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Classical harmonic analysis has traditionally focused on linear and invertible

transformations. Motivated by modern applications, there is a growing interest in

non-linear analysis and synthesis operators. This thesis encompasses applications of

computational harmonic analysis, with a strong emphasis on time-frequency meth-

ods, to modern problems arising in deep learning, data analysis, imaging, and signal

processing.

The first focus of this thesis deals with scattering transforms, which are par-

ticular realizations of convolutional neural networks. While the latter uses trained

convolution kernels, scattering transforms use fixed ones, and this simplification

allows mathematicians to develop a model of deep learning. Mallat originally in-

troduced a wavelet scattering transform, but we study a complementary Fourier

based version. We prove that the Fourier scattering transform enjoys properties



that make it an effective feature extractor for classification, and we also construct

a rotationally invariant modification of this transform. We provide experimental

evidence that shows its effectiveness at representing complicated spectral data.

The second focus of this thesis pertains to the mathematical foundations of

super-resolution, which is concerned with the recovery of fine details from low-

resolution observations. This imaging model can be mathematically formulated as

an ill-posed inverse problem in the space of bounded complex measures. While the

current theory primarily deals with the recovery of discrete measures with minimum

separation greater than the Rayleigh length, we present alternative approaches. One

direction exploits Beurling’s results on minimal extrapolation to obtain a general

theory that is pertinent to a wide class of measures, including those with geometric

structure. Another approach is information theoretic and studies the min-max error

for robust super-resolution of discrete measures below the Rayleigh length.
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Chapter 1: Introduction

1.1 Harmonic Analysis

Generally speaking, harmonic analysis is concerned with the representation of in-

formation (vectors, functions, sets, operators, etc.) as a collection of simpler pieces.

Often, this decomposition is carried out using a transformation of the form,

T : X → Y,

where X and Y are sets, and often times, are metric spaces, Hilbert spaces, etc.

We often interpret X as the original or spatial domain, and Y as the more abstract

coefficient or spectral domain.

The classical example is the Fourier transform on Rd, formally defined as

f 7→ f̂(ξ) =

∫
Rd
f(x)e−2πiξ·x dx, ξ ∈ Rd.

Similarly, the Fourier transform on Td is formally defined as

f 7→ f̂(m) =

∫
Td
f(x)e−2πim·x dx, m ∈ Zd.

The Fourier transform is well-defined on many function spaces, including X =

L1(Rd) and X = L1(Td). Even for these classical examples, the image of L1 under

the Fourier transform is not completely well-understood. Thus, it is difficult to say
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much about the transform domain. See the books and monographs [125, 6, 74] for

further background and discussion.

The study of such transformations involves two components.

(a) The analysis formulation or forward problem is to describe how T acts on X.

What are the properties of the image T (X)?

(b) The synthesis formulation or the backwards problem is concerned with inverting

the transformation T . What x ∈ X can be reconstructed from y = Tx?

Answers to either question depend on the transformation, and classical har-

monic analysis has typically dealt with linear operators. Again, using the classical

Fourier transform as the model example, we know that it is a unitary operator on

L2(Rd), products become convolution, smoothness converts to decay, and preserves

tensor products. These results are considered part of the analysis formulation. It is

also known that certain functions f can be reconstructed from its inverse Fourier

transform, formally defined as

f(x) =

∫
Rd
f̂(ξ)e2πix·ξ dξ.

This is the synthesis formulation.

The interaction of harmonic analysis and its applications, both to pure and ap-

plied math (number theory and partial differential equations), the physical sciences

(quantum mechanics), and engineering (image and signal processing), has motivated

and led to the development of new harmonic analysis ideas. We name a few that

are particularly relevant to this thesis.
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(a) The complex exponentials are not compactly supported, which means that the

Fourier transform is a non-local operator, and aggregates information about f at

a wide range of locations. To obtain localized frequency information, the short-

time Fourier transform (STFT) localizes f at a particular time using a window

function g and takes the Fourier transform of the product. The d-dimensional

STFT is formally defined by the formula,

Vgf(x, ξ) =

∫
R
f(y)g(x− y)e−2πiy·ξ dy,

see [71, 77]. This is a time-frequency representation and Vgf(x, ξ) contains

information about f at location x and frequency ξ. It is a fundamental tool

in audio-processing: the spectrogram, |Vgf(x, ξ)|2, is a common visualization of

audio data.

(b) Both the classical Fourier transform and the STFT have difficulty with repre-

senting discontinuous functions using a limited number of coefficients. This is

manifested in the Gibbs phenomenon for the Fourier transform and the Balian-

Low theorem for Gabor systems [16, 12, 8, 9, 10]. Discontinuous functions arise

frequently in time series and image processing, due to rapid jumps and edges,

respectively. To circumvent these issues, the wavelet transform localizes f at a

particular location using a dilation of a function ψ, and this results in a time-

scale representation [46]. The one-dimensional continuous wavelet transform

(CWT) is formally defined as,

Wψf(a, b) =
1√
|a|

∫
R
f(x)ψ

(x− b
a

)
dx,

3



see [47, 105]. Dealing with discontinuities in higher dimensions has motivated

the development of curvelets [28] and shearlets [80].

(c) It is known that the complex exponentials, {x 7→ e2πimx}m∈Z, forms an or-

thonormal basis for L2(T). More generally, for any orthonormal basis {φj}∞j=1

of a separable Hilbert space H, we have the formula,

f =
∞∑
j=1

〈f, φj〉φj,

where the sum converges in the Hilbert space norm, see [7] for this basic fact.

This equation is in its synthesis formulation, as it describes how to reconstruct

the original function from its basis representation {〈f, φj〉}∞j=1.

When the STFT and CWT are discretized to produce a sequence of functions

acting on f , it is usually not an orthonormal basis. Thus, it is not immediately

clear if the function can even be reconstructed from its coefficient expansion.

Understanding when and what types of sequences can be used to recover the

original function led to the development of frame theory, which deals with non-

orthogonal expansions [58].

1.2 Modern Applications

The examples presented in the previous section (the Fourier transform, STFT,

CWT, and frame theory), all deal with linear analysis and synthesis transforma-

tions. However, recent advances in deep learning and sparse recovery have illustrated

important advantages of non-linear methods over their linear counter-parts.
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(a) A neural network implements a hierarchical transformation, where typically,

each operation is an affine map, non-linearity, pooling, or linear aggregation.

More formally, it can be written as a function on Rd, of the form,

x ∈ Rd 7→ ρN(AN(· · · ρ2(A2(ρ1(A1x+ b1)) + b2)) + bN),

where each Aj is a matrix, bj is a vector, and ρj is a pooling operator and/or a

non-linearity. The network structure imposes constraints on Aj. For example, in

a convolutional neural network, the matrices Aj will have a circulant structure,

and if the convolution filter is compactly supported, then the entries far away

from the diagonal are zero. Typically, the network structure and the non-linear

operators are fixed, while the non-zero entries of Aj and bj are learned in a

training process.

Neural networks provide state-of-the-art results in many classification tasks [86],

but they are not fully understood from both a theoretical and computational

point of view. The main conceptual challenge is to understand why neural

networks work so well. This question deal with the analysis formulation of

the problem, since after all, a neural network is a non-linear transformation

from one Euclidean space to another and we are interested in the properties of

the coefficient domain; this is commonly referred to as the feature space in the

computer science and machine learning communities.

(b) Linear algebra states that any vector in RN can be recovered from its inner

products with some spanning set of vectors. However, in many applications,

obtaining sufficiently many samples is impossible or expensive, and we only
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have M � N observations. If the unknown vector is sparse, or has few non-zero

entries compared to N , then it still might be possible to recover it from only

M � N projections. One major breakthrough in this direction is compressed

sensing, which formalized this intuition [31, 56]. One representative result from

this body of work states that, if a M ×N matrix Φ satisfies certain properties,

such as the restricted isometry property (RIP) [32] or incoherence [25], then any

sufficiently sparse vector can be recovered from y = Φx by solving

min
x̃∈CN

‖x̃‖1 such that y = Φx̃. (BP)

This optimization algorithm was introduced in [35] as basis pursuit.

This result is in the synthesis formulation, as it tells us how to recover a sparse

vector from incomplete linear measurements. This result highlights the advan-

tage of non-linear methods over linear recovery techniques, particularly when

there is some known prior information, such as sparsity, about the underlying

objects. Since the aftermath of compressed sensing, there is still much interest in

extending and generalizing sparse recovery results [62]. We name two directions

that are particularly relevant to this thesis. First, in many imaging applications,

the sensing matrix Φ is does not satisfy RIP or incoherence, primarily because

it is not a random matrix [62]. Second, functions are defined on the continuous

domain, and the discretization error incurred in approximating such functions

can be large [65].

6



1.3 Outline

Chapter 2 discusses the motivation for Mallat’s wavelet scattering transform, from

the viewpoint of encoding invariances and convolutional neural networks. It defines

uniform covering frames and discusses their relationship to time-frequency analysis.

These frames are used in the definition of the Fourier scattering transform.

Chapter 3 proves two important properties of the Fourier scattering transform:

the energy decays exponentially in the depth of the network and the majority of the

energy is concentrated along the path decreasing frequencies. The main theorems

show that the Fourier scattering transform is bounded above and below, contracts

sufficiently small translations and diffeomorphisms, and is non-expansive. These

properties justify its use as a feature extractor for classification.

Chapter 4 is concerned with the problem of incorporating rotational invariance

into a time-frequency scattering transform. We construct uniform covering frames

that are partially generated by rotation and modulation. When incorporated into a

suitable network structure, the resulting rotational Fourier scattering transform is

also rotationally invariant, in addition to the other properties. We also discuss the

connection between this material and recent developments on directional harmonic

analysis.

Chapter 5 contains numerical results and applications of the Fourier scattering

transform. We show how to discretize the uniform covering frame elements to obtain

digital versions, and this allows us to define the fast Fourier scattering transform.

We apply this to supervised anomaly detection in radiological data.

7



Chapter 6 discusses the motivations and applications of super-resolution. The

spectral extrapolation version can be viewed as an ill-posed inverse problems in the

space of measures. Here, the measure encodes the object and the given information

consists of low-frequency and possibly noisy Fourier samples. Depending on the

type of measure, typically assumed to be discrete, we discuss important algorithms

and theoretical results.

Chapter 7 develops the Beurling theory of super-resolution. We examine the

total variation minimization method, and we describe the solutions to this optimiza-

tion technique in terms of a set that depends on the given data. This set provides

valuable information and almost characterizes the contrasting behaviors of the so-

lutions. There is pathological phenomenon associated with some situations. We

provide numerous examples to illustrate the applications of this theory.

Chapter 8 studies the recovery of discrete measures whose separation is below

the Rayleigh length. There are only several algorithms that can handle this situ-

ation, but their exact limitations are unclear. We study the min-max error under

a sparsity constraint on the measure, and we obtain the exact dependence of the

min-max error, up to a constant depending only on the sparsity. This is done by

obtaining a sharp lower bound on certain restricted Fourier matrices.

8



Chapter 2: Background on Scattering Transforms

2.1 Scattering Transforms

Introduced by LeCun [98], a convolutional neural network (CNN) is a composition

of a finite number of transformations, where each transformation is one of three

types: a convolution against a filter bank, a non-linearity, and an averaging. CNNs

approximate functions through an adaptive and iterative learning process and have

been extremely successful for classifying data [98, 86, 94]. Since they have complex

architectures and their parameters are learned through “black-box” optimization

schemes, such as stochastic gradient descent, training is computationally expen-

sive and there is no widely accepted rigorous theory that explains their remarkable

success.

Recently, Mallat [106] provided an intriguing example of a predetermined con-

volutional neural network with formal mathematical guarantees. His wavelet scat-

tering transform propagates the input information through multiple iterations of

the wavelet transform and the complex modulus, and finishes the process with a

local averaging. It is typically used as a feature extractor, which is a transformation

that organizes the input data into a particular form, while simultaneously discard-

ing irrelevant information. It has been shown that the wavelet scattering transform
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provides an effective representation of hand-digit recognition [23], texture images

[124], audio and music analysis [1], and molecular classification [61].

Scattering transforms were originally introduced by Mallat [106] in the con-

text of wavelets. Since then, more general operators have also been referred to as

scattering transforms, so there is not an agreed upon criteria for what is consid-

ered a scattering transform. The definition that we employ is more general than

the original formulation found in [106], but it is more restrictive than some recent

formulations, see [36, 135] for variations on this theme.

A scattering transform depends on an underlying sequence of complex-valued

functions on Rd,

Φ = {ϕ} ∪ {ψλ}λ∈Λ,

where Λ is a countable index set. The network is created by forming a tree structure

from the index set Λ and associating each element of the tree with a corresponding

operator. Indeed, let Λ0 = ∅, and for integers k ≥ 1, let

Λk = Λ× Λ× · · · × Λ︸ ︷︷ ︸
k−times

.

Then, each λ ∈ Λk is associated with the scattering propagator U [λ], formally defined

as

U [λ](f) =



f if λ ∈ Λ0,

|f ∗ ψλ| if λ ∈ Λ,

U [λk]U [λk−1] · · ·U [λ1]f if λ = (λ1, λ2, . . . , λk) ∈ Λk.

Strictly speaking, it does not make sense to write λ ∈ Λ0 = ∅, but we use this

convention for convenience. Associated with Φ is the scattering transform SΦ, which

10



Figure 2.1: The network structure of the scattering transform. The black dots

represent U [λ](f) and can be computed iteratively. The scattering coefficients are

calculated by convolving each U [λ](f) with ϕ.

is formally defined as the sequence of functions,

SΦ(f) = {U [λ]f ∗ ϕ : λ ∈ Λk, k = 0, 1, . . . }.

We call the sequence,

{U [λ]f ∗ ϕ : λ ∈ Λk},

the k-th order scattering coefficients of f . We mention that, in general, the scattering

transform is not invertible due to the loss of the phase factor in each layer. See Figure

2.1, which demonstrates the tree network associated with the scattering transform.

Mallat originally used a specific wavelet frame W in the above scattering

transform and we call the resulting operator the wavelet scattering transform SW .

Let J be an integer and let G be a finite group of rotations on Rd together with

11



reflection about the origin. Consider the wavelet frame,

W =W(J,G) = {ϕ} ∪ {ψ2j ,r : j > −J, r ∈ G},

where ϕ(x) = 2−dJϕ0(2−Jx) is the wavelet corresponding to the coarsest scale 2J ,

and ψ2j ,r(x) = 2djψ(2jr−1x) is a detail wavelet of scale 2−j and localization r. Here,

we have followed Mallat’s notation in [106] where the dilations of ϕ0 and ψ are

inversely related. The index set of W is the countably infinite set

Λ = {(2j, r) : j > −J, r ∈ G}.

Scattering transforms are used to help classify complicated data. Many types

of digital data live in a high-dimensional Euclidean space, but we cannot accurately

describe the properties of this subset (its geometry, distribution, or dimension).

However, a reasonable assumption is that, for certain types, such as audio and

image, a data point’s classification and information content are invariant under small

distortions. Assuming that this hypothesis is correct, effective feature extractor

should contract small perturbations. To this end, Mallat proved that the wavelet

scattering transform contracts small translations and diffeomorphisms, see [106] for

the precise statements.

2.2 Uniform Covering Frames

While Mallat’s results are impressive, there are several reasons to consider an alter-

native case where a non-wavelet frame is used for scattering.

(a) Since neural networks were originally inspired by the structure of the brain, it

12



makes sense to mimic the visual system of mammals when designing a feature ex-

tractor for image classification. The ground-breaking work of Daugman [49, 50]

demonstrated that simple cells in the mammalian visual cortex are modeled by

modulations of a fixed 2-dimensional Gaussian. In other words, this is a Gabor

system with a Gaussian window. We remark that modern neural networks also

incorporate ideas that are not strictly biologically motivated.

(b) The authors of [99] observed that the learned filters (the experimentally “op-

timal” filters) in Hinton’s algorithm for learning deep belief networks [87] are

localized, oriented, band-pass filters, which resemble Gabor functions. Strictly

speaking, this set of functions is not a Gabor system since it is not derived from

a single generating function, but it is not a wavelet system either.

(c) The use of Gabor frames for classification is not unprecedented. The STFT

has been used as a feature extractor for various image classification problems

[82, 92, 2]. These papers pre-dated Mallat’s work on scattering transforms and

did not use Gabor functions in a multi-layer decomposition. We are not aware of

any prior work that combines multi-layer neural networks with Gabor functions.

Motivated by these considerations, we would like to incorporate Gabor-like

functions into the scattering transform and establish theoretical properties of the

resulting operator. We first recall some definitions, as well as discuss the history

behind our viewpoint.

Recall that a semi-discrete frame for L2(Rd) is a sequence of functions on

Rd, {φj}j∈J ⊆ L2(Rd), indexed by a possibly uncountable index set J , with the
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property that there exist 0 < A ≤ B <∞ such that for all f ∈ L2(Rd),

A‖f‖2
L2 ≤

∑
j∈J

‖f ∗ φj‖2
L2 ≤ B‖f‖2

L2 .

The constants A and B are the lower and upper frame bounds, respectively; when

A = B = 1, the sequence is called a Parsevel frame. We call {f ∗ φj}j∈J the

semi-discrete frame coefficients of f . The frame condition allows us to reconstruct

any f ∈ L2(Rd) from its frame coefficients using the Calderón-like formula: In the

special case of a Parseval frame, then the reconstruction formula becomes,

f =
∑
j∈J

f ∗ φj ∗ φj.

Semi-discrete Gabor frames naturally arise in the context of the STFT and

audio processing. Let φj = Mξjg for some fixed function g, called the window

function, and let {ξj}j∈J ⊆ Rd is a discrete set. Suppose we sample the STFT at

the frequencies {ξj}j∈J . A simple calculation shows that

Vgf(x, ξj) =

∫
Rd
f(y)g(x− y)e−2πiy·ξj dy

=

∫
Rd
f(y)(Mξjg)(x− y)e−2πix·ξj dy

= e−2πix·ξj(f ∗ (Mξjg))(x),

The phase factor e−2πix·ξj is harmless, whereas the sequence of functions φj is more

important in determining the invertibility of this operator. In fact, if {Mξjg}j∈J

is a semi-discrete frame, then the original function f can be recovered in a stable

way from its frequency sampled STFT by slightly modifying the Calderón formula.

There is a simple method for verifying whether {Mξjg}j∈J is a frame, but the exact

frame bounds are hard to compute, see [48].
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We typically select a smooth and fast decaying window, such as a Schwartz

function, so that the frame coefficients capture jointly localized in space and fre-

quency information. Gaussians are the unique minimizers of the Heisenberg uncer-

tainty principle, and this motivated Gabor to introduce what are now called Gabor

systems [72]. Generalizing this type of idea, we have the following concept.

Definition 2.2.1. Let P be a countably infinite index set. A uniform covering

frame is a sequence of functions,

F = {f0} ∪ {fp}p∈P ,

satisfying the following assumptions:

(a) Assumptions on f0 and fp. Let f0 ∈ L1(Rd) ∩ L2(Rd) ∩ C1(Rd) such that f̂0 is

supported in a neighborhood of the origin and |f̂0(0)| = 1. For each p ∈ P , let

fp ∈ L1(Rd) ∩ L2(Rd) such that supp(f̂p) is compact and connected.

(b) Uniform covering property. For any R > 0, there exists an integer N > 0 such

that for each p ∈ P , the set supp(f̂p) can be covered by N cubes of side length

2R.

(c) Frame condition. Assume that for all ξ ∈ Rd,

|f̂0(ξ)|2 +
∑
p∈P

|f̂p(ξ)|2 = 1. (2.1)

This implies F is a semi-discrete Parseval frame for L2(Rd): For all f ∈ L2(Rd),

‖f ∗ f0‖2
L2 +

∑
p∈P

‖f ∗ fp‖2
L2 = ‖f‖2

L2 .
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The uniform covering property can be thought of as a size and a shape con-

straint on the sets {supp(f̂p)}p∈P . The covering property is a size constraint because

it implies supp∈P |supp(f̂p)| <∞, where |S| denotes the Lebesgue measure of the set

S. It is also a shape constraint because the number of cubes of a fixed side length

required to cover the unit cube is much less than the number required to cover an

elongated rectangular prism of unit volume.

While each fp is defined in the Fourier domain, it is straightforward to imagine

how each one appears in the spatial domain. Indeed, each fp is supported near the

origin, and it oscillates in a certain direction and at some frequency, depending only

on p. Although fp is not compactly supported due to the uncertainty principle, it

can still have excellent spatial localization. For example, we can choose fp to be a

Schwartz function. If this is the case, the uniform covering property implies that

each member of the family of functions {fp}p∈P is concentrated in a set that has

approximately the same size and shape as the rest.

It is not surprising that a variety of Gabor frames are UCFs, as shown in the

following proposition.

Proposition 2.2.2. Let g ∈ L1(Rd) ∩ L2(Rd) ∩ C1(Rd) be such that supp(ĝ) is

compact and connected, |ĝ(0)| = 1, and
∑

m∈Zd |ĝ(ξ − m)|2 = 1 for all ξ ∈ Rd.

Let A : Rd → Rd be an invertible linear transformation, f0(x) = | detA| g(Ax),

P = AtZd \ {0}, and fp(x) = e2πip·xf0(x) for each p ∈ P. Then, F = {f0}∪{fp}p∈P

is a Gabor frame, as well as a uniform covering frame.

Proof. Since supp(f̂p) is a translation of the connected and compact set supp(f̂0),
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the uniform covering property automatically holds. Let A−t = (A−1)t. For all

ξ ∈ Rd,

|f̂0(ξ)|2 +
∑
p∈P

|f̂p(ξ)|2 = |ĝ(A−tξ)|2 +
∑
p∈P

|ĝ(A−t(ξ − p))|2

=
∑
m∈Zd

|ĝ(A−tξ −m)|2 = 1.

A semi-discrete Gabor frame covers the frequency space uniformly by translat-

ing a fixed set, while a UCF covers the frequency domain by sets of approximately

equal size and shape, which is a more general approach. In contrast, wavelets are

partially generated by dilations of a single function, so a wavelet frame covers the

frequency space non-uniformly by dilating a fixed function. Hence, due to the uni-

form covering property, no wavelet frame can be UCF. This is the major difference

between our setting and that of Mallat’s. Examples of wavelet frames include stan-

dard wavelets [47, 105], curvelets [28], shearlets [79, 80, 39, 40], composite wavelets

[81], and α-molecules [78].

2.3 Fourier Scattering Transform

In contrast to Mallat’s wavelet approach, we use a uniform covering frame

F = {f0} ∪ {fp}p∈P
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in the scattering transform. Slightly abusing notation, we associate each multi-index

p ∈ Pk with the scattering propagator U [p], defined as

U [p]f =



f if p ∈ P0,

|f ∗ fp| if p ∈ P ,

U [pk]U [pk−1] · · ·U [p1]f if p = (p1, p2, . . . , pk) ∈ Pk.

Definition 2.3.1. The Fourier scattering transform SF is formally defined as

SF(f) = {U [p]f ∗ f0 : p ∈ Pk, k = 0, 1, . . . }.

Since the index set P is just an abstract set, the frame identity (2.1), which

is a partition of unity statement, does not immediately provide any information on

how the partitioning is structured. However, there is a canonical way in which the

tiling has to be done.

Proposition 2.3.2. Let F = {f0} ∪ {fp}p∈P be a uniform covering frame. There

exist a constant C = Ctiling1 > 0 and subsets {P [m]}∞m=1 ⊆ P such that for all

integers m ≥ 1,

|f̂0(ξ)|2 +
∑

p∈P[m]

|f̂p(ξ)|2 =


1 if ξ ∈ QC1m(0),

0 if ξ 6∈ QC1(m+1)(0).

(2.2)

Proof. For any set S ⊆ Rd, let diam(S) = supx,y∈S |x − y| be the diameter of S.

Define

C = Ctiling = max
(

diam(supp(f̂0)), sup
p∈P

diam(supp(f̂p))
)
.

Note that C is finite because of the uniform covering property. Indeed, the diameter

of supp(f̂0) is finite since f̂0 is supported in a compact set containing the origin. Fix
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R > 0, and by assumption, the closed and connected set supp(f̂p) can be covered

by N cubes of side length 2R. Then, the diameter of supp(f̂p) is bounded by 2NR.

For integers m ≥ 1, we define

P [m] = {p ∈ P : supp(f̂p) ⊆ QC(m+1)(0)}.

By definition, of P [m], we have

|f̂0(ξ)|2 +
∑

p∈P[m]

|f̂p(ξ)|2 = 0 if ξ 6∈ QC(m+1)(0).

To complete the proof, we prove (2.2) by contradiction. Suppose there exists ξ0 ∈

QCm(0) such that

|f̂0(ξ0)|2 +
∑

p∈P[m]

|f̂p(ξ0)|2 < 1.

By the frame condition (2.1), there exists q ∈ P such that |f̂q(ξ0)| > 0. Then,

ξ0 ∈ supp(f̂q) and by definition of C > 0, we have

supp(f̂q) ⊆ QC(ξ0) ⊆ QC(m+1)(0).

This shows that q ∈ P [m], which contradicts the definition of P [m].

Remark 2.3.3. Suppose F is a Gabor frame satisfying Proposition 2.2.2 for A = aI,

where I is the identity transformation on Rd and a > 0. By definition, we have

P = aZd \ {0}. We can determine the family of sets {P [m] : m ≥ 1} satisfying

Proposition 2.3.2. Let Ctiling = a and

P [m] = {p ∈ P : ‖p‖∞ ≤ m}.
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For all integers m ≥ 1, we have

|f̂0(ξ)|2 +
∑

p∈P[m]

|f̂p(ξ)|2 =


1 if ξ ∈ Qam(0),

0 if ξ 6∈ Qa(m+1)(0).

A scattering transform corresponds to a network with an infinite number of

layers and infinitely many nodes per layer, but when used in practice, it must be

truncated. To truncate SF , we keep terms up to a certain depth K and terms

belonging to appropriate finite subsets of Pk, for k = 1, 2, . . . , K. Recall that in

Proposition 2.3.2, we established the existence of the family of sets {P [m]}m≥1,

which are defined in terms of a constant Ctiling > 0. Similar to before, we create a

tree from this collection of sets. For integers M,K ≥ 1, we define the discrete set

P [M ]K = P [M ]× P [M ]× · · · × P [M ]︸ ︷︷ ︸
K−times

⊆ PK .

Again, we use the convention that P [M ]0 = ∅.

