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 Biomass burning is an important global phenomenon affecting atmospheric 

composition with significant implications for climatic forcing.  Wildland fire is the 

main global source of fine primary carbonaceous aerosols in the form of organic 

carbon (OC) and black carbon (BC), but uncertainty in aerosol emission estimates 

from biomass burning is still rather large.  Application of satellite based measures of 

fire radiative power (FRP) has been demonstrated to offer an alternative approach to 

estimate biomass consumed with the potential to estimate the associated emissions 

from fires.  To date, though, no study has derived integrated FRP (referred to as fire 

radiative energy or FRE) at a global scale, in part due to limitations in temporal or 

spatial resolution of satellite sensors.  The main objective of this research was to 

quantify global biomass burning emissions of organic and black carbon aerosols and 

the corresponding effect on planetary radiative forcing.  The approach is based on the 

geophysical relationship between the flux of FRE emitted, biomass consumed, and 

aerosol emissions.   



  

Aqua and Terra MODIS observations were used to estimate FRE using a simple 

model to parameterize the fire diurnal cycle based on the long term ratio between 

Terra and Aqua MODIS FRP and cases of diurnal satellite measurements of FRP 

made by the geostationary sensor SEVIRI, precessing sensor VIRS, and high latitude 

(and thus high overpass frequency) observations by MODIS.  Investigation of the 

atmospheric attenuation of MODIS channels using a parametric model based on the 

MODTRAN radiative transfer model indicates a small bias in FRE estimates which 

was accounted for.  Accuracy assessment shows that the FRE estimates are precise 

(R2 = 0.85), but may be underestimated.  Global estimates of FRE show that Africa 

and South America dominate biomass burning, accounting for nearly 70% of the 

annual FRE generated.   

 The relationship between FRE and OCBC estimates made with a new MODIS-

derived inversion product of daily integrated biomass burning aerosol emissions was 

explored.  The slope of the relationship within each of several biomes yielded a FRE-

based emission factor.  The biome specific emission factors and FRE monthly data 

were used to estimate OCBC emissions from fires on a global basis for 2001 to 2007.  

The annual average was 17.23 Tg which was comparable to previously published 

values, but slightly lower.  The result in terms of global radiative forcing suggests a 

cooling effect at both the top-of-atmosphere (TOA) and surface approaching almost -

0.5 K which implies that biomass burning aerosols could dampen the warming effect 

of green house gas emissions. 

 An error budget was developed to explore the sources and total uncertainty in the 

OCBC estimation.  The results yielded an uncertainty value of 58% with specific 



  

components of the process warranting future consideration and improvement.  The 

uncertainty estimate does not demonstrate a significant improvement over current 

methods to estimate biomass burning aerosols, but given the simplicity of the 

approach should allow for refinements to be made with relative ease. 
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Chapter 1:  Introduction 
 

 

1.1 Research Goal 

The goal of the research presented in this dissertation is to quantify global 

biomass burning emissions of organic and black carbon aerosols and the 

corresponding effect on planetary radiative forcing.  The approach is based on the 

geophysical relationship between the flux of fire radiative energy (FRE) emitted, 

biomass consumed, and aerosol emissions.  The following section offers insight to the 

state of the science and the motivation for this research project. 

 

1.2 Background 

 Biomass burning is recognized as a significant source of atmospheric trace gas 

and particulate matter emissions [Crutzen and Andreae, 1990] and has received 

attention from the scientific community over the past several decades as an important 

contributor to total climatic radiative forcing [Kaufman et al., 1990; Innes, 2000].  

Crutzen [1979] first highlighted the variety of trace gas emissions from tropical forest 

fires and the potential these constituents could have in altering atmospheric chemistry 

and biogeochemical cycles.  Subsequent research has demonstrated additional 

impacts on the biosphere, atmosphere, and directly upon humans.  For example, 

ozone (O3) is produced photochemically in the troposphere from hydrocarbon and 

nitrogen oxides released during vegetation burning and results in regional health 

hazards such as damage to human respiratory systems [Levine, 2003; Andreae, 2004].  
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Cicerone (1994) emphasized that some byproducts of biomass burning, such as 

methyl chloride (CH3Cl) and methyl bromide (MeBr), can escape to the stratosphere 

where they are responsible for ozone destruction; resulting in health risks at a much 

larger scale.   

Fire is an integral part of many ecosystems [Kuhry, 1994; Cary and Banks, 2000], 

but the nature of this relationship may change according to some climate models 

which show fire frequency and intensity increasing with global warming trends 

[Intergovernmental Panel on Climate Change (IPCC), 2007].  In addition, the 

influence of anthropogenic ignited fires, which accounts for 90% of all biomass 

burning [Levine, 2001], may increase with population growth and the added pressure 

for land and resources.  A result of these driving forces will be greater biomass 

burning emissions, decreased sequestration of carbon, and the potential creation of 

feedback loops [Kasischke et al., 1995a; Chapman and Thurlow, 1998; Moore, 2002].   

Gas and particulate matter injected into the atmosphere from vegetation fires 

results in complex outcomes for radiative budgets.  Although surface and lower-

atmospheric warming due to the greenhouse gas effect is generally well understood, 

there is significant uncertainty in terms of aerosol emissions in large part due to the 

temporal and spatial heterogeneity of fire and the short atmospheric lifespan of 

aerosols (minutes to days).  Twomey [1984] suggested that cloud condensation nuclei 

produced as a result of aerosols released from biomass burning could increase cloud 

cover and reflectance.  The net effect would be a cooler atmosphere and reduced 

surface insolation.  Kaufman and Fraser [1997] found a similar effect of smoke 

particles increasing reflectance, as well as potential alteration to hydrologic regimes 



 

 
 

3

due to decreased precipitation.  However, Kaufman and Fraser stated that the 

climatic cooling force of smoke was significantly less than previously suggested by 

models.  In addition, aerosols can influence Earth’s climate in more complex and 

indirect pathways such as changing cloud albedo and lifetime.  Thus, the impact of 

aerosol forcing is still rather uncertain and generally due to incomplete estimates of 

emission sources and loading. 

Soja et al. [2004] and French et al. [2004] suggested that limited information 

about soil organic layer burning is potentially a significant source of error in biomass 

burning emission estimates.  Ito and Penner [2005], using the Global Burned Area 

(GBA) product from the SPOT satellite, estimated 1428 Tg carbon (C) emitted from 

fires in 2000.  For comparison, Hoelzemann et al. [2004], using the Global Burnt Scar 

(GLOBSCAR) burned area product generated from the ASTR satellite, estimated 

1741 Tg C for the same year.  This is surprising given Ito and Penner’s [2005] GBA 

burned area estimate was nearly twice as large as GLOBSCAR used by Hoelzemann 

et al. [2004] (314x106 ha and 172x106, respectively).  Kasischke and Penner [2004] 

suggested that differences in fuel load estimates and combustion factors, in addition 

to burned area, were responsible for the disagreement in emission estimates.  A 

comparison of carbon emission estimates from biomass burning for 2000 made by 

van der Werf et al. [2006] (2038 Tg C) and Schultz et al. [2008] (2254 Tg C) 

highlights additional variability in recent estimates.   

Organic and black carbon (OC and BC, respectively) are predominately generated 

from biomass burning [Bond et al., 2004] and are associated with light scattering and 

absorbing properties, respectively.  Relatively greater emissions of OC and BC come 
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from forest fires than savanna fires owing to the larger proportions of smoldering 

combustion.  (Note that OC + BC aerosol emissions are referred to as OCBC for the 

remainder of the paper).  Global estimates of these fine mode aerosols emitted from 

biomass burning have greater uncertainties than trace gas emissions [Andreae and 

Merlet, 2001].  As an example, van der Werf et al. [2006] reported 22 Tg of  OCBC 

in 2001, while Chin et al. [2007] reported 56.3 Tg for the same year.  In their earlier 

work, Chin et al. [2002] estimated an annual average of 88 Tg OCBC for the 1990s.  

This higher estimate is in part due to the use of a larger emission factor (14 g/kg 

[2002] vs. 8g/kg [2007]) and larger estimate of biomass combusted (5510 Tg dry 

matter [2002] vs. 4942 Tg dry matter [2007]).  Other estimates of OCBC are 

reasonably consistent.  Hoelzemann et al. [2004] reported 17.6 Tg of OCBC for 2000 

with a range of 13.6 – 20.2 Tg.  Schultz et al. [2008] developed a 40 year inventory of 

vegetation fire emissions using a combination of burned area estimates from satellite 

products, data reported in the literature, and modeling which yielded an OCBC annual 

mean for the 1990s of 25 Tg.  Andreae and Merlet [2001] reported 26.1 Tg of OCBC 

emitted from fires for the late 1990s while Bond et al. [2004] had 26.3 Tg OC for a 

“typical” year in the 1990s.  However, it should be noted that most of these estimates 

relied in some part, if not directly, on emission factors reported by Andreae and 

Merlet [2001], suggesting that agreement between estimates is often a result of use of 

common data, and thus similar in biases [Robinson, 1989].  Differences may therefore 

be attributed to variations in other modeling components such as fuel loads or burned 

area [Kasischke and Penner, 2004; Schultz et al. 2008].  It is not surprising then that 

current uncertainty surrounding the impact of aerosol forcing is, according to the 
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International Global Observation Strategy (IGOS), “one of the largest unknown 

factors in climate research” and is in large part due to poor estimates of the 

contribution from biomass burning [Barrie et al., 2004].   

In part, the variation in emission estimates can be attributed to the methodologies 

employed.  A common approach, referred to in this paper as “bottom up”, is based on 

estimates of surface variables (total fuel consumed during combustion, the area 

burned, and the type of fuel affected) that are used to compute emissions to the 

atmosphere. On the other hand, “top down” (inversion) approaches seek to measure 

atmospheric constituent concentration associated with fire (e.g. CO, aerosols) to 

estimate emission sources at the surface.  

Earth observing satellites have made a significant contribution to wildfire 

detection, monitoring, and characterization for nearly two decades [Dozier, 1981; 

Kaufman et al., 1990; García, 1991; Robinson, 1991; Kasischke et al., 1995a; 

Kasischke et al., 1995b; van der Werf et al., 2003; Wooster et al., 2003; Korontzi et 

al., 2004; Wooster et al., 2005; van der Werf et al., 2006]. Current satellite based, 

bottom-up approaches to estimate emissions involve multiplying the fuel consumed 

by an a priori emission factor for the atmospheric species (gas or aerosol) of interest 

(equation (1.1)): 

 

MEFE xx ×=        (1.1) 
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Where Ex is the emission load of species x (g); EFx is the emission factor for species x 

for the specific vegetation type or biome (g kg-1); and M is the biomass burned (kg).  

The biomass burned is calculated using equation (1.2).   

 

β××= BAM        (1.2) 

 

Where A is the burned area (km2); B is the biomass or fuel load (g km-2); and β is 

combustion factor (fraction of available fuel burned).  The combustion factor cannot 

be measured from space and the uncertainty in space-based measurements of burned 

area and fuel loads is high [van der Werf et al., 2006].  Boschetti et al. [2004] showed 

that differences in spatial and temporal estimates of burned area were apparent 

between the GLOBSCAR and GBA2000 products with the latter producing a global 

burned area nearly twice as large as GLOBSCAR. They concluded that such 

discrepancies have serious implications for accurately quantifying emissions from 

fires [Boschetti et al., 2004].  Korontzi et al. [2004] showed that estimates of burned 

area can vary significantly between burned area algorithms, which when coupled with 

the landcover types that are burning, can result in differences in the amount of 

biomass consumed exceeding a factor of two.  The difficulty in accurately measuring 

these variables leads to an uncertainty in emission estimates of at least 50%, and 

possibly much greater [Robinson, 1989; Andreae and Merlet, 2001; van der Werf et 

al., 2003; French et al., 2004; Korontzi et al., 2004]. Although datasets used for this 

application are continuously improved [Roy et al., 2005; van der Werf et al., 2006], 
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due to the uncertainty in current estimates it is worthwhile to explore other 

approaches. 

 

1.3 Research Hypothesis and Objectives 

 Biomass burning is a global phenomenon with significant implications for 

climatic forcing, human health, biodiversity, and land cover.  However, as described 

above, uncertainty in emission estimates from vegetation fires is still rather large.  

Recently, emerging advances in satellite remote sensing of fire radiative energy offer 

opportunities for direct measurement of biomass consumed.  Therefore, the main the 

hypothesis for this research is:  

Quantifying global biomass burning aerosol emissions based 

on the fire radiative energy can offer improved estimates with 

less uncertainty than current methods used in emission 

modeling?   

  

In order to investigate the relationship between fire energy and emissions the 

following research objectives are addressed in this dissertation: 

 

1. Atmospheric attenuation must be accounted for in order to accurately 

estimate radiances observed by satellite sensors.  Therefore,  

o Validation of a new parametric model for atmospheric correction 

of thermal infrared data, including the evaluation of atmospheric 

attenuation of MODIS MIR “fire” channels, is performed.  
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2. Currently, MODIS provides global coverage of instantaneous FRE, or the 

fire radiative power (FRP), but is limited in the temporal domain to an 

average of 4 observations a day.  In order to estimate the total aerosol 

emissions from fire based on the fire intensity, the temporal trajectory of 

FRP must be known.  Consequently,  

o A methodology is developed to parameterize the diurnal cycle of 

hourly FRP from MODIS observations (at 0.5° spatial and monthly 

temporal resolutions).  The integral is calculated to produce FRE 

which is then assessed with estimates made from higher temporal 

resolution sensors. 

o An additional analysis of the performance of the FRP 

parameterization is conducted based on the estimates of biomass 

consumed, fuel loads, and carbon emissions for African wildland 

fires. 

3. Given the uncertainty in current estimates of biomass burning emissions 

described in the previous section, improved or alternative approaches 

should be explored.  Thus,  

o The relationship between the estimated FRE and a new MODIS-

derived inversion product of daily integrated, biomass burning 

aerosol emissions of organic carbon (OC) and black carbon (BC) is 

explored.  FRE-based emission factors (referred to as emission 

coefficients hereafter) are generated and global, monthly estimates 



 

 
 

9

of OCBC emissions from biomass burning for multiple years 

presented.  

o An additional component necessary to objectively assessing the 

approach described in this research is to provide a review of the 

potential sources and magnitude of error in the data and estimates. 

4. Finally, to understand the implications of the biomass burning emissions 

estimated in this research, 

o The global radiative forcing is calculated and compared with 

current estimates offered by the 2nd version of the Global Fire 

Emissions Database (GFEDv2). 

 

1.4 Dissertation Outline 

 This dissertation consists of five chapters, three of which are self-contained, with 

the focus of the research on making global estimates of biomass burning organic and 

black carbon aerosols based on the fire radiative energy (FRE) liberated during 

combustion.   

 Chapter 1 introduces the importance of biomass burning emissions and the current 

uncertainty in emission estimates and the corresponding radiative forcing.  Chapter 2 

presents the validation of a new parametric model for atmospheric correction of 

thermal infrared data.  The investigation provides an accuracy assessment of the 

parametric model and demonstrates the application of the model for operational use.  

In addition, Chapter 2 offers an evaluation of the atmospheric impact on FRP 

measurements and a simple, yet effective, correction approach. 
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 In Chapter 3 an approach to estimate fire radiative power (FRP) from MODIS 

beyond the nominal observations is presented.   Employing high temporal frequency 

observations from the SEVIRI and VIRS satellite sensors, as well as high latitude 

retrievals made by MODIS, the diurnal cycle of FRP is characterized at monthly 

intervals for multiple years.  The relationship between the diurnal cycle and the ratio 

of Terra-MODIS and Aqua-MODIS FRP measurements is explored as a method to 

parameterize the fire energy temporal trajectory.  The FRE is then calculated, using 

only MODIS data, as the integral of the discrete FRP estimates.  Comparison of FRE 

estimates, as well as biomass combusted (using an FRE-based combustion factor), is 

made with other data sources. 

 Chapter 4 examines the relationship between the estimated FRE and a new 

MODIS-derived inversion product of daily integrated, biomass burning aerosol 

emissions.  The inversion product is generated from the MODIS fine mode aerosol 

optical thickness and inverse modeling transport processes adopted from the Goddard 

Chemistry Aerosol Radiation and Transport (GOCART) model.  A global analysis 

follows, using a similar approach to van der Werf et al. [2006], to determine emission 

coefficients.  The relationship between estimated FRE and the inversion-based OCBC 

product is analyzed within 3 globally dispersed vegetation zones (biomes) and 

employed as an FRE-based emission factor (referred to here as an emission 

coefficient).  Applying the FRE estimates from Chapter 3 with the emission 

coefficient developed in Chapter 4, a multi-year (2001-2007) global dataset of 

biomass burning OCBC emissions is produced.  Chapter 4 also includes an error 

budget to address the uncertainty in the OCBC estimates.   



 

 
 

11

 Finally, Chapter 5 concludes with a summary of the research with interest paid to 

the radiative forcing impact from biomass burning aerosols.  The topic of potential 

ways to improve the emission estimates, and the methodologies that will need to be 

employed to make them, is also addressed. 

 The framework of this dissertation is shown in Figure 1.1.   

 

 Figure 1.1: Research framework.  Chapter titles in italics. 
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Chapter 2:  Validation of a New Parametric Model for 
Atmospheric Correction of Thermal Infrared Data1 
 
 

 

2.1 Introduction 

Knowledge of the surface temperature is critical to understanding the flux of 

energy between the Earth’s surface and atmosphere, and therefore an important part 

of climate modeling, analyzing vegetative stress, and hydrologic modeling [Jacob et 

al., 2002; French et al., 2003].  Land surface temperature (LST) may reveal latent 

information about soil moisture, drought conditions, and land cover change [Lambin 

and Ehrlich, 1996].  Sea surface temperature (SST) has historically been used for 

meteorological and weather prediction applications, but also provides the basis for a 

long term data record of climatic change [Merchant and LeBorgne, 2004].   

Retrieval of surface temperature from space-borne sensors has been successfully 

employed since the early 1980s using a variety of instruments such as the Advanced 

Very High Resolution Radiometer (AVHRR) [Deschamps and Phulpin, 1980; 

Barton, 1995].  Surface temperatures are typically retrieved from thermal infrared 

(TIR) (8-12μm) satellite observations; however accurate retrievals require correction 

for atmospheric effects.  For example, attenuation of thermal infrared satellite 

observations is largely due to the columnar water vapor present in the atmosphere, 

specifically in the lower troposphere [Matthew et al., 2001].  This paper verifies the 

performance of a parametric model, which is tuned to the Moderate Resolution 

                                                 
 
1 The bulk of this chapter was published in Ellicott et al. [2009a] 
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Imaging Spectrometer (MODIS), for atmospheric correction in the TIR.  Ultimately, 

the goal is to devise a global operational atmospheric correction scheme for the 

MODIS sensor that would provide greater accuracy and less computational time than 

current atmospheric correction methods.   

One particular method commonly employed for atmospheric correction of thermal 

infrared data involves using the differential absorption between two spectrally 

discrete bands (typically at 11μm and 12μm) to account for water vapor absorption in 

the atmosphere [Prabhakara et al., 1974].  This empirical method, referred to as split-

window, offers a relatively accurate (± 1.0 K) method for retrieving the surface 

temperature, provided the surface emissivity is known explicitly or implicitly 

[Barton, 1995; Eugenio et al., 2005]; implicit knowledge is obtained through the 

regression of satellite data to ground temperature measurements.  However, this 

approach has several shortcomings and is subject to bias [McClain et al., 1985; 

Merchant and LeBorgne, 2004].  The split-window approach can reliably account for 

atmospheric attenuation over sea surfaces where emissivity is generally well known 

and stable and, relying upon the empirical calibration between buoy temperature 

retrievals and satellite observations, achieve an accuracy of <0.5 K [McClain et al., 

1985; Barton, 1995; Merchant and LeBorgne, 2004].  However, there is a latitudinal, 

as well as hemispherical, asymmetry in the concentration of buoy temperature 

retrievals which is a limitation to synoptic SST retrieval [Minnett, 2003]. In addition, 

bias is likely a result of the regression process for fitting satellite derived 

temperatures to buoy temperatures because buoy temperatures are retrieved below the 

surface (bulk), while satellite radiometer derived temperatures are based on the 
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surface (skin) temperature [Hook et al., 2003; Minnett, 2003].  LST retrievals, 

corrected using the split-window approach, must deal with greater uncertainty in the 

emissivity of terrestrial features observed by satellites as a result of the heterogeneous 

nature of land surfaces, as well as a lack of a systematic in situ data available for 

developing the regression coefficients used in the SST algorithm.  Though regionally 

accurate, especially for water body targets, the split window scheme is not ideal for 

global, operational atmospheric correction of land surface temperature retrieval.   

