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Abstract

There are many applications where an object oriented data model is a good way of repre-
senting and querying data. However, current object database systems are unable to handle the
case of objectswhose attributesare uncertain. Inthispaper, extending previous pioneeringwork
by Kornatzky and Shimony, we develop an extension of the relational agebrato the case of ob-
ject bases with uncertainty. We propose concepts of consistency for such object bases, together
with an NP-compl eteness result, and classes of probabilistic object bases for which consistency
is polynomially checkable. In addition, as certain operationsinvolve conjunctions and disjunc-
tions of events, and asthe probability of conjunctiveand digunctive events depends both on the
probabilitiesof the primitiveeventsinvolved aswell as on what isknown (if anything) about the
rel ationship between the events, we show how al our algebraic operations may be performed
under arbitrary probabilistic conjunction and disjunction strategies. We aso develop a host of
equivalence resultsin our algebra, which may be used as rewrite rules for query optimization.
Last but not least, we have devel oped a prototype probabilistic object base server using the Visi-
Broker ORB ontop of ObjectStore. We describe experimentsto assess theefficiency of different
possiblerewriterules.

1 Introduction

The concept of an object base is gaining numerous adherents because it allows data to be organized
in an application specific manner for scalability, while still supporting a common query language.
However, there are many applicationswhere probabilistic data needs to be stored. For instance, im-
age interpretation programs are uncertain in their identification of featuresin images and such image
databases are typically stored using object databases [17]. Similarly, an application that is tracking
a set of mobile objects using an object database system may only know that an object is at one of a
given set of pointsright now, but the preciselocation may be unknown. Likewise, an application that
representsforecasts about stock movements or the weather needsto represent uncertainty inthefore-
cast. When the application data (stocks, weather) are in an object repository, methods to represent
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uncertain aspects of these objects need to be developed. In short, the ability to represent probabilis-
tic information in an object base, and to manipulate such “probabilistic object bases” efficiently is
important for avariety of applications.

To date, there has been only one significant attempt in the database community to merge proba
bility model s with object bases, namely that by Kornatzky and Shimony [23], who proposed a prob-
abilistic abject calculus. Building upon their influential work, in this paper, we make the following
contributions:

1. First and foremost, we propose a notion of a probabilistic schemaand formally define alogical
model theory for it. We define what consistent schemas are and prove that consistency checking is
NP-complete. We identify special classes of schemas for which consistency may be polynomialy
checked. Previouswork on probabilistic object bases had no associated concept of consistency.

2. We then propose an algebrafor probahilistic object bases in which the classical relational alge-
braoperators are extended to apply to probabilistic object bases. It iswell known [24] that the prob-
abilities of conjunctive and digjunctive events are computed in different ways depending upon the
dependenci es between the events involved. Our algebraic operators are parameterized by the user’s
knowledge (or lack thereof) of such dependencies — hence, the user can ask queries of the form
“Find thejoinof . .. assuming no knowledge about the dependencies between the eventsinvolved.”
Previous work on probabilistic object bases assumed that al eventsinvolved were independent. To
our knowledge, thisisthefirst (extension of the) relational algebrafor probabilistic object bases.

3. We then prove a host of equivalence resultsin our algebra. These equivalence results may be
used as the set of rewrite rules that a database query optimizer uses for query rewriting.

4. We have implemented a distributed probabilistic object base system on top of the VisiBroker
ORB and the ObjectStore commercia relational database system. Thisimplementation allowed us
to conduct experiments across the network to eval uate the performance of our systemand alsoto see
how to rewrite queries.

This paper is structured as follows. In the next section, we consider a database application which
motivates our approach. In Section 3, we describe the architecture of aprobabilistic object base sys-
tem. After some basic definitionsof probability conceptsin Section 4, we devel op our probabilistic
object base (POB) model in Sections 5 and 6. A POB-algebra for querying this model is then pre-
sented in Section 7, and equivalence results in this algebra are derived in Section 8. We report on
an implementation of the model in Section 9, and discuss related work in Section 10. Section 11
concludesthe paper.
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Figure 1: Plant identification example

2 A Motivating Example

Consider the task of building an extensive database describing the types of vegetation found in the
Amazon rainforest. Thecreation of such adatabaseisaformidabletask. Individuasneed to exhaus-
tively examine the vegetabl es, herbs, and other kinds of plants growing in these forests, and provide
information describing soil conditions, climactic conditions, etc.

When describing the plants growing in such rainforests, there are several possible causes of un-
certainty. First and foremost, some plant species may not be uniquely identifiable by the surveyor
in the field. He may classify a particular herb as either being Silver Thyme or French Thyme (two
different species of thyme), without being able to specify exactly which speciethe plant in question
belongsto. By the sametoken, if he were slightly more expert, he might be able to say that heis not
sure whether the herb is Silver Thyme or French Thyme, but he rates the probability that it is Silver
Thymetwice as high as that it is French Thyme.

Figure 1 shows a very simple class hierarchy that describes plants as either being perennials or
annuals, and either being vegetables, herbs, or flowers. Clearly, the classes perennials and annuals
aredigjoint (that is, a plant cannot be both an annual and a perennial), as are the classes vegetables,
herbs, and flowers. Theclassesthat are mutually disjoint are connected together by a“d” in Figure 1.
However, note that we can certainly have plantsthat are annuals and herbs (for example, Basil).

In the rest of this paper, we will repeatedly consider this example, in order to illustrate various
definitions. By the time this paper is completed, we would have described techniques to build and
guery a probabilistic object base that captures the Plant Database of this example as a special case.



3 Architectureof a Probabilistic Object Base

In this section, we describe the overall architecture of a POB system. Figure 2 presents an archi-
tecture for query processing in probabilistic object bases. The architecture consists of thefollowing
components:

e The user expresses queries through a graphical user interface. As aresult of the user’s inter-
action with the interface, the GUI generates as output, a query in a declarative probabilistic object
calculus (POC). Note that queriesin this calculus are declarative queries. A pioneering attempt at
such acalculusisthat of Kornatzky and Shimony [23].

e The calculus query generated will be fed into a Converter which converts probabilistic object
calculus queriesinto queriesin a probabilistic object agebra query.

e Theagebraic query generated by the converter will be fed into a Query Optimizer, which will
take asinput a set of rewrite rules (reflecting equivalences between different queries in the POA-
algebra) and a set of cost models to perform the optimization. Note that given a set of rewrite rules
and a set of cost models, the task of finding a rewriting of a query that has minimal expected cost
(according to the cost models) iswell-studied, and good commercia implementations of such code
exist (e.g. Grafe's CASCADES system is presently being used by Microsoft).

e The“optimized” agebra query then produced will be physically executed on the probahilistic
object base.

¢ All the components above will use libraries consisting of: (i) A set of probabilistic conjunc-
tion, disjunction and difference strategies that allow the user to express what she knows about the
dependencies between events she is querying about — thisis used in query formulation, query op-
timization, cost eval uation and query execution. (ii) A set of distributionfunctionsthat allow auser
to specify how probabilitiesare distributed over a space of possiblevaluesfor an unknown attribute.

Givingadetailed description of al these componentsisclearly beyond the scope of a singlepaper.
In previous work, Kornatzky and Shimony [23] developed a probabilistic object calculus. In this
paper, we will expand the concept of a probabilistic object base used by them. We will then define
formally an Probabilistic Object Algebra (POA) and prove a host of query equivaenceresults. We
will report on a prototype implementation of the POA and describe experimental results — given
aquery equivalence q; = g2, these experimenta results will identify when a query of the form ¢,
should be rewritten to aquery of theform ¢, and vice versa. To our knowledge, thispaper isthefirst
to propose a probabilistic object agebra, thefirst to present results on query equivalencesin such an
algebra, and the first to implement such an algebra on top of acommercial object database system.
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Figure 2: Architecture of POB system

4 Basic Probability Definitions

In this section, we present some basic definitions used to set up a probabilistic extension of object
bases. The probabilistic conceptsare divided into two parts— (i) probabilistic conjunction, disjunc-
tion, and difference strategies, and (ii) distribution functions.

4.1 Probabilistic combination strategies

Suppose we know the probabilities of some events e; and e;. For example, e; may be the event
“The photographed plant p; (inimage I) is French Thyme.” Similarly, e; may be the event “The
photographed plant po (inimage I) isMint.” Assume now that we are interested in the probability
of the complex event (e; A e3). The probability of (e; A eg) iscomputed in different ways based
upon our knowledge of the dependencies between e, and es.

e ¢ and e, areindependent. Thismay occur if we know that the plants p; and p, are growing
in theareaindependently of each other. Inthiscase, P(e; A e3) = P(eq)-P(ey) (thatis, the
probability of (e; A e3) isthe product of the probabilitiesof e; and e3).

e ¢y ande, aremutually exclusive. Suppose, for example, weknow that the plantsp; and p, are
both either Thyme or Mint (e.g., if, for some reason, they cannot grow together in the same
place). Thismeansthat theeventse, and e, aremutually exclusive, and sowe canimmediately
say that P(e; A e) = 0.

¢ Weareignorant of therelationship between e, and e5. Thiscase occurs when we do not know
anything about the rel ationship between the plants p; and ps growing in the same area.

In this case, as aready shown by Boole[5], the best we can say about the probability of (e; A
ey) isthat it liesin theinterval [max(0, P(ey) + P(ez) — 1), min(P(eq), P(ez))].



Thus, the probability of (e; A e ) dependsnot only on the probabilitiesof e; and e3, but aso on the
relationship between eventse; and e,. A similar situation applieswhen we consider complex events
suchas (e1 V e3). The above are only three examples of different ways of evaluating probabilities
of complex events. In general, depending on exactly what isknown about the dependencies between
the events involved, there isawhole plethora of such probability computations.

In our framework, we use probability intervalsinstead of point probabilitiesfor two reasons: (i)
In many applications, the probability of an event is often not precisely given; (ii) as shown by Boole
[5] back in 1854, when we do not know the dependencies between two events, all we can say isthat
the probability of the conjunction/digunction of the events can only be specified as an interval.

Definition 4.1 (consistent assignment of probabilisticintervalsto two events) Supposee; and e
have probabilitiesintheintervalsI; = [L, U ] and Iy = [Lo, Us], respectively. Such an assignment
of probabilisticintervalsis consistent iff the following conditions hold:

o If (e1 A ey)iscontradictory? , then I, + Ly < 1.
o If (e1 A —ey) iscontradictory, then Ly < Us,.
o If (mey A eg) iscontradictory, then L, < Uy.
(

o If (mey A —ey) iscontradictory, then Uy + Uy > 1.

Inthe sequel, al assignmentsof probabilisticintervalsare implicitly assumed to be consistent un-
less stated otherwise. We denote for intervals I1 = [Ly,Uy] and I, = [Lo, Us] by Iy < I that
L1 < Ly and Ui < U, and by[l -y b that I iscontainedin I, i.e., Ly <14 and Uy < Us.

As many relationships between events cannot be automatically inferred, it is imperative that the
user be able to specify, in his query, what knowledge he has about such relationships. To facili-
tate this, Lakshmanan et al. [24] have introduced generic conjunction and disjunction strategies.
Any function that satisfies the axioms listed below is called a conjunction or disjunction strategy,
respectively. (Given two events ¢; and e, with probabilitiesin the intervals I, = [Ly, U] and
Iy = [Ls, Uy, respectively, the notations“/ = Iy @ I,” and“I = [, & I,” are shorthand for
“lex Neg, 1) = (e1,11) ® (eg, [)" and“(eq V eg, 1) = (€1, [1) P (e2, I3)", respectively.)

Axiom Name | Conjunction Strategy Digunction Strategy
Bottomline (Ii®13) < [min(Ly, La), min(Uy, Us)] (Ii®1) > [max(Ly, L2), max(Uy, Us)]
Ignorance (I1®13) Clmax(0, L1+ Lo—1), min(Uy, Us)] | (1B 12) C[max(Ly, La), min(1, U1+U>)]
[ dentity* (he[l,1])=1L (L®]0,0])=1
Commutativity | (I1@1) = (I.®11) (Lholy) = (1)
Associativity | (I1®1:)®13) = (Lo (I2®13)) (hah)el) = (La(ldls))

( (

MOﬂOtOﬂiCity Il®12) < (Iz@[g) if I < I3 11@12) < (11@13) if I < I3

Contradictory here merely means“inconsistent in classical propositional logic.”



In the abovetable, the | dentity-axiomsfor conjunction and disjunction strategiesassumethat e; A
ez and —ey A —eq , respectively, are not contradictory.

Whilethe notion of probabilisticconjunctionand disjunctionstrategiesare recapitul ated from L ak-
shmanan et al. [24], the concept of difference strategies below is new.

Definition 4.2 (probabilistic difference strategy) Supposee¢; and e, have probabilitiesin the in-
tervals Iy = [Ly, Uy] and I, = [L,, Us], respectively. A probabilistic difference strategy isabinary
operation © that uses thisinformation to compute the probabilisticinterval I = [L, U] for the event
(e1 A —ez). When the events involved are clear from context, weuse “/ = [; & I3” to denote
“(ex N —eg, 1) = (e1,11) & (e2, I2)". Every difference strategy must conform to the following pos-
tulates of probabilistic difference:

1. Bottomline: (Il S IQ) < [min(Ll, 1- UQ),min(Ul, 1- Lz)]
2. Ignorance: (I; & I5) C [max(0, L1 — Us), min(Uy, 1 — Ly)].

3. Identity: If (—e; A —eq) isnot contradictory, then (I; & [0,0]) = 1.

Some examples of probabilistic conjunction, disjunction, and difference strategies are given in
Table1.

Strategy Operators
Ignorance ([L1, U1] @ig [L2, Us]) = [max(0, L1 + Ly — 1), min(Th, Uy)]
([L1, U1] ®ig [L2, Us]) = [max(Lq, Lo), min(1, Uy + Us)]
([L1, U1] Sig [L2, Us]) = [max(0, L1 — Us), min(TU7, 1 — Ly)]
Independence ([L1, U1] @in [La, Us]) = [Ly - Lo, Uy - Us)
([L1, U1]) ®in [Lo, Us]) = [L1 4+ Lo — (L1 - Lo), Uy + Uy — (Uy - U3)]
(L1, Uh] ©in [Lo, Us]) = [Ly - (1 = Us), Uy - (1 — Ly)]
Positive Correlation | ([L1, U] @p. [Lo, Us]) = [min( Ly, Ls), min(Th, Us)]
(whene; implieses, | ([L1,U1] ®pe [Lo, Us]) = [max(Ly, Ls), max(U, Usy)]
or e5 impliese;) ([L1, U1] Spe [L2, Us]) = [max(0, L1 — Us), max(0, Uy — Ls)]
Negative Correlation | ([L1,U1] ®ne [L2, Us]) = [0, 0]
(Wheney andes are | ([L1, U] @ne [L2, Us]) = [min(1, Ly + Lg), min(1, Uy + Us)]
mutually exclusive) | ([L1,U1] ©ne [L2, Us]) = [L1, min(Uy, 1 — La)]

Table 1: Examples of probabilistic combination strategies

Note that we do not assume any postul atesthat relate probabilistic conjunction, disjunction, and
difference strategiesto each other (for example, postul atesthat express the distributivity of conjunc-
tion and disjunction strategies). Readers may make such assumptionsif they wish — however, the
results of this paper stand even if these assumptions are not made.



4.2 Probability distribution functions

Probability distribution functions assign probabilities to elementary events in a coherent way. For
example, if we are told that plant p; is currently at one of the locations a, b, ¢ with probability 60-
70%, thenadistributionfunctionallowsusto assign parts of thisprobability massto the events* plant
py isat location a,” “plant p; isat location b,” and “plant p, isat location ¢.”

Definition 4.3 (distribution function) Let X be afinite set. A (probability) distribution function
a over X isamapping from X totherea interval [0, 1] suchthat ¥,.cx a(z) < 1.

We do not requirethat ¥,.c x () = 1 holds; we call any distribution function a with this property
complete. The above definition allows to conveniently assign probabilitiesto asubset X C Y of
elements, leaving the probabilities of the other elements open.

An important distribution function, which we often encounter in practice, is the uniform distri-
bution. For afinite set X, it isdefined by ux(z) = |)1(_| fordl z € X. We abbreviate uy by u,
whenever X isclear from the context. Many other distribution functions are conceivable; we will

not embark on a study of this subject here.

Definition 4.4 (probabilistictriple) A probabilistictriple(.X, a, 3) consistsof afiniteset X, adis-
tributionfunction « over X, and afunction 5 : X — [0, 1] mapping X totherea interval [0, 1] such
that (i) a(z) < B(z) foral z € X and (i) >, .y A(z) > 1 hold.

