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The cover crop Vicia villosa suppresses Fusarium wilt of watermelon but the mechanisms 

of disease suppression are unknown.  Possible mechanisms were examined in field, 

greenhouse, and in vitro experiments. The effects of cover crop treatments (V. villosa, 

Trifolium incarnatum, Secale cereale, Brassica juncea) and the biocontrol treatment 

Actinovate (Streptomyces lydicus WYEC 108) on Fusarium wilt of watermelon and its 

causal pathogen, Fusarium oxysporum f. sp. niveum (FON) were evaluated. In four of 

five field experiments there were significant elevations in soil microbial respiration. 

Arbuscular mycorrhizal colonization of watermelon roots following cover crop 

amendments of V. villosa and T. incarnatum, were significantly higher compared to bare 

ground. The elevation in respiration was significantly positively correlated with disease 

suppression of Fusarium wilt induced by V. villosa and T. incarnatum (both cover crops 

reduced Fusarium wilt as much as 21%). In greenhouse experiments using infested field 



  

soil, Fusarium wilt suppression was observed in pots amended with V. villosa and T. 

incarnatum. However, there was an increase in Fusarium wilt of watermelon in pots that 

were amended with V. villosa and T. incarnatum which were also inoculated with FON 

when compared to plants in nonamended, inoculated pots. These leguminous cover crops 

may have served as a nutrient source for the pathogen. In addition, in vitro growth 

experiments showed that media amended with V. villosa leachate significantly stimulated 

the in vitro growth rates of FON and Trichoderma harzianum compared to nonamended 

plates. It was hypothesized that V. villosa stimulation of nonpathogenic F. oxysporum 

spp., which provides cross protection against FON, may have contributed to the wilt 

suppression. Cover crop leachate amendments did not significantly influence colony 

forming units of S. lydicus. In both field and greenhouse trials Actinovate applications 

either had little or no effect on Fusarium wilt of watermelon.  However, S. lydicus 

significantly inhibited in vitro growth of FON.  These studies demonstrate that both 

general and specific disease suppression play a role in V. villosa suppression of Fusarium 

wilt of watermelon and that T. incarnatum is a viable alternative biocontrol.  
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Chapter 1: Introduction 

1.1.The Pathogen Causing Fusarium Wilt of Watermelon: Fusarium oxysporum f. sp. 

niveum 

Fusarium oxysporum f. sp. niveum Schlechtend, Fr. (E.F. Sm.) W. c. Snyder & H. 

N. Hans, is a fungal vascular wilt pathogen of watermelon (Citrullus lanatus (Thumb.) 

Matsum & Nakai). It is classified within the division Ascomycota; class 

Sordariomycetes; order Hypocreales; family Nectriaceae and the genus Fusarium. The 

genus Fusarium comprises a diversity of species which can be found in air, soil, or plant 

residue and can be isolated from many plant parts (Leslie et al., 2006). Likewise, 

pathogens within the genus can induce a wide range of symptoms on their hosts such as 

cankers, vascular wilts, seed and fruit rots, foliar lesions and root or stem rots (Smith, 

2007).  

Fusarium wilt caused by Fusarium oxysporum f. sp. niveum (FON) is found in 

watermelon growing regions throughout the world (Egel et al., 2007). Fusarium wilt is 

one of the most prevalent diseases of watermelon (Citrullus lanatus) on the Eastern Shore 

of Maryland and in Delaware (Zhou et al., 2003b). When susceptible watermelon 

varieties are planted in heavily infested field’s losses in yield due to Fusarium wilt can 

approach 100% (Egel et al., 2007). 

There are four known races of Fusarium oxysporum f. sp. niveum (FON). Races 

are categorized based on their ability to cause disease on specific watermelon cultivars. 

Race 0 is of limited economic importance, race 1 is the most widespread of the races, 
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race 2, which was present in approximately 20% of surveyed watermelon fields in 

Delmarva is a threat because there are no existing commercial watermelon cultivars that 

have resistance (Zhou et al., 2003b). Race 3, which was first described in 2009, is the 

most aggressive race and has only been reported in Maryland (Zhou et al., 2010).   

FON infects through the roots and then proliferates in the xylem. Water uptake 

and movement is restricted after colonization occurs. Fusarium wilt on watermelon 

results in yield losses by reducing fruit number and size. Marketable yield is lower 

because some watermelons are small, misshapen, low in sugars, or cracked or sunburned 

(Egel et al., 2007).  Fusarium wilt of triploid (seedless) cultivars also increases 

production and labor costs associated with management. Increased frequency of 

fumigation applications is one example of costs associated with FON management. The 

additional acreage needed for watermelon rotation so that Fusarium wilt does not become 

a major problem in watermelon fields also increases costs (Egel et al., 2007). 

1.2.Management Methods Available for Fusarium Wilt of Watermelon 

Consumer demand for triploid (seedless) watermelons has increased since the 

1990’s and triploid culativars now dominate the U.S. watermelon acreage (Lucier et al., 

2001). Fusarium wilt in diploid (seeded) watermelon cultivars was previously managed 

through genetic resistance to race 1 FON. Unlike diploid watermelons, the majority of 

triploid watermelon cultivars have little or no resistance to Fusarium wilt and additional 

methods of control are necessary (Everts et al., 2010; Everts et al., 2011).  
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Forecasting systems have been developed for economically important Fusarium 

diseases of crops like chickpea (Cicer arietinum) (Fusarium oxysporum f. sp. ciceri), 

potato (Solanum tuberosum) (Fusarium sambucinum teleomorph Giberella pulicaris and 

F. solani var. coeruleum), maize (Zea mays) (F. verticilloides) and wheat (F. 

graminearum) (De Wolf et al., 2003; Leslie et al. 2006; Schaafsma et al., 2007). 

Currently there is no reliable forecasting system for Fusarium wilt of watermelon and the 

timing of management practices depends on estimates based on previous seasons and the 

epidemiology of the pathogen.  

Methyl bromide (MeBr) is a soil fumigant that has been used by growers to 

control Fusarium wilt, weeds, and other pests of several vegetable crops including 

watermelon (King et al., 2008). However, MeBr breaks down the stratospheric ozone 

layer (Gullino et al., 2005; Gareau, 2010). Therefore, in 1987, the Montreal Protocol 

called for a phase out of non-essential uses. However, alternative soil fumigants generally 

aren’t as effective as Methyl Bromide at controlling FON or weeds, are expensive, and 

also negatively impact the environment (Ferguson et al., 1997). In order for the mandated 

reduction in methyl bromide to be successfully implemented, watermelon growers need 

economical alternatives that are effective in managing FON.  

In China, Japan, and Korea watermelons are produced from grafted plants. This 

practice is often used to minimize Fusarium wilt yield loss in fields where watermelons 

are grown successively without rotation. However, grafting incurs high labor and seed 

costs (Davis et al., 2008). Japanese watermelons are sold at a higher price than U.S. 

watermelons, enabling Japanese growers to cover these production costs (Kawaide, 
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1985). Researchers and manufacturers are currently working on techniques and tools 

which would make watermelon grafting economically feasible for U.S. growers. 

Zhou and Everts conducted a study in 2004 looking at the impact of thirteen 

different soil amendments on Fusarium wilt of watermelon and found that using a Vicia 

villosa (hairy vetch) cover crop decreased Fusarium wilt incidence as much as 63% when 

used in combination with highly resistant cultivars, 53% with moderately resistant 

cultivars and 22% with susceptible watermelon cultivars (Zhou et al., 2004). They also 

found an increase in watermelon yield and fruit sucrose content.  However, the 

mechanism by which the V.villosa green manure suppressed Fusarium wilt is unknown.  

1.3.Benefits of Cover Crops 

Cover crops provide several benefits to soil health. In some cropping systems they 

reduce the need for synthetic chemicals by serving as an herbicide, increasing soil 

organic matter, or contributing nutrients to the soil (Wyse, 1994; Drinkwater, et al., 1995; 

Cavigelli et al., 2003; Steinmaus et al., 2008). When legumes fix nitrogen they can 

provide 10-25% of a crops nitrogen requirement as well as micronutrients for the next 

season’s crop (Sustainable Agricultural Network, 2000). Vicia villosa is one of the most 

efficient leguminous cover crops for nitrogen fixation (Rosecrance et al., 2000). 

However, cover crops such as Secale cereale (rye) and Hordeum vulgare (barley) may 

compete with subsequent cash crops for nitrogen (Shrestha et al., 1998). Cover crops also 

help the soil retain moisture, reduce weed biomass, and decrease soil erosion (Kort et al., 

1997). Vicia villosa cover crops significantly reduce aboveground weed biomass 

compared to conventional management practices (Fujii, 2001; Isik et al., 2008; Campiglia 
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et al., 2010a). Cover crops are regarded as components of an integrated pest management 

system because of their potential to reduce pesticide use and encourage beneficial insects.  

1.4.Mechanisms of Cover Crop Biocontrol: General and Specific Disease Suppression 

An observed reduction in disease incidence or severity in crops grown in specific 

soils, or in the presence of certain cover crops has been termed “disease suppression” 

(Alabouvette, 1999). This suppression may be general or specific. General suppression 

results from high diversity and activity of soil biota and is effective against a broad range 

of plant pathogens (Van Os et al., 2001).  Specific suppression results from the presence 

of a specific antagonist or functional group and is effective against a single plant 

pathogen (Van Os et al., 2001). Many researchers measure levels of soil microbial 

activity and diversity as an indicator of general disease suppression (Entry et al., 2000).  

Tsuneo (1991) found applications of organic crop residues and manures resulted in more 

diverse soil microbial communities and associated this increased diversity with disease 

suppression of brown stem rot of adzuki beans caused by the pathogen Acremonium 

gregatum. Abawi et al., (2000) saw a similar association between changes in microbial 

communities and disease suppression.  

1.4.1.Impact of Soil Nutrients on Disease 

Adding nutrients to the soil or the plant itself impacts disease development in 

many ways. Organic amendments, such as cover crops that are incorporated as a green 

manure can improve crop health and increase microbial activity either directly or 

indirectly by releasing nutrients to the soil (Drinkwater et al., 1995). Förster et al. (1998) 

postulated that the decrease in disease incidence of pepper (Capsicum annuum) and 
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tomato (Solanum lycopersicum) crown rot caused by Phytophthora capsici following 

phosphite supplementation was due to phosphonates acting as antifungal compounds 

against these fungi. Tenuta et al. (2002) demonstrated that additions of meat and bone 

meal to sandy acidic soils caused a buildup of ammonia which killed microsclerotia of 

the plant pathogen Verticillium dahlia. Micronutrients such as magnesium, calcium, zinc 

or iron are also important in crop disease management and prevention (Ghorbani et al., 

2008).  In combination with a biocontrol strain of Pseudomonas fluorescens, low levels 

of zinc soil treatments reduced the ability of Fusarium oxysporum Schlechtend.:Fr. f. sp. 

radicis-lycopersici to produce Fusaric acid, thereby decreasing incidence of root and 

crown rot of tomato (Duffy et al., 1997).  

Nutrient applications can affect host defense responses. Spraying cucumber 

(Cucumis lagenarium) leaves with various phosphorus solutions induced systemic 

resistance to eight dissimilar plant diseases (Mucharromah et al., 1991). Potassium 

applications to oil seed rape (Brassica napus) decreased black spot disease severity due 

to amplified production of internal plant phenolics which reduced conidial germination 

and sporulation of Alternaria brassicae (Sharma et al., 1994).  

An excess of available nitrogen in soil can produce succulent growth that is 

susceptible to disease incidence. For example excess nitrogen increased eye spot disease 

(Helminthosporium sacchari) of sugar cane (Saccharum officinarum) and ear rot 

(Fusarium graminearum) in maize (Antherton Lee et al., 1928; Reid et al., 2001). 

Nitrogen deficiencies also can result in weaker plants that are more prone to infection 

(Snoeijers et al., 2000). 
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The form of nitrogen in soil can influence disease incidence and severity. Woltz 

and Engelhard (1973) found that nitrate-nitrogen suppresses Fusarium wilt of 

chrysanthemum (Chrysanthemum indicum L.) caused by Fusarium oxysporum 

(Schlecht.) f. sp. chrysanthemi. Though the mechanism was unknown, researchers 

postulated it was due to an increase in soil microbial diversity resulting in general disease 

suppression. 

1.4.2.Effects of Plant Leachates/Extracts on Disease 

Cover crop leachate may suppress disease by 1) directly affecting the pathogen, 2) 

inducing resistance in the host plant, or, 3) by stimulating the growth of beneficial 

microorganisms, which are antagonists or competitors with plant pathogens. Although the 

mechanism of disease suppression is not completely understood cover crop leachates 

have repeatedly resulted in disease suppression. For example, extracts of crops such as 

cassia (Cassia), chili pepper (Capsicum), clove (Syzygium aromaticum), and essential oil 

of mustard (Brassica juncea), have suppressed wilt of muskmelon (Cucumis melo) 

caused by Fusarium oxysporum f. sp. melonis as well as wilt of chrysanthemum caused 

by Fusarium oxysporum f. sp. chrysanthemi (Bowers et al., 2000).  

1.4.2.a.Plant Leachate/Extract Effects on the Pathogen 

Wu et al. (2010) observed inhibition of FON growth with gallic acid and ferulic 

acid, derived from watermelon root exudates, but that these factors also caused increased 

production of pathogen mycotoxins and virulence factors (hydrolytic enzymes-

proteinase, pectinase, amylase and cellulose) (Wu et al., 2008; Wu et al., 2009a; Wu et 

al., 2010). Essential oils from a bush native to northern Africa- Lippia rehmannii and 
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lemon grass (Lippia rehmannii) inhibited in vitro growth of the pathogens Rhizoctonia 

solani and Fusarium oxysporum (Linde et al., 2010). The essential oils and various 

compounds extracted from the flowers of Cestrum nocturnum L. and other plants such as 

pecan (Carya Illinoensis) shells, pomegranate (Punica granatum) husks and other 

organic materials directly inhibited pathogenicity and growth of organisms including 

Fusarium oxysporum and Fusarium solani (Al-Reza et al., 2010; Osorio et al., 2010).  

FON germination and sporulation was increased in the presence of root exudates 

of watermelon and decreased in the presence of root exudates of rice (Oryza sativa) (Ren 

et al., 2007). Zhou et al. (2004) found that adding watermelon residue to pots in a 

greenhouse experiment at a rate of 5% (wt/wt) increased the soil population density of 

FON by 21% compared to the control and resulted in 100% disease incidence. 

Brassica spp. leachates are thought to have various modes of action that help 

reduce disease. For example, chemicals weaken pathogen propagules so that they can be 

parasitized by other soil antagonists (Smolinska, 1999). The isothiocyanates produced by 

Indian mustard (Brassica juncea) and canola (Brassica napus L.) are thought to be 

directly responsible for the inhibition of pathogens such as Gaeumannomyces graminis 

tritici which causes take-all of wheat (Angus et al., 1994). Isothiocyanates arise from 

hydrolyzed sulfur compounds called glucosinolates which are found in most brassicas 

(Sarwar et al. 1998). These biocidal compounds suppress soil-borne pathogens and pests 

(Kirkegaard et al., 1998). Biocidal compounds may yet be identified in other cover crops 

which have disease suppressive effects. 
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1.4.2.b. Plant Leachate Effects on Pathogen Antagonists and Intercropped or 

Following Plants: 

Many foliar leachates and plant exudates directly affect specific microorganisms 

in the soil community that can be antagonistic to pathogens. The foliar leachate of 

raspberry (Rubus ideaus L.) plants had an allelopathic effect on the ectomycorrhizae that 

colonize black spruce (Picea mariana) roots (Cote et al., 1988). Increases in soil 

microbial respiration and bacterial populations in the soil following the application of an 

alfalfa (Medicago sativa) distillate indicated that decreases in Sclerotium rolfsii may have 

resulted from general suppression (Linderman et al., 1972).  

The isothiocyantes derived from Brassica spp. leachate are also thought to 

influence microorganisms antagonistic to plant pathogens. In one study Brassica napus 

seed meal amendment induced suppression of root rot caused by Rhizoctonia solani on 

apple (Malus domestica). Researchers postulated that the decrease in disease was due to 

the isothiocyantes effects on bacterial community structure such as elevations in 

Streptomyces spp. (Cohen et al., 2005). A subsequent study that documented the changes 

in soil microorganism populations when using Brassica spp. amendments with varying 

amounts of isothiocyanates observed an increase in actinomyetes and fluorescent 

psuedomonads (Mazzola et al., 2001).  

Leachate of several cover crops impact the germination of weed seeds-an example 

of direct influence on an essential plant function (Haramoto et al., 2007). Vicia villosa 

leachate stimulated pig weed (Amaranthus hybridus L.) germination while S. cereale 
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leachate inhibited germination of redroot pigweed (Amaranthus retroflexus L.) and 

common purslane (Portulaca oleracea L.) (Teasdale et al., 2005, Tabaglio et al., 2008).  

Plant leachates play an essential role in allelopathic effects of plants and can alter 

the plants ability to defend itself from disease. Soil amended with undecomposed tomato 

leaves resulted in increased disease severity of Fusarium wilt on tomato caused by 

Fusarium oxysporum f. sp. lycopersici (Bonanomi et al., 2007b).  

1.4.3.Stimulation of Beneficial Microorganisms 

Disease suppression induced by the incorporation of cover crops into the soil has 

been associated with changes in microbial soil communities. General suppression, due to 

increased microbial biomass and diversity, could be the mechanism causing this decrease 

in plant disease. It is also possible that the increases in the magnitude of populations of 

single genera or species are responsible.  

Several Trichoderma species have been associated with disease suppression (T. 

incarnatum, T. harzanum, T. viride, T. virens) and some species have been 

commercialized as soil amendments (ex. Bio-fungus, Trichodex, Binab-T, Root Pro, 

RootShield, SoilGard) to protect crops from disease (Monte et al., 2001; Howell et al., 

2005; Vinale et al., 2009).  Trichoderma is widespread in soil (Vinale et al., 2009). Lewis 

et al., (1984) demonstrated that Trichoderma is able to proliferate when added to the soil 

as mycelium on a bran substrate. Biological control of damping off of peas (Pisum 

sativum), cucumbers (Cucumis sativus), tomatoes (Lycopersicum esculentum), peppers 

(Capsicum annuum) and gysophila (Gypsophila paniculata) caused by Pythium 

aphanidermatum was achieved by applying Trichoderma harzanium as seed coating 
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(Sivan et al., 1984). Trichoderma species applications significantly decreased Fusarium 

wilt of chickpea (Cicer arietinum L.) caused by Fusarium oxysporum f. sp. ciceris and 

also increased seed germination, shoot and root length (Dubey et al., 2007).  

One mode-of-action of Trichoderma-mediated suppression is parasitism of fungal 

hyphae (Elad et al., 1980; Howell et al., 2003). When Trichoderma spp. such as T. 

harzianum and T. viride come into contact with hyphae of another fungus, Trichoderma’s 

mycelium coil around or grow along the hyphae, form hook-like structures and penetrate 

the cell wall (Haran et al., 1996; Dubey et al., 2007). Mycoparasitsm by T. harzianum 

directly affected cell walls and growth of Crinipellis perniciosa-a pathogen of cacoa 

(Theobroma cacao L.) and Rhizoctonia solani, which causes damping off of bean and 

tomato seedlings (Hadar et al., 1979; Elad et al., 1980; De Marco et al., 2000). 

Trichoderma also produces  hydrolytic enzymes that breaks down fungal cell 

walls (De Marco et al., 2000) such as proteases, β-glucanases (β-1, 3- and β-1, 6- 

glucanases), and lipases. (Hadar et al., 1979; Haran et al., 1996; De Marco et al., 2000). 

Trichoderma reduced Chocolate spot of bean (Botrytis cinerea) by decreasing the 

pathogens ability to produce the enzymes pectin methyl esterase, polygalacturanase, and 

pectate lyase (Zimand et al., 1996). 

Amendment of soil by Trichoderma affects plant growth and nutrition even in the 

absence of a pathogen by increasing the rate of seedling emergence, increasing shoot and 

root dry weight and enhancing nutrient availability. This suggests that Trichoderma might 

produce a growth stimulant (Windham et al., 1985). Trichoderma is also able to directly 

colonize the outerlayers of the host plant root cortex without causing disease (Yedidia et 
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al., 1999). Similar to mycorrhizal relationships, this plant-fungi relationship may protect 

the plant from pathogen infection. Trichoderma colonization may also result in systemic 

resistance by inducing the production of various defense compounds such as terpenoids 

(Yedida et al., 1999; Howell et al., 2000).  

Attributes that make Trichoderma so rhizosphere competent, such as its ability to 

utilize nutrients efficiently, can contribute to the biocontrol of potential plant pathogens. 

Trichoderma applied to cotton (Gossypium hirsutum) seeds rapidly metabolized cotton 

seed exudate in the spermosphere, compounds that normally stimulate the activity and 

pathogenicity of various Pythium spp. and Rhizopus oryzae, thereby decreasing disease 

(Howell et al., 2001). Sivan et al. (1989) found a similar mechanism of disease 

suppression via competition for root exudates between potential pathogens Fusarium 

oxysporum f. sp. vasinfectum (responsible for Fusarium wilt of cotton-Gossypium 

barbadense L. ‘Pima’) or Fusarium oxysporum f. sp. melonis (responsible for Fusarium 

wilt of melon-Cucumis melo L. ‘56’) and Trichoderma harzianum. Chlamydospore 

germination and the level of root colonization by the Fusarium wilt pathogens were 

inhibited by the presence of Trichoderma harzianum as a seed coating or soil amendment 

but additions of root exudates or glucose and asparagine nullified the disease suppressive 

effects (Sivan et al., 1989).  

1.4.4.Impact of Mycorrhizal Colonization on Disease 

Cover crops such as Vicia villosa which are colonized by mycorrhizae may 

increase mycorrhizae populations in the soil and subsequent colonization of the cash crop 

roots (Kabir, 2000; Galvez et al., 2001; Rutto et al., 2003; Sorensen et al., 2005). 
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Mycorrhizae colonization of plant roots improves plant health via enhanced nutrient and 

water uptake and also serves as a defense against potential pathogens (Bolan, 1991; 

Matsubara et al., 1995; Augé, 2001; McGonigle et al., 2003; Wu et al., 2006). 

Watermelon whose roots were colonized by mycorrhizae were shown to have 

significantly improved water-use efficiency and fruit yield (Kaya et al., 2003).  

Nutritional enhancements provided by mycorrhizal fungi to their hosts have been 

linked to decreases in disease incidence. Graham et al. (1982) correlated elevations of 

phosphorus in wheat roots and decreases in root exudation of amino acids and reducing 

sugars with mycorrhizal associations and subsequent reductions in take-all of wheat 

caused by Gaeumannomyces graminis. Not only can mycorrhizae effect plant pathogens 

by competition for infection and colonization sites and photosynthates (Azcón-Aguilar et 

al., 1996) but mycorrhizal colonization can also alter the composition of host plant root 

exudates, which affects the survival of plant pathogens or the growth of beneficial soil 

microorganisms (Linderman, 1988; Andrade et al., 1997).  Plant root exudates can 

stimulate pathogen response and pathogenicity so a decrease in the amount of plant root 

exudates can result in a decrease in plant disease (Graham et al., 1982). Soil borne 

pathogens are sometimes found in lower numbers in soils that contain roots colonized by 

mycorrhizae. Hwang (1992) found soil containing alfalfa and mycorrhizal roots had 

fewer propogules of Fusarium oxysporum f. sp. medicaginis (causing Fusarium wilt of 

alfalfa) and Verticillium albo-atrum (responsible for Verticillium wilt of alfalfa) as well 

as lower disease incidence when compared to a non-mycorrhizal control.  
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Mycorrhizal root colonization can induce local or systemic disease resistance in 

their host plants. Mycorrhizal colonization induced both local and systemic resistance in 

tomato roots against Phytophthora parasitica which causes Phytophthora blight (Pozo et 

al., 2002). Resistance to Fusarium wilt in tomato, caused by Fusarium oxysporum f. sp. 

lycopersici was associated with changes in internal hormone levels of mycorrhizal tomato 

roots (El-Khallal, 2007).  Reduction of Fusarium wilt in cow pea (Vigna unguiculata) 

was attributed to root mycorrhizae colonization and an increase in phytoalexins 

(Sundaresan et al., 1993).  

The combined inoculation of Trichoderma harzianum and mycorrhizae on melon 

roots have functioned sygnergistically in managing Fusarium wilt (Fusarium oxysporum 

f. sp. melonis) of melon (Cucumis melo L.) (Martinez-Madina et al., 2009).   

Fusarium wilt reduction in watermelon may result from an increase in 

mycorrhizal colonization of roots following a V.villosa cover crop. Finding the 

mechanism of V.villosa mediated suppression of Fusarium wilt, and determining whether 

it is general or specific could increase adoption of V.villosa as a cover crop, or assist in 

identifying comparable cover crops that have similar mechanisms of disease suppression. 

Improved understanding of the mechanism of the suppression could lead to other 

methods that facilitate suppression.  

1.4.5.Potential of Specific Cover Crops for Disease Suppression 

In this study the effects of five different cover crops on Fusarium wilt of 

watermelon were examined: B. juncea, S. cereale, T. incarnatum, and V. villosa. What is 

known about each cover crop and its potential for disease suppression varies.  
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Brassica juncea contains high levels of glucosinulates, even when compared to 

most other Brassica species. The glucosinulates in B. juncea induce high levels of 

biological activity (mostly antimicrobial) (Smolinska et al., 1999; Larkin et al., 2007). 

Though brassica cover crops suppress many diseases there are reports of an increase in 

Fusarium diseases following brassica incorporation or little to no effect. Six different 

Brassica species were evaluated for inhibition of the potato pathogen Fusarium 

sambucinum.  Most of the species resulted in minimal disease inhibition (less than 20%) 

for many of the crops (Larkin et al., 2007). In an in vitro experiment done with 

isothiocyanates derived from brassica’s, Fusarium exhibited only moderate inhibition 

(Sarwar et al., 1998). Broccoli amendments provided inconsistent Fusarium spp. 

suppression in a study done by Zasada et al. (2003).  Mazzola et al. (2001) actually saw 

an increase in Fusarium spp. populations in the soil following brassica seed meal 

amendments. Njoroge et al. (2008) recorded elevations of Fusarium oxysporum 

populations in a watermelon field following the incorporation of B. juncea and B. napus.  