Definition 2.3.4. The truncated Fourier scattering transform SF [M,K] is formally

defined as

SF [M,K](f) = {U [p]f ∗ f0 : p ∈ P [M ]k, k = 0, 1, . . . , K}.
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Chapter 3: Properties of Fourier Scattering

The material in this chapter contains results from the paper [41], which was written

by the author and Wojciech Czaja.

3.1 Energy Concentration

Since SW and SF have the same network structure, it is natural to ask whether SF

satisfies the same broad mathematical properties. This is not immediately clear be-

cause wavelets and Gabor functions are qualitatively and mathematically different,

see [46] for a comparison and discussion. Despite their differences, we prove that

SF satisfies all the same properties of SW . However, our proof techniques are very

different from those of Mallat’s. For example, he used scaling and almost orthog-

onality arguments to exploit the dyadic structure of wavelets, while we use tiling

arguments to take advantage of the uniform covering property.

We need several preliminary results. For all k ≥ 0 and p ∈ Pk, it immediately

follows from the frame property (2.1) that U [p] : L2(Rd)→ L2(Rd) is bounded with

operator norm satisfying ‖U [p]‖L2→L2 ≤ 1. The following proposition contains some

additional results that follow from the frame property. Mallat proved these for his

wavelet frame W in [106], but the arguments only rely on the frame identity (2.1),
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so we omit their proofs.

Proposition 3.1.1. Let F = {f0} ∪ {fp}p∈P be a uniform covering frame. For any

f, g ∈ L2(Rd) and integers K ≥ 0, we have

∑
p∈PK+1

‖U [p]f‖2
L2 +

K∑
k=0

∑
p∈Pk
‖U [p]f ∗ f0‖2

L2 = ‖f‖2
L2 ,

and
K∑
k=0

∑
p∈Pk

∥∥U [p]f ∗ f0 − U [p]g ∗ f0

∥∥2

L2 ≤ ‖f − g‖2
L2 .

The first identity of Proposition 3.1.1 implies that SF : L2(Rd)→ L2(Rd; `2(Z))

is bounded with operator norm satisfying ‖SF‖L2→L2`2 ≤ 1. Indeed, we have

‖SF(f)‖2
L2`2 = lim

K→∞

K∑
k=0

∑
p∈Pk
‖U [p]f ∗ f0‖2

L2 ≤ ‖f‖2
L2 .

The following proposition is a basic result on positive definite functions. For

any integer k ≥ 1 and dimension d, Wendland [133] constructed a compactly sup-

ported, radial, and positive-definite C2k(Rd) function. These functions are essen-

tially anti-derivatives of positive-definite polynomial splines.

Proposition 3.1.2. There exists a non-negative function φ : Rd → R, such that φ̂

is continuous, decreasing along each Euclidean coordinate, and supp(φ̂) = Q1(0).

Proof. For j = 1, 2, . . . , d, let φj : R→ R be defined by its one-dimensional Fourier

transform,

φ̂j(ξj) = (1− |ξj|)1[0,1](|ξj|).

Here, 1S is the characteristic function of the set S and for a positive number x, bxc

stands for the integer n satisfying n ≤ x < n+ 1. Note that each φj is non-negative
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because φ̂j is a univariate positive-definite function, see [133]. Then, let φ : Rd → R

be the function,

φ(x) = φ1(x1)φ2(x2) · · ·φd(xd).

By construction, φ is satisfies the desired properties.

The following result is the crucial exponential decay of energy estimate, and

from here onwards, we let Cdecay denote the constant that appears in the proposition.

Proposition 3.1.3. Let F = {f0} ∪ {fp}p∈P be a uniform covering frame. There

exists a constant Cdecay ∈ (0, 1) depending only on F , such that for all f ∈ L2(Rd)

and integers K ≥ 1,

CK−1
decay‖f ∗ f0‖2

L2 +
∑
p∈PK

‖U [p]f‖2
L2 ≤ CK−1

decay‖f‖
2
L2 .

Proof. By assumption, f̂0 is continuous, supported in a neighborhood of the origin,

and |f̂0(0)| = 1. Then, by appropriately scaling the function discussed in Proposition

3.1.2, there exists a non-negative φ such that φ̂ is continuous, decreasing along each

Euclidean coordinate, |φ̂(0)| > 0, and |φ̂(ξ)| ≤ |f̂0(ξ)| for all ξ ∈ Rd. Then, there

exist constants R = Rφ > 0 and C = Cφ ∈ (0, 1), such that |φ̂(ξ)|2 ≥ C for all

ξ ∈ QR(0). By the uniform covering property, there exists an integer N = NR > 0,

such that for all p ∈ P , there exist {ξp,n ∈ Rd : n = 1, 2, . . . , N} such that

supp(f̂p) ⊆
N⋃
n=1

QR(ξp,n).
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Let 1 ≤ k ≤ K and q ∈ Pk−1. By Plancherel’s formula and the above inclusion,

‖U [q]f ∗ fp‖2
L2 =

∫
Rd
|Û [q]f(ξ)|2|f̂p(ξ)|2 dξ

≤
N∑
n=1

∫
QR(ξp,n)

|Û [q]f(ξ)|2|f̂p(ξ)|2 dξ.

Since |φ̂(ξ − ξp,n)|2 ≥ C for all ξ ∈ QR(ξp,n), we have

N∑
n=1

∫
QR(ξp,n)

|Û [q]f(ξ)|2|f̂p(ξ)|2 dξ

≤ 1

C

N∑
n=1

∫
QR(ξp,n)

|Û [q]f(ξ)|2|f̂p(ξ)|2|φ̂(ξ − ξp,n)|2 dξ.

By Plancherel’s forumla, we have

N∑
n=1

∫
QR(ξn,p)

|Û [q]f |2|f̂p(ξ)|2|φ̂(ξ − ξp,n)|2 dξ ≤
N∑
n=1

‖U [q]f ∗ fp ∗Mξp,nφ‖2
L2 .

Using that φ ≥ 0 and triangle inequality, we have

N∑
n=1

‖U [q]f ∗ fp ∗Mξp,nφ‖2
L2 ≤

N∑
n=1

‖ |U [q]f ∗ fp| ∗ φ‖2
L2 .

Observe that the terms inside the summation on the right hand side do not depend

on the index n. Using Plancherel’s formula and that |φ̂(ξ)| ≤ |f̂0(ξ)| for all ξ ∈ Rd,

we have

‖ |U [q]f ∗ fp| ∗ φ‖2
L2 ≤ ‖ |U [q]f ∗ fp| ∗ f0‖2

L2 .

Combining the previous inequalities and rearranging the result, we obtain

∥∥ |U [q]f ∗ fp| ∗ f0‖2
L2 ≥

C

N
‖U [q]f ∗ fp‖2

L2 .

The strength of this inequality is that C and N are independent of q ∈ Pk−1

and p ∈ P . Then, summing this inequality over all p ∈ P and q ∈ Pk−1, we see that

∑
p∈Pk
‖U [p]f ∗ f0‖2

L2 ≥
C

N

∑
p∈Pk
‖U [p]f‖2

L2 .
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Applying the frame identity (2.1) to the left hand side and setting Cdecay = 1−C/N ,

we have ∑
p∈Pk+1

‖U [p]f‖2
L2 ≤ Cdecay

∑
p∈Pk
‖U [p]f‖2

L2 .

Iterating the above inequality, we obtain

∑
p∈PK

‖U [p]f‖2
L2 ≤ CK−1

decay

∑
p∈P

‖U [p]f‖2
L2 = CK−1

decay‖f‖
2
L2 − CK−1

decay‖f ∗ f0‖2
L2 .

Remark 3.1.4. The key step in the proof of Proposition 3.1.3 is to obtain an

inequality of the form,

‖ |f ∗ g| ∗ f0‖L2 ≥ C‖f ∗ g‖L2 ,

for some constant C > 0 independent of f, g ∈ L2(Rd). It is straightforward to

obtain a lower bound where the constant depends on f and p. Indeed, suppose

f ∗ g 6= 0. Since |f ∗ g| is continuous, we have

(|f ∗ g|)∧(0) =

∫
Rd
|(f ∗ g)(x)| dx = ‖f ∗ g‖L1 > 0.

By continuity of |f ∗ g|, the above inequality, and the assumption that |f̂0(0)| = 1,

we can find a sufficiently small neighborhood V = Vf0,f,g of the origin and constants

Cf0 , Cf,g > 0, such that |f̂0(ξ)| ≥ Cf0 and |(|f ∗g|)∧(ξ)| ≥ Cf,g‖f ∗g‖L1 for all ξ ∈ V .

Then,

‖ |f ∗ g| ∗ f0‖2
L2 ≥

∫
V

|(|f ∗ g|)∧(ξ)|2|f̂0(ξ)|2 dξ ≥ Cf0Cf,g‖f ∗ g‖L1 |V |,

where |V | is the Lebesgue measure of V . However, both Cf,g and |V | depend on f

and g, and L1(Rd) and L2(Rd) norms are not equivalent. Thus, this inequality is not
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very useful for our purposes. However, this naive reasoning suggests that a more

sophisticated covering argument, such as the one given in the proof of Proposition

3.1.3, could work.

Remark 3.1.5. We have several comments about Proposition 3.1.3.

(a) Since Cdecay describes the rate of decay of
∑

p∈Pk ‖U [p]f‖2
L2 , it is of interest

to determine the optimal (smallest) value Cdecay for which Proposition 3.1.3

holds. Minimizing Cdecay is equivalent to maximizing the ratio C/N , where

these constants were defined in the proof. Since N is related to the optimal

covering by cubes of side length 2R and C is the minimum of |φ̂|2 on QR(0),

both C and N decrease as R increases.

(b) Let us examine why the argument proving Proposition 3.1.3 fails for the wavelet

case. Recall that ψ2j ,r has frequency scale 2j whereas ϕ has frequency scale 2−J .

Using the same argument as in the proof of Proposition 3.1.3, we obtain: For

each j > −J , there exists an integer Nj > 0 and CJ ∈ (0, 1), such that for all

k ≥ 1, p ∈ Λk, r ∈ G, and f ∈ L2(Rd),

‖ |U [p]f ∗ ψ2j ,r| ∗ ϕ2J‖2
L2 ≥

CJ
Nj

‖U [p]f ∗ ψ2j ,r‖2
L2 .

The measure of supp(ψ̂2j ,r) is proportional to 2j, and Nj is the number of cubes

required to cover this set with cubes of side length bounded by a constant

multiple of 2−J . Hence, limj→∞Nj = ∞ and this inequality is not meaningful

for large j.

(c) Rather interestingly, numerical experiments in [106, page 1345] have suggested
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that the exponential decay of energy described in the Proposition 3.1.3 holds

for the wavelet case. Mallat conjectured that there exists C ∈ (0, 1) such that

∑
λ∈ΛK

‖U [λ]f‖2
L2 ≤ CK−1‖f‖2

L2 ,

for all f ∈ L2(Rd), and K ≥ 1. Determining whether this property holds for a

given wavelet frame is of interest in the scattering community.

Proposition 3.1.3 proved that the energy decreases exponentially quickly in

the depth, which provides excellent control over the deep layers of the network.

For width truncation, we need to show that the energy of f is concentrated on a

small subset of the coefficients. We are concerned with bounding terms of the form,

‖ |f ∗ fp| ∗ fq‖L2 , where p ∈ P [M ] and q ∈ P [M ]c. These are the terms that are

thrown away due to truncation, and since fp has lower frequencies than fq, we expect

them to be small. Proposition 3.1.6 shows that this intuition holds: most of the

energy is concentrated along the frequency decaying paths.

Proposition 3.1.6. Let F = {f0} ∪ {fp}p∈P be a uniform covering frame. For any

integer M ≥ 1, there exists CM ∈ (0, 1) such that CM → 1 as M → ∞ and for all

integers k ≥ 1, p ∈ Pk, and f ∈ L2(Rd),

‖U [p]f ∗ f0‖2
L2 +

∑
q∈P[M ]

‖U [p]f ∗ fq‖2
L2 ≥ CM‖U [p]f‖2

L2 .

Proof. By Proposition 3.1.2, there exists a non-negative function φ, such that φ̂

is continuous, decreasing along each Euclidean coordinate, supp(φ̂) = Q1(0), and

|φ̂(0)| = 1. Define φM by is Fourier transform, φ̂M(ξ) = φ̂(C−1M−1ξ), where C =
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Ctiling. By definition of P [M ], for all ξ ∈ Rd,

|φ̂M(ξ)|2 ≤ |f̂0(ξ)|2 +
∑

q∈P[M ]

|f̂q(ξ)|2.

Plancherel’s formula and this inequality imply

‖U [p]f ∗ f0‖2
L2 +

∑
q∈P[M ]

‖U [p]f ∗ fq‖2
L2 = ‖ |U [p′]f ∗ fs| ∗ φM‖2

L2 ,

where p = (p′, s). By definition of Ctiling, there exists ξs ∈ Rd such that supp(f̂s) ⊆

QC/2(ξs). Applying triangle inequality to the right hand side of the previous in-

equality and using that φ ≥ 0, we have

‖ |U [p′]f ∗ fs| ∗ φM‖2
L2 ≥ ‖U [p′]f ∗ fs ∗MξsφM‖2

L2

=

∫
Rd
|Û [p′]f(ξ)|2|f̂s(ξ)|2|φ̂M(ξ − ξs)|2 dξ.

Since φ̂ is decreasing along each Euclidean coordinate and the inclusion supp(f̂s) ⊆

QC/2(ξs), we have

CM = inf
ξ∈supp(f̂s)

|φ̂M(ξ − ξs)|2

≥ inf
ξ∈QC/2(0)

|φ̂M(ξ)|2

= |φ̂(2−1M−1, 2−1M−1, . . . , 2−1M−1)|2 > 0.

Applying Plancherel’s formula yields

∫
Rd
|Û [p′]f(ξ)|2|f̂s(ξ)|2|φ̂M(ξ − ξs)|2 dξ ≥ CM‖U [p′]f ∗ fs‖2

L2

= CM‖U [p]f‖2
L2 .
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We have the trivial inequality CM ≤ 1, and observe that

lim inf
M→∞

CM ≥ lim inf
M→∞

|φ̂(2−1M−1, 2−1M−1, . . . , 2−1M−1)|2

= |φ̂(0)|2

= 1.

Remark 3.1.7. This argument fails for wavelet frames. Indeed, we made use of the

uniform tiling property in Proposition 2.3.2 and that f̂p is supported in a cube of

side length Ctiling, independent of p ∈ P .

3.2 Fourier Scattering Properties

We are ready to prove our first main theorem, which shows that SF satisfies several

desirable properties as a feature extractor.

Theorem 3.2.1. Let F = {f0} ∪ {fp}p∈P be a uniform covering frame.

(a) Energy conservation: For all f ∈ L2(Rd),

‖SF(f)‖L2`2 = ‖f‖L2 .

(b) Non-expansiveness: For all f, g ∈ L2(Rd),

‖SF(f)− SF(g)‖L2`2 ≤ ‖f − g‖L2 .

(c) Translation contraction: There exists C > 0 depending only on F , such that for

all f ∈ L2(Rd) and y ∈ Rd,

‖SF(Tyf)− SF(f)‖L2`2 ≤ C|y|‖∇f0‖L1‖f‖L2 .

29



(d) Additive diffeomorphisms contraction: Let ε ∈ [0, 1) and R > 0. There exists

a universal constant C > 0, such that for all f ∈ PW (ε, R), and all τ ∈

C1(Rd;Rd) with ‖∇τ‖L∞ ≤ 1/(2d),

‖SF(f ◦ (I − τ))− SF(f)‖L2`2 ≤ C(R‖τ‖L∞ + ε)‖f‖L2 .

Proof.

(a) Using Propositions 3.1.1 and 3.1.3, we obtain

‖SF(f)‖2
L2`2 = lim

K→∞

K∑
k=0

∑
p∈Pk
‖U [p]f ∗ f0‖2

L2

= ‖f‖2
L2 − lim

K→∞

∑
p∈PK

‖U [p]f‖2
L2 = ‖f‖2

L2 .

(b) Using Proposition 3.1.1, we obtain

‖SF(f)− SF(g)‖2
L2`2 = lim

K→∞

K∑
k=0

∑
p∈Pk
‖U [p]f ∗ f0 − U [p]g ∗ f0‖2

L2

≤ ‖f − g‖2
L2 .

(c) By definition, we have

‖SF(Tyf)− SF(f)‖2
L2`2 =

∞∑
k=0

∑
p∈Pk
‖U [p](Tyf) ∗ f0 − U [p]f ∗ f0‖2

L2 .

Since translation commutes with convolution and the complex modulus, for all

k ≥ 0 and p ∈ Pk, we have

U [p](Tyf) ∗ f0 = Ty(U [p]f) ∗ f0 = U [p]f ∗ Tyf0.

This fact, combined with Young’s inequality, yields

‖U [p](Tyf) ∗ f0 − U [p]f ∗ f0‖L2 = ‖U [p]f ∗ (Tyf0 − f0)‖L2

≤ ‖Tyf0 − f0‖L1‖U [p]f‖L2 .
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Then, we have

‖SF(Tyf)− SF(f)‖L2`2 ≤ ‖Tyf0 − f0‖L1

( ∞∑
k=0

∑
p∈Pk
‖U [p]f‖2

L2

)1/2

. (3.1)

We first bound the summation in (3.1). Using Proposition 3.1.3, we have

∞∑
k=0

∑
p∈Pk
‖U [p]f‖2

L2 ≤ ‖f‖2
L2 +

∞∑
k=1

Ck−1
decay‖f‖

2
L2

=
(

1 +
1

1− Cdecay

)
‖f‖2

L2 .

To bound the L1 term in (3.1), we use the fundamental theorem of calculus,

which is justified by the assumption that f0 ∈ C1(Rd). Then, we obtain

∫
Rd
|f0(x− y)− f0(x)| dx =

∫
Rd

∣∣∣ ∫ 1

0

∇f0(x− ty) · y dt
∣∣∣ dx ≤ |y|‖∇f0‖L1 .

(d) Let φ be a Schwartz function such that φ̂ is real-valued, supported in Q2(0),

and φ̂(ξ) = 1 for all ξ ∈ Q1(0). Let φR(x) = Rdφ(Rx), and let fR = f ∗ φR. By

the non-expansiveness property and triangle inequality

‖SF(f ◦ (I − τ))− SF(f)‖L2`2

≤ ‖f − fR‖L2 + ‖fR ◦ (I − τ)− fR‖L2 + ‖fR ◦ (I − τ)− Tτf‖L2 .

(3.2)

The bound for the first term in (3.2) follows by assumption

‖f − fR‖L2 ≤ ε‖f‖L2 .

To bound the second term in (3.2), we make the change of variable u = x−τ(x)

and note that

∣∣∣∂u
∂x

∣∣∣ = | det(I −∇τ(x))| ≥ (1− d‖∇τ‖L∞) ≥ 1

2
,
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see [22]. Then, we have

‖fR ◦ (I − τ)− f ◦ (I − τ)‖2
L2 =

∫
Rd
|fR(x− τ(x))− f(x− τ(x))|2 dx

≤ 2‖f − fR‖2
L2

≤ 2ε2‖f‖2
L2 .

It remains to bound the third term of (3.2), and we use the argument proved in

[134, Proposition 5]. We have

(fR ◦ (I − τ))(x)− fR(x) = (f ∗ φR)(x− τ(x))− (f ∗ φR)(x)

=

∫
Rd

(φR(x− τ(x)− y)− φR(x− y))f(y) dy.

The above can be interpreted as an integral kernel operator acting on f ∈ L2(Rd)

with kernel

k(x, y) = φR(x− τ(x)− y)− φR(x− y).

The proof is completed by verifying that this kernel satisfies the assumptions

of Schur’s lemma with the appropriate bounds. By the fundamental theorem of

calculus, we have

|k(x, y)| =
∣∣∣ ∫ 1

0

∇φR(x− tτ(x)− y) · τ(x) dt
∣∣∣

≤ ‖τ‖L∞
∫ 1

0

|∇φR(x− tτ(x)− y)| dt.

(i) For each x ∈ Rd, we have

∫
Rd
|k(x, y)| dy ≤ ‖τ‖L∞

∫ 1

0

∫
Rd
|∇φR(x− tτ(x)− y)| dydt

= R‖∇φ‖L1‖τ‖L∞ .
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(ii) For each y ∈ Rd, we have∫
Rd
|k(x, y)| dx ≤ ‖τ‖L∞

∫ 1

0

∫
Rd
|∇φR(x− tτ(x)− y)| dxdt.

For fixed y ∈ Rd and t ∈ [0, 1], we make the change of variables v =

x− tτ(x)− y and note that∣∣∣∂v
∂x

∣∣∣ = | det(I − t∇τ(x))| ≥ (1− td‖∇τ‖L∞) ≥ 1

2
.

Thus, for all y ∈ Rd,∫
Rd
|k(x, y)| dx ≤ 2‖τ‖L∞

∫ 1

0

∫
Rd
|∇φR(v)| dvdt = 2R‖∇φ‖L1‖τ‖L∞ .

By Schur’s lemma, we conclude that

‖Tτf − f‖L2 ≤ 2R‖∇φ‖L1‖τ‖L∞‖f‖L2 .

Combining the above results, we obtain the inequality

‖SF(Tτf)− SF(f)‖L2`2 ≤ (2R‖∇φ‖L1‖τ‖L∞ + ε+
√

2ε)‖f‖L2 .

Set C = max(2‖∇φ‖L1 , 1 +
√

2), which completes the proof.

We are ready to prove our second main theorem, which deals with the trun-

cated Fourier scattering transform. We first provide some motivation for our choice

of truncation and the assumptions that we require below. At this point, it is not

clear whether SF [M,K] is non-trivial for appropriate M and K. For example, let

us focus our attention on the first layer. Say we fix M and compute a finite number

of first-order coefficients,

{|f ∗ fp| ∗ f0 : p ∈ P [M ]}.
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Observe that there exists a non-trivial f ∈ L2(Rd) such that f ∗ fp = 0 for all

p ∈ P [M ]. This is already problematic, since it shows that this truncated operator

has non-trivial kernel and consequently, is not bounded from below. This shows

that, in order to truncate just the first layer of coefficients, we need an additional

assumption on f ∈ L2(Rd). The most natural assumption is that f is (ε, R) band-

limited, and then M can be chosen appropriately depending on R.

Now, we focus our attention on the higher-order terms. The naive idea is to

only compute coefficients indexed by the finite subset P [M ]k ⊆ Pk, namely,

{U [p]f ∗ f0 : p ∈ P [M ]k, k = 0, 1, . . . , K}.

This truncation tosses away the high frequency terms and might seem reasonable

since Proposition 3.1.3 showed that the complex modulus pushes higher frequencies

to lower frequencies. Indeed, for f ∈ L2(Rd) and p ∈ P , the proposition showed

that (|f ∗ fp|)∧ is non-zero in a neighborhood of the origin even though (f ∗ fp)∧ is

compactly supported away from the origin. However, the complex modulus can also

push lower frequencies to higher frequencies. To see why, we note that the function

|f ∗ fp| is continuous, but in general, it is not C1(Rd); even if we make the very

mild assumption that ∇fp ∈ L1(Rd), we can only conclude that |f ∗ fp| has one

distributional derivative belonging to L2(Rd). Thus, the decay of (|f ∗ fp|)∧ is quite

slow, even though (f ∗ fp)∧ is compactly supported! This observation shows that

we must be careful when truncating SF . However, we shall see that our choice of

truncation in fact works, but only requires an alternative argument.

Theorem 3.2.2. Let F = {f0} ∪ {fp}p∈P be a uniform covering frame.
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(a) Upper bound: For all f ∈ L2(Rd) and integers M,K ≥ 1,

‖SF [M,K](f)‖L2`2 ≤ ‖f‖L2 .

(b) Lower bound: Let ε ∈ [0, 1) and R > 0. There exist integers K ≥ 1 and

M ≥ C−1
tilingR sufficiently large depending on ε, such that for all (ε, R) band-

limited functions f ∈ L2(Rd),

‖SF [M,K](f)‖2
L2`2 ≥ (CK

M(1− ε2)− CK−1
decay)‖f‖2

L2 .

(c) Non-expansiveness: For all f, g ∈ L2(Rd) and integers M,K ≥ 1,

‖SF [M,K](f)− SF [M,K](g)‖L2`2 ≤ ‖f − g‖L2 .

(d) Translation contraction: There exists a constant C > 0 depending only on F

such that for all f ∈ L2(Rd), y ∈ Rd, and integers M,K ≥ 1, we have

‖SF [M,K](Tyf)− SF [M,K](f)‖L2`2 ≤ C|y|‖∇f0‖L1‖f‖L2 .

(e) Additive diffeomorphism contraction: Let ε ∈ [0, 1) and R > 0. There exists

a universal constant C > 0, such that for all f ∈ PW (ε, R), and all τ ∈

C1(Rd;Rd) with ‖∇τ‖L∞ ≤ 1/(2d),

‖SF [M,K](f ◦ (I − τ))− SF [M,K](f)‖L2`2 ≤ C(R‖τ‖L∞ + ε)‖f‖L2 .

Proof.

(a) We apply Theorem 4.3.1 to obtain,

‖SF [M,K](f)‖L2`2 ≤ ‖SF(f)‖L2`2 = ‖f‖L2 .
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(b) By Proposition 2.3.2, the assumption that f is almost band-limited, and that

CtilingM ≥ R, we have

‖f‖2
L2 = ‖f ∗ f0‖2

L2 +
∑

p∈P[M ]

‖f ∗ fp‖2
L2 + ε2‖f‖2

L2 .

Applying Proposition 3.1.6 to the summation over P [M ], we obtain,

(1− ε2)‖f‖2
L2 ≤ ‖f ∗ f0‖2

L2 +C−1
M

∑
p∈P[M ]

‖U [p]f ∗ f0‖2
L2 +C−1

M

∑
p∈P[M ]2

‖U [p]f‖2
L2 .

Continuing to apply Proposition 3.1.6, we see that

(1− ε2)‖f‖2
L2 ≤

K∑
k=0

C−kM
∑

p∈P[M ]k

‖U [p]f ∗ f0‖2
L2 + C−KM

∑
p∈P[M ]K

‖U [p]f‖2
L2 .

Using that CM ∈ (0, 1) and Proposition 3.1.3, we have

(1− ε2)‖f‖2
L2 ≤ C−KM

K∑
k=0

∑
p∈P[M ]k

‖U [p]f ∗ f0‖2
L2 + C−KM CK−1

decay‖f‖
2
L2 .