Informally, aprobabilistictripleassignseach element « of aset X aprobability interval [a(z), 8(x)].
This assignment is consistent in the sense that we can assign each element in X a probability p(z )
from [a(z), B(x)] such that the sum of al p(z) addsup to 1.

5 Typesand Probabilistic Object Base Schemas

In this section, we provide some basi ¢ definitions underlying a probabilistic object base (POB). We
first consider types and values, and then the schema of a POB. The notion of POB-schemais more
complex than in the context of relational databases, and may |ead to inconsistent specifications; we
present efficient algorithmsfor checking schema consistency.

5.1 Typesand values

We start with the definition of types.

Definition 5.1 (types) Let A beaset of attributesandlet 7 beaset of atomictypes. We define types
inductively asfollows:

o Every atomictypefrom 7 isatype.



e If 7 isatype, then {r} isatype, whichiscalled the set type of T;

o If Ay, ..., A, are pairwisedifferent attributesfrom A and y, . . ., 7 aretypes, then

[Ay: 7m,..., Ag: 7] isatype. Thistypeiscalled atupletypeover theset of attributes{ A, ..., Az}.

Givensuchatyper = [Ay: 7,..., Ag: Ti], we use 7. A; to denote ;.

Example5.1 (Plant Example: types) In the Plant Example, some atomic types from 7 may be
given by integer, real, string, soiltype, and suntype. The attributes soil, sun (sun-exposure), and
rain (daily water) describe various conditions needed for a plant to grow. Some (hon atomic) types
include: soiltype; {soiltype}; and [soil : {soiltype},sun: suntype, rain: integer].

Definition 5.2 (values) Every atomic type r € 7 has an associated domain dom(7). We define
values by induction as follows:

o Foral atomictypest € 7, every v € dom(7) isavaueof typer.

o Ifvy,..., v arevauesof typer, then {vy,..., v} isavaueof type{r}.
o If Ay, ..., A, are parwisedifferent attributesfrom A and vy, . . ., v, are values of types
Tiyeoos Tk, then[Ay: vy, ..., A vg] isavalueof type[Ay: 7y, ..., Ak g

Example 5.2 (Plant Example: values) Let us return to the types of Example 5.1. We assign the
usual domainsto integer, real, and string. Let soiltype and suntype be enumerated types having the
domains {loamy, swampy, sandy} and {mild, medium, heavy}, respectively. The value sets associ-
ated with the types of Example 5.1 are asfollows:

e soiltype : Any element of {loamy, swampy, sandy} isavalueof soiltype. For example, loamy
isavaue of soiltype. When associated with a particular plant, this value might say that the
plant needs loamy soil to flourish.

o {soiltype} : Any set of values of soiltype is avaue of thistype. For example, if a particular
plant can grow well in either loamy or swampy soil, then {loamy, swampy} isan appropriate
value of thistype that can be associated with this plant.

e [soil: {soiltype},sun: suntype,rain: integer| : Any triple (vy, vz, v3) isavaue of thistype,
where vy isaset of vaues of soiltype, v, isavalue of suntype, and v3 isavaue of integer.
For example, ({loamy, swampy}, mild, 3) isavalue of thistype. It says that the plant needs
either loamy or swampy soil, mild sun, and 3 units of water per day to flourish.

Definition 5.3 (probabilistictuple values) If Ay, ..., A, are pairwise different attributes from A
and(Vy,a1,51), ..., (Vi, ax, Bi) areprobabilistictripleswhere V1, . . ., V}, are setsof valuesof types
T1, ..., Th, thentheexpression[ Ay : (Vi, 049, 51), ..., Ak: (Vi, ag, Bi)] isaprobabilistictuplevalue
of type[Ay: 71,..., Ap: 7] over theset of attributes{ Ay, ..., A;}. For probabilistictuplevalues
ptv =[Ar: (Vi,a1,51), ..., Ak (Vi, ag, Bi)], we use ptv. A; to denote (V, v, 3;).

9



It isimportant to note that the order of the A;: (V;, a;, 5;)’sin a probabilistic tuple value ptv =
[Ar: (Vi,a1,01), -+« At (Vie, ag, Bi)] IS not important. That is, we adopt a set-oriented view of
probabilistic tuple values.

Example 5.3 (Plant Example: probabilistic tuple values) Let us consider a specific plant grow-
ing wild in aforest. We know that the soil type of this plant is loamy (presumably, as we can see,
the plant is flourishing in the place in which it is currently growing in). Moreover, we are sure that
thisplant is Thyme, but unsurewhether itis French Thyme (french), Silver Thyme (silver) or Wooly
Thyme (wooly). If weare surewith 20-60% probability each that it is French Thyme, Silver Thyme,
and Wooly Thyme, then we may encode this knowledge via the following probabilistic tuple value
of type [soil : soiltype, classification: string] over the set of attributes {soil, classification}:

[soil: ({loamy}, u,u), classification: ({french, silver,wooly},0.6 u, 1.8 u)].

Note that the expressions“0.6 u” and “1.8 u” denote the distribution function « and the function 3,
respectively, thataredefined by a(z) = 0.6-1/3and 5(«) = 1.8-1/3for al = from {french, silver, wooly}.

In the above definition, a probabilistictriple (V;, o, 3;) may only assign aprobability interval to
some values v (viz. thosein V;) for the attribute A;. Nothing is stated for the (possibly infinitely
many) other valuesthat A; could have according to itstype ;. We must find a clean and appealing
way in which such incompl ete knowledge about the probability assignment is handled.

In the tradition of relational databases, we adopt a form of the closed world assumption (CWA):
We assume that every value v € dom(r;) — V; has probability O, i.e,, it isimplicitly assigned the
probabilityinterval [0, 0]. Under thisconvention, “ consistency” (whichwewill defineformally later)
of the probability information given by (V;, a;, ;) is preserved in the larger context of dom(;): a
probability function p over dom( ;) exists, compatiblewith (V;, a;, 3;), such that thesumof all p(v),
v € dom(w;),isl.

This CWA will underly our definition of the operationsin the probabilistic object base agebrain
Section 7. Noticethat still an openworld view ispossiblefor particular values. We may, for instance,
addvtoV andseta(v) = 0, 5(v) = 1; thisexplicitly expressesthat the probability of » isunknown.

5.2 Probabilistic object base schema

Informally, a probabilistic object base schema consists of a hierarchy of classes. Membership of an
object in an immediate subclass of any classisexpressed by a probability value.

Definition 5.4 (probabilistic object base schema) A probabilistic object base schema (POB-
schema) isaquintuple(C, o, =, me, p), where:

o (Cisafiniteset of classes. Intuitively, thesereflect the classes associated with thisprobabilistic
object base.

10



¢ o maps each classfrom( to a tupletype. Intuitively, this mapping specifies the data type of
each class.

e = isabinary relation on C such that (C, =) is a directed acyclic graph (dag). Intuitively,
each node of the directed acyclic graph (C, =-) isaclassfrom C and each edge ¢; = ¢, says
that the class ¢; isan immediate subclass of c,.

e me mapseach classc to a partition of the set of all immediate subclassesof ¢. Intuitively, sup-
pose that the class ¢ has thefive subclasses ey, . . . , ¢5 and suppose that me(¢) isthe partition
{{e1,c2},{c3, ca,¢5}}. Here, me(c) producestwo clusters. An object o belonging to class ¢
can belong to either or both clusters of ¢. However, the classes within a cluster are mutually
exclusive, that is, o cannot belong to both ¢; and ¢ in the same time.

e o mapseach edgein (C, =) to a positiverational number in the unit interval [0, 1] such that
for all classes ¢ and all clusters P € me(c¢), it holdsthat X cpp(d, c) < 1. Intuitively, if
c1 = ¢2, then p(eq, c2) specifies the conditional probability that an arbitrary object belongs
tothesubclasse, giventhat it belongsto the superclasscs. The summation condition saysthat
the sum of the probabilities of edges within a mutually exclusive set of subclasses must sum
up to lessthan or equa to 1.

A directed pathin the directed acyclic graph (C, =) isasequence of classes ey, ¢, . . . , ¢ such that
1 = cg = ---= ¢, and k > 1. We use =* to denote the reflexive and transitive closure of =-.
Note that =* induces a natural partial order < onC by ¢ < diff ¢ =* dforal c¢,d € C.

WeuseS(c) = {d € C | d = ¢} to denote the set of al immediate subclassesof ¢ € C, and
S*(¢) = {d € C | d =* ¢} to denote the set of subclassesof ¢ € C. A classd isasubclass of a
partition cluster P iff d isasubclassof somec € P.

We will represent the above structure (excluding the type assignment ) in a graphical way as
shown in Figure 3, where the edges are label ed by conditional probabilities.

Example 5.4 (Plant Example: probabilistic object base schema) A POB-schemaforthePlant Ex-
ample may consist of the following components:

e C = {plants, annuals, perennials, vegetables, herbs, flowers, annuals_herbs, perennials_flowers}.

o isgiven by Table 2.

(C,=) isthegraph resulting from Figure 1, if the d-nodes are contracted to plants.

me isthe partitioning of edges shown in Figure 1.

@ isthe probability assignment in Table 2.

11
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Figure 3: Plant Example with probability assignment

For example, annuals and annual _herbs are subclasses of plants, and annuals is an immediate sub-
classof plants whileannual_herbsisnot; annual_herbsisasubclassof thecluster {annuals, perennials}.

ThePOB-schemas defined so far may beinconsistent. That is, it may not always be possibletofind
a set of objects that satisfies the taxonomic and probabilistic knowledge expressed by the directed
acyclic graph, the partitioning of edges, and the probability assignment.

More formally, the consistency of a POB-schemais defined as follows.

Definition 5.5 (consistent POB-schema) Let S = (C, 0, =, me, p) be a POB-schema. An inter-
pretation of S isany mapping ¢ from C to the set of al finite subsets of aset O. An interpretation e
of S iscalled ataxonomic model of S iff it satisfiesthe following conditions:

Cl e(c) # 0, forall classesc € C.
C2 e(c¢) Ce(d), forall classese, d € C withe = d.

C3 e(c)ne(d) = 0, forall distinctclassesc, d € € that belong tothesame cluster P € |J me(C).

We say that two classes ¢, d € C are taxonomically disjoint (t-digjoint) iff (¢) N e(d) = 0§ for all
taxonomicmodelse of S. Aninterpretatione of S isataxonomicand probabilistic model (or simply
model) of S iff itisataxonomic model of S and it satisfies the following condition:

C4 |e(c)| = p(c,d) - |e(d)| for @l classesc,d € C withe = d.

We say S isconsistent iff amodel of S exists.

Let usillustrate this definition within the Plant Example.

Example 5.5 (Plant Example: consistent POB-schema) Let S = (C, 0, =, me, ) be the POB-
schema givenin Example 5.4. Let O be a set of cardinality 800, which is partitioned into pairwise
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| c | o(c)

plants [pname: string, soil: soiltype, rain: integer]
annuals [pname: string, soil: soiltype, rain: integer,

sun: suntype]
perennials [pname: string, soil: soiltype, rain: integer,

sun: suntype, expyears: integer]
vegetables [pname: string, soil: soiltype, rain: integer,

sun: suntype, expyears: integer]
herbs [pname: string, soil: soiltype, rain: integer,

sun: suntype, expyears: integer, classification : string]
flowers [pname: string, soil: soiltype, rain: integer,

sun: suntype, expyears: integer, classification : string]
annuals_herbs [pname: string, soil: soiltype, rain: integer,

sun: suntype, expyears: integer, classification : string]
perennials_flowers | [pname: string, soil: soiltype, rain: integer,

sun: suntype, expyears: integer, classification : string]

| edge | probability |
annuals = plants 0.6
perennials = plants 04
vegetables = plants 0.2
herbs = plants 0.3
flowers = plants 04
annuals_herbs = annuals 04
annuals_herbs = herbs 0.8
perennials_flowers = perennials 0.3
perennials_flowers = flowers 0.3

Table 2: Typeassignment o and probability assignment ¢

disjoint subsets Oy, O, ..., Oy, having cardinaities 90, 27, 126, 45, 192, 21, 98, 35, 70, and 96,
respectively. An interpretation ¢ of S isgiven by thefollowing table:

c [ =(c) | I=(e)] |
plants O U---UOqp 800
annuals O U---U0Os 480
perennials OsU---UOqp 320
vegetables 01 U0y 160
herbs QU 05U O 240
flowers O;U07;UQO09 | 320
annuals_herbs Os 192
perennials_flowers | O1g 96

It is easy to see that ¢ isaso amodel of S. For example, ¢(plants) # 0, ¢(annuals) C ¢(plants),
¢(annuals) N ¢(perennials) = ), and |¢(annuals)| = 0.6 - |¢(plants)|. Hence, S is consistent.

It would now be nice to have an efficient algorithm for deciding the consistency of a given POB-
schema. For this purpose, we need a suitable characterization of consistency. The following condi-
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tionisanatura candidate.

Definition 5.6 (pseudo-consistent POB-schema) The POB-schemaS = (C, 0, =, me, ) iS
pseudo-consistent iff the following conditions hold:

P1 For any two different classes ¢y, ¢ € C with ¢; =™ ¢, the product of the edge probabilities
isthe same on al pathsfrom ¢; upto ¢,.

P2 For al clusters P € | me(C ), no two distinct classes ¢y, ¢; € P have acommon subclass.

Example 5.6 (Plant Example: pseudo-consistent POB-schema) It is easy to see that the POB-
schema S = (C, o, =, me, p) shown in Example 5.4 is pseudo-consi stent:

e Thetwo pathsfrom annuals_herbs up to plants and from perennials_flowers up to plants have
both 0.24 and 0.12, respectively, as the product of the edge probabilities.

o Neither annuals_herbs nor perennials_flowers is a subclass of two t-disjoint classes.

Indeed, pseudo-consistency is a necessary condition for consistency.

Theorem 5.1 Every consistent POB-schema is pseudo-consi stent.

However, pseudo-consistency is not a sufficient condition for consistency. Even worse than that,
deciding the consistency of a pseudo-consistent POB-schema is presumably intractable. We have
the following result.

Theorem 5.2 Deciding whether a given POB-schema S is consistent is NP-complete. Hardness
holdseven if S is pseudo-consistent.

Proof. We show only membership in NP (the complete proof isgivenin [11]).

Theproblemisin NP, sinceit polynomially reducesto the NP-compl ete problem of decidingwhether
aweight formulais satisfiablein ameasurable probability structure[13]. More precisely, weight for-
mulas are defined as Boolean combinations of basic weight formulas, which are expressions of the
formay - w(¢p1) + -+ + ar - w(¢r) > a withintegers aq, . . ., ax, a and propositional formulas
o1, - - ., or. A measurable probability structure can be identified with a probability function on the
finite set of all truth assignmentsto the primitive propositions, which is extended in a natural way to
propositional formulas, basic weight formulas, and weight formulas.

It can now easily be shown that a POB-schemas = (C, o, =, me, p) isconsistent iff the conjunc-
tion of the following weight formulas, which capture C1-C4 in Def. 5.5, is satisfiable:

Cl =((—1)-w(e)>0) forall classesc € C.

C2 (w(eA-d)>0)A((—1)-w(cA~d)>0) fordl classese, d € C withe = d.
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C3 (w(eAd)>0)A((—1) -w(eAd)>0) forall distinct classes ¢, d € C of the same cluster.

C4 (n-w(c)+ (—m)-w(d)>0)A((—n) - w(c)+ m-w(d)>0) foral classesc,d € C
with ¢ = d, where m and » are natural numbers such that p(c, d) = . O

Nonetheless, polynomia algorithms for deciding the consistency of a POB-schema in relevant
special cases may be possible. Well-structured POB-schemas, which we introduce next, enjoy this

property.
Definition 5.7 (well-structured POB-schema) The POB-schema S = (C,o0,=-,me, p) iswell-
structured iff the following conditions hold:

W1 Thereexistsaclassc € € suchthat every classd € C isasubclassof ¢ (i.e., thegraph (C, =)
has atop e ement).

W2 For dl classes ¢ € C and every distinct ¢1,¢; € S(c), theset S := S*(¢q) N S*(cz) iseither
empty or hasauniqueelement d,,, # ¢y, ¢z suchthatd =* d,,, foral d € 5 (i.e, ¢1,c2 either
have no common subclass or a greatest common subclass d,,,, which is different from them).