An alternative method to atmospherically correct surface temperature retrievals 

uses a single infrared band, typically centered at 11µm because of limited 

atmospheric perturbation around this wavelength.  This requires an accurate radiative 

transfer model (RTM) and prior information about the surface emissivity and 

atmospheric conditions, specifically temperature and water vapor profiles [Chou et 

al., 1991; French et al., 2003].  Atmospheric profiles have traditionally been retrieved 

from radiosonde data [Durre et al., 2006] and are often assimilated into circulation 

models to generate coarse, global resolution datasets, such as the National Centers for 

Environmental Prediction (NCEP) Global Data Analysis System (1˚ x 1˚, 6 hour) 

product.  A combination of atmospheric profiles with a RTM, such as MODTRAN 

[Berk et al., 1998; Anderson et al., 2000], provides an effective methodology to 

generate the corrected variables necessary for surface temperature calculation 

[Petitcolin and Vermote, 2002].  A limitation to the single channel – RTM method is 

the large size of data sets and therefore the computation time required, thus making 

the single channel approach generally impractical for operational correction of 

satellite retrievals, especially at synoptic scales [Chou et al., 1991; French et al., 
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2003].  Various approaches have been proposed to simplify RTM, including, but not 

limited to:  reducing RTM to very simple equations [French et al., 2003], using pre-

computed corrections that are interpolated according to the difference between the 

local atmospheric profile and reference profiles [Chou et al., 1991], correlated-k 

model [Kratz, 1995], or neural networks [Gottsche and Olesen, 2002].  However, 

these approaches have their limitations.  For example, [French et al., 2003] simplified 

atmospheric correction by implementing an adjusted water vapor continuum 

correction technique, achieving a processing time 15x faster than MODTRAN.  The 

bias (0.8K – 1.6 K) in temperature retrievals using this approach, on the other hand, 

does not provide enough margin for accurately retrieving surface temperatures.  The 

neural networks technique described by [Gottsche and Olesen, 2002] achieved 

accurate results (RMSE = 0.16 – 0.3K) and was 104 times faster than MODTRAN 

3.1, but inherent limitations to neural networks were not addressed.  The underlying 

processes are not clear and the user may not readily have access to the underlying 

architecture.  In addition, time is required to “train” the network (6 days in the case of 

Gottsche and Olesen [2002] which is fast by most NN standards) and there is an over 

simplification of atmospheric variables as they are integrated over the full optical 

path.  Correlated-k models are limited when considering vertically inhomogeneous 

atmospheres in part because of the assumption that absorption coefficients are 

correlated between vertical layers. 

The purpose of this study was to assess the accuracy of a single channel 

atmospheric correction scheme which is tuned to the MODIS sensor (currently flying 

aboard the Earth Observing System (EOS) satellites Terra and Aqua at an altitude of 
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705km, viewing the entire Earth’s surface every 1 to 2 days).  The goal was to 

achieve the same accuracy as MODTRAN, but with less computational demand (i.e. 

speed) by parameterizing processes used in radiative transfer modeling.  Thus, the 

correction scheme is a trade-off between complexity and accuracy.  The parametric 

model was developed upon lessons learned by Petitcolin and Vermote [2002] and is 

based a on least squares fitting methodology to derive model coefficients.  In 

Petitcolin and Vermote [2002], MODTRAN was run using NCEP profile data to 

retrieve the necessary atmospheric correction variables.  The variables returned were 

then interpolated from 1° to 1km to correct MODIS TIR observations.  This was done 

to minimize the computation time of actually running MODTRAN using 1km data.  

Since the parametric model is less computationally demanding than MODTRAN, the 

atmospheric profile data can be interpolated rather than the atmospheric correction 

variables.  This reduces the uncertainty in the correction variables which arises from 

the shifting view and solar angles across a 1° pixel that cannot be accounted for 

during the interpolation.  The parametric model demonstrated a comparable accuracy 

to MODTRAN when testing against “reference” datasets, as well as in situ data.  

Initially the parametric model was evaluated against MODTRAN using a synthetic 

dataset (sections 2.4 and 2.5).  Sea-surface temperatures derived by the parametric 

model were then assessed against the MODIS SST product in section 2.6.  In section 

2.7 in situ lake surface and land surface temperatures were used to investigate the 

models accuracy.  The parametric model is then used to investigate the impact of 

atmospheric attenuation on the MODIS fire radiative power (FRP) product in section 

2.8.  Finally, in section 2.9 the consistency of temperature results is examined using 
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different combinations of available atmospheric profile data (i.e. radiosonde, satellite 

sounding) with the parametric model.  Concluding remarks are made in section 2.10. 

 

2.2 Overview of the Parametric Model for Atmospheric Correction 

Surface radiance, a variable used to calculate surface brightness temperature in 

the thermal infrared, requires correction of satellite observations for atmospheric 

effects.  Based upon top-of-atmosphere (TOA) radiance measured by spaceborne 

infrared sensors, upward atmospheric radiation (path radiance), downward 

atmospheric radiation (diffuse radiance), atmospheric transmittance, and a priori 

knowledge of surface emissivity, the following equation is used to retrieve surface 

radiance: 

 

 Lsurf λ   = [(Ltoa λ – Latm λ ↑) / t λ] – (1 – ε λ) Latm λ ↓ (2.1) 

 

where L surf λ  is the surface radiance (W m-2 sr-1 μm-1), Ltoa λ is the TOA radiance 

observed at the sensor (W m-2 sr-1 μm-1), Latm λ ↑ is the upwelling atmospheric 

radiance (W m-2 sr-1 μm-1), Latm λ ↓ is the average directional downwelling 

atmospheric radiance (W m-2 sr-1 μm-1), t is the atmospheric transmittance (unitless), 

and ε is the surface emissivity; a dimensionless value representing the ratio of a 

surface’s spectral radiance to a perfect black body spectral radiance, for a given 

temperature.  An additional consideration when using satellite data is that the above 

equation is based on monochromatic observations while remote sensing is based on 
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broadband observations comprised of a continuous range of wavelengths per channel 

(or band).  Therefore, equation (2.1) will include a spectral response function (ƒ), 

which is the integrated contribution of the individual wavelengths (λ) within a given 

band (i).  The spectral integration is applied to all terms of equation (2.1) so that the 

surface radiance is derived from the TOA radiance, observed by the sensor in 

broadband. 

The parametric model for atmospheric correction in TIR aims at computing the 

upwelling atmospheric radiance, the downwelling atmospheric radiance and the 

atmospheric transmittance, all being band integrated.  Such computation requires 

atmospheric data along the line-of-sight, also known as atmospheric profile, which 

includes atmospheric temperature, water vapor density, pressure and altitude.  Data 

provided by numerical weather prediction models such as NCEP, with 28 layers at 

known pressure levels between 1030hPa to 10hPa, offer profiles for atmospheric 

correction in TIR.  The proposed parametric model is based on the computation of the 

optical thickness τi ( ieti
τ−= ), upwelling atmospheric radiance, and the downwelling 

atmospheric radiance, on a layer basis, integrated along the optical path. 

 

2.2.1 Layer Optical Thickness 

In the thermal infrared, layer transmission is mainly due to gaseous absorption. 

Molecular scattering is weak and no aerosol effects need to be considered for most 

cases according to Mie theory since particles are much smaller than the wavelength.  

The main absorbent in TIR is water vapor, for which a continuum is observed.  
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Therefore, the optical thickness for layer l in channel i is the sum of three components 

for water vapor, water vapor continuum and other gases: 
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The layer optical thickness of water vapor is computed using: 
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 where OH 2,0ρ  is the water vapor abundance of the layer in g m-2  (i.e. the water vapor 

density integrated along the vertical path within the layer) and θv is the view angle.  

The quadratic exponential form of equation (2.3) was found to be the optimal trade 

off between accuracy and simplicity. Adding terms such as 3
2H Oρ  or 4

2H Oρ  in the 

equation does not help capture the spectral non-linearities of the optical thickness of 

water vapor within the infrared band considered.  iOHa ,2,0 , iOHa ,2,1 , and iOHa ,2,2  are 

band coefficients that depend on equivalent layer temperature ( lT ) and equivalent 

layer pressure ( lP ).  The “a” coefficients are tabulated for each couple ( lT , lP ) of the 

atmospheric layers defined in Table 2.1 and stored in a look-up-table.  lT  [resp. lP ] is 

computed using top layer and bottom layer temperatures [resp. pressures], using a 

weighting coefficient of 0.5.  Parameters OHa 2,0 , OHa 2,1  and OHa 2,2  are computed 
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using a least square fitting method for atmospheric layer configurations reported in 

Table 2.1.  The reference optical thickness is computed by MODTRAN for the same 

atmospheric layer conditions (see equation (2.9)). 

For optical thickness due to the water vapor continuum, the parametric model 

uses the model integrated in MODTRAN [Clough et al., 1982; Clough, 1995].  The 

water vapor continuum is observed absorption due to water vapor that is not 

attributable to the Lorentz line contribution within 25cm-1 of each line.  It is the 

difference between measured absorption and that which is predicted by theory.  In 

other words, the continuum is absorption that cannot be accounted for by theory alone 

but is nonetheless real [Grant, 1990].  Absorption coefficients for the so-called self-

broadened and foreign-broadened water vapor continuum models have been 

spectrally integrated with the sensor spectral response functions.  Since the spectral 

variations of the absorption coefficients of the water vapor continuum are very 

smooth, values of τH2Oc computed by MODTRAN are reproduced by the parametric 

model.   

The layer optical thickness due to atmospheric constituents other than water vapor 

is computed using: 

( )othera
otheriother

other
il a ,1

,,0, exp ρτ =  (2.5) 

 

where 

( )v
other

D
θ

ρ
cos

=  (2.6) 
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where D  is the layer depth in kilometer. iothera ,,0  and iothera ,,1  are band coefficients 

that depend on lT  and lP .  Both parameters are derived by least square fitting for the 

layer configurations in Table 2.1. 

 

Table 2.1: Atmospheric layer configurations used for computing atmospheric water 
vapor layer density, as well as other coefficients, from a least square fitting method. 
 

(P) Pressure (hPa) (T) Air temperature 
range (K) 

Bottom of 
layer 

Top of 
layer From To Step 

Altitude of 
bottom of 
layer (km) 

Relative humidity range 
(%) 

1030 1000 
1000 975 260 320 5 0 

975 950 0.5 
925 900 250 300 5 1 
850 800 1.5 
750 700 

240 290 5 
2 

650 600 3 
550 500 230 280 5 4.5 
450 400 6 
350 300 220 260 5 8 

10, 30, 50, 70, 90 

250 200 210 240 5 10 1, 10, 30, 50, 70 
150 100 13 1, 10, 30, 50 
70 50 18 
30 20 

200 230 5 
24 1, 10, 30 

 

Finally, in order to correct for non-linearities in optical thickness, spectral 

integration is applied.  Radiative transfer models, such as MODTRAN, can apply the 

convolution with the sensor spectral response function (ƒ) to wavelength radiances 

(Lλ) at layer level, as well as for the full optical path.  The layer transmission is then: 
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where the layer transmittance in wavelength λ can be decomposed as: 

 

λ,lt  = exp ( )other
l

OcH
l

OH
l λλλ τττ ,

2
,

2
, −−      (2.8) 

 

However, with the parametric model, computations at numerous wavelengths are 

avoided in order to reduce the computation time needed for atmospheric correction.  

Therefore, the spectral convolution is moved to the coefficients of the parametric 

models that are needed to compute the layer optical thickness of water vapor, water 

vapor continuum, and other gases.  The spectrally integrated layer optical thickness 

is: 
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with superscript e being either H2O, H2Oc or other for the optical thickness of water 

vapor, of water vapor continuum, and other gases, respectively.  Because the 

exponential function is not linear and the spectral variations of the absorption 

coefficients of water vapor and other gases are not smooth, moving the spectral 
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integration from radiances to optical thickness biases the layer transmissions 

computed with the parametric model. Such bias is corrected using a quadratic 

function applied to the layer optical thickness equation below, replacing the 

traditional t=exp(-τ) formulation in the parametric model.  The quadratic function 

offered the best fit while providing a trade-off between simplicity and accuracy. 

 

( )( )2
,,,2,,,1, exp ililililil mmt ττ −−=       (2.10) 

 

where m parameter is derived from least square fitting.  The correction is applied to 

layer transmissions before they are used later in the parametric model for the 

computation of atmospheric upwelling radiance, atmospheric downwelling radiance 

and total transmittance along the line of sight.  

 

2.2.2 Layer Upwelling and Downwelling Radiances 

 
 Assuming the layer is a semi-transparent medium in local thermodynamical 

equilibrium, Kirchhoff’s Law links the layer emission to the layer transmission so 

that the layer atmospheric upwelling radiance is computed using: 

 

( ) ( )eqatmliiliatml TLtL _,,, 1 −=↑       (2.11) 

 

Li is the Planck function, as introduced later in equation (2.21), convoluted with the 

spectral response function of band i.  The equivalent layer temperature eqatmlT _,  is 
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derived from top layer temperature and bottom layer temperature, weighted by w 

(0.5): 

 

( ) toplbotleqatml TwwTT ,,_, 1−+=       (2.12) 

 

where top and bot subscripts indicate top or bottom layer, respectively. The layer 

downwelling atmospheric emission integrated over the hemisphere is derived using 

 

( )( ) ( )eqatmliemisiliatml TLtL _,,, 1 ↓↓ −= θ      (2.13) 

 

where ↓emisθ  is the equivalent view angle for which the layer transmittance is 

computed to be used in the above equation. Assuming the downwelling atmospheric 

radiance is isotropic; [Kondratiev, 1969] has shown that o53=↓emisθ  is optimal. 

 

2.2.3 From Layer to Total Transmittance and Total Radiances 

 
 To be used in equation (2.1), total transmittance, total upwelling radiance and 

total downwelling radiance along the line-of-sight shall be derived from layer 

quantities, the atmosphere being sliced in L layer with layer 1 at low altitude and 

layer L at top of the atmosphere.  The band atmospheric transmittance ti along the 

optical path is derived from the product of the transmission of the layers (ti,l), yielded 

in equation (2.10). 
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∏
=

=
L

ll
ili tt ,         (2.14) 

 

For the upwelling radiance, layer contributions are summed, accounting for the 

atmospheric transmittance of the layers between the layer and the sensor. 
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where iLlt ,1→+  is the transmittance along the path from top of layer l to top of the 

atmosphere 
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In parallel, downwelling emission reaching the surface is the sum of the layer 

contributions, accounting for the transmittance of the atmosphere between the layer 

and the surface. 
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with ( ) 1,01 =↓→ emisit θ . 
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2.3 Analysis Metrics 

The following statistics were used to evaluate the performance of the parametric 

model and appear, for consistency, throughout this paper.  The RMSE refers to the 

root mean square error and represents the degree of error between estimator and 

observed values of the quantity being investigated: 

  

n

oe
RMSE

n

i
ii∑

=

−
= 1

2)(
      (2.18) 

 

where ei is the estimated value from the parametric model, oi is the observed (or 

“truth”), and n is the number of observations.  In this analysis, “observed” data may 

be a metric to evaluate the model, as in the case of comparison with MODTRAN, or 

actual (in situ) observations: 

The mean bias provides a statistical measure of the accuracy as computed by 

averaged sum of differences between all estimates, ei and observed (oi) data.   
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Precision represents the repeatability of the estimates and is computed as the 

standard deviation of the estimates around the observed values, corrected for the 

mean bias (B): 
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Finally, the Nash-Sutcliffe model efficiency coefficient (E) was used as a 

goodness of fit metric to assessing the parametric model.  In this case, the modified E, 

which replaces squaring the differences with the absolute value, was used.  This is 

intended to limit the bias towards extreme values.  
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where io  is the mean of the observed values.   

E ranges from -∞ to 1, such that a value of E = 1.0 indicates a perfect match 

between estimated and observed values.  E = 0.0 occurs when the model estimated 

values are as accurate as the mean of the observed data.  While a value of E < 0.0 

indicates that the mean of the observed values is a better predictor than the model.  

The motivation for using E is to provide a relative measure other than the often-used 

coefficient of determination (R2).  According to Legates and McCabe [1999], the 

latter is sensitive to outliers while insensitive to additive and proportional differences 

between the observed and predicted values.  Thus, high values of R2 may be achieved 

even when the model and observed results are quite different in magnitude. 
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2.4 Evaluation of the Parametric Model Performance 

The MODIS instrument includes 7 emissive bands that are useful for surface 

temperature remote sensing.  The additional MODIS thermal bands are designated, as 

an example, for atmospheric sounding and not intended for surface retrievals.  Thus, 

initial assessment of the parameterization was based on the agreement between the 

retrieved parameters from MODTRAN and the parametric model in these 7 bands 

(Table 2.2). 

 

Table 2.2: MODIS-Terra band equivalent wavelengths for TIR bands. 
 

BAND 20 21 22 23 29 31 32 
iλ  (μm) 3.7882 3.9921 3.9921 4.0567 8.5288 11.0186 12.0325 
 

  Evaluation of the parametric model was focused on the three atmospheric 

parameters derived during radiative transfer modeling (Latm ↑, Latm ↓, and t).  Each 

dataset was comprised of a MODIS granule (2004.047.0800, centered at 12°N 42°E; 

see Figure 2.1) and NCEP data, extracted from the work of Petitcolin and Vermote 

[2002], which provided geometric information related to satellite position 

(observation angle) and atmospheric profile data, respectively, to be used in 

MODTRAN and the parametric model in order to generate the above parameters.  

The observations had a water vapor content range of 0.64 to 3.93 g cm-2; view angles 

between nadir and 75°; and lowest layer temperature range from 286 K to 305 K.   
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Figure 2.1: Quicklook image of the Terra MODIS granule centered at 12°N 42°E; 
used in the parametric model evaluation (Section 2.3) and the subsequent results 
plotted below (Fig. 2.2-2.7). 

 

In a nominal MODIS granule, approximately 600 atmospheric profiles are 

available because NCEP provides profiles on a regular basis: 1 degree in latitude by 1 

degree in longitude.  For each of these profiles, with local observation conditions of 

MODIS, results of the parametric model were compared to results of MODTRAN 

(Figures 2.2, 2.3, and 2.4).  Without interpolation of the atmospheric profile, both 

MODTRAN and the parametric model use the same atmospheric data. Therefore, the 

performances of the parametric model can be assessed without perturbations from 

atmospheric data. 

 A good agreement (E = 0.9) was shown between MODTRAN and the parametric 

model for upward radiance, downward radiance, and transmittance derived from 

MODIS MIR and TIR bands (Table 2.3).  Examination of the bias and precision 

showed the model retrievals match closely with MODTRAN.  Band 31 had the best 
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agreement.  This was ideal since MODIS band 31 is selectively placed, in terms of 

wavelength, to minimize atmospheric perturbation.  On the other hand, band 29 

showed the least favorable agreement between the parametric model and MODTRAN 

and highlights an area to improve upon the model.  While Figures 2.2, 2.3, and 2.4 

show the comparison of radiative transfer variables retrieved from the model and 

MODTRAN for MODIS bands 31 (11μm) and 32 (12μm), all of the MODIS emissive 

thermal bands were assessed in this section.  However, particular attention was given 

to the two MODIS bands commonly used in surface temperature retrieval schemes; 

band 31 (single-channel temperature retrieval and split-window) and band 32 (split-

window). In addition, attention was focused on MODIS band 31 because its spectral 

placement was intended to minimize atmospheric perturbation and is unaffected by 

solar reflection during daytime observations.  Thus, if the model is to prove effective 

it must be accurate for MODIS band 31.   

Computation speed was assessed between MODTRAN and the parametric model 

for retrieval of correction parameters upward radiance, downward radiance, and 

transmittance.  Multiple trials, all conducted on the same computer (Intel Pentium 4, 

2800 Hz, 512 KB cache, 1.1GB RAM, Linux 2.4.22), showed that the parametric 

model was well over 3 orders of magnitude faster than MODTRAN.  For example, 

for 621 profiles (approximately 28 vertical layers each) analysis of the all 7 emissive 

bands by the model took ~2 seconds while MODTRAN took ~5800 seconds (Table 

2.4).  Extending this example to the estimated 288 MODIS granules produced per day 
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Figure 2.2: Relationship between MODTRAN and the parametric model derived 
upward radiance for MODIS bands 31 (11.0186μm) and 32 (12.0325μm).  Deviation 
from the trend line for large upward radiances corresponds with large incidence 
angles and hot/moist profiles.  In these cases biases are expected due to bending of 
the optical path which is not accounted for in the parametric model (see Section 2.4). 
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B31 Downward Radiance
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Figure 2.3: Relationship between MODTRAN and the parametric model derived 
downward radiance for MODIS bands 31 (11.0186μm) and 32 (12.0325μm).  
Deviation from the trend line for large upward radiances corresponds with large 
incidence angles and hot/moist profiles.  In these cases biases are expected due to 
bending of the optical path which is not accounted for in the parametric model (see 
Section 2.4). 
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B31 Transmittance
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Figure 2.4: Relationship between MODTRAN and the parametric model derived 
transmittance. 
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Table 2.3: Preliminary evaluation of radiative transfer variables (a) transmittance, (b) 
upwelling radiance, and (c) downwelling radiance was based on comparison of the 
parametric model and MODTRAN retrievals for MODIS thermal bands (20-23, 29, 
31, and 32).  Radiance values are in W m-2 sr-1 μm-1. 
 

a. 
Trans Band E RMSE mean 

bias precision 

20 0.8810 0.0130 0.0007 0.0034 
21 0.9880 0.0017 0.0002 0.0017 
22 0.9840 0.0019 0.0001 0.0019 

MIR 

23 0.9790 0.0046 0.0021 0.0041 
29 0.9110 0.0118 0.0049 0.0107 
31 0.9450 0.0096 0.0047 0.0083 TIR 
32 0.9400 0.0115 0.0065 0.0094 

 
b.  