All Brassica crops are nonmycorrhizal (Roberts et al., 2001). Using Brassica spp. 

as a cover crop can cause a decrease in mycorrhizal colonization of succeeding cash 

crops such as in the case of tomato roots (Lycopersicon esculentum) planted after a garlic 

mustard cover crop (Allaria petiolat) (Roberts et al., 2001). It is possible this could 

contribute to an increase in disease in plants that are dependent on mycorrhizal 

colonization for pathogen defense.  

The allelochemicals from S. cereale leachates suppress weeds (Mwaja et al., 

1995). Despite the inhibitive effects on weeds, S. cereale cover crops are not usually 
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disease suppressive. However, S. cereale residues decreased Fusarium root rot on beans 

by inhibiting chlamydospore germination of the pathogen Fusarium solani f. sp. phaseoli 

(Lewis et al., 1977). Fungistasis may have occurred due to S. cereale’s insubstantial 

contribution of nutrients to the soil and consumption of available soil nitrogen (Mwaja et 

al., 1995). Secale cereale plants do form mycorrhizal associations and augmented soil 

mycorrhizal populations and colonization of a following maize crop (Zea mays L.) 

(White et al., 2010).  

There are few reports of disease suppression following a T. incarnatum (crimson 

clover) cover crop. Trifolium incarnatum is susceptible to Fusarium wilt (Fusarium 

oxysporum f. sp. trifolii) (Pratt, 1981). Trifolium incarnatum is a nitrogen fixing legume 

(Wells, 2009), and commonly forms mycorrhizal associations, functioning as a 

mycorrhizal inoculant for suceeding crops (Rovira et al., 1961).  

Vicia villosa cover crops have been associated with disease suppression. Vicia 

villosa amendments have reduced the inoculum densities of Thielaviopsis basicola, a 

pathogen of cotton seedlings, and also decreased the fungus’ chalmydospore viability 

(Candole, 1998, Coumans et al., 2010). As mentioned earlier, a V. villosa green manure 

significantly suppressed Fusarium wilt of watermelon, by as much as 63% when used in 

combination with resistant cultivars (Zhou et al., 2004). Vicia villosa commonly forms 

mycorrhizal root associations and may increase mycorrhizal populations in the soil 

(Galvez et al., 1995). Vicia villosa is a legume, fixes nitrogen, and releases nutrients 

when amended to soil (Rosecrance et al., 2000; Koger et al., 2005; Teasedale et al., 

2005). Pure stands of V. villosa cover crop with and without fertilization achieved 
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significantly higher marketable yield of the subsequent tomato (Lycopersicon esculentum 

Mill.) cash crop when compared to oat (Avena sativa L.), subclover (Trifolium 

subterraneum), a mixture of V. villosa and A. sativa and a conventionally tilled soil 

without mulch (Campiglia et al., 2010b).  

1.5.Biocontrol Management Techniques Using Commercial Products 

Biological controls to manage Fusarium wilt diseases are particularly useful for 

organic farmers who have fewer fungicide options. Biological control products 

containing competitive fast-growing microorganisms like Penicillium, Trichoderma or 

Streptomyces have inhibited plant pathogens and are effective on a variety of crop 

diseases. One example is the product RootShield, containing Trichoderma hamatum, 

which reduced Fusarium wilt of tomato (F. oxysporum f. sp. lycopersici) (Larkin et al., 

1998).  Another product, called Mycostop (active ingredient Streptomyces griseoviridis), 

has reduced incidence of Fusarium wilt of cyclamen (Cyclamen persicum) caused by 

Fusarium oxysporum f. sp. cyclaminis (Elmer et al., 2004). De Cal et al., (2009) found 

that the application of a conidial suspension of the fungus Penicillium oxalicum to seeds 

and seedlings of watermelon (Citrullus lanatus) decreased disease incidence of Fusarium 

wilt caused by Fusarium oxysporum f. sp. niveum in both growth chamber and field 

experiments. Many different companies utilize micoorganisms like Penicillium, 

Trichoderma and Streptomyces that are known to suppress a wide range of pathogens in 

products that are antagonist towards plant pathogens. 

If a microorganism is effective in suppressing a specific plant pathogen it may be 

developed into a commercial biocontrol product. Wu et al. (2009) made their own bio-

organic fertilizer that incorporated the active ingredients Paenibacillus polymyxa and T. 
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harzianum for use on Fusarium wilt of watermelon. They attributed the subsequent 

disease suppression to elevations in the activities of defense related enzymes (catalase, 

superoxide dismutase, peroxidase and β-1,3-glucanase) in watermelon leaves, indicative 

of systematic acquired resistance (Wu et al., 2009b). Ling et al. (2010) found that the 

application of a bioorganic fertilizer product, BIO, reduced Fusarium wilt of watermelon 

by 59-73% in the field and 60-100% for pot experiments. The mode of action of the 

active ingredient of BIO, Paenibacillus polymyxa SQR-21 was associated with alterations 

in plant root exudation of phenolics, resulting in decreased FON conidial germination 

(Ling et al., 2011). Additionally, in field experiments in Vietnam Nga et al. (2011) used 

the bacteria Psuedomonas aeruginosa to protect watermelon from gummy stem blight, 

caused by the pathogen Didymella byroniae. Many biocontrol products like BIO are not 

utilized by growers because the products are not widely available or the efficacy of the 

product has not been demonstrated in field trials.  

Actinovate is a commercial formulation of Streptomyces lydicus strain WYEC 

108, a saprophytic soil bacteria which has been shown to reduce disease in several crops 

(Entry et al., 2000, Getha et al., 2005). Natural Industries (Houston, TX), the producers of 

Actinovate, have labeled it for management of pathogens such as Fusarium and 

Rhizoctonia. No studies have been conducted to evaluate the effect of Actinovate on 

Fusarium wilt of watermelon.  

Streptomyces spp. are known to suppress disease. Soils that contained wood chips 

inoculated with S. lydicus experienced a reduction in Verticillium dahlia-infection of 

potato compared to no treatment (Entry et al., 2000). In one study, S. lydicus suppressed 

growth and infectivity of Pythium ultimum and Rhizoctonia solani. Getha et al. (2005) 
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found a Streptomyces strain that was antagonistic towards Fusarium oxysporum f. sp.  

cubense and which significantly decreased the F.o. cubense infection on ‘Novaria’ 

banana plantlets.  

There are examples of Actinovate AG itself reducing disease but not Fusarium 

wilt of watermelon. Actinovate application to blueberries reduced Monilia blight 

(Monolinia vacinii-corymbosi) by 50% compared to control treatments (Teasdale, 2009).  

Actinovate SP application inhibited dollar spot (Sclerotinia homescarpa) incidence in 

warm- and cool-season grasses (Tomaso-Peterson et al., 2007). 

Several hypotheses exist on the mechanism by which Streptomyces lydicus’ 

suppresses plant disease.  One potential mechanism of suppression is Streptomyces’ 

production of extracellular antifungal metabolites (Yuan et al., 1995; Getha et al., 2005). 

Alternatively, suppression may result from production of cell wall-degrading enzymes 

like cellulases, amylases, chitaneses, glucanses etc. which are known to play a role in 

mycoparasitism (El-Tarabily, 2006; Gonzalez-Franco et al., 2009). Either direct physical 

obstruction of pathogen root invasion or promotion of plant growth via facilitation of soil 

nutrient assimilation may be involved in suppression (Doumbou et al., 2010).  

Natural Industries, Inc. reports that disease prevention is due to the direct 

colonization of plant roots by S. lydicus and the ability of the S. lydicus to increase 

nutrient availability. Streptomyces which colonize plant roots may be actively preventing 

the onset of disease due to root colonization (Yuan et al., 1995; El-Tarabily, 2006). 

However, little research has been done on colonization. Researchers have not yet 

attempted to reisolate S. lydicus directly from watermelon plant roots or soil from 

watermelon fields following Actinovate applications. It is not known if S. lydicus can 
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colonize watermelon plant roots or have any direct or indirect effect on Fusarium 

oxysporum f. sp. niveum (FON).  

Several studies have shown that Actinovate can be more effective against disease 

when used in combination with other management options. Reductions in powdery 

mildew (Podosphaera xanthii) of summer squash (Cucurbita pepo) and cantaloupe 

(Cucumis melo) were observed when Actinovate AG was applied in combination with the 

fungicide Procure 480SC (active ingredient triflumizole) than when applied alone (Zhang 

et al., 2011). Also, Elmer et al. (2004) found that AUDPC values for Fusarium wilt of 

cyclamen were lowest when Actinovate was mixed with fludioxonil and then followed by 

Actinovate as opposed to when the biocontrol was used by itself. There are no studies 

that evaluate whether Actinovate used alone, or in combination with a V. villosa cover 

crop will suppress Fusarium wilt of watermelon.  

1.6.Objectives of the Dissertation 

The ability of V. villosa to suppress Fusarium wilt of watermelon has been 

established. However, the mechanism of this suppression is unknown (Zhou et al., 2004; 

Zhou et al., 2006). Additionally, no studies have explored the ability of T. incarnatum, 

another leguminous cover crop, to suppress Fusarium wilt. Also, few studies have 

examined the relationships between watermelon, arbuscular mycorrhizal root 

colonization and disease.  

The general objectives of this dissertation were to determine whether the 

mechanism for Vicia villosa cover crop suppression of Fusarium wilt of watermelon is 

specific or general and to assess the effectiveness of Actinovate alone and in combination 

with cover crops as a biocontrol of Fusarium wilt of watermelon.  
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The specific objectives of this thesis’ studies were to: 

1) Evaluate the efficacy of five cover crop treatments with and without an 

Actinovate biocontrol agent on Fusarium wilt of watermelon caused by Fusarium 

oxysporum f. sp. niveum (FON) in the field. 

2) Explore general suppression via cover crop treatment effects on rates of soil 

microbial respiration and variation of Fusarium oxysporum spp. in fields where V. 

villosa and T. incarnatum disease suppression were observed.  

3) Assess the efficacy of Actinovate AG alone and in combination with three 

different cover crop amendments in controlled greenhouse conditions. 

4) Evaluate the in vitro effect of Vicia villosa, Trifolium incarnatum, and Secale 

cereale leachate on the mycelial growth of Fusarium oxysporum f. sp. niveum and 

Trichoderma harzianum, and the growth of S. lydicus. 

5) Examine the percent colonization of watermelon roots by arbuscular mycorrhizae 

following four fall-planted cover crops, with and without an Actinovate 

biocontrol application.  

6) Assess the in vitro fungicidal effects of S. lydicus on F. oxysporum f. sp. niveum. 

1.7.Organization of the Dissertation 

The first chapter of this dissertation provides the reader with background information 

relevant to the objectives of the study, the specific objectives, the organization of the 

dissertation, and discusses ultimate conclusions and recommendations based on the 

results of the study. Findings were compiled into three manuscripts to be submitted for 

peer-reviewed publication. The second chapter of this dissertation evaluates the efficacy 
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of V. villosa and other green manures (T. incarnatum, S. cereale, and B. juncea), as well 

as the product Actinovate AG, for managing Fusarium wilt of watermelon. The third 

chapter examines general suppression as the mechanism of V. villosa disease suppression 

of Fusarium wilt via measurements of soil microbial communities and changes in F. 

oxysporum populations. The fourth and final chapter focuses on specific disease 

suppression mechanisms that could play a role in V. villosa green manure management of 

Fusarium wilt, specifically enhancement of arbuscular mycorrhizal colonization of 

watermelon roots and the in vitro effects of cover crop leachates on FON and S. lydicus. 

Additionally, the in vitro antagonistic effects of S. lydicus on FON were examined. 

1.8.Conclusions for Dissertation Objectives 

Objective 1: Evaluate the efficacy of five cover crop treatments with and without an 

actinovate biocontrol agent on Fusarium wilt of watermelon caused by Fusarium 

oxysporum f. sp. niveum (FON) in the field. 

Trifolium incarnatum and V. villosa amendments decreased Fusarium wilt of 

watermelon at UM-LESREC (Salisbury, MD) and UD-REC (Georgetown, DE) in 2010. 

The magnitude of the suppression by T. incarnatum was comparable to that of V. villosa 

at UM-LESREC in 2011 but was lower at UD-REC in 2011. These disease suppressive 

effects were only observed at the locations on the Eastern Shore of Maryland and in 

Delaware. The suppression was not observed in central Maryland (USDA-BARC, 

Beltsville, MD) where disease levels were low. Trifolium incarnatum was the only cover 

crop that significantly increased yield (16.30 x 10
2
 fruit/ha) compared to bare ground 

plots and this was observed for only one field trial. 
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 Prior to this study the efficacy of an Actinovate AG (active ingredient 

Streptomyce lydicus WYEC 108, Natural Industries Inc.) biocontrol in decreasing 

Fusarium wilt of watermelon and enhancing watermelon growth had not been tested. In 

our study the Actinovate product either did not reduce Fusarium wilt or the magnitude of 

the reduction was small. Actinovate reduced Fusarium wilt by 1.94% in 2009, as much as 

7.07% in 2010 field trial and increased Fusarium wilt by 2.45% in 2011.  There were no 

additive cover crop and Actinovate treatment effects for Fusarium wilt suppression. 

Actinovate significantly increased yield in one field trial, when applied in bare ground 

and Secale cereale amended plots.  

 

Objective 2: Explore general suppression via cover crop treatment effects on rates of soil 

microbial respiration and variation of Fusarium oxysporum spp. in fields where V. villosa 

and T. incarnatum disease suppression were observed.  

This study revealed that general suppression does play a role in V. villosa and T. 

incarnatum disease suppression of Fusarium wilt of watermelon. At four of the five 

locations where CO2 flux was measured, respiration rates were significantly higher in V. 

villosa amended plots compared to all other cover crop and bare ground treatments. 

Respiration rates in T. incarnatum amended plots were significantly higher than 

nonamended plots for four of the five field trials and were higher than all other cover 

crop treatments for one. A significant negative correlation between Fusarium wilt 

severity and respiration measurements validated the hypothesis that general suppression 

plays a role in V. villosa disease suppression of Fusarium wilt of watermelon.  
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Additionally, increased populations of F. oxysporum spp. in V. villosa amended 

plots indicated the possibility that specific suppression is also playing a role in reductions 

of Fusarium wilt severity. Increased growth and activity of nonpathogenic F. oxysporum 

spp. and other commonly antagonistic microorganisms (ex. fluorescent Psuedomonas 

spp.) are cited as the mechanisms of disease suppression in soils naturally suppressive to 

FON and with induced FON suppression via a monoculture of ‘Crimson Sweet’ 

(Alabouvette et al., 1993; Larkin et al., 1993a; Larkin et al., 1993b; Larkin et al., 1996). It 

is possibile that increases in nonpathogenic F. oxysporum spp. or other antagonistic soil 

microbial populations are contributing to the V. villosa disease suppression of Fusarium 

wilt, in addition to the general suppression mechanism.  

 

Objective 3: Assess the efficacy of Actinovate AG alone and in combination with three 

different cover crop amendments in controlled greenhouse conditions.  

Surprisingly, in our studies greenhouse experiments, Fusarium wilt severity 

ratings were significantly higher for watermelon in pots inoculated with FON and 

amended with V. villosa or T. incarnatum than for watermelon in nonamended pots. 

There are several possible explanations for this Fusarium wilt severity enhancement, 

including that the cover crops provided a nutrient source for the FON inoculum, helping 

the fungus establish, and thereby overwhelming nonpathogenic F. oxysporum spp. or 

other antagonistic microbial populations that might normally play a role in V. villosa or T. 

incarnatum suppression of Fusarium wilt of watermelon. Vicia villosa disease 

suppression was still observed for watermelon in V. villosa amended pots that were not 
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inoculated with FON, where the background levels of FON in the field soil used in the 

greenhouse experiment resulted in a moderate amount of wilt.  

In these greenhouse experiments Actinovate did not demonstrate the ability to 

significantly decrease Fusarium wilt of watermelon, nor did it enhance watermelon 

growth.   

 

Objective 4: Evaluate the in vitro effect of Vicia villosa, Trifolium incarnatum, and 

Secale cereale leachate on the mycelial growth of Fusarium oxysporum f. sp. niveum and 

Trichoderma harzianum, and the growth of S. lydicus. 

Vicia villosa leachate significantly stimulated FON growth rates at a pH of 3.5, 

with FON growing as high as 66.30 % faster on V. villosa amended plates than on 

nonamended. For one in vitro trial, at a pH of 6, FON grew 24.14 % faster on V. villosa 

leachate amended plates than on nonamended media. Additionally, V. villosa leachate 

significantly stimulated the growth rate of T. harzianum at both a pH of 3.5 and 6, with 

rates of growth as much as 213.32 % faster than on control plates. 

Cover crops leachate amendments had no significant effect on the number of 

colony forming units Steptomyces lydicus WYEC 108 formed in vitro.  

 

Objective 5: Examine the percent colonization of watermelon roots by arbuscular 

mycorrhizae following four fall-planted cover crops, with and without an Actinovate 

biocontrol application.  

The percentage of watermelon roots colonized by arbuscular mycorrhizae were 

significantly higher following V. villosa and T. incarnatum green manures compared to 
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that of bareground, and plots amended with any other green manure treatment, as much 

as 58.47 % and 44.37 % higher, respectively.  

 

Objective 6: Assess the in vitro fungicidal effects of S. lydicus on F. oxysporum f. sp. 

niveum. 

 Both treatments of S. lydicus WYEC 108-an isolate received from Natural 

Industries Inc. and one isolated directly from the Actinove AG product-significantly 

inhibited the radial growth of FON in vitro. Streptomyces lydicus WYEC 108 inhibited 

FON growth as much as 44.17 %.   

1.9.Recommendations 

Although it had already been established that a Vicia villosa green manure 

suppresses Fusarium wilt of watermelon some growers are hesitant to use it because the 

seed may overwinter to become a weed. This study is the first to identify that a Trifolium 

incarnatum green manure suppresses Fusarium wilt of watermelon. Other leguminous 

cover crops with similar characteristics, such as high biomass production and mycorrhizal 

associations, might also induce disease suppression. Comparing the efficacy of a range of 

leguminous green manures and other similar cover crops for Fusarium wilt suppression 

could help identify the characteristics an effective disease suppressive green manure must 

posses.  

Other aspects of V. villosa management of Fusarium wilt of watermelon still need 

to be addressed. It has been established that V. villosa disease suppressive effects can 

carry over to the following year (Zhou et al., 2003a) but accumulative suppressive effects 
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from subsequent plantings of the fall cover crop in the same field have not yet been 

explored.  

The negative correlation of significant elevations in soil respiration in V. villosa 

and T. incarnatum and Fusarium wilt disease established the role general disease 

suppression plays in V. villosa and T. incarnatum management of Fusarium wilt. 

However, increases in F. oxysporum spp. in V. villosa green manure plots indicate 

specific suppression is also contributing to the decrease in disease. The role that 

nonpathogenic F. oxysporum play in disease reductions in fields that are naturally 

suppressive to FON, fields with induced suppression, and in cross protection of 

watermelon against the FON pathogen, make these changes of significant interest (Biles 

et al., 1989; Alabouvette et al., 1993; Larkin et al., 1996). Although the proportion of 

FON to nonpathogenic F. oxysporum was not determined several studies have established 

that a form of competitive exclusion occurs between the two and that when Fusarium wilt 

of watermelon is reduced in concurrence with an increase in overall F. oxysporum spp. it 

usually indicates a decrease or stabilization of the former and an increase in the latter 

(Zhou et al., 2003b; Alabouvette et al., 1993). Future studies, testing the pathogenicity of 

F. oxysporum spp. in V. villosa amended plots on watermelon can validate this theory.  

Results of greenhouse and in vitro experiments, discussed in separate chapters of 

this dissertation, support the hypothesis that specific suppression via V. villosa 

stimulation of nonpathogenic F. oxysporum spp. is complementing the general disease 

suppression. In the greenhouse experiments significant reductions in Fusarium wilt 

severity were observed for watermelon in V. villosa amended pots that were not 

artificially infested with the FON pathogen. The increases in Fusarium wilt severity of 
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watermelon in pots inoculated with FON and amended with V. villosa and T. incarnatum 

demonstrate the cover crops’ ability to function as a nutrient source for F. oxysporum 

spp.. Vicia villosa leachate also stimulated the in vitro growth of FON and T. harzianum. 

As nonpathogenic F. oxysporum and FON have similar nutrient requirements it is likely 

that V. villosa would also effectively stimulate the nonpathogenic F. oxysporum.  

Trichoderma harzanium’s ability to compete with pathogens, enhance plant 

growth and decrease disease is well established. Vicia villosa leachate stimulation of T. 

harzianum and FON opens up the question of whether the cover crop specifically 

enhances the growth of just FON and T. harzianum, nonpathogenic F. oxysporum, other 

specific antagonists of pathogens, or just microorganisms in general. Molecular analysis 

could provide a more detailed picture of how V. villosa influences microbial soil 

populations of these specific fungi, other known antagonists, and the overall soil 

microbial community.  

 Both V. villosa and T. incarnatum succeeded in significantly increasing arbuscular 

mycorrhizal root colonization of a following watermelon crop. The extent to which this 

increase in mycorrhizal root colonization contributes to the disease suppression is 

unknown. A greenhouse experiment comparing Fusarium wilt severity of watermelon 

with roots inoculated with a commercial mycorrhizal formulation and uninoculated 

watermelon could clarify if watermelon root AM colonization plays a role in leguminous 

cover crop disease suppression.  

Similarly, a greenhouse experiment with watermelon grown in soil treated with V. 

villosa and T. incarnatum leachate could support the theory that the cover crop leachate 

contributes to the green manure Fusairum wilt suppression. It is very possible that the 



 

 29 

 

root exudates of the two cover crops are also responsible for the microbial stimulus that is 

resulting in the disease suppression. Additional greenhouse experiments could also 

explore this possibility. Many different factors likely interact in V. villosa and T. 

incarnatum disease suppression of Fusarium wilt of watermelon. Knowledge of the 

complete ecology of this pathosytem can facilitate the development of complementary or 

more effectual disease management approaches. Also, a better understanding of this 

pathosystem could encourage growers to utilize a fall-planted cover crop that is tilled in 

the spring as a green manure for management of Fusarium wilt of watermelon. 

This papers field and greenhouse studies demonstrated that the Actinovate AG 

biocontrol product is not an optimal management tool for Fusarium wilt of watermelon in 

Maryland and in Delaware as any of its effects on the disease were either low or 

nonexistent. The efficacy of Actinovate AG’s active ingredient, S. lydicus WYEC 108, 

against the pathogen FON in vitro suggest that it is a competent antagonist when in 

conditions conducive to its growth. Actinovate AG might be more effective in managing 

plant diseases that flourish in soil environments high in pH and soil organic matter or for 

foliar diseases, as there can be less competition in the phyllosphere than the rhizospere. 

This OMRI approved product has proven its worth for other diseases and should continue 

to be considered as a management tool for pathogens which are problematic in conditions 

more favorable to survival and growth of Actinovate’s active ingredient.  
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Chapter 2: Impact of Five Cover Crop Green Manures and an 

Actinovate Biocontrol Product on Fusarium Wilt of Watermelon 

Caused by Fusarium oxysporum f. sp. niveum 

2.1.Abstract 

Triploid watermelon cultivars are grown on more than 2,023 ha in Maryland and 

in Delaware. Triploid watermelons have little host resistance to Fusarium wilt of 

watermelon (Fusarium oxysporum f. sp. niveum). The effects of four different fall planted 

cover crops that were tilled in the spring as green manures (Vicia villosa, Trifolium 

incarnatum, Secale cereale, Brassica juncea) and bareground were evaluated alone and 

in combination with the biocontrol product Actinovate (Streptomyces lydicus)  on 

Fusarium wilt severity, and fruit yield and quality of watermelon. Six field experiments 

were conducted over three years in Beltsville and Salisbury, MD and Georgetown, DE. 

Both Vicia villosa and T. incarnatum significantly suppressed Fusarium wilt of 

watermelon as much as 21%, compared to watermelon in nonamended plots. The only 

cover crop that significantly increased yield compared to nonamended treatments was T. 

incarnatum (129% more fruit/ha), but only for one field trial. The Actinovate product 

either did not reduce Fusarium wilt or the magnitude of the reduction was small. 

Actinovate significantly reduced Fusarium wilt by 2% in 2009, as much as 7% in 2010 

and increased Fusarium wilt severity by 2.5% in 2011. Actinovate significantly increased 

yield for one field trial, when applied to nonamended or S. cereale amended plots.  
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2.2.Introduction 

Fusarium oxysporum f. sp. niveum (FON) Schlechtend, Fr. (E.F. Sm.) W. c. 

Snyder & H. N. Hans is the cause of Fusarium wilt of watermelon (Citrullus lanatus 

(Thumb.) Matsum & Nakai). Watermelon growers on the Eastern Shore of Maryland and 

in Delaware experience significant losses in yield due to the prevalence of Fusarium wilt 

in their fields (Zhou et al., 2003b). Losses can approach 100% if susceptible cultivars are 

planted in heavily infested fields (Egel et al., 2007). Yield loss is especially high in fields 

planted with triploid (seedless) watermelon, which currently lack resistance to Fusarium 

wilt (Everts et al., 2010; Everts et al., 2011). Consumer demand for seedless watermelon 

has increased dramatically in recent years so the need for management options for 

Fusarium wilt have also increased (Lucier et al., 2001; USDA-ERS, 2011).  

Management options for Fusarium wilt of watermelon vary in effectiveness and 

cost. Grafting is an effective disease management tool, however it requires high labor and 

seed costs (Davis et al., 2008). Methyl bromide (MeBr), a soil fumigant historically used 

to manage Fusarium wilt of watermelon (King et al., 2008), has been phased out due to 

its destructive effects on stratospheric ozone (Ferguson et al., 1997; Gullino et al., 2005). 