W3 For every class ¢ € C, the undirected graph G's(¢) = (V,€) defined by V = me(c¢) and
E={{P1, P2} €V XV | Py # Py, US(P1) N USH(P2) # 0} isacyclic (i.e, multiple
inheritance does not cyclically connect partition clusters).

W4 For every classc € C: if the graph G's(¢) has an edge, i.e,, distinct clusters Py, P, € me(c)
have a common subclass, then every path from a subclass of ¢ to the top element of (C, =)
goesthrough ¢ (that is, multiple inheritance can be locally isolated in the graph (C, =)).

Informally, these conditionsrestrict multipleinheritancein away which ensures that amodel for
the schema S can be built bottom up from model s of subschemas. Well-structuredness does not ap-
pear to be very restrictivein practice. For instance, let us reconsider the Plant Example.

Example 5.7 (Plant Example: well-structured POB-schema) The POB-schema S given in Ex-
ample 5.4 iswell-structured:

¢ Every classisasubclassof plants.
e Theclassesannuals_herbs and perennials_flowers are t-digjoint.
e Thereare no cyclically connected partition clusters.

e Themultipleinheritanceat the classesannuals_herbs and perennials_flowers islocally isol ated
under the class plants.

Asfar aswell-structured POB-schemas are concerned, wehavetheniceresult that pseudo-consistency
is a necessary and sufficient condition for consistency. However, the proof of this result is highly
nontrivial (see [11]).
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Theorem 5.3 Every pseudo-consistent and well-structured POB-schema S is consistent.

Itisessily seenthat any S = (C, o, =, me, ) without multiple inheritance, i.e, |{d € C | ¢ =
d}| < 1foreachclassc € C, satisfies W2-W4. We obtain the following corollary to Theorem 5.3.

Corollary 5.4 Every POB-schema with top element and without multipleinheritanceis consistent.

It now remainsto show that the pseudo-consistency and the well-structuredness of a POB-schema
can be decided efficiently. We first concentrate on the pseudo-consistency. Algorithm 5.2 uses Al-
gorithm 5.1 to provide a procedure to check pseudo-consistency.

Theorem 5.5 Deciding whether a given POB-schema S = (C, ¢, =, me, p) is pseudo-consistentis
can bedoneusing Algorithm5.2intime O(n(e+n)), wheren = |C| and e isthe number of directed
edgesin (C,=).

Proof. Algorithm 5.2 decides the pseudo-consistency of S in time O(ne). It uses Algorithm 5.1,
which computes the reachability relation of thegraph (C, =) intime O(n(e + n)).

We first show that Algorithm 5.1 runsintime O(n(e + n)): Theinitialization steps1-3, 47, and
8runintimeO(n?), O(ne), and O(n), respectively. Next, itiseasy to seethat thefor-loopin 15-17
isperformed as many timesasthereare edgesin (C, =), and each executiontakes O(») time. Thus,
the whole while-loopin 9-19 runsin time O(ne).

Hence, also Algorithm 5.2 runsintime O(n(e+n)): Thesteps1-2runintimeO(n(e+n)). The
for-loopin4-5runsinlinear timeintheinput size of me (i., in €). Thus, thewholefor-loopin 3-5
runsintime O(ne). O

We next focus on deciding well-structurednessvia Algorithm 5.3.

Theorem 5.6 The problem of deciding whether a pseudo-consistent POB-schema S = (C, 0, =,
me, p) iswell-structured can be solved using Algorithm5.3 intime O(n?e), wheren = |C| and e is
the number of directed edgesin (C, =).

Proof. Algorithm 5.3 decides the well-structurednessof S. The steps 1-3 check whether S satisfies
WL1. In4-16, itisthen checked whether S satisfies W2. Moreover, theunion of al undirected graphs
G's(c)withe € C andtheset of dl classeswith multipleinheritanceat subclassesare computed. Step
17 checksthat al the graphs Gis(¢) with ¢ € C are acyclic (W2 ensuresthat the Gis(¢) have disjoint
edge sets). 1n 1822, itisfinally checked whether S satisfies WA4.

We now show that Algorithm 5.3 runsintime O(n?e). Itis easy to seethat the steps 1-2, 3, and 4
runintimeO(ne), O(n), and O(n(e+n)) = O(ne), respectively (notethat W1 ensurese > n—1).
Step 10 is done one time for each edge in (C, =) and each classin a set of classes limited by C.
The set D there can be computed in time O(n). Thetestsin Step 11 and 12 can be done, using a
simpleagorithm, intime O(n). Hence, the steps 5-16 runin time O(n?e). In step 17, the number
of clustersin | me(C) isin the worst case equal to e. Thus, step 17 can be performed intime O(e)
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Algorithm 5.1: reachability(S)

Input: POB-schema S = (C, 0, =, me, ).

Output: If S doesnot satisfy P1, then nil is returned. Otherwise, amapping w: C x C — [0, 1]
isreturned such that w( ¢, d) is the product of the edge probabilitieson
al pathsfrom ¢ up to d if such apath existsand w(c¢, d) is0 otherwise.

for each ¢,d € C do

if c =dthenw(e,d):=1
dsew(e,d):=0;

for each ¢ € C do begin
S(e):={deC|d=c};
6(c):=HdeC|c= d}

end;

. N:={celC|é(c)=0},

while N # () do begin

10. takeany ¢ € N;

1. N:=N—{c};

12.  for each d € S(c¢) do begin

13. §(d) = 6(d) - 1;

©oNoTA®WDNRE

14. if 6(d) =0then N := N U {d};

15. for each e € C withw(c,e) > 0do

16. if w(d,e) > 0andw(d,e)# w(d,c)-w(c,e)then return nil
17. esew(d,e):= w(d,c)-w(c,e)

18. end;

19. end;

20. return w.

Algorithm 5.2: pseudo-consistent(S)

Input: POB-schema S = (C, 0, =, me, ).
Output: trueif S is pseudo-consistent and fal se otherwise.

1. w := reachability(S);
if w = nil then return false; (S does not satisfy P1)
for each ¢ € C do
for each P € | Jme(C) do
if |{e € P|w(e,e) > 0} > 1thenreturn false; (S doesnot satisfy P2)
return true. (S ispseudo-consistent)

o0k wWwN
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Algorithm 5.3: well-structured(S)

Input: Pseudo-consistent POB-schemaS = (C, 0, =, me, ).

Output: trueif S iswell-structured and fal se otherwise.

Notation: We use top(S) to denote the top element of (C, =). For classesc € C, the
expression S — ¢ denotes the POB-schema that is obtained from S by removing c.
max(D), whereD C C, istheset of al maximal membersin D w.r.t. =*

for each ¢ € C do
6(c):={deClc=d}|;
if [{c € C|8(c) =0} > 1thenreturn false; (S doesnot satisfy W1)
w := reachability(S);
=0
M =0
for each ¢ € C do
for each distinct P;, P, € me(c) do
for each (¢, ¢3) € P1 x P, do begin
D:={deClw(d,c;) >0, w(d,cq3) > 0};
if |max(D)| > 10orD N {ey,ea} # 0 then return false (S does not satisfy W2)
elseif | max(D)| = 1 then begin
&= EU{{P1,P2}}
M =M U {c}
end
end;
if (Ume(C), &) containsacycle then return false; (S does not satisfy W3)
for each ¢ € M do begin
v := reachability(S — c¢);
for each d € C withw(d,¢) > 0do
if v(d, top(S)) > 0 then return false; (S does not satisfy WA4)

©oOoNo AN RE
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. end;
. return true. (S iswell-structured)

N
w

using standard algorithms for checking acyclicity. Findly, it is easy to see that the steps 18-22 run
intime O(n?e). O

6 Inheritanceand Probabilistic Object Base Instances

Thusfar, we have not addressed i nheritance of attributeswhich may arise through subclassrelation-
shipsinaPOB-schemas. For example, if c isasubclassof d, and d’stypehasan attribute A, then the
class ¢ should inherit this attribute, unless ¢ has already such an attribute. Theissue of inheritance,
and in particul ar of multipleinheritance, has been extensively discussedintheliterature, e.g. [4]. We
next incorporate inheritancein our framework, and finally define instances of a POB-schema.
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6.1 Inheritance completion and fully inherited schemas

We assume that any schema S = (C, 0, =, me, p) has an associated inheritance strategy, inhs, that
determines from which superclassd (if any) aclassc inheritsatop-level attribute A. Moreformally,
inhg : C Xx A — C, where A isthe set of al top-level attributes of A, is a partial mapping that
assigns each pair of aclassc¢ € C and atop-level attribute A € A, aclosest class d such that (i)
¢ =* d =* d' for someclassd’ and (ii) A € B whereco(d’) isatupletypeover aset of attributesB;
here, “closest” means that no proper subclassd” € S*(d) — {d} with properties (i) and (ii) exists.
(In particular, inhg(c, A) = ¢ if o(c) possesses A.) Thevalue of inhg(¢, A) is undefined, if no such
d exists.

This notion of an inheritance strategy covers strategies (such as an ordering on classes) that are
commonly used to resolve multipleinheritancein practice. Similarly, if we wish to use the strategy
of the O2 system [2] where renamed inheritance of the same attributewith distinct originsis desired,
we could generalizeinhg(c, A) toreturnal pairsd, A’ of classes d from which attribute A, renamed
to A’, isinherited.

Applyinginhg onaPOB-schema$ = (C, o, =, me, p) inducesanother POB-schema$S’ = (C’, o’,=', me’, '),
whichonly differsfrom S initstypeassignment o”: o’(¢) isthetupletyper = [A1: 7, ..., Ak T%]
where A, ..., A, are dl attributesthat are inherited from ¢ viainhg from classes d, . .. , dg, re-
spectively, and 7, . . . , 7, are the types of the attributesin o(r), ..., o(7), respectively. We call
thisschema S’ the inheritance completion of S, and ascheme S which equals S’ fully inherited.

Example 6.1 (Plant Example: probabilistic object base schema) Let usreview theschemas for
the Plant Example as defined in Example 5.4. It is easily checked that for every subclass ¢ of any
classd, o(d) isatypeover asubset of the attributesof o(c¢), i.e., al attributesin d are aready present
in ¢. Thus, no attributes are inherited from proper superclasses, which means that S is fully inher-
ited. Thetypeassignment ¢ in S may be considered ill-designed, however, since natural inheritance
relationshipsare not reflected init.

Consider the redesigned type assignment ¢’ in Table 3, and adopt an inheritance strategy inhg
whichresolves multipleinheritanceby ordering “left-to-right” inFigure 1, i.e., ordersannuals before
herbs and perennials before flowers.? Then, the inheritance completion of the redesigned schema
S'=(C,0',=,me, p) istheorigina schemas.

In therest of thispaper, weimplicitly assumethat schemas S are consistent and fully inherited. This
appliesin particular to the definition of POB-instance in the next subsection, and the definitions of
the operations in the POB-Algebrain Section 7. Extending the definitionsto schemas S which are
not full inherited—by replacing S with itsinheritance completion S’ is straightforward.

2No renaming is assumed here for the same attribute with distinct origins.
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| c | o(c)

plants [pname: string, soil: soiltype, rain: integer]

annuals sun: suntype]

perennials sun: suntype, expyears: integer|

vegetables [sun: suntype, expyears: integer]

herbs [sun: suntype, expyears: integer, classification : string]
flowers [sun: suntype, expyears: integer, classification : string]
annuals_herbs []

perennials_flowers | []

Table 3: Redesigned type assignment o’

6.2 Probabilistic object base instance

We are now ready to define a probabilistic object base instance (POB-instance). The following as-
sumption is common in the context of object-oriented databases[22].

Assumption. In therest of this paper, we assume that there is a (countably) infinite set O of object
identifiers (oids).

Each object, represented by an oid, isassociated withavalue. Theaobjectspopul atea POB-instance
asfollows.

Definition 6.1 (probabilistic object baseinstance) LetS = (C, o, =, me, p) beaconsistent POB-
schema. A probabilistic object base instance (POB-instance) over S isapair (7, v), where:

o 7:C — 29 mapseach classc to afinitesubset of O, suchthat 7(cy) N7 (cy) = 0 for different
1,2 € C. Thatis, theclassesinC aremapped to pairwisedisjoint setsof oids. Weuser(C ) to
abbreviate| J{r(c)| c € C}. Wedefinethemapping7* : C — 2° by 7*(¢) = J{n(c¢') | ¢/ € C, ¢’ =* ¢}.

Intuitively, 7(¢) denotestheidsof all objectsthat are defined in the class ¢, whiler*(¢) denotes
theidsof al objectsthat belong to the classe.

e v maps each oid o € 7(C) to aprobabilistic value of the appropriatetype, i.e., type o(c) for
theclassc suchthat o € 7(¢).

Let us provide a POB-instance for the POB-schema of Example 5.4.

Example 6.2 (Plant Example: probabilistic object baseinstance) A POB-instanceover the POB-
schema shown in Example 5.4 is given as follows:

e 71 and 7~ are the following mappings:
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. [0 [ (o) |

plants {01} {01,09,03,04,05,06,07}
annuals {} {02, 03,05, 06,07}
perennials {1 {04}

vegetables {} 8

herbs {} {02, 03,05, 06,07}
flowers {} {oa}

annuals_herbs {02, 03,05, 06,07} | {02, 03,05,06,07}
perennials_flowers | {o4} {04}

Clearly, thisisavery simple probabilistic object base (it containsonly seven distinct objects).

e v isthe mapping shownin Table 4.

| oid | v(oid) | | oid | v(oid)
o1 | [pname: os | [pname: ({Thyme}, u,u),
({Lady-Fern, Ostrich-Fern}, u, u}, soil: {({loamy}, u,u),
soil: {{loamy}, u,u), rain: ({20,...,25},u,u),
rain: ({25,...,30},u,u)] sun: {{mild, medium},0.8u, 1.2u),
o2 | [pname: expyears: ({2,3},0.8u,1.2u)},
({Cuban-Basil, Lemon-Basil}, u, u}, classification :
soil: {({loamy,sandy},0.7u, 1.3 u}, ({french, silver, wooly}, 0.6 u, 1.8 u)]
rain: ({20,...,30},u,u}, o | [pname: {({Mint},u,u),
sun: {{mild, medium}, 0.8 u, 1.2u), soil: {({loamy}, u,u),
expyears: {({2,3,4},0.6u,1.8u), rain: ({20}, u,u),
classification : sun: {{mild}, u,u),
({french, silver, wooly}, 0.6 u, 1.8 u}] expyears: {({2,3,4},0.6u,1.8u),
oz | [pname: ({Mint},u,u), classification :
soil: {{loamy}, u,u), ({apple, curly}, 0.6 u, 1.4 u)]
rain: ({20}, u,u), o7 | [pname: {{Sage},u,u),
sun: ({mild}, u, u}, soil: {{sandy}, u,u},
expyears: {({2,3,4},0.6u,1.8u), rain: ({20,211}, u, u),
classification : sun: {{mild}, u,u),
({french, silver, wooly}, 0.6 u, 1.8 u}] expyears: {({2,3,4},0.6u,1.8u),
04 | [pname: ({Aster, Salvia}, u, u), classification :
soil: {({loamy,sandy}, 0.6 u, 1.4u}, ({red, tricolor}, 0.6 u, 1.4u)}]
rain: ({20,...,25},u,u},
sun: ({mild}, u, u},
expyears: {({2,3,4},0.6u,1.8u),
classification :
({french, silver, wooly}, 0.6 u, 1.8 u}]

Table 4: Value assignment v

In classical object bases, the extent of aclass ¢ consistsof all oidsbelongingto ¢. In probabilistic
object bases, the probabilistic extent of ¢ specifies the probability that an oid belongsto .

Definition 6.2 (probabilisticextent) LetI = (7, ) be a POB-instance over the consistent POB-
schema S = (C,0,=,me, p). For al classes ¢ € C, the probabilistic extent of ¢, denoted ext(c),
maps each oid o € 7(C) to aset of rational numbersin [0, 1] as follows:
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1 If o € 7*(c), thenext(c)(o) = {1}.

2. If o € () withaclass¢’ € C that ist-digointfrom ¢ (that is, for all modelse of S, the sets
e(c")and e(c) aredigoint), thenext(c)(o) = {0}.

3. Otherwise, ext(c)(o) = {p | p isthe product of the edge probabilities on a path from ¢ up to
aclass¢’ € C, where ¢’ isminimal witho € 7*(¢') and ¢ =* ¢’ }.

Let usreturn to the Plant Example to see what the extents of the various classes are.