Up Band E RMSE mean 
bias precision 

20 0.8660 0.0034 0.0004 0.0034 
21 0.9850 0.0005 -0.0002 0.0005 
22 0.9680 0.0008 0.0001 0.0008 

MIR 

23 0.9840 0.0008 -0.0004 0.0007 
29 0.8610 0.1318 0.0735 0.1094 
31 0.9410 0.0850 -0.0510 0.0681 TIR 
32 0.9280 0.1112 -0.0810 0.0762 

 
c. 

Down Band E RMSE mean 
bias precision 

20 0.6420 0.0061 0.0033 0.0084 
21 0.9260 0.0009 0.0002 0.0010 
22 0.8860 0.0012 0.0010 0.0021 

MIR 

23 0.8060 0.0043 0.0029 0.0066 
29 0.7470 0.2112 -0.0974 0.1876 
31 0.9530 0.0644 -0.0090 0.0663 TIR 
32 0.9190 0.1170 0.0530 0.1488 
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highlights the significance in processing speed, especially as it relates to operational 

processing.  Assuming a conservative number of clear sky NCEP profiles (~300, less 

than half of what are typically analyzed ) available from the above analysis and 

extending that to the 288 daily MODIS granules results in a processing time of nearly 

10 days for MODTRAN and less than 5 minutes for the parametric model.  In 

addition, consideration must be given to the fact that preliminary analysis was 

performed for profiles at the NCEP resolution (1° x 1°) and not MODIS (1km) in 

order to avoid introducing error from profile interpolation.  Therefore, it can be 

realized that performing atmospheric correction operationally at MODIS TIR band 

resolution would be unrealistic with RT models such as MODTRAN and but can be 

achieved with an accurate and “fast” RTM. 

 
 
Table 2.4: Computation time for MODTRAN and parametric model; comparison is 
based on multiple runs of a single granule on the same machine.  Program execution 
was performed independent of each other (i.e. the model or MODTRAN is the only 
process running at the time on the machine). 
 

 time in seconds 
# MODTRAN PM 
1 5835.42 1.52 
2 5956.15 1.83 
3 5798.53 2.31 
4 5772.33 1.75 
5 5970.44 1.89 
6 5959.38 1.77 
7 5802.09 1.52 
8 5913.51 1.52 
9 5883.26 1.52 

10 5840.35 1.5 
mean 5873.15 1.71 
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2.5 Assessment of the Parametric Model Surface Brightness 
Temperature Calculations Using a Synthetic Dataset 
 

The intention of this section was to evaluate the calculation of surface brightness 

temperature using realistic surface and simulated TOA radiance values, and the 

correction parameters generated from MODTRAN and the parametric model.  

Surface brightness temperature (SB(T)) was calculated for each of the NCEP 

atmospheric profiles introduced in the previous section.  Simulated surface 

temperatures (T) were obtained from the temperature at the lowest atmospheric 

profile layer.  The derivation of a realistic surface brightness temperature employed 

the Planck function, emissivity, and the assumed skin temperature, and was 

convolved with the MODIS band equivalent wavelength.  The first step required 

calculating simulated surface radiance values: 
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Where C1 and C2 are radiation constants (1.1911•10-8
 W•m-2

•sr-1
•μm4 and 1.4388•104 K 

μm, respectively), Tbot is the lowest profile layer reported temperature (here used as 

synthetic skin temperature), and λi is the MODIS band equivalent wavelength (Table 

2.2).  To account for surface emissivity (εi), surface radiance were calculated using 

emissivity values typical for surfaces observed in TIR (0.98, 0.99, and 1.0).  

Measured at-sensor brightness temperatures were simulated using atmospheric 

transmittance (tmod,i ), upward radiance (Lmod atm↑i), and downward radiance (Lmod 
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atm↓i) computed by MODTRAN, along with the surface radiance calculated above 

equation (2.22), using the following formula: 

( ) ( ) iatmiatmiisurfiiitoai LLTLtTL ↑↓ +−+= modmod,mod,, ])1([ ε  (2.23) 

 

Atmospherically corrected transmittance, upward radiance, and downward radiance 

values were then generated by the proposed parametric model, and used along with 

simulated TOA radiance from (2.23) to calculate the surface radiance: 
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Where Li(Ttoa,i) is the TOA radiance from (2.23), LPM atm↑,i is the parametric model 

generated upward atmospheric radiance, tPM,i is the parametric model generated 

atmospheric transmittance, and (1-ε) Latm,i ↓ is the second order term accounting for 

downward atmospheric radiance. 

Finally, a comparable surface skin temperature is calculated by inverting the 

Planck function again, this time for Li(T*
skin,i) from (2.24).  In MODTRAN, bending 

of the optical path is accounted for when the view angle is greater than 60 degrees, 

but not in the proposed model.  In such cases, the sensor does not actually “see” the 

surface and even small errors in atmospheric transmittance or atmospheric upward 

radiance have a large impact on surface brightness temperature.  Therefore 

observations above 60° were excluded. Figure 2.5 shows a plot of the model 

calculated skin temperature against the synthetic skin temperatures for the MODIS  
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Figure 2.5: Surface brightness temperatures comparison between the parametric 
model and MODTRAN for MODIS bands 31 (a) and 32 (b), excluding any MODIS 
observations with view angles greater than 60° (n=423).  Emissivity was set to unity.  
The 1:1 (dashed) line is plotted for reference. 
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b. 

B32: Surface Brightness Temperature 
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Figure 2.6: Surface brightness temperatures comparison between the parametric 
model and MODTRAN for MODIS bands 31 (a) and 32 (b), excluding any MODIS 
observations with view angles greater than 60° (n=423).  Emissivity was set to 0.99.  
The 1:1 (dashed) line is plotted for reference. 
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b. 

B32: Surface Brightness Temperature 
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Figure 2.7:  Surface brightness temperatures comparison between the parametric 
model and MODTRAN for MODIS bands 31 (a) and 32 (b), excluding any MODIS 
observations with view angles greater than 60° (n=423).  Emissivity was set to 0.98.  
The 1:1 line (dashed) is plotted for reference. 
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granule observations in bands 31 and 32; emissivity was assumed to be unity.  

Additional emissivity values included 0.99 and 0.98 to represent realistic surface 

emission values for thermal infrared bands 31 and 32 (Figures 2.6 and 2.7).   

Table 2.5 shows the performance of the parametric model for the 7 emissive 

bands analyzed (MODIS channel# 20-23, 29, 31, and 32).  The performance of the 

model was also assessed when the surface temperature was assumed to be +/- 5K 

from the NCEP profile lowest layer temperature at each observation point.  The 

results for this additional comparison are shown in Table 2.6.  With exception of band 

29, the results across the MIR and TIR bands examined in this study showed a good 

agreement (E ~ 0.9) and low error (RMSE < 0.4 K) across all emissivity values.  For 

example, the bias for band 31 was small (< 0.1 K) for the three emissivity values, 

while band 32 had a similar degree of bias when emissivity was unity, but increased 

to 0.29 K when emissivity was set to 0.98.  It is clear that as emissivity decreases 

from unity to 0.98 that a small increase in error and bias occurs.  Greater accuracy 

and precision is exhibited in band 31comparisons and is likely the result of the 

placement of this band in an atmospheric window, thus reducing the effects of water 

vapor attenuation. 

 

2.6 SST Evaluation 

Evaluation of the accuracy of the parametric model proceeded with a comparison 

of an independent measure of temperatures.  Since the split-window approach is 

accepted to be fairly accurate over water targets (± 0.5 K [McClain et al., 1985; 

Barton, 1995; Merchant and LeBorgne, 2004]), due largely to stable emissivity, the 
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parametric model surface temperatures were compared with the current Aqua-

MODIS SST product (MYD28).  Given the standard deviation in SST temperature 

 
 
Table 2.5: Statistical results for the evaluation of surface temperature calculations 
using the parametric model atmospheric correction parameters (transmittance, upward 
radiance, and downward radiance).  Surface temperature is assumed to be the same as 
the lowest layer of the NCEP profile for each observation point (n = 421).  Results are 
shown for emissivity values of 1.0, 0.99, and 0.98 and for 7 thermal bands MODIS 
bands (20-23, 29, 31, and 32). 
 
 

1.00 Band E RMSE mean 
bias precision 

20 0.988 0.038 0.024 0.030 
21 0.995 0.014 0.012 0.007 
22 0.998 0.006 -2.5E-04 0.005 

MIR 

23 0.994 0.024 -2.8E-04 0.239 
29 0.684 0.879 -0.833 0.282 
31 0.976 0.080 0.034 0.073 TIR 
32 0.897 0.335 0.267 0.202 

      

0.99 Band E RMSE mean 
bias precision 

20 0.989 0.037 0.022 0.030 
21 0.995 0.014 0.012 0.007 
22 0.998 0.006 -3.1E-04 0.005 

MIR 

23 0.994 0.024 -7.6E-04 0.024 
29 0.686 0.877 -0.828 0.290 
31 0.966 0.106 0.083 0.067 TIR 
32 0.895 0.346 0.277 0.208 

      

0.98 Band E RMSE mean 
bias precision 

20 0.989 0.036 0.021 0.030 
21 0.995 0.014 0.012 0.007 
22 0.998 0.006 -3.6E-04 0.005 

MIR 

23 0.994 0.024 -1.3E-04 0.024 
29 0.688 0.876 -0.823 0.299 
31 0.975 0.084 0.050 0.068 TIR 
32 0.892 0.356 0.285 0.214 
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Table 2.6:  Comparison of RMSE results for 7 thermal MODIS channels and 3 
different emissivity values.  RMSE is based on the evaluation of surface temperature 
calculations using the parametric model derived correction parameters and an 
assumed surface temperature.  In this table, the RMSE values highlight the effect of 
adjusting the assumed surface temperature (lowest layer temperature from the NCEP 
profiles) by either adding (a) or subtracting (b) 5K to the lowest layer temperature at 
each observation point (n = 421).  The first column indicates the emissivity value 
used in the surface temperature calculations.  The second column indicates the 
MODIS band number.  The third column is the RMSE for the adjusted (±5K) 
assumed surface temperature.  The fourth column is the RMSE for the original 
surface temperature calculations; again, using the lowest layer temperature of the 
NCEP profile at each observation point.  The fifth column demonstrates the 
difference in between RMSE values in columns 3 and 4 (adjusted versus original). 
 
 
1.00 Band adj +5K original diff 

20 0.060 0.038 -0.022 
21 0.014 0.014 0.000 
22 0.006 0.006 0.000 

MIR 

23 0.024 0.024 0.000 
29 0.864 0.879 0.015 
31 0.096 0.080 -0.016 TIR 
32 0.253 0.335 0.082 

     
0.99 Band adj +5K original diff 

20 0.058 0.037 -0.021 
21 0.014 0.014 0.000 
22 0.006 0.006 0.000 

MIR 

23 0.024 0.024 0.000 
29 0.861 0.877 0.016 
31 0.089 0.106 0.017 TIR 
32 0.259 0.346 0.087 

     
0.98 Band adj +5K original diff 

20 0.057 0.036 -0.020 
21 0.014 0.014 0.000 
22 0.006 0.006 0.001 

MIR 

23 0.025 0.024 0.000 
29 0.856 0.876 0.019 
31 0.083 0.084 0.001 TIR 
32 0.266 0.356 0.091  

1.00 Band adj -5K original diff 

20 0.032 0.038 0.006 
21 0.014 0.014 0.000 
22 0.009 0.006 -0.003 

MIR 

23 0.024 0.024 0.000 
29 0.907 0.879 -0.028 
31 0.127 0.080 -0.046 TIR 
32 0.444 0.335 -0.109 

     
0.99 Band adj -5K original diff 

20 0.034 0.037 0.003 
21 0.014 0.014 0.000 
22 0.010 0.006 -0.004 

MIR 

23 0.024 0.024 0.000 
29 0.907 0.877 -0.030 
31 0.177 0.106 -0.071 TIR 
32 0.456 0.346 -0.110 

     
0.98 Band adj -5K original diff 

20 0.036 0.036 0.000 
21 0.014 0.014 0.000 
22 0.010 0.006 -0.004 

MIR 

23 0.025 0.024 0.000 
29 0.907 0.876 -0.031 
31 0.141 0.084 -0.057 TIR 
32 0.467 0.356 -0.111  

 
 

 

 

a. b. 
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retrievals and lacking in situ measurements, this analysis was used as a general 

comparison of temperature estimates as it is impossible to assume which is absolutely 

correct.  The intention was to assess the consistency between the SST product and the 

results derived using the parametric model.   

The MYD28 Level 2 product is produced daily at 1km resolution for day and 

night observations and available through the Ocean Color Data Processing System 

(http://oceancolor.gsfc.nasa.gov).  MODIS per channel radiance values were retrieved 

from the MYD02 (L1B), calibrated, geolocated, 1km resolution product.  Figure 2.8 

shows Quicklook images of the granules used for this comparison.   

This offered the necessary radiance values and view angles for the parametric 

model input.  For atmospheric profile data, the MODIS atmosphere product 

(MYD07)2 was used.  The MYD07 product consists of several key variables 

necessary for radiative transfer modeling including temperature, moisture profiles, 

and standard pressure levels.  These parameters are recorded in 20 vertical layers.  

This product is also generated daily, for day and night observations, at 5km horizontal 

resolution when at least 9 fields of view (FOV) are cloud free.  The validation of sea 

surface temperature included 82 near-nadir Aqua-MODIS observations.  The 

selection of near-nadir observations was intended to avoid any additional errors from 

angular effects.  Results demonstrated a low RMSE (<0.5 K) and bias of -0.45 K 

(Figure 2.9).  The precision was 0.19 K, suggesting that the bias is systematic and 

consistency between temperatures exists.  The accuracy and precision is encouraging, 

as it showed that the model agrees well on a point-to-point basis. 
                                                 
 
2 http://modis-atmos.gsfc.nasa.gov/_docs/MOD07:MYD07_ATBD_C005.pdf 
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a.  

b.  

c.        
 

Figure 2.8: Quicklook images of the 
Aqua MODIS granules used in the SST 
comparison section (Section 2.6) and 
the results plot (Fig. 2.9): (a) granule 
2004.012.0645 centered at 14°N, 70°E; 
(b) 2004.336.0150 centered at 30°N, 
170°E; (c) 2004.337.1725 centered at 
36°N, 64°W. Granule nomenclature 
indicates year.doy.hhmm, where doy is 
the day of year and hhmm is the time in 
hours-minutes (UTC).   



 

 
 

46

.  

Parametric Model atmospheric corrected temperature vs. Aqua 
MODIS SST (MOD28) - corrected for emissivity

y = 1.0119x - 3.1252
E = 0.683
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Figure 2.9: Comparison of the atmospherically corrected sea surface temperatures 
using the parametric model (MODIS band 31) versus the Aqua-MODIS sea-surface 
temperature product (MYD28).  Since emissivity correction is performed for the 
MODIS SST product, emissivity was accounted for as well when deriving surface 
temperatures with the parametric model.  An emissivity of 0.995 was assumed; 
generally accepted as a standard sea surface emissivity for MODIS band 31.  Near-
nadir observations are from 2004 (n = 78) with blue points corresponding with day of 
year (DOY) 337 at 17:25 UTC; magenta with DOY=336 at 01:50 UTC; and green 
with DOY=012 at 08:45 UTC.  The 1:1 (dashed) line is plotted for reference. 
 

 

2.7 In situ Validation 

     Ground based surface skin temperature measurements obtained with in situ 

radiometers provided the opportunity to evaluate the accuracy of the parametric 

model against real surface skin temperatures that have not been derived through other 

modeling schemes (e.g. the SST product from MODIS). In situ data from two studies 
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were used; one representing lake body targets and the other agricultural land surface 

temperatures.   

In the first case, observations were made over Lake Tahoe, California/Nevada, 

using radiometers located on 4 permanently moored buoys (Figure 2.10) [Hook et al., 

2007].  Each radiometer has been tested and calibrated to National Institute of 

Standards and Technology (NIST) acceptable levels corresponding with an accuracy 

of better than ±0.2 K [Barton et al., 2004].  Temperatures are continually recorded at 

2 minute intervals, thus allowing for coincident observations with MODIS overpasses 

(n = 30).  View angles ranged from 0.24° to 11.79°, while water vapor content ranged 

from 0.24 to 1.94 g cm-2.  Emissivity was obtained from the ASTER spectral library 

(http://speclib.jpl.nasa.gov).  For a complete description of the study site, in situ 

observation methods, and results to validate satellite sensors see: [Hook et al., 2003; 

Hook et al., 2004; Hook et al., 2005; Tonooka et al., 2005]. 

Validation with land surface temperature observations were made with data 

provided by [Coll et al., 2005].  Measurements were made with tripod mounted 

radiometers placed over stable, homogeneous sites in eastern Spain (Figure 2.11).  

Accuracy of the radiometer measurements was periodically checked against a 

calibrated blackbody and was consistently ±0.2 K.  The box-method (Rubio, 2003) 

was used to obtain site specific emissivity.  Four radiometers were assigned to each 

corner of the 1km study sites and carried along transects 100m long to obtain a mean 

LST temperature.  Standard deviations of averaged transect radiometer temperature 

measurements showed minimal variation (σ < ±0.5 K) and therefore each site, as well 

as the study area, was assumed to be homogeneous.  These ground based LST 
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measurements were collected within a 20 to 30 minute period centered at the overpass 

of MODIS Terra (n = 5) and only temperatures measured within 3 minutes of the 

satellite overpass were used for comparison.   

 

 

Figure 2.10: Lake Tahoe, California/Nevada showing the 4 National Aeronautics and 
Space Agency (NASA) buoys labeled as TB1, TB2, TB3 and TB4 (Tahoe Buoy #).  
Water properties are measured at the Midlake (star near TB1) and the Index station 
(star west of TB3).  Meteorological measurements have been made at both Incline 
(blue star) and the USCG site (red stars northwest of TB4). University of California at 
Davis also maintains two additional floats (rafts) in the southern part of Lake Tahoe 
(TDR1 and TDR2) which measure meteorological variables and bulk temperature.  
South Lake Tahoe and Stateline towns are shown for reference (black stars). 

 



 

 
 

49

View angles ranged from 5.47° to 27.78° and water vapor concentration ranged 

from 1.35 to 2.68 g cm-2.  A full description of the study site and methods can be 

found in [Coll et al., 2005].  For both comparison cases MODIS (MYD07) profiles, 

retrieved at coincident observation times and locations to in situ temperature 

measurements were used in the parametric model to generate the necessary variables 

to estimate temperatures.  Emissivity values for both site surface types were retrieved 

from the ASTER spectral library and based on the centroid value of the spectral 

response function in bands 31 and 32.  Lake Tahoe emissivity was set to 0.991 for 

band 31 and 0.985 for band 32, while the agriculture site emissivity was set to 0.984 

and 0.989 for band 31 and 32, respectively.  Emissivity for agricultural surface types 

is not explicitly available from the ASTER spectral library so instead the emissivity 

listed for grass was used.  Comparison between the emissivity used by [Coll et al., 

2005] of 0.985 and the emissivity values retrieved from the library showed they are 

quite similar.  The comparison between the model and in situ temperature 

measurements showed a good agreement (MODIS band 31: E = 0.86, RMSE = 0.53 

K; band 32: E = 0.78, RMSE = 0.84 K), with a slight systematic underestimation of 

the surface temperature by the model (band 31 bias = -0.22 K; band 32 bias = -0.42 

K).  The precision, however, showed that the standard deviation in the bias was 

nearly two times greater (band 31 precision = 0.49 K; band 32 precision = 0.76 K), 

indicating that on an individual basis, improper characterization of the atmospheric 

conditions and/or emissivity may exist.  Figure 2.12 shows the plot of the temperature 

retrievals between the model and in situ observations for band 31 and 32. 
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A limited number of coincident observations (30 for Lake Tahoe, 5 for Valencia) 

were available for in situ comparison and therefore future investigations should 

include more data.  Nevertheless, the analysis includes a range of temperatures for 

two discrete surface conditions with results that are encouraging. 

 

 

Figure 2.11: Study sites used for measurement of LST.  In situ data were recorded 
along transects within flat, homogeneous plots consisting of cultivated rice fields.  
The above image is an ASTER color composite (R=0.81μm; G=0.66μm; B=0.56μm) 
from August, 2004.  Courtesy of César Coll. 
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a. 

MODIS Band 31 Surface Temperature Comparisons
in situ vs. satellite derived
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b. 