Rearranging, we obtain

‖SF [M,K](f)‖2
L2`2 =

K∑
k=0

∑
p∈P[M ]k

‖U [p]f ∗ f0‖2
L2

≥ (CK
M(1− ε2)− CK−1

decay)‖f‖2
L2 .

Since CM → 1 as M → ∞ and Cdecay ∈ (0, 1) independent of M , for fixed ε,

we can pick K and M sufficiently large so that CK
M(1− ε2)− CK−1

decay > 0. Note

that this term represents the error due to approximating f by a band-limited

function, the width truncation, and the depth truncation.

(c)-(e) For any f, g ∈ L2(Rd), we have

‖SF [M,K](f)− SF [M,K](g)‖2
L2`2 ≤ ‖SF(f)− SF(g)‖2

L2`2 .

Applying Theorem 4.3.1 completes the proof.
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3.3 Comparison and Discussion

In addition to the papers from Mallat’s group [106, 23, 131], we note that Wiatowski

and Bölcskei [134] also constructed a scattering-like transform, which they called the

generalized feature extractor Φ. Additionally, there is a rich history on the approx-

imation properties of neural networks, but this viewpoint is significantly different

from the scattering transform theory and there is little connection; nonetheless, see

[26, 123] and the references therein for approximation theory results.

(a) Generality and flexibility. We used Gabor frames as the model example, but

our theory applies to any uniform covering frame. This is an important point

because Gabor and wavelet frames are generated from a single function and

are thus algebraically related; in contrast, the learned filters in CNNs are in-

dependent of each other and typically do not satisfy such rigid relationships

[99].

So far, the theoretical papers of Mallat and collaborators have exclusively fo-

cused on wavelet scattering transforms.

Wiatowski and Bölcskei [134] studied a scattering framework that is more gen-

eral than ours and Mallat’s. Instead of using the same semi-discrete wavelet

frame for each layer of the network, they used (not necessarily tight) semi-

discrete frames, and allowed each layer of the transformation to use a different

frame. Their theory allowed for a variety of non-linearities at each layer, includ-

ing the complex modulus, and allowed sub-sampling to be incorporated into
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each layer.

(b) Energy conservation. We showed in Theorem 3.2.1 that SF is conserves the L2

norm for any f ∈ L2(Rd).

Mallat showed that SW is energy preserving but that result required a restric-

tive and technical admissibility condition on ψ, see [106, pages 1342-1343]. This

is completely different from the usual admissibility condition related to the in-

vertibility of the continuous wavelet transform. We cannot offer an intuitive

explanation for what Mallat’s complicated admissibility condition means. Nu-

merical calculations have supported the assertion that an analytic cubic spline

Battle-Lemarié wavelet is admissible for d = 1, [106, page 1345]. To our best

knowledge, it is currently unknown if other Littlewood-Paley wavelets, such as

curvelets [28] or shearlets [79, 80, 39, 40], are admissible.

Mallat’s argument for energy conservation is qualitative and cannot be used to

deduce a quantitative result because he approximated f ∈ L2(Rd) with a func-

tion in the logarithmic Sobolev space. Motivated by this observation, Wald-

spurger [131, Theorem 3.1] gave mild assumptions on the generating wavelet

ψ, see the reference for the explicit hypotheses. Under these assumptions, the

following holds: there exists r > 0 and a > 1 such that for any integer k ≥ 2

and real-valued f ∈ L2(R),

∑
λ∈Λk

‖U [λ]f‖2
L2 ≤

∫
R
|f̂(ξ)|2

(
1− exp

(
− 2ξ2

r2a2k

))
dξ. (3.3)

This inequality quantifies the intuition that wavelet scattering coefficients be-

come progressively concentrated in lower frequency regions. For a ψ satisfying
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these assumptions, she showed that the resulting scattering transform conserves

energy. However, her result only applies to one-dimensional real-valued func-

tions, but it is possible that they can be adapted to more general situations. In

particular, they do not apply to curvelets and shearlets.

In general, Φ is not energy preserving and possibly has trivial kernel. This is

not surprising, because the lower bounds on ‖SF(f)‖L2`2 and ‖SW(f)‖L2`2 are

related to the amount of energy the complex modulus pushes from high to low

frequencies from one layer to the next. Thus, it would be surprising if any kind

of frame and any type of nonlinearity has the same kind of effect.

(c) Non-expansiveness. The non-expansiveness property holds for SF , SW , and Φ

because this is a consequence of the frame property and network structure.

(d) Translation contraction estimate. Wiatowski and Bölcskei did not provide a

translation estimate for Φ.

Our translation estimate, Theorem 4.3.1, is similar to Mallat’s translation es-

timate [106, Theorem 2.10]: There exists a constant C > 0 such that for all

f ∈ L2(Rd) and y ∈ Rd,

‖SW(Tyf)− SW(f)‖L2`2 ≤ C2−J |y|
( ∞∑
k=0

∑
λ∈Λk

‖U [λ]f‖2
L2

)
.

To see why, our ‖∇f0‖L1 plays the same role as his C2−J because if f0(x) =

2−dJφ(2−Jx) for some smooth φ ∈ L1(Rd), like in Mallat’s case, then

‖∇f0‖L1 = ‖∇φ‖L12−J = C2−J .
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The only difference is that our inequality is more transparent because it depends

on ‖f‖L2 , whereas Mallat’s estimate depends on the more complicated term∑∞
k=0

∑
λ∈Λk ‖U [λ]f‖2

L2 . This term is finite if f belongs to a certain logarithmic

Sobolev space and ψ satisfies the admissibility condition.

(e) Diffeomorphism contraction estimate. Our diffeomorphism estimate, Theorem

4.3.1d, is essentially identical to the corresponding estimate for Φ [134, Theorem

1].

Mallat’s diffeomorphism estimate [106, Theorem 2.12] is quite different. It says,

for any τ ∈ C2(Rd;Rd) with ‖∇τ‖L∞ sufficiently small, there exists C(J, τ) > 0

such that for all f ∈ L2(Rd),

‖SW(Tτf)− SW(f)‖L2`2 ≤ C(J, τ)
∞∑
k=0

∑
λ∈Λk

‖U [λ]f‖L2 . (3.4)

We caution that this estimate is only meaningful if
∑∞

k=0

∑
λ∈Λk ‖U [λ]f‖L2 <

∞; we expect that characterizing this class of functions is a difficult task. A

sufficient (but perhaps not necessary) condition for this term being finite is

that f belongs to a logarithmic Sobolev space and ψ satisfies the admissibility

condition, and in which case, we have

∞∑
k=0

∑
λ∈Λk

‖U [λ]f‖L2 ≤
∞∑
k=0

∑
λ∈Λk

‖U [λ]f‖2
L2 <∞.

For example, a function belongs to this logarithmic Sobolev space if its aver-

age modulus of continuity is bounded, and this condition is much weaker than

band-limited. The point here is that, the currently known results for both SF

and SW require additional regularity assumptions on f in order to establish
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stability to diffeomorphisms, and removing all regularity assumptions appears

to be challenging.

On the other hand, the inequality (3.4) has applications to finite depth wavelet

scattering networks. Indeed, if one considers a transform that only includes K

layers, then the summation on the right hand side terminates at k = K. Then

we have

C(J, τ)
K∑
k=0

∑
λ∈Λk

‖U [λ]f‖L2 ≤ C(J, τ)(K + 1)‖f‖L2 ,

and this inequality holds without additional regularity assumptions on f . As

we have already mentioned, it is of interest if one could upper bound the left

hand side independent of K.

(f) Rotational invariance. By exploiting that W is partially generated by a finite

rotation group G, Mallat defined a variant of the windowed scattering operator

S̃W that is G-invariant: S̃W(f ◦ r) = S̃W(f) for all f ∈ L2(Rd) and r ∈ G, see

[106, Section 5].

We shall construct a G-invariant rotational Fourier scattering transform SR in

the next chapter.

In general, it is not possible to modify Φ in order to obtain a G-invariant Φ̃,

because the underlying frame elements need to be “compatible” with the action

of G.

(g) Finite scattering networks. The main advantage of the uniform covering frame

approach is that we have a theory for appropriate truncations of SF , and in par-

41



ticular, the lower bound in Theorem 3.2.2. Of course, the lower bound requires

additional regularity assumptions, but in view of the discussion preceding the

statement of the theorem, some kind of assumption is necessary.

In contrast, it is not known whether the analogous result holds for a finite

width and depth truncation of SW because there is no known quantitative ana-

logues of Propositions 3.1.3 and 3.1.6 for the wavelet case. It might be possible

that Waldspurger’s quantitative estimate (3.3) can be used to obtain something

similar to Proposition 3.1.3, but as we remarked earlier, her results only hold

in one dimension. Wiatowski, Grohs, and Bölcskei [135] used ideas similar to

that of Waldspurger’s to prove the exponential decay of energy property for

the wavelet case, but their result only holds in dimension d = 1 and requires

several restrictive assumptions including Sobolev regularity of f . While their

results have applications to finite depth networks, they do not address finite

width networks.

Finally, there is no analogous energy decay result for the generalized feature

extractor Φ. It would be surprising if it were possible to prove that property

without additional assumptions on the underlying frame.
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Chapter 4: Rotational Fourier Scattering

The material in this chapter contains results from the paper [42], which was written

by the author and Wojciech Czaja.

4.1 Rotational UCF

We already saw that certain semi-discrete Gabor frames are UCFs. We construct

another important example of a UCF, and this frame is partially generated by

rotations and modulation. We shall denote the family of functions by R = R(A,B),

and this implicitly depends on two fixed parameters: A > 0 and an integer B ≥ 1.

For each integer m ≥ 1, let m∗ denote the unique integer of the form 2k such that

m ≤ m∗ < 2m.

Let Rm be the 2× 2 counter-clockwise rotation matrix

Rm =

cos(Bm) − sin(Bm)

sin(Bm) cos(Bm)

 , where Bm =
2π

m∗B
.
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Let Gm = Gm(B) be the finite rotation group generated by the following set of d×d

matrices

{


Rm

1

. . .

. . .

1


,



1

Rm

1

. . .

1


, · · · ,



1

. . .

. . .

1

Rm



}
.

The identity element of Gm is denoted e. We shall see that G1 is the most important

group in this construction, so to simplify our notation, we write G = G1. If H is a

subgroup of G, then we write H ≤ G. We have the nested subgroup property,

G = G1 ≤ G2 ≤ · · · ≤ Gm ≤ · · · .

It follows that for any n ≥ m, each r ∈ Gm is a bijection on Gn.

We need to introduce spherical coordinates. Let φ1, φ2, . . . , φd−1 be the an-

gular coordinates where φd−1 ∈ [0, 2π) and φj ∈ [0, π] for j = 1, 2, . . . , d − 2. If

(ξ1, ξ2, . . . , ξd) are the Euclidean coordinates of ξ ∈ Rd, then its spherical coordi-

nates are (ρ, φ1, . . . , φd−1), where ρ = |ξ|,

ξd = ρ
d−1∏
j=1

sin(φj),

ξk = ρ cos(φk)
k−1∏
j=1

sin(φj),

for k = 1, 2, . . . , d − 1. The following proposition contains two well-known results

about the existence of certain cutoff functions whose modulus squared forms a par-

tition of unity.
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Proposition 4.1.1 (Hernández and Weiss [83], Chapter 1.3).

(a) For any A > 0, there exists a non-negative and even ηA ∈ C∞(R) supported in

the closed interval [−A,A] such that for all x ∈ R,

∑
m∈Z

|ηA(x− Am)|2 = 1.

(b) For any integers m ≥ 1 and B ≥ 1, there exists a non-negative βm,B ∈

C∞(Sd−1), supported in the sector {φ1 : |φ1| ≤ Bm}, such that for all ω ∈ Sd−1,

∑
r∈Gm

|βm,B(rω)|2 = 1.

We are ready to define the functions in the Fourier domain and in spherical

coordinates. For any ξ ∈ Rd, we can write ξ = ρω where ρ ≥ 0 and ω ∈ Sd−1. Let

f0 be the smooth function such that

f̂0(ξ) = f̂0(ρω) = ηA(ρ).

For each m ≥ 1 and r ∈ Gm, let fm,r be the smooth function such that

f̂m,r(ξ) = f̂m,r(ρω) = ηA(ρ−mA)βm,B(r−1ω).

The next result shows that the sequence of functions,

R = {f0} ∪ {fm,r : m ≥ 1, r ∈ Gm},

is a uniform covering frame, where the index set is

G = {(m, r) : m ≥ 1, r ∈ Gm}.
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Figure 4.1: Let d = 2 and G be the group of rotations by angle 2π/8. The black

dots are elements of G, when embedded in R2, for the first four uniform Fourier

scales, and the shaded gray region is the support of (f3,2π/8)∧.

Theorem 4.1.2. Let R = {f0} ∪ {fm,r}(m,r)∈G be the sequence of functions defined

above. Then, R is a uniform covering frame for L2(Rd).

Proof. By construction, f̂0 and f̂p are supported in a compact and connected sets.

Note that f̂0(0) = ηA(0) = 1, and since f0 and fp are Schwartz functions, they

belong to L1(Rd) ∩ L2(Rd) ∩ C1(Rd).

We check that the frame condition holds. By construction, we have

|f̂0(ξ)|2 +
∞∑
m=1

∑
r∈Gm

|f̂m,r(ξ)|2

= |ηA(ρ)|2 +
∞∑
m=1

|ηA(ρ− Am)|2
∑
r∈Gm

|βm,B(r−1ω)|2 = 1,

for all ξ ∈ Rd. See Figure 4.1 for a visualization of G and the tiling properties of R.

It remains check that the uniform covering property holds. For each m ≥ 1 and

r ∈ Gm, since supp(f̂m,r) is a rotation of supp(f̂m,e), it suffices to check the uniform
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covering property for the family of sets {supp(f̂m,e) : m ≥ 1}. Further, it suffices to

check the uniform covering property for the subset {supp(f̂m,e) : m∗B ≥ 4}, since

the complement of this set is {supp(f̂m,e) : m∗B < 4}, which has finite cardinality.

From here onwards, we assume m∗B ≥ 4, or equivalently, Bm ≤ π/2. Observe

that f̂m,e is supported in the wedge,

Wm =
{

(ρ, φ1, φ2, . . . , φd−1) : |ρ− Am| ≤ A, |φ1| ≤ Bm

}
.

To show that {Wm : m∗B ≥ 4} satisfies the uniform covering property, it suffices

to show that the maximum distance between any two points in Wm is bounded

uniformly in m.

Let ξ, ζ ∈ Wm and let (ρ, φ1, φ2, . . . , φd−1) and (γ, θ1, θ2, . . . , θd−1) be their

spherical coordinates, respectively. We have

|ξ1 − ζ1| = |ρ cos(φ1)− γ cos(θ1)|.

Since |φ1| ≤ Bm ≤ π/2 and similarly for θ1, we see that

|ξ1 − ζ1| ≤ A(m+ 1)− A(m− 1) cos(Bm).

See Figure 5.1 for an illustration of this inequality. Using the standard trigonometric

inequality, |1− cos(t)| ≤ t2/2 for all t ∈ R, we see that

|ξ1 − ζ1| ≤ 2A+
Am

2

( 2π

m∗B

)2

= 2A+
2π2A

B2

m

(m∗)2
.

For k = 2, 3, . . . , d− 1, we have

|ξk − ζk| =
∣∣∣ρ cos(φk)

k−1∏
j=1

sin(φj)− γ cos(θk)
k−1∏
j=1

sin(θj)
∣∣∣

≤ ρ| sin(φ1)|+ γ| sin(θ1)|.
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0 4π
m∗B

Figure 4.2: The shaded region represents all possible values of (ρ, φ1) and (γ, θ1),

where A(m − 1) ≤ ρ ≤ A(m + 1) and |θ1| ≤ Bm, and likewise for γ and φ1.

The maximum horizontal distance between any points in this wedge is the width

of the rectangle, and this distance is attained by the points (A(m + 1), 0) and

(A(m− 1) cos(2π/(m∗B)), A(m− 1) sin(2π/(m∗B))), located at the two black dots

on the perimeter of the wedge.

Using that ρ ≤ A(m + 1), the trigonometric inequality | sin(φ1)| ≤ |φ1| ≤ Bm, and

similarly for | sin(θ1)|, we have

|ξk − ζk| ≤ 2A(m+ 1)Bm ≤
4πA

B

m+ 1

m∗
,

for k = 2, 3, . . . , d− 1. The same argument shows that

|ξd − ζd| ≤ ρ| sin(φ1)|+ γ| sin(θ1)| ≤ 4πA

B

m+ 1

m∗
.

The above inequalities imply the Euclidean distance between any two points in Wm

is bounded uniformly in m, which completes the proof.

Definition 4.1.3. Fix A > 0 and an integer B ≥ 1. Let

R = R(A,B) = {f0} ∪ {fm,r}(m,r)∈G
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be the sequence of functions constructed in this section. We call R a rotational

uniform covering frame.

Remark 4.1.4. Observe that f̂m,r(ξ) = f̂m,e(r
−1ξ), so fm,r as a rotation of fm,e.

We also have f̂m+1,e(ξ) = f̂1,e(ξ−mA), so each fm,e is a modulation of f1,e. For this

reason, we say rotational uniform covering frames are generated by rotations and

modulations.

4.2 Rotational Fourier Scattering

If the uniform covering frame has additional group structure, it is possible to ex-

ploit that to construct a group invariant scattering transform. Let R = {f0} ∪

{fm,r}(m,r)∈G be a rotational uniform covering frame and recall that its index set is

G = {(m, r) : m ≥ 1, r ∈ Gm} with G = G1. In order to derive a time-frequency

scattering transform that is invariant under rotations G, we carefully study its group

action on R. This is carried out in the subsequent steps.

We define the following left and right group actions of G on G. For each r ∈ G

and (m, s) ∈ G, let r(m, s) = (m, rs) and (m, s)r = (m, sr). Both operations are

well-defined in view of the nested subgroup property for {Gm}. For any k ≥ 1, we

define the left and right group actions of G on Gk by extending the above definitions.

Indeed, each r ∈ G acts on p ∈ Gk on the left according to

r(p1, p2, . . . , pk) = (rp1, rp2, . . . , rpk),

and similarly for its right action.
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The previous observations lead us to the following decomposition. We saw

that G is a group action on Gk. Then, there exists a set Qk ⊆ Gk such that we have

the disjoint union

Gk =
⋃
r∈G

rQk. (4.1)

Explicitly, we have Qk = G0 × Gk−1, where G0 = {(m, r) : m ≥ 1, r ∈ Gm/G} and

Gm/G is the quotient group, Gm modulo G.

We can consider the action of G on R. Each r ∈ G acts on L2(Rd) by the rule

r : f(x) 7→ fr(x) = f(rx).

Using the definition of fm,s, for any r ∈ G,

(fm,s)r(x) = fm,s(rx) = fm,r−1s(x).

This defines a group action of G on R. Further, this calculation shows that the

invariant subsets of R under G are {f0} and {fm,s : s ∈ Gm}, for each m ≥ 1. For

any r ∈ G and (m, s) ∈ G, by the previous identity and a change of variables,

(fr ∗ fm,s)(x) = (f ∗ (fm,s)r−1)(rx) = (f ∗ fm,rs)r(x).

By iterating this identity, for all integers k ≥ 1 and p ∈ Gk, we obtain

(U [p]fr)(x) = (U [rp]f)r(x).

By definition, f0 is rotationally invariant, so we see that

(U [p]fr ∗ f0)(x) = ((U [rp]f)r ∗ f0)(x) = (U [rp]f ∗ f0)r(x). (4.2)
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We now carry out the same steps but for specific finite subsets of Gk and Qk.

Fix integers k ≥ 1 and M ≥ 1. We define the finite set

G[M ] = {(m, r) : 1 ≤ m ≤M, r ∈ Gm}.

By construction of R, we have

|f̂0(ξ)|2 +
∑

p∈G[M ]

|f̂p(ξ)|2 =


1 if ξ ∈ BAM(0),

0 if ξ 6∈ BAM(0).

(4.3)

Let G[M ]k be the product of G[M ] with itself k times. Using the same definition as

before, we see that G is a group action on G[M ]k. Similar to before, there exists a

finite set Q[M,K] ⊆ G[M ]k such that we have the disjoint union

G[M ]k =
⋃
r∈G

rQ[M,k]. (4.4)

Explicitly, we have Q[M,k] = G0[M ]× G[M ]k where

G0[M ] = {(m, r) : 1 ≤ m ≤M, r ∈ Gm/G}.

For all integers k ≥ 1 and p ∈ G[M ]k, the same argument as before shows that

(U [p]fr ∗ f0)(x) = (U [rp]f ∗ f0)r(x). (4.5)

Definition 4.2.1. Given a rotational uniform covering frame R, the associated

rotational Fourier scattering transform SR is formally defined as

SR(f)

=
{
|G|−1/2

∥∥(f ∗ f0)r
∥∥
`2r(G)

}
∪
{∥∥(U [rq]f ∗ f0)r

∥∥
`2r(G)

: q ∈ Qk, k ≥ 1
}

=
{
|G|−1/2

(∑
r∈G

|(f ∗ f0)r|2
)1/2}

∪
{(∑

r∈G

|(U [rq]f ∗ f0)r|2
)1/2

: q ∈ Qk, k ≥ 1
}
.
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Definition 4.2.2. Given a rotational uniform covering frame R and integers M ≥

1 and K ≥ 1, the associated truncated rotational Fourier scattering transform

SR[M,K] is formally defined as

SR[M,K](f)

=
{
|G|−1/2

∥∥(f ∗ f0)r
∥∥
`2r(G)

}
∪
{∥∥(U [rq]f ∗ f0)r

∥∥
`2r(G)

: q ∈ Q[M,k], 1 ≤ k ≤ K
}
.

Remark 4.2.3. We explain our choice of notation. Throughout this document, we

used F to denote a generic uniform covering frame whereas we used R to mean

the rotational variant. By assumption, SF denotes the Fourier scattering transform

and the subscript emphasizes that it depends on a fixed F . Similarly, the super-

script in SR indicates that the rotational Fourier scattering transform depends on

a fixed R. By Theorem 4.1.2, R is a perfectly valid uniform covering frame, so it

can be used as the underlying frame in the Fourier scattering transform, and this

operator is denoted SR. However, we emphasize that while both SR and SR use the

same frame R, they are distinct operators, and likewise for their truncations. This

can be easily seen from their definitions or by comparing their network structures.

While the sub-script and super-script notation might seem odd, we use them to

differentiate between these two operators. In the next two propositions, we derive

their quantitative relationship.

Proposition 4.2.4. Let R = {f0} ∪ {fm,r}(m,r)∈G be a rotational uniform covering
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frame. For all f, g ∈ L2(Rd), we have

‖SR(f)‖L2`2 = ‖SR(f)‖L2`2 ,

‖SR(f)− SR(g)‖L2`2 ≤ ‖SR(f)− SR(g)‖L2`2 .

Proof. To prove the equality, we use the decomposition (4.1) to obtain

‖SR(f)‖2
L2`2 =

1

|G|
∑
r∈G

‖(f ∗ f0)r‖2
L2 +

∞∑
k=1

∑
q∈Qk

∑
r∈G

‖(U [rq]f ∗ f0)r‖2
L2

= ‖f ∗ f0‖2
L2 +

∞∑
k=1

∑
q∈Qk

∑
r∈G

‖U [rq]f ∗ f0‖2
L2

= ‖f ∗ f0‖2
L2 +

∞∑
k=1

∑
p∈Gk
‖U [p]f ∗ f0‖2

L2 = ‖SR(f)‖2
L2`2 .

To prove the inequality in the proposition, we apply the reverse triangle inequality

for the `2(G) norm in the definition of SR and the decomposition (4.1),

‖SR(f)− SR(g)‖2
L2`2 ≤

1

|G|
∑
r∈G

‖(f ∗ f0)r − (g ∗ f0)r‖2
L2

+
∞∑
k=1

∑
q∈Qk

∑
r∈G

‖(U [rq]f ∗ f0)r − (U [rq]g ∗ f0)r‖2
L2

= ‖f ∗ f0 − g ∗ f0‖2
L2

+
∞∑
k=1

∑
q∈Qk

∑
r∈G

‖U [rq]f ∗ f0 − U [rq]g ∗ f0‖2
L2

= ‖f ∗ f0 − g ∗ f0‖2
L2 +

∞∑
k=1

∑
p∈Gk
‖U [p]f ∗ f0 − U [p]g ∗ f0‖2

L2

= ‖SR(f)− SR(g)‖2
L2`2 .

Proposition 4.2.5. Let R = {f0} ∪ {fm,r}(m,r)∈G be a rotational uniform covering

frame. There exists C = Crtiling > 0 such that for any integers M,K ≥ 1 and integer
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N ≤ CM ,

‖SR[M,K](f)‖L2`2 ≥ ‖SR[N,K](f)‖L2`2 .

Proof. By comparing the identities (2.2) and (4.3), we see that there exists a con-

stant Crtiling > 0 such that whenever N ≤ CrtilingM , we have P [N ]k ⊆ G[M ]k. This

fact and the disjoint decomposition (4.4) imply

‖SR[M,K](f)‖2
L2`2 =

1

|G|
∑
r∈G

‖(f ∗ f0)r‖2
L2 +

K∑
k=1

∑
q∈Q[M,k]

∑
r∈G

‖(U [rq]f ∗ f0)r‖2
L2

= ‖f ∗ f0‖2
L2 +

K∑
k=1

∑
p∈G[M ]k

‖U [p]f ∗ f0‖2
L2

≥ ‖f ∗ f0‖2
L2 +

K∑
k=1

∑
p∈P[N ]k

‖U [p]f ∗ f0‖2
L2

= ‖SR[N,K](f)‖L2`2 .

4.3 Rotational Invariance and Properties

We are ready to state and prove the main theorem, which shows that SR and

SR[M,K] are effective feature extractors. We already did most of the work in the

construction of SR and SR[M,K], and in proving Propositions 4.2.4 and 4.2.5. The

basic strategy is to quantitatively relate SR to SR and then use known results about

the latter.

Theorem 4.3.1. Let R = {f0} ∪ {fm,r}(m,r)∈G be a rotational uniform covering

frame.
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(a) G-invariance: For all integers M,K ≥ 1, f ∈ L2(Rd), and r ∈ G,

SR(fr) = SR(f) and SR[M,K](fr) = SR[M,K](f).

(b) Upper bound: For all integers M,K ≥ 1 and f ∈ L2(Rd),

‖SR[M,K](f)‖L2`2 ≤ ‖SR(f)‖L2`2 = ‖f‖L2 .