Example 6.3 (Plant Example: probabilistic extent) Letusconsidertheprobabilisticextentsof the
classes annuals_herbs and perennials flowers in the Plant Example:

ext(annuals_herbs)(o;) = {0.24} ext(perennials_flowers)(o;) = {0.12}
ext(annuals_herbs)(oy) = {1} ext(perennials_ flowers)(oz) = {0}
ext(annuals_herbs)(o3) = {1} ext(perennials_ flowers)(o3) = {0}
ext(annuals_herbs)(o4) = {0} ext(perennials_flowers)(o4) = {1}
ext(annuals_herbs)(o5) = {1} ext(perennials_flowers)(os) = {0}
ext(annuals_herbs)(og) = {1} ext(perennials_flowers)(og) = {0}
ext(annuals_herbs)(o7) = {1} ext(perennials_flowers)(o7) = {0}

Definition 6.3 (coherent POB-instance) LetI = (7, r)beaPOB-instanceover the consistent POB-
schema$ = (C, 0, =, me, p). ThePOB-instanceI iscoherent iff for all classesc € C and all objects
o € 7(C), the probabilistic extent ext(c)(o) contains at most one el ement.

It is easy to see that the Plant Example described thus far is coherent. Note that testing whether a
given POB-instanceT of aconsistent schema S is coherent is feasible in polynomial time.

7 Probabilistic Object Bases. Algebraic Operations

In this section, we formally define the analogs of the classical relational operations on probabilis-
tic object bases. In the relational model, all standard relationa operations take relations as input
(perhaps with other inputs as well) and produce relations as output. In the same vein, all standard
operations on POBs take POB-instances as input, and produce POB-instances as output. Recall that
all POB-schemas of input POB-instances are implicitly assumed to be consistent and fully inherited.

7.1 Sdlection

Thefirst important operation to be defined is selection. Intuitively, given a POB-instance I over the
POB-schema S, the result of a selection operation is another POB-instance I’ over S such that the
objectsin the extents of the classesin I’ all satisfy the selection condition of the query.
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Before describing the selection operation, we must formally define the syntax and the semantics
of probabilistic selection conditions. We start by defining path expressions.

Definition 7.1 (path expression) Let 7 = [Ay : 7y,..., A : 7] beany type. Then, (i) every A;
isapath expression for 7; (ii) if 7; isatupletype and P; isapath expression for 7;, then A;.P; isa
path expressionfor 7, forevery : = 1,... , k.

We now define the syntax of atomic selection conditions.

Definition 7.2 (atomic selection condition) LetS = (C, 0, =, me, p) beaPOB-schemaand let '
be a set of object variables. An atomic selection condition has one of the following forms:

e 1 € ¢, Wwherez isan abject variable from A’ and c isaclassfrom C.

e 1.P 6 v, where z isan object variable from X', P isa path expression over attributes names
from A, 6 isabinary predicatefrom {=, #,<,>. <, >,C,D,€,5},and v isavaue.

e ©.P; =5 x.P,, where z isan object variable from X', P, and P, are two different path ex-
pressionsover attributesfrom A, and @ is a probabilistic conjunction strategy.

Let us consider some examples of atomic selection conditions.

Example 7.1 (Plant Example: atomic selection condition) InthePlant Example, someatomic se-
lection conditionsare given as follows (= isan object variable):

¢ Find all objectsthat are annualsand herbs.
This selection can be expressed by the atomic selection condition = € annuals_herbs.

¢ Find all objectsthat requirea mild sun.
This selection can be expressed by the atomic selection condition z.sun = mild.

¢ Find all objectsthat require over 21 unitsof rain.
This selection can be expressed by the atomic selection condition x.rain > 21.

We now define the syntax of selection conditions.

Definition 7.3 (selection condition) LetS = (C, 0, =, me, p) be a POB-schema. We define con-
junctive and disjunctive sel ection conditions by induction as follows.

If ¢ isan atomic selection condition and & is a probabilistic conjunction strategy, then ¢ isacon-
junctive selection condition over ©. If ¢ and «» are conjunctive selection conditions over the same
object variable and the same probabilistic conjunction strategy ), then ¢ ® 1« isaconjunctive sel ec-
tion condition over ©.

If ¢ isan atomic selection condition and ¢ is a probabilistic digunction strategy, then ¢ isadis-
junctive selection condition over 4. If ¢ and ¢ are disjunctive selection conditions over the same
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object variableand the same probabilisticdisjunctionstrategy &, then ¢+ isadigunctiveselection
condition over . A selection conditionis a conjunctive or disjunctive selection condition.

Let usillustrate this definition viathe Plant Example.

Example 7.2 (Plant Example: selection condition) In the Plant Example, some selection condi-
tionsare given asfollows (= isan object variable):

e Theatomicselectionconditionsx € annuals_herbs, z.sun = mild, and z.rain > 21 givenin Ex-
ample 7.1 are selection conditions.

¢ Find al objectsthat are annuals and herbs and that require a mild sun. This selection can
be expressed by the selection condition = € annuals_herbs @ z.sun = mild, where @ isaprob-
abilistic conjunction strategy.

¢ Find all objectsthat require a mild sun or over 21 units of rain. This selection can be ex-
pressed by the selection condition z:.sun = mild & x.rain > 21, where @ isaprobabilisticdis-
junction strategy.

We are now ready to define the syntax of probabilistic selection conditions.

Definition 7.4 (probabilistic selection condition) LetS = (C, o, =, me, p) beaPOB-schema. (i)
If ¢ isaselection conditionand L and U are real numbers from [0, 1] with . < U, then (¢)[L, U]
is a probabilistic selection condition. (ii) If ¢ and > are probabilistic selection conditions over the
same object variable, then —¢, (¢ A ), and (¢ V 1) are probabilistic sel ection conditions.

Let us consider some examples of probabilistic selection conditions.

Example 7.3 (Plant Example: probabilistic selection condition) InthePlant Example, someprob-
abilistic selection conditions are given as follows (= is an object variable):

e Theselection of all objectsthat require both a mild sun and over 21 unitsof rainwith a prob-
ability of 30-50%, can be done by using the probabilistic selection condition (z.sun = mild
® x.rain > 21)[0.3, 0.5], where @ is a probabilistic conjunction strategy.

e The selection of al aobjects that require a mild sun with a probability of at least 40%, and
over 21 unitsof rain with a probability of at least 80%, can be done by using the probabilistic
selection condition (z.sun=mild)[0.4, 1] A (z.rain> 21)[0.8, 1].

It isimportant to notethat each sel ection condition and each probabilistic sel ection condition con-
tains exactly one abject variable.

It now remainsto define the semantics of selection and probabilistic sel ection conditions. For this
purpose, each pair (S, o) consisting of a POB-schema S = (C, 0, =, me, p)andanoido € 7(C)
inaPOB-instance = (7, ) over S isassociated with a probabilisticinterpretation proby ,, which
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assigns a probabilistic interval to selection conditions, and a truth value to probabilistic selection
conditions. We start by assigning probahilistic intervalsto atomic selection conditions:

Definition 7.5 (satisfaction of atomic selection conditions) LetI = (7, v) beaPOB-instanceover
the POB-schema S = (C, ¢, =, me, p) andlet o € (C). The probabilisticinterpretation with re-
spect to I and o, denoted prob  ,, isthe partia mapping from all atomic selection conditionsto the
set of al subintervalsof [0, 1] that is defined by:

e proby (7 € ¢) = [min(ext(c)(0)), max(ext(c)(0))].

o Ifv(0).A=(V,a,3)and AP isapath expression for the type of o, then
proby,(z.AP#v)= [L,min(1,U)] suchthat [L,U] = ¥ ey la(u), B(u))].

where W = {u € V | val(P,u)0v} and val( P, u) is defined as follows:3 val( P, u) = u,
if Pisempty, and val(P,u) = val(P',u')if P = .BP andu.B = v otherwise (i.e,
val( P, u) returns the value of the component of (o) described by the path expression A P).
Notethat we canonically define proby (2.4 6 v) = [0,0]for {u € V| u v} = ). Wefurther
assume that prob ,(z.AP 6 v) isundefined if the path expression A P is undefined for v(o),
orif val( P, )0 v isundefined for somew € V.

o Ifv(o).A; = (V;, oy, 8;) and A; P; isapath expression for thetype of o, for i € {1, 2}, then:

proby (.41 Py =g x.Ay Py) = [L, min(1, U)] such that
(LU= 3y myew L (ua), Bu(un)] @ [aa(uz), Ba(uz)]
where W = {(uy,ug) € Vi X Vu | val(Py,uy) = val( Py, uz)}, and val(-, -) is defined as

above. Wecanonically defineproby (2.4 =g z.45) = [0,0]for anempty sum. Weassume
that proby ,(2.4; =g x.Ay) isundefined if A; Py or A, P, isundefined for v(o).

Let usgive an example toillustrate this definition.

Example 7.4 (Plant Example: satisfaction of atomic selection conditions) InthePlant Example,
the probabilisticinterpretations probp , witho € {01, 02, ..., 07} map the atomic selection condi-
tionsz € annuals_herbs, z.sun = mild, and z.rain > 21 to the following subintervalsof [0, 1]:

*Asusual, thesumy" | [or(x), e(x)] denotes [ (), 3, o x €()].
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‘ 0 ‘ probp ,(z € annuals_herbs) ‘ proby ,(z.sun = mild) ‘ proby ,(z.rain > 21) ‘

o1 0.24,0.24] undefined [1.00,1.00]
0 [1.00,1.00] [0.40,0.60] [0.82,0.82]
03 [1.00,1.00] [1.00,1.00] [0.00,0.00]
04 [0.00,0.00] [1.00,1.00] [0.67,0.67]
0 [1.00,1.00] [0.40,0.60] [0.67,0.67]
06 [1.00,1.00] [1.00,1.00] [0.00,0.00]
or [1.00,1.00] [1.00,1.00] [0.00,0.00]

We next assign probabilistic intervalsto selection conditions:

Definition 7.6 (satisfaction of selection conditions) Let I = (x,r) be a POB-instance over the
POB-schema s = (C,a, =, me, p) andlet o € 7(C). We extend proby , to a partial mapping from
the set of all selection conditionsto the set of al closed subintervalsof [0,1] as follows:

pI’Ob I,o(¢ ® ¢) = pI’Ob I,o(¢) ® prObI,o(¢)‘
pI’Ob I,o(¢ ©® ¢) = pI’Ob I,o(¢) ® prObI,o(¢)‘

Let usillustrate this definition viathe Plant Example.

Example 7.5 (Plant Example: satisfaction of selection conditions) InthePlant Example, thetwo
selection conditions ¢,; = “« € annuals_herbs ®,; x.sun = mild” and ¥;; = “z.sun = mild ®
x.rain > 21” are assigned the following subintervasof [0, 1]:

| o | proby,(¢in) | probr,(6:,) | proby,(vin) | proby,(viy) |

01 undefined undefined undefined undefined
o2 | 10.40,0.60] [0.40,0.60] [0.33,0.49] [0.22,0.60]
os | [1.00,1.00] [1.00, 1.00] [0.00,0.00] [0.00,0.00]
o4 | 10.00,0.00] [0.00,0.00] [0.67,0.67] [0.67,0.67]
o5 | [0.40,0.60] [0.40,0.60] [0.27,0.40] [0.07,0.60]
os | [1.00,1.00] [1.00, 1.00] [0.00,0.00] [0.00,0.00]
o7 | [1.00,1.00] [1.00, 1.00] [0.00,0.00] [0.00,0.00]

We are now ready to assign truth values to probabilistic sel ection conditions:

Definition 7.7 (satisfaction of probabilistic selection conditions) Let I = (x,r) be a POB-in-
stance over the POB-schema S = (C, o, =, me, p) andleto € 7(C). We extend proby , to proba-
bilistic selection conditions as follows:

e proby, |= (¢)[L, U] iff proby,(¢) C [L,U].
e probp, |= —¢iff itisnot the case that proby, |= ¢.

e proby, = ¢ A iff proby, |= ¢ andproby , [= ¥.
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e proby, |= ¢ V¢ iff proby, |= ¢ Or proby, |= 1.

Let usgive anillustrating example.
Example 7.6 (Plant Example: satisfaction of probabilistic selection conditions) InthePlant Ex-

ample, it iseasy to see that:

e proby, [ (z.sun=mild ®;, z.rain>21)[0.3,0.5] (see Example 7.5).
e proby, [~ (z.sun=mild ®;, z.rain>21)[0.3,0.5] (see Example 7.5).
e proby, [ (z.sun=mild)[0.4, 1] A (x.rain>21)[0.8, 1] (see Example 7.4).

e proby,. [~ (z.sun=mild)[0.4, 1] A (x.rain>21)[0.8, 1] (see Example 7.4).

After these preparations, we are finally ready to define the sel ection operation.

Definition 7.8 (selection on POB-instances) LetI= (7, r)beaPOB-instance over the POB-sche-
masS = (C, o, =, me, p) and let ¢ be a probabilistic selection condition over the object variable z.
The selection on I with respect to ¢, denoted o4(I), isthe POB-instance (7’, »') over S, where:

o 7'(c)={oem(c)|proby, |= o}
o v =v|x'(C) (that is, the mapping v restricted to ©’(C)).
The following exampl e shows precisely what happens in the case of the Plant Example when we
perform selection with respect to probabilistic selection conditions.

Example 7.7 (Plant Example: selection) In the Plant Example, the selectiononI = (7, v) with
respect to the probabilistic selection condition (z.sun = mild)[0.4, 1] A (z.rain > 21)[0.8, 1] is the
POB-instance (7’, ") over S (see Example 7.4), where 7’ and " are shown in Table 5. This result

| c | 7' (c) | | otd | v'(oid) |
plants 8 oa | [pname: ({Cuban-Basil, Lemon-Basil}, u, u},
annuals 1} soil: {({loamy,sandy},0.7u, 1.3 u},
perennials {} rain: ({20, ...,30},u,u),
vegetables {} sun: {{mild, medium}, 0.8 u, 1.2u),
herbs {} expyears: {({2,3,4},0.6u,1.8u),
flowers {} classification :
annuals_herbs 1} ({french, silver, wooly}, 0.6 u, 1.8 u}]
perennials_flowers | {o4}

Table5: 7/ and v’ resulting from selection

is also obtained by the selection on I with respect to (z.sun = mild @;, x.rain>21)[0.3,0.5] (see
Example7.5). TheselectiononI with respect to (z.sun = mild®;, z.rain > 21)[0.3, 0.5],in contrast,
produces the empty POB-instance over S (see Example 7.5).
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7.2 Projection

In this section, we define projection of POB-instances on arbitrary sets of attributes. We first define
the projection of POB-schemas on sets of attributes.

Definition 7.9 (projection of POB-schemas) Let S = (C, o, =, me, p) be a POB-schema and |et

A beaset of attributes. Theprojectionof Son A, denotedIT 4 (S ), isthePOB-schema(C, o’, =, me, p),
wherethenew typeo’(c) of each classc € C isobtainedfromtheoldtypec(c¢) = [By: 71, ..., By 7%
by deleting dl B;: 7;'swith B; ¢ A.

Let us consider an example to illustrate the projection of POB-schemas.

Example 7.8 (Plant Example: projection of POB-schemas) Let the POB-schema S be given by
the POB-schema described in Example 5.4. Then, the projection of S on the set of attributes A =
{pname, rain} has the type assignment ¢’ shownin Table 6.

L [ o(c) |
plants [pname: string, rain: integer]
annuals pname: string, rain: integer
perennials pname: string, rain: integer
vegetables pname: string, rain: integer
herbs pname: string, rain: integer
flowers pname: string, rain: integer
annuals_herbs pname: string, rain: integer
perennials_flowers | [pname: string, rain: integer]

Table 6: Type assignment o’ resulting from schema projection

Given a consistent POB-schema as input, the projection operation always produces a consistent
POB-schema as output. Thisis shown by the following theorem.

Theorem 7.1 Let S = (C, 0,=-,me, p) bea POB-schema and let A be a set of attributes. If S is
consistent, then I (S) is consistent.
We next define the projection of probabilistic tuple values.

Definition 7.10 (projection of probabilistic tuple values) Let ptv be aprobabilistictuplevalueof
theform [By: (Vi,a1,01),..., Br: (Vi, ok, Br)] and let A beaset of attributes. The projection of
ptvon A, denoted 11 4 (ptv), isobtained from [By: (V1, a1, 41), ..., Bi: (Vi, ay, 51 )] by deleting
al B]‘: (V]‘,Oé]‘,ﬁ]‘)’SWith B]‘ §§ A.

