18)).

The model (16) is rewritten in the form

T,

(Ll tloslly _ g gresViil [ Bok-DPup (o~ plk-1Ddo.  (14a)
PRI =T,
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Tl
T pac(~LE +jf] —VIkLy _ ge-2vie fT |E (0.k -1)Pws (o — plk—1])d o — 1. (44b)
PRI -T,

The terms in braces on the left sides of Egs. (44a), (44b) approximate derivatives with
respect to time { of the associated continuous-time functions, for sufficiently small
values of T pgr;. To see this, recall that for any continuous-time signal ¢ (¢ ), the associ-
ated discrete-time signal ¢ [k ] is obtained by a procedure by which ¢ (¢) is sampled with
a sampling interval of length T pg;. Replacing the terms in braces by time derivatives
and expressing the right sides of (44a), (44b) in terms of the original continuous-time sig-
nals yields a continuous-time model. Note that this is not the same as taking lim of
TPRI —0
Egs. (44a), (44b). Indeed, the result of such an operation would be meaningless, consid-
ering that the continuous-discrete received signal F (7,k ) also depends on the parameter
T pgr1, and this dependence is such that the limit as lim would not be well defined.
Tm[ —0
To proceed, suppose real time ¢ is related to epoch time k& by the approximate for-
. . d p(t
mula { == kT pg;. Then the left sides of Egs. (44a), (44b) are approximately —% and

TAGCi%—)" respectively. The quantities V [k —1], p[k —1] appearing in the right sides of

(44a), (44b) can be replaced by the continuous-time functions V(t), p(t), respectively.
Finally, use Eq. (1) to get E(0,k-1) = E(0 + (k-1)Tpgp for 0 < 0 < Tpgy This
inequality is clearly satisfled by o in the integrations of Eq. (44). Therefore, approximate

E(o,k-1) in Eq. (44) by E (o - Tera + [Tt
PRI

]T pgry).- The resulting continuous-time

model is
Model CT1:

T,
d p(t) — KB [ |E(0- Tpn + (=t T pp)Puwp (o — p(t))d o, (452)
dt T, Tpri
T,
T roc dVv(t) =B26~2V(t) f IE(U— Tong + | ¢ ]TPRI)PwS(O'—p(t))dU ~ 1, (45b)
dt T, T pre

where the standard notation [z ] is used to denote, for a real number z, the greatest
integer less than or equal to z. Eq. (45) is the continuous-time model approximating the
original discrete-time model (18) (equivalently (18)). We refer to this model as Model
CT1. Note that (45) is a second order differential model, whereas the original discrete-
time model is fourth order. Note also that (45) can either represent an ordinary
differential system or a stochastic differential system, corresponding to the statistical
character assumed of the target return signal E .

Next we extract from (45) a differential model corresponding to the discrete-time
model (23), which applies in case the received pulses in all epochs are identical
waveforms. Assume that ' (¢) is periodic with period T pg;. Then (45) becomes
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Model CT1 for Periodic Received Waveform:

T,
L) — ke = [ Eoo)Pup (o - t)do, (162)
_'1'1
T,
Taae Ttk = #e [ B yo)fus o - puDdo - 1 (16)

where the notation E 4 (o) (in favor of F (0)) has been used in analogy with the discrete-
time case. It is straightforward to rewrite Eq. (46) in terms of the notation Fy (p(t)),

Fg(p(t)).

Stability Analysis for Model CT1

Stability of equilibria for the deterministic continuous-time model (46) is now con-
sidered briefly. An equilibrium point (p*, v* ) of Eq. (46) solves the same pair of alge-
braic equations (21) as arise in the discrete-time setting. Stability of an equilibrium is
now ascertained by verifying that the eigenvalues of the Jacobian matrix of (46) at the
equilibrium have negative real parts. This Jacobian matrix, also denoted J, is given by

be¢

where the scalars a ,b,c are as defined in Eq. (25). Since J is triangular, its eigenvalues
are identical to its diagonal elements, ¢ and ¢, both of which are real. It is easy to see
that a is negative precisely when Condition (C1) holds, and that ¢ is ensured negative
by the positivity of the sum weighting pattern wg. Hence (C1) is sufficient for stability
of an equilibrium point of the approximate continuous-time model (46). This is stated
more formally in the following theorem, which also relates this stability result with
Theorem 1.