Other soil fumigants are available for Fusarium wilt management but are generally not as 

successful as MeBr at controlling the disease, are costly, and also have detrimental 

environmental effects (Ferguson et al., 1997). Alternative biological and cultural control 

methods might be preferred.  

In 2004, Zhou and Everts found that a Vicia villosa Roth (hairy vetch) green 

manure decreased the incidence of Fusarium wilt on watermelon as much as 42-48% 

(Zhou et al., 2004). Similarly, in future studies, a V. villosa cover crop was found 
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effective against Fusarium wilt of watermelon, reducing it as much as 63% (Zhou et al., 

2006, Zhou et al., 2007; Keinath et al., 2010). Other cover crops such as Brassica juncea 

(Sarwar et al., 1988), Secale cereale (Lewis et al., 1977), and Triticum aestivum (Ristaino 

et al., 1997; Mazzola et al., 2002) reduce diseases of following cash crops such as 

Fusarium root rot of beans (Fusarium solani f. sp. phaseoli) and Phytophthora blight of 

pepper (Phytophthora capsici).  

Actinovate AG (Natural Industries Inc., Houston, TX) is an Organic Materials 

Review Institute approved biocontrol product whose active ingredient is Streptomyces 

lydicus strain WYEC 108. Actinovate is labeled for protection of watermelon from 

Fusarium wilt and is supposed to increase plant yields. However, few studies have been 

conducted to evaluate Actinovate product effects on Fusarium wilt of watermelon under 

field conditions. Likewise there are no studies that evaluate whether Actinovate in 

combination with a V. villosa cover crop will enhance disease suppression. 

The objective of this study was to evaluate the efficacy of four cover crops, V. 

villosa, Trifolium inarnatum, B. juncea, and S. cereale with and without an Actinovate 

biocontrol product on Fusarium wilt of field grown triploid watermelon. 

2.3.Materials and Methods 

2.3.1.Experimental Design 

An experiment was conducted six times as randomized split plot block designs in 

three different locations over a period of three years (2009 to 2011) (Table 2.1). Field 

locations included the University of Delaware’s Carvel Research and Education Center 

(UD-REC) in Georgetown (2011), the USDA’s Henry A. Wallace Beltsville Agricultural 

Research Center (USDA-BARC) in Beltsville, MD (2009 & 2010) and the University of 
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Maryland’s Lower Eastern Shore Research and Education Center (UM-LESREC) in 

Salisbury (2009, 2010, & 2011). The main plot treatments were cover crops, and the 

subplots treatments were Actinovate and, in fields that were not infested, FON 

inoculation (Table 2.1).  Whether field soil was inoculated with FON race 1 or naturally 

infested was different depending on the year and location (Table 2.1). 

At the USDA-BARC location field soil was an amalgam of a Russett-Christiana 

and Downer-Hammonton complex of sandy loam. At UM-LESREC, field soil was 

Norfolk “A” loamy sand and at UD-REC Rosedale loamy sand. Cover crops were 

incorporated in the spring as a green manure. Cover crop treatments were V. villosa, T. 

incarnatum, B. juncea, and S. cereale but varied by year and location (Table 2.1).  

2.3.2.Main Plot Treatment Establishment 

Cover crops were seeded in late fall (Table 2.1) according to local seeding rates 

(Table 2.1).  In 2011, due to low germination or winter kill the previous season cover 

crops were overseeded at UM-LESREC and UD-REC respectively to ensure sufficient 

above ground biomass (Table 2.1). The seeds of V. villosa and T. incarnatum were 

inoculated with a commercial Rhizobium spp., N-DURE (IN TX Microbials, LLC) prior 

to planting. All cover crop treatments were killed by a paraquat treatment (Gramoxone 

Extra 2.5SC, 1.2 kg ai/ha, 1.75 L/ha) in early spring (Table 2.1) and a tractor-mounted 

rototiller was used to disk the soil three times to a depth of approximately 15 to 20 cm. 

Control plots were cultivated in the same manner.  

In each plot three 1 m
2
 quadrats of above ground plant biomass were collected, 

dried and weighed prior to green manure incorporation. Biomass sample weights were 

used to estimate the amount of N the various cover crops contributed to their respective 
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plots and subsequent fertilization was based on these calculations. The fertilizer for the 

watermelon crop was applied all at once, immediately prior to the laying of the black 

polyethylene mulch. All beds were formed by a bed shaper and a single drip irrigation 

tube was laid under black polyethylene mulch. Beds were laid on a 1.83 m center in fields 

in 2009 and a 2.13 m center in 2010 and 2011.  

Seeds of watermelon cv. ‘Sugar Heart’ were planted into trays in a potting mix 

(Sun Gro Redi-earth Plug and Seedling Mix; Sun Gro Horticulture, Bellevue, WA). After 

4 to 5 weeks of growth watermelon seedlings were planted 0.91 m apart in each bed 

(Table 2.1). The pollinizer ‘SP4,’ which is resistant to Fusarium wilt race 1, was 

transplanted between every third seedless watermelon at all locations except LESREC-

UM in 2009 and USDA-BARC in 2010 when the diploid watermelon cultivar Royal 

Majesty was used as a pollinizer. The application of insecticides and foliar fungicides 

were applied as needed according to extension recommendations for the mid-Atlantic. All 

fields were managed conventionally except for the UM-LESREC field in 2009, which 

was managed with organic practices on organic certified land.  

2.3.3.Subplot Treatment Establishment 

The Natural Industries recommended rate of Actinovate AG foliar spray is 850.48 

g Actinovate AG/946.25 L H2O/1 ha. Therefore, 0.011 g Actinovate AG/12.2 ml H2O per 

0.156 m 
2
 transplant tray was applied as a suspension to watermelon seedlings one to two 

weeks prior to transplanting (Table 2.1). Actinovate was also applied within the week 

following transplanting as a soil drench around the base of the plant at 255.14 g 

Actinovate AG/378.5 L H2O/4046.86 m
2
; approximately 0.115 g/172 ml H2O/1.89 m

2 
per 

a plant.   
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A race 1 isolate (F-030-1) of F. oxysporum f. sp. niveum (FON), which was 

acquired from a wilted watermelon plant in Wicomico, Maryland in a previous study 

(Zhou et al., 2003b), was used for disease inoculations. Strains were maintained in a 

mixture of sandy soil and perlite (1:2 wt/wt) at 4°C.   

Inoculum was prepared by transferring F-030-1 growing on Komadas media 

(Komadas, 1975) into a liquid mineral salts medium (Netzer, 1976). The culture was 

incubated on an orbital shaker at 128 rpm at room temperature for approximately two 

weeks before filtering through eight layers of cheesecloth. A Spencer hemacytometer was 

used to adjust the inoculum to the desired concentration.  

In 2009 at both USDA-BARC and UM-LESREC seedlings were inoculated 

immediately after transplanting by pipetting 6 ml of FON inoculum at a concentration of 

2.45 x 10
6
 CFU/ml into a hole (approximately 3 cm in diameter and 8 cm deep) 7 cm 

away from the crown of the watermelon plant (Zhou et al., 2004).  In 2010 at USDA-

BARC, the FON inoculation method was modified to increase disease incidence. Two 

days after cover crop incorporation and a week prior to the laying of black plastic 60 ml 

of 2.85 x 10
8
 CFU/ml FON inoculum was mixed into one gallon of H2O and evenly 

banded across the center of each 36.92 m
2
 bed with a watering can. A second application 

of 11 ml of FON inoculum at a concentration of 2.33 x 10
6 
CFU/ml was pippeted next to 

each watermelon plant using the same method employed in 2009. 

 

2.3.4.Field Evaluations 
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2.3.4.a.Fusarium spp. Stem Colonization 

The presence and colonization of F. oxysporum in watermelon stems was also 

assayed. In 2010 watermelon plants were destructively harvested one week following 

transplanting (2 plants per bed, n=80 to 90 plants), two weeks (2 plants per bed) and three 

weeks (one plant per bed) after transplanting. Roots were cut into 10 mm pieces, soaked 

in 0.5% sodium hypochlorate for 60 seconds and plated on semi-selective isolation media 

to evaluate roots colonization of FON (Zhou et al., 2004). Distance of FON colonization 

from the hypocotyl was measured. Sections were visually inspected and the number of 

sites along a given length of root or stem with FON growth counted (Zhou et al. 2004). In 

2011 a different technique was used to measure Fusarium root colonization to determine 

magnitude of stem colonization. Two plants were sampled from each plot two weeks 

after field planting. Five 10 mm stem pieces at 1 cm, 5 cm, 9 cm, 13 cm, and 17 cm 

distances from the crown node were weighed and homogenized in a blender before being 

filtered through eight layers of cheesecloth and plated on Komadas media as a 1:1 and 

1:10 soil dilution (Zhou et al., 2006), one plate for each dilution. Colony forming units on 

each plate were counted a week later and converted to CFU/g of fresh stem weight.  

 

2.3.4.b.Fusarium Wilt Ratings 

Wilt severity was rated as the percentage of foliar wilt of each watermelon plant 

and averaged for each bed (Larkin et al., 2007). Watermelon were planted 0.91 m apart in 

a bed but the total number of watermelon planted per a field varied depending on year 

and location (n=10 to 16 watermelon plants/treatment bed) . Fusarium wilt severity was 

evaluated weekly after transplanting in 2009. The percentage of wilted watermelon 
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foliage for each plant was measured and this percentage was averaged for all watermelon 

in a treatment bed. In 2009 additional symptoms of stunting and chlorosis were present 

and included in the wilt rating. For 2009 only, if a watermelon plant was chlorotic the 

wilt rating was increased by 10% for that plant and if a watermelon was stunted, the wilt 

rating was increased by 25%. In 2010 Fusarium wilt severity was measured three times at 

UM-LESREC and once at USDA-BARC. In 2011 Fusarium wilt severity was evaluated 

weekly following transplanting. The Area Under the Disease Progress Curve (AUDCP) 

was calculated for each field trial except at USDA-BARC in 2010 as only one wilt rating 

was taken. The AUDCP was calculated as AUDPC= ∑[(yi + yi+1)/2 x (ti+1-ti)] (Capdeville et 

al., 2002). Stems of wilted watermelon plants were plated on Komadas media to verify 

the presence of the Fusarium wilt pathogen (Komadas, 1975). 

 

2.3.4.c.Plant Vigor and Yield 

In 2010 watermelon vine length was measured approximately three weeks 

following transplanting at both locations. In 2011 vines were measured twice at UM-

LESREC, once seven days after transplanting and again the following week. At UD-REC 

vines were measured three times at weekly intervals beginning seven days after 

transplanting.  

All fruit were individually weighed and counted at harvest, percent Brix was 

assessed for three watermelon fruit per a bed (n=144 to 180 fruit sampled/field) with a 

hand held refractometer, and the numbers of sunburned fruit were counted. Marketable 

sized fruit were defined as watermelon that weighed >3.18 kg.  
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2.3.4.d.Streptomyces lydicus in the Rhizosphere 

In 2010, directly after fruit harvest, seminal watermelon roots from each plot in 

four of the replicate blocks at UM-LESREC and USDA-BARC (n=40 to 60, respectively) 

were plated on Arginine-Glycerol-Salt Agar to observe any growth of Streptomyces spp. 

from the roots to determine if Streptomyces lydicus successfully colonized the 

watermelon roots (Dhananjeyan et al., 2010). As no S. lydicus were observed in 2010 

sampling was instead done two weeks after watermelon were transplanted to the field in 

2011, at both UM-LESREC and UD-REC. Seminal roots of destructively harvested 

watermelon plants, one for each plot (n=60), were cut into three 3 cm root sections, put 

into test tubes with 5 ml of sterile distilled water, soaked for five minutes and vortexed. 

The resulting mixture was serially diluted onto Sporulation ager (SPA) amended with 

nyastatin, carbenicillin and cycloheximide and Casein Agar to observe if Streptomyces 

spp. were present in the soil rhizosphere (Yuan et al., 1995). 

  

2.3.4.e.Nutrient Analyses 

Soil nutrients, dried cover crop foliage, and dried watermelon foliage for the 

different treatments were analyzed in 2011 to determine if nutritional differences 

impacted disease suppression (Ochiai et al., 2008).  

In 2011 three six inch soil cores were collected from each treatment plot 

following tillage, May 25
th

 at UD-REC, and June 20th at UM-LESREC, and analyzed at 

the University of Delaware’s Soil testing lab for pH, Buffer pH, percent OM, and in 

mg/kg P, K, Ca, Mg, Mn, Zn, Cu, Fe, B, S, Al, CEC (meq/100g) Base Saturation % and P 

saturation ratio.  
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Cover crop biomass was collected three times from 2 m
2
 in each plot, at both 

locations, approximately a week prior to soil incorporation.  

For both UM-LESREC and UD-REC in 2011, directly before harvest, five 

watermelon leaves per bed that were the second or third leaf from a vines’ terminal point 

were collected, dried, and sent for nutrient analysis to Brookside laboratories Inc. 

(percent nitrogen, phosphorous, magnesium, potassium, calcium, sulfur, boron, iron, 

manganese, copper, zinc and aluminum). 

2.3.5.Statistical Analyses 

Data were analyzed using the MIXED procedure with the Statistical Analysis System 

(version 9.2; SAS Institute, Cary, NC), which integrates random effects in the statistical 

model and performs covariance structure modeling (Littell et al., 1998). Treatment means 

were separated using a Fisher’s protected least significant difference (LSD) test at P 

≤0.05. When disease was low the proportional wilt data was usually not normally 

distributed. However, because of the large sample size (n>30), this data was considered 

robust enough to be analyzed without transformation (Payton et al., 2006). This is 

supported by the Central Limit Theorem which states that the sample mean of a 

population same size of n> 30 will converage to a standard normal distribution (Corbett 

et al., 2002).   



 

 40 

 

2.4.Results 

2.4.1.Cover Crop Foliar Analysis  

Differences in cover crop nutrient concentrations were not consistent across field 

locations and there were no obvious trends that linked these variations to Fusarium wilt 

disease suppression (Table A1.1).   

2.4.2.Fusarium Wilt Severity 

There were no significant interactions in the effect of the cover crop and 

Actinovate biocontrol treatments on Fusarium wilt severity (data not shown).  

 

2.4.2.a.Cover Crop Effects 

There was low disease pressure at UM-LESREC in 2009 and minimal cover crop 

biomass at UM-LESREC in 2010 which resulted in no, or very low wilt severity (less 

than a percent difference) among treatments (Table 2.1 & Table 2.2). Vicia villosa and T. 

incarnatum disease suppression was seen at both UM-LESREC and UD-REC in 2011 

(Table 2.3). Watermelon plants in V. villosa amended plots and T. incarnatum amended 

plots had significantly less disease (24.24% to 11.37% and 25.83% to 7.53% less, 

respectively) than plants in nonamended plots or in plots amended with any other cover 

crop treatment at UM-LESREC in 2011. Watermelon in V. villosa and T. incarnatum 

amended plots also had a lower AUDPC (56.27 and 68.04 respectively) compared to 

watermelon planted in B. juncea (81.82) or bare ground (84.57) amended plots (Figure 

2.1). Fusarium wilt severity of watermelon in B. juncea amended plots was consistently 

the highest or second highest numerically, although they were never significantly higher 

than the watermelon in nonamended or S. cereale amended plots (Table 2.3).   
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Although the two leguminous cover crops suppressed Fusarium wilt to a similar 

extent in 2011 at UM-LESREC this was not the case for UD-REC where T. incarnatum 

did not suppress Fusarium wilt more than S. cereale or B. juncea. Six weeks after 

transplanting to the field the watermelon grown in V. villosa amended plots had 

significantly less disease than watermelon in any other treatment plots except for that of 

T. incarnatum amended plots. Watermelon in T. incarnatum plots also had significantly 

less Fusarium wilt than plants in bare ground plots (Table 2.3). The watermelon wilt 

severity was also lowest in V. villosa and T. incarnatum plots the following week. 

However, the P value was 0.0535 and therefore not considered significant (Table 2.3). 

The AUDPC of watermelon in V. villosa amended plots was significantly less (56.27) 

than watermelon in B. juncea (81.82) and bare ground (84.57) treated plots (Figure 2.2). 

Cover crop treatments did not significantly influence Fusarium wilt at USDA-

BARC where disease was nominal but the same trend in V. villosa and T. incarnatum 

disease suppression was still numerically apparent in 2009 and 2010 (Table 2.3).  

 

2.4.2.b.Actinovate Biocontrol Effects 

Actinovate treatments reduced Fusarium wilt for two field trials and increased 

Fusarium wilt for one field trial. Six weeks after transplanting, at UM-LESREC in 2009, 

watermelon treated with Actinovate had 1.94% less Fusarium wilt than watermelon in 

untreated plots (Table 2.4). At UM-LESREC in 2010 the AUDPC and Fusarium wilt 

severity measured four weeks after transplanting was lower for watermelon in Actinovate 

treated plots than for watermelon in control plots. In contrast, Actinovate biocontrol 

applications increased Fusarium wilt severity 2.45% for the wilt reading taken three 
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weeks after transplanting at UD-REC in 2011 (Table 2.4). Ultimately Actinovate 

treatment effects were minimal and inconsistent.  

2.4.3.Plant Vigor and Yield 

Significant cover crop treatment effects on marketable watermelon yield were 

only observed at UM-LESREC in 2011 where T. incarnatum amended plots had 

marketable watermelon yield that was higher (14.67 x 10
2
 to 20.68 x 10

2
 more fruit/ha) 

than that of all other amended or nonamended plots (Table 2.5).  

There was a significant Actinovate and cover crop treatment interaction for 

marketable watermelon for only one field trial. Beds amended with S. cereale or bare 

ground and treated with Actinovate had significantly higher marketable yield compared 

to their respective untreated or uninoculated beds at USDA-BARC in 2009 (Table A1.2). 

The only other field trial where Actinovate demonstrated significant positive effects on 

marketable watermelon yield was LESREC in 2011 when Actinovate significantly 

increased marketable watermelon yield (9.33 x 10
2
 more fruit/ha) compared to beds that 

were not treated with Actinovate (Table 2.5).  

Neither cover crop nor Actinovate affected marketable watermelon weight, or 

FON growth from watermelon stems for any field trial (data not shown). In addition, no 

cover crop or Actinovate treatment effects were seen in more than one field trial for sugar 

content (Table A1.3 and A1.4), watermelon vine length (Table A1.5), or the number of 

sunburned watermelon (Table A1.6).  
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2.4.4.Watermelon Foliar Analysis 

Cover crop and Actinovate treatments did not consistently effect nutrient 

concentration of watermelon foliage nor was there any correspondence with disease 

suppressive trends observed in the field data (Table A1.7).  

 

2.5.Discussion 

2.5.1.Temperature, pH and Soil Texture 

Fusarium wilt severity varied by location and year. Fusarium wilt severity was 

low at USDA-BARC while it was high in fields on the Eastern Shore of Maryland and in 

Delaware where significant differences in disease suppression were observed. The 

variation in Fusarium wilt disease pressure observed in our experiments may have 

resulted in part from differences in the soil environment. Fusarium wilt of watermelon is 

most prevalent in sandy, slightly acidic soils (pH 5-6) (Zitter et al., 1996). The field at 

USDA-BARC had a higher amount of organic matter and a more neutral pH compared to 

fields located on the Eastern Shore of Maryland and in Delaware which are very sandy, 

low in organic matter (>1%), and have low pH levels. Amir et al., (1993) demonstrated 

that Fusarium wilt suppression is not completely independent of soil texture and that clay 

textured soils can encourage Fusarum wilt disease suppression. Hoper et al., (1995) also 

found that Fusarium wilt disease suppression was influenced by soil texture, as well as 

pH. These environmental differences likely contribute to the prevalence of Fusarium wilt 

of watermelon on the Eastern Shore of Maryland and Delaware and could explain why it 

is less common in central Maryland (Zhou et al., 2003b) 
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Fusarium wilt severity is also dependent on inoculum and weather. Fusarium wilt 

severity is greatest at temperatures around 25-27º C and low to moderate moisture (Zitter 

et al., 1996). Field trials at UM-LESREC and USDA-BARC in 2010 were extremely hot 

and resulted in stunting and yellowing of plants, and less foliar wilt. The average daily 

peak soil surface temperature (top 50.8 mm) at UM-LESREC in July of 2010 was 33.14 º 

C. A study specifically looking at temperature found that the temperature significantly 

impacted Fusarium wilt of tomato with low disease incidence at cool temperatures, 

severe wilt at warm temperatures (27º C) and only moderate wilt at high temperatures 

(Larkin et al., 2002).  

Additionally, at UM-LESREC in 2010 there was >3 meters of snow over the 

winter which reduced cover crop biomass in many of the plots. In 2011 at UD-REC and 

UM-LESREC cover crops were overseeded in the early spring to ensure sufficient 

biomass coverage, the weather was moderate, and watermelon were planted in fields with 

soil conditions conducive to Fusarium wilt and which already had high levels of FON.  

Suppression of Fusarium wilt using a V. villosa cover crop has been evaluated in 

geographical climates and soil conditions different from that of the Eastern Shore of 

Maryland and in Delaware, but thus far no definitive conclusions have been drawn. 

Keineth et al. (2010) conducted a study in South Carolina where Fusarium wilt of 

watermelon was too low to detect any significant V. villosa suppressive effects for the 

2008 field season. Due to low levels of disease at USDA-BARC no conclusions can be 

drawn about the effectiveness of V. villosa as a disease management tool in central MD. 

However, V. villosa and T. incarnatum green manures showed a small, but 

nonsignificant, Fusarium wilt reduction in the two trials done at USDA-BARC. 
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Achieving any measure of reduction in Fusarium wilt of watermelon can potentially 

impact marketable watermelon yield, providing financial benefits to the grower.  

2.5.2.Vicia villosa and Trifolium incarnatum Disease Suppression 

Vicia villosa and T. incarnatum reduced Fusarium wilt of watermelon at UD-REC 

and UM-LESREC in 2011. The ability of a V. villosa cover crop to suppress Fusarium 

wilt of watermelon has been observed in previous studies done on the Eastern shore of 

Maryland (Zhou et al., 2003b; Zhou et al., 2004, Zhou et al., 2006); however, no previous 

studies have reported the disease suppressive effects of a T. incarnatum green manure on 

Fusarium wilt of watermelon or any other disease.  

Despite many demonstrations of a V. villosa green manure suppressing Fusarium 

wilt of watermelon, it has not been widely adopted because the seed may overwinter to 

become a weed (Jacobsen et al., 2010). Our findings indicate that both V. villosa and T. 

incarnatum cover crops significantly reduce Fusarium wilt of watermelon on the Eastern 

shore of Maryland and Delaware. The magnitude of the suppression by T. incarnatum 

was comparable to that of V. villosa at UM-LESREC in 2011 but was lower at UD-REC 

in 2011.  

2.5.3.Marketable Watermelon Yield  

Marketable watermelon yield varied by location.  However, these differences 

were not likely to be attributed to fertilizer. Fertilizer was applied to plots based on cover 

crop biomass and its estimated nitrogen contribution. Vicia villosa and T. incarnatum 

plots received less nitrogen fertilizer. Fields at USDA-BARC had higher marketable 

watermelon yields, which could be attributed to greater soil organic matter and lower 

disease pressure.  
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Trifolium incarnatum improved marketable watermelon yield at UM-LESREC in 

2011 compared to other amended or nonamended plots. Additionally, V. villosa and T. 

incarnatum cover crops increased marketable yield in 2009 at USDA-BARC, although 

not significantly. It has been previously demonstrated that both V. villosa and T. 

incarnatum can increase watermelon fruit yield (Rangappa et al., 2002; Zhou et al., 2004; 

Keinath et al., 2010). It is also well established that cover crops can improve soil health 

by increasing soil organic matter, nitrogen fixation, reducing soil erosion, and improving 

soil water filtration (Wyse, 1994; Drinkwater et al., 1995; Rosecrance et al., 2000; 

Cavigelli et al., 2003; Hartwig et al., 2002; Kort et al., 1997; Steinmaus et al., 2008; 

Campiglia et al., 2010a). Together, Fusarium wilt reductions and soil health 

improvements contribute to increased watermelon yield. Vicia villosa and T. incarnatum 

suppression of Fusarium wilt of watermelon and the soil health benefits associated with 

using a leguminous green manure makes them valuable tools for growers.  

2.5.4.Brassica juncea Effects on Fusarium Wilt 

Brassica juncea amended plots had the highest Fusarium wilt severity at USDA-

BARC in 2010, UM-LESREC in 2011 and at UD-REC in 2011. Although these 

differences were not always significant, Fusarium wilt severity of watermelon in B. 

juncea amended plots was never significantly lower than in bare ground plots. The results 

of our study are similar to that of Mazzola et al. (2001) who saw an increase in Fusarium 

spp. populations in the soil following brassica seed meal amendments. Smolinska et al. 

(2003) observed Brassica spp. isothiocynate Benzyl ITC increased sporulation of F. 

oxysporum isolate 9051C. Njoroge et al. (2008) recorded elevations of F. oxysporum spp. 

populations in watermelon fields following the incorporation of B. juncea. For one field 



 

 47 

 

season Njoroge et al. (2008) also observed that Fusarium wilt of watermelon in B. juncea 

amended plots had 10% more disease than plants in control (bare ground) plots.  

The allelopathic effects of brassica cover crops on watermelon have not been 

extensively examined but Brassica spp. secondary compounds could potentially be 

increasing watermelon stress, reducing their defense response. Further research on the 

direct and indirect effects of Brassica spp. on soil populations of FON would help 

elucidate B. juncea’s association with increased Fusarium wilt of watermelon.  

2.5.5.Actinovate Biocontrol Efficacy 

Several biocontrol products have suppressed Fusarium wilt of watermelon. Bio-

organic fertilizers with Paenibacillus polymyxa as an active ingredient effectively 

decreased incidence of Fusarium wilt of watermelon (Wu et al., 2009b; Ling et al., 2010; 

Ling et al., 2011).  