We give a small exampleto illustrate projection of probabilistic tuple values.

Example 7.9 (Plant Example: projection of probabilistic tuple values) Let the probabilistic tu-
plevalue ptv be given as follows (note that ptv isassociated with the object o, in Example 6.2):

ptv= [ pname: ({Cuban-Basil, Lemon-Basil}, u, u}),
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soil: ({loamy, sandy}, 0.7 u, 1.3 u),
rain: ({20,...,30},u,u),

sun: ({mild, medium}, 0.8 u, 1.2u),
expyears: ({2,3,4},0.6u,1.8u),

classification: ({french, silver, wooly}, 0.6 u, 1.8 u)]

The projection of ptv onthe set of attributes A = {pname, rain} isgiven asfollows:
Ia(ptv) = [pname: ( Cuban-Basil, Lemon-Basil}, u, u), rain: ({20,...,30},u,u)]

We are now ready to define the projection of POB-instances.

Definition 7.11 (projection of POB-instances) Let I = (7, ) be a POB-instance over the POB-
schema S = (C,o0,=,me, ) and let A be aset of attributes. The projection of I on A, denoted
ITa(I), isdefined as the POB-instance (7’, ') over the POB-schemall s (S), where:

o '(¢c)=m(c)foral classesc € C.
o V(o) =1la(v(0))fordloidso € 7(C).

Let usillustrate this definition within the Plant Example.

Example 7.10 (Plant Example: projection of POB-instances) Let the POB-instanceI = (7, v)
be given by the POB-instance described in Example 6.2. The projectionof Ion A = {pname, rain}
isthe POB-instance (7/, "), where 7’ and v/’ are given Table 7 (note that 7’ isthe same as ).

| c | 7' (c) | | oid | v/(0id) |

plants {o1} o1 | [pname: ({Lady-Fern, Ostrich-Fern},u,u),

annuals {} rain: ({25,...,30},u,u)]

perennials {} oa | [pname: ({Cuban-Basil, Lemon-Basil}, u, u},

vegetables {} rain: ({20,...,30},u,u)]

herbs {} oz | [pname: ({Mint},u,u), rain: ({20}, u, u}]

flowers {} 04 | [pname: ({Aster, Salvia}, u, u),

annuals_herbs {02, 03,05, 06,07} rain: ({20,...,25},u,u)]

perennials_flowers | {04} os | [pname: ({Thyme}, u,u), rain: ({20,...,25},u,u}]
o | [pname: ({Mint},u,u), rain: ({20}, u, u}]
o7 | [pname: ({Sage},u,u), rain: ({20,21},u,u)]

Table 7: =’ and v’ resulting from projection

7.3 Renaming

In thissection, we definerenaming of (top-level) attributesin POB-instances. Thisoperationisespe-
cialy useful in connection with cartesian product and join (see Sections 7.4 and 7.5). Wefirst define
renaming conditions.
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Definition 7.12 (renaming condition) LetS = (C, o, =, me, p) beaPOB-schemaandlet A bethe
set of all top-level attribute names of S. A renaming conditionis an expression of theform B—C,
whereB = By, B,, ..., Bisalistof distinct attributenames from A, and C = 'y, (s, ..., C;isa
list of distinct attributesfrom A — (A — { By, Bs, . . ., B;}) (thiscondition ensures that each attribute
(; thatisin A must aso occur in B, i.e., be renamed itself).

Let usgive an example of arenaming condition within the Plant Example.

Example 7.11 (Plant Example: renaming condition) Let us consider the POB-schema computed
in Example 7.8. A renaming conditionis given by pname, rain < pname2, rain2.

We now define the renaming of attributesin POB-schemas.

Definition 7.13 (renaming in POB-schemas) Let S = (C, o, =, me, p) be a POB-schemaand let
N = By, By,...,B;— (Cy,Cs, ..., bearenaming condition. The renaming in S with respect
to IV, denoted 6 v (S ), isthe POB-schema (C, o', =, me, ), where the new type ¢’(¢) of each class
¢ € Cisobtainedfromtheoldtypeo(c) = [Ay: 71,..., Ax: 73] by replacing each attribute A ; with
A; = B;forsome: € {1,...,1} by the new attribute C;.

Note. Though the above definition does not include renaming of nested attributes, this may be
accomplished by a straightforward extension. For the sake of simplicity, we skip this.
Let usgive an example toillustrate the renaming of attributesin POB-schemas.

Example 7.12 (Plant Example: renaming of POB-schemas) Let the POB-schemaS be given by
the POB-schema computed in Example 7.8. Therenaming of S with respect to the renaming condi-
tion pname, rain — pname2, rain2 has the following type assignment o”':

¢ ‘ a'(c) ‘
plants [pname2: string, rain2: integer]
annuals [pname2: string, rain2: integer]
perennials [pname2: string, rain2: integer]
vegetables [pname2: string, rain2: integer]
herbs [pname2: string, rain2: integer]
flowers [pname2: string, rain2: integer]
annuals_herbs [pname2: string, rain2: integer]
perennials_flowers | [pname2: string, rain2: integer]

Given a consistent POB-schema as input, the renaming operation aways produces a consistent
POB-schema as output. Thisis shown by the following theorem.

Theorem 7.2 Let S = (C, 0, =, me, p) bea POB-schemaand let N be a renaming condition. If S
is consistent, then 6(S) is consistent.

We next define the renaming of attributesin probabilistic tuple values.
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Definition 7.14 (renaming of probabilistic tuple values) Let ptv be a probabilistic tuple value of
theform[Ay: (Vi,a1,51), ..., Ak: (Vi, o, Bi)]andlet N = By, By, ..., Bj— C1,Cy,...,C be
arenaming condition. The renaming of ptv with respect to N, denoted ¢ ( ptv), is obtained from
[Ar: (Vi, o0, B1), ..., At (Vi, ag, 1)) by replacing each attribute A; with A; = B, for some: €
{1,...,1} by thenew attribute C;.

We give a small exampleto illustrate the renaming of attributesin probabilistic tuple values.

Example 7.13 (Plant Example: renaming in probabilistic tuple values) Let the probabilistictu-
plevalue ptv taken from Example 7.9 be as follows:

ptv = [pname: ({Cuban-Basil, Lemon-Basil}, u, u), rain: ({20,...,30},u,u)]
Therenaming in ptv with respect to pname, rain < pname2, rain2 isgiven asfollows:

ptv = [pname2: ({Cuban-Basil, Lemon-Basil}, u, u), rain2: ({20,...,30},u,u)]

We are now ready to define the renaming of attributesin POB-instances.

Definition 7.15 (renaming in POB-instances) Let I = (7, r) be a POB-instance over the POB-
schemaS = (C,o0,=,me, ) and let N be arenaming condition. The renamingin I with respect
to IV, denoted 6 (1), is defined as the POB-instance (7, v') over the POB-schema é 5 (S ), where:

o 7'(¢)=m(c)fordlclassesc € C.
e V/(0) = dn(v(0))foraloidso € 7(C).

Let usillustrate this definition within the Plant Example.

Example 7.14 (Plant Example: renaming in POB-instances) Let the POB-instanceI = (7,v)
be given by the POB-instance computed in Example 7.10. The renaming in T with respect to the
renaming condition pname, rain < pname2, rain2 is the POB-instance (7', v'), where 7’ and v’ are
givenin Table 8 (note that 7’ isthe same as ).

7.4 Cartesian Product

In this section, we define the cartesian product of two POB-instances. In classical relational data-
bases, the cartesian product of two relations consists of the set of al tuplesthat can be obtained by
concatenating atuplein thefirst relation with atuple in the second relation. If one followsthisintu-
ition, the cartesian product of two POB-instances should be obtained by concatenating the property
list of any object in the first POB-instance with the property list of any object in the second POB-
instance. Thiswill be the intuition underlying our definition of cartesian product.

Let usfirst come back to the Plant Example to show that the cartesian product is meaningful.
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L | 7'(c) |

otd | v'(oid) |

plants {o1} o1 | [pname2: ({Lady-Fern, Ostrich-Fern}, u,u),
annuals {} rain2: ({25,...,30},u,u)]

perennials {} oa2 | [pname2: ({Cuban-Basil, Lemon-Basil}, u, u},
vegetables {} rain2: ({20,...,30},u,u)]

herbs Iy 03 [pname2: ({Mint}, u, u),

flowers 11 rain2: ({20}, u, u)]

annuals_herbs {09, 03, 05, 06,07} 04 | [pname2: ({Aster, Salvia},u,u),
perennials_flowers | {04} rain2: ({20,...,25},u,u)]

os | [pname2: ({Thyme}, u,u),
rain2: ({20,...,25},u,u)]
o¢ | [pname2: ({Mint},u,u),
rain2: ({20}, u, u)]

o7 | [pname2: ({Sage}, u,u),
rain2: ({20,21},u,u)]

Table 8: 7’ and v’ resulting from renaming

Example 7.15 (Plant Example: cartesian product) Suppose we are interested in pairs of plants
that flourish with a certain probability in the same environment (for example, in pairs of plantsthat
have the same rain requirements with some probability). To obtain thisinformation, we must some-
how connect the knowledgetied to each oid with the knowledgetied to other oids.

Thefirst challengein defining the cartesian product of two POB-instancesis the following. Sup-
pose we know that the POB-schemas of our two POB-instancesare S; = (Cy, 01, =1, meq, 1) and
Sy = (Cq, 02, =2, meq, ). L&t S = (C, 0, =, me, p) denote the schema of the cartesian product
instance. What should the relationship between S+, S,, and S be?

Recall that in classical relationa databases, the cartesian product Ry x R- of relation schemes R
and R, isonly defined if they have disjoint sets of attributes. Further, By x R, and Ry x Ry yield
the same schema; similarly, we desirethat S; x S, = S, x Sy holds. This needs special care.

In therest of this paper, we assume that for each scheme S = (C, 0, =, me, p), C isa database
relation, i.e., theclasses ¢ € C aretuplesover arelation scheme R = R(S) associated with S. Two
POB-schemas S, and S5 can be combined using cartesian product under the following condition:

Definition 7.16 (cartesian-product-compatible POB-schemas) Thetwo POB-schemasS; = (Cy,
01,=1,meq, p1) and Sy = (Cq, 03, =3, mey, p2) are cartesian-product-compatibleiff B(S;) and
R(S3) are digoint and for all classes ¢; € C; and ¢; € Cy: 01(¢q) and o3(cz) are tuple types over
disjoint sets of attributes.

Notethat any POB-schemas S, and S, can be made cartesian product compatible by renaming of
attributesin R(S; ), R(S2) and attributes of tuple types.

Definition 7.17 (cartesian product of POB-schemas) Let S; = (Cy, 01, =1, mey, 1) and Sy =
(Cz, 02,=2, mey, pq) be two cartesian-product-compatible POB-schemas, and let By = R(S;)
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and Ry = R(S3). The cartesian product of S; and S, denoted S; x S5, isthe POB-schema S =
(C,0,=,me, ) such that:

e C=C X Cs.

ForalceC,leto(c[Rq],c[Ra]) = [A1: T1ye oy Akt Thy Akt Thtts - os Akt © Thtm)s
whereoy(c[R1]) = [A1: T1,..., Ag: Ti]andoz(c[Ra]) = [Akt1: Thtts .-y Akt Tham]?

Thedirected acyclic graph (C, =) isdefined as follows. For all ¢, d € C:

c=d |Iff (C[Rl] =1 d[Rl] A C[RQ] = d[RQ]) or (C[Rl] = d[Rl] A C[RQ] =9 d[RQ])

The partitioning me isgiven asfollows. For al ¢ € C:

me(e) = {Pyx{c[Ra]} | P1 € mey(c[R1])} U {{c[R1]} x P2 | P2 € mez(c[R2])}.

The probability assignment ¢ is defined asfollows. For al ¢ = d:

o) - {m(c[&],dwﬂ) i e[ = d[Ry]

p2(c[Ra), d[Ro]) if c[R1] =
(Notethat C = Cy x Cq implicitly definesthat R(S) = Rq U R3.)

Let usillustrate this definition within the Plant Example.

Example 7.16 (Plant Example: cartesian product of POB-schemas) Let S, bethe POB-schema
computed in Example 7.8, and let S, be the POB-schema computed in Example 7.12 in which each
class ¢ isreplaced by ¢’. The cartesian product schema S, x S, = (C, 0, =, me, p) isas follows:

o A partial view on the set of classes C is given in Figure 4 (note that we use pl, an, pe, ve,
he, fl, ah, and pf as abbreviationsfor plants, annuals, perennials, vegetables, herbs, flowers,
annuals_herbs, and perennials_flowers, respectively).

e Eachclassc € C isassigned the following type under o:

o(c) = [pname: string, rain: integer, pname2: string, rain2: integer] .

¢ A partia view on the directed acyclic graph (C, =), the partitioning me, and the probability
assignment p isalso givenin Figure 4.

The cartesian product of two consistent POB-schemas is always consistent:

“*As usual, ¢[U] denotes the restriction of tuple ¢ to the attributes in 7.
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I

‘(an,he)‘ ‘(pe,he)‘ ‘(ve,he)‘ ‘(he,he)‘ ‘ (fl,he) ‘ ‘(ah,pl)‘ ‘ (pf,pl) ‘

Figure 4: Some classes in the cartesian product of the Plant Example

Theorem 7.3 Let S; and S, be two cartesian-product-compatible POB-schemas. If S; and S, are
consistent, then S; x S, isconsistent.

Proof. LetS; = (Cl, 01,=1,1N€1, pl), Sy = (CQ, 09, =9, Mmey, pz),and S1xSy = (C, o, =,1ne, p)
Lete; : G — 29 and ey : Co — 292 bemodels of S; and S, respectively. Let the mapping
£:C — 29 whereC =C; x Cyand © = O x O, be defined as follows:

8(0) = 81(C[R1]) X 82(C[R2]), fordlceC.

We now show that ¢ isamodel of S. Wefirst prove C1. Sinceey(¢q) # 0 for dl classes¢, € ¢, and
£9(c2) # 0 for al classes ¢[ R3] € Co, wegete(c) # (0 for al classesc € C. We next show C2 and
CA. Let ¢, d € C withc = d. Without loss of generality, we can assume that ¢[R1] =1 d[R4] and
c[Rz] = d[R3]. Sincee; isamodel of Sy, it holdsthat ¢1(c[R1]) C e1(d[R1]) and |e1(c[R41])| =
o1(c[R1],d[R1]) - |e1(d[R4])|. Hence, it immediately follows e(c) C e(d) and |(c)| = p(c, d) -
le(d)]. Wefinally prove C3. Let ¢,d € C betwo distinct classes that belong to the same cluster
P € [Jme(C). Without loss of generality, we can assume that ¢[R4], d[R;] € C; belong to the
same cluster P; € |Jmey(Cy) and that ¢[Rz] = d[R;]. Since ¢y isamodel of Sy, it holds that
e1(c[R1]) N e1(d[Rq]) = 0. Thus, it followsthat e(¢) N e(d) = 0. O

We now define the cartesian product of probabilistictuple values.

Definition 7.18 (cartesian product of probabilistic tuple values) Let ptv, and ptv, betwo prob-
abilistictuplevaluesover the disjoint sets of attributes A and A ,, respectively. The cartesian prod-
uct of ptv, and ptv,, denoted ptv, x ptv,, istheprobabilistictuplevaue ptv over theset of attributes
A1 U A, defined by:

e plv. A = ptvy.Afor dl attributes A € A; .
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e plv. A = ptv,.Afor dl attributes A € A, .

Note that ptv, x ptv, = ptvy, X ptv,, Since by convention the ordering of attributesin a complex
valuetupleisimmaterial.

Example 7.17 (Plant Example: cartesian product of probabilistic tuple values) Letusconsider
the following two probabilistic tuple values (taken from Examples 7.10 and 7.15, respectively):

ptvy = [pname: ({Cuban-Basil, Lemon-Basil}, u, u),rain: ({20,...,30},u,u)]
ptvy, = [pname2: ({Mint},u,u),rain2: ({20}, u,u)].

The cartesian product of ptv, and ptv, isgiven asfollows:

ptvy x ptvy, = [pname: ({Cuban-Basil, Lemon-Basil}, u, u),rain: ({20,...,30},u,u),
pname2: ({Mint}, u,u),rain2: ({20}, u,u)].

Wearefinaly ready to definethe cartesian product of two POB-instances. Asinthe case of classes,
we assume in the rest of this paper that each oid o € O that occursin a POB-instancel = (7, v)
over S isatuplefor the relation scheme R(S); each such o may be written asthelist (o4, ..., 0,,)
of thevaluesfor theattributes A4, . .. , A,, of R(S).