(c) Lower bound: Let ε ∈ [0, 1) and R > 0. For sufficiently large M,K ≥ 1, there

exists C ∈ (0, 1) depending on R, ε,M,K, such that for all (ε, R) band-limited

functions f ∈ L2(Rd),

‖SR[M,K](f)‖L2`2 ≥ C‖f‖L2 .

(d) Non-expansiveness: For all integers M,K ≥ 1 and f, g ∈ L2(Rd),

‖SR[M,K](f)− SR[M,K](g)‖L2`2 ≤ ‖SR(f)− SR(g)‖L2`2 ≤ ‖f − g‖L2 .

(e) Translation contraction: There exists C > 0 depending only on R such that for

all integers M,K ≥ 1, f ∈ L2(Rd), and y ∈ Rd,

‖SR[M,K](Tyf)− SR[M,K](f)‖L2`2

≤ ‖SR(Tyf)− SR(f)‖L2`2

≤ C|y|‖∇f0‖L1‖f‖L2 .

(f) Additive diffeomorphism contraction: There exists a constant C > 0 such that

for all ε ∈ [0, 1), R > 0, (ε, R) band-limited f ∈ L2(R2), and τ ∈ C1(R2;R2)
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with ‖∇τ‖L∞ ≤ 1/4,

‖SR[M,K](f ◦ (I − τ))− SR[M,K](f)‖L2`2

≤ ‖SR(f ◦ (I − τ))− SR(f)‖L2`2

≤ C(R‖τ‖L∞ + ε)‖f‖L2 .

Proof.

(a) For the first term in SR(fr) and SR[M,K](fr), we use that f0 is rotationally

invariant to obtain

∑
s∈G

|(fr ∗ f0)s|2 =
∑
s∈G

|(f ∗ f0)rs|2 =
∑
s∈G

|(f ∗ f0)s|2.

For the remaining terms in SR(fr), fix an integer k ≥ 1 and q ∈ Qk. By identity

(4.2) and re-indexing the following sum, we have

∑
s∈G

|(U [sq]fr ∗ f0)s|2 =
∑
s∈G

|(U [rsq]f ∗ f0)rs|2 =
∑
s∈G

|(U [sq]f ∗ f0)s|2.

This proves that SR(fr) = SR(f). For the remaining terms in SR[M,K](fr),

fix an integer 1 ≤ k ≤ K and q ∈ Q[M,k]. By identity (4.5) and re-indexing

the following sum, we have

∑
s∈G

|(U [sq]fr ∗ f0)s|2 =
∑
s∈G

|(U [rsq]f ∗ f0)rs|2 =
∑
s∈G

|(U [sq]f ∗ f0)s|2.

This proves that SR[M,K](fr) = SR[M,K](f) and SR(fr) = SR(f).

(b) By definition and Proposition 4.2.4, we have

‖SR[M,K](f)‖L2`2 ≤ ‖SR(f)‖L2`2 = ‖SR(f)‖L2`2 .

We apply Theorem 3.2.1 to complete the proof.
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(c) By Proposition 4.2.5, there exists Crtiling > 0 such that for all N ≤ CrtilingM , we

have

‖SR[M,K](f)‖L2`2 ≥ ‖SR[N,K](f)‖L2`2 .

Using the lower bound for SR[N,K] in Theorem 3.2.2 completes the proof.

(d) By definition and Proposition 4.2.4, we have

‖SR[M,K](f)− SR[M,K](g)‖L2`2 ≤ ‖SR(f)− SR(g)‖L2`2 .

Since SR is non-expansive, see Theorem 3.2.1, the result follows.

(e) By definition and Proposition 4.2.4,

‖SR[M,K](Tyf)− SR[M,K](f)‖L2`2 ≤ ‖SR(Tyf)− SR(f)‖L2`2 .

The rest follows by using the translation estimate for SR, see Theorem 3.2.1.

(f) Again, we use the definition and Proposition 4.2.4 to deduce

‖SR[M,K](f ◦ (I − τ))− SR[M,K](f)‖L2`2 ≤ ‖SR(f ◦ (I − τ))− SR(f)‖L2`2 .

We use the diffeomorphism estimate, Theorem 3.2.1, to complete the proof.

Remark 4.3.2. We saw in the proof of Theorem 4.3.1 that if we replaced the `2(G)

norm in the definition of SR and SR[M,K] with the `p(G) norm for any 1 ≤ p <∞,

then the resulting operators would still be G-invariant. Additionally, since G is a

finite set, the `p(G) and `2(G) norms are equivalent up to constants depending on

p and |G|, so our estimates carry generalize to the `p(G) case. We chose the `2(G)
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norm in the definitions of SR and SR[M,K] because it is more natural to work with

a Hilbert space as opposed to a Banach space.

4.4 Relationship to Directional Representations

While our construction of rotational uniform covering frames is motivated by neu-

ral networks, since they are also time-frequency representations and are partially

generated by rotations, it is natural to ask whether they are related to recent devel-

opments in directional Fourier analysis. In order to make precise comparisons, we

first summarize several important works on directional Fourier and wavelet analysis.

See the theses [111, 132] for additional discussion on directional representations and

applications.

(a) Candès introduced a wavelet system that decomposes a function according to

its direction, scale, and location. For an appropriate non-zero function ψ, see

[26, Definition 1], and (a, b, u) ∈ R+ × R× Sd−1, a ridgelet is

ψa,b,u(x) = a−1/2ψ(a−1(u · x− b)). (4.6)

To see why this function is directionally sensitive, observe that ψa,b,u is constant

on hyperplanes perpendicular to u and oscillates in the direction of u. Candès

also introduced a discrete ridgelet system, and proved that any L2(Rd) can be

reconstructed from its continuous and discrete coefficients, see [26, Theorems 1

and 2] for precise statements.

(b) In contrast to the above wavelet inspired approach, Grafakos and Sansing con-
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structed directional time-frequency representations. For a non-zero g ∈ S(R)

and (m, t, u) ∈ R× R× Sd−1, a weighted Gabor ridge function is

gm,t,u(x) = D(n−1)/2(gm,t)(u · x), where gm,t(s) = e2πim·(s−t)g(s− t),

and D(n−1)/2 is the Fourier multiplier with symbol |ξ|(n−1)/2. Similar to ridgelets,

a weighted Gabor ridge function is constant along hyperplanes perpendicular to

u and oscillates in the direction of u. They established a L2(Rd) reconstruction

formula for this continuous family, see [75, Theorem 3], but were unable to

obtain a discrete Parseval frame from this continuous family. This discretization

problem was partially resolved: by omitting the multiplier D(n−1)/2, it is possible

to obtain a discrete frame, consisting of (un-weighted) Gabor ridge functions,

for certain subspaces of L2(Rd), see [43, Theorem 5.6] for a precise statement.

(c) While both of the previous representations relied on the ridge function x 7→ x·u,

Candès and Donoho used an entirely different approach to construct a family

of wavelets called curvelets [28]. They are constructed using a decomposition

of the Fourier domain in the same spirit as the second dyadic decomposition

[125, pages 377 and 403]. Each curvelet oscillates in a certain direction and its

shape satisfies the anisotropic scaling relation, width ∼ length2. We omit their

precise definitions since they are quite technical to state and such details are

not relevant to our current discussion.

(d) Finally, shearlets [96, 80, 39, 40, 20, 112] are also wavelets that extract direc-

tional information from functions. Unlike curvelets, they are generated using

shearing operations as opposed to rotations.
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With these examples of directional representations in mind, we return our

attention to RUCFs. We first show that each frame element oscillates in a certain

direction, which is not surprising since they are partially generated by rotations. We

already observed that fp ∈ S(Rd), so by Fourier inversion and a change of variables,

for all x ∈ Rd,

fm,r(x) =

∫ ∞
0

∫
Sd−1

e2πiρ(x·rω)ηA(ρ− Am)βm,B(ω)ρd−1 dσ(ω)dρ, (4.7)

where σ is the surface measure of Sd−1. Recall that βm,B is supported in the cap

{φ1 : |φ1| ≤ Bm}, which implies the above integral is taken over a subset of the

sphere where ω ∼ e1. We consider two separate cases.

(a) If x ∈ Rd is parallel to re1, then x · rω ∼ 1 and the phase in the integrand of

(4.7) rapidly changes. Since ηA and βm,B are non-negative, we expect fm,r to

oscillate in the direction of re1. Further, due to the compact support of ηA, we

have ρ ∼ mA, so fm,r oscillates at frequency approximately mA.

(b) If x ∈ Rd is perpendicular to re1, then x ·rω ∼ 0, and the phase in the integrand

of (4.7) changes slowly. Since ηA and βm,B are essentially constant, we do not

expect fm,r to oscillate in directions perpendicular to re1.

Figure 4.3 contains several numerically computed examples of fm,r and they

agree with the qualitative description that we presented.

In view of the directional bias of the frame elements, one might suspect that the

frame coefficient f ∗ fm,r carries directional frequency information about f . Indeed,
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Figure 4.3: Let d = 2 and G be the group generated by rotations by 2π/4. The fig-

ures are zoomed-in intensity plots of the rotational uniform covering frame elements.

The (n,m)-th image corresponds to fm,rn where rn = 2π(n− 1)/(4m∗).

by Plancherel,

‖f ∗ fm,r‖2
L2 =

∫ ∞
0

∫
Sd−1

|f̂(ρrω)|2|ηA(ρ−mA)|2|βm,B(ω)|2ρd−1 dσ(ω)dρ.

By the definitions of ηA and βm,B, the integral is taken over the region where ρ ∼ mA

and ω ∼ e1. This equation shows that ‖f ∗ fm,r‖L2 is a weighted average of how

much f oscillates at frequencies roughly mA and in approximately the re1 direction.

We have shown that rotational uniform covering frame elements are direction-

ally sensitive and their frame coefficients carry directional information. These prop-

erties are also shared by ridgelets, weighted Gabor ridge functions, and curvelets.

However, since ridgelets and weighted Gabor ridge functions are constant on hy-

perplanes, they are not in Lp(Rd) for any 0 < p < ∞. In contrast, curvelets and

rotational uniform covering frame elements are smooth and well-localized in both

space and frequency, and consequently, they belong to many popular function spaces.

61



Of course, curvelets are not uniform covering frames, but their constructions have

significant similarities. In view of these observations, it is reasonable to say that

Gabor ridge functions are time-frequency analogues of ridgelets, while rotational

uniform covering frame elements are time-frequency analogues of curvelets.
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Chapter 5: Applications of Fourier Scattering

Some of the material in this chapter also appeared in the papers [41, 42] by the

author and Wojciech Czaja, while the remainder of the material has not yet been

published.

5.1 The Discretization Problem

For data analysis and signal processing applications, all functions must be converted

into arrays. We show how to construct discrete and finite uniform covering frames.

Let F be a UCF with index set P , and note that F does not necessarily have

to be a RUCF. Recall that a discrete frame for L2(Rd) is a sequence of functions

{φj}j∈J ⊆ L2(Rd) indexed by a possibly uncountable index set J such that there

exist 0 < A ≤ B <∞ and for all f ∈ L2(Rd),

A‖f‖2
L2 ≤

∑
j∈J

|〈f, φj〉|2 ≤ B‖f‖2
L2 .

Similar to the semi-discrete case, there is an associated reproducing formula for

recovering f , see [58, 47].

Semi-discrete Gabor frames arose in sampling the frequencies of the STFT,

while discrete Gabor frames arose in sampling both the space and frequency domain

of the STFT. Consider the discrete set {(xj, ξj)}j∈J and let g̃ be the involution of
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g. By a similar calculation, we have

Vgf(xj, ξj) = e−2πixj ·ξj
∫
Rd
f(y)(TxjMξj g̃)(y) dy.

Again, the phase factor e−2πixj ·ξj is unimportant. The above can be interpreted as

the inner product of f with the sequence of functions {TxjMξj g̃}j∈J , which estab-

lishes its relationship to frames. This collection of functions can be studied from a

representation theory viewpoint. Indeed, the operator TxMξ is a unitary represen-

tation of the Heisenberg group on L2(Rd), see [77]. We do not adapt this point of

view, as we are interested in more general time-frequency representations that are

not associated with this group structure.

To obtain discrete UCFs, we take advantage of the fact that fp is band-limited

for each p ∈ P and use ideas from classical sampling theory. By definition, the

diameter of supp(f̂p) is bounded uniformly in p. Let Sp = (Sp,1, Sp,2 . . . , Sp,d) be

the side lengths of the smallest rectangle that contains supp(f̂p). Similarly, let

S0 = (S0,1, S0,2, . . . , S0,d) be the side lengths of the smallest rectangle that contains

supp(f̂0).

We introduce the following standard notation to simplify the formulas in this

section. For multi-integers n,m ∈ Zd, we write m ≤ n to mean mj ≤ nj for all

1 ≤ j ≤ d. If n > 0, let

vol(n) =
d∏
j=1

nj and
m

n
=
(m1

n1

,
m2

n2

, . . . ,
md

nd

)
.
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Then, for n ∈ Zd, let

f0,n(x) = vol(S0)−1/2f0

(
x+

n

S0

)
,

fp,n(x) = vol(Sp)
−1/2fp

(
x+

n

Sp

)
.

Definition 5.1.1. We call the sequence of functions

Fdiscrete = {f0,n}n∈Zd ∪ {fp,n}p∈P,n∈Zd

a discrete rotational uniform covering frame.

Proposition 5.1.2. Fdiscrete is a discrete Parseval frame for L2(Rd).

Proof. We will repeatedly use the well-known fact that for any multi-integer S ∈ Zd

with S > 0, the sequence of functions,

{vol(S)−1/2e−2πiξ·n/S : n ∈ Zd},

is an orthonormal basis for L2(Rd) functions that are supported in any rectangle of

side length S.

By Parsvel, we have

〈f, fp,n〉 = vol(Sp)
−1/2

∫
Rd
f̂(ξ)f̂p(ξ)e

−2πiξ·n/Sp dξ.

Since f̂p is supported in a translate of a rectangle with side length S, we see that

∑
n∈Zd
|〈f, fp,n〉|2 =

∫
Rd
|f̂(ξ)|2|f̂p(ξ)|2 dξ.

We use the same argument to handle terms that involve the inner product of f with

f0,n. Doing so, we obtain

∑
n∈Zd
|〈f, f0,n〉|2 =

∫
Rd
|f̂(ξ)|2|f̂0(ξ)|2 dξ.
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Combining the previous equations and applying the frame identity 2.1, we conclude

that

∑
n∈Zd
|〈f, f0,n〉|2 +

∑
p∈P

∑
n∈Zd
|〈f, fp,n〉|2

=

∫
Rd
|f̂(ξ)|2|f̂0(ξ)|2 dξ +

∑
p∈P

∫
Rd
|f̂(ξ)|2|f̂m,r(ξ)|2 dξ

=

∫
Rd
|f̂(ξ)|2 dξ.

Recall that a finite frame for Cd is a sequence of vectors Φ = {φj}j∈J ⊆ Cd

indexed by a finite index set J such that there exist 0 < A ≤ B < ∞ and for all

f ∈ Cd,

A‖f‖2
2 ≤

∑
j∈J

|〈f, φj〉|2 ≤ B‖f‖2
2.

Finite frames is its own subject area and there are numerous papers on this topic,

see [13, 38, 11, 70, 95]. We highlight two main differences between finite and discrete

frames.

(a) In infinite dimensions and without additional assumptions on f besides belong-

ing to L2(Rd), a discrete frame must consist of infinitely many elements. For

finite dimensional spaces, it is possible to use finitely many frame elements, and

the smallest number one needs is exactly d.

(b) Of course, any discrete frame must be converted to a finite frame in order to

be used in practice. Finite frames have applications to digital signal process-

ing. Compared to orthonormal bases, the extra redundancy is desirable for

combating deletion of coefficients and for added stability to perturbations.
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We construct finite uniform covering frames for d-order tensors F of size N =

(N1, N2, . . . , Nd). That is, we work with the finite dimensional space CN = CN1 ×

CN2×· · ·×CNd . If F and G are arrays of size N > 0, their Frobenius inner product

is

〈F,G〉 =
∑

1≤n≤N

F (n)G(n)

and the Frobenius norm is ‖F‖2 =
√
〈F, F 〉.

To define these finite frames, we use the d-dimensional discrete Fourier trans-

form (DFT), and replace the continuous domain functions f̂p with its samples on a

lattice. Suppose F is an array of size N , and let F̂ (ξ) be the d-dimensional Fourier

series of F evaluated at ξ ∈ Rd,

F̂ (ξ) =
∑

1≤n≤N

F (n)e−2πiξ·n/N .

Its DFT is N -periodic and we view them as samples of its Fourier series evaluated at

the points mj = −N j,−N j+1, . . . , N j, where N ∈ Rd is defined as N j = (Nj−1)/2.

Call this set of points supp(F̂ ).

Let PN be the finite subset of P such that p ∈ PN if and only if supp(f̂p) has

nontrivial intersection with the rectangle

[−N1, N1]× [−N2, N2]× · · · × [−Nd, Nd].

Let Sp − 1 ∈ Zd be the side length of the smallest rectangle containing supp(f̂p) ∩

supp(F̂ ), and let S0 be defined analogously. For each p ∈ PN and 0 ≤ n ≤ Sp − 1,

67



let Fp,n be an array of size N , which we define according to its DFT,

F̂p,n(m) = Fp(m)Ep,n(m),

Fp(m) = f̂p(m),

Ep,n(m) = vol(Sp)
−1/2e−2πim·n/Sp .

Similarly, we define the array F0,n by

F̂0,n(m) = F0(m)E0,n(m),

F0(m) = f̂0(m),

E0,n(m) = vol(S0)−1/2e−2πim·n/S0 .

Definition 5.1.3. Given N = (N1, N2, . . . , Nd) > 0, we call the set

Ffinite = {F0,n}0≤n≤S0−1 ∪ {Fp,n}p∈PN ,0≤n≤Sp−1,

a finite uniform covering frame.

Proposition 5.1.4. For any N = (N1, N2, . . . , Nd) > 0, the set Ffinite is a finite

Parseval frame for CN .

Proof. By Parseval, we have

|〈F, Fp,n〉|2 =
1

vol(N)

∣∣∣ ∑
−N≤m≤N

F̂ (m)Fp(m)Ep,n(m)
∣∣∣2.

Since {Ep,n}0≤n≤Sp−1 is an orthonormal basis for the support of Fp with respect to

the inner product 〈·, ·〉, we have

∑
0≤n≤Sp−1

|〈F, Fp,n〉|2 =
1

vol(N)

∑
−N≤m≤N

|F̂ (m)|2|Fp(m)|2.
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Repeating the same argument shows that

∑
0≤n≤S0−1

|〈F, F0,n〉|2 =
1

vol(N)

∑
−N≤m≤N

|F̂ (m)|2|F0(m)|2.

Combining the previous equations, recalling that Fp are samples of f̂p, and applying

the frame identity (2.1), we have

∑
0≤n≤S0−1

|〈F, F0,n〉|2 +
∑
p∈PN

∑
0≤n≤Sp−1

|〈F, Fp,n〉|2

=
1

vol(N)

∑
−N≤m≤N

|F̂ (m)|2
(
|F̂0(m)|2 +

∑
p∈PN

|F̂p(m)|2
)

= ‖F‖2
2.

5.2 Fast Fourier Scattering Transform

We propose the fast Fourier scattering transform, which is a simple algorithm that

computes the Fourier scattering coefficients for an input vector. We use a finite

uniform covering frame F = Fdiscrete, which can either be a traditional Gabor frame,

a RUCF, or some other type of UCF. The algorithm also requires the user to input

the depth of the network K, and the frequency covering parameter M . The choice

of F and the parameters usually depend on the type of application.

Algorithm 5.2.1. Fast Fourier scattering transform.

Input: Vector f , parameters M,K ≥ 1, and F = {f0} ∪ {fp}p∈P[M ]

for k = 1, 2, . . . , K

for each p = (p′, pk) ∈ P [M ]k

Compute U [p]f = U [(p′, pk)]f = |U [p′]f ∗ fpk | and U [p]f ∗ f0
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end

end

The reason we call this algorithm fast is because Theorem 3.2.2 quantifies the

amount of information lost due to truncation, so we do not have to calculate an

enormous number of scattering coefficients. Hence, we typically choose K = 2 and

M large enough depending the regularity of the dataset. In fact, we can make the

algorithm even faster and efficient:

(a) In many applications, the input function f is real-valued. Suppose that for

each p ∈ P [M ], f̂p is real-valued and there exists a unique q ∈ P [M ] such

that f̂p(ξ) = f̂q(−ξ) for all ξ ∈ Rd. Then, we have |f ∗ fp| = |f ∗ fq|. For

any k ≥ 1 and p ∈ Pk, U [p]f is also real-valued, so the same reasoning shows

that for all k ≥ 1 and p ∈ P [M ]k, there exists a unique q ∈ P [M ]k such that

U [p]f = U [q]f . Thus, we only need to compute half of the coefficients in the

fast Fourier scattering transform. These assumptions hold, for example, if F is

a Gabor frame defined in Proposition 2.2.2 and the window f̂0 = ĝ is real-valued

and symmetric about the origin.

(b) The proof of Proposition 3.1.6 shows that coefficients of the form | |f ∗ fp| ∗ fq|

have small L2(Rd) norm whenever p ∈ P [M ], q ∈ P [N ], and M � N . Since our

algorithm still computes such coefficients, its runtime can be greatly reduced by

not computing these coefficients.

(c) Each scattering coefficient is band-limited, due to the convolution with f0. By

the classical Shannon sampling theorem, we can down-sample the scattering
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coefficients without any information loss, where the down-sampling rate is gov-

erned by the support of f̂0. This reduces the amount of memory required to

store the coefficients.

5.3 Image Feature Comparison

Figure 5.1 compares the features generated by SF and SW . The Matlab code that

reproduces this figure, as well as Fourier scattering software, can be downloaded at

the author’s personal website [100]. We use the publicly available ScatNet toolbox

[108] to produce the analogous wavelet scattering features.

For the comparison, we use the standard 512× 512 Lena image as our model

example. Due to its varied content, Lena image allows to emphasize the differences

between SF and SW . We interpret the square image as samples of a function f ,

namely

{f(m1,m2) : m1 = 1, 2, . . . , 512, m2 = 1, 2, . . . , 512}.

In order to make a fair comparison, we chose appropriate parameters. SF [M,K]

requires specification of F (for simplicity, we use a Gabor frame satisfying Propo-

sition 2.2.2 with parameter a free to chose, A = aI, and real-valued even window

f̂0 = ĝ), the integer M that controls the cardinality of P [M ], and the depth of the

network K. On the other hand, SW requires specification of the number of angles

in the rotation group G, the range of dyadic scales (controlled by the coarsest scale

J), and the depth of the network. It is appropriate to pick a and J such that f̂0

and ϕ̂2J are approximately supported in a ball of the same size. By this choice,
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Figure 5.1: Fourier and windowed scattering transform coefficients whose norms

exceed 0.5% and ordered by depth. The top four rows display (1, 33, 6) zero, first,

and second order Fourier scattering transform coefficients. Bottom six rows display

(1, 40, 17) zero, first, and second order windowed scattering coefficients.
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the zero-th order coefficients of both transformations have approximately the same

resolution. Next, we chose M and G so that both transforms have the same number

of first-order coefficients. For both, we use a network with 2 layers. With these con-

siderations, we computed (1, 40, 560) and (1, 40, 600) zero, first, and second order

coefficients for SF and SW , respectively.

While it is interesting to look at each coefficient, there are obviously too many

to display. Hence, Figures 5.1 illustrates the Fourier and wavelet scattering coeffi-

cients with L2(Rd) norm greater than 0.005 ∗ ‖f‖2. In order to clearly display the

coefficients, each one is normalized to have a maximum of 1 (but only when plotted).

The norm of the coefficients decrease as a function of the depth, so we chose 0.005 as

the threshold parameter in order to display several of the second-order coefficients.

While we only show the largest ones, it does not necessarily mean that they are

the most important since it is plausible that smaller coefficients contain informative

features.

We first concentrate on the Fourier scattering features. As seen in the Figure

5.1, the first-order coefficients extract distinct features of the image, and in partic-

ular, extract the most prominent edges in image. While the first-order coefficients

capture individual features – various components of the hat, her hair, the feature, the

background, and her facial features – the second-order coefficients appear to capture

a combination of features. In general, it is difficult to substantiate what functions of

the form | |f ∗fp|∗fq| intuitively mean. This is partly because the Fourier transform

is the standard tool for analyzing convolutions, but is not well suited for handling

non-linear operators such as the complex modulus. For the wavelet case, Mallat
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has heuristically argued that coefficients of the form | |f ∗ ψ2j ,r| ∗ ψ2k,s| describe

interactions between scales 2−j and 2−k [107]. By the same reasoning, coefficients

of the form | |f ∗ fp| ∗ fq| describe the interactions between oscillations arising from

the uniform Fourier scales |p|∞ and |q|∞.

Let us compare the features generated by SF and SW . Their zero-order coef-

ficients are almost identical due to our parameter choices; recall that we chose f0

and ϕ2J to have approximately the same resolution. In some sense, the first-order

coefficients illustrate the main differences between wavelet and Gabor transforms.

Indeed, wavelets are multi-scale representations, so the first-order coefficients of SW

have higher resolution than those of SF , and the latter are of a fixed low resolution.

By inspection, the second-order coefficients of SF and SW appear to capture

significantly different features. For example, the second-order Fourier scattering co-

efficients mainly capture the oscillatory pattern of the feather, whereas the second-

order windowed scattering coefficients focused more on her hair and on the round

shapes in the image. Again, it is hard to precisely describe what information the

second-order terms capture. Finally, SF has a fewer number of second-order coeffi-

cients that exceed the threshold parameter, which is consistent with our theory that

SF satisfies an exponential decay of energy property.

5.4 Anomaly Detection in Radiological Data

Anomaly detection is the process of detecting a small set of outliers within a dataset.

One example is the detection of a few radioactive sources from the gamma-ray spec-
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trum (number of gamma particles per energy level) of an entire scene. The SORDS

dataset consists of three distinct radioactive sources, each hidden at a different lo-

cation on the University of Maryland, College Park, campus. A vehicle mounted

with a detector drove along the perimeter a total of 12 times, and for each loop, the

detector collected the gamma-ray spectrum at various locations along the perimeter

of the scene. See Figure 5.2 for more details.