However, Actinovate biocontrol either did not reduce Fusarium wilt of 

watermelon or else the reduction was minimal and inconsistent. This is similar to results 

in other pathosystems where Actinovate did not suppress disease. For example, 

Actinovate treatment did not reduce anthracnose (Colletotrichum obiculare) incidence or 

defoliation in watermelon, corm rot (Fusarium oxysporum f. sp. gladioli) of Gladiolus 

(Gladiolus x hortulanus), Fusarium wilt incidence on tomato (Fusarium oxysporum f. sp. 

lycopersici), or Fusarium root rot (Fusarium spp.) of sweet potato (Ipomoea batatas) 

(Elmer, 2001; Elmer et al., 2000; Damicone et al., 2006; Henn, 2009).  

In the trials reported in this paper Actinovate negatively impacted vine length at 

one location, improved marketable watermelon yield in two of the six field trials, and 

decreased marketable watermelon yield in one of the six field trials. Other studies that 
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tested Actinovate’s growth and yield promoting abilities found similar results. Biomass 

of spinach treated with Actinovate AG + Micro 108 Seed Inoculant was no different than 

spinach in control plots (Cummings et al., 2008). Tomato treated with Actinovate had 

yields that were no different than that of control plots (Vallad et al., 2011). Actinovate SP 

+ Latron BI956 treatments did not significantly impact watermelon yield (Damicone et 

al., 2006).  

The mechanism of Actinovate disease suppression has been linked with the ability 

of its active ingredient, S. lydicus, to colonize crop roots (Yuan et al., 1995; Tokala et al., 

2002). We were unable to isolate Streptomyces lydicus from the watermelon plant roots 

despite repeated attempts. Streptomyces spp. grow best in higher pH conditions around 

25º C and are able to utilize complex organic materials as an energy source (Hiltunen et 

al., 2008). As soil pH levels are low on the Eastern Shore of Maryland and in Delaware, 

S. lydicus growth could have been inhibited, preventing the colonization of watermelon 

roots.  

The combination of two disease management tactics has been shown to result in 

greater disease suppression. In 2004 Zhou and Everts found that a V. villosa green 

manure decreased the incidence of Fusarium wilt of watermelon  63%, 53% and 22% 

with a highly resistant, moderately resistant, and susceptible watermelon cultivar, 

respectively (Zhou et al., 2004). Watermelon in plots amended with V. villosa and treated 

with Urea (875 lb/A) had 32% less Fusarium wilt of watermelon than in bare ground 

plots and 10% less than watermelon in plots only amended with V. villosa (Zhou et al., 

2002). However, according to the six field trials conducted for this experiments the 
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combination of the green manures and Actinovate biocontrol treatment achieved no 

significant additive effect on the suppression of Fusarium wilt. 

2.6.Conclusion 

Both V. villosa and T. incarnatum suppressed Fusarium wilt of watermelon but 

the suppression was dependent on environmental conditions as significant cover crop 

effects were only observed in fields on the Eastern Shore of Maryland and Delaware, not 

Beltsville, MD. The soil health benefits of T. incarnatum are similar to that of V. villosa 

but T. incarnatum is also killed more easily and less likely to overwinter under mid 

Atlantic conditions.  

Due to the nominal and inconsistent effects of Actinovate on Fusarium wilt of 

watermelon in this study we do not recommend it for use against the FON pathogen. 

Actinovate did not have any additive effects on Fusaium wilt in combination with any of 

the cover crop treatments. However, the combination of V. villosa or T. incarnatum green 

manures with biocontrol products whose ability to colonize the watermelon rhizosphere 

and suppress Fusarium wilt of watermelon are already established could provide 

improved management of Fusarium wilt.
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Table 2.1 Management and design of field experiments to evaluate tilled cover crop and Actinovatea 

biocontrol application on Fusarium wilt severity and watermelon yield for six different field trials in 

Maryland and in Delaware 

Location, 

Year 

USDA-

BARCb 2009 

USDA-

BARC 2010 

UM-

LESREC 

2009 

UM-

LESREC 

2010 

UM-

LESREC 

2011 

UD-REC 

2011 

Main plot 

treatment 

Vicia villosa, 

Trifolium 

incarnatum, 

Secale 

cereale, 

Bare ground 

V. villosa, 

T. 

incarnatum, 

B. juncea, 

S. cereale, 

Bare ground 

V. villosa, 

S. cereale, 

Bare 

ground 

V. villosa, 

T. 

incarnatum, 

B. juncea, 

S. cereale, 

Bare ground 

V. villosa, 

T. 

incarnatum, 

B. juncea, 

S. cereale, 

Bare 

ground 

V. villosa, 

T. 

incarnatum, 

B. juncea, 

S. cereale, 

Bare ground 

Sub plot 
treatment 

FON, FON + 
Actinovate,  

No FON 

FON, FON 
+ 

Actinovate,  

No FON 

FON, FON 
+ 

Actinovate,  

No FON 

FON, FON + 
Actinovate 

FON, FON 
+ 

Actinovate 

FON, FON + 
Actinovate 

Cover crop 

seeding 

rates 

V. villosa 

44.83 kg/ha, 

T. 

incarnatum 

28.02 kg/ha, 

S. cereale 

134.50 kg/ha 

V. villosa 

44.83 kg/ha, 

T. 

incarnatum 

28.02 kg/ha, 

S. cereale 

134.50 

kg/ha, 
B. juncea 

6.73 kg/ha. 

V. villosa 

50.44 

kg/ha, 

S. cereale 

134.50 

kg/ha, 

V. villosa 

50.44 kg/ha, 

T. 

incarnatum 

11.21 kg/ha, 

S. cereale 

125.54 

kg/ha, 
B. juncea 

11.21 kg/ha 

V. villosa 

50.44 

kg/ha, 

T. 

incarnatum 

11.21 

kg/ha, 

S. cereale 
125.54 

kg/ha, 

B. juncea 

11.21 kg/ha  

V. villosa 

50.44 kg/ha, 

T. incarnatum 

11.21 kg/ha, 

S. cereale 

125.54 kg/ha, 

B. juncea 

11.21 kg/ha 

Cover crop 

seeding 

dates 

9/24/2008 9/22/2009 10/16/2008 9/25/2009 10/15/2010; 

3/9/2011c 

10/25/2010; 

3/15/2011 

Cover crop 

tillage  

5/23/2009 5/23/2010 5/15/2009 5/24/2010 5/19/2011 5/25/2011 

Dates of 

Actinovate 

applications 

Foliar 

06/03/2009;  

Soil drench 

06/29/2009 

Foliar 

06/16/2010; 

Soil drench 

06/29/2010 

Foliar 

06/02/2009; 

Soil drench 

06/29/2009 

Foliar 

06/08/2010; 

Soil drench 

06/15/2010 

Foliar 

05/20/2011; 

Soil drench 

06/03/2011 

Foliar  

05/26/2011; 

Soil drench 

06/07/2010 

Watermelon 

transplant 

date 

06/17/2009 06/18/2010 06/19/2009 06/12/2010 06/03/2011 06/07/2011 

aActinovate AG is a biocontrol product (Natural Industries Inc.) which is labeled for management of 
Fusarium wilt of watermelon 
bUM-LESREC=University of Maryland Lower Eastern Shore Research and Education Center located in 

Salisbury. USDA-BARC=United States Department of Agriculture Beltsville Agricultural Research Center 

located in Beltsville Maryland and UD-REC=University of Delaware’s Carvel Research and Education 

Center located in Georgetown. 

cIn 2011 cover crops were overseeded in the early spring to ensure plots had sufficient cover crop biomass 
dSoil moisture was either measured using a soil moisture probe (FieldScout TDR-300 Spectrum 

Technologies, East Plainfield, IL, USA) or by weighing and drying soil samples taken by a soil auger.  
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Table 2.2 Variance analysis for the effects of cover crop and Actinovate AG application main effects on watermelon 

Fusarium wilt severity and the area under the disease progress curve (AUDPC) in field experiments conducted at the 

University of Maryland’s Lower Eastern Shore Research and Education Center (UM-LESREC), the United States 

Department of Agriculture at the Beltsville Agricultural Research Center (USDA-BARC) and University of 

Delaware’s Carvel Research and Education Center (UD-REC) in 2009, 2010 and 2011 

Location 

Week 

1a Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 AUDPC 

   Main effect          

UM-LESREC 

2009 

            Cover Cropb -c 0.0016 0.6832 0.6743 0.8041 0.4853 0.5593 - 0.6459 

   Actinovated - 0.7363 0.1392 0.1396 0.3596 0.0096 0.7203 - 0.1533 

USDA-BARC 

2009 

            Cover Crop - - 0.3475 0.7066 0.4363 0.5578 0.3569 - 0.3858 

   Actinovate - - 0.9085 0.5346 0.3829 0.4297 1.0000 - 0.8924 

UM-LESREC 

2010 

            Cover Crop 0.5496 - - 0.1619 - 0.0887 - - 0.2024 

   Actinovate 0.0670 - - 0.0379 - 0.0603 - - 0.0373 

USDA-BARC 
2010 

            Cover Crop - - - - - - - 0.1386 - 

   Actinovate - - - - - - - 0.3707 - 

UM-LESREC 

2011 

            Cover Crop 0.4118 0.1152 0.1445 0.0013 0.0056 <0.0001 0.0458 - <0.0001 

   Actinovate 0.0924 0.7092 0.6713 0.9771 0.5115 0.6459 0.5030 - 0.5247 

CARVEL-REC 

2011 

            Cover Crop 0.3888 0.4779 0.2418 0.4201 0.1641 0.0175 0.0535 - 0.0251 

   Actinovate 0.1319 0.1898 0.0206 0.7908 0.6214 0.6861 0.3333 - 0.8020 
aThe number of weeks after watermelons were transplanted to the field. 
bSeeding rate at UM-LESREC and UD-REC was V. villosa 50.44 kg/ha, T. incarnatum 11.21 kg/ha, S. cereale 

125.54-134.50 kg/ha, B. juncea 11.21 kg/ha and at USDA-BARC the seeding rate was V. villosa 44.83 kg/ha, T. 

incarnatum 28.02 kg/ha, S. cereale 134.50 kg/ha, and B. juncea 6.73 kg/ha. 

c
The symbol – indicates the measurement was not taken for that date and location or, for BARC in 2010, that no wilt 

was observed.   
dActinovate AG’s active ingredient is Streptomyces lydicus and is produced by Natural Industries. Actinovate was 
applied as a foliar spray to watermelon plants two weeks after seeding at a rate of 0.011 g/12.2 ml H2O per 0.156 m2 

transplant tray and again a week prior to transplanting to the field as a soil drench around the base of the plant at 

0.115 g/172 ml H2O/1.89 m2 per a plant. 
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Table 2.3 Severity of Fusarium wilt of watermelon following tilled cover crop or bare ground at the University of 

Maryland’s Lower Eastern Shore Research and Education Center (UM-LESREC), the United States Department of 

Agriculture Beltsville Agricultural Research Center (USDA-BARC) and University of Delaware’s Carvel Research 

and Education Center (UD-REC) in 2009, 2010 and 2011 

Location Weeks after Transplanting 

    Cover cropa 1 2 3 4 5 6 7 8 AUDPC 

USDA-BARC 2009 

           Vicia villosa -b - 1.30 ac 0.00 a 0.42 a 0.42 a 0.00 a 

 

1.50 a 

   Trifolium    

incarnatum - - 0.42 a 0.42 a 0.00 a 0.42 a 0.42 a 

 

1.20 a 

   Secale cereale - - 0.71 a 0.21 a 0.00 a 1.25 a 0.83 a 

 

2.22 a 

   Bare ground - - 2.92 a 0.63 a 0.00 a 0.21 a 0.00 a 

 

4.17 a 

   P>F 

  

0.3475 0.7066 0.4363 0.5578 0.3569 

 

0.3858 

LESREC 2009 

            V. villosa - 0.97 b 0.92 a 0.053 a 1.10 a 0.28 a 1.40 a - 3.50 a 

   S. cereale - 0.49 a 6.20 a 0.38 a 1.10 a 1.10 a 1.70 a - 12.10 a 

   Bare ground - 0.97 b 6.80 a 0.40 a 0.56 a 0.56 a 2.50 a - 10.00 a 

   P>F 

 

0.0016 0.6832 0.6743 0.8041 0.4853 0.5593 

 

0.6459 

USDA-BARC 2010 

           V. villosa - - - - - - - 12.12 a - 

   T. incarnatum - - - - - - - 13.82 a - 

   S. cereale - - - - - - - 18.50 a - 

   B. juncea - - - - - - - 26.91 a - 

   Bare ground - - - - - - - 20.64 a - 

   P>F  

      

0.1386 

 LESREC 2011 

            V. villosa 0.64 a 5.63 a 8.71 a 27.58 b 41.86 b 40.68 b 35.90 b - 124.55 b 

   T. incarnatum 0.00 a 2.08 a 4.92 a 31.36 b 47.20 b 31.14 b 43.48 ab - 119.16 b 

   S. cereale 1.12 a 4.38 a 13.83 a 46.44 a 60.95 a 54.81 a 51.02 a - 189.43 a 

   B. juncea 0.32 a 6.25 a 14.48 a 48.56 a 66.10 a 56.97 a 54.62 a - 196.66 a 

   Bare ground 1.44 a 6.46 a 7.01 a 48.26 a 57.31 a 52.05 a 52.61 a - 184.09 a 

   P>F 0.4180 0.1152 0.1445 0.0056 0.0056 <0.0001 0.0458 

 

<0.0001 

UD-REC  

2011 
           V. villosa 0.60 a 1.49 a 14.00 a 13.74 a 11.50 a 6.68 c 12.12 b - 56.27 b 

   T. incarnatum 0.60 a 1.49 a 16.03 a 15.97 a 15.19 a 9.49 bc 15.61 ab - 68.04 ab 

   S. cereale 1.79 a 8.93 a 15.18 a 16.42 a 13.53 a 12.91 ab 19.35 ab - 72.91 ab 

   B. juncea 3.57 a 13.39 a 16.69 a 18.16 a 16.34 a 12.98 ab 22.46 a - 81.82 a 

   Bare ground 2.38 a 8.93 a 18.18 a 19.97 a 17.34 a 15.19 a 23.53 a - 84.57 a 

   P>F 0.3888 0.4779 0.2418 0.4201 0.1641 0.0175 0.0535 
 

0.0251 
aSeeding rate at UM-LESREC and UD-REC was V. villosa 50.44 kg/ha, T. incarnatum 11.21 kg/ha, S. 
cereale 125.54-134.50 kg/ha, B. juncea 11.21 kg/ha and at USDA-BARC the seeding rate was V. villosa 

44.83 kg/ha, T. incarnatum 28.02 kg/ha, S. cereale 134.50 kg/ha, and B. juncea 6.73 kg/ha. 

bThe symbol – indicates the measurement was not taken for that date and location or for USDA-BARC in 

2010 that no wilt was observed. 
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cMeans in a column followed by the same letter are not significantly different at α=0.05  according to 

Fisher’s protected least significant difference test. Statistical analysis was conducted using the Statistical 

Analysis System MIXED procedure. 
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Table 2.4 The effect of Actinovate

a
 AG on severity of Fusarium wilt of watermelon at the University of Maryland’s Lower Eastern 

Shore Research and Education Center (UM-LESREC) in 2009 & 2010 and the University of Delaware’s Carvel Research and 

Education Center (UD-REC) in 2011 

Location, Year Week after Transplanting 

    Treatment 1 2 3 4 5 6 7 8 AUDPC 

UM-LESREC 2009 

            Nontreated -b 2.25 ac 0.28 a 0.01 a 0.83 a 0.00 b 2.22 a - 3.36 a 

   Fusarium - 1.94 a 13.25 a 0.84 a 1.67 a 1.94 a 1.39 a - 19.37 a 

   Fusarium + Actinovate - 2.64 a 0.40 a 0.02 a 0.28 a 0.00 b 1.94 a - 2.99 a 

   P>F 

 

0.7363 0.1392 0.1396 0.3596 0.0096 0.7203 

 

0.1533 

UM-LESREC 2010 
            Fusarium 4.88 a - - 9.75 a - 10.31 a - - 28.07 a 

   Actinovate 2.44 a - - 2.68 b - 3.81 a - - 9.95 b 

   P>F 0.067 

  

0.0379 

 

0.0603 

  

0.0373 

UD-REC 2011 
            Fusarium 2.62 a 1.01 a 14.80 b 16.26 a 15.12 a 11.17 a 19.46 a - 72.09 a 

   Actinovate 0.95 a 0.36 a 17.25 a 16.64 a 14.44 a 11.74 a 17.79 a - 73.32 a 

   P>F 0.1319 0.1898 0.0206 0.7908 0.6214 0.6861 0.3333 

 

0.802 
aActinovate AG’s active ingredient is Streptomyces lydicus and is produced by Natural Industries. Actinovate was applied as a foliar 

spray to watermelon plants two weeks after seeding at 0.011 g/12.2 ml H2O per 0.156 m2 transplant tray and again a week prior to 

transplanting to the field as a soil drench around the base of the plant at 0.115 g/172 ml H2O/1.89 m2 per a plant. 
bThe symbol – indicates the measurement was not taken for that date and location. 
cMeans in a column followed by the same letter are not significantly different at α=0.05  according to Fisher’s protected least 

significant difference test. Statistical analysis was conducted using the Statistical Analysis System MIXED procedure.  
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Table 2.5 Effects of tilled cover crop and Actinovate AG biocontrol application on 

marketable watermelon yield (no./ha)a  at the University of Maryland’s Lower Eastern Shore 

Research and Education Center (UM-LESREC), the United States Department of Agriculture 

at the Beltsville Agricultural Research Center (USDA-BARC) and University of Delaware’s 

Carvel Research and Education Center (UD-REC) in 2009, 2010 and 2011 

Cover Cropb 

UM-

LESREC 

2009 

UM-

LESREC 

2010 

UM-

LESREC 

2011 

USDA-

BARC 

2009 

USDA-

BARC 

2010 

UD-

REC 

2011 

Vicia villosa 8,353 ac 6,261 a 1,416 b 3,020 a 7,400 a 6,159 a  

Trifolium 

incarnatum 

-d - 2,883 a 3,104 a 6,355 a 6,745 a  

Secale cereale 8,073 a 8,120 a 1,089 b  2,829 a 7,736 a 7,486 a  

Brassica juncea - 7,074  a 815 b - 6,840 a 6,536 a  

Bare ground 8,324 a 7,427 a 1,253 b 2,840 a 8,598 a 6,572 a  

P<F 0.2917 0.2247 0.0018 0.3417 0.5514 0.9323 

Inoculation 

Treatmente 

      

No treatment  8,259 a - - 1,581 ab 7,310 a  - 

Fusarium 

oxysporum f. sp. 

niveum (FON) 

8,180 a 3,558 a 1,024 b 1,500 b 7,714 a 7,032 a 

Actinovate + 

FON 

8,317 a 2,996 a 1,957 a 1,671 a 7,131 a 6,374 a 

P<F 0.6834 0.0549 0.0033 0.0080 0.7392 0.4863 
a Marketable watermelon yield is quantified as the mean number of watermelon fruit per 
hectare that weighed more than 3.18 kg. The watermelon cultivar Sugar heart was used for all 

field trials.  
bSeeding rate at UM-LESREC and UD-REC was V. villosa 50.44 kg/ha, T. incarnatum 11.21 

kg/ha, S. cereale 125.54-134.50 kg/ha, B. juncea 11.21 kg/ha and at USDA-BARC the 

seeding rate was V. villosa 44.83 kg/ha, T. incarnatum 28.02 kg/ha, S. cereale 134.50 kg/ha, 

and B. juncea 6.73 kg/ha. 
cMeans in a column followed by the same letter are not significantly different at α=0.05  

according to Fisher’s protected least significant difference test. Statistical analysis was 

conducted using the Statistical Analysis System MIXED procedure.  
dThe symbol – indicates the absence of the specific cover crop treatment for the given time 

and location or that there was a loss in sufficient replications.  
e
Actinovate AG’s active ingredient is Streptomyces lydicus and is produced by Natural 

Industries. Actinovate was applied as a foliar spray to watermelon plants two weeks after 

seeding at a rate of 0.011 g/12.2 ml H2O per 0.156 m 2 transplant tray and again a week prior 

to transplanting to the field as a soil drench around the base of the plant at 0.115 g/172 ml 

H2O/1.89 m2 per a plant. FON was inoculated in 2009 at USDA-BARC and UM-LESREC at 

6 ml of 2.45 x 106 CFU/ml by pippet into a hole (approximately 3 cm in diameter and 8 cm 

deep) 7 cm away from the crown of each watermelon plant immediately after watermelon 

transplanting. In 2010 at USDA-BARC two days after cover crop incorporation and a week 

prior to the laying of black plastic, 60 ml of 2.85 x 108 CFU/ml FON inoculum was mixed 

into one gallon of H2O and evenly banded across the center of each 36.92 m2 bed (where 

watermelons would later be transplanted to) with a watering can. In addition 11 ml of FON at 

2.33 x 106 CFU/ml was added next to each watermelon plant using the same method 
employed in 2009. Fields used at UM-LESREC in 2010 and 2011 and UD-REC in 2011 were 

naturally infested.  
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Figure 2.2 Disease Progress Curve for Fusarium wilt of watermelon following a fall planted cover crop that 

was tilled in the spring or bare ground at the University of Delaware Research and Education Center (UD-

REC) in Georgetown, 2011. 
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Figure 2.1 Disease Progress Curve for Fusarium wilt of watermelon following a fall planted cover 

crop that was tilled in the spring or bare ground at the University of Maryland’s Lower Eastern Shore 

Research and Education Center (UM-LESREC) in Salisbury, 2011. 
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Chapter 3: General Suppression of Fusarium Wilt of Watermelon 

by Cover Crop Green Manures in Maryland and Delaware 

3.1.Abstract 

A fall planted Vicia villosa cover crop incorporated in spring as a green manure 

suppresses Fusarium wilt of watermelon. Experiments were conducted to determine 

whether the the mechanism of disease suppression is general or specific, and to evaluate 

the efficacy of the biocontrol Actinovate.  For this purpose, the effects of cover crop 

green manures (V. villosa, Trifolium incarnatum, Secale cereale, Brassica juncea) on soil 

respiration and F. oxysporum spp. were assessed in five field experiments. Actinovate 

was evaluated in greenhouse experiments alone and in combination with four different 

cover crop treatments (V. villosa, T. incarnatum, and S. cereale) and no cover crop in soil 

infested or non-infested with FON. Significant elevations in soil microbial respiration 

both preceeded and followed V. villosa and T. incarnatum green manure incorporation 

compared to plots with no cover crop, and was significantly negatively correlated with 

Fusarium wilt, suggesting that general suppression was present. However, Fusarium 

oxysporum spp. significantly increased in V. villosa amended plots, indicating that 

specific suppression may also contribute to disease reductions. Actinovate did not 

consistently suppress Fusarium wilt when used alone, nor with any of the cover crop 

treatments in the two greenhouse trials.  
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3.2.Introduction 

Watermelon (Citrullus lanatus (Thumb.) Matsum & Nakai) is a major fresh 

market vegetable grown in Maryland and Delaware (McCann et al., 2007). Production 

has shifted from diploid (seeded) to triploid (seedless) watermelon (Lucier et al., 2001). 

However, there currently are no triploid watermelon cultivars with resistance to all races 

of Fusarium wilt, caused by Fusarium oxysporum f. sp. niveum (FON) Schlechtend, Fr. 

(E. F. Sm.) W. c. Snyder & H. N. Hans (Everts et al., 2010; Everts et al., 2011). FON is 

widespread on the Eastern Shore of Maryland and in Delaware (Zhou et al., 2003b). 

Management options other than resistant culativars are also available to farmers but they 

vary in cost and effectiveness. Less effective alternatives include long crop rotations, soil 

solarization, and elevation of soil pH (Zitter et al., 1996; Eschel et al., 2000). Methyl 

bromide was previously used as a soil fumigant in watermelon fields. Following its loss, 

less succesful soil fumigants have been utilized (Ferguson et al., 1997; Gullino et al., 

2005).  The product, Actinovate AG (Natural Industries, Inc., Houston, TX), which has 

the active ingredient Streptomyces lydicus WYEC 108, is another tool available to 

producers.  It has reduced several plant diseases and is labeled for use on Fusarium wilt 

of watermelon (Elmer et al., 2004; Tomaso-Peterson et al., 2007; Teasdale, 2009). 

Another, yet less commonly utilized alternative is green manures, in particular Vicia 

villosa which suppressed Fusarium wilt of watermelon by as much as 69% (Zhou et al., 

2002; Zhou et al., 2004; Zhou et al., 2007; Keinath et al., 2010). Although the ability of 

V. villosa to suppress Fusarium wilt of watermelon has been established the mechanism 

of the disease suppression is still unknown.  
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Disease suppression can be categorized as general or specific. General 

suppression is defined as suppression that arises from the overall activity of soil biota and 

has efficacy against a wide range of soilborne pathogens (van Os et al., 2001; Weller et 

al., 2002). This phenomenon has been observed in several different pathosystems. 

General suppression occurred with the pre-emergence damping off (Rhizoctonia solani) 

of impatiens (Impatiens balsamina) using a composted swine waste amendment, which 

elevated microbial activity (Diab et al., 2003). Specific suppression is when the activity 

of an antagonist or a defined group of microorganisms suppresses disease caused by a 

single pathogen (van Os et al., 2001; Weller et al., 2002). Kraus et al. (2001) observed 

specific suppression when a decomposed pine bark mixture was inoculated with 

Trichoderma hamatum 382 and Chryseobacterium gleum and resulted in significantly 

reduced Rhizoctonia damping-off of radish and Rhizoctonia root and crown rot of 

poinsettia.   

Incorporation of cover crops or other organic soil amendments often increase 

activity and diversity of soil microbes associated with suppression (Tsuneo et al., 1991; 

Rothrock et al., 1995; Bonanomi et al., 2007a).  Increases in soil microbial activity can be 

measured as an increase in soil respiration. Bonanomi et al. (2010) found that substrate 

respiration and microbial biomass were principal quality factors for measuring the 

likelihood of disease suppression. Alabouvette et al. (1985) measured the rate of soil 

biota respiration via evolution of CO2 of soils from fields naturally suppressive to 

Fusarium wilt of watermelon to that of nonsuppressive soils. He found respiration rates in 

suppressive soils were 2-4 fold that of nonsuppresive soils and proposed that the 

mechanism of disease suppression in these soils, due to excessive competition for 
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nutrients, was a form of general suppression. Nonpathogenic Fusarium oxysporum spp. 

play a role in the suppression of FON in these soils as well (Alabouvette et al., 1993).  