Definition 7.19 (cartesian product of POB-instances) Letl; = (7q,14)andI; = (72, v2) betwo
POB-instancesover the cartesian-product-compatible POB-schemas S; = (Cy, 01, =1, meq, 1) and
Sy = (C3, 02, =2, mey, p3), respectively. The cartesian product of I; and I, denoted I; x I, is
defined as the POB-instance (, ) over the POB-schema S = S; x S, where

o m(c) = mi(c[R1]) X m2(c[Ry]), fordl ¢ € C (here, 1 (c[R1]) X m2(c[Rs]) C O isassumed).
o v(0) = 11(0[R1]) X v2(o[Ry]), fordl o € (C).

Let usillustrate this definition within the Plant Example.

Example 7.18 (Plant Example: cartesian product of POB-instances) Let I; and I, bethe POB-
instances computed in Examples 7.10 and 7.15, respectively. The cartesian product of T; and I, is
the POB-instance (7, ), where partia viewsof = and v are givenin Table 9:

75 Join

In classical relational databases, the join operator is a generalization of the cartesian product. This
will also bethe casefor thejoin of POB-instances, which isdefined in this section. We start with the
notion of join-compatibility.
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| c | 7(c) | | oid | v(oid) |
(pl,ph) | {(o1,01)} (01,01) | [pname: {{Lady-Fern, Ostrich-Fern},u,u),
(an,pl) | {} rain: ({25,...,30},u,u),
(ah,pl) | {(02,01), (03,01), pname2: ({Lady-Fern, Ostrich-Fern}, u, u},
(05,01), (06,01), (07,01)} rain2: ({25,...,30},u,u)]
(pf,pl) | {(04,01)} (02,01) | [pname: {{Cuban-Basil, Lemon-Basil}, u, u},

rain: ({20,...,30},u,u),

pname2: ({Lady-Fern, Ostrich-Fern}, u, u},
rain2: ({25,...,30},u,u)]

(03,01) | [pname: ({Mint},u,u),

rain: ({20}, u,u),

pname2: ({Lady-Fern, Ostrich-Fern}, u, u},
rain2: ({25,...,30},u,u)]

Table 9: = and v resulting from cartesian product (partial view)

Definition 7.20 (join-compatible POB-schemas) Two POB-schemas S, = (Cy, 01, =1, meq, 91)
andS; = (Cq, 03, =2, mey, po) arejoin-compatibleiff R(S;)and R(S;) aredisjointandoy(cq).A =
o2(cq).Aforal classesey € Cq, ¢3 € Cy and attributes A defined for both o1 (¢ ) and o2(c2).

Definition 7.21 (join of POB-schemas) Let S; = (Cy1,01,=1,mey, 1) and Sy = (Cq, 02, =3,
megz, p2) be two join-compatible POB-schemas, and let B, = R(S;) and R, = R(S3) . Thejoin
of S; and S, denoted S; < S5, isthe POB-schema S = (C, o, =, me, p), whereC, =, me, and o
areasinthedefinitionof S = S; x S, (see Definition 7.17), and o is defined as follows:

e Foral ¢ € C, thetupletype o(c) = [Ay: 7,..., A;: 7] contains exactly al A;:r; that
belong to either the tuple type oy (¢[R,]) or the tupletype oo (¢[R2]).

Theorem 7.4 Let S, and S, be two join-compatible POB-schemas. If S; and S, are consistent,
then S; =« Sy isconsistent.

For the join of two probabilistictuples values ptv, and ptv,, we need to combine the two values
of acommon attribute A; to a single value for the result. Thisis done through conjunction of the
probabilistic triples representing these values, along the following definition.

Definition 7.22 (conjunction strategieson probabilistictriples) Let(V', o/, 3 )and(V", a”, ")
be two probabilistictriplesand let @ be a probabilistic conjunction strategy.

We define (V/, o/, ') @ (V" a”, ") asthe probabilistictriple (V, a, 3) with:
o V={veV'nV"|[d(v),5(v)] @[a"(v), 8"(v)] # [0, 0]}.
o [a(v), f(v)] = [ (v), #'(v)] @ [@"(v), ”(v)] foral v e V.

Note that impossible values v in V' n V" (having probability 0) are excluded from V' as they
are implicitly represented by the CWA. The outcome pt = pt; ® pt, iswell-defined only if pt is
consistent, which requiresthat ) ©, .y 5(v) > 1. When an inconsistency arises, we flag an error.
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Definition 7.23 (join of probabilistic tuple values) Let ptv; and ptv, be two probabilistic tuple
valuesover the setsof attributes A, and A 5, respectively, suchthat for all A € A; N A,, thevalues
ptvy.A and ptv,. A are of the sametype. Let ® be a probabilistic conjunction strategy. The join of
ptvy and ptv, under @, denoted ptv, g ptv,, isthe probabilistictuple value ptv over A; U Ay
defined by:

e plv.A = ptvy.Afor al attributes A € A; — A,.
e plv.A = ptv,. Aforal attributes A € A; — Ay .

o plv. A = ptvy. A ® ptv,. A for al attributes A € A; N A,.

Notethat, for any probabilistic conjunctionstrategy @, ptv; g ptvy = ptvs g ptvy holds,i.e.,
the join of probabilistic tuplesvaluesis commutative.

Example 7.19 Let us consider the following two probabilistic tuple values:

ptvy = [A: ({a,b},0.6u,1.4u), B: ({a,c},0.7u,1.3u)]
[A: ({a,b,c},0.3u,2.4u), C: ({¢,d},0.4u,1.6u)]

ptoy
Thejoin of ptv, and ptv, under independenceis given as follows:
ptoy g, ptvy = [A: ({a,b},0.06u,1.12u), B: ({a,c},0.7u,1.3u), C: ({c,d},0.4u,1.6u)].

Definition 7.24 (join of POB-instances) LetI; = (w1, vq)and Iy = (72, v2) betwo POB-instances
over thejoin-compatiblePOB-schemas S, = (Cy, 01, =1, mey, p1) and Sy = (Ca, 02, =2, meg, p2),
respectively,andlet Ry = R(Sq1)and Ry = R(S;). Let A; and A, bethesetsof top-level attributes
of Sy and S,, respectively. Let @ be aprobabilistic conjunctionstrategy. Thejoin of I, and I, under
®, denoted Iy s« I3, isthe POB-instance (7, v) over the POB-schema S, o S3, where:

° 7T(C) = {(01,02) S 7T1(C[R1]) X FQ(C[RQ]) | foral A e A; N A;:
if (11(01) g 12(02)).A = (V,a, ), thenV £ 0}, forale e Cy xCs.

o v(0) = v1(0[R]) g 12(0[Ry]), foral o € ©(C).

7.6 Intersection, Union, and Difference

In this section, we define the classical set operations of intersection, union, and difference for two
POB-instances over the same schema.

The definition of intersection is intuitive: common objects are selected, and their respective at-
tribute values are combined by conjunction. We introduce the following notion.
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Definition 7.25 (inter section of probabilistic tuple values) Let ptv, and ptv, be probabilistictu-
ple values over the same set of attribute names A and let @ be a probabilistic conjunction strategy.
The intersection of ptv, and ptv, under @, denoted ptv; Ng ptv,, isthe probabilistic tuple value
ptv over A defined by ptv. A = ptv,.A @ ptv, Aforal A € A.

Definition 7.26 (inter section of POB-instances) LetI; = (7my,v1)andI; = (72, v2) betwo POB-
instances over the same POB-schema S and let & be a probabilistic conjunction strategy. Theinter-
section of Iy and I, under &, denoted I; N, I, isthe POB-instance (7, v) over S, where:

o 7(c)=m(c)Nm2c).
e v(o)=11(0) Ng 12(0).

The union of two POB-instances is defined in the same spirit as their intersection.

Definition 7.27 (disjunction strategies on probabilistic triples) Let pt; = (V' o/, 5) and pty =
(V",a", ") betwo probabilistictriplesand let @& be aprobabilistic disjunctionstrategy. Then pt; &
pty isthe probabilistictriple pt = (V, a, ), where:

o V=V uv”,
[o/(v), 5'(v)] ifoeVv —v"
o [a(v), (0] = | [a"(v), 8"(v)] ifveV”—v’
[@/(v), B/ (v)] & [a"(v), "(v)] foeV NV,
Asinthe case of conjunction, the outcome pt of pt| & pt, isonly defined if pt isconsistent, which

requiresthat > i a(v) < 1. A violation of this condition indicates incorrect data or improper
application of the disunction strategy . Again, thisis flagged.

Definition 7.28 (union of probabilistic tuple values) Let ptv, and ptv, betwo probabilistictuple
values over the same set of attribute names A and let @ be a probabilistic disjunction strategy. The
union of ptv, and ptv, under &, denoted piv, Ug ptuv,, isthe probabilistic tuple value ptv over A
defined by ptv.A = ptv,. A & ptv, Aforal A € A.

Definition 7.29 (union of POB-instances) Letl; = (71, v1)andIy = (73, v2) betwoPOB-instances
over thesame POB-schema S suchthat 7 (¢q )N wa(c2) = O foradl pairsof distinct classescy, ¢; € C.
Let ¢ be aprobabilistic disjunction strategy. The union of I; and I, under &, denoted I; Ug, Iy, is
defined as the POB-instance (7, v) over S, where:

o 7(c)=m(c) U ma(c).

e v(0) = vy(0) if o € m3(C) — m1(C)



Finally, we consider the difference of two POB-instances. For this, we use the notion of a differ-
ence strategy for probabilistic tuple values.
Definition 7.30 (difference strategies on probabilistictriples) Let pt; = (V',a/, ') and pty =
(V",a", ") betwo probabilistictriplesand let & be a probabilistic difference strategy.

We define pt; & pt, asthe probabilistictriple pt = (V, «, 5) with:
o V=V —{oeV'nV"|[d(v),(v)] & [a"(v). 5"(v)] = [0,0}].

! ! i "

o) )] {[a (v), #(v)] ff veEV -V

[a/(v), F'(v)] & [@"(v), B"(v)] ifveV V"
Definition 7.31 (difference of probabilistic tuple values) Let ptv, and ptv, be two probabilistic
tuple values over the same set of attribute names A, and let & be a probabilistic difference strategy.
The difference of ptv, and ptv, under 5, denoted ptv, —c ptv, iSthe probabilistic tuple value ptv
over A defined by ptv. A = ptv,.A © ptvg,. Aforal A € A.
Definition 7.32 (difference of POB-instances) Let Iy = (7q,r41) and Iy = (73, v2) be POB-in-
stances over the same POB-schema S and let & bea probabilisticdifference strategy. The difference
of I and I, under o, denoted I, —¢ I, is defined as the POB-instance (7, ) over S, where:

o 7(c)=m(c).
{1/1(0) if o € 71(C) — m2(C)

e v(o)=

v1(0) —g ve(0) ifoem(C)NmC).

8 POB Algebra: Equivalence Results

In this section, we derive some results on equivaences which hold in our POB-algebra. We focus
here on equivalences similar to well-known equivalencesin the context of classical relational alge-
bra. Thelist of equivaencesisby no means complete, but showsthat query optimizationispossible
along similar linesin classica relational algebra[1]. Our first result saysthat the selections may be
reordered.

Theorem 8.1 Let I = (7, r) be a POB-instance over the POB-schema S. Let ¢; and ¢, be two
probabilistic selection conditions. Then

U¢1(U¢2(I)) = U¢2(U¢1(I)) = U¢1/\¢2(I)7 (1)

where the last expression assumes that ¢, and ¢, have the same abject variable.

Our next result saystwo things: first that the projections may be reordered and second, that projec-
tions may be pushed through sel ections under appropriate contributions.
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Theorem 8.2 Let I bea POB-instance over the POB-schema S. Let A and B be sets of attributes,
and let ¢ be a probabilistic selection condition in which all path expressions start with attribute
names from A.. Then,

A (Ilg(I)) = Hp(Ila(I)) )

Ma(op(I)) = ou(1la(D)). €)

The next result, which statesthat sel ectionsand projections can be pushed through the renaming op-
erator, requires some notation. For any renaming condition NV : B — é, theinverse of N, denoted
by N ~!, isthe renaming condition C — B. Furthermore, the notation 6 /(X ) standsfor the result
of applying therenaming N on the formal object X .

Theorem 8.3 Let T bea POB-instanceover the POB-schema S, and let N be a renaming condition
for S. Let ¢ be a probabilistic selection condition and let A be a set of attributes. Then

oy(on(1)) = on(os, _ (e)(D) 4

Ha(én(I)) = on(Is _ a)(D)- ©)

Thefollowing theorem showsthat joinsare always associative and commutative, regardless of what
conjunction strategy is used in thejoin. In addition, selects may be pushed “through” ajoin by ap-
propriately splitting the selection condition and the same is true of projections.

Theorem 84 Let S4, S, and S3 be pairwise join-compatible POB-schemasand let T, I, and I
be POB-instancesover Sy, S,, and S, respectively. Let © be a probabilistic conjunction strategy.
Let 1, &2, and ¢3 be probabilistic selection conditions such that ¢, and ¢, involve only attributes
fromA,; — A; and A, — Ay, respectively, where A and A, denote the sets of top-level attributes
of S; and S, respectively. Let B be a set of attributesand defineB; = (BU A;) N A; andB; =
(BUA;)N A;. Then

Lidg I, = Lixg Ly (6)

(I g L) g Is = Iy eag (Ig pag I3) (7)
Tpinsangs (It g 1) = 04,(04, (1) g 04, (12)) 8)
Ip(L g 1) = lp(Ils, (L) g 1B, (L2)) . ©)

Notethat in classical relational databases, Equivalence (8) remainstrueif ¢, and ¢, accesscommon
attributesof A and A,. Thisisno longer guaranteed for POBSs, as thejoin may change the value of
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common attributes. As cartesian product is aspecial case of join, we obtain the following corollary
to Theorem 8.4.

Corollary 85 Let Sy, Ss, and S5 be pairwise cartesian-product-compatible POB-schemas and | et
1,1, and I3 be POB-instancesover S, So, and Ss, respectively. Let ¢4, ¢2, and ¢3 beprobabilistic
selection conditions such that ¢; and ¢, involve only attributesfrom the sets of top-level attributes
Ay and A, of S; and S,, respectively. Let B be a set of attributesand let By = B n A; and
B, = BN A,. Then

IT1 xI, = Iox1I; (20)

(I xIp) xIs = Ij x (Iz x Is) (1)
Toinsanss(Tt X I2) = 04,(04, (1) X 04, (I2)) (12)
p(I; x I) = g, (I1) x I, (I2). (13)

Theorem 8.6 Let I, I,, and I5 be POB-instances over the same POB-schema S. Let @ / ¢/ be
a probabilistic conjunction/digunction/difference strategy and let A be a set of attributes. Then,

LNgl, = Ing I (14)
(LingIn)NgIs = I Ng (I Ng Is) (15)
LUgl, = LiugL (16)

(L1 Ug I)Ug Is = I Ug (I3 Ug Is) (17)
Ma(L NgTy) = Ma(T)) Ng TTa(T2) (18)
Ma(L Ug Iy) = Ta(T)) Ug T4 (T2) (19)
Ma(li = L) = Ta(L) —¢ Ha(IL2). (20)

Notethat literally taken, Equations (20) and (18) are not true for relational databases. The reason
isthat we use oids for objectsin POBs, whilerelationa databases contain simply values.

9 Implementation
We have implemented a prototype of a distributed probabilistic object database system. The server

(POB server) runsontop of ObjectStore (Version6.0), and isimplemented in SUN-C+ (Version 4.2).
A thin client for handling database transactionsis implemented using GNU-C+ (Version 2.8.1).
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9.1 POB Server

The POB-server is a collection manager of POB-schemas, where each POB-schema consists of a
set of POB-classes and their associated POB-object instances. There are two types of POB-schemas
that the server manages. the persistent schemas, which correspond to the permanent data that the
database kegps, and temporary schemas, which maintain intermediate schemas created during trans-
action processing.

The probability interpreter contains a collection of functions for computing probabilistic con-
junction and disjunction strategies. It holds, in addition, alibrary of distribution functions for ma
nipulating probabilistic tuple values associated with objectsin the database.

The POB-schema class maintains an inheritance probability table (the probability assignment ¢
in Definition 5.4). The class contains methods to add and remove POB classes, add and remove
POB-abjects, and POB-classes, and to retrieve POB-objects and POB-classes. In addition, given
two classes ¢y, ¢9, there isamethod that computes the probability that ¢, isasubclassof ¢,.