The spectrum provides information about the compounds nearby. Strong

sources, in comparison to the background radiation, can be easily detected by ex-

amining the total count, which is the `1 norm of the gamma-ray spectrum. Weaker

sources do not have elevated total counts, and must be detected by examining the

features apparent in the spectrum. These are detectable to the trained eye under

ideal conditions, but real data is typically noisy and inaccurate. The rate at which

a source emits gamma particles at a certain frequency can be modeled as a Poisson

process, so important information might be missed if the collection time is insuffi-

cient. In the SORDS dataset, there is one strong source and two weak sources. See

Figure 5.3 for representative spectra at different locations.

Upon examination of the dataset, we see that the `2 distance (or any other Eu-

clidean metric) does not discriminate between the spectra between the background

and sources. We transform the spectral information into a more discriminatory ba-

sis. The oscillations in the spectra are the key features, so a it is natural to apply

the Fourier scattering transform to each spectra. This transformation is well-suited

for this data type, since the distance between the background and three source spec-

tra are widened in the coefficient domain. See Figure 5.3 for the Fourier scattering
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Figure 5.2: Three sources were hidden at locations on the University of Maryland,

College Park campus, specified by the red diamonds. The gamma-ray spectrum was

collected along the perimeter at the indicated green points. The detector passed

around for a total of 12 times.
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representation of these points.

We label the points nearby the sources as radioactive and the remaining lo-

cations as non-radioactive. We use the Fourier scattering representations of the

spectrum corresponding to the first 6 loops, which approximately half of the total

dataset, to train a support vector machine (SVM). The SVM is used to classify the

Fourier scattering representation of the data from the remaining half of the dataset.

The results are displayed in Figure 5.4. This experiment shows that the Fourier

scattering transform de-noises the data, and transforms it into a suitable basis that

standard machine learning algorithms can handle.
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(a) Raw gamma-ray spectrum

(b) Fourier scattering representation spectrum

Figure 5.3: Examples of the gamma-ray spectrum at four different sample points:

one near each source and one far away from the three sources. The blue is the spectra

corresponding to the strong source. The red and the yellow spectra correspond to

the weaker sources, and the red one is slightly easier to detect.
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Figure 5.4: The red dots are classified as radioactive by the FST and SVM su-

pervised learning algorithm. It correctly classifies nearly all of the points near the

strong source, and most of the ones near the weaker sources. There are a total of 8

misclassified points that are nowhere near the sources.
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Chapter 6: Background on Super-Resolution

6.1 Terminology

The term super-resolution varies depending on the field, and, consequently, there

are various types of super-resolution problems. In some situations [116], super-

resolution refers to the process of up-sampling an image onto a finer grid, which is a

spatial interpolation procedure. In other situations [104], super-resolution refers to

the process of recovering the object’s high frequency information from its low fre-

quency information, which is a spectral extrapolation procedure. In both situations,

the super-resolution problem is ill-posed because the missing information can be

arbitrary. However, it is possible to provide meaningful super-resolution algorithms

by using prior knowledge of the data.

Although our point of view is mathematical, we do want to set the stage briefly

by mentioning the following applications and scenarios, noting that these are just

the tip of the iceberg, see [119, 91, 20, 44, 45].

(a) In astronomy [118], each star can be modeled as a complex number times a

Dirac δ-measure, and the Fourier transform of each star encodes important

information about that star. However, an image of two stars that are close in
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distance resembles an image of a single star. In this context, the super-resolution

problem is to determine the number of stars and their locations, using the prior

information that the actual object is a linear combination of Dirac δ-measures.

(b) In medical imaging [76], machines capture the structure of the patient’s body

tissues, in order to detect for anomalies in the patient. Their shapes and lo-

cations are the most important features, so each tissue can be modeled as the

characteristic function of a closed set, or as a surface measure supported on the

boundary of a set. The super-resolution problem is to capture the fine structures

of the tissues, given that the actual object is a linear combination of singular

measures.

(c) In certain applications, an image is obtained by convolving the object with the

point spread function of an optical lens. Alternatively, the Fourier transform of

the object is multiplied by a modulation transfer function. The resulting image’s

resolution is inherently limited by the Abbe diffraction limit, which depends on

the illumination light’s wavelength and on the diameter of the optical lens.

Thus, the optical lens acts as a low-pass filter, see [104]. The purpose of super-

resolution is to use prior knowledge about the object to obtain an accurate image

whose resolution is higher than what can be measured by the optical lens.

In the super-resolution literature, the collection of object is modeled as a

bounded measure µ on the torus Td. The measurement process provides us with a

finite set Λ ⊆ Zd and a function F defined on Λ. We say F is spectral data on a set

Λ ⊆ Zd if F = µ̂ |Λ for some µ ∈ M(Td). To relate this abstract formulation back

81



to our concrete motivation, we provide several examples of µ in various contexts.

(a) In astronomy [118], microscopy [104], line spectral estimation [126], source lo-

calization in remote sensing [66], and direction of arrival estimation [93], the

unknown µ is a discrete measure. Its support represents the locations of the ob-

jects and its complex-valued coefficients encode their intensity and phase. The

prior information is that the object of interest contains only a few number of

point sources compared to the number of measurements. The critical scale is

the Rayleigh length, which is the minimum separation between two point sources

that the imaging system can resolve. In our case of Fourier measurements, as

seen by the classical uncertainty principle, the Rayleigh length is the reciprocal

of the number of measurements. When the Dirac measures in µ are separated

by distances below the Rayleigh length, their recovery becomes challenging, but

that is precisely the aim of super-resolution.

(b) In the context of image processing, we are given information that represents the

low-resolution features of an unknown µ ∈M(Td), and that this information is

in the form,

f(x) = (µ ∗ ψ)(x) =

∫
Td
ψ(x− y) dµ(y),

for some ψ : Td → C. For simplicity, we assume that ψ̂ = 1Λ, the characteristic

function of some finite set Λ ⊆ Zd. Then, we have

f = (µ ∗ ψ) = (µ̂ |Λ)∨.

Thus, we interpret µ̂ |Λ as the given low frequency information of µ, and the

function (µ̂ |Λ)∨ as the given low resolution image. A primary objective is
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to determine if µ ∈ M(Td) can be recovered given F = µ̂ |Λ. The current

literature has focused on discrete µ ∈ M(Td), see [30, 128, 69]. However, in

the context of image processing, µ is the unknown high resolution image, and

a typical image cannot be approximated realistically by a discrete measure,

although such approximation is possible mathematically in the weak-∗ topology

[7]. Hence, it is important to determine if non-discrete measures are solutions

to the super-resolution problem.

(c) A common approach for discrete image recovery in inverse problems in medi-

cal imaging is to minimize the `1 norm of the finite differences of the image,

which promotes the recovery of piecewise constant images. A different but re-

lated approach is to study the recovery of continuous domain piecewise constant

images. For example, [114] showed that the edge set of a piecewise constant im-

age is uniquely identifiable from low-pass Fourier coefficients of the image when

it coincides with the zero-set of a trigonometric polynomial, and [113] studied

a practical approach for spectral extrapolation using low-rank Toeplitz matrix

completion. Related works [115, 67] studied the recovery of multi-dimensional

singular measures supported on curves defined by zero-sets of analytic func-

tions. Our paper studies a similar formulation, but our recovery method, TV

minimization, is quite different from the aforementioned papers.
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6.2 Convex Approach

One method for producing an approximation of the unknown measure is to solve the

total variation minimization problem: For a given finite subset Λ ⊆ Zd and given

spectral data F on Λ, find the solution(s) ν to

inf
ν
‖ν‖TV such that ν ∈M(Td) and F = ν̂ on Λ. (TV)

This is a convex minimization problem and we interpret a solution ν as a simple or

least complicated high resolution extrapolation of F .

With regard to (TV), a fundamental question of uniqueness must be addressed.

To see why this is so, if µ is not the unique solution, then the output of a numerical

algorithm is not guaranteed to approximate µ. Thus, it is important to determine

sufficient conditions such that µ is the unique solution. For this reason, we say that

reconstruction of µ from F on Λ is possible if and only if µ is the unique solution to

(TV). Of course, it could be theoretically possible to reconstruct µ by other means.

The mathematical theory for (TV) almost exclusively pertains to discrete mea-

sures satisfying a strong separation condition. If Λ = {−M,−M+1, . . . ,M}d ⊆ Zd,

we say a discrete µ satisfies the minimum separation condition with constant C > 0

if

min
x,y∈supp(µ), x6=y

‖x− y‖`∞(Td) ≥
C

M
.

Theorem 6.2.1 (Candès and Fernandez-Granda, Theorems 1.2-1.3, [30], Fernan-

dez-Granda, Theorem 2.2, [69]). Let F be spectral data on Λ = {−M,−M +

1, . . . ,M}d ⊆ Zd, where F = µ̂ |Λ for some discrete µ ∈ M(Td). In any of the
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following cases, µ is the unique solution to (TV).

(a) d = 1, M ≥ 128, and µ satisfies the minimum separation condition with C = 2.

(b) d = 1, M ≥ 128, and µ is real-valued and satisfies the minimum separation

condition with C = 1.87.

(c) d = 1, M ≥ 103, and µ satisfies the minimum separation condition with C =

1.26.

(d) d = 2, M ≥ 512, and µ is real-valued and satisfies the minimum separation

condition for C = 2.38.

To prove this theorem, the authors studied the following dual problem: Given

spectral data F on a finite set Λ ⊆ Zd, find the solution(s) ϕ to

max
ϕ

∣∣∣∑
m∈Λ

ϕ̂(m)F (m)
∣∣∣ such that ‖ϕ‖L∞ ≤ 1 and supp(ϕ̂) ⊆ Λ. (TV′)

We call its solutions dual polynomials, and we let D(F,Λ) denote the set of dual

polynomials.

While this viewpoint provides a satisfactory theoretical result, the computa-

tional aspect requires overcoming additional challenges. For d = 1, the authors

proposed a semi-definite program (SDP) formulation of (TV′), see [30, Corollary

4.1], which relies on a spectral factorization theorem [59, Theorem 4.24].

Algorithm 6.2.2. Suppose µ and Λ satisfy the assumptions in Theorem 6.2.1a.

1. Compute a polynomial ϕ using the SDP reformulation of the dual problem.
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2. If |ϕ| 6≡ 1, then supp(µ) ⊆ S = {x ∈ T : |ϕ(x)| = 1} consists of at most 2M

elements.

3. Locate S using a root finding method.

4. Invert a linear system in order to solve for the coefficients of µ.

Candès and Fernandez-Granda pointed out that this method is incomplete due

to the assumption in the second step of Algorithm 6.2.2. We emphasize that this

can occur even if µ satisfies any of the first three conditions in Theorem 6.2.1.

Further, while the SDP reformation does not hold for d ≥ 2, there are more

involved iterative primal-dual algorithms that can be substituted for the first step of

Algorithm 6.2.2, e.g., see [136, 52]. Alternatively, one could compute the solutions

to (TV) directly without dealing with (TV′), and this would avoid some of the

difficulties mentioned here, e.g., see [21], which uses a conditional gradient method.

We mention some related work on super-resolution, most of which adopt sim-

ilar hypotheses as in Theorem 6.2.1. For example, [128] considered the recovery of

discrete measures with random coefficients and a randomly selected low-frequency

sampling set Λ. By considering different sampling schemes and assumptions on the

discrete measure, it is possible to study other “super-resolution” problems [51, 4].

Finally, many these works were inspired by `1 minimization [35], compressed sensing

[31, 56], and convex geometry [34].

We can extend the previous noiseless model to the situation where we only

have access to imperfect measurements. Given a noise level δ > 0, we say Fδ is

noisy spectral data on a finite set Λ ⊆ Zd if Fδ = µ̂ |Λ + η for some µ ∈M(Td) and
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function η on Λ with ‖η‖2 ≤ δ.

The optimization method (TV) is unstable to small perturbations, so we must

replace it with the following: For a given finite subset Λ ⊆ Zd and given noisy

spectral data Fδ on Λ, fix a parameter τ > 0 and find the solution(s) ν to

inf
ν

1

2
‖Fδ − ν̂‖2

`2(Λ) + τ‖ν‖TV. (SRτ )

This formulation is a generalization, to the measure case, of discrete compressed

sensing algorithms [33].

The most important question in the study of regularization methods is to

determine the relationship between the solutions of (TV) and (SRτ ). If ν is a

solution to (SRτ ), then intuitively speaking, we expect that ν converges to µ if

the parameter τ is chosen appropriately depending on the noise level and the noise

level tends to zero. This intuition is somewhat correct, since it is possible to show

convergence for a subsequence and in the weak-∗ sense.

Such convergence statements are qualitative, whereas we want a quantitative

bound. This leads us to the question: What is a natural way of quantifying the error,

ν − µ? Burger-Osher [24] argued that, since Tikhonov regularization is achieved in

the weak-∗ topology, it would be surprising if it is possible to bound the error in the

total variation norm. Since (SRτ ) is a special case of Tikhonov regularization, it is

reasonable that the same principle applies. Numerical results have shown that, in

fact, the supports of µ and ν can be different [29, 60], which validates this heuristic.

Thus, it is impossible to bound ν − µ in the total variation norm.

Since super-resolution is concerned with the recovery of fine details from coarse
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data, we would like to compare the difference ν − µ at various scales. For this

reason, for a fixed kernel K, we examine the smoothed out error K ∗ (ν − µ).

Even with this simplification, quantifying the approximation error is difficult for

general µ. For this reason, the available theory deals with µ satisfying any of the

assumptions in Theorem 6.2.1, see [29]. Of course, there are metrics for quantifying

the approximation rate, see [68, 5]. We also want to emphasize that we are not

interested in only de-noising the measurements, which would only involve estimating

µ̂ |Λ, which was carried out in [19, 127]; instead, we are interested in recovering the

underlying measure µ, which is a more ambitious task.

6.3 Subspace Methods

One major drawback of the convex approach is that, Theorem 6.2.1 is essentially

tight. Numerical experiments in [69] show that, for d = 1 and even in the noiseless

case, the Diracs in µ need to be separated by at least 1/M . Similar limitations are

featured in greedy methods [65, 57]. While these algorithms are important and are

used to circumvent discretization issues that arise in compressive sensing [31, 56], it

is debatable whether they are actually super-resolution algorithms, precisely because

they cannot be used to recover objects at scales smaller than the Rayleigh length.

In contrast, subspace methods, such as ESPIRT [120], Matrix Pencil Method

(MPM) [88, 109], and MUSIC [103, 102], do not have this restriction on the separa-

tion of the Diracs. In the noiseless case, subspace methods can recover the discrete

measure exactly. In the presence of noise, they are able to accurately recover the
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measure provided that the noise is sufficiently small. These methods were partially

inspired by the instability of the classical Prony’s method [117]. This is exciting

because subspace methods have this stable super-resolution property and experi-

mental results have verified that they are the best known algorithms for recovering

discrete measures from noisy Fourier samples.

Unfortunately, the picture is incomplete because is not well-understood what

“sufficiently small” means. One approach is to relate this problem to the condition-

ing of Vandermonde matrices. It is not surprising that there is a connection, since

the condition number describes the stability of inverting an over-determined system.

Let T = {tn}Sn=1 ⊆ T, and let VT be the M × S Vandermonde matrix associated

with T , which is defined as (VT )m,n = e2πimtn for m = 0, 1, . . . ,M − 1. MUSIC and

MPM are able to recover discrete measures supported in T provided that the noise

is smaller, up to a constant times the smallest singular value of VT , see [103, 109]

for the explicit bounds.

However, it is not easy to accurately bound the smallest singular value. There

is a certain phase transition for the smallest singular value. When the separation

between all the points in T exceeds the Rayleigh length, then classical approximation

theory results [130] give a sharp lower bound on the smallest singular value of VT .

While this is an important result, the main focus of super-resolution is to deal with

the case where the separation is below the Rayleigh length. In this regime, for

certain examples of T , the smallest singular value of VT can decay exponentially

as the separation decreases [109]. Thus, whenever any two points are closer than

the Rayleigh length, the smallest singular is highly unstable and sensitive to the
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configuration of the support set, which has made accurate quantitative analysis

difficult. Understanding the geometric dependence is still an open problem in this

subject area.
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Chapter 7: Beurling Theory of Super-Resolution

The content of this chapter appeared in the paper [14], written by the author and

John J. Benedetto.

7.1 Problem Statement

As we mentioned earlier, we are particularly interested in the super-resolution of dis-

crete measures with separation below the Rayleigh length, and of singular measures.

To do this, we study (TV) more abstractly. Several previous papers have relied on

the following well-known relationship: µ ∈ M(Td) is the unique solution to (TV)

given spectral data F on Λ if and only if F = µ̂ |Λ and there exists ϕ ∈ D(F,Λ) such

that ϕ = sign(µ) ν-a.e. and |ϕ(x)| < 1 for all x 6∈ supp(ν), see [30, 60]. However,

this characterization has not yielded useful results except in very special cases of µ

and Λ, such as the one considered in Theorem 6.2.1. The technical reason is the

following. Even if we reduce the space D(F,Λ) by identifying functions with the

same global phase, in general, there is still no unique dual polynomial. This forces

one to use generic tools, whereas not much is known about the sign of arbitrary

trigonometric polynomials.

In order to obtain results that pertain to a richer class of measures, we do not
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work with the aforementioned relationship. Instead, we develop a general theory

that does not impose any conditions on µ and Λ. In fact, we study (TV) from an

abstract, functional analysis perspective. Our methods are inspired by Beurling’s

work on minimal extrapolation [17, 18]. For recent results on non-uniform sampling,

going back to [17] and balayage, see [3]. We later connect our results with the Candès

and Fernandez-Granda theory on super-resolution [30].

We first introduce additional notation and adopt Beurling’s language, since

referring to the solutions of (TV) can be ambiguous when working with several

different measures. We say ν ∈ M(Td) is an extrapolation of F on Λ if F = ν̂ |Λ;

and ν is a minimal extrapolation of F on Λ if it is a solution to (TV). The minimum

value attained in (TV) is denoted by

ε = ε(F,Λ) = inf{‖ν‖TV : ν ∈M(Td) and F = ν̂ on Λ}.

While ε is in general unknown, we shall see that, for many important applications,

it can be deduced. To this end, let

E = E(F,Λ) = {ν ∈M(Td) : ‖ν‖TV = ε and F = ν̂ on Λ}

denote the set of all minimal extrapolations. Thus, for any ν ∈ E(F,Λ), we have

ε(F,Λ) = ‖ν‖TV. In order to understand the behavior of the minimal extrapolations,

we study the set of dual polynomials, D(F,Λ). Both E(F,Λ) and D(F,Λ) are non-

empty, see Proposition 7.2.1. It turns out that some of these dual polynomials can

be characterized by the set,

Γ = Γ(F,Λ) = {m ∈ Λ: |F (m)| = ε(F,Λ)}.
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This connection is made in Proposition 7.2.2. We exploit this characterization to

prove Theorem 7.3.1, which provides results without assumptions on µ and Λ.

7.2 Some Functional Analysis Results

We prove basic facts about (TV) and (TV′). In contrast to previous approaches

relying on convex analysis, e.g., see [60], our proofs only use basic functional analysis,

which also illustrates its important role.

Proposition 7.2.1 contains the main functional analysis results. Let C(Td)′

be the dual space of continuous linear functionals on C(Td). The celebrated Riesz

representation theorem, see [7, Theorem 7.2.7, page 334], states that:

(a) For each µ ∈M(Td), there exists a bounded linear functional `µ ∈ C(Td)′ such

that ‖µ‖TV = ‖`µ‖ and

∀f ∈ C(Td), `µ(f) = 〈f, µ〉 =

∫
Td
f(x) dµ(x).

(b) For each bounded linear functional ` ∈ C(Td)′, there exists a unique µ ∈M(Td)

such that ‖µ‖TV = ‖`‖ and

∀f ∈ C(Td), `(f) = 〈f, µ〉 =

∫
Td
f(x) dµ(x).

Proposition 7.2.1a shows that (TV) is well-posed, by using standard functional

analysis arguments. However, this type of argument does not yield useful statements

about the minimal extrapolations. Instead of working with C(Td), we shall work

with a subspace. Since the minimal extrapolations only depend on F on Λ, and not
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the unknown measure µ that generates F , we consider the subspace

C(Td; Λ) =
{
f ∈ C(Td) : f(x) =

∑
m∈Λ

f̂(m)e2πim·x
}
.

Proposition 7.2.1b shows that C(Td; Λ) is a closed subspace of C(Td), and that

implies C(Td; Λ) is a Banach space. Further, Proposition 7.2.1c demonstrates that

U = U(Td; Λ) = {f ∈ C(Td; Λ) : ‖f‖L∞ ≤ 1},

the closed unit ball of C(Td; Λ), is compact.

The purpose of restricting to the subspace, C(Td; Λ), is to identify the unknown

µ ∈M(Td) with the bounded linear functional, Lµ ∈ C(Td; Λ)′, defined as

∀f ∈ C(Td; Λ), Lµ(f) =

∫
Td
f(x) dµ(x).

Although, by definition, ‖Lµ‖ = supf∈U |Lµ(f)|, Proposition 7.2.1d,e show that we

have the stronger statement,

‖Lµ‖ = max
f∈U
|Lµ(f)| = ε.

The purpose of studying Lµ is to deduce information about the minimal extrap-

olations. As a consequence of the Radon-Nikodym theorem, for each µ ∈ M(Td),

there exists a µ-measurable function sign(µ) such that |sign(µ)| = 1 µ-a.e. and

satisfies the identity

∀f ∈ L1
|µ|(Td),

∫
Td
f d|µ| =

∫
Td
f sign(µ) dµ.

See [7, Theorem 5.3.2, page 242, and Theorem 5.3.5, page 244] for further details.

Recall that the support of µ ∈ M(Td), supp(µ), is the complement of all open sets

A ⊆ Td such that µ(A) = 0.
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Proposition 7.2.1. Let F be spectral data on a finite set Λ ⊆ Zd, where F = µ̂ |Λ

for some µ ∈M(Td).

(a) E(F,Λ) ⊆M(Td) is non-empty, weak-∗ compact, and convex.

(b) C(Td; Λ) is a closed subspace of C(Td).

(c) U(Td; Λ) is a compact subset of C(Td; Λ).

(d) ε(F,Λ) = ‖Lµ‖.

(e) ε(F,Λ) = maxf∈U |Lµ(f)|.

(f) D(F,Λ) is non-empty.

Proof.

(a) By definition of ε, there exists a sequence {νj} such that ‖νj‖TV → ε and ν̂j = F

on Λ. Then, this sequence is bounded. By Banach-Alaoglu, after passing to a

subsequence, we can assume there exists ν ∈ M(Td) such that νj → ν in the

weak-∗ topology.

Let V be the closed unit ball of C(Td). We have ‖ν‖TV ≤ ε because

‖ν‖TV = sup
f∈V
|〈f, ν〉| = sup

f∈V
lim
j→∞
|〈f, νj〉| ≤ sup

f∈V
lim
j→∞
‖f‖L∞‖νj‖ ≤ ε.

Moreover, for each m ∈ Λ, we have

F (m) = lim
j→∞

ν̂j(m) = lim
j→∞

∫
Td
e−2πim·x dνj(x) =

∫
Td
e−2πim·x dν(x) = ν̂(m).

This shows that ν is an extrapolation, and thus, ‖ν‖TV ≥ ε. Therefore, ν ∈ E .

95



The proof that E is weak-∗ compact is similar. Pick any sequence {νj} ⊆ E and

after passing to a subsequence, we can assume νj → ν in the weak-∗ topology

for some ν ∈M(Td). By the same argument, we see that ν ∈ E .

If E contains exactly one measure, then E is trivially convex. Otherwise, let

t ∈ [0, 1], ν0, ν1 ∈ E , and νt = (1− t)ν0 + tν1. Then, νt is an extrapolation and

thus, ‖νt‖ ≥ ε. By the triangle inequality, we have ‖νt‖ ≤ (1−t)‖ν0‖+t‖ν1‖ = ε.

Thus, νt ∈ E for each t ∈ [0, 1].

(b) Suppose {fj} ⊆ C(Td) and that there exists f ∈ C(Td) such that fj → f

uniformly. Then, f̂j(m) → f̂(m) for all m ∈ Zd. Since f̂j(m) = 0 if m 6∈ Λ,

we deduce that f̂(m) = 0 if m 6∈ Λ. This shows that f ∈ C(Td; Λ) and thus,

C(Td; Λ) is a closed subspace of C(Td).

(c) Let {fj} ⊆ U . We first show that {fj} is a uniformly bounded equicontinuous

family. By definition, ‖fj‖L∞ ≤ 1, and there exist aj,m ∈ C such that fj(x) =∑
m∈Λ aj,me

2πim·x. Note that |aj,m| ≤ ‖fj‖∞ ≤ 1. Then, for any x, y ∈ Td, we

have

|fj(x)− fj(y)| =
∣∣∣∑
m∈Λ

aj,m(e2πim·x − e2πim·y)
∣∣∣ ≤∑

m∈Λ

|e2πim·x − e2πim·y|.

Let ε > 0 and m ∈ Λ. There exists δm > 0 such that |e2πim·x − e2πim·y| < ε

whenever |x − y| < δm. Let δ = minm∈Λ δm. Combining this with the previous

inequalities, we have

|fj(x)− fj(y)| ≤
∑
m∈Λ

|e2πim·x − e2πim·y| ≤ #Λε,
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whenever |x− y| < δ. This shows that {fj} is a uniformly bounded equicontin-

uous family.

By the Arzelà-Ascoli theorem, there exists f ∈ C(Td), with ‖f‖L∞ ≤ 1, and a

subsequence {fjk} such that fjk → f uniformly. Thus, f̂jk(m) → f̂(m) for all

m ∈ Zd, which shows that f ∈ C(Td; Λ).

(d) Let ν ∈ E . Then,

∀f ∈ U, |Lµ(f)| = |〈f, µ〉| = |〈f, ν〉| ≤ ‖f‖L∞‖ν‖TV ≤ ε,

which proves the upper bound, ‖Lµ‖ ≤ ε.

For the lower bound, we use the Hahn-Banach theorem to extend Lµ ∈ C(Td; Λ)′

to ` ∈ C(Td)′, where ‖Lµ‖ = ‖`‖. By the Riesz representation theorem, there

exists a unique σ ∈M(Td) such `(f) = 〈f, σ〉 for all f ∈ C(Td) and ‖σ‖ = ‖`‖.

In particular,

∀f ∈ C(Td; Λ), 〈f, σ〉 = `(f) = Lµ(f) = 〈f, µ〉.