In this study, we investigated the effects of V. villosa, Trifolium incarnatum, 

Secale cereale, and Brassica juncea cover crop treatments on the rates of soil microbial 

respiration and fluxes of Fusarium oxsyporum spp. in fields where V. villosa and T. 

incarnatum disease suppression were observed. In addition, we compared the efficacy of 

Actinovate AG alone and in combination with three different cover crop amendments in 

controlled greenhouse conditions.  

3.3.Materials and Methods  

3.3.1.Field Trials  

Field experiments were established at the United States Department of 

Agriculture, Beltsville Agricultural Research Center (USDA-BARC) in 2009 & 2010, at 

the University of Maryland Lower Eastern Shore Research and Education Center in 

Salisbury (UM-LESREC) in 2009, 2010 & 2011, and at the University of Delaware 

Carvel Research and Education center in Georgetown (UD-REC) in 2011.  

Each field was set up as a split plot block design with cover crops as the main plot 

treatments and Actinovate application as the subplot treatments (Table 3.1). Vicia villosa, 

Trifolium incarnatum, Secale cereale, Brassica juncea and bare ground were the main 

plot treatments, however not all cover crop treatments were planted for every field trial 

(Table 3.1). An additional subplot treatment was inoculation with FON unless the field 

was already infested with FON (Table 3.1).  
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3.3.1.a.Soil Respiration 

Soil respiration was measured in plots infested with FON and amended with the 

various cover crop regimes or bare ground using a EGM-4 gas analyzer with a SRC-1 

chamber from PP Systems (110 Haverhill Road, Suite 301 Amesbury, MA 01913, USA) 

(Korhonen et al., 2009).  

The EGM-4 gas analyzer has a closed chamber that measures CO2 flux within the 

chamber at a flow rate of approximately 350 ml/min. The beveled collar seals were 

placed in the plots at least 24 hours prior to measurements. Collars were pushed 4 cm into 

the soil and approximately 7 cm of the collars remained above the soil line. Respiration 

was measured from at least three collars placed randomly in each plot and then averaged 

per a plot. Treatments in three to six replicates were measured in each trial (n=45-90). A 

soil temperature sensor was connected to the EGM-4 data logger to record soil 

temperature in plots while soil respiration data was collected. Respiration was measured 

in areas of the field where Actinovate was not applied as a soil drench in order to only 

measure cover crop treatment effects.  

Soil respiration measurements were recorded for five field trials, two at USDA-

BARC, two at UM-LESREC and one at UD-REC.  The first field trial at USDA-BARC 

in 2009, respiration was measured before tillage and during the watermelon growing 

season. The largest magnitude of treatment differences for elevations in soil respiration 

was directly following tillage. Therefore CO2 flux was primarily recorded directly 

following tillage in subsequent experiments.  
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3.3.1.b.Soil Dilutions 

The effect of cover crop treatment on Fusarium oxysporum spp. in the soil (FON 

was not differentiated from non-pathogenic F. oxysporum) was evaluated for two years 

(two locations per a year) by soil dilution onto selective media. Soil cores were taken 

once towards the end of the growing season from every plot at each location (n=60/field 

location) (Table 3.1) in 2010. The following year a baseline sample was collected in 

March (Table 3.1) when cover crop growth was minimal. Subsequent samples were 

collected again near the end of the growing season (Table 3.1). One soil core was 

sampled from three locations within each subplot. The three soil cores from each plot 

were thoroughly mixed and a 5 g subsample (dry weight equivalent) was placed in 45 ml 

of autoclaved 0.1% water agar. This solution was mixed on a rotary shaker at 150 rpm, 

vortexed, and 1 ml of the soil suspension was spread evenly on to plates of Komadas 

media (Komadas, 1975) for a 1:10 soil dilution. Additionally, a 1 ml aliquot of the 

suspension was transferred to test tubes with 9 ml of 0.1% autoclaved water agar, 

vortexed, and 1 ml of the resulting suspension was pippeted to Komadas media plates for 

a 1:100 soil dilution (Zhou et al., 2004). The resulting colonies of Fusarium oxysporum 

spp. were counted five days after plating.  

Baseline Fusarium oxysporum spp. colony forming units (CFUs) were subtracted 

from the counts in 2011.  Pink and purple pigmented CFUs were also recorded separately 

to see if there were any selective effects on Fusarium oxysporum spp. populations. 

Pigmentation is a characteristic other studies have used to identify and track changes in 

multiple F. oxysporum spp. sampled from the same field sites (Mandeel et al., 1991; 

Skovgaard et al., 2001; Smith et al., 2001; Leslie et al., 2006).  
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The CFU/g were adjusted to dry weight equivalent prior to statistical analysis. 

Soil water content was measured by sampling soil from each plot with a 7.62 cm wide 

soil auger to a depth of 15.24 cm, drying out 5 g of soil from each sample at 105° C for 

approximately four days, and then weighing the samples once more. Treatment effects on 

soil water content were also measured at other times during the field season (Table 3.1) 

using the same soil drying technique or by differences in electrical conductivity using a 

FieldScout TDR-300 (Spectrum Technologies, East Plainfield, IL, USA). 

3.3.2.Greenhouse Experimental Design and Management  

The capacity of Streptomyces lydicus WYEC 108, the active ingredient of the 

biological control product Actinovate, to colonize watermelon roots or the rhizosphere in 

natural field soil and the biocontrol products ability to suppress disease when used alone 

or in combination with three different green manure amendments was evaluated in two 

greenhouse pot trials in the fall of 2011, the first at UM-LESREC and the second at UD-

REC.  

The experiment was arranged as a completely randomized factorial design (CRD) 

with nine replicates per treatment (n=216). Treatments were soils amended or 

nonamended with cover crop residue and FON and/or Actinovate application. A Fort 

Mott loamy sand from Salisbury, MD (homogenized with a soil mixer) was used for 

potting soil in both experiments. 

Watermelon cv. ‘Sugar Heart’ was seeded in 128 cell trays and grown in Sun Gro 

Redi-earth Plug and Seedling Mix (Sun Gro Horticulture, Bellevue, WA) in ambient 

greenhouse temperatures (20-31 ºC) for two and a half weeks. Actinovate was suspended 

in water and applied to 10 day old seedlings at 0.08 g/0.09 L H2O/m
2
 (0.012g/13.24 ml 
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H2O/0.14m
2
 tray). Seedlings were gently repotted 7 days after the first Actinovate 

application and an Actinovate soil drench was applied to the 29 cm
2
 pots at 0.06 g/0.09 L 

H2O/m
2
 (0.017 g/26.34 ml H2O/29 cm

2
 per a pot) the same day. 

A race 1 isolate (F-030-1) of F. oxysporum f. sp. niveum (FON), which was 

acquired from a wilted watermelon plant in Wicomico county Maryland in a previous 

study, was used for disease inoculations (Zhou et al., 2003b). The isolate had been 

maintained in a mixture of sandy soil and perlite (1:2 wt/wt) at 4°C.   

Inoculum was prepared by transferring F-030-1 growing on Komadas media into 

a liquid mineral salts medium (Netzer, 1976; Zhou et al., 2006). The culture was 

incubated on an orbital shaker at 128 rpm at room temperature for approximately two 

weeks before filtering through eight layers of cheesecloth. The spore suspension was 

amended to the soil to attain a 2,500 CFUs/g concentration (Zhou et al., 2004). The soil 

was mixed thoroughly and incubated in plastic bags with filtered air exchange at room 

temperature for a week and a half to allow for the formation of chlamydospores.  

Cover crop biomass was amended a week and a half after FON inoculation. Cover 

crop treatments were soil amendments of 1) V. villosa 2) S. cereale 3) T. incarnatum and 

4) no amendment.  Soil then received a) FON inoculation and Actinovate application, b) 

FON inoculation and no Actinovate, c) no FON inoculation and Actinovate application, 

or d) no inoculation.  

Cover crops were collected from fields at UM-LESREC and USDA-BARC in 

early spring (May 18
th 

and 19
th

, 2011), dried in the greenhouse, and then chopped into 

pieces approximately 4-6 cm long to represent rough tillage. Cover crop amendment rates 



 

 65 

 

were determined by averaging aboveground biomass present in 2009 and 2010 field 

seasons. 

The V. villosa green manure amendment was incorporated into the potting soil 

treatment at three different rates; 2722 kg/ha (x1), 3685 kg/ha (x2), and 5670 kg/ ha (x3) 

to represent average cover crop biomass at UM-LESREC, a median level, and USDA-

BARC, respectively. T. incarnatum was incorporated into the soil at rate of 5103 kg/ha 

and S. cereale was incorporated at a rate of 3969 kg/ ha. Biomass was mixed into the soil 

by hand, watered, and allowed to decompose for two weeks.  Soil treatments were then 

transferred into sterilized plastic pots (29 cm
2
).  A single Sugar Heart seedling was 

transplanted in to each pot and greenhouse conditions were maintained at 20 to 31° C. 

Plants were mechanically watered twice a day for five minutes at 7:30 am and 3:00 pm at 

UM-LESREC and hand watered twice a day at UD-REC. 

 

3.3.2.a.Greenhouse Measurements 

Six of the nine treatment replicates were evaluated for wilt severity and vine 

length (n=144). Wilt severity was evaluated weekly for six weeks on a scale of 0 to 3 

where 0=no wilt (0%), 1= 1-33% wilted foliage, 2=34-63% wilted foliage, 3=64-100% 

wilted foliage. Watermelon plants that died of wilt were plated on Komadas media to 

confirm the presence of the FON. Vine length, which was the length of the longest 

watermelon vine from the crown of the plant to the vine tip, was measured weekly for 

each pot for six weeks.  

Three of the treatment replicates (n=72), for each treatment, were destructively 

harvested two weeks after watermelons had been transferred to pots to observe if 
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Streptomyces lydicus had established in the rhizosphere. Seminal roots of watermelon 

plants were cut into three 3-cm long root sections, placed into test tubes of 5 ml DI water, 

soaked for five minutes and vortexed before being serially diluted onto SPA Agar 

(amended with carbenicillin, nyastatin and cyclohexamide) and Casein Agar (Yuan et al., 

1995).  

3.3.3.Statistical Analyses  

Data were analyzed using the MIXED procedure with the Statistical Analysis 

System (version 9.2; SAS Institute, Cary, NC), which integrates random effects in the 

statistical model and performs covariance structure modeling (Littell et al., 1998). 

Treatment means were separated using a Fisher’s protected least significant difference 

(LSD) test at P ≤0.05. The majority of the wilt data was not normal due to the nature of 

the evaluations. As the sample size for each trial was larger than 30 the data was 

considered robust and no transformations were employed (Payton et al., 2006). This is 

supported by the Central Limit Theorem which states that the sample mean of a 

population with the size of n> 30 will converage to a standard normal distribution 

(Corbett et al., 2002).  

A correlation analysis was performed for two of the variables measured in the 

field experiment-wilt severity and respiration. The MIXED procedure was used and 

means were separated at a P ≤ 0.05 and by using Pearson’s correlation analysis. This 

analysis was only performed for UM-LESREC and UD-REC in 2011 where the wilt 

suppression by the leguminous cover crops was most apparent and for dates where cover 

crop treatment effects on respiration and wilt severity were significant.  
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3.4.Results 

3.4.1.Field Trials 

 

3.4.1.a.Respiration 

Significant differences in soil respiration among cover crop treatments occurred 

prior to tillage, and immediately following tillage, but not later (Table 3.2). At four of the 

five locations where CO2 was measured respiration rates were significantly higher in V. 

villosa amended plots compared to all other cover crop and bare ground treatments. Three 

weeks prior to tillage at USDA-BARC in 2010, one day following tillage at UM-

LESREC in 2010, and one and two days after tillage at UM-LESREC and UD-REC in 

2011 V. villosa amended plots had significantly higher rates of CO2 respiration than in 

any of the other green manure treatments or bare ground. Additionally, respiration in V. 

villosa amended plots was significantly higher than that of bare ground at USDA-BARC 

in 2010, one day after tillage.  

Respiration rates in T. incarnatum amended plots were significantly higher than 

nonamended plots for one or more dates in four of the five field trials and were higher 

than all other cover crop treatments for one. Plots amended with T. incarnatum had 

significantly higher rates of CO2 respiration five days prior to tillage and five days after 

tillage compared to all other cover crop and bare ground treatments at USDA-BARC in 

2009. For measurements taken three weeks, and ten days prior to tillage at USDA-BARC 

in 2010, as well as one day after tillage the flux of CO2 was higher in T. incarnatum 

amended plots compared to bare ground. Respiration was significantly higher in T. 

incarnatum amended plots than in bare ground plots for all measurements taken at UM-

LESREC in 2010 and 2011.  
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For one or more dates in  all five field trials B. juncea and S. cereale amended 

plots had rates of respiration that were significantly lower than that of one of the 

leguminous amended plots. Respiration was never significantly higher in B. juncea or S. 

cereale amended plots compared to that of leguminous plots. The respiration in B. juncea 

amended plots was significantly higher than bare ground respiration for two field trials, 

and was significantly lower than all other green manure amended plots for both 

measurements taken at UM-LESREC in 2011. Although soil respiration measurements in 

S. cereale amended plots were significantly higher than bare ground for three field trials 

it was also significantly lower than all other green manure amended and nonamended 

plots at UD-REC in 2011.  

Both V. villosa and T. incarnatum amended plots had significantly higher rates of 

respiration than bare ground plots for four field trials. Respiration rates were higher in 

leguminous green manure plots than other cover crop treatments for all five field trials. 

Neither V. villosa nor T. incarnatum ever had rates of respiration significantly lower than 

that of B. juncea, S. cereale nor nonamended plots. 

Respiration was negatively correlated with wilt severity at UM-LESREC in 2011 

and UD-REC in 2011. Wilt severity measured six weeks after watermelon were 

transplanted to the field at UD-REC in 2011 was significantly negatively correlated to 

respiration measured in that same field, the morning after cover crop tillage (P = 0.0328). 

The AUDPC (P = 0.0107) and wilt measurements taken four (P = 0.0010) and five weeks 

(P = 0.0163) after transplanting at UM-LESREC in 2011 were significantly negatively 

correlated with respiration measured one day after tillage in that field. All wilt 

measurements at UM-LESREC, in 2011 where significant cover crop treatment effects 
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were observed, four (P = 0.0004), five (P = 0.0001), six (P = 0.0025) and seven (P = 

0.0118) weeks after transplanting, as well as the AUDPC (P = 0.0053), were significantly 

correlated with respiration measured two days after cover crop incorporation. All of the 

Pearson’s correlation coefficients were negative, demonstrating that there is an inverse 

relationship between wilt severity and respiration-specifically that the higher a plots’ 

respiration the lower the wilt severity rating.  

 

3.4.1.b.Soil Dilutions 

At USDA-BARC in 2010 V. villosa amended plots had numerically more 

Fusarium oxysporum spp. colony forming units (CFUs) per gram of soil (37.95 to 253.71 

more CFU/g soil) than the other plot treatments. There was high variability, and no 

significant differences between treatments were observed for this field trial (Table 3.3).  

However, at UM-LESREC in 2010 V. villosa amended plots had significantly higher 

Fusarium oxysporum spp. CFU/g of soil (228.74) compared to all other cover crop and 

nonamended plots (P = 0.0086).  

To reduce error and to allow measurement of discrete differences between 

treatments the number of purple and the number of pink pigmented CFUs were recorded 

separately and totaled at LESREC in 2011. The number of pink pigmented CFUs/g soil 

were significantly greater (274.39 CFUs/g) in plots amended with a V. villosa cover crop 

(P = 0.0126) than in nonamended plots at LESREC in 2011. There were no significant 

treatment effects observed for purple pigmented CFUs or the sum of both the pink and 

purple CFUs (Table 3.3).  
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The V. villosa amended plots at UD-REC in 2011 contained more purple 

pigmented CFUs/g soil (1093.63) than bare ground (70.37), S. cereale (358.77), and T. 

incarnatum (475.81) amended plots (P = 0.0318). Additionally, for the sum of the two 

pink and purple CFU pigments, more CFUs/g of soil were found in V. villosa amended 

plots than in bare ground and S. cereale amended plots  (P = 0.0262). In this case bare 

ground plots had significantly less CFU/g soil than plots amended with any cover crop 

other than S. cereale (Table 3.3).  

For two of the four field trials the CFU/g of soil of Fusarium oxysporum spp. was 

significantly higher in V. villosa amended plots compared to all other treatments. For 

three of the four field trials Fusarium oxysporum spp. CFUs were higher in V. villosa 

amended plots compared to bare ground.  Although V. villosa amended plots repeatedly 

had higher CFU/g of F. oxysporum compared to other treatments T. incarnatum amended 

plots did not.  

There were no significant Actinovate treatment effects on the number of 

Fusarium oxysporum spp. CFUs/g soil for any of the four field trials soil dilutions were 

done.  

 

3.4.1.c.Soil Temperature and Water Content 

Soil temperature was measured for three field trials. Significant differences in 

temperature between cover crop treatments were observed for all three field trials but 

there was no clear pattern between the trials nor did the dates with differences in soil 

temperature correlate with differences in soil respiration (Table A3.1).  
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There were no significant differences in the soil water content between any of the 

cover crop or bare ground treatments (data not shown).  

3.4.2.Greenhouse Experiment 

 

3.4.2.a.Vine Length 

In both greenhouse experiments FON inoculations significantly reduced the rate 

of watermelon vine growth in pots amended with leguminous cover crops while bare 

ground pots inoculated with FON were not similarly affected (Table 3.4). Additionally, in 

the presence of no FON inoculation and leguminous cover crops, watermelon vines grew 

faster compared to plants in nonamended pots or those amended with S. cereale (Table 

3.4).  

Actinovate treatments had no significant main or simple effects on the rate of 

watermelon linear vine growth for the first pot experiment. In the second pot experiment 

only the main effects of the Actinovate treatment significantly impacted the linear rate of 

watermelon vine growth. In this case watermelon treated with Actinovate had 

significantly slower rates of vine growth compared to plants that did not receive the 

treatment (data not shown).  

 

3.4.2.b.Fusarium Wilt  

Because field soil was used, some Fusarium wilt was observed on watermelons 

which were not inoculated with FON for both greenhouse trials. By the end of both 

experiments Fusarium wilt was reduced in noninoculated, V. villosa amended pots 

compared to watermelon in noninoculated, S. cereale or nonamended pots (Table 3.5).  
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As the greenhouse experiments progressed Fusarium wilt increased on plants in 

pots inoculated with FON and amended with leguminous cover crops resulting in disease 

ratings that were significantly higher than that of their noninoculated counterparts (Table 

3.5). This was not the case for plants in nonamended pots or, for the first experiment, 

those amended with S. cereale where wilt was high in both inoculated and noninoculated 

pots (Table 3.5).  

Watermelon in pots inoculated with FON and amended with a leguminous cover 

crop had significantly more wilt than FON inoculated, nonamended pots for both 

experiments. According to wilt ratings measured six weeks after transplanting in the first 

greenhouse trial and the AUDPC of the second greenhouse trial plants in FON inoculated 

pots amended with V. villosa x1 had significantly less wilt than plants in FON inoculated 

pots amended with T. incarnatum, or S. cereale.  

Actinovate biocontrol treatment effects were not consistent within or between pot 

experiments. In the first greenhouse experiment, two weeks after transplanting, 

Actinovate treatment decreased Fusarium wilt across all cover crop treatments. 

Actinovate also decreased disease in the first experiment in V. villosa amended pots four 

weeks after transplanting. However, for that same reading, T. incarnatum in combination 

with Actinovate enhanced wilt compared to several other treatments. In the second pot 

experiment a three way interaction occurred between Actinovate, FON, and cover crop 

treatments. Here Actinovate significantly increased wilt ratings of plants inoculated with 

FON and amended with either T. incarnatum or S. cereale. Results from these two 

greenhouse experiments indicate that Actinovate’s ability to suppress wilt alone or in 

combination with a cover crop are inconsistent to negligible. The only significant pattern 
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that was observed across both trials was that Actinovate treatment can induce increased 

wilt, particularly when in combination with a T. incarnatuum green manure (data not 

shown).  

3.5.Discussion 

3.5.1.Field Trials 

This study is the first to evaluate the corresponding effects of a V. villosa green 

manure amendment on soil respiration and F. oxysporum soil populations on 

watermelons. In our study there were elevations in overall microbial activity for plots 

amended with V. villosa and T. incarnatum. Increases in F. oxysporum were also seen in 

V. villosa amended plots. Other studies on V. villosa green manure or on Fusarium wilt 

disease suppression have found similar results. For example, a Vicia villosa green manure 

increased the absolute numbers of all microbial groups and influenced soil microbial 

community composition more than manure or compost amendments in a tomato crop 

system (Carrera et al., 2007; Buyer et al., 2010).  A positive relationship was observed in 

another study between V. villosa cover crop incorporation, the suppression of Fusarium 

wilt of watermelon, and elevations in soil bacterial populations (Zhou et al., 2007).  The 

mechanism of disease suppression of soils naturally suppressive to Fusarium wilt of 

watermelon and those with induced suppresiveness via a monoculture of the watermelon 

cultivar ‘Crimson Sweet’ has been attributed to general suppression due to an increase in 

overall soil microbial activitiy as well as a more specific suppression by antagonistic 

microbial populations-most specifically nonpathogenic Fusarium oxysporum spp. 

(Alabouvette et al., 1985; Alabouvette et al., 1993; et al., 1993a; Larkin et al., 1993b; 

Larkin et al., 1996). The absence of significantly increased F. oxysporum spp. 
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populations in our field T. incarnatum plots could account for why the cover crop is not 

as effective at reducing Fusarium wilt as V. villosa.   

It is probable that the increase in F. oxysporum in V. villosa amended plots was 

composed mainly of nonpathogenic F. oxysporum spp. FON saprophytic growth and 

chlamydospore germination declined in fields naturally suppressive to Fusarium wilt 

(Alabouvette et al., 1993). Many studies have demonstrated that pre-inoculating 

watermelon roots with nonpathogenic F. oxysporum spp. can decrease Fusarium wilt of 

watermelon, a form of cross-protection (Biles et al., 1989; Freeman et al., 2002). 

According to the competitive exclusion principle, different species with the same 

ecological niche are not able to coexist for long (Baker et al., 1974). The competitive 

coexistence of FON and nonpathogenic Fusarium oxysporum in the soil is supported by a 

2003 study done by Zhou et al., (2003b) who found that as FON increased in fields 

conducive to Fusarium wilt of watermelon so did the ratio of  FON relative to the total 

population of F. oxysporum spp. in the field.  

Because pathogenic and nonpathogenic F. oxysporum occupy a similar niche and 

have comparable nutrient requirements and preferences, V. villosa compounds that 

stimulate nonpathogenic F. oxysporum would also stimulate FON. It was found that the 

antagonistic actions of nonpathogenic F. oxysporum Fo47b10 against F. oxysporum f. sp. 

dianthi, the pathogen responsible for Fusarium wilt of carnation (Dianthus caryophyllus 

L.) was mainly due to the competition of the Fusarium spp. for glucose (Lamanceau et 

al., 1993). Additionally, the antagonism was largely dependent on the ratio of 

nonpathogenic to pathogenic F. oxysporum populations-the higher the ratio, the greater 

the antagonism (Lamanceau et al., 1993).   
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3.5.2.Greenhouse Trials 

 

3.5.2.a.Cover Crop Effects 

Due to the background level of FON in the field soil used in greenhouse trials, V. 

villosa and T. incarnatum suppression of Fusarium wilt of watermelon was observed in 

the pots that did not receive the FON inoculation. In the pots inoculated with FON and 

amended with V. villosa and T. incarnatum there was an increase in Fusarium wilt 

severity. The V. villosa and T. incarnatum amendments may have stimulated FON 

growth. For laboratory or field experiments plant material is often used to help stabilize 

and encourage growth of pathogen inoculum. For example, a mixture of soil, rolled oats 

and dried bean leaves can be used to incubate inoculum of F. oxysporum spp. (Mandeel 

et al., 1991). The cover crop biomass amendments may have given the FON a 

competitive advantage, overwhelming the nonpathogenic F. oxysporum’s suppressive 

effects. It is interesting to note that in both trials watermelon in pots inoculated with FON 

and amended with larger amounts of biomass, namely V. villosa x2 and x3 treatments, 

had significantly higher wilt severity ratings than watermelon in all other FON 

inoculated, cover crop amended pots, indicating this extra biomass functioned as a 

nutrient source for the pathogen. In contrast, plants in FON inoculated, V. villosa x1 

amended pots had significantly less wilt than pots inoculated with FON and amended 

with S. cereale or T. incarnatum.  

Other explanations could exist for the results seen in the FON inoculated pots 

such as excessive inoculum levels that could negate the cover crops suppresiveness 

(Termorshuizen et al., 2008). Zhou et al. (2007) found that high inoculum densities of 

FON can overcome the suppressive effects of V. villosa.  
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Only dried aboveground biomass of V. villosa was used for these greenhouse 

trials. It is possible that the roots of V. villosa are necessary for attaining the level of 

microbial activity that contributes to the disease suppressive effects seen in the field. In a 

2010 study Buyer et al., observed that V. villosa roots increased soil microbial biomass 

significantly more than V. villosa shoots.  

Changes in the soil microbial community that are necessary for achieving 

Fusarium wilt suppression might not occur if the leguminous cover crop is not physically 

grown in the potting soil prior to incorporation. In one study soil microbial respiration 

observed in V. villosa and T. incarnatum green manure plots prior to tillage was 

significantly higher than respiration in bare ground plots (unpublished data). The failure 

of watermelon cultivars other than ‘Crimson Sweet’ to induce suppresiveness of 

Fusarium wilt of watermelon was attributed to variables like composition or amounts of 

root exudates which promoted different types of rhizophere microflora populations 

(Larkin et al., 1993a).  