Each object in the POB class has aname, a collection of attributesand their associated types, and
acollection of parent POB-class names along with their associated probability assignments. Meth-
ods associated with POB-class objects provide abilitiesto establish attribute/type information, par-
ent POB-class/probability assignments, adding and removing POB-objects from the POB-class, and
various self-replicating functionsthat are useful for query processing.

POB obj ects contain an object name, the oid, a collection of probabilistictuplevalues, and a POB-
class pointer which points to the POB-class of which it is an instance. The POB-class pointer is
providedfor fast accessto class-level information: attributes, types, parents, etc. Methodsassociated
with POB-objectsincludefunctionsfor setting probabilistic tuplevaluesand various sel f-replicating
functionsto facilitate query processing.

The POB Server handles client requests. It contains a pointer to an ObjectStore database which
maintains persistence for the POB-server. The POB Server includes methods for: connecting to a
database, disconnecting from a database, creating and removing schemas, creating and removing
classes, creating and removing objects, computing the probability that an object isamember of class
¢, giventhat itisamember of class ¢o, computing the probabilistic extent of a class, checking if an
object satisfies a given probabilistic selection condition, executing an arbitrary query in the proba-
bilistic object algebra, and a variety of printing functions.

Note that each method may not correspond to a logica unit of work — in this case arequest. In
some instances, severa requests are handled within one method while in other instances, a single
request is handled through a combination of methods.
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9.2 Experiments

Using the POB Server, we have conducted a set of experiments to assess the various equivalences
described in Section 8 as well as to assess the performance of selection. We do not describe all
the experiments we conducted (due to space reasons), but only a few sample experiments are listed
below. Thelimiting factor inall experimentswasthe size of the“largest intermediate schema.” This
isthe number of objectsin thelargest schemaencountered when executing the query. For a selection
guery, thisisjust the number of objectsin the POB-instance on which the selectionis performed. In
the case of ajoin/cartesian product, thisis the product of the sizes of the POB-instances being joined
(or whose Cartesian product is being computed). In the experimentsinvolving Equations 8, 12 and
13 described below, we varied the number of objectsin the largest intermediate schema from O to
270,000 objects and measured the times taken (on a Sun Ultra 10 workstation) for both the left side
and theright side of therewrite rulesin question. The ideawas to see whether the left side of arule
should be rewritten to the right side or the other way round.

Effectiveness of Equation 8. Our first experiment evaluated the effectiveness of pushing selections
into joins (Theorem 8.4). Figure 9.2(a) shows what happens if the selectivity isvaried using inde-
pendence. It is easy to see that the right side of this equation pays off in a huge way and that as
the selectivity decreases (i.e., fewer and fewer objects are selected), more and more objects can be
efficiently handed. For instance, with 20% selectivity, 270,000 objects in the largest intermediate
schema can be computed in about 30 seconds.

Figure9.2(b) showstheeffect of eval uating theright side of Equation 8 with different probabilistic
strategies. We seethat precisely which strategy isused hasvery littleimpact onthe computationtime,
disputing the oft-held folk claim that assuming independence of eventsis necessary for efficiency
reasons.

Effectiveness of Equation 12. We conducted experiments similar to those described above with
Equation 12. Figure 9.2(c) shows the result of testing — it shows that pushing selections into a
cartesian product may save up to 80-90% of the time and this saving increases as the number of
objectsincreases.

Effectiveness of Equation 13. We conducted experiments similar to those described above with
Equation 13. Figure 9.2(d) shows the result of testing — it shows that pushing projectionsinto a
cartesian product does not help very much. Thereason for thisis because projection does not reduce
the number of objects.

Effectiveness of Selection. We also conducted some experiments on the effectiveness of selection
on POB-schemas of sizes between 3000 and 10000 objects. In the experiment, we executed queries
of the form “Select & from schemae where z.D > val”. Figure 9.2(€) shows the result when two
different selectivitiesare used — 50% (i.e. half the objects satisfy the selection condition) and 30%
(i.e. 30% of the objects satisfy the selection condition). We also tested what happens when we con-
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sider member ship selection queries of the form “Select » from schema e where (« is a member of
class C')". Figure 9.2(f) shows the result of this query with two different selectivities. Note that
the queries generally exhibit linear behavior w.r.t. the number of objects. In addition, membership
gueries are computationally more expensive than simple inequality queries.

10 Related Work

Our work has been inspired by the prior work of Kornatzky and Shimony [23] who describe a prob-
abilistic object-oriented data model in which, like in our approach, uncertainty in the values of at-
tributes and in the class graph may be represented by probabilities. The main differences between
[23] and our approach can be briefly summarized as follows:

e Thework in [23] introduces an object calculusfor extracting objects from probabilistic object-
oriented databases. Thiscalculus can thus be compared to our selection operation. It ismore restric-
tivein thesensethat it only handlesprobabilitieson atomic formul as (which alwaysevaluateto either
true or false), while our selection operation also handles probabilities on conjunctions and disjunc-
tions of atomic formulas, using probabilistic conjunction and disjunction strategies. Specifically, we
make no independence assumption (which [23] does). On the other hand, their object calculus has
quantifiers, which our selection operation does not include. However, it could be easily extended in
thisdirection.

e We aso discussin detail, the algebraic operations of projection, renaming, cartesian product,
join, selection, union, intersection, and difference. Asthey were developing a calculus, [23] does
not deal with this.

e Weintroducefor thefirst time, results on query equivalencesin probabilistic object bases, and
to our knowledge, our system isthefirst implementation of a probabilistic object base.

e INn[23], theclassgraphisadirected tree without multipleinheritance. Moreover, incomparable
classes are dwaysdisjoint. In contrast, in our approach, the class graph may be any directed acyclic
graph, thus alowing multipleinheritance. Furthermore, the disjointnessof classes can be expressed
in a flexible way by grouping them into partition clusters. The consistency of schema declarations
is guaranteed for alarge subclass extending directed trees.

e Kornatzky and Shimony assume a precise probability distribution on the set of all possibleval-
ues of an attribute (including a null value L that represents the inapplicability of an attribute). Our
approach, in contrast, just requires an interval range for probability distributions. Furthermore, ob-
jects occurring as attribute values are given specia treatment in [23]; our model can be extended in
thisrespect.
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e INn[23], theprobabilisticextent of aclassisderived from statistical and subjective probabilities.
Since, in general, inconsistency may arise, the notion of cutsets of classesis introduced there. The
probabilistic extent of aclassis then given by statistical probabilitiesin the class hierarchy and by
subjective probabilitieswith respect to a cutset. Our probabilistic extent, in contrast, isjust derived
from statistical probabilities and classical class membership. We thus avoid al the problems that
come along with mixing up statistical and subjective probabilities.

A step towards the model proposed in the present paper is an extension of the relational model
allowing complex values[12] with probabilities. However, themodel in[12] hasnoaclasshierarchy
and, in particular, inheritanceis not addressed. Thus, it has no features of an object oriented system,
and is essentially in the group of probabilistic relational database models, which we discuss next.

ProbView [24] is a probabilistic relation database model which generalizes various approaches
(like, for example, [3, 6]). Cavalo and Pittarelli’simportant paper [6] viewsrelationsin a (flat) re-
lational database as probability distribution functions, where tuples in the same relation are viewed
as pairwise digjoint events whose probabilities sum up to 1. Drawbacks of this approach have been
pointed out in [8]. An extension of the model using probability intervals, which are viewed as con-
straintson the probabilities, isreviewed in [28]. Barbara et al. [3] consider a probabilistic extension
to the relational model, in which imprecise attributes are modeled as probability distributions over
finite sets of values. No probabilitiescan be assigned to outmost tuples. Their approach assumesthat
key attributes are deterministic (have probability 1) and that non-key attributesin different relations
are independent. As pointed out in[3], “lossy” joins are possiblein this model.

Another important probabilistic database model isthat of Dey and Sarkar [8], which assigns each
tuplein a (flat) relational database a probability value in a specia attribute. Based on [8], a proba
bilistic extension to SQL is developed in [9]. The classica relational operations are in [8] defined
adopting different assumptions on the rel ationship between tuples; in particular, join assumes inde-
pendence; union and difference assume positive correlation; and compaction assumes disjointness
or positive correlation. Our model isfar more general.

Fuhr and Rolleke [14] consider aprobabilistic version of NF2 relations, extending their approach
for flat tuples[15], and define arelational agebrafor thismodel. Probabilitiesare assigned to tuples
and to values of nested tuples (that is, set-valued attributes), which are viewed as events that have
an associated event expression. The agebraic operators manipul ate tuples by combining value and
event expressions appropriately. An intensional semanticsis developed in [14] in which probabil-
ities are defined through possible worlds. The evaluation method assumes that in nondeterministic
relations (that is, relations with uncertain tuples), joint occurrence of two different values is either
alwaysindependent or impossible—thisis certainly restrictive.

Dyreson and Snodgrass [10] provide a version of SQL to handle temporal indeterminacy, where
there is uncertainty about when an event occurs. They use areationa framework and focus on the
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important case where the space of values over which uncertainty existsis huge.

Kiefdling and hisgroup [20] developed aframework called DUCK for reasoning with uncertainty.
They provide an elegant, logical, axiomatic theory for uncertain reasoning in the presence of rules.
In contrast, inour framework, rulesare not present; rather, our interest isin extending object database
models to handle uncertainty in an algebraic setting.

In an important paper, Lakshmanan and Sadri [26] show how sel ected probabilistic strategies can
be used to extend the previous probabilistic models. Lakshmanan and Shiri [27] show how deduc-
tive databases may be parameterized through the use of conjunction and disjunction strategies, an
approach also followed by Dekhtyar and Subrahmanian [7]. We have built in this paper upon the
important concept of probabilistic conjunction and disjunction strategies, but in an object oriented
instead of alogic programming setting.

11 Conclusion

In this paper, we proposed an extension of the relational algebra to handle probabilistic modes of
uncertainty in object oriented database systems. More precisely, the main contributionsof this paper
can be briefly summarized as follows:

1. We presented aformal definition of a probabilistic object base, which extends previous defini-
tions given by Kornatzky and Shimony [23].

2. We gave aforma model theoretic basis for discussing the consistency of POBs, and showed
that consistency checking is NP-complete in general. We then defined classes of POBs for which
consistency can be checked in polynomial time, and provided efficient algorithmsfor thistask.

3. Wedevel oped an algebrathat extendstherel ational algebrato probabilisticobject bases. Specif-
ically, this agebra recognizes that probabilities of complex events depend on existing knowledge
about dependencies between events, and hence, it allows users to express algebraic queries under
appropriate conjunction, disjunction, and difference strategies (which encode such dependence in-
formation).

4. We presented a number of equivalenceresultsthat may form a set of rewriterulesto beused in
guery optimization.

5. Our POB framework has been implemented on top of ObjectStore and the VisiBroker ORB.

6. Finaly, we conducted a set of experiments on the efficacy of our equivalence resultsfor query
rewriting (and hence for query optimization).

Severd tasks remain for further work. Oneisthe enhancement of the current prototype by a so-
phisticated POB-algebra query manager, which optimizes queries by using cost models and rewrite
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rules as shown in Figure 2. For the front end of the system, it would be well worth developing a
probabilistic version of SQL (similar to, for example, Dey and Sakar’s language PSQL [9]).
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Appendix

This appendix contains the proofs of al technical resultsin the main body of the paper.

Proof of Theorem 5.1. Let S = (C, 0, =, me, p) be aconsistent POB-schema. We first show P1.
Suppose that there are two different paths from a class ¢, to another class ¢;. Let p and ¢ be the
products of the edge probabilities on these two paths. By C1 and C4, every model ¢ of S satisfies
e(eg) #Dandp-le(ez)| = |e(er)] = q - |e(eq)]. Thus, weget p = q.

We next prove P2 by contradiction. Let usassumethat there existssomecluster P € | me(C ) and
that there are two distinct classes ¢4, ¢5 € P that have acommon subclass e € C. Hence, by C2 and
C3, every model ¢ of S satisfiese(¢) = (). But thiscontradicts C1. O

Proof of Theorem 5.2. It remains to show NP-hardness. We give a polynomial reduction from the
NP-compl ete problem of graph 3-colorability [16]. Let (V, £') bean undirected graph. We now have
to construct a POB-schema S suchthat (V, £) is 3-colorableiff S isconsistent. The main ideais to
represent each node v € V' by three pairwise disjoint and nonempty classesd?, d2, and d>, which en-
codethethree colorsand the propertiesof amapping from V' intothecolor set. Eachedge{u, v} € E
is then represented by making d, d?, and 43 digoint from d}, 2, and d2, respectively.

Thetechnical formalization isquitetricky. The POB-schemas = (C, o, =, me, p) isconstructed
asfollows. WeinitidizeC, =, and p with{b, ¢1, ¢3, d},{(c1,b), (¢2,b),(d,c1)},and {(¢1,b,1/4),(¢2,b,3/4),(d, c1, 1)},
respectively, and extend them asfollows. We add to C foreach v € V and i € {0, 1, 2} classes ¢!, and
d:,, and for each {u, v} € Fandi € {0,1,2} classesd;, , and d., ,. Foreachv € V and i € {0, 1,2},
weadd theedges ¢i, = b,d = ¢i,d| = c,andd = cy, and assign them the probabilities
1/2,1/2,1/2,and 1/3, respectively. Furthermore, for each dfw € C where: € {0, 1,2}, weadd the
edges d.,, = ¢, and d:,, = c,, and assign them probabilities 1 /2 and 1/3, respectively. Finally,
let o(c) =[] for @l ¢ € C and me asfollows:

me(b) He, ey u{{e}|veV,ie{0,1,2)},
a) = {{d}},

(
(
me(cy) = {{d},d},di} [ve ViU {{d},.d; } [{u,v} € L i€{0,1,2}},
(
(

me(c) = {{c}|ceC,c= ¢} fordlveVandic{0,1,2},and

¢) (), for all other classesc € C.

me

Note that the constructed POB-schema S is pseudo-consistent. It finally remains to show that the
undirected graph (V, ) is 3-colorableiff S is consistent.

(=) If (V, F)is3-colorable, then amapping v : V' — {0,1,2} existswith y(u) # ~(v) for al
{u,v} € FE. Aseasly checked, the following interpretation ¢, where O = {og, 01,02,03}, s @
model of S:
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(b) = {og,01,02,03}
(c1) = {os}
(c2) = {oo,01,02}
e(d) = {os}
(¢t) = {oj,03},wherej = (y(v)+i)mod3 (foralveVandic{0,1,2})
( +i)mod3 (foralveV andic {0,1,2})
( +i)mod3 (foral di , €C wherei € {0,1,2}).

dy) = {o;}, wherej = (y(v)
dy,) = {oj}, wherej = (y(v)
(<) If e isamodel of S, thenit satisfies(¢,) # ) and the following conditions:

le(di)| = 1/3-|e(co)| fordl v € Vandic{0,1,2}
e(diyne(d))=0,foralveVandi,je{0,1,2} withi # j

e(di,,)ne(d,,) = 0, foral {u,v} € £ andie{0,1,2}

(d,
e(diyu 5(d2) Ue(d?) = e(cq), fordlv eV
e(d’,

) = e(d,,) fordl d, , € Cwhereie {0,1,2} (asdi = ¢, d,, = c).

Sincee( ¢z ) isnonempty, thereexistssomeo € ¢(¢3). Let themappingy: V' — {0, 1, 2} be defined
by v(v) = iiff o € e(d’) for al nodesv € V. It isnow easy to see that + iswell-defined and that
v(u) # v(v)foral edges {u, v} € E. Hence, (V, L) is 3-colorable. O

We next concentrate on the proof of Theorem 5.3. We need the following two lemmata.

Lemmalll Let S = (C, o, =, me, p) beawell-structured POB-schema. Let ¢ € C beany class
and let P;, Py € me(c) betwo distinct partition clusters. Then the common subclasses of 77, and
P, that are maximal with respect to =-* are pairwiset-digoint.

Proof. The claim followsimmediately from W2. O

Lemmall2 LetS = (C, o, =, me, p) beawell-structured POB-schema. Let ¢ € C suchthat G's(¢)
containsat least oneedge. Let 7; be aleaf or isolated nodeinagraph G = (V, £) that resultsfrom
G's(c) by iteratively removing leaves or isolated nodes. Suppose d; € C is a subclass of 7; but not
of any other node P in (G, and that d € C is a subclass of some node P in G but not of ;. Then d;
and d arenot t-disointand d ¢ S*(d;), d; ¢ S*(d).