MODIS Band 32 Surface Temperature Comparisons
in situ vs. satellite derived
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Figure 2.12: Comparison of surface temperatures derived from in situ radiometric 
measurements versus the parametric model derived temperatures for (a) band 31, and 
(b) band 32.  Emissivity values used for the model calculated temperatures were 
retrieved from the ASTER spectral library.  For Lake Tahoe, represented by the blue 
diamonds, was set to 0.991 and 0.985, while emissivity for the agricultural site was 
0.984 and 0.989 (band 31 and 32, respectively).  The MODIS atmosphere product 
(MOD07) was used for the atmospheric profile input data in the parametric model.  
The 1:1 line (dashed) is shown for reference.  
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2.8 Evaluating Atmospheric Effects on MODIS FRP Retrievals 

The process of combustion releases energy through several pathways including 

conduction, convection, vaporization, and radiation.  The MODIS sensor estimates 

the rate of radiative energy emitted from biomass burning, referred to as the fire 

radiative power (FRP, units in MW), using an empirical relationship relating the 

difference in the “fire pixel” and “background pixel” 4 µm brightness temperatures 

[Kaufman et al., 1998].  The middle infrared (MIR) channel is ideally suited for 

several reasons:  (1) typical fire temperatures (600 - 1200K) correspond with large 

amounts of black-body radiation which, according to Planck’s Law, peak in this 

spectral region; (2) separation between fire and background temperatures is clearly 

distinguishable, and; (3) the MODIS  4 µm channel is situated in an “atmospheric 

window” to minimize perturbation.  Nonetheless, some portion of energy will be lost 

to atmospheric attenuation, primarily due to N2, CO2, and water vapor [Kaufman et 

al., 1998].  In the following section simulated fires were examined to evaluate what 

this loss of energy is and potential adjustments needed to the FRP measurements. 

Simulated fires were comprised of 3 temperature components including a flaming 

(Tf) portion, a smoldering (Ts) portion, and the background (Tb) portion.  

Temperatures for each component were adopted from Kaufman et al. [1998] and 

randomly chosen within a specific range: 700-1300 K for Tf; 400-600 K for Ts; and 

280-320 K for Tb.  The fraction of each Tf and Ts component within a fire was allowed 

to vary randomly between 0.0001 and 0.01 (or between 100 m2 and 10,000 m2 in a 

MODIS 1km MIR pixel) and was based on realistic estimates of the minimal 

detectable area [Giglio et al., 2003].  The Tb fraction was computed as 1 minus the 
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sum of the Tf and Ts components.  The radiance for each component was calculated 

using the Planck function (equation (2.22)) and summed to produce a total fire 

radiance which represents the surface radiation to be adjusted for atmospheric effects.  

The atmospheric correction parameters, Latm ↑, Latm ↓, and t, were generated from 

the parametric model using MOD07 profiles (see section 2.6) which were chosen to 

cover a range of land covers (Table 2.7) and based on active fires being present in the 

Quicklook images (e.g. Figure 2.13).   

 

Table 2.7: Regions, date-time, and the number of profiles used from MOD07 to 
generate realistic atmospheric conditions to derive radiative transfer parameters. 
 

Region Time Stamp # profiles 

NHAF 2008001.1240 113 
NHAF 2008116.1155 125 
SHAF 2008229.1210 117 
SHAF 2008229.1215 94 
AUST 2008198.0440 233 
AUST 2008214.0440 252 
BOAS 2008167.0405 84 
BOAS 2008182.0500 190 
BONA 2008212.2005 143 
BONA 2008221.1955 140 
CEAS 2008198.0455 113 
CEAS 2008222.1045 105 
SHSA 2008229.1710 246 
SHSA 2008245.1710 201 

 

 

Over 2000 unique combinations of simulated fire radiances and atmospheric 

correction parameters generated from the MOD07 profiles were used in equation 

(2.23) to simulate TOA fire radiances. The water vapor content ranged from 0.88 to 
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5.6 g cm-2.  Emissivity was assumed to be unity.  Finally, the MODIS FRP algorithm 

(equation (2.25)) was used to convert surface and TOA fire brightness temperature to 

FRP.   

 

FRP [MW km-2] = 4.34 x 10-19 (T8
MIR – T8

bg, MIR) (2.25) 

 

Where T8
MIR is the fire pixel brightness temperature and T8

bg, MIR the background 

temperature; raised to the 8th power.  More details about the MODIS FRP algorithm 

can be found in Chapter 3 as well as Kaufman et al. [1998]. 

 

 

 

 

Figure 2.13: Example Quicklook from MODIS Aqua for central Africa on August 
16th, 2008 at 1210 (UTC).  117 MOD07 profiles were processed in the parametric 
model for this granule. 
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The result from the comparison of the surface and TOA FRP across all regions 

and profiles suggests a 20% loss of instantaneous energy (Figure 2.14).  View angle 

has a non-linear, inverse relationship with the bias between surface and TOA FRP, 

which for the purposes of this relationship was driven only by atmospheric conditions 

as point-spread function, fire location within a pixel, and scan-pixel size effects were 

not considered.  The underlying cause of the bias associated with view angle was then 

examined.   
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Figure 2.14: Comparison of simulated surface and TOA FRP.  Radiances were 
simulated from randomly generated fire pixel temperature and fractional area 
components (fire, smoldering, and background).  MODIS Aqua profiles were used to 
provide realistic atmospheric parameters used in the radiative transfer modeling.  The 
1:1 (dashed) line is plotted for reference. 
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Although water vapor is a strong absorber of thermal radiation, it did not show 

any influence on the bias in this case study.  This is likely due to (1) optimal 

placement of the MODIS 4μm channel to minimize water vapor absorption, and (2) 

fires generally occur during dry periods when relative humidity is low (i.e. lower 

water vapor content in the atmosphere) relative to other times of the year.  

 

Influence of View Angle on FRP bias

y = e-0.1374x

R2 = 0.775

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

0.90 1.10 1.30 1.50 1.70 1.90 2.10

Inverse Cosine (view angle)

TO
A

/S
ur

fa
ce

 F
R

P
 ra

tio

 

Figure 2.15: Influence of the inverse cosine of the view angle on the bias between 
TOA and surface FRP. 

 

Beyond further comprehensive analysis of the atmospheric constituents, it was 

concluded that fire radiance is primarily being attenuated in the atmosphere by 

homogeneous gas species such as N2 and CO2.  Therefore, provided the view angle is 
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known, a simple, but effective correction is offered, in which the bias between surface 

and TOA FRP can be estimated from an exponential function and applied to the TOA 

FRP to adjust for atmospheric effects.  The function is physically based on the cosine 

effect of the view angle.  Figure 2.15 provides a plot of the relationship between the 

bias and inverse cosine of the view angle, along with the corresponding exponential 

fit.  The exponential function, rather than a linear fit, is appropriate given the nature 

of error with increasing view angle (cosine effect).  Figure 2.16 provides a plot of the 

“corrected” TOA FRP using the exponential correction factor. 
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Figure 2.16: Simulated TOA FRP “corrected” for atmospheric effects compared with 
simulated surface FRP.  The 1:1 (dashed) line is plotted for reference. 
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2.9 Atmospheric Profiles 

An important aspect of the atmospheric correction in the longwave infrared is the 

accuracy of the atmospheric profile used in the correction model.  As part of the 

evaluation process an additional analysis was included to test several sources of 

atmospheric data with the idea that an operational atmospheric correction scheme for 

MODIS could be developed using the parametric model and an accurate profile 

retrieved via coincident satellite sounding.  Three sources of atmospheric profile data 

were compared; the Integrated Global Radiosonde Archive (IGRA), positioned as the 

reference data since in situ measurements are made along the path of ascent in the 

atmosphere; MODIS profile retrieval product (MYD07), discussed earlier; and the 

Atmospheric InfraRed Sounder (AIRS)3.   

The IGRA4 database [Durre et al., 2006] consists of 1500 globally distributed 

sounding stations with data records spanning over 30 years.  Generally, each station 

makes two daily launches at 1100 and 2300 UTC.  Profile observations are provided 

at standard, surface, tropopause, and significant levels.  Standard level variables 

include pressure, temperature, geopotential height, dew point temperature, wind 

direction, and wind speed.  The standard level product generally had a vertical 

resolution of 20 layers.  The vertical resolution of the standard level product was 

expanded by including variables from the significant thermodynamic layer product, 

therefore creating a profile that included approximately 40 vertical layers.  The 

radiosonde profiles were assumed to be the benchmark by which to compare other 

profiles.  Since NCEP profiles are assimilated products incorporating radiosonde data, 
                                                 
 
3 http://eospso.gsfc.nasa.gov/eos_homepage/for_scientists/atbd/docs/AIRS/AIRS_L1B_ATBD_Part_1.pdf 
4 http://www.ncdc.noaa.gov/oa/cab/igra/index.php 
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the above analysis was not replicated with this data.  Rather, the intention is to view 

the radiosonde data as a potential source of data to act as a “truthing” product to 

validate the satellite derived profiles, much in the way that the Aerosol Robotic 

Network (AERONET)5 system is used for aerosol retrievals.  However, many 

radiosonde launch stations recorded sporadic or incomplete profile information which 

may limit the functionality as a global validation dataset.  In some cases the data were 

completely missing for a given satellite overpass or the vertical content was too small 

to be useful (e.g. <10 layers).   

AIRS is a high spectral resolution spectrometer with 2378 channels in the thermal 

infrared, ranging from 3.7μm to 15.4μm.  The standard product provides global, twice 

daily coverage at 50 km horizontal and 28 layer vertical resolutions for any given 

location; the vertical resolution was interpolated to 40 layers to match the radiosonde 

profiles for consistency.  Among the variables recorded, the most relevant includes 

geopotential surface and layer height, water vapor mixing ratio, water vapor 

saturation mixing ratio, surface and layer temperature, standard pressure levels, 

columnar water vapor, and quality flags.  Since the AIRS sensor is aboard Aqua it 

provides temporally coincident observations with MODIS, but at higher spectral 

resolution and greater profile sounding vertical resolution.  However, the spatial 

resolution of AIRS (50 km) is nearly 50 times coarser than MODIS radiance 

retrievals (1 km), and 10 times coarser than the MYD07 product (5 km). 

It should be stated that near coincident observations were assumed from AIRS 

and MODIS.  Although it is unrealistic to think that the timing, and therefore the 

                                                 
 
5 http://aeronet.gsfc.nasa.gov/F_Info/system_info_additional.html 
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profiles retrieved from the three sources will be identical, this analysis offered an 

opportunity to investigate several sources of profile data to see how closely the 

temperatures, produced using at-sensor radiances, corresponded.    

MODIS L1B radiance retrievals were once again used as the TOA observation 

data to be adjusted for atmospheric perturbations.  Incorporating the radiosonde 

profiles into MODTRAN returned the necessary correction parameters which were 

then used to calculate synthetic “reference” surface brightness temperatures to 

compare with the parametric model.  For comparison the two satellite-derived 

atmospheric profile products available aboard the Aqua satellite (AIRS and MODIS) 

were used with the parametric model to correct TOA radiances and calculate surface 

temperatures.  Coincident observations between Aqua and radiosonde soundings were 

limited to the launch times of at IGRA stations.  Also, stations were chosen that 

offered coastal launches and prevailing winds that would provide open water 

observations, reducing emissivity uncertainty, and allowing for comparison with 

AIRS and MODIS.  Several locations in the Mediterranean Sea were chosen for their 

ideal physical location and coincidence of Aqua satellite overpass with radiosonde 

launch. 

 Figure 2.17 demonstrates the agreement between the “reference” temperatures 

and the AIRS-parametric model derived temperatures for MODIS bands 31 (E = 0.88, 

bias = -0.02°C) and 32 (E = 0.84, bias = -0.04°C).  The RMSE for both bands 

indicates the error in the match between the temperature derivations is less than 1 K.  

The precision indicates, however, that on a point-by-point basis the temperatures 

deviate by an average of 0.5 K and 0.8 K for band 31 and 32, respectively.  A limited 
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number of observations (n = 15) and an average difference of 0.44 g cm-2 in the water 

vapor content recorded by the radiosonde and AIRS may be the cause. 

 The corresponding comparison between the radiosonde-MODTRAN reference 

temperatures and the MYD07-parametric model temperatures showed less agreement 

for bands 31 (E = 0.50) and 32 (E = 0.13) than the AIRS-parametric model 

temperature comparisons above.  Residual error and bias were greater as well (band 

31 RMSE = 1.50 K, bias = 1.26 K; band 32 RMSE = 2.61 K, bias = 2.21 K) (Figure 

2.18).  The precision showed that the spread of data does not agree well either.  The 

larger bias generated when using the MODIS profile data may be in part due to lower 

spectral resolution as compared with AIRS.  In addition, the mean difference in water 

vapor content between MODIS and the radiosonde retrievals was 2.7 g cm-2; 

significantly greater than between AIRS and radiosonde retrievals.  Indeed, validation 

of MOD07 product for the most recent reprocessing (“Collection 5”) demonstrated 

greater bias by the MODIS product clearly interpolation (spatial and temporal) of 

radiosonde measurements is necessary for atmospheric data to be used on a global, 

operational scale.  Frequent and regular validation of the MODIS and AIRS profiles 

against radiosonde measurements would insure product accuracy and offer a 

quantitative measure of uncertainty in the products.  Another consideration is the 

vertical resolution of soundings which influences the accuracy of RTM estimates.  

The advantage AIRS offers over MODIS is greater vertical detail of the atmosphere, 

but this is offset by the lower horizontal resolution.  Something of a combination  
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B31:  Radiosonde-MODTRAN vs AIRS-PM
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b. 

B32:  Radiosonde-MODTRAN vs AIRS-PM
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Figure 2.17: Comparison of calculated sea surface temperatures.  Radiosonde 
profiles used in MODTRAN offer “reference” temperatures to compare the AIRS 
profile – parametric model derived temperature estimates.  MODIS band 31 (a) and 
32 (b).  The 1:1 line (dashed) is shown for reference.  
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a. 

B31:  Radiosonde-MODTRAN vs MOD07-PM
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b. 

B32:  Radiosonde-MODTRAN vs MOD07-PM
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Figure 2.18: MODIS band 31(a) and band 32 (b) comparison between the 
radiosonde-MODTRAN “reference” surface temperatures and MOD07- parametric 
model derived temperatures.  The 1:1 line (dashed) is shown for reference. 
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between the MODIS horizontal and AIRS vertical resolutions would offer greater 

detail about the true atmospheric conditions.   

2.10 Conclusions 

 The parametric model offers an approach to operationally correct the at-sensor 

radiance values for atmospheric perturbations. Evaluation of the parametric model 

against MODTRAN showed consistent results for retrieval of correction parameters.  

Computation speeds to generate the correction parameters were over 3 orders of 

magnitude faster than MODTRAN.  This is a significant increase when considering 

the enormity of performing such computations on a global, operational basis.  

Comparison of surface temperatures calculated using the parametric model against 

the MODIS SST (MYD28) product showed a good agreement (RMSE = 0.49 K) with 

individual point retrievals within -0.45 K ± 0.19 K of the MODIS estimates.  It should 

be reiterated that the MYD28 product cannot be used as a surrogate for in situ 

measurements.  Rather the comparison was intended to assess if the parametric model 

was consistent with estimates from a standard MODIS product.   

 Evaluation of MODIS surface temperature retrievals, corrected for atmospheric 

effects with the parametric model, versus in situ temperature retrievals demonstrated 

the model’s ability to accurately retrieve correction parameters.  For band 31, and 

both surface types (LST and SST), the bias was -0.22 K with an RMSE of 0.53 K.  

While the bias for band 32 was -0.42 K with an RMSE of 0.84 K.  This is well within 

the reported LST accuracy of 1 K reported by [Wan et al., 2002].  The precision for 

both bands was roughly a factor of 2 greater (0.49 K and 0.76 K, band 31 and 32, 
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respectively) indicating variability between retrievals, perhaps due to some 

heterogeneity in the surface conditions. 

 Applying the parametric model to evaluation of MODIS estimates of FRP reveals 

an approximately 20% underestimation in TOA FRP.  Ideal placement of the MIR 

channel on MODIS limits the impact of water vapor attenuation on the observed fire 

radiation, but gaseous absorption by N2 and CO2 indeed play a role in reducing the 

energy sensed.  Since gaseous species are rather homogeneous in the atmosphere the 

attenuated signal can best be characterized by the satellite view angle.  A simple, yet 

effective correction factor showed that FRP could be adjusted by the inverse of the 

view angle cosine. 

Consideration of the profiles used in radiative transfer modeling is paramount to 

achieving accurate correction for atmospheric effects.  This study touched on a few 

sources of satellite profile data and demonstrated their relative accuracy when 

compared with radiosonde atmospheric retrievals.  However, nonuniformity of 

atmospheric water vapor between profile sources suggests that obtaining a profile that 

accurately reflects the true atmospheric state may be difficult.   
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Chapter 3:  Estimating Biomass Consumed from Fire Using 
MODIS FRE6 
 

 

3.1 Introduction 

Wildland fire is a global phenomenon which plays a pivotal role in affecting the 

dynamics of vegetation, hydrology, and atmospheric composition [Innes, 2000].  

Recently, Running [2008] pointed to the impacts of fire disturbance in altering 

ecosystem carbon cycles; often shifting large carbon reservoirs to carbon sources.  

Projected increases in burned area with climate change, such as reported by 

Flannigan et al. [2005], underscore the importance of understanding fire in current 

and future climate conditions.   

Quantifying the biomass consumed by fires is a key component to elucidate these 

dynamics.  The biomass consumed (kg) is typically calculated as the product of 

burned area (km2), fuel load (kg km-2), and combustion completeness (fraction of 

available fuel burned) [Seiler and Crutzen, 1980].  However, accuracy of these 

components remains an issue that leads to an uncertainty in estimates of biomass 

consumed and related emissions of at least 50% [Robinson, 1989; Korontzi et al., 

2004; van der Werf et al., 2006].  Despite improved datasets, uncertainty in current 

estimates suggests the need to explore alternative and complementary approaches.  

Vegetation fires can be thought of as the obverse of photosynthesis in which energy 

stored in biomass is released as heat (equation (3.1)).   

                                                 
 
6 The following chapter is an expanded version of Ellicott et al., [2009b] 
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(C6H10O5)n + O + ignition temperature              CO2 + H2O + heat (3.1) 

 

The cascade of chain of reactions starts with the pre-heating of fuels ahead of the 

fire front and partial pyrolytic decomposition.  Ignition signifies the transfer from pre-

heating to combustion in which exothermic reactions start and the next phase, 

encompassing a combination of flaming and smoldering combustion, begins.  

Flaming combustion occurs when flammable hydrocarbon gases released during 

pyrolysis are ignited with wildfire flaming combustion temperatures in the range of 

800 – 1400 K [Lobert and Warnatz, 1993].  Pyrolytic action involves the thermal 

decomposition of fuel resulting in the release of water, CO2, and other combustible 

gases (e.g. CH4) and particulate matter.  The heat produced, often measured as heat 

yield (MJ/kg), is thermal energy transferred via conduction, convection, vaporization, 

and radiation and provides a metric of the total potential energy released if complete 

combustion of the fuel occurs.  Although other factors, including slope, fuel 

arrangement, and wind speed influence the actual heat yield in a fire event, the 

theoretical value varies very little between fuel types [Whelan, 1995; Stott, 2000].  

The radiant component is emitted as electromagnetic waves traveling at the speed of 

light in all directions and is proportional to the absolute temperature of the fire 

(assumed to be a black body) raised to the fourth power.  It is the radiative component 

that is estimated from Earth observing satellite sensors, offering a method to quantify 

the biomass consumed, and assuming an emission factor (gas or aerosol mass emitted 
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per mass of fuel consumed, [Andreae and Merlet, 2001]) is known, the atmospheric 

emission load. 

The foundation for using measurements of fire radiative energy (FRE) is based on 

the fact that the rate of biomass consumed is proportional to the rate of FRE.  

Integrating the rates over time and space yields the totals for biomass consumed and 

FRE.  Based on simulated fires, Kaufman et al. [1998] revealed that an empirical 

relationship exists between instantaneous FRE (fire radiative power, or FRP) and 

pixel brightness temperature measured in the Moderate Resolution Imaging 

Spectroradiometer (MODIS) middle infrared channel (4 µm) and is the current 

MODIS FRP algorithm (equation (3.2)): 

 

FRP [MW km-2] = 4.34 x 10-19 (T8
MIR – T8

bg, MIR) (3.2) 

 

where FRP is the rate of radiative energy emitted per pixel (the MODIS 4µm channel 

has IFOV of 1km), 4.34x10-19 [MW km-2 Kelvin-8] is the constant derived from the 

simulations, TMIR [Kelvin] is the radiative brightness temperature of the fire 

component, Tbg, MIR [Kelvin] is the neighboring nonfire background component, and 

MIR refers to middle infrared wavelength, typically 4μm.   

 Field experiments by Wooster et al. [2005] demonstrated the use of instantaneous 

and total FRE measurements to estimate biomass consumed from fire.  A recent 

laboratory investigation of FRE and biomass fuel consumption by Freeborne et al. 

[2008] supported the accuracy of Wooster et al.’s [2005] findings and lends credence 

to the application of satellite based measurements of FRE.  Roberts and Wooster 
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[2008] showcased the application of high temporal satellite based FRP measurements 

from the SEVIRI geostationary sensor to calculate FRE.  However, to date no study 

has derived FRE at a global scale, in part due to limitations in temporal or spatial 

resolution of satellite sensors.   