Set f(x) = e−2πim·x, where m ∈ Λ, to deduce that µ̂ = σ̂ on Λ. This implies

‖σ‖ ≥ ε. Combining these facts, we have

ε ≤ ‖σ‖ = ‖`‖ = ‖Lµ‖.

This proves the lower bound.

(e) We know that ‖Lµ‖ = ε. By definition, there exists {fj} ⊆ U such that

|Lµ(fj)| ≥ ε− 1/j. By compactness of U , there exists a subsequence {fjk} ⊆ U
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and f ∈ U such that fjk → f uniformly. We immediately have |Lµ(f)| ≤

‖f‖L∞ε ≤ ε. For the reverse inequality, as k →∞,

|Lµ(f)| ≥ |Lµ(fjk)| − |Lµ(f − fjk)| ≥ ε− 1

jk
− ‖µ‖TV‖f − fjk‖L∞ → ε.

This proves that |Lµ(f)| = ε.

(f) By the previous part and a simple calculation,

ε = max
f∈U
|〈f, µ〉| = max

f∈U

∣∣∣∑
m∈Λ

f̂(m)F (m)
∣∣∣ = max

f∈U

∣∣∣∑
m∈Λ

f̂(m)F (m)
∣∣∣.

Hence, there exists a ϕ ∈ U that attains this maximum, which by definition, is

a dual polynomial.

Proposition 7.2.2a,b establish uniform statements: Even if there are several

minimal extrapolations, they must all be supported in a common set and they must

have similar sign patterns. Proposition 7.2.2c characterizes the case that |ϕ| ≡ 1 in

terms of the set Γ. Intuitively, #Γ represents the number of “bad” dual polynomials.

While it is desirable to have Γ = ∅, perhaps surprisingly, Proposition 7.2.2d shows

that we can make strong statements even when #Γ is large.

Proposition 7.2.2. Let F be spectral data on a finite set Λ ⊆ Zd, where F = µ̂ |Λ

for some µ ∈M(Td).

(a) For any ϕ ∈ D(F,Λ), we have

∀ν ∈ E(F,Λ), supp(ν) ⊆ {x ∈ Td : |ϕ(x)| = 1}.
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(b) There exists ϕ ∈ D(F,Λ) such that

∀ν ∈ E(F,Λ), ϕ = sign(ν) ν-a.e.

(c) There exists ϕ ∈ D(F,Λ) with |ϕ| ≡ 1 if and only if Γ 6= ∅.

(d) For each m ∈ Zd, define αm ∈ R/Z by the formula e−2πiαmF (m) = |F (m)|. If

m ∈ Γ, then

∀ν ∈ E , sign(ν)(x) = e2πiαme2πim·x ν-a.e.

Proof.

(a) Using that ϕ ∈ U(Td; Λ) and Proposition 7.2.1e, for all ν ∈ E , we have

|〈ϕ, ν〉| = |〈ϕ, µ〉| = |Lµ(ϕ)| = ε = ‖ν‖TV.

Since ‖ϕ‖L∞ ≤ 1 and |〈ϕ, ν〉| = ‖ν‖TV, there exists θ ∈ R such that ϕ =

e2πiθsign(ν) ν-a.e. Using that |ϕ| = |sign(ν)| = 1 ν-a.e. and that ν is a Radon

measure,

supp(ν) ⊆ {x ∈ Td : |ϕ(x)| = 1} = {x ∈ Td : |ϕ(x)| = 1}.

The last equality holds because the inverse image of the closed set {1} under

the continuous function |ϕ| is closed.

(b) From the previous part, we know there exists a f ∈ D(F,Λ) such that |〈f, µ〉| =

ε. Then, there exists θ ∈ R such that e2πiθ〈f, µ〉 = ε. Define the function

ϕ = e2πiθf , which is also a dual polynomial. Repeating the same argument

from the previous part, we see that for all ν ∈ E , ϕ = sign(ν) ν-a.e.
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(c) If ϕ ∈ D(F,Λ) and |ϕ| ≡ 1, then ϕ = e2πiθe2πim·x for some θ ∈ R and m ∈ Λ.

Then, we have ε = |〈ϕ, µ〉| = |F (m)| which shows that m ∈ Γ.

Conversely, let m ∈ Γ. Then we readily check that ϕ(x) = e2πim·x is a dual

polynomial and |ϕ| ≡ 1.

(d) Suppose m ∈ Γ and ν ∈ E . Then

∫
Td
e−2πiαme−2πim·x dν(x) = e−2πiαm ν̂(m)

= e−2πiαmF (m) = |F (m)| = ε = ‖ν‖TV.

This shows sign(ν)(x) = e2πiαme2πim·x ν-a.e.

7.3 The Beurling Theory

We are ready to prove our main theorem.

Theorem 7.3.1. Let F be spectral data on a finite set Λ ⊆ Zd.

(a) Suppose Γ = ∅. For any ϕ ∈ D(F,Λ), the closed set S = {x ∈ Td : |ϕ(x)| = 1}

has d-dimensional Lebesgue measure zero, and each minimal extrapolation of F

on Λ is a singular measure supported in S.

In particular, if d = 1, then S is a finite number of points and so each minimal

extrapolation is a discrete measure supported in S.

(b) Suppose #Γ ≥ 2. For each distinct pair m,n ∈ Γ, define αm,n ∈ R/Z by
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e2πiαm,n = F (m)/F (n) and define the closed set,

S =
⋂

m,n∈Γ
m6=n

{x ∈ Td : x · (m− n) + αm,n ∈ Z}, (7.1)

which is an intersection of
(

#Γ
2

)
periodic hyperplanes. Then, each minimal ex-

trapolation of F on Λ is a singular measure supported in S.

In particular, if d = 1, then S is a finite number of points and so each minimal

extrapolation is a discrete measure supported in S.

If d ≥ 2 and there exist d linearly independent vectors, p1, p2, . . . , pd ∈ Zd, such

that

{p1, p2, . . . , pd} ⊆ {m− n : m,n ∈ Γ},

then S is a lattice on Td.

Proof.

(a) Let ϕ ∈ D(F,Λ). By Proposition 7.2.2a,c, |ϕ| 6≡ 1 because Γ = ∅ and each

minimal extrapolation is supported in the closed set

S = {x ∈ Td : |ϕ(x)| = 1}.

Consider the function

Φ(x) = 1− |ϕ(x)|2 = 1−
∑
m∈Λ

∑
n∈Λ

ϕ̂(m)ϕ̂(n)e2πi(m−n)·x.

Then, the minimal extrapolations are supported in the closed set

S = {x ∈ Td : Φ(x) = 0}.
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Note that Φ 6≡ 0 because |ϕ| 6≡ 1. Since Φ is a non-trivial real-analytic function,

S is a set of d-dimensional Lebesgue measure zero. In particular, if d = 1, then

S is a finite set of points.

(b) Let m,n ∈ Γ. There exist αm, αn ∈ R/Z defined in Proposition 7.2.2d, such

that

∀ν ∈ E , sign(ν)(x) = e2πiαme2πim·x = e2πiαne2πin·x ν-a.e.

Set αm,n = αm − αn ∈ R/Z. Then each minimal extrapolation is supported in

Sm,n = {x ∈ Td : x · (m− n) + αm,n ∈ Z}.

Thus, each minimal extrapolation is supported in the set

S =
⋂

m,n∈Γ
m 6=n

Sm,n =
⋂

m,n∈Γ
m6=n

{x ∈ Td : x · (m− n) + αm,n ∈ Z}.

Note that e2πiαm,n = F (m)/F (n) because

e−2πiαmF (m) = |F (m)| = ε = |F (n)| = e−2πiαnF (n).

Suppose {p1, . . . , pd} satisfies the hypothesis. By the support assertion that

we just proved, there exists β = (β1, β2, . . . , βd) ∈ Td such that every minimal

extrapolation is supported in

S =
d⋂
j=1

{x ∈ Td : x · pj + βj ∈ Z}.

Let us explain the geometry of the situation before we proceed with the proof

that S is a lattice. Note that {x ∈ Td : x ·pj +βj ∈ Z} is a family of parallel and

periodically spaced hyperplanes. Since the vectors, p1, p2, . . . , pd, are assumed
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to be linearly independent, one family of hyperplanes is not parallel to any other

family of hyperplanes. Hence, the intersection of d non-parallel and periodically

spaced hyperplanes is a lattice, see Figure 7.1 for an illustration.

For a rigorous proof of this observation, first note that

S = {x ∈ Td : Px+ β ∈ Zd},

where P = (p1, p2, . . . , pd)
t ∈ Zd×d is invertible because its rows are linearly

independent. Let x0 ∈ Rd be the solution to Px+β = 0, and let qj ∈ Qd be the

solution to Px = ej, where ej is the standard basis vector for Rd. Then pj · qk =

δj,k, and S is generated by the point x0 and the lattice vectors, q1, q2, . . . , qd.

Remark 7.3.2. Example 7.6.8 provides an example where #Γ = 3 and there exists

a singular continuous minimal extrapolation. This demonstrates that the conclusion

of Theorem 7.3.1b is optimal.

We explain why Theorem 7.3.1 is an adaptation to the torus and a generaliza-

tion to higher dimensions of Beurling’s theorem. Let Mb(R) be the space of complex

Radon measures on R with finite total variation norm. Since this is the only part

that deals with measures on R, we slightly abuse notation, and we denote the total

variation norm on R by ‖ · ‖ and the Fourier transform of µ ∈Mb(R) by µ̂ : R→ C.

Suppose we are given the set Λ = [−λ, λ] and the spectral data G = µ̂ |Λ

for some µ ∈ Mb(R). Beurling studied the total variation problem on R of finding
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x0

p1p2

q1

q2

Figure 7.1: An illustration of Theorem 7.3.1b, where d = 2, p1 = (1, 2), p2 = (−3, 2),

β1 = 1/2, β2 = −1/2, q1 = (1/4, 3/8), and q2 = (−1/4, 1/8). The family of

hyperplanes are the dashed lines, the lattice S is the black dots, and the shaded

region is [0, 1)2.
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solution(s) ν to

inf
ν
‖ν‖TV such that ν ∈Mb(R) and G = ν̂ on Λ. (7.2)

The solutions to this problem are called minimal extrapolations of G on Λ. He

defined the quantities

m = inf{‖ν‖TV : ν ∈Mb(R) and G = ν̂ on Λ},

M = {ν ∈Mb(R) : G = ν̂ on Λ and ‖ν‖TV = m},

Λm = {γ ∈ Λ: |G(γ)| = m}.

Theorem 7.3.3 (Beurling, Theorem 2, page 362, [18]). Let G be spectral data on

Λ = [−λ, λ], where G = µ̂ |Λ for some µ ∈Mb(R).

(a) Suppose #Λm = 0. There exist sequences, {ak} ⊆ C and {xk} ⊆ R, for which

#{xk : |xk| < r} = O(r) as r →∞, and such that

ν =
∞∑
k=1

akδxk

is the unique minimal extrapolation of G on Λm.

(b) Suppose #Λm ≥ 2 and Λm 6= Λ. Then, Λm is a finite set, which allows us to

define τ > 0 as the smallest distance between any two points in Λm. Further,

there exist {ak} ⊆ C and x0 ∈ R, such that

ν =
∞∑

k=−∞

akδx0+ k
τ

is the unique minimal extrapolation of G on Λm.

(c) If Λm = Λ, then there exist α ∈ R/Z and x ∈ R, such that ν = me2πiαδx is the

unique minimal extrapolation of G on Λm.
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Remark 7.3.4. It is difficult to deduce information about the minimal extrapola-

tions when #Λm = 1 because they might not be unique and there may exist positive

absolutely continuous minimal extrapolations, e.g., see [18, 63, 64, 84] for specific

examples and related work.

Remark 7.3.5. Beurling relied heavily on complex analysis and did not provide

a higher dimensional version of Theorem 7.3.3. In contrast, we avoided the use of

complex analysis in our proofs of Theorem 7.3.1 and the propositions leading to it.

The extension to higher dimensions is not trivial, since as we saw, geometry plays

a major role in d ≥ 2. There are two important advantages of working with Td as

opposed to R from an application point of view. First, it is reasonable to assume

that measures encountered in applications are compactly supported, and thus, their

supports can be normalized to be the unit cube. Second, it is not clear how to solve

(7.2) numerically, whereas there are algorithms for solving (TV).

7.4 Uniqueness and Non-uniqueness

While the mathematical theory we have developed connects the set Γ with the

support of the minimal extrapolations, the difficulty of applying the theory is that

in general, ε is unknown. However, in many important situations, it is possible

to deduce the value of ε. We say [A,B] ⊆ R+ is an admissibility range for ε

provided that 0 ≤ A ≤ ε ≤ B. The following proposition shows that we have

A = ‖F‖`∞(Λ) and B = ‖µ‖TV as an admissibility range, and B can be improved

in certain situations. While the proof is elementary and is a direct consequence of
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Hölder’s inequality, we shall use this proposition throughout the remainder of this

paper; and this also demonstrates its centrality and importance in our theory.

Proposition 7.4.1. Let F be spectral data on a finite set Λ ⊆ Zd, where F = µ̂ |Λ

for some µ ∈M(Td). We have the lower and upper bounds,

‖F‖`∞(Λ) ≤ ε ≤ ‖µ‖TV. (7.3)

Further, if there exists an extrapolation ν ∈M(Td) and ‖ν‖TV < ‖µ‖TV, then

‖F‖`∞(Λ) ≤ ε ≤ ‖ν‖TV < ‖µ‖TV. (7.4)

Proof. To see the lower bound for ε in (7.3) and (7.4), let σ be a minimal extrapo-

lation of F on Λ. Then,

sup
m∈Λ
|F (m)| = sup

m∈Λ
|σ̂(m)| ≤ ‖σ‖ = ε.

The upper bounds, ε ≤ ‖µ‖TV and ε ≤ ‖ν‖TV in (7.3) and (7.4), follow by definition

of ε.

Remark 7.4.2. By tightening the admissibility range for ε, we can deduce informa-

tion about the minimal extrapolations. The simplest case is when ε = ‖F‖`∞(Λ) =

‖µ‖TV, see Examples 7.6.2 and 7.6.3. The next simplest case is when there exists

an extrapolation ν, such that ε = ‖F‖`∞(Λ) = ‖ν‖TV, see Example 7.6.4. A more

complicated case is when ‖F‖`∞(Λ) < ε, see Example 7.6.5.

Candès and Fernandez-Granda [30] focused entirely on the case that ‖µ‖TV = ε

because this is a necessary condition to recover µ using (TV). In contrast to their
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‖F‖`∞(Λ)

‖µ‖TV

‖ν‖TV

-3 -2 -1 0 1 2 3

Λ

Figure 7.2: The black points represent the values of |F | on Λ. The union of the

light and dark gray regions is the admissibility range [‖F‖`∞(Λ), ‖µ‖TV], whereas the

dark gray region is an improved admissibility range [‖F‖`∞(Λ), ‖ν‖TV].

result, our theory is better suited for situations when ‖F‖`∞(Λ) = ε. This is because

Theorem 7.3.1b is strongest when |F (m)| = ε for many points m ∈ Λ, i.e., when

#Γ is large. Hence, our theory is better suited for deducing the impossibility of

reconstruction using (TV).

Algorithm 6.2.2 fails precisely when it computes a dual polynomial ϕ such that

|ϕ| ≡ 1. The following proposition shows that this occurs precisely when ε = ‖F‖`∞ .

Since we are given F on Λ, we then immediately get the exact value of ε.

Proposition 7.4.3. Let F be spectral data on a finite set Λ ⊆ Zd, where F = µ̂ |Λ

for some µ ∈ M(Td). Suppose there exists ϕ ∈ D(F,Λ) such that |ϕ| ≡ 1. Then,

Γ 6= ∅ and ε = ‖F‖`∞(Λ).

Proof. By Proposition 7.2.2c, we must have Γ 6= ∅. Let m ∈ Γ and by definition of

Γ, we have |F (m)| = ε. This combined with the lower bound in Proposition 7.4.1

proves that ε = ‖F‖`∞(Λ).
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Theorem 7.3.1 provides sufficient conditions for the minimal extrapolations

to be supported in a discrete set, but it does not provide sufficient conditions for

uniqueness. Since a family of discrete measures supported on a common set be-

haves essentially like a vector, we use basic linear algebra to address the question

of uniqueness when the minimal extrapolations are supported in a discrete set. The

following proposition is well-known, see, e.g., [51] for a similar result.

Proposition 7.4.4. Let F be spectral data on a finite set Λ = {m1,m2, . . . ,mJ} ⊆

Zd, where F = µ̂ |Λ for some µ ∈M(Td). Suppose there exists a finite set, {xk}Kk=1 ⊆

Td, such that each minimal extrapolation of F on Λ is supported in this set. Suppose

that the matrix,

E(m1, . . . ,mJ ;x1, . . . , xK) =



e−2πim1·x1 e−2πim1·x2 · · · e−2πim1·xK

e−2πim2·x1 e−2πim2·x2 · · · e−2πim2·xK

...
...

...

e−2πimJ ·x1 e−2πimJ ·x2 · · · e−2πimJ ·xK


, (7.5)

has full column rank (this can only occur if J ≥ K). Then, there is a unique minimal

extrapolation of F on Λ.

Proof. Let ν be the difference of any two minimal extrapolations of F on Λ. Then

ν is also supported in {xk}Kk=1 and it is of the form ν =
∑K

k=1 akδxk . Since ν̂ = 0 on

Λ, we have 0 = ν̂(mj) =
∑K

k=1 ake
−2πimj ·xk for j = 1, 2, . . . , J , which is equivalent

to the linear system Ea = 0, where a = (a1, . . . , aK) ∈ CK . By assumption, E has

full column rank. This implies a = 0.

We address the situation when #Γ = 1, i.e., the missing case of Theorem 7.3.1.
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A measure µ ∈M(Td) is positive if µ(A) ≥ 0 for all Borel sets A ⊆ Td. A sequence

{am}m∈Zd is positive-definite if for all sequences {bm}m∈Zd of finite support, we have

∑
m,n∈Zd

am−nbmbn ≥ 0.

Bochner’s theorem, that is true for all locally compact abelian groups [121], asserts

in our case of Td and Zd that a sequence is positive-definite if and only if it is the

sequence of Fourier coefficients of a positive measure. In this special case of Td and

Zd, Bochner’s theorem is called Herglotz’ theorem. Herglotz proved it in 1911 for

d = 1, and natural modifications to the proof in [90, page 39] yield the statement

in higher dimensions.

Proposition 7.4.5. Let F be spectral data on a finite set Λ ⊆ Zd. Suppose there

exists n ∈ Λ such that {F (m + n)}m∈Λ−n extends to a positive-definite sequence

on Zd. Then, n ∈ Γ, and each positive-definite extension of {F (m + n)}m∈Λ−n

corresponds to a positive measure ν, such that e2πin·xν(x) is a minimal extrapolation

of F on Λ.

Proof. Extend {F (m+n)}m∈Λ−n to a positive-definite sequence on Zd. By Herglotz’

theorem, there exists a positive measure ν ∈ M(Td) such that ν̂(m) = F (m + n)

for all m ∈ Λ − n. Then, σ(x) = e2πin·xν(x) is an extrapolation of F on Λ, which

implies

‖ν‖TV = ‖σ‖ ≥ ε.

For the reverse inequality, since ν is a positive measure, we have ‖ν‖TV = ν̂(0).

Then,

‖σ‖ = ‖ν‖TV = ν̂(0) = |ν̂(0)| = |F (n)| ≤ ‖F‖`∞(Λ) ≤ ε(F,Λ),
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where the last inequality follows by Proposition 7.4.1. This shows that |F (n)| =

‖ν‖TV = ε, which proves that n ∈ Γ and Mnν is a minimal extrapolation of F on

Λ.

Remark 7.4.6. Beurling [18] and Esseen [63] essentially proved the analogue of

Proposition 7.4.5 for the special case that n = 0, and for R instead of Td. Proposition

7.4.5 generalizes their result to handle situations when 0 6∈ Λ. This is important

because from the viewpoint of Proposition 7.5.1c, the super-resolution problem is

invariant under simultaneous translations of F and Λ, which means that 0 ∈ Zd is

no more special than any other point n ∈ Zd.

Remark 7.4.7. Proposition 7.4.5 suggests that the case #Γ = 1 is special com-

pared to the cases #Γ = 0 or #Γ ≥ 2 because, when #Γ = 1, there may exist

absolutely continuous minimal extrapolations. In Example 7.6.2, #Γ = 1, and

there exist uncountably many discrete and positive absolutely continuous minimal

extrapolations.

Remark 7.4.8. Suppose that F can be extended to a positive-definite sequence

on Z. In theory, there are an infinite number of such extensions, and one particu-

lar method of choosing such an extension is called the Maximum Entropy Method

(MEM). According to this method, one extends F to the positive-definite sequence

{am}m∈Z whose corresponding density function f ∈ L1(T) is the unique maximizer

of a specific logarithmic integral associated with the physical notion of entropy, e.g.,

see [6, Theorems 3.6.3 and 3.6.6]. MEM is related to spectral estimation methods

[37], the maximum likelihood method [37], and moment problems [97].
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Finally, we show that the surface measure of the zero set of a trigonometric

polynomial is a minimal extrapolation. If A,B ⊆ Zd, let A−B = {a−b : a ∈ A, b ∈

B}.

Proposition 7.4.9. Let Λ ⊆ Zd be a finite set and ϕ ∈ C(Td; Λ) such that S = {x ∈

Td : ϕ(x) = 0} is non-trivial. Let F be spectral data on Λ−Λ, where F = σ̂ |Λ−Λ and

σ is the surface measure of S. Then, Γ 6= ∅, σ is a positive minimal extrapolation of

F on Λ−Λ, and there exists Φ ∈ D(F,Λ−Λ) such that S = {x ∈ Td : |Φ(x)| = 1}.

Proof. Of course, σ is an extrapolation of F on Λ−Λ, so we have ‖σ‖ ≥ ε. To prove

the reverse inequality, we observe that σ is a positive measure and by Proposition

7.4.1,

‖σ‖ = |σ̂(0)| = |F (0)| ≤ ‖F‖`∞(Λ−Λ) ≤ ε(F,Λ− Λ).

This also shows that 0 ∈ Γ.

Since S is invariant if we multiply ϕ by a constant, without loss of generality,

assume that ‖ϕ‖L∞ ≤ 1. Define the function Φ = 1 − |ϕ|2, and note that Φ ∈

U(Td; Λ − Λ) and S = {x ∈ Td : Φ(x) = 1}. Using these facts, we have |〈Φ, σ〉| =

‖σ‖ = ε. This shows that Φ is a dual polynomial.

7.5 Additional Results

Our next goal is to examine the symmetries of the minimal extrapolations. We

are interested in the vector space operations, namely, addition of measures and the

multiplication of measures by complex numbers. We are also interested in the oper-

ations that are well-behaved under the Fourier transform on Td, namely, translation,
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modulation, convolution, and product of measures. For any y ∈ Rd, let My be the

modulation operator defined by Myf(x) = e2πiy·xf(x) and let Ty be the translation

operator Tyf(x) = f(x− y).

Proposition 7.5.1. Let F be spectral data on a finite set Λ ⊆ Zd. Let a ∈ C be

non-zero, n ∈ Zd, and y ∈ Rd.

(a) Multiplication by constants is bijective: aε(F,Λ) = ε(aF,Λ), and ν ∈ E(F,Λ) if

and only if aν ∈ E(aF,Λ).

(b) Translation is bijective: ε(µ,Λ) = ε(MyF,Λ), and ν ∈ E(F,Λ) if and only if

Tyν ∈ E(MyF,Λ).

(c) Minimal extrapolation is invariant under simultaneous shifts of F and Λ:

ε(F,Λ) = ε(TnF,Λ + n), and E(µ,Λ) = E(TnF,Λ + n).

(d) The product of minimal extrapolations is a minimal extrapolation for the product:

For j = 1, 2, let Fj be spectral data on a finite set Λj ⊆ Zdj and let νj ∈

E(Fj,Λj). Then ε(F1,Λ1)ε(F2,Λ2) = ε(F1⊗F2,Λ1×Λ2), and ν1× ν2 ∈ E(F1⊗

F2,Λ1 × Λ2).

Proof.

(a) If ν ∈ E(F,Λ), then aν is an extrapolation of aF on Λ. Suppose aν 6∈ E(aF,Λ).

Then there exists σ such that σ̂ = aF on Λ and ‖σ‖ < ‖aν‖TV. Thus, σ̂/a = F

on Λ and ‖σ/a‖ < ‖ν‖TV, which contradicts the assumption that ν ∈ E(F,Λ).

The converse follows by a similar argument.
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(b) If ν ∈ E(F,Λ), then Tyν is an extrapolation of MyF on Λ. Suppose Tyν 6∈

E(MyF,Λ). Then there exists σ such that σ̂ = MyF on Λ and ‖σ‖ < ‖Tyν‖TV =

‖ν‖TV. Then (T−yσ)∧ = F on Λ and ‖T−yσ‖ = ‖σ‖ < ‖ν‖TV, which contradicts

the assumption that ν ∈ E(F,Λ). The converse follows by a similar argument.

(c) If f ∈ U(Td; Λ), then Mnf ∈ U(Td; Λ + n). We have,

|〈f, µ〉| =
∣∣∣∑
m∈Λ

f̂(m)µ̂(m)
∣∣∣ =

∣∣∣ ∑
m∈Λ+n

(Mnf)∧(m)(Mnµ)∧(m)
∣∣∣ = |〈Mnf,Mnµ〉|.

Using Proposition 7.2.1e, we see that ε(F,Λ) = ε(TnF,Λ + n).

If ν ∈ E(F,Λ), then Mnν is an extrapolation of TnF on Λ + n, and ‖Mnν‖TV =

‖ν‖TV = ε(F,Λ) = ε(TnF,Λ + n). Thus, Mnν ∈ E(TnF,Λ + n). The converse

follows similarly.

(d) For convenience, let µ = µ1 × µ2, ν = ν1 × ν2, Λ = Λ1 × Λ2, F = F1 ⊗ F2,

εj = ε(Fj,Λj), and ε = ε(F,Λ). Since ν is an extrapolation of F on Λ, by

Proposition 7.4.1, we have

ε ≤ ‖ν‖TV = ‖ν1‖‖ν2‖ = ε1ε2.