 

3.5.2.b.Actinovate Biocontrol Effects 

There were no synergistic effects between cover crop amendments and the 

Actinovate biocontrol treatment in either of the greenhouse experiments. As in previous 

field studies (unpublished data), Actinovate alone was not effective in reducing Fusarium 

wilt of watermelon. Additionally, a promotion in watermelon growth was not observed in 

these trials and were absent in the field trials as well (unpublished data). We were unable 

to isolate Streptomyces lydicus from the watermelon roots, or soil rhizosphere. It is 

possible that the soil conditions on the Eastern Shore of Maryland and in Delaware are 
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not conducive to the growth of S. lydicus as the low soil pH is not amenable to many 

kinds of bacteria. For Entry et al., (2000) substrate significantly impacted the 

effectiveness of the S. lydicus biocontrol. The authors used a wood chip-polyacrylamide 

core around plant roots to alter the rhizosphere environment so that it was more favorable 

to the growth of a Streptomyces lydicus WYEC 108 biocontrol. Due to the amendment 

changes in the soil environment the S. lydicus was able to successfully decrease 

Veriticillium dahlia incidence on potato (Solanum tuberosum L.) (Entry et al., 2000).   

3.6.Conclusion 

This study confirms that the mechanism of general suppression plays a role in V. 

villosa suppression of Fusarium wilt of watermelon. However it also raises the possibility 

that specific suppression is contributing to Fusarium wilt suppression. Respiration 

measurements were significantly negatively correlated with wilt severity measurements 

where Fusarium wilt suppression via the leguminous cover crops was observed. The 

higher the microbial activity, measured by soil respiration, the lower the wilt severity. 

The increases in microbial activity and elevations in F. oxysporum in V. villosa amended 

soils are parallel to conditions found in soils with induced or natural FON suppression. 

We hypothesize that general suppression in addition to a more specific form of 

suppression by means of elevated populations of antagonistic microbes and 

nonpathogenic F. oxysporum are responsible for the V. villosa disease suppression of 

Fusarium wilt. A study utilizing PFLA analysis to observe V. villosa effects on soil 

populations not only found that V. villosa increased overall soil microbial biomass but 

that the cover crops stimulation of soil fungi was proportionally greater than its effects on 

bacterial communities (Buyer et al., 2010). To gain a more complete picture of V. villosa 
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disease suppression, factors like microbial competition, direct antagonism, and/or 

induced host resistance must be explored. Future studies looking at more specific changes 

in the microbial community could provide additional insight on the mechanisms of V. 

villosa and T. incarnatum disease suppression of Fusarium wilt of watermelon. Although 

a PLFA could help detect substantial changes in the soil microbial community structure, a 

molecular approach would be a more powerful method for discerning these microbial 

dynamics (Abadie et al., 1998; Buyer et al., 2001) 
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Table 3.1 Management and design of field experiments to evaluate tilled cover crop and Actinovatea biocontrol application on Fusarium wilt severity and watermelon yield for six 

field trials in Maryland and in Delaware 

Location, Year USDA-BARCb 2009 USDA-BARC 2010 UM-LESREC 2009 UM-LESREC 2010 UM-LESREC 2011 UD-REC 2011 

Main plot treatment Vicia villosa, 

Trifolium incarnatum, 

Secale cereale, 
Bare ground 

V. villosa, 

T. incarnatum, 

B. juncea, 
S. cereale, 

Bare ground 

V. villosa, 

S. cereale, 

Bare ground 

V. villosa, 

T. incarnatum, 

B. juncea, 
S. cereale, 

Bare ground 

V. villosa, 

T. incarnatum, 

B. juncea, 
S. cereale, 

Bare ground 

V. villosa, 

T. incarnatum, 

B. juncea, 
S. cereale, 

Bare ground 

Sub plot treatment FON, FON + 

Actinovate, No FON 

FON, FON + Actinovate, No 

FON 

FON, FON + 

Actinovate, No FON 

FON, FON + Actinovate FON, FON + 

Actinovate 

FON, FON + Actinovate 

Cover crop seeding rates V. villosa 

44.83 kg/ha, 

T. incarnatum 

28.02 kg/ha, 

S. cereale 

134.50 kg/ha 

V. villosa 

44.83 kg/ha, 

T. incarnatum 28.02 kg/ha, 

S. cereale 

134.50 kg/ha, 

B. juncea 

6.73 kg/ha. 

V. villosa 

50.44 kg/ha, 

S. cereale 

134.50 kg/ha, 

V. villosa 

50.44 kg/ha, 

T. incarnatum 

 11.21 kg/ha, 

S. cereale 

125.54 kg/ha, 

B. juncea 

11.21 kg/ha 

V. villosa 

50.44 kg/ha, 

T. incarnatum 

11.21 kg/ha, 

S. cereale 

125.54 kg/ha, 

B. juncea 

11.21 kg/ha  

V. villosa 

50.44 kg/ha, 

T. incarnatum 

11.21 kg/ha, 

S. cereale 

125.54 kg/ha, 

B. juncea 

11.21 kg/ha 

Cover crop seeding dates 9/24/2008 9/22/2009 10/16/2008 9/25/2009 10/15/2010; 
3/9/2011c 

10/25/2010; 
3/15/2011 

Cover crop tillage 5/23/2009 5/23/2010 5/15/2009 5/24/2010 5/19/2011 5/25/2011 

Dates of Actinovate 

applications 

Foliar 06/03/2009;  

Soil drench 

06/29/2009 

Foliar 06/16/2010; 

Soil drench 

06/29/2010 

Foliar 06/02/2009;  

Soil drench 

06/29/2009 

Foliar 

06/08/2010; 

Soil drench 

06/15/2010 

Foliar 

05/20/2011; 

Soil drench 

06/03/2011 

Foliar 

05/26/2011; 

Soil drench 

06/07/2010 

Transplanting date 06/17/2009 06/18/2010 06/19/2009 06/12/2010 06/03/2011 06/07/2011 

Soil dilution date - 08/23/2010 - 7/20/2010 03/17/2011, 05/20/2011 03/17/2011,  
06/22/2011 

Soil moisture 

measurement dates 

soil dryingd 

5/18/2009 

soil drying  

08/23/2010; 

probe  

05/19/2010, 07/08/2010; 

soil drying  

5/11/2009 

soil drying 

07/20/2010, 08/31/2010; 

probe  

05/20/2010 

soil drying 

03/17/2011, 05/20/2011 

soil drying 

03/17/2011,  

06/22/2011 

aActinovate AG is a biocontrol product (Natural Industries Inc.) which is labeled for management of Fusarium wilt of watermelon. 
bUM-LESREC=University of Maryland Lower Eastern Shore Research and Education Center located in Salisbury Maryland. USDA-BARC=United States Department of 

Agriculture Beltsville Agricultural Research Center located in Beltsville Maryland and UD-REC=University of Delaware’s Carvel Research and Education Center located in 
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Georgetown Delaware. 

cIn 2011 cover crops were overseeded in the early spring to ensure plots had sufficient cover crop biomass 
dSoil moisture was either measured using a soil moisture probe (FieldScout TDR-300 Spectrum Technologies, East Plainfield, IL, USA) or by weighing and drying soil samples 

taken by a soil auger.  
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Table 3.2 Influence of cover cropa treatment on micrograms of soil CO2 flux (µmol m-2 s-1)b for five field trials 

Location
c
, Year BARC 2009 

Cover crop  5/18/2009
d
 5/28/2009 6/9/2009 6/11/2009 7/10/2009 8/3/2009 

Vicia villosa  1.06 be 2.40 b 0.71 a  0.88 a  0.85 a 4.72 a 

Trifolium incarnatum 1.43 a 4.95 a 1.81 a 0.94 a  0.80 a 3.00 a 

Secale cereale 0.89 b 2.91 b 0.89 a 0.88 a  -f 2.75 a 

Bare ground 0.86 b 2.56 b 1.03 a 1.00 a  0.71 a 3.45 a 

P>F 0.0064 0.0062 0.6974 0.2593 0.2056 0.084 

Location, Year BARC 2010 LESREC 2010 

 
Cover crop  4/30/2010 5/13/2010 5/22/2010 5/24/2010 5/25/2010 

 
Vicia villosa  0.97 a  0.91 ab 2.22 a 16.02 a  0.97 a 

 Trifolium incarnatum 0.69 b 0.99 a 1.37 a 15.77 a 0.69 b 

 Secale cereale 0.68 b 0.74 c 1.22 a 14.64 a 0.68 b 

 Brassica juncea 0.73 b 0.93 a  1.22 a 11.52 a 0.73 b 

 Bare ground 0.41 c 0.76 bc 0.80 a 5.21 b 0.46 c 

 P>F 0.0007 0.0109 0.3786 0.0145 <0.0001  

 Location, Year LESREC 2011 UD-REC 2011 

 
Cover crop 5/20/2011 5/21/2011 5/26/2011 5/27/2011 5/27/2011 

 
Vicia villosa 1.08 a  1.04 a  0.87 a  0.83 a 0.94 a  

 Trifolium incarnatum 0.69 b 0.65 b 0.50 b 0.68 ab 0.65 b 

 Secale cereale 0.49 b 0.59 b 0.29 c 0.45 c 0.36 c 

 Brassica juncea 0.27 c 0.30 c 0.49 bc 0.64 abc 0.48 b  

 Bare ground 0.22 c 0.25 c 0.61 ab 0.62 bc 0.66 b 

 P>F <0.0001 <0.0001 0.0001 0.0121 <0.001 

 aSeeding rate at UM-LESREC and UD-REC was V. villosa 50.44 kg/ha, T. incarnatum 11.21 kg/ha, S. cereale 

125.54-134.50 kg/ha, B. juncea 11.21 kg/ha and at USDA-BARC seeding rate was V. villosa 44.83 kg/ha, T. 

incarnatum 28.02 kg/ha, S. cereale 134.50 kg/ha, and B. juncea 6.73 kg/ha. 

bSoil respiration measurements were taken using a EGM-4 gas analyzer with a SRC-1 chamber from PP Systems 

(110 Haverhill Road, Suite 301 Amesbury, MA 01913, USA). 
d
All dates in bold indicate readings taken before cover crop tillage and all dates not bolded were taken following 
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cover crop tillage.  
eMeans in a column followed by the same letter are not significantly different at α=0.05  according to Fisher’s 

protected least significant difference test. Statistical analysis was conducted using the SAS MIXED procedure.   
fData not taken. 
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Table 3.3 Simple effects of cover cropa treatment on the number of Fusarium oxysporum CFUs/g of soil for five 

field trials 

Location
b
, Year BARC, 2010 LESREC, 2010 

   
Cover crop  Sumc Sum 

    
Vicia villosa 713.62 ad 228.74 a 

    Trifolium incarnatum 525.02 a - 

    Brassica juncea 459.91 a 102.73 b 

    Secale cereale 675.05 a 139.74 b 

    Bare ground 568.29 a 149.29 b 

    P>F 0.3615 0.0086 

    Location, Year LESREC 2011        UD-REC 2011 

Cover crop  Purple Pink Sum Purple Pink Sum 

Vicia villosa 121.38 a 274.39 a 330.12 a 1093.63 a -311.91 a 842.57 a 

Trifolium incarnatum 169.25 a 134.12 b 305.37 a 475.81 b 246.4 a 727.48 ab 

Brassica juncea 216.90 a 121.24 b 279.59 a 526.45 ab -509.52 a 664.26 ab 

Secale cereale 154.68 a 150.80 b 258.92 a 358.77 b -329.69 a -17.30 c 

Bare ground 149.96 a 154.27 b 242.54 a 70.37 b -101.94 a 165.75 bc 

P>F 0.7148 0.0126 0.3855 0.0318 0.1788 0.0262 
aSeeding rate at UM-LESREC and UD-REC was V. villosa 50.44 kg/ha, T. incarnatum 11.21 kg/ha, S. cereale 

125.54-134.50 kg/ha, B. juncea 11.21 kg/ha and at USDA-BARC the seeding rate was V. villosa 44.83 kg/ha, T. 

incarnatum 28.02 kg/ha, S. cereale 134.50 kg/ha, and B. juncea 6.73 kg/ha.
 

bUM-LESREC=University of Maryland Lower Eastern Shore Research and Education Center located in Salisbury. 

USDA-BARC=United States Department of Agriculture Beltsville Agricultural Research Center located in 
Beltsville Maryland and UD-REC=University of Delaware’s Carvel Research and Education Center located in 

Georgetown. 

cSoil from the field was sampled, mixed, and then plated on Komadas media. The number of pink and purple 

colony forming units (CFUs) that formed on Komadas media after soil plating were counted in 2011 as opposed to 

just the sum of the two as was done in 2010.  
dMeans in a column followed by the same letter are not significantly different at α=0.05  according to Fisher’s 

protected least significant difference test. Statistical analysis was conducted using the Statistical Analysis System 

MIXED procedure.   
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Table 3.4 Effects of cover cropa and Fusarium oxysporum f. sp. niveum 

(FON)b inoculation simple effects on the linear rate of watermelonc 

vine growth in two green house experiments 

Cover crop 

FON 

Inoculation 

Trial 1 

(mm/week)d 

Trial 2 

(mm/week) 

Trifolium incarnatum FON 0.49 f 1.15 e 

Vicia  Villosa x1 FON 0.96 cdef 7.84 d 

Vicia villosa x2 FON 0.84 def 6.80 d 

Vicia villosa x3 FON 0.67 ef 7.14 d 

Nonamended FON 11.14 cde 17.84 ab 

Secale  cereale FON 0.52 ef 6.97 d 

Trifolium incarnatum No FON 2.25 a 17.95 ab 

Vicia  Villosa x1 No FON 1.83 ab 17.27 ab 

Vicia villosa x2 No FON 1.48 bcd 20.26 a 

Vicia villosa x3 No FON 1.92 ab 17.88 ab 

Nonamended No FON 1.53 bc 16.26 b 

Secale  cereale No FON 0.74 ef 11.71 c 

P>F 

 

0.0096 <0.0001 
aThe V. villosa green manure amendment was incorporated into the 

potting soil treatment at three different rates- 2721.55 kg/ha, 3685.43 

kg/ha, and 5669.88 kg/ha.  T. incarnatum was incorporated into the soil 

at rate of 5102.90 kg/ha and S. cereale was incorporated at a rate of 

3968.90 kg/ha. 
bFON inoculum was incorporated into soil at a rate of 25,000 CFUs/g 

soil. 
cThe watermelon variety ‘Sugar Heart’ was used in all pots.  
dWatermelon vine length measured weekly in mm every week for six 

weeks and the rate of linear vine growth mm/week was calculated.  
eMeans in a column followed by the same letter are not significantly 

different at α=0.05  according to Fisher’s protected least significant 

difference test. Statistical analysis was conducted using the Statistical 

Analysis System MIXED procedure.   
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Table 3.5 Effects of cover cropa and Fusarium oxysporum f. sp. niveum (FON)b inoculation simple effects on watermelonc wilt 

severity ratings in two greenhouse experiments 

  

Trial 1 Trial 2 

Cover crop FON Inoculation Week 1d  Week 6 Week 4 Week 5 Week 6 AUDPC 

Trifolium incarnatum FON 0.21abf 2.45 a 2.00 a 2.83 a 2.75 a 7.29 a 

Vicia  Villosa x1 FON 0.08 b 1.42 bc 0.17 bc 1.29 b 2.00 b 2.60 cd 

Vicia villosa x2 FON 0.00 b 1.75 ab 0.17 bc 1.42 b 2.17 ab 2.92 bc 

Vicia villosa x3 FON 0.00 b 1.71 ab 0.25 bc 1.92 b 2.75 a 3.83 bc 

Nonamended FON 0.38 a 0.83 cd 0.21 bc 0.13 c 1.00 c 0.88 e 

Secale  cereale FON 0.42 a 2.42 a 0.71 b 1.67 b 2.00 b 4.04 b 

Trifolium incarnatum No FON 0.00 b 0.29 de 0.04 c 0.00 c 0.92 cd 0.63 e 

Vicia  Villosa x1 No FON 0.04 b 0.25 de 0.00 c 0.00 c 0.33 de 0.17 e 

Vicia villosa x2 No FON 0.13 b 0.71 cde 0.00 c 0.00 c 0.08 e 0.04 e 

Vicia villosa x3 No FON 0.00 b 0.04 e 0.04 c 0.04 c 0.67 cde 0.50 e 

Nonamended No FON 0.00 b 0.92 cd 0.00 c 0.00 c 1.13 c 0.83 e 

Secale  cereale No FON 0.00 b 2.46 a 0.13 c 0.38 c 1.25 c 1.29 de 

P>F 
 

0.0083 0.0003 <0.0001 <0.0001 <0.0001 <0.0001 
aV. villosa green manure amendment was incorporated into the potting soil treatment at three different rates- 2721.55 kg/ha, 
3685.43 kg/ha, and 5669.88 kg/ha.  T. incarnatum was incorporated into the soil at rate of 5102.90 kg/ha and S. cereale was 

incorporated at a rate of 3968.90 kg/ha.bFor FON inoculated treatments the fungus was incorporated into soil at a rate of 25,000 

CFUs/g soil. 
bFON inoculum was incorporated into soil at a rate of 25,000 CFUs/g soil. 
cThe watermelon variety ‘Sugar Heart’ was used in all pots.  
dWatermelon wilt was rated weekly, for six weeks, in both greenhouse trials.  
ewatermelon wilt severity ratings were 0-3 (0=no wilt, 1=1-33% wilted, 2=34-63% wilted 3=64-100% wilted or dead).  
fMeans in a column followed by the same letter are not significantly different at α=0.05  according to Fisher’s protected least 

significant difference test. Statistical analysis was conducted using the Statistical Analysis System MIXED procedure.   
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Figure 3.1 Effects over time of green manures planted in the late fall and incorporated in the spring, 

followed by a spring watermelon crop on soil CO2 respiration at the United States Department of 

Agriculture Beltsville Agricultural Research Center (USDA-BARC) in Maryland in 2009. Cover crop 

tillage was on 5/23/2009 and watermelon fruit were harvested at the end of August 

 

  
 
Figure 3.2 Effects of spring incorporated green manures on soil CO2 respiration measured following cover 

crop tillage at the United States Department of Agriculture Beltsville Agricultural Research Center (USDA-

BARC) in Maryland 
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Figure 3.3 Effects of spring incorporated green manures and bare ground on soil CO2 respiration measured 

following cover crop tillage at the University of Maryland Lower Eastern Shore Research and Education 

Center (UM-LESREC) in Salisbury, 2010 and 2011 and the University of Delaware Research and 

Education Center (UD-REC) in Georgetown, 2011 

 

 
Figure 3.4 Influence of spring incorporated green manures on Colony Forming Units (CFUs) of Fusarium 

oxysporum spp. per a gram of soil of soil at the United States Department of Agriculture Beltsville 

Agricultural Research Center (USDA-BARC) in Maryland in 2009, the University of Maryland Lower 
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Figure 3.5 Watermelon wilt severity ratings of watermelon plants in pots inoculated or not inoculated with Fusarium oxysporum f. sp. niveum (FON) and 
amended with five different cover crop treatments or nonamended in greenhouse experiment 1 
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Figure 3.6 Watermelon wilt severity ratings of watermelon plants in pots inoculated or not inoculated with Fusarium oxysporum f. sp. niveum (FON) and 
amended with five different cover crop treatments or nonamended in greenhouse experiment 2 
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Chapter 4: Vicia villosa suppression of Fusarium wilt of 

watermelon via cover crop leachates and augmentation of 

watermelon mycorrhizal colonization  

4.1.Abstract  

A Vicia villosa green manure incorporated in spring suppresses Fusarium wilt of 

following watermelon crops, but the means of the disease suppression is unknown. 

Possible specific mechanisms of disease suppression and the efficacy of an Actinovate 

biocontrol (Streptomyces lydicus WYEC 108) against the causal pathogen, Fusarium 

oxysporum f. sp. niveum (FON), were evaluated. Arbuscular mycorrhizal (AM) 

colonization of watermelon that were grown following a green manure (V. villosa, 

Trifolium incarnatum, Secale cereale, Brassica juncea) or bare ground, and Actinovate 

were evaluated. In vitro experiments were conducted at a pH of 3.5 and 6 to measure the 

effects of cover crop (V. villosa, T. incarnatum, S. cereale) leachate on the growth rates 

of FON and Trichoderma harzianum and on colony forming units (CFUs) of S. lydicus. 

The percentage of watermelon roots colonized by AM following V. villosa and T. 

incarnatum green were significantly higher than in watermelon following bare ground 

(58% and 44% higher, respectively). Growth rates of FON and T. harzanium on V. villosa 

amended media were 66% and 213% faster, respectively, than on nonamended plates. 

Leachate amendments did not influence S. lydicus growth, however, S. lydicus 

significantly inhibited the rate of FON growth, decreasing it as much as 44%.  
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4.2.Introduction 

Watermelon (Citrullus lanatus (Thumb.) Matsum & Nakai) is a major vegetable 

crop in Maryland and Delaware. In 2011, 2023 hectares of watermelon were planted in 

these two states (USDA, 2012).  Fusarium wilt of watermelon, caused by the pathogen 

Fusarium oxysporum f. sp. niveum (FON), is prevalent on the Eastern Shore of Maryland 

and in Delaware (Zhou et al., 2003b). Increased consumer demand for triploid (seedless) 

watermelon is problematic as there are currently no commercial triploid watermelon 

cultivars with resistance to Fusarium wilt (Everts et al., 2010; Everts et al., 2011). Few 

management options other than growing resistant cultivars exist for Fusarium wilt of 

watermelon and options that are available vary in cost and effectiveness. One potential 

control tactic is using Actinovate AG (National Industries Inc., Houston, TX, active 

ingredient Streptomyces lydicus WYEC 108). However, the efficacy of this product has 

not been evaluated for Fusarium wilt of watermelon.  

A spring incorporated Vicia villosa Roth (hairy vetch) green manure reduces 

Fusarium wilt of watermelon (Zhou et al., 2004; Zhou et al., 2006, Zhou et al., 2007). 

However, the mechanism behind this disease suppression is unknown. One possibility is 

an increased level of watermelon mycorrhizal root colonization following the soil 

incorporation of V. villosa. Mycorrhizae decrease disease in several host plants, by 

various means-including improved plant health via enhanced nutrient and water inputs, 

induced systematic resistance, or changes in host root exudates (Tobar et al., 1994; 

Cordier et al., 1998; Kaya et al., 2003; Scheffknecht et al. 2006). Vicia villosa cover crop 

amendments increased mycorrhizal populations in the soil rhizosphere of a following 

tomato cropping system (Buyer et al., 2010), and increased mycorrhizal colonization of 
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subsequently planted peach seedlings (Rutto et al., 2003; Galvez et al., 1995). Little is 

known about arbuscular mycorrhizal (AM) watermelon colonization and the role AM 

play in V. villosa disease suppression of Fusarium wilt. The few studies that do examine 

mycorrhizal associations with watermelon roots focused on the mycorrhizae’s ability to 

increased fruit yield, rather than its effects on disease (Kaya et al., 2003). 

Another possible mechanism of this suppression is that plant leachates released by 

the cover crop influence the population level and virulence of pathogens in the soil. Plant 

leachates are defined as leachates that occur in the environment naturally, not 

purposefully induced chemically (Overland, 1966). The fungitoxic effects of Brassica 

spp. leachates on plant pathogens are well known (Angus et al., 1994; Manci et al., 1997; 

Kirkegaard et al., 1998). Leachates could also impact disease by stimulating antagonists 

of soil pathogens. Brassica napus seed meal suppression of apple root infection (Pythium 

spp.) corresponded with increases in soil populations of actinomycetes and fluorescent 

psuedomonads (Mazolla et al., 2001).    

The objective of this study was to explore the specific mechanism by which V. 

villosa may suppress Fusarium wilt of watermelon and the efficacy of the biocontrol 

product Actinovate AG in Fusarium wilt suppression. Specific objectives are to 1) 

examine the percent colonization of watermelon roots by arbuscular mycorrhizae 

following four fall-planted cover crops and bare ground, with and without an Actinovate 

biocontrol application; 2) evaluate the in vitro effect of V. villosa, Trifolium incarnatum, 

and Secale cereale leachate on the mycelial growth of Fusarium oxysporum f. sp. niveum 

and Trichoderma harzianum and the colony forming units of S. lydicus, the active 
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ingredient of Actinovate AG; and 3) assess the in vitro inhibitory effects of S. lydicus on 

Fusarium oxysporum f. sp. niveum.  

4.3.Materials & Methods 

4.3.1.Fungal Isolates 

Trichoderma harzianum (isolate GJS-00-150) obtained from Beltsville 

Agricultural Research Center and Fusarium oxysporum f. sp. niveum race 1 (isolate F-

030-1) from the Eastern Shore of Maryland were used in laboratory trials (Kucuk et al., 

2003; Zhou et al., 2003b; Wu et al., 2010). 

4.3.2.Leachate in vitro experiment: FON and T. harzianum 

Leachate of V. villosa, T. incarnatum and S. cereale were collected by simulating 

an average rainfall event on the Eastern Shore of Maryland in early spring 

(approximately 3 mm), as follows. In late spring fresh aboveground biomass of V. villosa 

was collected at the University of Maryland Lower Eastern Shore Research and 

Education Center (UM-LESREC), S. cereale biomass from the University of Maryland 

Wye Research and Education Center and T. incarnatum biomass from the United States 

Department of Agriculture Beltsville Agricultural Research Center (USDA-BARC), in 

Maryland. Cover crop biomass concentrations for leachate production were based on the 

average above ground cover crop biomass found in previous field trials at UM-LESREC 

and USDA-BARC. These concentrations were 5101 kg/ha of T. incarnatum, 3968 kg/ha 

of S. cereale, and 2834 kg/ ha of V. villosa. For leachate collection, biomass 

concentrations were doubled for S. cereale and T. incarnatum and quadrupled for V. 

villosa to account for the subsequent dilutions necessary for producing leachate amended 
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potato dextrose agar (PDA), so final treatment amendments would be representative of 

field conditions. Cover crops were cut into 5-7 cm length fragments, to simulate rough 

tillage, and placed on a screen (8788 cm
2
) atop a collection bin, and beneath overhead 

sprinklers. Prior to leachate collection the bin used for the leachate collection was placed 

below the sprinklers to determine the amount of water that was emitted from the 

overhead sprinklers every five minutes so that appropriate ratio of cover crop biomass to 

rain water could be calculated. For each liter of simulated rainwater, 0.53 kg of S. 

cereale, 1.22 kg of T. incarnatum, and 2.45 kg of V. villosa was placed atop the screen. 