Proof. We give a proof by contradiction. Assume first that d; and d are t-digoint. This means
that there must be some class ¢’ € C, some partition cluster P’ € me(¢’), and two distinct classes
dj,d" € P" suchthat d; =* dj and d =* d’. Suppose now that ¢’ is not asubclassof c. By W1, there
existsatop element ¢t withd) =* ¢t andd’ =* ¢1. By W4, dl pathsfrom ¢; upto ¢ viad] and ¢/
and all pathsfrom d up to ¢t viad’ and ¢/ must go through ¢. Thus, ¢ must be a subclass of both d;
and d’. But thiscontradicts P2. Hence, ¢’ must be asubclassof ¢. Supposenow that ¢ = ¢’. Thus, P’
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belongsto me(c). By the assumptionson d; and d, the cluster P’ cannot belong to ¢/, which means
it was removed in the construction of G from g(¢). However, sincethe edges {P;, P’} and {P, P’}
arein Gig(c¢), thisraises a contradiction. It followsthat ¢’ must be a proper subclass of ¢ and thusa
subclass of some cluster P” € me(c¢). Again, by the assumptionson d; and d, thiscluster P cannot
belong to &, and assuming that P” was in the construction of ' raises again a contradiction. This
provesthat d; and d are t-dijoint.

Assume next that d; € S*(d) holds. Then d; isasubclass of P, which contradictsthat d; is not a
subclass of any node in ¢ different from ;. Thecase d € S*(d) isanalogous. O

We are now ready to prove Theorem 5.3.

Proof of Theorem 5.3. Let S = (C, 0, =-, me, ) be a pseudo-consistent and well-structured POB-
schema. Let e+ denotethetop element of S. By P1 and W1, there existsaunique mapping e : ¢ —
[0, 1] suchthat a(ct) = 1 andthat a(c) = p(c,d)- a(d) fordl ¢,d € C withe = d (definea(c) as
the product of the edge probabilitieson any path from ¢ to ¢ 7).

Itisnow easy to seethat S isconsistent iff there existsafinitenonempty set O, amapping ¢ from C
to 2©, and amapping p from O to the set of all rational numbersin [0, 1] such that:

(1) e(c¢) Ce(d)foral classese, d € C withe = d.

(2) e(c)ne(d)=0foradldistinct classes ¢, d € C that belongtothesame P € [ J{me(e) | e €C}.

Q) Xeonlo) = 1.
(4) a(ec) = Zoes(c) p(o) foral classesc € C.

Informally, 1 assigns amass to each object (possibly 0), and «( ¢) isthe share of the total mass of
all objectsin ¢. Such O, ¢, and 1 are now constructed by induction on the structure of S. Owing to
possibly complex relationships between classesin S, the proof is naturally involved.

We first consider the case where S has no multipleinheritance, i.e,, (C, =) isatreewith root c.

Basis: For C = {c1}, wedefine O = {0}, e(c1) = {0}, and u(o) = 1. Itiseasy to see that these
O, ¢, and ;1 have the properties (1)—4) in S.

Induction: Let Py, ..., P, bethepartitionclustersinme(c ). Let ST = (C, oF, =7, mef, 97), . . .,
S} = (C}, 07, =7, me}, p7) be the greatest POB-schemas that are contained in S, that have the top
element ¢, and that do not contain any classes from S(¢t) — Py, ..., S(cT) — Pi.

Without loss of generality, let us consider the partition cluster P; = {¢y,...,cx}. LetS; =
(C;, 01, =4, me;, ©;) be the greatest POB-schema that is contained in S and has the top element ¢;,
foralli € {1,...,k}. Each S; is pseudo-consistent and well-structured. Hence, by the induction
hypothesis, there exist O;, ¢;, and y; that satisfy (1)—(4) in S;. It isnow easy to verify that the fol-
lowing O7, €7, and i} have the properties (1)—4) in S7:
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e OF = {o} U 'Q{ci} X £(¢;).

° 8’{(61-) = (’)’f and 8’{(di) = {CZ} X &(di) foral d; € C;and ¢ € {1, ce ,k}.
k
o (o) =1=> p(¢,er) and pi(e, 0) = ple, er)-pi(o;), foradli e {1,... ,k},0; € O;.
=1
Thatis, thereexist 07, ..., 05, €7, ..., ef,and uf, . .., uy that satisfy (1)—«(4) inS7, ..., S;. We
finally define O, ¢, and 1 with the properties (1)—<4) in S asfollows:

e O =07x---x0r.

o c(er) = O and e(dy) = {(of,...,07) € Oloy € ex(dy)}foral df € Cf — {e7} and
ie{l,... [}

l
o y(0],...,07) = [[ pr(or)foral(oy,...,0f) € O.
=1

L et us next concentrate on POB-schemas S = (C, o, =, me, p) with limited multipleinheritance:
For every ¢ € C and every two distinct Py, P, € me(c), it holdsthat every ¢; € Py and ¢y € P;
have at most one common subclass (which must then be different from ¢4, ¢5).

In this case, we must be more careful intheinduction step. Along the sameline of argumentation,
we may construct 07, 7, and i* with (1)—(4) inS7, foral i € {1,... [}, since P2 ensuresthat any
two classesin the same partition cluster have pairwise digjoint sets of subclasses. The construction
of O, ¢, and i, however, is by induction on the structure of G's(c) as follows.

Basis: For! = 1, wedefine O = Of, ¢ = ¢}, and o = 7.
Induction: For ! > 1 and G's(¢7) = (me(et), ) (no common subclasses), the proof is as above.
Fori > 1 and G's(ct) # (me(eT),0), by W3, the undirected graph Gis (¢t ) containsat least one
leaf or oneisolated node. Without lossof generality, let thisnodebegivenby P;. LetS’ = (€', o', =/, me’, ¢')

be the POB-schema that unifies the POB-schemas S7, . . ., S;_, under the top element c+. By the
induction hypothesis, there exist (', ¢/, and i’ with the properties (1)—(4) in S’.

Leteq,..., e, withm > 0denoteall theclassesinC’'N Cf — {¢1}. Itisnow important to point out
that, by the assumption on common subclassesand Lemma11.1, theclassese; are pairwiset-disjoint.
Moreover, by Lemma1l.2, eachclasses¢’ € C' — {ct,e1,...,e,}and e € C*—{eT,eq,.. ., 65}
are not t-disointand ¢’ ¢ S*(c*), ¢ ¢ S*(c') hold. Let O = O — (&'(e1) U -+~ U (e, )) and
Or = OF — (7(e1) U - - U e¥(e, ). We now define O, ¢, and  as follows:

¢« 0 =0 x (51* VUL, €'(ef) x ef(ef)
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@) if d=ct

g'(d) x €7 (d) if de{er,...,em}
o £(d) =
{(,of) €O €(d)} fdel —{ct,er,...,en}
{(d,of) € Olof €ef(d)} ifdelC"—{er,e1,....em).
(o, o) {M'(O') i (op) [ ale;) it (o, 07) € e'(ej) x ef(e;)
o u(o,0f) = L
P (o) - pilof) [ (1= 30 aley)) if (o, 0) € O x OF .

(NOtethat Zo Es €4 ( ) Zol Esl ej lul (0?) = 04(6]‘) and Zole@/ lu/(ol) = 207661* M?(O?) =
1=377 ale))) It can now easily be shownthat O, ¢, and ;. have the properties (1)—4) in S.

Let usfinally consider the case of pseudo-consistent and well-structured POB-schemas S with-
out any further restrictions. In thiscase, theclasseseq, ..., e, of the previous induction may have
proper subclasses. The main ideas of the proof are now asfollows. By theinduction hypothesis, the
subschemasS.; under ¢; isconsistent. Since the classes e; are pairwise digjoint, and each path from
aclassinS,; beyond that schemamust passthrough e;, we can informally assume that the subgraph
below ¢; isreplaced by apartition cluster {e;1,.... €., } With3 iy 3 p(eji.e5) = 1 forall
je{l,...,m}, whereweintroduceaclass ¢; ; for each object in the model of S, . We then apply
the same construction as above, usinge; 1, . . ., €55, instead of e, foral j € {1,...,m}. O

Proof of Theorem 7.1. Immediate from the fact that the consistency of S isindependent of . O
Proof of Theorem 7.2. Immediate from the fact that the consistency of S isindependent of . O

Proof of Theorem 7.4. Analogousto Theorem 7.3 (observe that the consistency of a POB-schema
isindependent of the type assignment). O

Proof of Theorem 8.1. Let 12 = (7T2, 1/2) = O'¢2(I), 1172 = (7T172, 1/172) = 04, (O'¢2(I)), and Il/\g =
(T1A2, V172) = Oy ng, (I). SiNCE Gy A @4 islogicaly equivalent to ¢, A ¢, it suffices to show that
I, , and I; A, coincide. For each ¢ € C, we have

m2(c) = {o€mac)|proby, , |= ¢1}
= {o€m(c)|(proby, [= ¢2) A (proby, , = ¢1)}
= {oem(c)|(proby, [ ¢2) A (proby, = ¢1)}
= {oem(c)|probr, F ¢1 A ¢}
);

= 7T1/\2(C 3

thekey factisthat proby, , = ¢ isequivaenttoproby, |= ¢1,if obelongstor(c),i.e, proby, =
¢, istrue. Furthermore, for each class ¢ € C,
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vigle) = wa(e)|mia(c)

ve)lmo(e)lm o(c)

v(e)lma(c) sy a(c) € ma(c)
v(c)|minz(c) asmy o(c) = miaz(c)
= 1/1/\2(0).

Thisprovestheresult. O

Proof of Theorem 8.2. Equation (2): immediate from the fact that 114 (1Ig(I)) = llans(I).

Equation (3): By the definition of selection, the oid o is selected from T'iff proby , |= ¢ holds.
Since ¢ accesses only attributesin the schema S’ = 114 (S), and sincethe projection 11 (I) =: T
lets al such components of o survive, we have that proby , [= ¢ iff proby , [= ¢, for every oid o.
Thus, by definition of 115 it followsthat 114 (04(I)) = Ila(04(1’)). Sincella (o4(1')) and oy (T)
have the same schema, we have 1Tz (04(I')) = 04(I')). It follows Il A (o4(I)) = o4 (IIA(I)). O

Proof of Theorem 8.3. Equation (4): Let I = (7, v). Consider any top-level attribute & from the
schema of 65 (I). Then, there is atop-level attribute D from S (not necessarily different from F)
suchthat 5 (D) = F. Let o beany oid, and set ¢’ := d—1(¢). We then obtain:

on(v(0)).E = bn(v(o0).D) = dén(v(o).dn-1(F)).

By inductiononthestructureof ¢, wethusobtainthat prob s ), = ¢iff proby, [= ¢" holdsfor all
oids o populatingI (equivalently, 6x(I)). Thus, o belongsto o4 (én (1)) iff it belongsto dn (o (1)),
and since selection and renaming do not change class membership, o belongsin o,4(éx(I)) and in
én (o4 (I))tothesameclass. Sinceselectiondoesnot affect theval ueassignment, o hasinog(dn (1))
andin én (o (1)) asothe same probabilisticvalue. Thusoy(dn(I)) = dn(op(I)).

Equation (5): Theproof isanalogousasfor classical rel ational databases(class hierarchy and prob-
ability assignment do not play arole here).

Wefirst observethat the schemas on thetwo sides coincide. Indeed, if A isatop-level attribute of
theschemaof 115 (6 (1)), thenA € A andép—1(A)isatop-level attributeof S. Thus, dn (6n-1(A))
A isatop-level attributeof theschemaof éx (115 _, (a)(I)). Conversdly, if A isatop-level attribute
of 6n(Ils _,(a)(1)), then éx—1(A) isatop-level attribute of S and, moreover, A € A. Thus, A is
atop-level attribute of the schema of 114 (6x(I)). It followsfrom this that the schemes on the two
sides of Equation (5) coincide. Since projection and renaming do not affect class membership of ob-
jects, I, A (6n(I)), and én (15, _, (a) (1)) are popul ated by the same objects o, with the same class
membership function. The value of the (existing) attribute A of object o in both 114 (6x(I)) and
én(Is, _, (a)(I)) isgiven by v(o).6y-1(A), whereI = (7, v). Thisestablishesthat 114 (6n5(I))
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and oy (Ils _, (a)(I)) coincide. O

Proof of Theorem 8.4. Equation (6) (commutativity of thejoin) holdsbecause (i) thejoininclassica
databases (used to generate the POB-schema of the join and the oids of itsinstance) iscommutative,
(i) classical set intersection N is commutative, and (iii) the conjunction strategy © iScommutative.

Equation (7) (associativity of join): A simple analysis of the possible cases for membership of
an attribute A in the sets of top-level attributes A, Ay, and A3 of Sy, Sy, and S3, respectively,
establishes that the join of probabilistic tuple values is associative. From associativity of classical
relational join and set intersection, it isthen easy to see from the definition of join for POB-instances
that (I s<gp 1) g Is = I g (I3 >ag Is) holds.

Equation (8): By Theorem 8.1 we have g4, ag,nes (It g I2) = 04, (0p ng, (11 g I2)). Thus,
it remainsto establishthat o, ag, (11 < Iz) = 04, (I1) 25 04, (1) holds.

The set of top-level attributes of the schema of I, := I; <g Iz iSA; U A,. Foreach A €
A, — A,, itsvauefor an object o = (01, 02) in I, provided A exists for o, is by definition
of joingiven by v (01).A. Since ¢, involves only top-level attributesfrom A; — A, thisimplies
proby, , , = ¢1iffproby , = ¢1. Smilarly,weobtainthatproby,  , = ¢2iff proby, ,, = ¢9;
hence, proby, . , = 1 A ¢ iff proby . |= &, fori € {1,2}.

Thus, for every oid o = (01, 03) belongingto o4, ¢, (11 >g Iy) itholdsthat o; isin oy, (I;), for
i € {1,2}, and thus (o1, 02) belongsto o4, (1) g o4, (I2). Moreover, since selection does not
changean object’svalueassignment, o hasinoy, (11) t<ig 04, (1) thesamevalueasino g, ag, (Liz).
Conversdly,if o = (01, 0) belongstooy, (11) g 4, (I2), theno belongsto Iy, andproby, . , =
1 A ¢2 holds. Thus, o belongsasoto o, n4,(I12), and hasinit thesamevaueasin oy, (I ) =g
04,(I2). Thisproves oy, ne, (It g Ip) = 04, (1) g 04, (12).

Equation (9): Since projectiondoesnot change classmembership, bothIlg (I s Iy)andllg(1ls, (1) g
I, (I;)) are populated by the objectso = (01, 03) fromI; <y I,. Theinner projectionslip, , I,
removeall top-leve attributes A € AU A, from oy and oy, respectively, which are neither common
attributesof A, and A, nor in B. Each such attributeof o inI; s, I, isremoved by the projection
IIg appliedto it. Thus, thevalueof o inIlg(I; g I3) and g, (I1) sg 1Ig,(Iz) isthesame. It
followsIIg(I; 0ag Io) = (1B, (I1) g 1B, (1z)). O

Proof of Theorem 8.6. Equations(14) and (15) areimmediate from commutativity and associativity,
respectively, of set intersection and the probabilistic conjunction strategy @.

Equations (16) and (17) can be concluded similarly, with disjunction strategy ¢ in place of @,
based on the following observation: without loss of generality, we may assume that each object o
occurring in one of Ty, I, and T3 occursin al of them and belongs to the same class; furthermore,
the set V' of values of atop-level attribute A associated with o is aways the same. The reason is
that technically, we may add o to the POB-instancesin which itismissing, and add valuesv to V' in
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each I, and set a(v) = B(v) = 0 suchthat V' is everywhere the same. Thanks to the postulate of
Ignorancefor &, thisdoes not change the result of the expressionsin Equations(16) and (17). Under
thistechnical assumption, only theintersection case inthe definitionsof [a(v), 5(v)] (Def. 7.27) and
v(o) asin Def. 7.29 isrelevant, for which the properties obviously hold.

Equation (18) holds since projection simply removes attributeswhileit does not affect class mem-
bership of objects, and the intersection pt; Ng pt, of probabilistic tuple values pt; and pt, is the
aggregation of (independent) intersectionspt;.A; @ pts.A; of al their attributes A;. The argument
for Equations (19) and (20) is analogous (as above, we may add oids o and values » to simplify the
valueassignmentto o inIy Ug I; and Iy —¢ I, respectively). O
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