This chapter presents an approach to estimate MODIS FRP beyond the nominal 

retrievals.  FRP was estimated at 0.5˚ spatial and monthly temporal resolution for 

2001 – 2007 using the MODIS climate modeling grid (CMG) standard product 

[Giglio, 2005].  FRP estimates are integrated to calculate FRE and then applied to 

FRE-based biomass consumption coefficients to calculate the total biomass burned 

from fire in Africa.  Finally, a comparison of biomass burned estimates with 

previously published estimates is presented and followed by concluding remarks.   

 

3.2 Materials and Methods 

3.2.1 MODIS FRP 

The MODIS sensors, onboard the sun-synchronous polar-orbiting satellites Terra 

and Aqua, acquire four observations of nearly the entire Earth daily at 1030 and 2230 

(Terra) and 0130 and 1330 (Aqua), equatorial local time. The first MODIS sensor 

was launched aboard the Terra satellite in 1999; the second was launched in 2002 

aboard Aqua.  In this research, fire radiative energy (FRE) was estimated at 0.5˚ 

spatial and monthly temporal resolution for 2001 – 2007 using the MODIS climate 

modeling grid (CMG) standard product [Giglio, 2005].  The CMG product provides 

monthly mean fire radiative power (FRP), as well as products describing cloud 

fraction and corrected pixel counts, at 0.5˚ spatial resolution [Giglio, 2005; Giglio et 
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al., 2006].  Monthly mean FRP was multiplied by the cloud-and-overpass-corrected 

fire pixel count, producing the total FRP released within a given grid cell for each 

time period.  Five years of monthly CMG data (2003 to 2007) from both Terra and 

Aqua was also used to offer a long term (rather than a single year) characterization of 

the temporal variability between the two satellite observations.  This variability is 

used later to parameterize the fire radiative power diurnal cycle.   

 In addition, the MODIS Level 2 fire product (MOD14) was included from Terra 

and Aqua. This fire product is collected daily at 1km resolution and includes, among 

other information, the latitude, longitude, FRP, and confidence of the fire detection.  

Since neither SEVIRI nor VIRS provide high latitude fire observations (i.e. boreal 

fires) the fire radiative power diurnal cycle characterization for these cases were 

supplemented by MODIS observations and is described later in section 3.3.1. 

  

3.2.2 SEVIRI FRP 

 The Spinning Enhanced Visible and Infrared Imager (SEVIRI) was launched 

aboard the European Organization for the Exploitation of Meteorological Satellites 

(EUMETSAT) Meteosat-8 satellite on August 28th, 2002.  SEVIRI’s nominal position 

at 0° longitude centers it on Europe and Africa while providing a geographic viewing 

range between approximately 75°E - 75°W and 75°N - 75°S in the longitudinal and 

latitudinal directions, respectively.  The SEVIRI sensor provides 15-minute temporal 

resolution across 11 spectral channels (0.6μm – 14μm) with a horizontal spatial 

resolution of 3km at the sub-satellite point and an instantaneous field of view (IFOV) 

of 4.8km. Of particular interest is the 3.9μm “fire” channel, which has a low noise-
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equivalent temperature difference (NEdT) of less than 0.35k at 300k [Roberts et al., 

2005].  SEVIRI FRP observations were used from February and July, 2004.  These 

two months capture the distinct period of fire activity in Africa which follows a 

latitudinal gradient, starting in the North and progressing South through the year, 

eventually shifting North again by December.  A large number of observations were 

available for February and July (~1.3 x 106 and 2.1 x 106 fire pixels, respectively) 

providing an adequate sample to characterize the fire radiative energy diurnal cycle.   

 

3.2.3 TRMM VIRS 

The Visible and Infrared Scanner (VIRS) aboard the Tropical Rainfall Measuring 

Mission (TRMM) was launched in 1997 and though intended to monitor rainfall 

variability it has proven successful at fire detection and monitoring, owing to channel 

placements at 3.75μm and 10.8μm [Ji and Stocker, 2002; Giglio, 2007]. TRMM has 

an inclined (35°), precessing orbit so that VIRS observes the Earth between 38°N and 

38°S.  The precessing orbit also means that local overpass time changes to cover each 

hour of a day once per month.  This drift in overpass time allowed Giglio [2007] to 

characterize the diurnal cycle of fire observations for a “typical” 24 hour period after 

corrections for overpass and cloud obscuration biases. Probability density functions 

(PDF) were used for 7 of the 15 diurnal cycles reported by Giglio [2007].  Although 

this data does not directly provide a quantity of FRP, the probability of fire detection 

for a given hour corresponds well with FRP as demonstrated by Giglio [2007].  

Therefore it can be assumed that the shape of the TRMM PDF curves corresponds 

with the shape of the FRP diurnal curve.  
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3.3 Fire Radiative Energy 

3.3.1 Fire Energy Diurnal Cycle 

 An important characteristic of the radiative energy emitted from fires is the 

diurnal cycle.  Giglio [2007] characterized the hourly cycle of fire activity in the 

tropics and sub-tropics using the VIRS and showed that for most tropical and 

subtropical fires the temporal trajectory (or curve) follows a rather distinct pattern of 

increasing hourly fire activity into the early afternoon, followed by a rapid drop in 

activity (and associated fire radiative energy) through the evening.  Describing the 

discrete observations as a continuous function simplifies quantifying the integral of 

the area beneath the curve which represents the total fire energy detected.  Roberts 

and Wooster’s [2008] application of geostationary observations from SEVIRI 

showcased the capability of high temporal FRP measurements for the calculation of 

time integrated fire energy.   

 In this research, an approach to estimate MODIS monthly totals of FRP for each 

hour outside the nominal retrieval times (again, 10 am/pm UTC for Terra; 1 am/pm 

UTC for Auqa) is developed.  Integrating the hourly FRP totals for each month 

generates monthly FRE estimates to investigate biomass burning consumption, as 

well as aerosol emissions (Chapter 4).  To characterize regionally representative fire 

energy temporal trajectories a combination of observations from SEVIRI, VIRS, and 

MODIS was used.  Examination of the temporal trajectories was performed in 16 

globally distributed regions.  These were chosen to be large enough to be statistically 

robust, yet small enough to allow for spatial variability between regions (Table 3.1 

and Figure 3.1).  VIRS data, provided by Giglio [2007], offered regions in the tropics 
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Table 3.1: Climate modeling grid (CMG) regions used for examining the Terra/Aqua 
ratio and diurnal cycle of fire.  Coordinates (X, Y) are for the upper left cell in each 
region.  
 

x (CMG) Y (CMG) size (degree) region name 
406 160 7.5° x 7.5° SEVIRI -  eastern sahel 
406 156 12.5° x 6° SEVIRI -  eastern sahel 
380 160 10° x 10° SEVIRI -  central 
361 161 10° x 10° SEVIRI -  central coast 
399 200 7.5° x 7.5° SEVIRI -  south central 
420 187 7.5° x 7.5° SEVIRI -  south east 
399 185 7.5° x 7.5° SEVIRI -  central 
400 156 18° x 8° VIRS - eastern sahel 
390 192 6° x 9° VIRS - west central Africa 
240 196 6° x 5° VIRS - Brazil deforest 
422 192 8° x 12° VIRS - east central Africa 
620 202 6° x 4° VIRS - northern Australia 
408 230 8° x 8° VIRS - South Africa 
510 136 10° x 8° VIRS - India 
480 43 20° x 6° MODIS - north central Russia 
65 42 15° x 7.5° MODIS - Alaska-Canada border

 
 

and sub-tropics to supplement, and compare in the case of Africa, SEVIRI data.  Two 

additional sites were included using MODIS daily FRP (MOD14) retrievals from 

high latitude boreal sites in Russia and North America.  These retrievals were 

included to aid in characterizing the fire cycle beyond the geographic coverage 

offered by SEVIRI and TRMM (i.e. tropics and subtropics) and therefore provide 

insight into different fire energy emission cycles.  As mentioned previously in section 

3.2.1, MODIS is on polar-orbiting satellites and subsequently provides more frequent 

retrievals at higher latitudes.  Although this bias is accounted for in the gridded CMG 

product [Giglio et al. 2006], the daily observation bias aids the analysis of the diurnal  
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Figure 3.1: Global extent of regions used to analyze the diurnal cycle from SEVIRI, 
TRMM, and MODIS observations.  The red circles highlight regions used as 
examples in Figure 3.2.  The base map is the regional categorization from the Global 
Fire Emissions Database (GFEDv2) [van der Werf et al., 2006]. 
  
  

cycle by providing additional retrievals beyond the nominal overpass times.  On 

average, each satellite provided 4 to 6 overpasses per day at high latitudes.  FRP 

observations were binned in hourly increments and normalized by the number of days 

in the month contributing to a binned hour.  Several examples of the diurnal cycle are 

illustrated in Figure 3.2. 

 Using the data described a modified Gaussian function (equation (3.3)) was 

shown to provide a simple and accurate representation of the observed diurnal cycle: 
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Where t is time (hour) for which the discrete FRP is estimated and FRPpeak is the peak 

of the curve.  The hour (h) of peak FRP generally occurs in the early afternoon, but 

this variable has little effect on the final FRE derivation.  More importantly is σ  

which is the sigma (standard deviation) of the curve and provides details about the 

duration of fire activity.  Equation (3.3) also includes a background FRP, b, which is 

a constant independent of time.  The dependence of parameters of the diurnal cycle, 

h, σ, and b, were examined as a function of Terra-to-Aqua FRP (T/A) ratios.  The 

T/A ratio is based on monthly CMG FRP values for 2003 - 2007 (n = 60) and 

represents the average ratio between Terra and Aqua FRP retrievals within a given 

region (Figure 3.2).  As stated in section 3.2.1, the CMG FRP product is the 

summation of daily MODIS retrievals constituting daytime and nighttime fire 

detections.  Figure 3.3 shows Terra and Aqua monthly mean FRP plotted over 60 

months of data for several regions. 

 The contention is that given the simple Gaussian form adopted for the diurnal 

cycle, the variation in the T/A ratio can serve as a proxy for the fire energy diurnal 

cycle.  Aqua’s afternoon (1330 local time) overpass should correspond (generally) 

with the hour of peak fire energy.  This is a function of local fire weather conditions 

as humidity decreases and fuels dry with an increase in ambient temperature and pre-

heating by neighboring combusting fuels [Whelan, 1995].  Terra’s morning overpass 

will likely correspond with less fire activity as compared with Aqua.   In this 

research, it was theorized that the ratio between Terra and Aqua FRP should relate to 
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the variables in the Gaussian function, specifically the duration of peak activity (σ 

parameter) and the constant (background) fire energy (b).  In addition, the Gaussian 

model appears adaptive to local diurnal cycles of fire radiative energy, as illustrated 

in Figure 3.2.  A large difference between Terra and Aqua (e.g. 0.20 T/A ratio) would 

indicate a rapid increase in fire radiative energy and shorter duration of fire activity.  

Anthropogenic fires such as for pasture maintenance, agricultural clearing, or slash 

burning, offer a good example as they are typically set during early to mid-day and 

burn out by evening.  A T/A ratio approaching 1.0 would represent a flatter, smoother 

fire radiative energy cycle where the fire is more active around the clock.  Forest 

fires, particularly fires that are unmanaged, may burn with a relatively (to 

anthropogenic fires) consistent fire radiative energy throughout the diurnal cycle with 

a dip in energy in the cooler, often humid, early morning hours [Whelan, 1995].   This 

is evident in the CMG product when the Terra summation of FRP (1030 and 2230) is 

nearly the same, or even greater, than the Aqua summation (1330 and 0130).  Boreal 

fires, which tend to burn for days to weeks with relatively consistent fire energy 

emissions, offer a good example of this scenario.  In fact, ratios greater than 1.0 are 

possible, as seen in Figure 3.4b.  In this case, because of changes in local weather 

conditions fires tend to subside in activity in the early morning hours as would be 

observed by Aqua at 0130.  The result is that the sum of day and night FRP from 

Terra is greater than the sum of day and night FRP from Aqua.   

 Figures 3.4a, b, and c, respectively, show the variation of the diurnal cycle 

parameters h, σ and b as a function of the T/A ratio derived from the 2003 - 2007 

period.  The σ  parameter shows a good correlation with the T/A ratio, highlighting  
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Figure 3.2: Fire radiative power diurnal cycles.  The red curve (solid line) shows the 
fit of the diurnal cycle using a modified Gaussian function (Eq. (5)).  Regions are 
highlighted with red circles in Figure 3.1 and correspond with (a) SEVIRI northern 
Africa region, (b) TRMM VIRS “Brazil deforestation” region; and (c) MODIS boreal 
Russia.  Shown for reference are MODIS overpass times: Green vertical lines for 
MODIS-Terra and blue vertical lines for MODIS-Aqua. 
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(a)  

(b)  

(c)  
 
 

Figure 3.3:  Ratio between 
monthly Terra and Aqua 
(T/A) CMG FRP from 2003-
2007 (n = 60) for 3 study 
regions (see Figure 3.1) used 
to develop relationship with 
the temporal curve of fire 
observations within the 
corresponding region; (a) 
central Africa region used 
with SEVIRI diurnal curve 
characterization (Figure 
3.2a); (b) TRMM Brazil 
“deforestation” region 
(Figure 3.2b); and (c) 
corresponds with MODIS 
boreal diurnal curve regions 
(Figure 3.2c).  
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that with low T/A values the width of the curve decreases (i.e. steeper curve), likely 

associated with rapid burning fire events.  On the other hand, as the T/A ratio 

approaches 1.0 there is a correspondingly wider curve and thus greater σ value.  The 

peak hour (h) of the diurnal cycle is not correlated with the T/A ratio, but values tend 

to fall around the expected range of early afternoon.   A sensitivity test of the h 

parameter indicated that its influence on calculating FRE was minimal.  For example, 

applying a range of plausible T/A ratios, between 0.1 and 1.2 (at 0.1 interval steps), to 

the h fit results in only a half-hour change in the peak hour.   
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Figure 3.4: A sensitivity test for the modified Gaussian function h parameter.  FRE 
estimates were made using a static h value of 13.64 (red line/triangles) and compared 
with FRE estimates made with the standard fitting process for h. 
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On the other hand, applying the same range of T/A ratios to the σ parameter results in 

a curve width at half maximum of over 4 hours.  An example test is presented in 

Figure 3.4 in which the h value was fixed at 13.64 (based on using a global mean T/A 

ratio of 0.76) and FRE modeled using the fit shown in Figure 3.5a.  The chart shows a 

4.8% mean annual global underestimation in FRE when using a static h value, 

suggesting that this parameter does not strongly influence FRE, assuming the value is 

reasonable (i.e. a peak hour typically near noon local time).  Monthly mean bias 

between 2003 and 2007 was similar as well (4.7%).   

 The background level of the diurnal cycle, b, (Figure 3.5c) shows a small level of 

constant FRP for most fires sampled over Africa (less than 0.1).  However, substantial 

background is observed over the boreal sites with b nearly 1.0 for T/A ratio.  This is 

indicative of fires that burn more continuously (i.e. day and night).It should be noted 

that the diurnal cycle characterization is based on observations made using SEVIRI, 

TRMM, and two high latitude regions for MODIS.  Application of this process to 

other regions will include some amount of error and this uncertainty is discussed later 

in the dissertation. 

 

3.3.2 Computation of the FRE from Aqua CMG FRP and T/A ratio  

Using the relationships calculated in Figure 3.5 and the mean T/A ratio per cell, 

FRE was estimated using MODIS CMG FRP for 2001 – 2007.  The CMG product 

was chosen because it offers a global scale dataset necessary for comparison with the 

OCBC inversion product (Chapter 4).  Additionally, it offered an output product 

which is appropriate for use with climate models, while retaining temporal and spatial  
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Figure 3.5: (a) Variation of 
the peak hour of the diurnal 
cycle, h, as a function of the 
Terra/Aqua FRP ratio.  Note 
that the relationship is weak 
(R2 = 0.2) and not significant 
at p < 0.05; (b) The width of 
the diurnal cycle, σ, as a 
function of the Terra/Aqua 
FRP ratio. The σ  value (in 
hours) corresponds with the 
width of the curve at half-
maximum FRP; (c) Variation 
of the background level of the 
diurnal cycle, b, as a function 
of the Terra/Aqua FRP ratio. 
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resolution adequate for regional discrimination of fire activity.  Terra MODIS FRP 

was used for 2001 and 2002 as Aqua MODIS was not yet available (only partial 

availability in 2002).  Subsequent years (2003-2007) were estimated with Aqua.  The 

MODIS CMG FRP represents the sum of the FRP obtained during the day and night 

overpasses, therefore, using Aqua as an example, the following equation can be 

written, being adopted for the fire diurnal cycle described in the previous section:  
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CMG FRP is the total (mean x cloud-and-overpass corrected pixel count) FRP value 

from the CMG product. 

 There are two reasons to justify not setting FRPpeak to be equal to the Aqua CMG 

FRP; (1) as stated earlier, this value is the summation of both day and night fire 

retrievals and cannot be assumed to be just the daytime peak FRP, and (2) although 

the Aqua afternoon (1330) overpass roughly corresponds with peak fire activity, there 

is a range of hours over which the true peak may occur (e.g. 1300 to 1800 local hour) 

as reported by Giglio [2007].      

 FRPpeak is computed in two steps: 1) Using the T/A ratio b, h and σ are estimated 

using the empirical relationship derived in section 3.3.1 (Figure 3.5).  The b, h and σ 

parameters are then used to compute FRPpeak using equation (3.5):  
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The fire radiative energy (FRE) is then computed as: 
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 Examination of the yearly difference between Terra and Aqua estimated FRE for 

2003 - 2007 (when both sensors were available) revealed a small mean annual bias in 

FRE (1.4%) which was subsequently applied to Terra MODIS FRE estimates for 

2001 and 2002. 

 

3.4 Results & Discussion 

3.4.1 FRE 

 The estimated mean global FRE for 7 years (2001-2007) is shown in Figure 3.6. 

MODIS-based FRE estimates were first assessed for 12-months of data with FRE 

estimated from SEVIRI.  Results, as seen in Figure 3.7, suggest a good agreement 

between monthly estimates of FRE. (y=0.78x, R2=0.85, E = 0.50, p < 0.01).  The 

RMSE was 54e+09 MJ, or approximately 34% of the SEVIRI monthly mean FRE.  

MODIS and SEVIRI were both adjusted for atmospheric attenuation (MODIS is 

explained below while the SEVIRI dataset were corrected by G. Roberts using 

MODTRAN).  The underestimation of MODIS FRE may be due to incomplete 

characterization of the temporal cycle of FRP in as well as overcorrection in the 

SEVIRI product, which is intended to account for omission errors [Roberts and 

Wooster, 2008].   It should be clear that although SEVIRI data was used to develop 

the temporal trajectory of FRP this does not influence the magnitude of the actual 
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discrete estimates of FRP made using MODIS.   An additional comparison of the 

FRE estimates from Aqua MODIS (692x109 MJ) for July, August, September and 

October 2004 with FRE reported by Roberts and Wooster [2008] from SEVIRI 

(921x109 MJ), for the same period and corresponding area in southern Africa, reveals 

that the MODIS FRE values appear consistent.   

 

 

 

 
Figure 3.6: Estimated annual mean FRE (MJ/m2) from Aqua (2003-2007) and Terra 
(2001-2002) MODIS.  Integrated energy was calculated from FRP (MW) values 
derived from a Gaussian function using modeled parameters. 
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 Atmospheric correction was applied to MODIS FRP calculations using the 

approach described in Chapter 2.  Since nominal view angles are not available in the 

gridded CMG dataset, an average view angle was assumed.  The CMG FRP 

aggregation excludes any observations with scan angles greater than 40° and 

therefore an assumed average scan angle of 20° for the CMG product was employed.  

The average scan angle corresponds with a 22.33° view angle which was used in the 

atmospheric correction scheme.  To test the effect of the scan/view angle assumption, 

the simulated FRP from Chapter 2 were plotted again (see Figure 2.16), but instead of 

explicitly using the view angle information from the simulations, the exponential 

correction factor was applied to the inverse cosine of 22.33° for all observations 

(Figure 3.8).  The results indicated that the view angle assumption offered a good fit 

to the simulated surface FRP, and while the RMSE nearly doubled, the error was a 

rather small proportion of the mean and median surface FRP value (6.4% and 8.6%, 

respectively). 

 Regional distribution of FRE showed that Africa, South America, and Australia 

dominate in terms of energy liberated from biomass burning.  Africa, often referred to 

as the “fire continent”, was responsible for nearly half of the global annual average 

fire radiative energy.  Partitioning global results using the Global Fire Emissions 

Database regional map (see Figure 3.1) [van der Werf et al., 2006] showed Africa 

(NHAF and SHAF) generated, on average, 47% of the global FRE.  South America 

(NHSA and SHSA) was responsible for another 20% of the mean annual FRE with 

SHSA accounting for 18.5% of this. 
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Figure 3.7: FRE comparison for Africa 2004 between MODIS, estimated using the 
parameterization method described in this paper, and SEVIRI from Roberts and 
Wooster [2008, personal communication].  The dashed 1:1 line is shown for reference. 
 