J = Tgk “0), (47)

Theorem 2 (Stability for Model CT1). The equilibrium point (p*, VY of the approxi-
mate continuous-time model (46) is asymptotically stable by the linear approzimation if
and only if Condition (C1) holds. Recall that this condition requires
Tl
Fi(p® )= - [ [Ego)fwh(c-p")do <o0. (C1)

1

Moreover, if Tpgy is sufficiently small, then stability of the equilibrium (p", V") for the
approximate model (46) implies that of the equilibrium (p".p" V', V') for the original
model (23).
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III. GATED RANGE TRACKER WITH TWO INTEGRATORS
IN THE TRACK LOOP

II1.1. Discrete-Time Model DT2

. ) K, .
The block diagrams of Figures 1 and 3 contain a single integrator (—) in the track
s

loop. A more common gated range tracker design, considered next, utilizes two integra-
tors in the track loop. The needed modifications to Figure 3 are depicted in Figure 9,
where only the dynamics from D [k ] to plk] are shown. The remainder of the system is
unchanged from Figure 3. The first design can be obtained as a special case upon setting
9:=0, g,= K in Fig. 9. However, as noted by Hughes [14] , typically g, is
significantly greater than g, in practical designs utilizing two integrators in the track
loop. This provides further motivation for the analysis of this case.

Derivation of a discrete-time model for the revised block diagram, Model DT2,
parallels the derivation leading to Egs. (16) and (18) in Section II.1. Hence it is necessary
to give only a brief summary of the derivation. Referring to Fig. 9, we have for the new
dynamic variable {7,k )

urk)=uvik] + g(r+ T,)D [k]. (48)
Hence

vik+1} =vlk] + ¢,TprD [k]. (49)
Also,

prk)=plk] + [ (ok) + g,DIk])do
-T,
=plk] + (1 + T))(vlk] + g,D[k]) + 0.5g,D [k)(r+ T ™ (50)

Therefore, the variables p[k] and v[k] satisfy the following pair of difference equations,
in which D [k ] is to be viewed as an input as specified in Eq. (12):

plk+1] = plk] + Tpry(vlk] + gD [k]) + 059, TpD (K], (51a)
vk +1] = vik] + g,TpriD [k ). (51b)

Since the remaining dynamics of Fig. 3 are not altered by the introduction of an
additional integrator in the track loop, a discrete-time model for Fig. 3 modified by Fig.
9 is given by

plk +1] = plk] + Tpgrwlk]

r,

+ BPTer (g2 + 059, Tppe 2V ¥ [ |E (o, k-1)Pwp (0 — plk-1))do  (52a)
-T,
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T,

Vik+1] =V (k] +lf£(ﬁ2e-2"l’°~ll [ |E@@.k-1)Fwg (o plk-1))do - 1) 52b)
T pcc -T,
r,

vik+1]=vlk] + 9,8 Tppe? ¥ [ |E(0k-DPuwp (o - plk-1)do.  (52c)
‘Tl

Note that each of Egs. (52a) and (52b) is second order, while Eq. (52c) is first order.
The model (52) is thus fifth order. An equivalent, state space description, of the model
(52) is

Model DT2:
plk +1] = plk] + Tpglk]

T,

+ BT opi (92 + 059, Tprie ~ 1 [ B0k -DPup(c — pylkdo (53a)
-T,

palk +1] = plk] (53b)
T T

Vik+1) = VK] + —2@e ™" E [ B @k -1)Pug (o - pslk)do - 1) (580)
TAGC -T,

Valk+1] = Vk] 53d)
T,

vik+1] = vlk] + .8 Tore™ " [ IE@k-DPup (@ ~ pglkdo,  (53¢)
-T,

where the delayed variables P4, Vd are as defined in Eq. (17).

The description (53) of the dynamics of the gated range tracker for the case of two
integrators in the track loop is the basis for the deterministic stability analysis to follow.
This analysis parallels that of Section I1.2, which applies under the assumption of a sin-
gle integrator in the track loop.

IIL.2. Stability Analysis of Model DT2

In this section, stability of equilibrium points of Model D'T2 with periodic received
signal is considered. As in Section II.2, however, a track point of the AGC-aided range
tracker need not correspond to an equilibrium point of the state space model (53). Recall

that a track point is any trajectory of the model for which p[k ] = a constant for all k.
It is clear from Eq. (53) that constants p° for which
T,
f IE (0,k Wwp (e - p" Ydo =0 forallk, {54)
- T1
and corresponding trajectories of (53) for which p[k] = p* = p, [k ] and vik] == 0 for all

k, are track points according to this definition. Unlike the situation in Section II, how-
ever, these need not be the only track points. Next, we focus attention on equilibrium
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point stability of the model (53) under the assumption of a periodic received voltage
E ).