To see the reverse inequality, by Proposition 7.2.1f, there exist ϕj ∈ D(Fj,Λ),

for j = 1, 2. Let ϕ = ϕ1 ⊗ ϕ2 and observe that ϕ ∈ U(Td; Λ). By Proposition

7.2.1e, we have

ε = max
f∈U(Td;Λ)

|〈f, µ〉| ≥ |〈ϕ, µ〉| ≥ |〈ϕ1, µ1〉〈ϕ2, µ2〉| = ε1ε2.

This shows that ε = ε1ε2, and, since ‖ν‖TV = ε1ε2, we conclude that ν ∈

E(F,Λ).
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While minimal extrapolation is well-behaved under translation, it not well

behaved under modulation. This is because the Fourier transform of modulation is

translation, and so µ̂ |Λ and (Mnµ)∧ |Λ are, in general, not equal. In contrast, the

Fourier transform of translation is modulation, and so µ̂ |Λ and (Tyµ)∧ |Λ only differ

by a phase factor. We shall prove these statements in Proposition 7.5.2.

Proposition 7.5.2.

(a) For j = 1, 2, there exist spectral data Fj on a finite subset Λ ⊆ Z and νj ∈

E(Fj,Λ), such that ν1 + ν2 6∈ E(F1 + F2,Λ).

(b) There exist spectral data F on a finite subset Λ ⊆ Z, ν ∈ E(F,Λ), and n ∈ Z,

such that Mnν 6∈ E(TnF,Λ).

(c) For j = 1, 2, there exist spectral data Fj on a finite subset Λ ⊆ Z, and νj ∈

E(Fj,Λ), such that ν1 ∗ ν2 6∈ E(F1F2,Λ).

Proof.

(a) Let µ1 = δ0 +δ1/2, µ2 = −δ0−δ1/2, Λ = {−1, 0, 1}, and Fj = µ̂j |Λ. By Example

7.6.2, we have ν1 = δ0 +δ1/2 ∈ E(F1,Λ), and ν2 = −δ1/4−δ3/4 ∈ E(F2,Λ). Then,

µ1 +µ2 = 0, and so ε(F1 +F2,Λ) = 0. However, ν1 + ν2 6∈ E(F1 +F2,Λ) because

‖ν1 + ν2‖ = ‖δ0 − δ1/4 + δ1/2 − δ3/4‖ > 0.

(b) Let µ = δ0 + δ1/2, Λ = {−1, 0, 1}, n = −1, and F = µ̂ |Λ. By Example 7.6.2,

we have ν = δ1/4 + δ3/2 ∈ E(F,Λ). However, M−1µ = δ0− δ1/2, and by Example

7.6.3, E(T1F,Λ) = {δ0 − δ1/2}. Thus, M−1ν 6∈ E(T1F,Λ).
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(c) Let µ1 = δ0 + δ1/2, µ2 = δ0 − δ1/2, Λ = {−1, 0, 1}, and Fj = µ̂j |Λ. Then

F1F2 = 0 on Λ, which implies ε(F1F2,Λ) = 0. By Examples 7.6.2 and 7.6.3, we

have ν1 = µ1 ∈ E(F1,Λ) and ν2 = µ2 ∈ E(F2,Λ). However, ν1 ∗ ν2 6∈ E(F1F2,Λ)

because ‖ν1 ∗ ν2‖ = ‖δ0 − δ1‖ > 0.

7.6 Examples

There are several reasons why we are interested in computing the minimal extrap-

olations of discrete measures. They are the simplest types of measures, and so,

their minimal extrapolations can be computed rather easily. By Theorem 7.3.1, the

minimal extrapolations of a non-discrete measure are sometimes discrete measures,

so they appear naturally in our analysis.

Remark 7.6.1. In view of Proposition 7.5.1 a,b, and without loss of generality, we

can assume any discrete measure µ =
∑∞

k=1 akδxk ∈ M(Td), where
∑∞

k=1 |ak| < ∞,

can be written as µ = δ0 +
∑∞

k=2 a
′
kδx′k ∈M(Td), where

∑∞
k=2 |a′k| <∞.

Example 7.6.2. Let Λ = {−1, 0, 1} and F = µ̂ |Λ, where µ = δ0 + δ1/2. We have

F (0) = 2, and F (±1) = 0. Clearly ‖F‖`∞(Λ) = ‖µ‖TV = 2. By Proposition 7.4.1,

ε = ‖F‖`∞(Λ) = ‖µ‖TV = 2, which implies µ is a minimum extrapolation of F on Λ.

Further, there is an uncountable number of discrete minimal extrapolations.

To see this, for each y ∈ T and any integer K ≥ 2, define

νy,K =
2

K

K−1∑
k=0

δy+ k
K
.
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A straightforward calculation shows that νy,K is an extrapolation and that ‖νy,K‖ =

ε.

Also, we can construct positive absolutely continuous minimal extrapolations.

One example is the constant function f ≡ 2 on T. For other examples, let N ≥ 2

and let FN ∈ C∞(T) be the Fejér kernel,

FN(x) =
N∑

n=−N

(
1− |n|

N + 1

)
e2πinx.

For any c > 0 such that c ≤ (2N + 2)/(3N + 1), extend F on Λ to the sequence

{(aN,c)m}m∈Z, where

(aN,c)m =



2 m = 0,

c
(

1− |m|
N+1

)
2 ≤ |m| ≤ N,

0 otherwise.

Consider the real-valued function

fN,c(x) = 2 +
−2∑

n=−N

(aN,c)ne
2πinx +

N∑
n=2

(aN,c)ne
2πinx

= 2 + c
−2∑

n=−N

(
1− |n|

N + 1

)
e2πinx + c

N∑
n=2

(
1− |n|

N + 1

)
e2πinx.

We check that f̂N,c(m) = (aN,c)m for allm ∈ Z, which implies fN,c is an extrapolation

of µ. Using the upper bound on c, we have, for all x ∈ T, that

2 ≥ c+ 2c
(

1− 1

N + 1

)
cos(2πx) = c+ c

(
1− 1

N + 1

)
e2πix + c

(
1− 1

N + 1

)
e−2πix.

Using this inequality, and the definitions of FN and fN,c, we have

fN,c(x) ≥ cFN ≥ 0.
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Since fN,c ≥ 0, we also have

‖fN,c‖1 =

∫
T
fN,c(x) dx = 2+

∫
T

( −2∑
n=−N

(aN,c)ne
2πinx+

N∑
n=2

(aN,c)ne
2πinx

)
dx = 2 = ε.

Thus, for any N ≥ 2 and c ≤ (2N + 2)/(3N + 1), fN,c is a positive absolutely

continuous minimal extrapolation. Hence, we have constructed an uncountable

number of positive absolutely continuous minimal extrapolations.

Example 7.6.3. Let Λ = {−1, 0, 1} and F = µ̂ |Λ, where µ = δ0 − δ1/2. We

have F (0) = 0, and F (±1) = 2. Further, we have ‖F‖`∞(Λ) = ‖µ‖TV = 2, so that

by Proposition 7.4.1, we have ε = ‖F‖`∞(Λ) = ‖µ‖TV = 2. Thus, µ is a minimal

extrapolation of F on Λ.

Consequently, Γ = {−1, 1}. By Theorem 7.3.1b, there exists α−1,1 ∈ R/Z

satisfying

e2πiα−1,1 =
F (−1)

F (1)
= 1,

and the minimal extrapolations are supported in the set {x ∈ T : 2x ∈ Z} = {0, 1/2}.

This implies each ν ∈ E is discrete and can be written as ν = a1δ0+a2δ1/2. In theory,

a1, a2 depend on ν, so we cannot conclude uniqueness yet.

The matrix E from (7.5) is

E(−1, 0, 1; 0, 1/2) =


1 −1

1 1

1 −1

 .

Clearly, E has full column rank. So, by Proposition 7.4.4, µ is the unique minimal

extrapolation of F on Λ. Thus, reconstruction of µ from F on Λ is possible.
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Example 7.6.4. Let Λ = {−1, 0, 1} and F = µ̂ |Λ, where µ = δ0 − δ1/4. We have

F (±1) = 1± i =
√

2e±πi/4, and F (0) = 0. Note that ‖F‖`∞(Λ) =
√

2 < 2 = ‖µ‖TV,

which shows that
√

2 ≤ ε ≤ 2. We claim that ε =
√

2. To see this, consider

ν = (−δ3/8 + δ7/8)/
√

2. We verify that ‖ν‖TV =
√

2 and that ν is an extrapolation

of F on Λ. By Proposition 7.4.1, ε =
√

2, which implies ν is a minimal extrapolation

of F on Λ. This also implies µ 6∈ E(F,Λ), and so reconstruction of µ from F on Λ

using (TV) is impossible.

We claim that ν is the unique minimal extrapolation. The matrix E from

(7.5) is

E(−1, 0, 1; 3/8, 7/8) =


e2πi3/8 e2πi7/8

1 1

e−2πi3/8 e−2πi7/8

 ,

which we observe to have full column rank. By Proposition 7.4.4, we conclude that

ν is the unique minimal extrapolation of F on Λ. Thus, reconstruction of ν from F

on Λ is possible.

We explain the derivation of ν. We guess that ε =
√

2 and see what Theorem

7.3.1b implies. Under this assumption that ε =
√

2, we have Γ = {−1, 1}. By

Theorem 7.3.1b, there exists α−1,1 ∈ R/Z satisfying

e2πiα1,−1 =
F (1)

F (−1)
= eπi/2,

and the minimal extrapolations are supported in {x ∈ T : 2x + 1/4 ∈ Z} =

{3/8, 7/8}. Hence, if ε =
√

2, then every σ ∈ E(F,Λ) is of the form σ = a1δ3/8 +

a2δ7/8. Thus, by definition of a minimal extrapolation, ‖σ‖ =
√

2 and F = σ̂

on Λ. Using this information, we solve for the coefficients a1, a2, and compute
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that |a1| + |a2| =
√

2, a1 = −a2, and a1 = −
√

2/2. Thus, we obtain that

σ = (−δ3/8 + δ7/8)/
√

2. From here, we simply check that ν = σ is, in fact, a

minimal extrapolation of F on Λ.

Example 7.6.5. Let Λ = {−1, 0, 1} and F = µ̂ |Λ, where µ = δ0 + eπi/3δ1/3. We

have F (−1) = 0, F (0) = 1 + eπi/3 =
√

3 eπi/6, and F (1) = 1 + e−πi/3 =
√

3 e−πi/6.

Suppose, for the purpose of obtaining a contradiction, that ε = ‖F‖`∞(Λ) =

√
3. Then Γ = {0, 1}. By Theorem 7.3.1b, there is α0,1 ∈ R/Z such that

e2πiα0,1 =
F (0)

F (1)
= eπi/3,

and each ν ∈ E(F,Λ) is of the form ν = aδ1/6 for some a ∈ C. Then, |ν̂| = |a| on Z

and, in particular, F 6= ν̂ on Λ, which is a contradiction.

Thus, ε >
√

3, i.e., Γ = ∅. Therefore, Theorem 7.3.1a applies, and so there

is a finite set S such that supp(ν) ⊆ S for each ν ∈ E(F,Λ). In particular, each

ν ∈ E(F,Λ) is discrete. Hence, we have to solve the optimization problem given in

Proposition 7.2.1e, which is

ε = max
{∣∣∣a√3 eπi/6 + b

√
3 e−πi/6

∣∣∣ : ∀x ∈ T, |ae2πix + b+ ce−2πix| ≤ 1, a, b, c ∈ C
}
.

This optimization problem can be written as a semi-definite program, see [30, Corol-

lary 4.1, page 936]. After obtaining numerical approximations to the optimizers of

this problem, we guess that the the exact optimizers are

a =
2

3
√

3
e−πi/6, b =

4

3
√

3
eπi/6, c = − i

3
√

3
.

These values of a, b, c are, in fact, the optimizers because a
√

3 eπi/6 + b
√

3 e−πi/6 = 2

and |ae2πix + b + ce−2πix| ≤ 1 for all x ∈ T. Thus, ε = 2 and µ is a minimal
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extrapolation of F on Λ. Since |ae2πix + b+ ce−2πix| = 1 precisely on S = {0, 1/3},

by Theorem 7.3.1a, the minimal extrapolations are supported in S.

The matrix E from (7.5) is

E(−1, 0, 1; 0, 1/3) =


1 e−2πi/3

1 1

1 e2πi/3

 .

Since E has full rank, then by Proposition 7.4.4, µ is the unique minimal extrapo-

lation of F on Λ. Thus, reconstruction of µ from F on Λ is possible.

The following example illustrates that if µ is a sum of two Dirac measures,

then their supports have to be sufficiently spaced apart in order for super-resolution

of µ to be possible. This shows that, without any assumptions on the coefficients of

the discrete measure, a minimum separation condition is necessary to super-resolve

a sum of two Dirac measures, such as in [30].

Example 7.6.6. Let Λ ⊆ Zd be any finite subset and let Fy = µ̂y |Λ, where

µy = δ0 − δy for some non-zero y ∈ Td. We claim that if y is sufficiently small

depending on Λ, then µy is not a minimal extrapolation of Fy on Λ. Note that

‖µy‖ = 2 for any y ∈ Td. Let η denote the normalized Lebesgue measure on Td,

and define the measures νy by the formula

νy(x) =
∑
m∈Λ

Fy(m)e2πim·x η(x).

By construction, νy is an extrapolation of Fy on Λ because, for each n ∈ Λ,

ν̂y(n) =

∫
Td
e−2πin·x dνy(x) =

∑
m∈Λ

Fy(m)

∫
Td
e−2πi(n−m)·x dx = Fy(n).
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We let DΛ be the generalized Dirichlet kernel, defined by the formula

DΛ(x) =
∑
m∈Λ

e2πim·x.

Then we have,

‖νy‖ =

∫
Td

∣∣∣∑
m∈Λ

Fy(m)e2πim·x
∣∣∣ dx =

∫
Td
|DΛ(x)−DΛ(x− y)| dx.

By a fundamental theorem of calculus argument and Bernstein’s inequality for

trigonometric polynomials, we have the upper bound

|DΛ(x)−DΛ(x− y)| ≤ |y|
∥∥|∇DΛ|

∥∥
∞

≤ 2π
√
d|y|max

m∈Λ
|m|‖DΛ‖∞

= 2π
√
d|y|max

m∈Λ
|m|(#Λ),

where | · | denotes the Euclidean norm and ∇ is the gradient. Consequently, if |y| is

small enough so that

|y| < 1

π
√
dmaxm∈Λ |m|(#Λ)

,

then ‖νy‖ < 2 = ‖µy‖. In this case, µy is not a minimal extrapolation of Fy on Λ.

Note that this argument does not contradict Proposition 7.4.1 because ‖Fy‖`∞(Λ) →

0 as y → 0. Thus, for y sufficiently small, reconstruction of µy from F on Λ using

(TV) is impossible.

Remark 7.6.7. The authors of [60, Corollary 1] showed that when Λ = {−M,−M+

1, . . . ,M}, there exists a real measure µ with minimum separation 1/(2M) that can-

not be recovered using (TV), given its Fourier coefficients on Λ. For this particular

case, their result is sharper than the one in Example 7.6.6 because they used a
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special fact about trigonometric polynomials due to Turán [129]. In contrast, our

result does not require any assumptions on Λ or whether µ is real or complex, and

it holds in all dimensions.

Example 7.6.8. Let Λ = {−1, 0, 1}2 \ {(1,−1), (−1, 1)} and F = µ̂ |Λ, where

µ = δ(0,0) + δ(1/2,1/2). Then, F (m) = 1 + e−πi(m1+m2), and, in particular, F (1, 1) =

F (−1,−1) = F (0, 0) = 2 and F (±1, 0) = F (0,±1) = 0. We deduce that ε =

‖µ‖TV = ‖F‖`∞(Λ) = 2 from Proposition 7.4.1, and so µ is a minimal extrapolation

of F on Λ.

Further, Γ = {(0, 0), (1, 1), (−1,−1)}, and so #Γ = 3. According to the

definition of αm,n in Theorem 7.3.1b, set α(−1,−1),(0,0) = α(0,0),(1,1) = α(−1,−1),(1,1) = 0.

By the conclusion of Theorem 7.3.1b, the minimal extrapolations are supported in

the set S = S(−1,−1),(0,0) ∩ S(0,0),(1,1) ∩ S(−1,−1),(1,1), where

S(−1,−1),(0,0) = {x ∈ T2 : x · (−1,−1) ∈ Z} = {x ∈ T2 : x1 + x2 ∈ Z},

S(0,0),(1,1) = {x ∈ T2 : x · (−1,−1) ∈ Z} = {x ∈ T2 : x1 + x2 ∈ Z},

S(−1,−1),(1,1) = {x ∈ T2 : x · (−2,−2) ∈ Z} = {x ∈ T2 : 2x1 + 2x2 ∈ Z}.

It follows that the minimal extrapolations are supported in

S = S(−1,−1),(0,0) ∩ S(0,0),(1,1) ∩ S(−1,−1),(1,1) = {x ∈ T2 : x1 + x2 = 1}.

We can construct other discrete minimal extrapolations besides µ. For each

y ∈ T and for each integer K ≥ 2, define the measure

νy,K =
2

K

K−1∑
k=0

δ(
y+ k

K
,1−y− k

K

).
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We claim νy,K is a minimal extrapolation. We have ‖νy,K‖ = ε, and

ν̂y,K(m) = e−2πi(m1y−m2y)e−2πim2
2

K

K−1∑
k=0

e−2πi(m1−m2)k/K .

We see that ν̂y,K = F on Λ, which proves the claim.

We can also construct continuous singular minimal extrapolations. Let σ =

√
2σS, where σS is the surface measure of the Borel set S. We readily verify that

‖σ‖ = ε and

σ̂(m) =
√

2

∫
T2

e−2πim·x dσS = 2e−2πim2

∫ 1

0

e−2πi(m1−m2)t dt = 2δm1,m2 ,

which proves that σ is a minimal extrapolation of F on Λ. In particular, S is the

smallest set that contains the support of all the minimal extrapolations.

Since µ is not the unique minimal extrapolation, reconstruction of µ from F

on Λ using (TV) is impossible.

Example 7.6.9. For an integer q ≥ 3, let Cq be the middle 1/q-Cantor set, which

is defined by Cq =
⋂∞
k=0Cq,k, where Cq,0 = [0, 1] and

Cq,k+1 =
Cq,k
q
∪
(

(1− q) +
Cq,k
q

)
.

Let Fq : [0, 1] → [0, 1] be the Cantor-Lebesgue function on Cq, which is defined by

the point-wise limit of the sequence {Fq,k}, where Fq,0(x) = x and

Fq,k+1(x) =



1
2
Fq,k(qx) 0 ≤ x ≤ 1

q
,

1
2

1
q
≤ x ≤ q−1

q
,

1
2
Fq,k(qx− (q − 1)) + 1

2
q−1
q
≤ x ≤ 1.
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By construction, Fq(0) = 0, Fq(1) = 1, and Fq is non-decreasing and uniformly con-

tinuous on [0, 1]. Thus, Fq can be uniquely identified with the measure σq ∈M(T),

and ‖σq‖ = 1. Since F ′q = 0 a.e. and Fq does not have any jump discontinuities, σq

is a continuous singular measure, with zero discrete part. The Fourier coefficients

of σq are

σ̂q(m) = (−1)m
∞∏
k=1

cos(πmq−k(1− q)),

see [137, pages 195-196]. In particular, for any integer n ≥ 1, we have

σ̂q(q
n) = (−1)q

n
∞∏
k=1

cos(πq−k(1− q)),

which is convergent and independent of n.

Let Λ ⊆ Z be any set containing 0, and let F = σ̂q |Λ. Since F (0) = ‖σq‖ =

1, we immediately see that ε = 1 and σq is a minimal extrapolation of F on Λ.

Again, we cannot determine whether σq is the unique minimal extrapolation because

Theorem 7.3.1 cannot handle the case #Γ = 1, see Remark 7.4.7. For related

examples that can be analyzed in terms of minimal extrapolations, see [85, 122, 89].

Example 7.6.10. Let σA, σB ∈ M(Td) be the surface measures of the Borel sets

A = {x ∈ T2 : x2 = 0} and B = {x ∈ T2 : x2 = 1/2}, respectively. Let Λ =

{−2,−1, . . . , 1}2 and F = µ̂ |Λ, where µ = σA + σB. Then,

F (m) =

∫ 1

0

e2πim1t dt+

∫ 1

0

e2πi(m1t+m2/2) dt = δm1,0 + (−1)m2δm1,0.

We immediately see that ε = ‖F‖`∞(Λ) = ‖µ‖TV = 2, which implies µ is a minimal

extrapolation of F on Λ. Then, Γ = {(0, 0), (0, 2), (0,−2)}, and, by Theorem 7.3.1b,

the minimal extrapolations are supported in {x ∈ T2 : x2 = 0}∪{x ∈ T2 : x2 = 1/2}.
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Determining whether µ is the unique minimal extrapolation is beyond the theory

we have developed herein, and we shall examine this uniqueness problem in [15].

7.7 Conclusion

The following topics encapsulate the contributions of this paper.

(a) Qualitative behavior of minimal extrapolations. It is interesting to note that

Γ provides significant information about the minimal extrapolations. Theorem

7.3.1 shows that, regardless of the dimension, when #Γ = 0 or #Γ ≥ 2, the

minimal extrapolations are always singular measures. The #Γ = 1 case is

pathological. Proposition 7.4.5 shows that this scenario is connected with the

existence of positive absolutely continuous minimal extrapolations. Example

7.6.2 shows that there can exist both uncountably many discrete, as well as

positive absolutely continuous, minimal extrapolations. Hence, this behavior is

a fundamental feature of (TV) and is not an artifact of our analysis.

(b) Computational consequences. One important aspect of Theorem 7.3.1 is its

relationship with Algorithm 6.2.2 and similar variations. Proposition 7.4.3 shows

that the algorithm fails precisely when ε = ‖F‖`∞(Λ) and Γ 6= ∅. Since we are

given the values of F on Λ, this immediately tells us what ε and Γ are. If

#Γ ≥ 2, then the theorem is applicable and the minimal extrapolations are

singular measures supported in the set defined in (7.1), which can be explicitly

computed. We show how to apply our theorem to compute pertinent analytical

examples. Hence, our main result is applicable even when Algorithm 6.2.2 and
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similar variations fail.

(c) Super-resolution of singular measures. When d ≥ 2, Theorem 7.3.1 suggests

that certain singular continuous measures are solutions to (TV). Somewhat sur-

prisingly, this is indeed the case because Example 7.6.8 provides a singular

continuous minimal extrapolation when #Γ ≥ 2. This also demonstrates that

the conclusion of Theorem 7.3.1b is optimal. Proposition 7.4.9 shows that sur-

face measures corresponding to the zero set of trigonometric polynomials are

also minimal extrapolations.

(d) Impossibility of super-resolution. Theorem 7.3.1 does not require structural as-

sumptions on the finite subset Λ ⊆ Zd or on the measure µ ∈ M(Td) that

generates the spectral data F on Λ. Since the theorem also describes the sup-

port set of the minimal extrapolations, it is useful for determining whether it is

possible for a given µ to be a minimal extrapolation. To illustrate this point,

in Example 7.6.6, we provide a simple proof that shows, in general, a minimal

separation condition is necessary to super-resolve a discrete measure.

(e) Discrete-continuous correspondence. The total variation minimization problem

can be viewed as a continuous analogue of the basis pursuit algorithm (BP).

Indeed, let Φ ∈ CN×N be the restriction of the N × N DFT matrix to the set

Λ ⊆ {0, 1, . . . , N − 1}, and let y = Φx. In this case, the basis pursuit algorithm

is

min
x̃∈CN

‖x̃‖`1 such that y = Φx̃.

By considering the case that µ =
∑N

n=1 xnδn/N , it is straightforward to see that
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(TV) is a generalization of (BP). From this point of view, Theorem 7.3.1 is a

discrete-continuous correspondence result. Indeed, if #Γ ≥ 2, and either d = 1

or the vectors {pj} exist, then the minimal extrapolations are necessarily discrete

measures whose support lie on a lattice; as we just discussed, such measures can

be identified with vectors that are solutions to the discrete problem.

(f) Mathematical connections. Our results are closely related to Beurling’s work on

minimal extrapolation, see Theorem 7.3.3 Proposition 7.4.1 connects our results

to the Candès and Fernandez-Granda theory [30] by introducing a concept called

an admissibility range for ε. This connection is exploited to prove Proposition

7.4.3, which in turn, shows that our theorem is applicable to situations where

Algorithm 6.2.2 fails.
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Chapter 8: Stable Super-Resolution Limit

The material in this chapter originated from the paper [101], which was written by

the author and Wenjing Liao.

8.1 Problem Statement

Let N be a positive integer and consider the discrete measure,

µ =
N−1∑
n=0

xnδn/N ,

which is assumed to be supported on the grid of width 1/N . We assume that x

belongs to CN
S , the set of S-sparse vectors of length N . Suppose we are given the

measurement vector y ∈ CM with

ym = µ̂(m) + ηm, for m = 0, 1, . . . ,M − 1,

where η ∈ CM is some unknown addictive noise that satisfies ‖η‖2 ≤ δ. We can

write the measurement vector y as the linear system,

y = Φx+ η,

where Φ ∈ CM×N is the first M rows of the un-normalized N ×N discrete Fourier

transform (DFT) matrix:

Φm,n = e−2πimn/N , m = 0, 1 . . . ,M − 1, n = 0, 1, . . . , N − 1.
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We want to recover µ, or equivalently x, from the measurements y in the

super-resolution regime where N �M . In many applications, there are only a few

point sources for which we need to recover at a high precision. For this reason, we

can assume that the coefficient vector x is S-sparse, where S is much smaller than

M . The noisy measurements are taken up to frequency M , so the Rayleigh length

is 1/M . The super-resolution factor is N/M , which is the number of grid points in

one Rayleigh length. The challenge of recovering x increases as the super-resolution

factor grows.

Subspace methods can recover µ if the noise is sufficiently small. Rather than

analyze the performance of these algorithms, we take a more abstract approach,

and study the theoretical super-resolution limit of all possible algorithms. The min-

max error quantifies this approximation quality and can be used to evaluate the

effectiveness of any algorithm, as the optimal method should be comparable to the

min-max error.

Definition 8.1.1. Fix positive integers M,N, S such that S ≤ M ≤ N and let

δ > 0. The S-min-max error is

E(M,N, S, δ) = inf
x̃=A(y,M,N,S,δ)∈CN

y=Φx+η

sup
x∈CNS

sup
η∈CM :‖η‖2≤δ

‖x̃− x‖2.