The water that filtered through the cover crop biomass was the leachate used for the plate 

assays.  

The treatments were PDA plates that were amended with 1) V. villosa leachate at 

x1 and x2 concentration 2) T. incarnatum leachate at x1 concentration and 3) S. cereale 

leachate at x1 concentration. Control plates were nonamended PDA plates. All media 

treatments were adjusted to pH 3.5 and 6 with lactic acid and tested. Each experiment 

was conducted twice. Ten replicate plates per a treatment were used in the first trial, and 

then fourteen replicate plates per a treatment in the second.  

The leachate was incorporated into the PDA media as follows: commercial PDA 

was prepared using half the volume of distilled water specified in the recipe and 

autoclaved. After media had cooled to approximately 50
◦
C, it was brought up to volume 

with the x2 leachate (or in the case of V. villosa, x4), Streptomycin (0.3 g/1000 ml) and 

oxgall (0.5 g /1000 ml) were added to the media and homogenized. All leachate 

treatments were produced in this manner except for the V. villosa x1 treatment, as the V. 

villosa leachate was collected at x4 the concentration so that x1 and x2 V. villosa 
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treatments could be tested. To produce the V. villosa x1 leachate PDA was autoclaved 

with 3/4
th
 volume of distilled water, brought up to full volume with the V. villosa x4 

leachate, the same antibiotics were added, and the solution stirred prior to pouring plates.  

FON isolates were transferred to PDA plates and grown at 28
◦
C for approximately 

10 days and T. harzianum for 4 days before transferring 5 mm plugs from the edges of 

the colony to the center of all leachate amended treatment plates and control plates. 

Following inoculation, plates were incubated at 25
◦
C. 

In the first trial fungal radial growth was measured at 24 hour intervals and in the 

second trial radial growth was measured every six hours for the initial ten readings and 

then every 24 hours until the fungus reached the edge of the control plates or significant 

advances in growth had ceased (Bananomi et al., 2007, Larkin et al., 2007). At this point, 

5mm agar plugs were taken from the periphery of fungal growth and placed on 

nonamended PDA plates to test the viability of the fungi (Yuan et al., 1995; Al-Reza et 

al., 2010). The morphology of the fungi along the border of the colonies was examined 

with a dissecting and compound microscope to detect any unusual changes in 

morphology (abnormal branching, swollen tips of hyphae) or hyphal tip lysis (Yuan et al., 

1995).  

4.3.3.Leachate in vitro Experiment: Streptomyces lydicus  

Ten replicate leachate plates of the five cover crop treatments (T. incarnatum x1, 

S. cereale x1, V. villosa x1 and x2, and a nonamended control), at a pH of 3.5 and 6, were 

prepared using the same techniques as described above. One ml of a 1:10 Actinovate AG 

product water solution was spread evenly across the leachate amended media plates. 
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Colony forming units of the S. lydicus were counted a week after plates were incubated at 

25
◦
C. The experiment was conducted twice.  

4.3.4.Inhibition of FON with Streptomyces lydicus 

To determine the inhibition of FON mycelial growth in the presence of S. lydicus, 

a Petri dish experiment was conducted. For this purpose, PDA plates were adjusted to a 

pH of 3.5. The treatments were 1) control (noninoculated) 2) S. lydicus isolated directly 

from the Actinovate AG product 3) S. lydicus WYEC 108 isolate obtained directly from 

Natural Industries. Working cultures from the Actinovate AG product were obtained by 

pipetting 60 ml of Actinovate at a concentration of 6.1 g/10 L onto sporulation agar 

(SPA) plates. Plates were incubated at 30
◦
C for approximately ten days so that the S. 

lydicus sporulation was profuse. The S. lydicus isolates were uniformly streaked onto 

PDA plates from the edge of the working plate to the quarter radius line and grown for 

five days at 30
◦
C (Getha et al., 2005; Yuan et al., 1995). A 5 mm diameter agar plug of 

FON mycelium was then placed on the opposite side of the plate, directly adjacent to the 

quarter radius line. Nonstreaked SPA plates with FON plugs placed at the quarter radius 

line served as a control. The plates were incubated at 30
◦
C and assessed for growth 

inhibition at 24 hour intervals for twelve days.  The experiment was conducted twice. The 

viability and morphology of the FON was evaluated after mycelia reached the border of 

the control plates with the same methodology described above.    

4.3.5.Arbuscular Mycorrhizae 

Cover crops were seeded at USDA-BARC on September 22
nd

 2009 (V. villosa 

44.83 kg/ha, T. incarnatum 28.02 kg/ha, S. cereale 134.50 kg/ha, B. juncea 6.73 kg/ha.), 

were killed with a paraquat treatment (Gramoxone Extra 2.5SC, 1.2 kg ai/ha, 1.75 L/ha) 
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and disked with a tractor-mounted rototiller to a depth of approximately 10 to 20 cm on 

May 23
rd

 2010. At UM-LESREC field plots were seeded on September 25
th

 2009 (V. 

villosa 50.44 kg/ha, T. incarnatum 11.21 kg/ha, S. cereale 124.54 kg/ha, B. juncea 11.21 

kg/ha) and incorporated in the same manner on May 24
th
 2010. Control plots were also 

cultivated with this method.  

In the summer of 2010, watermelon roots were sampled from a field experiment 

at UM-LESREC and USDA-BARC. The experiment was a completely randomized split-

plot design. The main plots were cover crop treatments planted in the fall; Trifolium 

incarnatum, Secale cereale, Brassica juncea, Vicia villosa and no cover. Subplots were 

Actinovate biocontrol treatments. The field at USDA-BARC was artificially infested with 

FON. Therefore at this location the subplots were 1) FON inoculation + Actinovate 

application, 2) FON inoculation, 3) a non-treated and non-inoculated control. In the 

naturally FON infested field at UM-LESREC the subplots treatments were 1) Actinovate 

application, or 2) no Actinovate.  

An entire watermelon plant, with its root system intact, was gently uprooted from 

each subplot three weeks after the watermelons were transplanted to the field. Two 

watermelons were sampled from four blocks at UM-LESREC. One watermelon was 

sampled from three blocks at USDA-BARC. Roots were scanned using WinRhizo Pro 

2004b TM (Regent Instruments Inc.) software to obtain root characteristics-such as total 

area and diameter.  

A protocol described by Morton (2003) was used to evaluate the AM 

colonization. First, roots were stained with 0.05% trypan blue in lactophenol. Fine roots 

were washed at least three times, placed in plastic cassettes and cleared in hot 10% KOH 
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for 10 minutes. The roots were washed again in water, the cassettes immersed in 2% 

HCL for 20 minutes, rinsed again and then soaked in trypan blue for a minimum of 12 

hours before they were stored in a 2:1 water-glycerin mix. Thin feeder roots were 

examined under a light microscope for mycorrhizal infection (Matsubara et al., 2001). 

Twenty-five 10 mm root segments from each plant were examined. An infected node is 

defined as a 10 mm root segment where the presence of an arbuscle has been detected 

(Newsham et al., 1995; Egerton-Warburton et al. 2000). As only fine roots were 

examined for AM colonization, the equation for percent AM was adjusted to only include 

the fine roots, identified by the WinRhizo software as roots with <0.5 cm diameter. 

Therefore the percent of AM infection was defined by ((number of nodes 

infected/number of nodes observed)*100) relative to the percentage of roots with <0.5 cm 

diameter.  

4.3.6.Statistical Analysis 

Data were analyzed using the MIXED procedure with the Statistical Analysis System 

(version 9.2; SAS Institute, Cary, NC), which integrates random effects in the statistical 

model and performs covariance structure modeling (Littell et al., 1998). Treatment means 

were separated using a Fisher’s protected least significant difference (LSD) test at P 

≤0.05. When disease severity ratings were low or fungal growth minimal the data was 

generally not normally distributed. According to the Central Limit Theorem a sample size 

(n) over 30 will have a mean which converges to a standard normal deviation (Corbett et 

al., 2002). As the sample sample size for each trial was larger than 30 the data was 

considered robust and no transformations were employed (Payton et al., 2006).  
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4.4.Results 

4.4.1.Leachate in vitro Experiments 

 

4.4.1.a.FON 

FON linear radial growth at a pH of 3.5 was fastest on V. villosa x1 amended 

media, second fastest on V. villosa x2 amended media, intermediate on S. cereale and T. 

incarnatum plates and slowest on nonamended plates (Table 4.1). In the first trial FON 

logarithmic radial growth at a pH of 3.5 was significantly faster on all plates amended 

with a leguminous cover crop leachate, intermediate on S. cereale amended media, and 

slowest on nonamended media (Table 4.1).  

In the second trial, at pH 3.5, FON linear growth on V. villosa x2 amended agar 

plates was faster than on nonamended or S. cereale amended media (Table 4.1). Almost 

parallel to these results, FON logarithmic growth in the second trial at a pH of 3.5 was 

faster on V. villosa x1 amended plates compared to on nonamended and S. cereale 

amended media (Table 4.1). 

There were no significant treatment differences in FON linear or logarithmic 

growth at a pH of 6 in the first trial. However, FON linear growth in the second trial at 

pH 6 was faster on V. villosa x1 amended plates compared to on all other treatments 

except for that of V. villosa x2. FON linear growth on V. villosa x2 also was only 

significantly faster than growth on nonamended and T. incarnatum amended plates 

(Table 4.1). Similarly, for the second trial at a pH of 6 FON logarithmic growth was 

fastest on V. villosa x1 amended plates compared to all other plate treatments except for 

that of V. villosa x2 amended media (Table 4.1).  
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4.4.1.b.Trichoderma 

Linear and logarithmic growth rates of T. harzianum at a pH of 3.5 were 

significantly faster on V. villosa x1 and V. villosa x2 plates in the first trial compared to 

on all other treatments. The logarithmic growth of V. villosa x1 at a pH of 3.5 in the 

second trial also was also greater than all other treatments (Table 4.2). In the second trial 

T. harzianum linear growth at a pH of 3.5 was significantly faster on V. villosa x1 and S. 

cereale amended plates compared to all other leachate amended and nonamended 

treatments (Table 4.2).  

The linear rate of growth of T. harzianum at a pH of 6, in the first trial was 

significantly faster on V. villosa x1 and V. villosa x2 amended plates than on T. 

incarnatum leachate amended plates (Table 4.2).  The logarithmic rate of growth of T. 

harzianum at a pH of 6 in the first trial was significantly faster on V. villosa x1 and V. 

villosa x2 (66.91 mm/24 hours) amended plates than on T. incarnatum or nonamended 

plates. Likewise, the linear and logarithmic growth rates of T. harzianum in the second 

trial done at a pH of 6 were faster on V. villosa x1 compared to all other leachate 

amended and nonamended media except for that of V. villosa x2.  Additionally, in the 

second trial at a pH of 6, T. harzianum linear growth on V. villosa x2 amended plates was 

significantly faster than on S. cereale and nonamended plates (Table 4.2).  

All FON and T. harzianum fungi were found to be viable after growth had 

reached the edge of the plate or had slowed. No abnormal mycelia growth was observed.  
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4.4.1.c.Streptomyces lydicus 

Leachate plate amendments had no significant effect on the number of S. lydicus 

CFUs formed for either plate experiment (data not shown).  

 

4.4.2.Inhibition of FON with Streptomyces lydicus 

FON linear growth rate was significantly inhibited on plates with S. lydicus 

compared to the linear growth rate on control plates where no S. lydicus was streaked for 

both plate experiments (Table 4.3). In the first trial FON linear growth was significantly 

slower on plates streaked with the S. lydicus WYEC 108 pure isolate compared to plates 

streaked with S. lydicus isolated from the commercial Actinovate product, and the 

opposite relationship occurred in the second trial (Table 4.3). Abnormal mycelia growth 

was observed at the line of inhibition, where FON approached the S. lydicus streaking. 

Here the the FON mycelia formed a mound of mycelia, clearly being influenced by 

something the S. lydicus was producing in vitro. However, FON growth was normal 

when the mycelia were transferred to nonamended PDA plates.  

4.4.3.Arbuscular Mycorrhizae 

The roots of watermelon plants grown following a V. villosa and T. incarnatum 

cover crop had a significantly higher percent of arbuscular mycorrhizal colonization than 

watermelon roots following S. cereale, or B. juncea, cover crops or in nonamended plots 

at UM-LECREC in 2010 (P <0.0001) (Table 4.4). Arbuscular mycorrhizal root 

colonization of watermelon was also significantly higher following S. cereale than in 

watermelon following B. juncea or nonamended plots (Table 4.4).  
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The percentage of mycorrhizal arbuscules was significantly higher in watermelon 

roots grown following V. villosa cover crop amended soil compared to all other amended 

and nonamended plots at USDA-BARC in 2010 (P <0.0001) (Table 4.4). Arbuscular 

mycorrhizal root colonization of watermelon in T. incarnatum amended plots was 

significantly intermediate and higher compared to plants in S. cereale, B. juncea, and 

nonamended plots (Table 4.4).  

The Actinovate biocontrol treatment had no significant effect on the percentage of 

watermelon roots colonized by arbuscular mycorrhizae at either location (data not 

shown).  

4.5.Discussion 

The leachate used in our study was designed to represent a single rainfall event on 

the Eastern Shore of Maryland. Similar protocols for leachate or plant extract 

experiments were used in only a few studies (Chou et al., 1973; Hussain et al., 2011) 

whereas the majority of studies did not employ field based estimation (Cote, et al., 1988; 

Conway et al., 2002; Suman et al., 2002; Orr et al., 2005; Chou et al., 1972; Hanson et 

al., 1987).  

Plant extracts, essential oils and  various phenolics can reduce F. oxysporum spp. 

in vitro growth (Bowers et al., 2000; Wu et al., 2008; Wu et al., 2009a; Al-Reza et al., 

2010; Linde et al., 2010; Osorio et al., 2010; Vaz et al., 2010; Wu et al., 2010). We 

therefore expected that V. villosa leachate would inhibit FON growth. However, in our 

study, the V. villosa leachate amended plates significantly stimulated FON growth, 

especially at a pH of 3.5. It is notable that V. villosa leachate was effective at enhancing 

FON growth at the lower pH, because Fusarium wilt of watermelon is most prevalent in 
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slightly acidic soils (pH 5-6), and less prevalent in more neutral or higher pH soil 

environments (Zitter et al., 1996). As nonpathogenic F. oxysporum and FON occupy a 

similar saprophytic niche in absence of a host plant they have similar nutrient 

requirements (Lamanceau et al., 1993). The competition among the species often results 

in the reduction of FON growth and virulence (Zhou et al., 2003b; Alabouvette et al., 

1993). Therefore, it is possible that V. villosa leachate may also stimulate nonpathogenic 

F. oxysporum spp.. A recent field study which observed V. villosa green manure disease 

suppression of Fusarium wilt of watermelon found a parallel increase in F. oxysporum 

spp. in watermelon plots amended with V. villosa (unpublished data). Increased growth 

and activity of nonpathogenic F. oxysporum spp. and other commonly antagonistic 

microorganisms (i.e. fluorescent Psuedomonas spp.) are cited as the mechanisms of 

disease suppression in soils naturally suppressive to FON and with induced FON 

suppression via a monoculture of ‘Crimson Sweet’ (Alabouvette et al., 1993; Larkin et 

al., 1993a; Larkin et al., 1993b; Larkin et al., 1996). The ability of nonpathogenic F. 

oxysporum spp. to protect plants from pathogenic FON through direct competition or 

induced systemic resistance has been demonstrated in numerous experiments. For 

example, preinoculation of watermelon plants with nonpathogenic F. oxysporum spp. 

conferred ‘cross protection’ against FON (Biles et al., 1989; Freeman et al., 2002).  

In this experiment, T. harzianum growth was also stimulated on V. villosa 

leachate amended plates, at a pH of 3.5 and 6. Trichoderma species are widespread soil 

fungi, fast growing opportunists and occasional mycoparasites (Samuels et al., 2006). 

The antagonistic role Trichoderma spp. play in disease suppression is well known. They 

are often used as a form of biocontrol or as indicators of elevated antagonistic soil 



 

 104 

 

microbial populations (Bailey et al., 2008; Busko et al., 2008; Bonanomi et al., 2010).  A 

bio-organic fertilizer containing a combination of T. harzianum and Paenibacillus 

polymyxa successfully reduced Fusarium wilt of watermelon by inducing systemic 

acquired resistance (Wu et al., 2009b). Trichoderma spp. employed as a biocontrol for 

Fusarium spp. pathogens of other plants have also demonstrated successful disease 

reductions, often through direct antagonism (Rojo et al., 2007; Yang et al., 2011). 

Trichoderma spp. stimulated by green manure leachates could induce systemic acquired 

resistance in watermelon or function as direct antagonists of the FON pathogen, thereby 

playing a role in V. villosa disease management of Fusarium wilt. However, it is also 

possible that the leachates stimulation of T. harzanium is merely representative of the 

cover crops ability to cause an overall elevation in soil microbial activity, rather than its 

capacity to promote this specific antagonist or other definite antagonistic microbial 

groups. A detailed molecular analysis of the specific microbial changes that result from 

V. villosa cover crop planting and incorporation would help elucidate the role 

Trichoderma spp. and nonpathogenic F. oxysporum play in this disease suppression.  

In the in vitro study, cover crop leachates had no significant effect on the number 

of S. lydicus CFUs. The Actinovate biocontrol was not consistently effective as a 

management tool for Fusarium wilt of watermelon in previous field and greenhouse trials 

in central Maryland and on the Eastern Shore of Maryland and Delaware (unpublished 

data). We were unable to isolate the active ingredient S. lydicus from watermelon roots in 

field and greenhouse studies indicating that it may not have successfully colonized the 

rhizosphere (unpublished). However, during the in vitro Petri dish experiments both S. 

lydicus treatments significantly inhibited FON growth. An in vitro experiment evaluating 
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the antagonism of 82 actinomycete isolates against Pythium ultimum found that S. lydicus 

WYEC 108 was one of the four isolates that showed a very strong antagonism to the 

pathogen (Crawford et al., 1993). Streptomyces lydicus can clearly be a very competent 

and highly competitive antagonist in in vitro conditions. However, it is unlikely to be 

effective if used in soil conditions that are not amenable to its growth and establishment. 

The soil on the Eastern Shore of Maryland and in Delaware, low in pH and organic 

matter may not be conducive to the growth of S. lydicus, which grows best in high soil 

pH conditions with complex organic matter (Hiltunen et al., 2008). Although the pH’s 6.5 

to 8.0 were suitable for the in vitro growth of the majority of 82 actinomycete strains 

tested in a study, some could not grow at pH 6.0 and a significant amount were unable to 

grow at pH 5.5 (Crawford et al., 2003). It is interesting to note that the efficacy of 

Actinovate has been demonstrated for many foliar pathogens, such as powdery mildew 

(Podosphaera xanthii) of summer squash (Cucurbita pepo) and cantaloupe (Cucumis 

melo) and downy mildew (Peronospora belbahrii) of basil (Osicmum basilicum 

‘Genovese’), perhaps indicating that S. lydicus is more competent in the phyllosphere, an 

environment which could provide less intense competition from saprophytes (Zhang et 

al., 2011; Mersha et al., 2010).  

Vicia villosa and T. incarnatum green manure amendments increased the 

percentage of watermelon root colonization by arbuscular mycorrhizae compared to 

watermelon roots in all other amended and nonamended plots, for both field locations. 

This is consistent with the findings of Kipkoriony et al., (2003) and Galvez et al., (1995) 

who found a V. villosa cover crop significantly increased soil inoculum levels of 

arbuscular mychorrhizae for potential colonization of subsequent crop roots. These 
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results are also of interest as an unpublished study recently demonstrated that both V. 

villosa and T. incarnatum green manures can reduce Fusarium wilt of watermelon to a 

similar extent. Additionally, in one of the few studies done on mycorrhizal colonization 

of watermelon Kaya et al. (2003) found that mycorrhizal watermelon root inoculation 

increased fruit yield, water use efficiency and early plant growth. 

Watermelon roots in S. cereale amended plots were colonized by a significantly 

higher percentage of arbuscular mycorrhizae than in B. juncea amended and nonamended 

plots at USDA-BARC in 2010. This is not surprising as the presence of compatible host 

plant roots can help sustain and increase soil arbuscular mycorrhizae populations (Kabir 

et al., 2000). However, plants like those from the Brassicaceae family can decrease soil 

mycorrhizae populations (Schreiner et al., 1993; Roberts et al., 2001), resulting in 

reduced root mycorrhizal colonization of future field crops. In our experiment the 

arbuscular mycorrhizal root colonization of watermelon in B. juncea plots was not 

significantly different than that of watermelon roots in nonamended plots.  

4.6.Conclusion 

Bradow et al. (1990) analyzed volatiles derived from V. villosa and T. incarnatum 

leachates and found that many of the compounds they characterized stimulate the 

germination of some fungal spp.. Results of our study support the theory that the 

stimulatory effects of V. villosa leachate on antagonistic microorganisms, like 

Trichoderma spp. and possibly nonpathogenic Fusarium oxysporum spp., could 

contribute to V. villosa disease suppression of Fusarium wilt of watermelon. Aditionally, 

this study establishes that V. villosa and T. incarnatum, both of which have been proven 
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to suppress Fusarium wilt of watermelon, increase arbuscular mycorrhizal root 

colonization of following watermelon crops.  

There are many variables in the environment and more than one mechanism may 

be required to achieve disease suppression. Leachates of cover crops have been shown 

(El-Atrach et al., 1989; Roberts et al., 2001) to decrease mycorrhizal soil populations but 

it is also probable that they could increase it (Siqueira et al., 1991). Buyer et al. (2010) 

observed a green manure amendment of V. villosa shoots increased overall microbial 

biomass and mycorrhizal soil populations in a following tomato cropping system, a 

mechanism that cannot be attributed to colonization of V. villosa roots. Several papers 

look at the additive effects of Trichoderma spp., Streptomyces spp. and arbuscular 

mycorrhizae on disease suppression (Datnoff et al., 1995; Martínez-Medina et al., 2010; 

Srivastava et al., 2010). Co-inoculation of melon plants with T. harzianum and arbuscular 

mycorrhizae (Glomus intraradices) synergistically decreased Fusarium wilt of melon, 

caused by the pathogen Fusarium oxysporum f. sp. melonis (Martínez-Medina et al., 

2009). Certain strains of Streptomyces spp. can stimulate the development of arbuscular 

mycorrhizae (Abdel-Fattah et al., 2000). 