Suppose that assumption (20) holds, i.e., that E (rk) = E (1.0) = E ((7) for all k.
Then Eq. (53) simplifies to
Model DT2 for Periodic Received Waveform:

plk +1} = plk] + Tppwik]

T,
b B Tppi (g5 +0.5g,Tpre 4 [ |Eg0)Pup (0 - palkDdo (552)
-7,
pq lk +1] = plk] (55b)
T T
Vi) = Vik] + ——2gze >V * [ B (o)fus(o - pglkDdo ~ 1) 55¢)
T pcc T,
Vylk+1] = V k] (55d)
T,
vk +1) = vlk] + g.8°Tprie 2Vt f |E (0)Pwp (¢ — palkDdo. (55e)
- T,

To be an equilibrium point of (55), a vector (p' ,p't V', V" v" ) must satisfy the follow-
ing three conditions:

T,

fT |E o(0)Pwp (@ — p )do =0 (56a)
T,

ﬂ2€—2V‘ f lEo(a)Fws(a —p)do - 1=0 (56b)
-T,

v =0 (56¢)

Denote the Jacobian matrix of the right side of Eq. (55) at such an equilibrium
point by J. This matrix is given by

17120 0 J1s
1 O 0 0 O
J = 07321730 [, (57)
0 gl1lg O
0 T 5o 0 o 1
where the scalars Jp.7 15 7 a2 J 31, J 52 are deflned as follows:
S —2v* *
Jiz= (92 +059, Tpr)B® Tprie ™" Fh(p’) (58a)
J1s = Ter (58b)
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2 -2Vv* .
o= EEE Py (58¢)
AGC

2 —2V*
20°Tpr1 €

Jas == - = Fs(p") (58d)
AGC

. g1 .

Jse = J 12 (58e)

(92 +0.59,T pgy)

respectively. Here the notation FD, FS defilned in Eq. (22) has been employed. Note
that ]'32 and j3‘1 equal, respectively, b and ¢ of Eq. (25). The characteristic polynomial
of the matrix J is readily computed by cofactor expansion along the last row, yielding

detON — J)= = (A= N =73 N =2\" + (1-J DN + J 1o~ J 157 52)- (59)
Define the quadratic polynomial ¢ ,(\) and the cubic polynomial g 4()\) as

q1(N) == XNF -\ - g, and (60a)

g2N) =N = 2N + (1-J 1)\ + J12— T 15T 520 (60Db)

respectively. Then the matrix J is stable (in the discrete-time sense) if and only if all the
zeros of the polynomials ¢, and ¢, have magnitude strictly less than 1. The condition
for this to hold for the polynomial ¢ ,(A) has already obtained, as can be seen by noting
that ¢ ,(A) = p,(\) of Eq. (26). Recall that the sufficient condition is simply Condition
(C3), i.e.,

T agc > 2T pr1s (81)

and that this was obtained by invoking Lemma 1 (Jury’s test for second order systems).
The analogous stability test for third order systems, Lemma 2 below, will be employed
in considering ¢ ,(N).

Lemma 2 (Jury’s Test for Third Order Systems). A necessary and sufficient condition
for the zeros of the polynomial
g\) = a\® + axd? + a ) + a, (62)

(a5 > 0) to lie within the unit circle is

q(1) >0, (63a)
lag < ag, (63b)
q(-1) <0, and (63¢)
la —af|>laga, — a,a4) (63d)

Next we apply Lemma 2 to the polynomial ¢.(A\). Eq. (63a) is found to assert
J12 <O, ie.,
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n(*) < o. (64)
Thus Condition (C1) appears in this context as well.

Eq. (63b) in this context asserts

|.7.12 ~ Jisisd <1, (65)
which is found to be tantamount to the following:
+*
Fg(p) N ,
Teri |92 — 05T pgyyg 1| + —— < 0. Condition (C2)
Fip@p)

We refer to this condition as (C2) since it reduces to Condition (C2) for vanishing g ,.
Eq. (63c) asserts
2712 — Justse <4 (66)
which can be seen to be automatically satisfied whenever (C1) holds.
Finally, Eq. (63d) asserts
Ko = Jisdsa)® — U > RJysdse — 712 — 1) (67)
After substitution from (58) and simplification, this is found to be equivalent to
*
Fipp)
*
Fs(p")
*
Fp(p™)
*
Fs(p)
Conditions (C1), (C2) , (C3) and (C4)’ are therefore necessary and sufficient for

stability by the linear approximation of an equilibrium point of (55). This is summarized
in the next theorem.

kgz + 15T prig 1) 2 - 1

> gy — 1.5T &x194) + 1. Condition (C4)

Theorem 3 (Stability for Model DT2). Under Assumption (20), the equilibrium point
(p*,pd*,V* ,V;,l/*) = (p",p", V' V" 0) of Eq. (55) is asymptotically stable by the linear
approzimation if and only if conditions (C1), (C2) (C3) and (C4) above hold.