Here, the infimum is taken over all functions A that takes the known information

M,N, S, δ and the given data y = Φx + η as inputs. In particular, the function A

cannot depend on the unknown x and η.

The min-max error is a strong way of quantifying the error because the supre-

mum is taken over all possible S-sparse vectors and noise bounded by δ. On the
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other hand, this quantity does not assume that A is a particular algorithm, since

the infimum is taken over all possible methods. Hence, no algorithm can achieve a

min-max error smaller than E(M,N, S, δ).

To study the min-max error, we exploit its connection with the smallest sin-

gular value of certain restricted Fourier matrices.

Definition 8.1.2. Fix positive integers M,N, S such that S ≤M ≤ N . The lower

restricted isometry constant of order S is the quantity

Θ(M,N, S) = min
|T |=S

σmin(ΦT ),

where ΦT is the restriction of Φ to columns indexed by the set T ⊆ {0, 1, . . . , N−1}

and σmin(ΦT ) is the smallest singular value of ΦT .

The lower restricted isometry constant is related to the restricted isometry

constant from compressive sensing [27], but with a major difference. The recov-

ery guarantees from standard compressive sensing theory require ΦT to be well-

conditioned for all support sets T , whereas in our situation, the sub-matrices ΦT

can be highly ill-conditioned. There is an almost characterization of the min-max

error in terms of the lower restricted isometry constant.

The main purpose of this chapter is to derive a lower bound on the lower

restricted isometry constant, and we show this is sharp, up to constants depending

on S, by considering an explicit example. This immediately provides a sharp upper

bound on the min-max error, and has consequences to the stability of subspace

methods.
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8.2 Characterizations

We detail the relationship between the min-max error and the lower restricted isom-

etry constant.

Proposition 8.2.1. Fix positive integers M,N, S such that 2S ≤ M ≤ N , and let

δ > 0. Then,

δ

2Θ(M,N, 2S)
≤ E(M,N, S, δ) ≤ 2δ

Θ(M,N, 2S)
.

Proof. We prove the upper bound first. Fix x ∈ CN
S , η ∈ CM with ‖η‖2 ≤ δ, and

suppose we are given y = Φx + η. Let x̃ ∈ CN be the sparest vector such that

‖Φx̃− y‖2 ≤ δ, and this choice of x̃ is independent of x and η. The vector x̃ exists

because x also satisfies this inequality constraint. By definition, we have

E(M,N, S, δ) ≤ ‖x̃− x‖2.

Since x is chosen as sparse as possible, we have ‖x̃‖0 ≤ ‖x‖0 ≤ S, which implies

‖x̃− x‖0 ≤ 2S. By definition of the smallest singular value,

1

Θ(M,N, 2S)
= sup
|T |=2S

1

σmin(ΦT )
≥ ‖x̃− x‖2

‖Φ(x̃− x)‖2

.

By construction, we have

‖Φ(x̃− x)‖2 ≤ ‖Φx̃− y‖2 + ‖Φx− y‖2 ≤ 2δ.

Combining previous inequalities completes the proof of the upper bound.

We focus our attention on the lower bound. By definition of the smallest

singular value, there exists u ∈ CN
2S of unit norm such that

Θ(M,N, 2S) = min
|T |=2S

σmin(ΦT ) = ‖Φu‖2.
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Pick any vectors v1, v2 ∈ CN
S such that

δ

Θ(M,N, 2S)
u = v1 − v2.

Suppose we are given the data

y = Φv1 = Φv2 + Φ(v1 − v2).

The previous three equations imply

‖Φv2 − y‖2 = ‖Φ(v1 − v2)‖2 =
δ

Θ(M,N, 2S)
‖Φu‖2 ≤ δ.

This proves that y is both the noiseless partial Fourier samples of v1 and the noisy

partial Fourier samples of v2 with noise Φ(v1−v2) of noise level at most δ. Recalling

that u is of unit norm, for all functions A, let x̃ = A(y,M,N, S, δ) and

δ

Θ(M,N, 2S)
= ‖v1 − v2‖2 ≤ 2 max

k=1,2
‖x̃− vk‖2 ≤ 2E(M,N, S, δ).

This completes the proof of the lower bound.

Proposition 8.2.1 shows that it suffices to obtain tight bounds on Θ(M,N, S, δ).

To do this, we prove a powerful duality relationship between the smallest singular

value of ΦT and an interpolation of measures supported on T by trigonometric

polynomials.

Definition 8.2.2. Fix positive integers M,N, S such that S ≤ M ≤ N . For

any v ∈ CN
S , let P(M, v) denote the set of trigonometric polynomials such that

f ∈ P(M, v) if and only if supp(f̂) ⊆ {0, 1, . . . ,M − 1} and f(n/N) = vn for each

n ∈ supp(v).
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Proposition 8.2.3. Fix positive integers M,N, S such that S ≤ M ≤ N . For any

support set T ⊆ {0, 1, . . . , N − 1} with cardinality S, we have

1

σmin(ΦT )
= sup

‖v‖2=1
supp(v)⊆T

inf
f∈P(M,v)

‖f‖L2 .

Proof. Fix a unit norm vector v ∈ CN supported in T . The set of all trigonometric

polynomials f with Fourier transform supported in {0, 1, . . . ,M −1} can be written

in the form

f(t) =
M−1∑
m=0

f̂(m)e2πimt.

Let u ∈ CM be the vector with um = f̂(m) and note that ‖u‖2 = ‖f‖L2 . This

establishes a bijection between each such f and a vector u ∈ CM . Thus, there exists

a bijection between the set P(M, v) and the set of vectors u ∈ CM such that

vn =
M−1∑
m=0

ume
2πimn/N for all n ∈ T.

This condition is equivalent to the existence of a solution u ∈ CM to the under-

determined system of equations (ΦT )∗u = vT , where vT ∈ CS denotes the restriction

of v to T . Thus, we have

inf
f∈P(M,v)

‖f‖L2 = inf
(ΦT )∗u=vT

‖u‖2.

The minimum Euclidean norm solution to an under-determined system is given by

the Moore-Penrose psuedoinverse, so

inf
(ΦT )∗u=vT

‖u‖2 = ‖((ΦT )∗)†vT‖2.

To complete the proof, we note that

sup
‖v‖2=1

supp(v)⊆T

‖((ΦT )∗)†vT‖2 =
1

σmin(ΦT )
.

134



8.3 Sparse Lagrange Polynomials

In view of Proposition 8.2.3, in order to obtain a lower bound on Θ, it suffices

to construct, for each unit norm v ∈ CN
S , a particular interpolating polynomial

f(v) ∈ P(M, v) and then upper bound ‖f(v)‖L2 uniformly in v.

A natural first attempt is to use the classical Lagrange interpolating polyno-

mial to carry out the interpolation, but we shall establish in the following propo-

sition, that it yields a suboptimal bound. This might not be surprising since the

Lagrange polynomials are known to exhibit poor behavior when the nodes consist

of closely spaced points.

Definition 8.3.1. Fix positive integers S,N such that S ≤ N . For any support set

T ⊆ {0, 1, . . . , N − 1} with cardinality S, the Lagrange polynomials adapted to T

is the set {Ln}n∈T , where

Ln(t) =
∏

k∈T\{n}

e2πit − e2πik/N

e2πin/N − e2πik/N
.

For any vector v ∈ CN supported in T , we call

L(v) =
∑
n∈T

vnLn

the Lagrange interpolating polynomial of v.

Proposition 8.3.2. Fix positive integers N,S such that S ≤ N . For any unit norm

v ∈ CN
S , we have

‖L(v)‖L2 ≤
√
S
(N

2

)S−1
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Proof. Let T = supp(v) and {Ln} be the Lagrange polynomials adapted to T . By

triangle inequality and Cauchy-Schwarz, we have

‖L(v)‖L2 ≤
∑
n∈T

|vn|‖Ln‖L2 ≤
(∑
n∈T

‖Ln‖2
L2

)1/2

. (8.1)

For distinct n, k ∈ T , we have

|e2πin/N − e2πik/N | ≥ 4
∣∣∣ n
N
− k

N

∣∣∣
T
≥ 4

N
.

Then, for all t ∈ T and n ∈ T ,

|Ln(t)| ≤
∏

k∈T\{n}

2

|e2πin/N − e2πik/N |
≤
(N

2

)S−1

.

In particular, this implies

‖Ln‖L2 ≤
(N

2

)S−1

. (8.2)

Combining this with inequality (8.1) completes the proof.

Observe that in the proof of this proposition, since v is arbitrary, we cannot ex-

pect to do significantly better than inequality (8.1), and consequently, ‖Ln‖L2 is the

crucial quantity to estimate. The next proposition shows that, without additional

assumptions on the support set T , our estimate (8.2) is optimal up to constants

depending only on S. This suggests that it is impossible to obtain the optimal lower

bound for σmin(ΦT ) using the Lagrange polynomials.

Proposition 8.3.3. Let S be a positive integer and T = {0, 1, . . . , S − 1}. For

any positive function h such that limt→∞ h(t) = 0 and any C(S) > 0, there exists

sufficiently large positive integers M,N with M ≤ N such that if {Ln}n∈T is the

Lagrange polynomials adapted to T , then

‖Ln‖L2 > C(S)h(M)NS−1.
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Proof. Assume that N ≥ 8(S − 1), so that n/N ⊆ [0, 1/8] for all n ∈ T . For all

distinct n, k ∈ T , we have

|e2πin/N − e2πik/N | ≤ 2πS

N
.

This implies, for all t ∈ T and n ∈ T ,

|Ln(t)| ≥
( N

2πS

)S−1 ∏
k∈T\{n}

|e2πit − e2πik/N |.

If t ∈ T is far away from T , say t ∈ [4/8, 5/8], then

|e2πit − e2πik/N | ≥ 3

2
.

This implies,

‖Ln‖L2 ≥
( N

2πS

)S−1(∫ 5/8

4/8

∏
k∈T\{n}

|e2πit − e2πik/N |2 dt
)1/2

≥ 1√
8

( 3N

4πS

)S−1

.

TakingM andN sufficiently large depending on h and C(S) completes the proof.

We shall construct interpolating polynomials that have smaller norms. As

seen in Proposition 8.3.3, the challenging case is when the support set T contains

a substantial number of points that are close to each other. The main observation

that we make in the following construction is that the Lagrange polynomials have

Fourier transform supported in {0, 1, . . . , S−1}, whereas we have available the much

larger spectral set {0, 1, . . . ,M − 1}. This extra flexibility allows us to construct

better behaved interpolating polynomials.

Theorem 8.3.4. Fix positive integers M,N, S such that S ≤ M and MS ≤ N .

For any support set T ⊆ {0, 1, . . . , N − 1} with cardinality S, there exists a set
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of trigonometric polynomials {Hn}n∈T such that Hn(k/N) = δn,k for all n, k ∈ T ,

supp(Ĥn) ⊆ {0, 1, . . . ,M − 1}, and

‖Hn‖L2 ≤ CSS
1√
M

(N
M

)S−1

.

Proof. We define the axillary integer

P =
⌊M
S

⌋
, and R =

⌊P
2

⌋
.

Fix a support set T with cardinality S. For each n ∈ T , define the subsets

Un =
{
k ∈ T : 0 <

∣∣∣ n
N
− k

N

∣∣∣
T
<

M

NS

}
,

Vn =
{
k ∈ T :

∣∣∣ n
N
− k

N

∣∣∣
T
≥ M

NS

}
,

and the trigonometric polynomial

Gn(t) =
∏
k∈Un

e2πiP t − e2πiPk/N

e2πiPn/N − e2πiPk/N

∏
k∈Vn

e2πit − e2πik/N

e2πin/N − e2πik/N
.

We need to justify why Gn is well-defined. Clearly the terms over the product of

k ∈ Vn are non-zero. If k ∈ Un, then

P
∣∣∣ n
N
− k

N

∣∣∣
T
<
M

S

1

N
≤ 1,

which implies ∣∣∣Pn
N
− Pk

N

∣∣∣
T

= P
∣∣∣ n
N
− k

N

∣∣∣
T
≥ P

N
.

By construction, we have Gn(k/N) = δk,n for all n, k ∈ T and Ĝn is supported in
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{0, 1, . . . , (S − 1)P}. We proceed to estimate ‖Gn‖L∞ . We have

‖Gn‖L∞ ≤
∏
k∈Un

2

|e2πiPn/N − e2πiPk/N |
∏
k∈Vn

2

|e2πin/N − e2πik/N |

≤
∏
k∈Un

1

2

∣∣∣Pn
N
− Pk

N

∣∣∣−1

T

∏
k∈Vn

1

2

∣∣∣ n
N
− k

N

∣∣∣−1

T

≤
(N

2

)S−1( 1

P

)#Un( S
M

)#Vn
.

WhileGn satisfies the properties for interpolation, its norm is still too large as a

factor of 1/
√
M is missing. We can get interpolating polynomials with smaller norms

by multiplying by an appropriate Fejér kernel. Consider the following normalized

Fejér kernel of order R, defined by the formula,

FR(t) =
1

R

R∑
m=−R

(
1− |m|

R + 1

)
e2πimt.

We note that F̂R is supported in the set {−R,−R+ 1, . . . , R} and is normalized so

that FR(0) = 1. Its L2 norm is approximately C/R1/2, since by Parseval, we have

‖FR‖L2 =
1

R(R + 1)

(
(R + 1)2 + 2

R∑
m=1

m2
)1/2

=
1

R(R + 1)

(2

3
R3 + 2R2 +

7

3
R + 1

)1/2

.

Finally, we are ready to define the desired polynomials. For each n ∈ T , let

Hn(t) = e2πiR(t−n/N)FR

(
t− n

N

)
Gn(t).

By construction of the Gn and FR, we have the interpolation property Hn(k/N) =

δk,n, for all n, k ∈ T . Additionally, we see that Ĥn is supported in

{0, 1, . . . , 2R}+ {0, 1, . . . , (S − 1)P} ⊆ {0, 1, . . . ,M − 1}.
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Finally, to compute the L2 norm of Hn, we use Hölder’s inequality,

‖Hn‖L2 ≤ ‖FR‖L2‖Gn‖L∞ ≤ CSS
1√
M

(N
M

)S−1

.

Definition 8.3.5. Let M,N, S, T satisfy the assumptions in Theorem 8.3.4. We call

{Hn}n∈T the sparse Lagrange polynomials adapted to T . For any v ∈ CN supported

in T , we call

H(v) =
∑
n∈T

vnHn

the sparse Lagrange interpolating polynomial of v.

We call the function Hn “sparse” because for any M points on the torus and

M values, it is possible to construct a trigonometric polynomial of degree M − 1

that interpolates those values at those points; in contrast, the sparse Lagrange

polynomials have degree M − 1 and interpolate values at S points, where S can

be much smaller than M . Of course, the main advantage of the sparse Lagrange

polynomials is that they have significantly smaller norms compared to Lagrange

polynomials, as seen in Theorem 8.3.4 and Figure 8.1.

8.4 Lower Bound using Polynomial Interpolation

The lower bound on the lower restricted isometry constant follows immediately from

our machinery that we developed earlier.

Theorem 8.4.1. Fix a positive integers S,M,N such that S ≤ M and MS ≤ N .
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(a) |T | = 2
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(b) |T | = 4

Figure 8.1: We set M = 20 and N = 100. These figures show two vectors supported

on T where |T | = 2 in (a) and |T | = 4 in (b), the Lagrange interpolating polynomial

L, and the sparse Lagrange interpolating polynomial H. The vectors and polyno-

mials are complex-valued, so we display their magnitudes only. By construction, L̂

is supported in {0, 1, . . . , |T | − 1}, while the Ĥ is supported in {0, 1, . . . ,M − 1}.

It is clear from these two examples that H has a smaller L2 norm by incorporating

the higher frequency components.
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There exists a constant A(S) > 0 depending only on S such that

Θ(M,N, S) ≥ A(S)
√
M
(M
N

)S−1

.

Consequently, for all δ > 0 and 2S ≤M and 2MS ≤ N , then

E(M,N, S, δ) ≤ 2δ

A(2S)M

(N
M

)2S−1

.

Proof. Fix a support set T with cardinality S and let {Hn}n∈T be the sparse La-

grange polynomials adapted to T . For any unit vector v ∈ CN supported in T , we

see that

H(t) =
∑
n∈T

vnHn(t) ∈ P(M, v).

By the duality principle, Proposition 8.2.3, we have

1

σmin(ΦT )
≤ sup

‖v‖2=1
supp(v)⊆T

‖H‖L2 ≤
(∑
n∈T

‖Hn‖2
L2

)1/2

.

By the upper bound on the sparse Lagrange polynomials, Theorem 8.3.4, we have

1

σmin(ΦT )
≤ CSS+1/2 1√

M

(N
M

)S−1

.

This inequality holds for all support sets T with cardinality S, which completes the

proof of the lower bound with

A(S) =
C

SS+1/2
.

The second statement of the theorem follows immediately by applying Proposition

8.2.1.

Remark 8.4.2. We have several comments about the numerology of the bounds.

142



1. The
√
M factor appears because the columns of Φ have norm

√
M . Had we

had consider the normalized Fourier matrix Φ/
√
M instead, this factor in both

the lower and upper bounds would disappear.

2. In view of the connection between Θ(M,N, S) and super-resolution in imaging,

it makes sense from a physical point of view that this quantity only depends

on the super-resolution factor N/M , and not on M or N individually.

3. The singular values of ΦT and ΦT̃ are identical whenever T̃ = T + a mod N

and a ∈ Z, so without loss of generality, we can assume that 0 ∈ T . Hence,

even though the minimization in Θ(M,N, S) is taken over all subsets T with

cardinality S, one of the elements in T is already fixed.

8.5 Upper Bound and Uncertainty Principles

An upper bound on the lower restricted isometry constant can be interpreted as an

extremal case of the discrete uncertainty principle.

Theorem 8.5.1. Fix a positive integer S. There exist constants B(S), C(S) > 0

such that if M ≥ S and N ≥ C(S)M3/2, then

Θ(M,N, S) ≤ 2B(S)
√
M
(M
N

)S−1

.

Further, if M ≥ 2S and N ≥ C(2S)M3/2, then

E(M,N, S, δ) ≥ δ

4B(2S)

1√
M

(N
M

)2S−1

.
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Proof. We first observe that

Θ(M,N, S) = min
|T |=S

σmin(ΦT ) = min
|T |=S

inf
u6=0

supp(u)⊆T

‖Φu‖2

‖u‖2

.

The question then becomes, how small, in the `2 sense, can M consecutive discrete

Fourier coefficients of a S-sparse N dimensional complex vector be? It suffices

to consider a specific vector u supported in a set T of cardinality S. Let T =

{0, 1, . . . , S − 1} and u ∈ CN where

un =


(−1)n

(
S−1
n

)
if n ∈ T,

0 otherwise.

Then we have

Θ(M,N, S) ≤ ‖Φu‖2

‖u‖2

=

(
2S − 2

S − 1

)−1/2

‖Φu‖2.

To accurately calculate ‖Φu‖2, we identify u with the discrete measure

µN =
N−1∑
n=0

unδn/N ,

and recall the Dirichlet kernel of order M , defined as

DM(t) =
M−1∑
m=0

e2πimt.

We have

‖Φu‖2 =
(M−1∑
m=0

|µ̂N(m)|2
)1/2

= ‖µN ∗DM‖L2 ,

For all t ∈ T, we have

(µN ∗DM)(t) =
S−1∑
n=0

(−1)n
(
S − 1

n

)
DM

(
t− n

N

)
.
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The right hand side is the (S − 1)-th order backwards finite difference of DM . It is

well-known that for each t ∈ T, we have

NS−1(µN ∗DM)(t) = D
(S−1)
M (t) +RS−1(DM)(t),

where the remainder term |RS−1(DM)| is point-wise O(1/N) as N →∞. In order to

precisely determine how large we require M and N to be, we calculate the remainder

term explicitly.

We first control the S − 1 derivative term. By the Bernstein inequality for

trigonometric polynomials, we have

‖D(S−1)
M ‖L2 ≤ (πM)S−1‖DM‖L2 ≤ πS−1MS−1/2.

For the remainder term, by a Taylor expansion of DM , for each t ∈ T and 0 ≤ n ≤

S − 1, there exists tn ∈ (t− n/N, t) such that

DM

(
t− n

N

)
=

S−1∑
k=0

D
(k)
M (t)

k!

( n
N

)k
(−1)k +

D
(S)
M (tn)

S!

( n
N

)S
(−1)S.

Hence, we see that

RS−1(DM)(t) = NS−1

S−1∑
n=0

(−1)n+S

(
S − 1

n

)( n
N

)SD(S)
M (tn)

S!
.

We bound this term in the L2 norm. By Bernstein’s inequality,

‖RS−1(DM)‖L2 ≤ 1

N

‖D(S)
M ‖L∞(T)

S!

S−1∑
n=0

(
S − 1

n

)
nS

≤ 1

N

πSMS+1

S!

S−1∑
n=0

(
S − 1

n

)
nS.
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Combining the previous inequalities, we deduce

Θ(M,N, S) ≤
(

2S − 2

S − 1

)−1/2

‖µN ∗DM‖L2

≤
(

2S − 2

S − 1

)−1/2
1

NS−1

(
‖D(S−1)

M ‖L2 + ‖RS−1(DM)‖L2

)
≤ B(S)

(
1 +

M3/2

N
C(S)

)√
M
(M
N

)S−1

,

where

B(S) =

(
2S − 2

S − 1

)−1/2

πS−1, C(S) =
π

(S + 1)!

S−1∑
n=0

(
S − 1

n

)
nS.

This completes the first statement of the theorem, and the second one follows im-

mediately from Proposition 8.2.1.

8.6 Related Work

Among existing works, the papers by Donoho [55] and Demanet and Nguyen [53]

are most closely related to this material. Both papers studied the min-max error

for similar recovery problems, but with on a lattice subset of the real line R and

with continuous Fourier transform measurements. Consequently, their results do

not apply to many popular algorithms such as MUSIC, Matrix pencil method, and

TV-minimization, precisely because these methods operate under the assumption

that the discrete measure lies on a finite domain (such as T) and the known infor-

mation consists of discrete Fourier transform coefficients. Moreover, their results

hold asymptotically as the ratio of the number of measurements and lattice width

shrinks to zero, but they did not show how small this ratio needs to be.
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It is known that, even in the noiseless setting, without additional assumptions

on the discrete measure’s coefficients, total variation minimization fails if the sep-

aration is less than the Rayleigh length. For this reason, optimization approaches

require additional assumptions on the measure in order to say something when the

separation is below the Rayleigh length. The authors of [110, 54] require that all

the amplitudes are positive. By connecting the TV-min problem with Beurling’s

theory of minimal extrapolation [17, 18], the authors [14] showed that if the sign

of the measure satisfies certain algebraic properties, then it is a solution to the

minimization problem.

A key quantity in this chapter, is the minimum singular value of rectangular

Vandermonde matrices whose nodes are on the unit circle. Gautschi [73] gave an

exact form of the inverse of a square Vandermonde matrix, but that does not yield

bounds on the smallest singular value of rectangular Vandermonde matrices. When

the separation is above the Rayleigh length, the author of [109] provided a sharp

bound on the smallest singular value of rectangular Vandermonde matrices by using

classical approximation theory results [130]. However, accurate estimation of the

same quantity for when the nodes is below the Rayleigh length is much more difficult,

because it is highly sensitive to the configuration of the support set. We conjecture

that the lower bound presented in Theorem 8.4.1 is close to optimal when the

support set T consists of closely spaced points, but it is definitely not optimal for

other configurations.
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[4] Céline Aubel, David Stotz, and Helmut Bölcskei. A theory of super-resolution
from short-time fourier transform measurements. Journal of Fourier Analysis
and Applications, pages 1–63, 2017.
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Birkhäuser Boston, Inc., Boston, 2009.

[8] John J. Benedetto, Wojciech Czaja, Przemystaw Gadziński, and Alexander M.
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Trigonométriques. Hermann Paris, 1963.

[90] Yitzhak Katznelson. An Introduction to Harmonic Analysis. Cambridge Uni-
versity Press, 2004.

[91] Valery Khaidukov, Evgeny Landa, and Tijmen Jan Moser. Diffraction imaging
by focusing-defocusing: An outlook on seismic superresolution. Geophysics,
69(6):1478–1490, 2004.

[92] Wai Kin Kong, David Zhang, and Wenxin Li. Palmprint feature extraction
using 2-D Gabor filters. Pattern Recognition, 36(10):2339–2347, 2003.

[93] Hamid Krim and Viberg Mats. Two decades of array signal processing re-
search: the parametric approach. IEEE Signal Processing Magazine, 13(4):67–
94, 1996.

[94] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet clas-
sification with deep convolutional neural networks. In Advances in Neural
Information Processing Systems, pages 1097–1105, 2012.

154



[95] Gitta Kutyniok, Kasso A. Okoudjou, and Friedrich Philipp. Scalable frames
and convex geometry. Contemp. Math, 626:19–32, 2014.

[96] Demetrio Labate, Wang-Q Lim, Gitta Kutyniok, and Guido Weiss. Sparse
multidimensional representation using shearlets. In Optics & Photonics, pages
59140U–59140U, 2005.

[97] Henry J. Landau. Maximum entropy and the moment problem. Bulletin of
the American Mathematical Society, 16(1):47–77, 1987.

[98] Yann LeCun, B. Boser, John S. Denker, D. Henderson, Richard E. Howard,
W. Hubbard, and Lawrence D. Jackel. Handwritten digit recognition with
a back-propagation network. In Advances in Neural Information Processing
Systems. Citeseer, 1990.

[99] Honglak Lee, Chaitanya Ekanadham, and Andrew Y. Ng. Sparse deep belief
net model for visual area V2. In Advances in Neural Information Processing
Systems, pages 873–880, 2008.

[100] Weilin Li. Personal website. http://www.math.umd.edu/∼wl298, 2017.

[101] Weilin Li and Wenjing Liao. Stable super-resolution limit and smallest singular
value of restricted fourier matrices. arXiv preprint arXiv:1709.03146, 2017.

[102] Wenjing Liao. Music for multidimensional spectral estimation: stability and
super-resolution. IEEE Transactions on Signal Processing, 63(23):6395–6406,
2015.

[103] Wenjing Liao and Albert Fannjiang. MUSIC for single-snapshot spectral esti-
mation: Stability and super-resolution. Applied and Computational Harmonic
Analysis, 40(1):33–67, 2016.

[104] Jari Lindberg. Mathematical concepts of optical superresolution. Journal of
Optics, 14(8):083001, 2012.
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