 
 
 Of particular interest in South America is the “arc of deforestation” [Fearnside 

and Hall-Beyer, 2007] which was responsible for 68% of the average FRE in the 

southern-hemisphere South America (SHSA) region and 13% globally.  Other regions 

of intensive fire activity are Australia (9%), boreal fires (BONA and BOAS) which 

made up roughly 7.5% and Central and Southeast Asia (CEAS and SEAS) with 

approximately 5% each.  These proportions are consistent with previous estimates of 

fire detections and emissions [Dwyer et al., 2000; Bond et al., 2004].   
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FRP Comparison: Adjusted TOA vs. Surface
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Figure 3.8: Simulated TOA CMG FRP, “corrected” for atmospheric effects, 
compared with simulated surface FRP.  “CMG” FRP is adjusted using an assumed 
mean view angle of 22.33° and the exponential correction factor (Figure 2.15) for all 
“observations”.  The 1:1 (dashed) line is plotted for reference. 
 
 
3.4.2 Biomass Consumed 

The next step was to estimate the dry biomass consumed from fire using an FRE-

based combustion factor (0.368 ± 0.015 kg/MJ) established by Wooster et al. [2005].  

The combustion factor was developed from experiments using fuels representative of 

dry season savanna vegetation fires.  As such, the comparison was constrained to 

biomass burning in Africa for which the fire experiments were intended [Roberts et 

al., 2005; Roberts and Wooster, 2008].   

A 12 month total biomass consumed comparison using SEVIRI FRE (858 Tg 

DM) and MODIS FRE (700 Tg DM) revealed agreement in the estimates, but again a 
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roughly 20% underestimation by MODIS seen in the FRE approximation (Figure 

3.7).  Although using a static FRE-based combustion factor based on Miscanthus 

fuels may seem to neglect the heterogeneous nature of wildland fires, Freeborn et al. 

[2008] demonstrated that fuel type was relatively insignificant (<12%) in explaining 

the variability in biomass consumption as a function of FRE.  This is supported by 

previous investigations of fuel heat yield [Stott, 2000]  

Comparing the biomass consumption estimates from MODIS for Africa with the 

GFEDv2 highlights the significant differences in annual estimates.  FRE-based 

estimates had an average biomass burned of 726 ± 30 Tg DM for Africa between 

2001 and 2007, or roughly 3.5 times less than reported in the GFEDv2 (2586 Tg 

DM).  Alternatively, using the recently published combustion factor (0.453 ± 0.068 

kg/MJ) from Freeborn et al. [2008] reduced the margin of difference (894 ± 134 Tg 

DM), but was still nearly a factor of 3. 

Based on a similar result found by Roberts and Wooster [2008] fuel load (kg/m2) 

estimates were investigated as a potential source of bias.  The FRE-based fuel load 

was estimated using biomass burned (described above), burned area from Giglio et al. 

[2009], and the annual mean combustion completeness for Africa (0.77) reported in 

the GFEDv2.  Mean fuel load for Africa between 2001 and 2007 was estimated to be 

1.58 kg/m2 in the GFEDv2 while 0.38 kg/m2 for the FRE-based estimate, indicating 

the discrepancy in biomass consumed may be directly related to this difference.  Reid 

et al. [2005] reported a mean grassland/savanna fuel load from a literature review of 

0.4 kg/m2 which corresponds well with fuel load measures for Africa savannas made 

by McNaughton et al. [1998] and Hely et al. [2003] (0.35 and 0.38 kg/m2, 
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respectively).  These results suggest that the fuel load estimates used in the GFEDv2 

are indeed high.  Although these values are for grassland/savanna only, which are 

generally lower than woody vegetation biomes, their use is appropriate in most cases 

for Africa since this is the dominant biome in which fire occurs [Dwyer et al., 2000]. 

 Finally, annual emissions of carbon and CO2 for Africa were estimated.  Applying 

the combustion factor by Wooster et al. [2005] and assuming a dry matter carbon 

content of 45% a mean of 326 ± 13 Tg C yr-1 and a CO2 range of 1196 ± 49 Tg CO2 

yr-1 was calculated.   

 

3.5 Conclusions 

 A method to estimate fire radiative energy from discrete MODIS FRP 

observations was presented.  The approach was developed from SEVIRI, VIRS, and 

MODIS data to characterize the fire diurnal cycle as a modified Gaussian function.  

The function variables are parameterized based on the relationship with monthly 

Terra/Aqua (T/A) FRP ratios from 16 globally distributed regions.  Sensitivity 

analysis of the parameter describing the hour of peak fire energy (h) revealed that 

despite a poor agreement between the regional curving fitting and T/A ratio for this 

parameter, it played a relatively minor role in the FRE estimation process. 

Atmospheric attenuation was accounted for based on the exponential fit described in 

Chapter 2.  The correction for the CMG FRP product assumed a mean view angle of 

22.33°, and while this assumption incurs a degree of error it is relatively small 

compared to the potential error introduced by ignoring atmospheric effects.  The FRE 

calculation described in this chapter is a potentially significant contribution to remote 
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sensing science as the calculation of FRE from MODIS FRP has not yet been 

achieved, and therefore presents a first of its kind.  Comparison is limited, but initial 

evaluation against FRE estimates from the geostationary SEVIRI sensor indicated 

that the approach presented produces comparable estimates.  The underestimation of 

MODIS FRE suggests room for improvement as well as potential overcorrection for 

omission errors in the SEVIRI product [Roberts and Wooster, 2008]. 
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Chapter 4:  Estimating Global Biomass Burning Emissions 
of Organic and Black Carbon7 
 

 

4.1 Introduction 

Aerosols influence Earth’s radiative balance through scattering and absorbing the 

shortwave radiation.  The Intergovernmental Panel on Climate Change (IPCC) [2007] 

reported the direct radiative forcing impact of biomass burning aerosols as 0.03 Wm-

2, with approximately a factor of 4 uncertainty (±0.12)   In addition, aerosols can 

influence Earth’s climate in more complex and indirect pathways such as changing 

cloud albedo and lifetime.  However, there is good deal of uncertainty in estimating 

the forcing effects of biomass burning aerosols, in part due to an incomplete 

understanding of the optical properties of smoke and aerosol-atmosphere interactions.  

A prerequisite to understanding these interactions at regional and global scales is 

reliable estimates of aerosol emissions from wildland fires, both spatially and 

temporally.  As discussed in Chapter 1, although efforts to quantify biomass burning 

emissions have improved over the past several decades the inaccuracies of input data 

and variations in the methodologies employed may lead to an uncertainty in emission 

estimates of at least 50%, and possibly much greater [Robinson, 1989; Andreae and 

Merlet, 2001; van der Werf et al., 2003; French et al., 2004; Korontzi et al., 2004]. 

The rate at which energy is emitted by a fire, or the fire radiative power (FRP), 

during combustion can serve as a proxy for the rate of gas and aerosol emissions 

                                                 
 
7 The majority of this chapter was published in Vermote, Ellicott, et al. [2009]  
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released [Kaufman et al., 1996; Kaufman et al., 1998].  Integrating the FRP over the 

lifespan of a fire event and multiplying this value by an emission coefficient (ECx), 

which describes the quantity of gas or particulate matter emitted per megajoule (MJ) 

of energy released (g/MJ), yields the total emissions from a fire (equation. (4.1)).  

(Note: The term Emission Coefficient [Ichoku and Kaufman, [2005] rather than 

Emission Factor is used to avoid confusion between the former, which is in units of 

grams per energy released, and the latter which is in grams per mass of fuel consumed 

(g/kg)).  

          (4.1) 

   

In this chapter the relationship between the estimates of FRE made in Chapter 3 

and a new MODIS-derived inversion product of daily integrated biomass burning 

aerosol emissions is explored.  The inversion product is generated from the MODIS 

fine mode aerosol optical thickness and inverse modeling transport processes adopted 

from the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model.  

The inversion yields the sources (locations and intensities) of fine mode aerosols 

[Dubovik et al., 2008] attributed to biomass burning.  Fine mode aerosols are defined 

as particles with an aerodynamic diameter less than 2.5μm (PM2.5).  The fine mode 

aerosol optical thickness is converted to mass using a conversion factor (see Section 

4.2).  The organic and black carbon (OCBC) mass is then calculated based on the 

proportion of PM2.5 mass composed of OCBC which was reported by Andreae and 

Merlet [2001] for the three biomes considered in this study.  Although it could be 

suggested that emission estimates be made utilizing only the inversion product, 

∫= dtFRPECEmission xx
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production of this product is still rather time-consuming and it is not intended for an 

operational approach. 

 The relationship between FRE and OCBC estimates within several biomes is 

investigated to generate emission coefficients.  The slope of the relationship within 

each biome is used as the representative emission coefficient to forward model 

estimates of OCBC from FRE.  As previously stated, this type of generalization will 

incur a degree of uncertainty and given the incomplete understanding of aerosol 

optical properties a level of uncertainty in any emission estimate is implicit.  

Therefore these and other issues are addressed in an error budget (Section 4.4). 

 An overview of the data and products used in this Chapter is provided in section 

4.2.  The methodology used to generate FRE-based emission coefficients is presented 

in section 4.2.3, while section 4.3 offers a review of the potential sources and 

magnitude of error in the data and estimates.  Results are provided and discussed in 

section 4.4 with concluding remarks in section 4.5. 

 

4.2 Materials and Methods 

4.2.1. OCBC Emissions from Inverse Modeling 

 Contrary to conventional approaches which rely on the emission inventories, this 

study incorporates OC and BC emission fields using global observations of aerosol 

from satellites. The distribution of fine mode aerosol optical thickness (AOT) derived 

from MODIS measurements allows global monitoring of the daily dynamics of 

biomass burning events. However, these AOT distributions do not provide detail 

regarding the exact location and strength of the aerosol emission sources since the 
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aerosol fields observed from satellites include both freshly emitted aerosol and 

aerosol emitted prior to the actual satellite overpass; the latter being redistributed and 

transformed by atmospheric processes (advection by winds, rain washout, deposition, 

etc.). Therefore, this study relies on the information provided by inverse modeling 

that accounts for atmospheric processes and derives the aerosol emissions from 

satellite observations. Specifically, the aerosol source information retrieved by the 

Dubovik et al. [2008] algorithm from MODIS fine mode aerosol AOT measurements 

was used. 

 Dubovik et al. [2008] used the Goddard Chemistry Aerosol Radiation and 

Transport (GOCART) aerosol transport model to invert MODIS optical depth 

measurements to derive a spatially and temporally resolved description of surface fine 

mode aerosol sources. These aerosol sources produce other species besides those 

generated from biomass burning, such as anthropogenic combustion (e.g. from coal 

burning), which represent a very small fraction of emissions in the regions of 

significant fire activity and can be neglected in this analysis.  Although exceptions do 

exist (for example, Northern India) they are limited.  The fine mode aerosol is 

converted to PM2.5 mass by using the average mass extinction coefficient (βe) value 

of 7.6 ± 1.9 m2/g which relates the dry mass of particulate matter to the fine mode 

optical depth [Chin et al., 2002].  Organic and black carbon mass were then estimated 

from the PM2.5 mass using an average fraction of 0.68 [Andreae and Merlet, 2001].  

Organic carbon, associated with smoldering combustion, is characterized by light 

scattering properties and thus has implications for negative climate forcing.  Black 

carbon, on the other hand, is generally a product of flaming combustion and 
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dominates light absorption by aerosols, resulting in a positive climate forcing 

[Lenoble, 1991; Sato et al., 2003].  The typical ratio of OC to BC adopted in this 

research is 7:1 [Chin et al., 2002]. 

 Total OCBC emissions for 2003 (30.5 Tg) are shown in Figure 4.1.  Regions of 

fire activity are clearly visible, including the Arc of Deforestation in Brazil, Central 

America (e.g. Yucatan Peninsula), Southeast Australia, Southern Africa, and 

Southeast Russia.  There are regions where the OCBC product is not fully corrected 

for anthropogenic and biogenic sources which can be seen in Eastern China, Europe, 

and portions of the United States south of the Great Lakes. 

  

 

 

Figure 4.1:  Organic and black carbon particulate matter emissions mass (g/m2) for 
2003 (30.5 Tg) estimated through observations from MODIS and inverse transport 
modeling with GOCART.   
  

Dubovik et al. [2008] optimized the inversion process by employing adjoint modeling 

to reduce the computational burden of modeling back trajectories.  Despite this, the 
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inversion process is still time-consuming and not realistic as a near-real-time 

operational product.  Therefore the approach to estimate emissions using FRE and 

FRE-based emission coefficients provides a simple and efficient method by 

combining the robustness of the inverse method with the temporal variability 

obtained from near real-time observations of FRP. 

 
 
4.2.2. FRE 

Fire radiative energy monthly estimates from 2003 were generated using the 

process described in Chapter 3 and used for comparison with the OCBC estimates 

above.  Figure 4.2 shows the monthly average FRE (MJ) per m2 in 2003. 

 

 

Figure 4.2:  Estimated 2003 FRE (MJ/m2) from Aqua MODIS.  Integrated energy 
was calculated from FRP (MW) values derived from a Gaussian function using 
modeled parameters. 
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4.2.3 Emission Coefficients 

 The emission factor is generally defined as the amount of gas or particulate matter 

emitted (g) per mass of fuel consumed (kg).  The factors are typically based on 

extensive field and laboratory validation and applied across similar biomes [Andreae 

and Merlet, 2001].  Evaluation of uncertainty in emission factors [Robinson, 1989] 

and the wide range of values reported in the literature [Andreae and Merlet, 2001; 

Chin et al., 2002; Chin et al., 2007; Freeborn et al., 2008], suggests emission factors 

vary naturally by at least 30%.   

 In their research on rates of energy and aerosols released from fires Ichoku and 

Kaufman [2005] explained that replacing the fuels consumed (M) in equation (1.1) 

with FRE necessitates that the emission factor must be based on fire energy.  Thus, an 

emission factor for OCBC is expressed using g/MJ instead of g/kg.  This is referred to 

as the Emission Coefficient (EC) to avoid any confusion with the traditional term. 

 The FRE and OCBC emission product were compared over multiple sites (Figure 

4.3) and constrained by vegetation type, as described by van der Werf et al. [2006].  

The vegetation types include three broad categories: Non-forest (savanna/grassland), 

tropical forest, and extratropical forest (which include temperate and boreal forest).  

 Over southern Africa the area chosen for the analysis contained 95% 

grassland/savanna fires and 5% tropical forest fires and was used to derive the 

grassland/savanna emissions coefficient (Figure 4.4) which was estimated to be 2.47 

g/MJ with an uncertainty of 0.27 g/MJ.   
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Figure 4.3: The following figures show the emission coefficient sites used to 
compare FRE and the inversion-based OCBC emissions to determine an appropriate 
emission coefficient.  Comparisons were performed for 3 different biomes based on 
the vegetation categorization used by van der Werf et al. [2006] and available in the 
GFEDv2.  (a) “Non-tropical” site (corresponding with savanna/grassland vegetation); 
(b and c) tropical forest sites (this is the same as the IGBP’s landcover 2); and (d and 
e) extratropical forest sites. 
 

 The emission coefficient can be converted to an emission factor, for comparison-

sake, using an energy-to-mass conversion factor of 0.41 ± 0.04 kg/MJ which is the 

average of the 0.368 ± 0.015 kg/MJ and 0.453 ± 0.068 kg/MJ values found by 

Wooster et al. [2005] and Freeborn et al. [2008], respectively.  Dividing the emission 

coefficient by the energy-to-mass conversion factor yields an emission factor of 6.0 ± 

1.3 g/kg for OCBC.  This is nearly a factor of two higher than the value suggested by 

Andreae and Merlet [2001] for savanna/grassland (OCBC [TC] 3.7 ± 1.3 g/kg).  (It 

should be noted that the 

e. 
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Figure 4.4:  Relationship between monthly estimates of FRE and inversion-based 
OCBC for savanna/grassland biome (see Figure 4.3a) from southern Africa. 

 

emission factors presented by Andreae and Merlet [2001] are based on the 

compilation of EFs reported from multiple authors using various measurement 

approaches).  However, converting the PM2.5 emission factors for “Savanna/Grass” 

and “Woody Savanna & Cerrado” published by Reid et al. [2005] to OCBC emission 

factors (again, using a 0.68 fraction of OCBC in PM2.5) resulted in 4.5 ± 1.0 g/kg 

and 5.8 ± 1.4 g/kg, respectively, which tends to agree better with the FRE-based 

emission factor. 
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 For tropical and extratropical sites (Figures 4.3b & c and 4.3d & e, respectively) a 

correction was applied to reduce the OCBC emission (per cell) to account for the 

fraction which was emitted from fires occurring in the grassland/savanna biome 

category.  The average grassland/savanna fraction was 30% in tropical forests and 

15% in the extratropical forests. 
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 Figure 4.5:  Relationship between monthly estimates of FRE and inversion-based 
OCBC for the tropical forest biome sites (see Figure 4.3b and c). 
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Figure 4.6:  Relationship between monthly estimates of FRE and inversion-based 
OCBC for the extratropical forest biome (see Figure 4.3d and e) from Russia and 
Australia. 

 

 

Figure 4.5 shows the derivation of the tropical forest emission coefficient from 5 sites 

distributed over Brazil (2), Venezuela (1), Mexico (1), and Southeast Asia (1) for 

which the emission coefficient was estimated to be 7.54 g/MJ with an uncertainty of 

0.66 g/MJ.  Once converted to an emission factor it equals a value of 18.4 ± 3.5 g/kg, 

which is again much larger than the value suggested by Andreae and Merlet [2001] 



 

 
 

104

(6.6 g/kg).  As a point of comparison, the emission factor presented here is closer to 

Reid et al. [2005] (8.3 ± 3 g/kg) and the 11.5 g/kg average tropical forest emission 

factor recently measured by Yokelson et al. [2008].  Once again, this assumes 0.68 

fraction of OCBC in PM2.5.   

  Finally, one site over Southeast Australia and one site in the Lake Baikal region 

(Russia) were used to derive the OCBC emission coefficient for extratropical forests. 

Figure 4.6 shows the relationship between OCBC emissions and FRE over these sites. 

The coefficient obtained was 11.45 g/MJ with an uncertainty of 0.71 g/MJ. The 

conversion to an emission factor yields 27.9 ± 4.5 g/kg which is higher by a factor of 

~3 to 5 than Andreae and Merlet [2001] (6.1-10.4 g/kg).  For the boreal forests Reid 

et al. [2005] suggested an emission factor of 11 ± 3.5g/kg. 

  
 
4.3 Error Budget 

 There is an inherent degree of uncertainty in any statistically-based estimate and 

when coupled with the use of remotely sensed data the magnitude of error can easily 

become quite large [Robinson, 1989; Cahoon et al., 1991; Robinson, 1991).  As 

pointed out by French et al. [2004], “little has been done to assess the uncertainty in 

the resulting [wildland fire emission] estimates”.  van der Werf et al. [2006] offered a 

thorough review of the sources of uncertainty in biomass burning emission estimates, 

but fell short of providing a quantitative approximation of each source and the total 

potential error.  Generally, most estimates of uncertainty have been of a similar nature 

in which the author[s] provides a best-guess [Andreae and Merlet, [2001]. 
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 Several sources of error impact the accuracy of the estimates made in this 

research, especially when it comes to the AOT based OCBC emission product, which 

is computed indirectly from the MODIS fine mode aerosol optical thickness product.  

These sources were identified (Table 4.1) and the uncertainties calculated for OCBC 

emission estimates, the emission factors (Section 4.2.3), and the global aerosol 

burden (which is the input for computing the direct radiative forcing). 

 The first error source is related to the error in the characterization of the fire 

radiative energy diurnal cycle that impacts the accuracy of the FRE.  Comparison of 

SEVIRI and MODIS, previously shown in Chapter 3 (Figure 3.6), showed a 27% 

RMSE which can be attributed to errors in the retrievals from both instruments.  

Therefore the number used in the error budget (a in Table 4.1) was set to the 

quadratic average ((27%) / (√2)), or 19%.  

 The accuracy of the empirical formula for computing FRP was taken from the 

evaluation performed by Kaufman et al. [1998] who showed a potential error of 16% 

using 150 simulated mixed-energy fire pixels.  As a corollary, Wooster et al. [2003] 

found a theoretical accuracy (RMSD) of 65 x 106 J over a range of 0 to 2000 x 106 J 

(or 6.5% for the average) using their MIR FRE approach.  This accuracy estimate was 

confirmed by the agreement between the BIRD and MODIS independently derived 

FRP (15%).  This error could actually be larger for certain fires since the lower spatial 

resolution of MODIS appears to prohibit the less intensely radiating fire pixels from 

being detected.  Thus, MODIS underestimates FRE for these fires by up to 46% in 

comparison to BIRD.  