Further exploration of the role of green manure leachates, T. harzianum and 

nonpathogenic F. oxysporum spp. play in V. villosa disease suppression of Fusarium wilt 

is necessary for optimal utilization of this disease management method. For instance, 

examination of a correlation between cover crop enhancement of arbuscular mycorrhizal 

colonization of watermelon roots and disease suppression of Fusarium wilt could help 

elucidate the disease suppressive process. A detailed molecular analysis of V. villosa 



 

 108 

 

effects on soil microorganisms antagonistic to FON would also help elucidate the 

different elements of this disease suppression.   
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Table 4.1 Linear and logarithmic rate of radial growth (mm)a of Fusarium oxysporum f. sp. niveum on 

Potato Dextrose Agar plates amended with cover crop leachate 

  pH 3.5 pH 6 

Cover cropb leachate amendment     

Linear growth rate Experiment 1 Experiment 2 Experiment 1 Experiment 2 

   Nonamendedc 2.70 dd 2.54 b 3.70 a  2.61 c 

   Trifolium 

   Incarnatum 3.33 c 2.70 ab 3.73 a 2.76 c 

   Vicia villosa x1 4.49 a 2.75 ab 3.74 a  3.24 a 

   Vicia villosa x2 3.67 b 2.84 a 4.17 a 3.07 ab 

   Secale cereale 3.40 c 2.55 b 3.79 a  2.81 bc 

    P>F <0.0001 0.0388 0.4808 0.0005 

Logarithmic growth rate 

   Nonamended 22.83 c 23.51 b 24.53 a  24.57 b  

   Trifolium 

   incarnatum 26.45 a 24.49 ab 27.22 a  25.25 b  

   Vicia villosa x1 26.34 a  26.19 a  25.07 a  27.72 a  

   Vicia villosa x2 27.29 a  24.89 ab  24.77 a  26.43 ab  

   Secale cereale 24.46 b  23.38 b   25.00 a  24.03 b  

    P>F <0.0001 0.0230 0.6256 0.0206 
aFor Experiment 1 radial growth measurements were taken every 24 hours for 24 days at a pH of 3.5 

and every 24 hours for 16 days for pH 6. For Experiment 2 measurements were taken every 6 hours 
ten times, again after 12 hours, and then every 24 hours for nineteen days.  
bAmounts of cover crop biomass used to simulate an early spring rainfall was representative of field 

conditions (T. incarnatum: 5101.88 kg/ha, S. cereale: 3968.13 kg/ha, V. villosa x1: 2834.38 kg/ha and 

for V. villosa x2: 5668.75 kg/ha). Leachate was collected at twice the concentration of these field 

conditions for S. cereale and T. incarnatum and four times the concentration for V. villosa so that after 

PDA was made it was brought up to volume with the leachate to achieve field leachate concentrations.  
cControl plates were nonamended Potato Dextrose Agar. 
dMeans in a column followed by the same letter are not significantly different at α=0.05  according to 

Fisher’s protected least significant difference test. Statistical analysis was conducted using the 

Statistical Analysis System MIXED procedure.  
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Table 4.2 Linear and logarithmic rate of radial growth (mm)a of Trichoderma harzianum on 

Potato Dextrose Agar plates amended with cover crop leachate 

Cover cropb pH 3.5 pH 6 

amendment     

Linear growth rate Trial 1 Trial 2 Trial 1 Trial 2 

   Nonamendedc 7.81 bd 7.18 b  44.88 ab  43.00 c 

   Trifolium 

   incarnatum 7.88 b 5.76 c 43.60 b  43.48 bc 

   Vicia villosa x1 24.47 a 10.88 a 45.40 a  45.04 ab 

   Vicia villosa x2 23.66 a 6.87 b 45.99 a  45.88 a 

   Secale cereale 9.71 b 11.23 a 44.70 ab  42.24 c 

   P>F <0.0001 <0.0001 0.0002 0.0007 

Logarithmic growth rate 

   Nonamendedc 29.49 b 27.68 b  61.44 c  31.43 b  

   Trifolium 

   incarnatum 28.19 b  26.57 b  63.45 bc  31.58 b 

   Vicia villosa x1 44.88 a  31.43 a  66.05 a  32.96 a  

   Vicia villosa x2 45.18 a  26.71 b  66.91 a  32.07 ab  

   Secale cereale 28.18 b  26.61 b  65.05 ab  31.48 b  

   P>F <0.0001 <0.0001 0.0174 0.0070 
aFor Experiment 1 radial growth measurements were taken every 24 hours for 24 days at a pH 

of 3.5 and every 24 hours for 16 days for pH 6 plates. For Experiment 2 measurements were 
taken every 6 hours ten times, again after 12 hours, and then every 24 hours for nineteen days  
bAmounts of cover crop biomass used to simulate an early spring rainfall was representative 

of field conditions (T. incarnatum: 5101.88 kg/ha, S. cereale: 3968.13 kg/ha, V. villosa x1: 

2834.38 kg/ha and for V. villosa x2: 5668.75 kg/ha). Leachate was collected at twice the 

concentration of these field conditions for S. cereale and T. incarnatum and four times the 

concentration for V. villosa so that after PDA was made it was brought up to volume with the 

leachate to achieve field leachate concentrations.  
cControl plates were nonamended Potato Dextrose Agar.  
dMeans in a column followed by the same letter are not significantly different at α=0.05  

according to Fisher’s protected least significant difference test. Statistical analysis was 

conducted using the Statistical Analysis System MIXED procedure. 
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Table 4.3 Effects of two isolates of Streptomyces lydicusa on in vitro linear rate of growth (mm) of Fusarium oxysporum f. sp. niveum  (FON) for trial 1 and 2 

Trial 1 Week 

Treatment 1 2 3 4 5 6 7 8 9 10 11 12 

 

Rate of 

Growth 

(Linear) 

Controlb 5.91 ac 10.47 a 15.28 a 20.25 a 24.94 a 29.60 a 35.05 a 38.77 a 42.93 a  46.95 a 52.37 a  57.00 a  4.60 a  

S. lydicus 

(Actinovate) 

5.16 b 9.91 ab 15.13 a 20.06 a 24.94 a 29.41 a 34.98 a 35.69 b 36.63 b 38.08 b  38.23 b  37.34 b  3.10 b 

S. lydicus 

WYEC 108 

5.16 b 9.28 b 13.19 b 15.66 b 18.34 b 20.38 b 24.41 b 26.88 c 29.16 c  32.46 c  35.85 c  36.88 b 2.86 c 

 P>F 0.0267 0.0089 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

Trial 2              

Control 5.16 a 10.19 a 14.84 a 19.72 a 24.78 a 29.50 a 34.50 a 39.31 a 44.00 a 49.06 a 53.69 a  60.00 a  4.89 a 

 

S. lydicus 

(Actinovate) 

4.75 b 9.56 b 13.78 b 17.38 b 20.84 b 23.66 b 27.03 b 29.56 b 31.38 b 33.80 b 35.50 b  39.06 b  2.73 c 

S. lydicus 

WYEC 108 

4.56 b 9.19 b 12.93 c 16.09 c 19.41 c 22.59 c 25.41 c 28.06 c 30.84 b 33.94 b  36.91 b  37.67 c  2.93 b 

P>F 0.0060 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 
aStreptomyces lydicus WYEC 108 is the active in gradient in Actinovate AG, a biocontrol product made by Natural Industries. Streptomyces isolated from the 

biocontrol product and a pure culture of S. lydicus WYEC 108 were streaked onto a quarter section of Potato Dextrose Agar plates. A 5 mm plug of FON was 
placed 40 mm away on the opposite quarter line. The growth of the FON towards the two Streptomyces treatments was measured over time.  
bControl plates were Potato Dextrose Agar plates with a 5 mm FON plug placed at a line 20 mm from the edge of the plate (the quarter line). 
cMeans in a column followed by the same letter are not significantly different at α=0.05  according to Fisher’s protected least significant difference test. 

Statistical analysis was conducted using the Statistical Analysis System MIXED procedure. 
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Table 4.4 Percentage of watermelon roots colonized by arbuscular 

mycorrhizae in plots amended with four cover cropsa and bare ground at 

the United States Department of Agriculture Beltsville Agricultural 

Reseach Center (USDA-BARC) and the University of Maryland Lower 

Eastern Shore Research and Education Center (UM-LESREC) in 2010 

Cover crop UM-LESREC USDA-BARC 

Vicia villosa 63.83 ab 84.12 a 

Trifolium incarnatum 58.67 a 56.06 b 

Secale cereale 24.04 b 13.48 c 

Brassica juncea 14.73 c 18.84 c 

Bare ground 14.30 c 25.65 c 

P>F <0.0001 <0.0001 
aSeeding rate at UM-LESREC was V. villosa 50.44 kg/ha, T. incarnatum 

11.21 kg/ha, S. cereale 125.54 kg/ha, B. juncea 11.21 kg/ha and at 

USDA-BARC the seeding rate was V. villosa 44.83 kg/ha, T. incarnatum 

28.02 kg/ha, S. cereale 134.50 kg/ha, and B. juncea 6.73 kg/ha. 

bMeans in a column followed by the same letter are not significantly 

different at α=0.05  according to Fisher’s protected least significant 

difference test. Statistical analysis was conducted using the Statistical 

Analysis System MIXED procedure. 



 

 113 

 

 
Figure 4.1 Percent arbuscular mycorrhizal root colonization of watermelon plants following four different 

spring incorporated green manures and bare ground at the University of Maryland Lower Eastern Shore 

Research and Education Center (UM-LESREC) and the United States Department of Agriculture Beltsville 

Agriculture Research Center in Maryland, 2010 

 

 

 

 

 

 
Figure 4.2 Experiment 1 in vitro growth inhibition of a pure isolate of Streptomyces lydicus WYEC 108 

and S. lydicus WYEC 108 isolated from Actinovate AG biocontrol product on the pathogen Fusarium 
oxysporum f. sp. niveum (FON) 
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Figure 4.3 Experiment 2 in vitro growth inhibition of a pure isolate of Streptomyces lydicus WYEC 108 

and S. lydicus WYEC 108 isolated from Actinovate AG biocontrol product on the pathogen Fusarium 

oxysporum f. sp. niveum (FON) 

 

 

 

 
Figure 4.4 Fusarium oxysporum f. sp. niveum (FON) linear growth rate on PDA plates amended with four 

different cover crop leachate treatments and nonamended PDA at a pH of 3.5 and 6 for two in vitro 

experiments 
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Figure 4.5 Fusarium oxysporum f. sp. niveum (FON) logarithmic growth rate on PDA plates amended with 

four different cover crop leachate treatments and nonamended PDA at a pH of 3.5 and 6 for two in vitro 

experiments 

 

 

 

 

 

 

 
Figure 4.6 Trichoderma harzianum linear growth rate on PDA plates amended with four different cover 
crop leachate treatments and nonamended PDA at a pH of 3.5 and 6 for two in vitro experiments. 
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Figure 4.7 Trichoderma harzianum logarithmic growth rate on PDA plates amended with four different 

cover crop leachate treatments and nonamended PDA at a pH of 3.5 and 6 for two in vitro experiments 
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Appendices 

 

Table A1.1 Differences in nutrient content of aboveground  cover cropa foliar biomass sampled from the University of Maryland Lower Eastern Shore Research and 

Education Center (UM-LESREC) and the University of Deleware Research and Education Center (UD-REC) in 2011 

UM-LESREC Al (ppm) Bo (ppm) Ca (%) Cu (ppm) Fe (ppm) K (%) Mg (ppm) Mn (ppm) N (%) P (%) S (%) Zn (ppm) 

   Vicia villosa 304.50 bc
b
 22.80 a 0.81 a 7.85 b 173.25 b 1.89 a 80.20 b 0.25 b 3.20 a 0.35 a 0.23 a 34.28 a 

Trifolium    

incarnatum 544.00 bc 25.67 a 0.64 a 6.63 bc 254.50 b 2.13 a 96.60 ab 0.37 a 2.29 a 0.28 b 0.22 a 34.52 a 

   Secale cereale  213.75 c 9.05 a 0.29 a 4.83 c 129.60 b 2.13 a 60.30 b 0.13 c 1.56 a 0.27 b 0.13 a 27.87 a 

   Brassica juncea 1630.00 a 24.50 a 0.48 a 10.85 a 1131.33 a 2.15 a 142.63 a 0.38 a 3.20 a 0.26 b 0.17 a 21.47 a 

   Bare groundc 535.67 b 25.43 a 0.43 a 4.79 c 257.33 b 2.15 a 161.33 a 0.31 ab 2.44 a 0.31 ab 0.16 a 23.60 a 

    P>F <0.0001 0.0532 0.2466 0.0030 0.0007 0.2041 0.0078 0.0020 0.1274 0.0265 0.1382 0.1678 

CARVEL-REC 
               Vicia villosa 745.67 a 18.25 a 1.07 a 7.62 a 288.33 a 2.82 a 33.57 a 0.30 a 2.59 a 0.33 ab 0.13 a 53.38 a 

Trifolium 

incarnatum 798.17 a 16.62 a 0.94 a 6.90 a 309.83 a 2.64 ab 38.28 a 0.28 a 2.44 a 0.38 a 0.17 a 39.85 b 

   Secale cereale  796.33 a 15.10 a 0.86 a 6.33 a 300.22 a 2.60 ab 41.12 a 0.32 a 1.75 ab 0.35 a 0.16 a 25.55 c 

   Brassica juncea 339.17 a 12.22 a 0.77 a 5.67 a 163.70 a 2.00 b 22.37 a 0.22 a 1.40 b 0.30 a 0.11 a 53.77 a 

   Bare ground 488.00 ac 9.88 a 0.60 a 5.37 a 224.37 a 2.00 b 29.78 a 0.17 a 1.29 b 0.24 b 0.16 a 56.20 a 

   P>F 0.2677 0.0710 0.2466 0.1240 0.3146 0.0488 0.4781 0.1096 0.0118 0.0250 0.1653 <0.0001 
aSeeding rate at UM-LESREC and UD-REC was V. villosa 50.44 kg/ha, T. incarnatum 11.21 kg/ha, S. cereale 125.54 kg/ha, and B. juncea 11.21 kg/ha.  

bMeans in a column followed by the same letter are not significantly different at α=0.05  according to Fisher’s protected least significant difference test. Statistical 

analysis was conducted using the Statistical Analysis System MIXED procedure. 
cAll aboveground vegetation found within the randomly selected m2 area of the bare ground plots was sampled for treatment analysis.
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Table A1.2 Simple effects of cover crop and Fusarium oxysporum f. sp. niveum (FON) 

inoculation and Actinovate application on watermelon market yield (kg/ha)a at the United 

States Department of Agriculture Beltsville Agriculture Research Center in 2009 

Cover Cropb Treatmentc Market Yield  

 Vicia villosa  none 2,727 abe  

  
Vicia villosa  FONd 2,530 abc 

 

Vicia villosa  

 

FON + 

Actinovated 2,709 ab 

  

Trifolium 

incarnatum Control 2,547 abc 

  

Trifolium 

incarnatum FON 2,619 ab 

  

Trifolium 
incarnatum 

FON + 
Actinovate 2,727 ab 

  

Secale cereale none 2,189 cd 

  

Secale cereale FON 2,350 bcd 

 

 

Secale cereale 

 

FON + 

Actinovate 

 

2,834 a  

 

Bare ground none 2,655 ab 

  
Bare ground FON 2,099 d  

  

 

Bare ground 

FON + 

Actinovate 2,422 bcd 

  

P<F   0.0109 

 a Marketable watermelon yield is qualified as the mean number of watermelon fruit per hectare that 

weighed more than 3.18 kg. The watermelon variety Sugar heart was used for all field trials.  
bSeeding rate at USDA-BARC was V. villosa 44.83 kg/ha, T. incarnatum 28.02 kg/ha, S. cereale 134.50 

kg/ha, and B. juncea 6.73 kg/ha. 

cIn 2009 at USDA-BARC 6 ml of FON inoculum at a concentration of 2.45 x 106 CFU/ml was pippeted 

into a hole (approximately 3 cm in diameter and 8 cm deep) 7 cm away from the crown of each watermelon 

in the bed immediately after watermelon transplanting. Actinovate AG’s active ingredient is Streptomyces 
lydicus and is produced by Natural Industries. Actinovate was applied as a foliar spray to watermelon 

plants two weeks after seeding at a rate of 0.011 g/12.2 ml H2O per 0.156 m2 transplant tray and again a 

week prior to transplanting to the field as a soil drench around the base of the plant at 0.115 g/172 ml 

H2O/1.89 m2 per a plant. 
dFON=Fusarium oxysporum f. sp. niveum. 
eMeans in a column followed by the same letter are not significantly different at α=0.05  according to 

Fisher’s protected least significant difference test. Statistical analysis was conducted using the Statistical 

Analysis System MIXED procedure.  
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Table A1.3 Impact of bare ground and cover crop treatments on main effect means of watermelon sugars content (% Soluble Solids)a at the University of 

Maryland Lower Eastern Shore and Education Center (UM-LESREC), University of Delaware Research and Education Center (UD-REC), and United States of 

Department of Agriculture Beltsville Agriculture Research Center (USDA-BARC) in 2009, 2010 and 2011 

Cover Crop
b
 UM-LESREC 2009 UM-LESREC 2010 UM-LESREC 2011 USDA-BARC 2009 USDA-BARC 2010 UD-REC 2011 

Vicia villosa 10.54 bc 10.83 a  10.43 a  12.77 a  10.81 a  9.96 a  

Trifolium incarnatum -d - 10.69 a  12.87 a  10.55 a  10.64 a  

Secale cereale 11.34 a 11.21 a  10.10 a  12.66 a  10.95 a  10.39 a  

Brassica juncea - 11.12 a  10.07 a  - 11.18 a  10.31 a  

Bare ground 10.81 b 10.98 a  10.15 a  12.77 a  11.21 a  10.26 a  

P<F 0.0064 0.7796 0.0921 0.9015 a 0.0845 0.3764*e 
aPercent soluble solids was measured using a hand held refractometer. 
bSeeding rate at UM-LESREC and UD-REC was V. villosa 50.44 kg/ha, T. incarnatum 11.21 kg/ha, S. cereale 125.54-134.50 kg/ha, B. juncea 11.21 kg/ha and at 

USDA-BARC the seeding rate was V. villosa 44.83 kg/ha, T. incarnatum 28.02 kg/ha, S. cereale 134.50 kg/ha, and B. juncea 6.73 kg/ha. 

cMeans in a column followed by the same letter are not significantly different at α=0.05  according to Fisher’s protected least significant difference test. 

Statistical analysis was conducted using the Statistical Analysis System MIXED procedure.  
dThe symbol – indicates the absence of the specific cover crop treatment for the given time and location. 
e* signifies the presence of a significant interaction of cover crop and inoculation treatment factors so Table A1.4 must be referred to for the simple effects and 

main effect means must be discounted.  
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Table A1.4 Simple effects of cover crop and inoculation treatments on sugar 

content (% Soluble Solids)a in a field infested with Fusarium oxysporum f. sp. 

niveum (FON) at the University of Delaware Research and Education Center 

(UD-REC) in 2011 

Cover Cropb Treatmentc Fruit Sugar Content  

 

Vicia villosa  - 9.98 bcd 

Vicia villosa  

 

Actinovate 9.68 c  

 

Trifolium 

incarnatum - 10.39 abc  

 

Trifolium 
incarnatum Actinovate 10.73 ab  

 

Secale 

cereale - 10.70 ab  

 

Secale 

cereale 

 

Actinovate 

 

9.75 c  

 

Brassica 

juncea - 10.31 abc  

 
Brassica 

juncea Actinovate 10.92 a  

 

Bare ground - 10.60 abc  

 

Bare ground Actinovate 10.12 abc  

 

P<F   0.0127 
aPercent soluble solids was measured using a hand held 

refractometer. 
bSeeding rate at UD-REC was V. villosa 50.44 kg/ha, T. 

incarnatum 11.21 kg/ha, S. cereale 125.54  kg/ha, and B. 

juncea 11.21 kg/ha. 
cActinovate AG’s active ingredient is Streptomyces lydicus 

and is produced by Natural Industries. Actinovate was applied 

as a foliar spray to watermelon plants two weeks after seeding 

at a rate of 0.011 g/12.2 ml H2O per 0.156 m2 transplant tray 

and again a week prior to transplanting to the field as a soil 

drench around the base of the plant at 0.115 g/172 ml 

H2O/1.89 m2 per a plant. 
dMeans in a column followed by the same letter are not 

significantly different at α=0.05  according to Fisher’s 

protected least significant difference test. Statistical analysis 

was conducted using the Statistical Analysis System MIXED 
procedure.  
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Table A1.5 Impact of Actinovate biocontrol treatment on watermelon vine length (cm) at the University 

of Maryland Lower Eastern Shore Research and Education Center in Salisbury 2011 

Treatmenta 6/13/2011 6/20/2011  

Actinovate 117.70 ab 216.36 b  

None 131.60 b 237.16 a  

P>F 0.0002 0.0097  
aFields at UM-LESREC in 2011 were naturally infested with Fusarium oxysporum f. sp. niveum so there 

were no beds that did not contain the FON treatment. Actinovate AG’s active ingredient is Streptomyces 

lydicus and is produced by Natural Industries. Actinovate was applied as a foliar spray to watermelon 

plants two weeks after seeding at a rate of 0.011 g/12.2 ml H2O per 0.156 m2 transplant tray and again a 

week prior to transplanting to the field as a soil drench around the base of the plant at 0.115 g/172 ml 

H2O/1.89 m2 per a plant. 
bNumbers in a column followed by the same letter are not significantly different at α=0.05  according to 

Fisher’s protected least significant difference test using the Statistical Analysis System MIXED procedure.   
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Table A1.6 Impact of bare ground and cover crop treatments on main effect means of the number of sunburned watermelon per hectare at the University of 

Maryland Lower Eastern Shore Research and Education Center (UM-LESREC), the University of Delaware’s Carvel Research and Education Center (UD-REC) 

and the United States Department of Agriculture Beltsville Agricultural Research Center (USDA-BARC) in 2009, 2010, and 2011. 

Cover Cropa UM-LESREC 2009 UM-LESREC 2010 UM-LESREC 2011 USDA-BARC 2009 USDA-BARC 2010 UD-REC 2011 

Vicia villosa 2870 ab 3839 b 2172 a 1134 a 188 a 260 a 

Trifolium incarnatum -c 

 

2936 a 1134 a 148 a 260 a  

Secale cereale 2713 a 3092 b 1957 a 775 a 224 a 76 a 

Brassica juncea - 3636 b 2499 a - 260 a 148 a 

Bare ground 3746 a 5430 a 2720 a  696 a 372 a 336 a  

P<F 0.0939 0.0191 0.5147 0.4554 0.7197 0.5285 
aSeeding rate at UM-LESREC and UD-REC was V. villosa 50.44 kg/ha, T. incarnatum 11.21 kg/ha, S. cereale 125.54-134.50 kg/ha, B. juncea 11.21 kg/ha and at 

USDA-BARC the seeding rate was V. villosa 44.83 kg/ha, T. incarnatum 28.02 kg/ha, S. cereale 134.50 kg/ha, and B. juncea 6.73 kg/ha. 

bMeans in a column followed by the same letter are not significantly different at α=0.05  according to Fisher’s protected least significant difference test. 

Statistical analysis was conducted using the Statistical Analysis System MIXED procedure.  
cThe symbol – indicates the absence of the specific cover crop treatment for the given time and location. 
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Table A1.7 Main effects of green manures on foliar nutrient content of watermelona cultivar ‘Sugar Heart’ at the University of Maryland Lower Eastern Shore Research 

and Education Center (UM-LESREC) and the University of Delaware Research and Education Center  (UD-REC) in 2011 

Location, Cover cropb Al (ppm) Bo (ppm) 
Ca 

(%) 
Cu (ppm) Fe (ppm) K (%) Mg (ppm) Mn (ppm) N (%) P(%) S (%) 

Zn 

(ppm) 

UM-LESREC 

               Vicia villosa 45.70 ac 230.25 c 6.61 a 8.02 a 220.72 a 1.27 a 1.49 ab 865.42 bc 2.84 a 0.18 a 0.21 a 45.70 bc 

   Trifolium incarnatum 32.88 a 247.75 c 5.91 b 5.92 a 237.97 a 1.13 a 1.65 a 544.50 c 2.67 a 0.18 a 0.20 a 32.88 c 

   Brassica juncea 64.58 a 340.50 a 5.83 b 6.53 a 228.47 a 1.38 a 1.33 b 1298.83 a 2.82 a 0.19 a 0.22 a 64.58 a 

   Secale cereale 56.41 a 295.83 b 5.62 b 7.03 a 255.14 a 1.47 a 1.28 c 945.25 ab 2.73 a 0.19 a 0.22 a 56.41 ab 

   Bare ground 66.59 a 332.00 ab 6.00 b 6.61 a 286.97 a 1.38 a 1.36 b 1289.17 a 2.38 a 0.16 a 0.21 a 66.59 a 

   P>F 0.2968 <0.0001 0.0069 0.0744 0.2651 0.2218 0.0020 0.0003 0.0857 0.1978 0.5006 0.0046 

UD-REC 
            

   Vicia villosa 902.47 a 36.83 a 2.38 a 11.79 a 324.34 a 2.87 a 52.45 a 0.51 a 4.03 a 0.36 a 0.29 a 30.94 a 

   Trifolium incarnatum 1156.43 a 34.79 a 2.65 a 11.47 a 380.66 a 2.60 a 56.19 a 0.54 a 3.95 a 0.33 a 0.27 b 29.72 a 

   Secale cereale 881.87 a 48.91 a 2.39 a 11.67 a 329.10 a 2.70 a 57.40 a 0.48 a 4.10 a 0.34 a 0.28 ab 30.94 a 

   Brassica juncea 1313.22 a 49.85 a 2.54 a 11.92 a 417.25 a 2.62 a 61.34 a 0.53 a 4.27 a 0.34 a 0.28 ab 32.56 a 

   Bare ground 1025.50 a 43.97 a 2.34 a 12.02 a 361.20 a 2.74 a 77.08 a 0.54 a 4.06 a 0.35 a 0.30 a 33.50 a 

    P>F 0.6991 0.1274 0.994 0.6 0.8879 0.605 0.408 0.8843 0.193 0.8609 0.0423 0.2991 
aDirectly before harvest five watermelon leaves that were the second or third leaf from vines’ terminal point were randomly sampled from every bed, dried, and 

sent for nutrient analysis to Brookside Laboratories Inc. 
b
Seeding rate at UM-LESREC and UD-REC was V. villosa 50.44 kg/ha, T. incarnatum 11.21 kg/ha, S. cereale 125.54 kg/ha, and B. juncea 11.21 kg/ha. 

 

cMeans in a column followed by the same letter are not significantly different at α=0.05  according to Fisher’s protected least significant difference test. 

Statistical analysis was conducted using the Statistical Analysis System MIXED procedure.  
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Table A3.1 Effects of cover crop green manure on soil temperature (C◦)a at the United States Department of 

Agriculture Beltsville Education and Research Center (USDA-BARC) in 2009 and 2010 and the Lower Eastern 

Shore Research and Education Center (UM-LESREC) in 2010 

Location, Year 

      USDA-BARC, 2009 

      
    5/18

c
 5/28 6/9 6/11 7/10 8/3 

   Vicia villosab 17.72 ad 21.36 a 23.69 b 16.62 a  17.15 a 24.57 a 

   Trifolium incarnatum 17.66 a  21.17 a 23.88 b 15.51 b 15.54 b 23.35 a 

   Secale cereale 17.93 a  21.49 a 24.43 a 16.64 a -e 24.85 a 

   Bare ground 17.80 a  21.75 a 23.98 b 17.29 a  17.79 a 24.83 a 

   P>F 0.5086 0.5869 0.0012 0.0167 <0.0001 0.6500 

USDA-BARC, 2010 
      

    4/30 5/13 5/24 5/22 

  
   Trifolium incarnatum 15.02 a 16.12 ab  21.35 a 22.88 a 

     Vicia villosa 14.32 a 15.34 b 19.73 a 22.32 a 

     Brassica juncea  16.10 a 16.94 a 21.13 a 22.07 a 

     Secale cereale 16.20 a 17.17 a 20.60 a 21.95 a 

     Bare ground 15.51 a 16.92 a 21.54 a 22.07 a 

     P>F 0.875 0.0147 0.1341 0.8066 

  UM-LESREC, 2010 

      
    5/25 

     
   Trifolium incarnation  26.77 ab 

        Vicia villosa  27.10 ab  
        Secale cereale 27.72 a  

        Brassica juncea 26.51 b  
        Bare ground 26.00 b  

     
   P>F 0.0408 

     aSoil temperature was taken along with soil respiration measurements using a EGM-4 gas analyzer with a SRC-1 
chamber from PP Systems (110 Haverhill Road, Suite 301 Amesbury, MA 01913, USA). 
bSeeding rate at UM-LESREC was V. villosa 50.44 kg/ha, T. incarnatum 11.21 kg/ha, S. cereale 125.54 kg/ha, B. 

juncea 11.21 kg/ha and at USDA-BARC the seeding rate was V. villosa 44.83 kg/ha, T. incarnatum 28.02 kg/ha, 

S. cereale 134.50 kg/ha, and B. juncea 6.73 kg/ha.
 

cAll dates in bold indicate readings taken before cover crop tillage and all dates not bolded were taken following 

cover crop tillage. 
dMeans in a column followed by the same letter are not significantly different at α=0.05  according to Fisher’s 
protected least significant difference test. Statistical analysis was conducted using the Statistical Analysis System 

MIXED procedure. 
eData not taken. 
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