ITI.3. Approximate Continuous-Time Model CT2

Model CT?2

The fifth order model (53), Model DT2, may be approximated by a third order
continuous-time model, if T pg; is small. The derivation of the model is nearly identical
to the derivation in Section II.4, and so it is omitted. The notation is also clear given the
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notation of Section I11.4. The resulting continuous-time model is
Model CT2:

—d—’(—;(tt—) —u(t) + FXg,+0.5g,Tprpe 2V
T,
X [ E@-Ter + = Terfup (@~ plt Ddo, (68a)
-T, PRI
T,
T acc d‘;it) = fPe V() leE(U* Tprt + [TtRI]TPRI)FwS (- p(t)do — 1,(68b)
- T, P
T,
AUl) _g,p2e 2O [ |E@ - Tem + ) Tendlup (@ - p(t))d o (65¢)
dt T, Ter

We refer to this as Model CT2.
If the received signal is periodic with period T pg;. Eq. (68) simplifies to:
Model CT2 for Periodic Received Waveform:

T,
d;;(tt) = ut) + FHg, +0.5g, Tprpe 2V f |E o()Pwp (o - p(t))d o, (692)
..T1
Tl
T pce dv(;it) = B2V (") f IE o(0)Pws (@ - p(t )do - 1, (69b)
._T1
T,
dz:l(tt) = g fB% 2V ®) f |E o(0)Rwp (o - p(t))d o (69¢)
- T,

Eq. (69) should be compared to Eq. (46) which applies under the analogous assumptions
for the case of a single integrator in the track loop.

Stability Analysts of Model CT2

The Jacobian matrix J of Eq. (69) evaluated at an equilibrium point
(p*,V*,V* =0) is given by

]:11 O 1
J = 1721 J22 Of, (70)
Jar O 0

where

Ji:=1(g, +0.59,Tpp)Be™2 Fih(p") (71a)
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2 -av”
. e »
jm= - ZE—F5 ") (71b)
AGC
_ o 26—2V‘ )
J oo = —ET_FS(P*) (71c)
AGC
Jay = glﬂze e F’D(P*) (71d)
The characteristic polynomial of J is, after some simplification, found to be
*
2 Fip(p )
A ( ~ (g5 +0.59 ;T prp)————)\?
Tace ' Fs(o")
Fip")
+ (g9, - (92 +0.59, T pgy) )———5—\
TAGC Fs (P* )
29, 'D(P*)

- 79
T acc Fs(p®) (72)

Condition (C1) is clearly necessary for all the coefficients in this polynomial to be
positive, which is the flrst requirement for a cubic polynomial to be stable in the
continuous-time sense (entailing that all the zeros have strictly negative real parts). The
second requirement, for an arbitrary polynomial with real coefficients A\* + a 2>\2
+ a;h + ag, is that a,a, > a, For Eq. (72), this is automatically satisfied for any
g ,>0, given that (C1) holds. Therefore, we arrive at the following result.

Theorem 4 (Stability for Model CT2). The equilibrium point (p*, V* ,0) of the approxi-
mate continuous-time model (69) is asymptotically stable by the linear approximation if
and only if Condition (C1) holds there.

IV. CONCLUSIONS

A new class of models has been presented for AGC-aided gated range trackers. The
models are nonlinear and allow for statistical variation of the received signal. The utility
of the models has been demonstrated by deriving, for each model, criteria for determinis-
tic stability of track points within a range gate. These criteria may be used to determine
whether or not the range tracker can converge on a target, or possibly on an artificial
centroid target. The stability of a centroid track point, and the resolving power of a
range tracker, were analyzed in an example involving two closely spaced identical point
targets. The result was considered in the light of a previous conclusion based on ambi-
guity functions.

Extensions of the work in at least two directions are important. First, the models
should be analyzed under stochastic target return conditions. That is, the stochastic sta-
bility of track points should be studied. Here, the signal F is a stochastic process, the
models become stochastic difference or differential equations, and pathwise analysis must
be replaced by a statistical description of tracker behavior. A second extension of the
work would be concerned with the interaction between tracking in angle and range, and
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would begin by expanding the models of this paper to account for the angle tracking
servo-loops. Note that several authors have considered angle tracking performance in
multiple target conditions using dynamical modeling of the angle tracking servo-loops
and stability analysis [4] , [15], [16] .
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