∫= dtFRPECEmission xx
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 As demonstrated in Chapter 2, there is a component of atmospheric attenuation 

which the MODIS FRP algorithm does not account for.  Although water vapor 

absorption is weak, several gases can impact energy received in the 4μm channel at 

TOA.  The impact is both dependent on the observation angle and the total amount of 

gases, and therefore variable.  A 20% underestimation in the MODIS FRP estimate, 

based on 2000+ simulations, was shown in Chapter 2.  However, the simulations 

were for view angles between nadir and 60° and therefore not representative of the 

CMG product which excludes observations with a scan angle greater than 40°.  

Assuming a mean scan angle of 20°, corresponding with a view angle of 22.33°, the 

error in the TOA FRP estimate made by MODIS was calculated to be 17%.   

 Cloud obscuration impacts FRP estimates through the fact that fires are not 

detected (omission error).  The 11% estimate of omission errors for MODIS fire 

detections made by Schroeder et al. [2008] over the Amazon region is likely a 

conservative estimate of the impact given the FRP CMG includes cloud correction 

[Giglio, 2005; Giglio et al., 2006].  Along these same lines, Hawbaker et al. [2008] 

found that MODIS omission rates of small active fires were 73% for Aqua and 66% 

for Terra.  Fires may be missed due to rapid burning, cloud cover, or simply because 

of spatial scales.  However, Hawbaker et al. [2008] reiterated the point made by 

Kaufman et al. [1998] that these small fires likely have little impact in terms of total 

emissions. 

 The accuracy of aerosol optical thickness (AOT) measured by MODIS, 

determined based on comparisons with AERONET sun-photometer measurements, 

was estimated to be 0.05 + 15% over land and better over ocean [Remer et al., 2002; 
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Levy et al., 2007]. The fine mode AOT accuracy is degraded to 0.05 + 20% (Levy, 

personal communication 2008).  Therefore, assuming a mean AOT of 0.5, an error 

estimate of 30% was used.   

 The fine mode AOT was converted to PM2.5 dry mass using a value of 7.6 m2/g 

for the mass extinction efficiency (βe). This value assumes a fixed proportion of 

carbon in the PM2.5, as well as a particular density and relative humidity [Chin et al., 

2002].  Another source of error comes from the conversion of PM2.5 to OCBC using 

a fraction of 0.68.  For example, Andrea and Merlet [2001] reported a range of 0.5 to 

0.8 OCBC in PM2.5. Given all these factors, an overall error of 25% was assumed on 

the fine mode AOT to OCBC mass conversion.  

 Secondary aerosol processes, such as the production of organic aerosol from the 

photo-oxidation of volatile organic compounds abundant in biomass burning 

emissions [Grieshop et al., 2008], are difficult to account for and represents a 

potentially large error source.  A 25% error was assumed for this category, 

recognizing that the error might be larger. 

The inversion of the emissions sources is dependent on how well the GOCART 

model accounts for the different processes.  A measure of the accuracy, based on how 

well the MODIS and GOCART aerosol optical thickness measurements agree, was 

estimated to be 12% according to Dubovik et al. [2008]. 

FRE to combusted biomass conversion was used in order to convert the emission 

coefficients to emission factors.  The conversion coefficient was originally published 

by Wooster et al. [2005] to be 0.368 g/MJ, but has recently been evaluated to 0.453 

g/MJ by Freeborn et al. [2008], showing a potential error of 10%.  
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Using the different error sources in Table 4.1, an accuracy of 58% was calculated 

for the OCBC estimate, with a similar error for the emission factors.  The biomass 

combusted error was lower (34%), while the error for an estimate of global fine mode 

AOT using this approach would be 34%.  The smaller error in fine mode AOT 

relative to OCBC is because the conversion to mass [f and g in Table 4.1] is not 

necessary, and thus less error is introduced.  This is an important point because it is 

fine mode AOT which is used to calculate the radiative forcing impact from biomass 

burning and thus less uncertainty is associated with the effects of fire on Earth’s 

energy balance. 

 
Table 4.1:  Error budget for components used in this research. 
 

Error Sources Error estimates Relative error (%) 

(a) FRE from FRP (diurnal 
cycle) Figure 7.  SEVIRI comparison 19% 

(b) FRP empirical formula Kaufman et al. [1998] 16% 

(c)  Atmospheric effect on FRP Roberts & Wooster [2008] 17% 

(d) Cloud correction FRP Schroeder et al. [2008] 11% 
(e) Fine mode Aerosol optical 
depth (at 550nm) Levy (pers. Comm., 2008) 30% 

(f) Conversion of AOT to mass: 
be 

Estimated for range of OCBC 
mass in PM2.5, relative humidity 
and ratio of OCBC 

25% 

(g) Secondary aerosol 
processes: impact on be 

Estimated error allocation might be 
larger [Grieshop et al., 2008] 25% 

(h) GOCART inversion Dubovik et al. [2008] 12% 

(i) Conversion of FRE to 
biomass combusted 

Wooster et al. [2005]; Freeborn et 
al. [2008] 10% 

Emission estimate Quadratic sum (a-h) 58% 

Emission factors Quadratic sum (a-i) 58% 

Biomass combusted Quadratic sum (a-d,i) 34% 

Fine mode AOT Quadratic sum (a-e,h) 34% 
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4.4 Results and Discussion 

 Using the monthly FRE product computed in Chapter 3 and the emission 

coefficients computed in section 4.3 a global OCBC emissions estimate for 2003 

from biomass burning was produced (Figure 4.7).  A total of 20 Tg of OCBC was 

emitted from biomass burning globally in 2003.  This is lower than the 29.6 Tg of 

OCBC estimated by Generoso et al. [2007] for 2003 using a “top down” modeling 

approach and the 26.1 Tg reported in the Global Fire Emissions Database (GFEDv2, 

2005)8, but still within the error bars (50%) reported for each of the datasets.   

 

 

 

Figure 4.7:  Total OCBC (g/m2) emissions estimated from biomass burning for 2003.  
High source regions include east-central Brazil, central and southern Africa, 
Southeast Asia, Central America, and southeast Russia. 
 

 
                                                 
 
8 GFEDv2 data available at http://ess1.ess.uci.edu/~jranders/data/GFED2/ 
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Figure 4.8 offers a spatially explicit map of the uncertainty in the FRE-based OCBC 

emission estimate for 2003 based on the 95% confidence interval for the 3 biome 

specific emission coefficients.  For each 0.5° cell, and respective biome, the 

uncertainty was calculated as the difference between the high and low range of 

OCBC emission divided by 2.  As expected, since a linear relationship was used for 

the emission coefficients, the regions with the greatest FRE (and subsequently OCBC 

emission) demonstrate the greatest potential error. 

 

 

 

Figure 4.8:  Uncertainty in OCBC emission estimates for 2003 (g/m2).   
 

 

  

For comparison purposes the region map (shown in Figure 4.9) used by van der Werf 

et al. [2006] was used.  Africa (SHAF and NHAF) produced the greatest source of 
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OCBC emissions (5.2 Tg) in 2003 accounting for nearly 26% of the global burden.  

This is almost half of what is estimated in the GFEDv2 (9.2 Tg).  Annually, Africa 

usually accounts for 50% of fires detected globally [Dwyer et al., 2000] and roughly 

half of the vegetation burned [Bond et al., 2004].  However, 2003 was atypical. as 

faguire events in other regions, especially Russian fires [Kasischke et al., 2005; 

Generoso et al., 2007], made significant contributions to atmospheric emissions, 

effectively altering the proportion of emission sources. 

 Emissions from regions defined as boreal North American (BONA) and boreal 

Asia (BOAS) contributed the greatest amount of OCBC (28% or 5.5 Tg).  Much of 

this was due to the large scale fire event near Lake Baikal [Generoso et al., 2007].  

Indeed, the Lake Baikal regional fires [40-90°N; 60-180°E] of 2003 were responsible 

for 4.5 Tg of OCBC.  This is close to the GFEDv2 value of 6.1 Tg of OCBC and 

similar to Generoso et al. [2007] estimate of 5.8 Tg for this same region and time 

frame.    

 South America (SHSA and NHSA) contributed to roughly 24% of the global 

burden of OCBC from fires (4.8 Tg this approach compared to 3.63 Tg for the 

GFEDv2).  Of particular interest is the Arc of Deforestation [Fearnside and Hall-

Beyer, 2007] which was responsible for 3.1 Tg, or 65%, of all emissions from South 

America and 15% of the global source.  Southeast Asia (SEAS) and Australia 

(AUST) each produced roughly 5.7% and 4.8% of the global OCBC emission loads, 

(1.14 Tg and 0.95 Tg, respectively for this approach compared to 0.88 Tg and 1.72 Tg 

for the GFEDv2).  
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 Tables 4.2 and 4.3 provide a global comparison of the FRE-based OCBC 

estimates with the GFEDv2 for the period 2001-2007.  Years 2001 and 2002 were 

estimated using Terra FRP which had several data gaps due to instrument problems 

which may account for some of the underestimation in the FRE-based approach.  It 

should be noted that the GFEDv2 accounts for soil organic carbon burning which is 

less likely to be detected by MODIS and therefore is not accounted for in the FRE-

based estimate.  This may explain the systematic underestimation in the emissions 

estimates compared to the GFEDv2 over Equatorial Asia (EQAS).  

 For North and South Africa (NHAF and SHAF), the FRE-based emission estimate 

and the GFEDv2 estimate showed a very small inter-annual variation during the 

2001-2007 period (coefficient of variation (CV)9 between 0.05 and 0.12) however 

there is about a factor 2 between the two estimates, as already noted for 2003.  

Comparison of biomass burned in Africa between FRE-based estimates and the 

GFEDv2 revealed a factor of 3 difference in fuel load (see Chapter 3) suggesting this 

as a potential source of discrepancy in emission estimates. 

 Emissions over boreal North American (BONA) and boreal Asia (BOAS) 

generally agreed between the FRE-based estimates and the GFEDv2 except in 2002 

for BOAS (2.4 Tg and 4.5 Tg, respectively).  In addition, the CV calculated for 

BONA and BOAS was similar between the two datasets and reflects greater inter- 

 

 

                                                 
 
9 The CV is a normalized measure of variation calculated as the ratio of the standard deviation to the 
mean.  It is a useful statistic for comparing the degree of variability between datasets despite 
differences in means or units. 
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Table 4.2: Comparison of regional (see Figure 4.8) biomass burning OCBC annual total 
emission estimates (Tg) made in this research (bold) versus the GFEDv2 (not bold) 

 
  2001 2002 2003 2004 2005 2006 2007 
BONA 0.23, 0.19 0.88, 0.88 0.90, 1.14 0.92, 1.32 0.59, 0.68 0.82, 0.53 0.63, 0.41 
TENA 0.47, 0.34 0.65, 0.42 0.58, 0.25 0.37, 0.25 0.43, 0.35 0.63, 0.36 0.96, 0.60 
CEAM 0.43, 0.21 0.43, 0.33 0.54, 0.95 0.26, 0.15 0.58, 0.40 0.36, 0.29 0.34, 0.27 
NHSA 0.37, 0.44 0.31, 0.33 0.52, 1.08 0.39, 0.41 0.29, 0.29 0.29, 0.28 0.40, 0.48 
SHSA 2.86, 2.74 3.72, 3.01 4.28, 2.55 5.17, 5.29 4.53, 5.54 3.10, 2.69 4.48, 5.85 
EURO 0.08, 0.41 0.05, 0.67 0.10, 0.41 0.05, 0.48 0.08, 0.54 0.09, 0.92 0.09, 0.48 
MIDE 0.04, 0.07 0.03, 0.08 0.02, 0.19 0.03, 0.05 0.03, 0.06 0.03, 0.05 0.04, 0.03 
NHAF 2.71, 6.32 2.52, 5.61 2.57, 4.63 2.57, 4.92 2.66, 5.38 2.34, 4.53 2.91, 5.70 
SHAF 3.56, 4.79 2.80, 4.61 2.62, 4.57 2.62, 4.55 2.91, 4.91 2.64, 4.30 2.67, 4.35 
BOAS 1.29, 1.86 2.40, 4.50 4.64, 6.08 0.79, 1.15 1.46, 1.17 1.71, 2.29 1.14, 1.36 
CEAS 0.70, 0.47 0.86, 0.61 0.78, 0.39 0.81, 0.52 0.61, 0.45 0.71, 0.53 0.63, 0.52 
SEAS 1.16, 1.89 1.00, 0.94 1.14, 0.88 1.52, 2.05 1.30, 1.14 1.20, 0.89 1.58, 2.91 
EQAS 0.30, 0.52 0.74, 2.76 0.38, 1.03 0.60, 1.86 0.52, 2.82 0.73, 4.65 0.26, 0.43 
AUST 1.95, 1.61 1.63, 1.37 0.95, 1.72 1.03, 0.98 0.51, 0.53 1.09, 1.45 0.90, 1.03 
        

TOTAL 16.20, 
21.86 

18.01, 
26.12 

20.02, 
25.86 

17.11, 
23.98 

16.51, 
24.25 

15.74, 
23.75 

17.03, 
24.41 

 

Table 4.3: Comparison of regional (see Figure 4.8) biomass burning OCBC annual mean, 
standard deviation, and coefficient of variation emission estimates made in this research 
(bold) versus the GFEDv2 (not bold).10 
  

  MEAN SD CV 
BONA 0.71, 0.74 0.25, 0.40 0.35, 0.55 
TENA 0.58, 0.37 0.19, 0.12 0.33, 0.33 
CEAM 0.41, 0.37 0.11, 0.27 0.28, 0.72 
NHSA 0.38, 0.47 0.09, 0.28 0.24, 0.59 
SHSA 4.02, 3.95 0.83, 1.52 0.21, 0.38 
EURO 0.08, 0.56 0.02, 0.18 0.25, 0.33 
MIDE 0.03, 0.07 0.01, 0.05 0.23, 0.70 
NHAF 2.61, 5.30 0.18, 0.64 0.07, 0.12 
SHAF 2.83, 4.58 0.34, 0.22 0.12, 0.05 
BOAS 1.92, 2.63 1.30, 1.92 0.68, 0.73 
CEAS 0.73, 0.50 0.09, 0.07 0.13, 0.14 
SEAS 1.27, 1.53 0.21, 0.78 0.17, 0.51 
EQAS 0.50, 2.01 0.20, 1.52 0.39, 0.76 
AUST 1.15, 1.24 0.48, 0.42 0.42, 0.34 
    
TOTAL 17.23, 24.32 1.43, 1.42 0.08, 0.06 

                                                 
 
10 Values are in Tg OCBC.  Mean, standard deviation, and coefficient of variation over the 2001 – 
2007 period. 



 

 
 

114

 

Figure 4.9:  Regions used for comparison of results from this study with the 
GFEDv2.  Regional descriptions are explained in van der Werf et al. [2006]. 
 
 

annual variability in the BOAS region.  For the rest of the regions, the agreement 

between the GFEDv2 and the estimates made in this research were good for the entire 

2001-2007 period; the average was 9.1 Tg for GFEDv2 and 8.1 Tg for the FRE-based 

estimate. 

 

4.5: Conclusions 

 Biomass burning is the main global source of fine primary carbonaceous aerosols 

in the form of organic carbon (OC) and black carbon (BC).  An approach to estimate 

biomass burning aerosol emissions based on the measurement of radiative energy 

released during combustion was presented.  FRE based emission coefficients for the 

organic and black carbon (OCBC) component of fine mode aerosols were computed 

from multiple regions encompassing non-forest (savanna/grassland), tropical forest 

and extratropical forest biomes using OCBC emission estimates derived from the 
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MODIS fine mode aerosol product and an inverse aerosol transport model.  The 

coefficient for savanna/grassland tended to agree with previously published values of 

emission factors, but the values obtained for forest biomes were a factor 3 to almost 5 

higher. The FRE monthly data were then used to estimate OCBC emissions from 

biomass burning on a global basis. For 2001 to 2007, the annual estimates are 

comparable to previously published values. According to the FRE-based estimate, 

OCBC emissions were greatest in 2003 (20 Tg); roughly 14% above average and 

primarily driven by wildland fires in the Lake Baikal region (Russia). 

 A particularly interesting point is that despite the derived emission factors being 

between a factor 2 and 6 greater than the ones used in the GFEDv2 by van der Werf et 

al. [2006] (which were based on Andreae and Merlet [2001]), the annual global 

emission estimates are between 23% and 31% less than the GFEDv2.  While this 

deviation is still within the uncertainty range shown in the error estimates (Table 4.1), 

another explanation may be related to uncertainties in the GFEDv2 product, 

particularly with respect to fuel load assumptions and inaccuracies in the burned area 

quantification as demonstrated in Chapter 3. 
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Chapter 5: Summary, Implications of the Findings, and 
Research Conclusions 
 

 

5.1 Synthesis of Research 

 The atmosphere plays a fundamental role in regulating life on Earth.  Changes in 

atmospheric composition can and do affect surface temperatures, hydrology, radiation 

budgets, weather, and even climate.  Therefore, understanding the complex exchanges 

occurring between the atmosphere and surface requires accurate measurements of the 

variables characterizing both; for example atmospheric constituents, surface 

temperatures, and albedo.  Quantifying these variables provides the necessary inputs 

for modeling the dynamic interactions and potential outcomes that result from 

changes in the relative proportions of atmospheric constituents.   In light of the 

growing evidence for anthropogenic induced climate change, accurate 

characterization of the impact humans are having, both directly and indirectly, on 

altering Earth’s systems is critical to guiding mitigation policy. 

 To that end, the goal of this research was to accurately estimate the organic and 

black carbon aerosol emissions from biomass burning using fire radiative energy 

(FRE) released as a proxy.  As stated earlier, biomass burning is the main global 

source of organic carbon and black carbon (OCBC) aerosols which alter Earth’s 

radiative balance through various, often opposing mechanisms.  To fully understand 

the dynamics of these interactions, spatial and temporal estimates are needed at 

synoptic scales, requiring the use of satellite-based remote sensing.  However, remote 

sensing of the surface from measurements taken at the top of the atmosphere requires 
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careful consideration of the at-sensor signal attenuation due to the atmosphere.  This 

topic was described in Chapter 2.  To date, research in this area has focused on the 

visible and near-infrared parts of the spectrum.  Recent research by French et al. 

[2003] and Petitcolin and Vermote [2002] highlighted the potential application of a 

new parametric model for atmospheric correction of thermal infrared data.  In 

Chapter 2, specific consideration was given to the impact of atmospheric attenuation 

on the MODIS “fire” channel which is used to develop fire radiative power estimates.  

Following atmospheric correction of the fire band, Chapter 3 described an innovative 

methodology to quantify the temporal trajectory of fire radiative energy flux from 

limited, discrete MODIS retrievals.  The integral was calculated to produce the total 

fire radiative energy and then estimates of the biomass fuel consumed were made 

using an energy-to-mass coefficient.  Finally, the crux of this dissertation was 

presented in Chapter 4 which detailed an approach to estimate OCBC emissions using 

FRE.  The relationship was developed using estimates of OCBC from inverse 

modeling and the FRE produced in Chapter 3.  The result was a global product of 

OCBC from fires at 0.5° spatial and monthly temporal resolutions.  The new estimate 

was then compared to previously published estimates and an error analysis 

undertaken.  

  

5.1.1 Thermal Atmospheric Correction to Enable Accurate FRP 

Estimates 

Accurate retrieval of surface temperature from satellite observations requires 

correction of the thermal channels for atmospheric emission and attenuation.  Chapter 
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2 presented a critical evaluation of a new parametric model tuned to MODIS channels 

and based upon the MODTRAN radiative transfer code.  MODTRAN provides 

comprehensive and accurate (2-5% in transmittance) capabilities for modeling 

molecular and aerosol emission, scattered radiance, and atmospheric attenuation 

[Berk et al., 1998; Anderson et al., 2000].  Comparison with MODTRAN showed a 

good performance for the parametric model (RMSE < 0.02 for transmittance across 

all MODIS emissive bands) with computation speeds approximately 3 orders of 

magnitude faster than MODTRAN.  From an operational standpoint this is 

encouraging because large satellite datasets could be ingested and processed at higher 

rates than what is achievable using MODTRAN.  To test this new approach a 

comparison was undertaken of sea surface temperatures calculated using atmospheric 

correction parameters generated from the parametric model and the standard MODIS 

SST product.  The results showed consistency in the estimates (E =0.68) with 

minimal error and bias (RMSE = 0.49K; bias = 0.45K).  Evaluation of the surface 

temperatures made using the parametric model and MODIS against in situ land and 

water temperature measurements revealed accurate estimates (mean bias < 0.35 K) 

with little error (RMSE < 1 K).  Investigation of profile sources and their effect on 

atmospheric correction offered insight into the application of the parametric model 

for operational correction of MODIS thermal bands.  

A test of the atmospheric attenuation of MODIS fire channels was necessary prior 

to undertaking the analysis in Chapters 3 and 4 as atmospheric attenuation was found 

to reduce the surface FRP.  Specific application of the parametric model revealed that 

the FRP is approximately 20% less at TOA than surface FRP.  The bias was primarily 
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associated with the view angle, but designation of specific atmospheric constituents 

responsible for the attenuation was beyond the scope of this research.  Consideration 

of atmospheric water vapor content did not yield any correlation with the loss of 

signal and therefore, at this point, it is assumed that homogeneous species, such as N2 

and CO2 are responsible.  A simple exponential correction factor proved adequate for 

adjusting the TOA FRP for the apparent loss of energy.  

 

5.1.2 Satellite Driven Fire Radiative Energy Modeling 

 Application of satellite based measures of fire radiative energy (FRE) has been 

shown to be effective for estimating biomass consumed, which can then be used to 

estimate gas and aerosol emissions.  However, the use of FRE has been limited in 

both temporal and spatial scale.  In Chapter 3, an approach was presented to 

approximate the monthly total of hourly fire radiative power retrievals beyond the 

nominal MODIS FRP observations using the MODIS climate modeling grid (CMG) 

dataset.  The method was based on higher frequency retrievals of instantaneous FRE 

than those offered from the nominal overpasses of MODIS.  Date from the SEVIRI, 

VIRS, and MODIS sensors were used to model the fire diurnal cycle and a modified 

Gaussian function proved to be a simple, yet effective approximation of the temporal 

trajectory of FRP.  The Gaussian function parameters were then related to the mean 

of monthly (n=60) Terra/Aqua (T/A) ratio of FRP from 16 globally dispersed regions.  

The FRE methodology described in this research adds value to the individual FRP 

retrievals made by MODIS and is important for assessing biomass burned and 

associated emissions.  To date, the calculation of FRE from MODIS FRP has not 
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been achieved and therefore this estimate is a first of its kind.  The capability for high 

temporal resolution comparisons were limited, but initial evaluation against FRE 

estimated using 15-minute retrieval data from the geostationary SEVIRI sensor for 

Africa showed that the approach produces similar estimates.   

 Fire activity is widespread with commonly active regions dominating the global 

picture.  Africa, South America, Australia, and boreal regions all showed significant 

contributions to fire radiative energy production from biomass burning.  Estimates of 

fuels consumed from fire were limited to Africa, but offered an interesting 

comparison with the Global Fire Emissions Database, version 2 (GFEDv2).  GFEDv2 

uses a bottom-up emissions calculation approach and can be considered an 

independent approach, using a combination of remotely sensed parameters with 

biogeochemical modeling to estimate biomass consumption.  The result of the 

comparison indicated that the GFEDv2 estimate was nearly a factor 4 greater than the 

estimates in this study.    An additional analysis of fuel load estimates from the two 

approaches suggested that perhaps the GFEDv2’s numbers are too high and, in part, 

responsible for the significant difference in biomass consumption values.   

 Improvements to the FRE estimates may yield greater biomass burned, however 

this is unlikely to account for the large differences observed in the comparison with 

the GFEDv2.  The gap in biomass burned estimates highlights the need for further 

reconciliation among methodologies to reduce uncertainty.   
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5.1.3 Global OCBC Estimation 

  An approach to estimate biomass burning aerosol emissions based on the 

measurement of radiative energy released during combustion was presented in 

Chapter 4.  FRE based emission coefficients for the organic and black carbon 

(OCBC) component of fine mode aerosols were computed from multiple regions 

encompassing grassland/savanna, tropical forest and extratropical forest biomes using 

OCBC emission estimates derived from the MODIS fine mode aerosol product and an 

inverse aerosol transport model.  The emission coefficient values for OCBC were: 

savanna/grassland (2.47 gOCBC/MJ), tropical forest (7.54 gOCBC/MJ) and extra-

tropical forest (11.45 gOCBC/MJ). When the emission coefficients were converted to 

emission factors the savanna/grassland value agreed with previously published 

emission factors, but the values obtained for the two forest biomes were a factor 3 to 

almost 5 higher.  Various explanations could be postulated for the discrepancy 

between the Andreae and Merlet [2001] emission factors and the ones derived in this 

study: 1) the emission coefficients are based on satellite observations that are not 

representative of fresh smoke emissions but represent smoke aged by several hours or 

days that may have resulted in significant mass increase of the aerosol through 

secondary aerosol formation [Grieshop et al., 2008; Yokelson et al., 2008]; 2) the 

FRP is systematically underestimated due to cloudiness [Schroeder et al., 2008]; 3) 

canopy obscuration of fire radiative energy, especially in extratropical understory 

fires; 4) the limitation of the empirical formula used to estimate FRE; and 5) the 

conversion of emission coefficient to emission factor which is at least uncertain by 

10% and may vary from biome to biome as the mechanisms regulating the 
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partitioning of the radiative, latent and conductive heat may vary.  Examination of 

these possible explanations and reconciling the difference in emissions factors in 

different biomes is a topic for future research. 

 The FRE monthly data developed in Chapter 3 were then used to estimate OCBC 

emissions from biomass burning on a global basis for multiple years. For 2001 to 

2007 the OCBC emissions were greatest in 2003 (20 Tg), roughly 14% above average 

and primarily driven by large wildland fires in the Lake Baikal region (Russia).  

Comparison with the GFEDv2 indicated that the FRE-based estimates were similar 

globally and regionally, but generally were slightly lower.  Regional and temporal 

variations were similar as expressed by the means of standard deviation and 

coefficient of variation.  

 To reiterate the point made in Chapter 4, a source of confusion and potential error 

is the discrepancy in emission factors and emission loads derived from this research 

and the GFEDv2.  Although the derived emission factors in this research were 

between 3 and 5 times greater than the ones used in the GFEDv2, the annual global 

emission estimates were roughly 30% less.  The investigation of differences in fuels 

consumed and fuel loads in Chapter 3 implies that the GFEDv2 is at least partially 

accountable for the OCBC emissions differences. 

 

5.2 Implications of the Findings 

 The result of the error budget in Chapter 4 showed a potential uncertainty in the 

OCBC estimate of approximately 58%.  This would imply that the hypothesis 

developed for this research, that the FRE-based estimate could yield accurate 
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estimates with less uncertainty than current estimates, is unqualified.  Although 

comparison with other published estimates of OCBC emissions from fire indicates a 

good agreement, this is not necessarily a valid assessment of the products accuracy or 

an indication of its significance.  Indeed, a true validation is unrealistic at a global 

scale necessitating an intercomparison of published estimates as the next-best 

alternative to reach consensus in estimates.  Regarding the uncertainty in these 

estimates, improvement may be easiest in the FRE-based methodology, given the 

direct geophysical approach and use of fewer variables, resulting in a reduction in the 

error of the product.  

 

5.2.1 OCBC Impacts on Radiative Forcing  

To put the estimated OCBC emissions into a broader context, their impact on 

global radiative forcing is considered.  Radiative forcing (RF) offers an easily 

quantifiable and comparable variable for understanding climate change.  It is defined 

by the IPCC [2007] as an “externally imposed perturbation in the radiative energy 

budget of the Earth’s climate system”.  Essentially, the RF provides, to a first-order, a 

quantifiable measure of the change in the Earth-atmosphere balance of incoming solar 

radiation to outgoing infrared energy; the balance between which explains surface 

temperature.  Measured at the top-of-atmosphere (TOA), RF is expressed in terms of 

the energy flux per unit area of the globe (W m-2), and has become an important 

variable in expressing the impact of natural and anthropogenic parameters in 

influencing climatic alteration.   The sign convention means a positive radiative 

forcing leads to warming in the troposphere while a negative sign results in a cooling. 



 

 
 

124

The IPCC [2007] calls for all radiative efficiencies to be calculated in terms of 

“adjusted” cloudy sky radiative forcing calculated at the tropopause. This is where the 

temperature of the stratosphere is allowed to adjust so that it remains in global 

radiative equilibrium. This is because the stratosphere’s adjustment timescale is a 

matter of months, compared to decades for that of the tropopause primarily because 

of the thermal inertia of the ocean. Radiative forcing calculated without stratospheric 

adjustments is referred to as “instantaneous” radiative forcing.  However, with 

regards to aerosol RF, the IPCC [2007] notes that stratospheric adjustment has a 

negligible effect on differences observed between forcing impacts measured either at 

TOA or the tropopause and thus the TOA is used for quantifying the forcing effect. 

Long-lived greenhouse gases, such as carbon dioxide (CO2), methane (CH4), and 

nitrous oxide (N2O), are the largest contributors to radiative forcing and, owing to 

broad global networks of observations and the persistence of these gases in the 

atmosphere, are better understood and quantified than other RF agents.  Aerosols, on 

the other hand, such as organic carbon (OC) and black carbon (BC), are short-lived 

(minutes to days) and heterogeneous in spatial and temporal distribution.  As a result, 

there is greater uncertainty as to the atmospheric effect of aerosols and ultimately the 

radiative forcing impact [IPCC, 2007].  

Direct effects of aerosols result in scattering and absorbing shortwave and 

longwave radiation and impact the energy flux between Earth’s surface and the 

atmosphere.  Indirect effects are caused by changes in cloud microphysical properties, 

and hence radiative properties.  The IPCC [2007] refers to these as the cloud lifetime 

effect and cloud albedo effect.  The impact on clouds may also affect hydrological 
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cycles on local to regional scales by what is referred to as the “semi-direct effect” in 

which cloud burn-off reduces the likelihood of supersaturation and thus rainfall 

[Kaufman and Koren, 2006].   

The IPCC [2007] put the total direct radiative forcing impact of biomass burning 

aerosols around 0.03 W m-2 with approximately a factor of 4 uncertainty (±0.12).  

The RF estimate is taken from multiple studies reporting the forcing impact of 

biomass burning aerosols and is calculated as the average of the mean and median 

from all of the studies.  The uncertainty range is calculated from the standard 

deviation of all these studies (0.07 W m-2) multiplied by 1.645 to approximate a 90% 

confidence interval11.  The uncertainty is important when considering the total net 

global forcing from all forcing agents is 1.6 W m-2.  This would suggest that given the 

error bars on the aerosol forcing a possible shift in the forcing sign is possible, 

resulting in either a warming or cooling effect from aerosol forcing.  The indirect 

effects are complex and nonlinear and, although important, as of yet not completely 

understood or modeled and thus are neglected in the IPCC estimate of radiative 

forcing from biomass burning aerosols. 

In this study the instantaneous direct radiative forcing impact is calculated for 

clear-sky conditions without the influence of the indirect forcing effects discussed 

above.  The RF was calculated using NOAA’s Geophysical Fluid Dynamics 

Laboratory (GFDL) atmospheric model (AM2).  A full description of the model can 

be found in Magi et al. [2009].  For comparison, GFEDv2 forcing was calculated 

                                                 
 
11 See IPCC 4th Report, Chapter 2: Changes in Atmospheric Constituents and in Radiative Forcing; and 
specifically Table 2.5 for studies used in the BB radiative forcing estimate. 
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(Table 5.1).  The annual average (2001-2007) forcing is presented globally, for the 

tropics (22.5˚S – 22.5˚N), and for northern hemisphere mid-latitude (22.5˚N - 60˚N). 

 

Table 5.1:  TOA and surface direct radiative forcing impact (W/m2) of biomass 
burning aerosol emission estimates from the MODIS FRE approach and the GFEDv2.  
Tropics refer to global regions between 22.5˚S and 22.5˚N.  NH mid refers to 
northern hemisphere mid-latitudes between 22.5˚N and 60˚N. 
 

 TOA This Work TOA GFED Surface This Work Surface GFED 

Global -0.08 -0.20 -0.33 -0.53 

Tropics -0.21 -0.35 -0.94 -1.41 

NH mid -0.10 -0.24 -0.30 -0.46 
 

The model was initialized with zero biomass burning emissions, but retaining other 

natural and anthropogenic sources.  Radiative forcing is then reported as the short-

wave difference in radiance before and after emissions are considered.  Table 5.1 

shows that the biomass burning aerosols over the tropics impose a greater forcing 

burden than in the northern hemisphere mid-latitudes although it is likely that some 

boreal fire emissions are missed with the NH mid latitudinal range selected and thus 

the forcing impact may be closer.  The GFEDv2, not surprisingly shows a greater 

negative forcing which can be directly linked to the higher emission estimates 

(Chapter 4).   

Comparison with the IPCC [2007] suggests that the “MODIS” TOA forcing of -

0.08 W m-2 is within the range of uncertainty reported by the IPCC (±0.12 W m-2).  

The negative forcing, however, can be attributed to the “clear-sky” set up of the 

GFDL AM2 which neglects the vertical position of the aerosol layer relative to 

clouds.  Keil et al., [2003] showed that ignoring any aerosol-cloud interactions, the 
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presence of clouds alone in modeling radiative forcing shifts the impact from negative 

to positive.  This is due to greater absorption of sunlight, depending on the fraction of 

absorbing aerosols located above the clouds, by as much as a factor of 3 compared 

with aerosols within or below clouds. 

The temperature response of the radiative forcing values shown in Table 5.1 can 

be calculated using a climate sensitivity parameter (λ) [Ramanthan et al., 1985] 

which relates the forcing impact to temperature change.  Thus, using a mean λ value 

of 0.5 K/(W m-2) reported by [Ramanthan et al., 1985] and used by the IPCC [2007], 

the expected change in temperatures is shown in Table 5.2. 

 
 
Table 5.2:  Expected temperature response to the biomass burning aerosol emissions 
radiative forcing impact, calculated using a climate sensitivity parameter of (λ) 0.5 
K/(W/m2). 
 

 TOA This Work TOA GFED Surface This Work Surface GFED

Global -0.04 -0.10 -0.16 -0.27 

Tropics -0.11 -0.18 -0.47 -0.71 

NH mid -0.05 -0.12 -0.15 -0.23 
 
 

Emission estimates from both this study and the GFEDv2 equate to a negative 

forcing at the surface and TOA, assuming clear-sky conditions.  The GFEDv2 forcing 

is, on average, between 1.5 and 2 times stronger (more negative) which stands to 

reason given the difference in emission loading estimates.  Nevertheless, the 

implications for global forcing suggest, at least to a first order, that aerosols from 

biomass burning have a cooling effect and may act as a partial offset to anthropogenic 

forcing agents such as CO2 from fossil fuel combustion.     
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5.3 Future Research and Developments 

The error budget produced in Chapter 4 highlighted various sources of error and 

provided insight into directions to follow to improve the estimates made in this 

research.  The following section offers a discussion of potential future developments 

to some of the critical components in this study. 

 

5.3.1 The Parametric Model  

Consistent, periodic sampling to validate profiles, similar to the current aerosol – 

AERONET framework used for the MODIS aerosol product, should be developed.  

Although it was hoped that radiosonde data could provide the basis for site specific 

validation data, this research has shown that inconsistency in radiosonde launch 

timing and profile retrieval at some sites limits the effectiveness of this data source 

for synoptic, vicarious calibration.  Nevertheless, a focus on developing an 

operational scheme for near-real time atmospheric correction using profile data 

retrieved from AIRS and MODIS should be considered; with MODIS providing the 

spatial resolution and AIRS providing the necessary accuracy. 

 

5.3.2 Improving FRE Estimates 

In order to truly validate FRE estimates greater spatial and temporal resolution 

data are needed.  The evaluation of the FRE estimates with SEVIRI data offered a 

comparison with FRP retrievals made at higher temporal resolution, but incurred the 

downside of coarser spatial resolution.  Future endeavors would include a scaling 

approach to test the temporal trajectory of instantaneous fire energy and total fire 
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radiative energy released from a fire event.  This would include the use of in situ 

observations, perhaps with a combination of field and laboratory experiments to 

reconcile differences between these two approaches.  The next tier of retrievals would 

be from airborne observations, perhaps including both tower platforms (for small 

scale fires) and unmanned aircraft.  The Ikhana unmanned airborne vehicle (UAV) 

used by the fire research at NASA AMES offers some opportunities in this regard.  

Recent field work demonstrated that while monitoring FRP from a helicopter seems 

ideal, many factors can limit the success of this tactic and that greater flexibility in 

choice of fires to observe and timing allowed for observation is needed.  Moderate to 

high spatial resolution satellite observations would be employed in the next scaling 

layer and allow for greater spatial coverage while being constrained by higher spatial 

and temporal observations.  To that end, geostationary satellite observations would 

cap the scaling approach, providing high temporal (15 – 30 minute) retrievals to aid 

in characterizing the diurnal cycle of fire radiative power as has been shown in this 

research.  Incorporating sensors such as the Geostationary Operational Environmental 

Satellites (GOES) would offer greater spatial coverage beyond the SEVIRI sensor.  

Careful consideration of the limitations of comparison between sensors at multiple 

scales would obviously be needed [Schroeder et al., 2005]. 

 Other considerations worth pursuing to improve FRP retrievals from the 

MODIS sensor include parameterization of the sub-surface organic layer burning.     

According to  

French et al. [2004] surface organic layer burning is largest source of uncertainty in 

boreal biomass burning emission estimates.  Page et al. [2002] estimated 0.19-0.23 
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Gt of carbon released to the atmosphere from peat combustion during 1997 

Indonesian fires.  Their estimates were based on peat thickness, pre-fire land cover, 

and burnt area data collected from ground measurements and Landsat TM/ETM 

imagery.  Satellite imagery proved useful for classifying land cover and determining 

burn scars, but they discovered that due to residual haze after fires and frequent cloud 

cover the use of synthetic aperture radar (SAR) was necessary to determine the extent 

of burnt areas.  Cloud cover has already been revealed by Schroeder et al. [2008] to 

limit fire detection capabilities for Brazilian fires.  The spatial resolution of MODIS is 

another limitation to detecting fires in peatlands (and thus FRP estimation) as shown 

by Siegert et al. [2004].  Developing a connection between field estimates of surface 

and sub-surface organic burning, burned area, and FRP would allow for 

parameterization of this component of fire radiative energy.  

 

5.3.3 OCBC Inversion Product 

 Future work will include refining the FRE-based emission coefficient estimates 

using the sources of error outlined in the error budget as guidance for components to 

improve.  Closer examination of the emission coefficients and emission factors for 

Africa, a region which showed a strong correlation between FRE and inversion 

estimates of OCBC in 2003 will aid in understanding the spatial and temporal 

variability in this parameter.   

 For 2001 to 2007 the annual estimates were close to previously published values, 

however some regional differences warrant further investigation.   Africa emission 

estimates were well correlated between the FRE-based approach and the GFEDv2, 
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but nearly a factor of 2 lower in the former.  In a similar fashion, EQAS estimates 

were, on average, underestimated by about a factor of 4.  Investigation of fuel loads, 

biomass burned, and in the case of EQAS, surface and sub-surface organic matter 

burning (i.e. peat) is needed.   

 The examination of several factors influencing aerosol emissions from vegetation 

fires warrant future consideration.  These include, but are not limited to: radiative 

properties as a function of aerosol composition, smoke aging, the effect of relative 

humidity, and chemical composition of aerosol emissions.  As an example, the 

proportion of organic and black carbon generally comprises between 55 and 75% of 

the total fine mode particulate matter (PM2.5), but this proportion, as well as the ratio 

of BC to OC, is critical to describing the radiative impact [Magi et al., 2009].   

The aging of smoke which results in the growth of aerosols by as much as 40% 

[Reid et al., 2005] has implications for light scattering and absorbing properties.  

Hobbs et al. [1997] showed an increased scattering efficiency of aerosols as they 

aged.  The increase was due to growth of the smoke particles as a result coagulation 

and gas-to-particle transformation, resulting in particle sizes with greater scattering 

potential.  Magi et al. [2009] demonstrated through sensitivity tests that increasing the 

geometric mean diameter can increase both the aerosol optical thickness and single 

scattering albedo, resulting in significant changes to the radiative forcing impact.   

 Another component worth examining is the effect of relative humidity on the size 

distribution of OCBC.  The impact has been shown to be most dramatic in the first 

hour of the aging process and results in greater total light scattering [Magi et al., 

2003].  Although relative humidity is generally not a major influence on aerosol size 
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distributions given most burning occurs in periods of low atmospheric water vapor 

content (< 30%), it could potentially be a factor in regions with burning occurring 

during periods of moderate-to-high relative humidity (i.e. > 50%) as might happen in 

early dry season fires or areas of active deforestation in the humid tropics [Hobbs et 

al., 1997]. 

   

5.4 Conclusions  

 The research presented in this thesis shows that a direct global estimate of FRE 

and biomass consumed is currently feasible and offers an alternative and independent 

means of OCBC emissions estimates other than the bottom-up approach adopted by 

the GFEDv2 and others.  It also provides the potential of measuring biomass 

consumed by fire using a FRE-based biomass consumption factor.  The OCBC 

estimate made from satellite derived FRE is close to that reported in the GFEDv2 

[van der Werf et al., 2006] and to other estimates for similar time periods 

[Hoelzemann et al., 2004; Schultz et al., 2008].  The implications of the estimated 

OCBC in terms of RF suggest a cooling effect at both TOA and surface.  Further 

research on this topic should focus on assessment of regional estimates of FRE, FRE-

based emission coefficients, and subsequently OCBC emissions.  Validation with 

higher spatial and temporal resolution data would go a long way towards constraining 

estimates and improving reconciliation with other global emission datasets.  To that 

end, collaboration between researchers making in situ and remotely sensed measures 

of the variables discussed herein (rate of energy release, emissions, fuels consumed, 

fuel load, etc.) and the various approaches employed would offer a better 
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understanding of the dynamics of estimating biomass burned and associated 

emissions. 
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