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Abstract

There are many applications where an object oriented data model is a good way of repre-

senting and querying data. However, current object database systems are unable to handle the

case of objects whose attributes are uncertain. In this paper, extending previous pioneering work

by Kornatzky and Shimony, we develop an extension of the relational algebra to the case of ob-

ject bases with uncertainty. We propose concepts of consistency for such object bases, together

with an NP-completeness result, and classes of probabilistic object bases for which consistency

is polynomially checkable. In addition, as certain operations involve conjunctions and disjunc-

tions of events, and as the probability of conjunctive and disjunctive events depends both on the

probabilities of the primitive events involved as well as on what is known (if anything) about the

relationship between the events, we show how all our algebraic operations may be performed

under arbitrary probabilistic conjunction and disjunction strategies. We also develop a host of

equivalence results in our algebra, which may be used as rewrite rules for query optimization.

Last but not least, we have developed a prototype probabilistic object base server using the Visi-

Broker ORB on top of ObjectStore. We describe experiments to assess the efficiency of different

possible rewrite rules.

1 Introduction

The concept of an object base is gaining numerous adherents because it allows data to be organized

in an application specific manner for scalability, while still supporting a common query language.

However, there are many applications where probabilistic data needs to be stored. For instance, im-

age interpretation programs are uncertain in their identification of features in images and such image

databases are typically stored using object databases [17]. Similarly, an application that is tracking

a set of mobile objects using an object database system may only know that an object is at one of a

given set of points right now, but the precise location may be unknown. Likewise, an application that

represents forecasts about stock movements or the weather needs to represent uncertainty in the fore-

cast. When the application data (stocks, weather) are in an object repository, methods to represent�Technische Universität Wien, Institut für Informationssysteme, Abteilung für Wissensbasierte Systeme, Favoriten-
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uncertain aspects of these objects need to be developed. In short, the ability to represent probabilis-

tic information in an object base, and to manipulate such “probabilistic object bases” efficiently is

important for a variety of applications.

To date, there has been only one significant attempt in the database community to merge proba-

bility models with object bases, namely that by Kornatzky and Shimony [23], who proposed a prob-

abilistic object calculus. Building upon their influential work, in this paper, we make the following

contributions:

1. First and foremost, we propose a notion of a probabilistic schema and formally define a logical

model theory for it. We define what consistent schemas are and prove that consistency checking is

NP-complete. We identify special classes of schemas for which consistency may be polynomially

checked. Previous work on probabilistic object bases had no associated concept of consistency.

2. We then propose an algebra for probabilistic object bases in which the classical relational alge-

bra operators are extended to apply to probabilistic object bases. It is well known [24] that the prob-

abilities of conjunctive and disjunctive events are computed in different ways depending upon the

dependencies between the events involved. Our algebraic operators are parameterized by the user’s

knowledge (or lack thereof) of such dependencies — hence, the user can ask queries of the form

“Find the join of : : : assuming no knowledge about the dependencies between the events involved.”

Previous work on probabilistic object bases assumed that all events involved were independent. To

our knowledge, this is the first (extension of the) relational algebra for probabilistic object bases.

3. We then prove a host of equivalence results in our algebra. These equivalence results may be

used as the set of rewrite rules that a database query optimizer uses for query rewriting.

4. We have implemented a distributed probabilistic object base system on top of the VisiBroker

ORB and the ObjectStore commercial relational database system. This implementation allowed us

to conduct experiments across the network to evaluate the performance of our system and also to see

how to rewrite queries.

This paper is structured as follows. In the next section, we consider a database application which

motivates our approach. In Section 3, we describe the architecture of a probabilistic object base sys-

tem. After some basic definitions of probability concepts in Section 4, we develop our probabilistic

object base (POB) model in Sections 5 and 6. A POB-algebra for querying this model is then pre-

sented in Section 7, and equivalence results in this algebra are derived in Section 8. We report on

an implementation of the model in Section 9, and discuss related work in Section 10. Section 11

concludes the paper.
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Figure 1: Plant identification example

2 A Motivating Example

Consider the task of building an extensive database describing the types of vegetation found in the

Amazon rainforest. The creation of such a database is a formidable task. Individuals need to exhaus-

tively examine the vegetables, herbs, and other kinds of plants growing in these forests, and provide

information describing soil conditions, climactic conditions, etc.

When describing the plants growing in such rainforests, there are several possible causes of un-

certainty. First and foremost, some plant species may not be uniquely identifiable by the surveyor

in the field. He may classify a particular herb as either being Silver Thyme or French Thyme (two

different species of thyme), without being able to specify exactly which specie the plant in question

belongs to. By the same token, if he were slightly more expert, he might be able to say that he is not

sure whether the herb is Silver Thyme or French Thyme, but he rates the probability that it is Silver

Thyme twice as high as that it is French Thyme.

Figure 1 shows a very simple class hierarchy that describes plants as either being perennials or

annuals, and either being vegetables, herbs, or flowers. Clearly, the classes perennials and annuals

are disjoint (that is, a plant cannot be both an annual and a perennial), as are the classes vegetables,

herbs, and flowers. The classes that are mutually disjoint are connected together by a “d” in Figure 1.

However, note that we can certainly have plants that are annuals and herbs (for example, Basil).

In the rest of this paper, we will repeatedly consider this example, in order to illustrate various

definitions. By the time this paper is completed, we would have described techniques to build and

query a probabilistic object base that captures the Plant Database of this example as a special case.
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3 Architecture of a Probabilistic Object Base

In this section, we describe the overall architecture of a POB system. Figure 2 presents an archi-

tecture for query processing in probabilistic object bases. The architecture consists of the following

components:� The user expresses queries through a graphical user interface. As a result of the user’s inter-

action with the interface, the GUI generates as output, a query in a declarative probabilistic object

calculus (POC). Note that queries in this calculus are declarative queries. A pioneering attempt at

such a calculus is that of Kornatzky and Shimony [23].� The calculus query generated will be fed into a Converter which converts probabilistic object

calculus queries into queries in a probabilistic object algebra query.� The algebraic query generated by the converter will be fed into a Query Optimizer, which will

take as input a set of rewrite rules (reflecting equivalences between different queries in the POA-

algebra) and a set of cost models to perform the optimization. Note that given a set of rewrite rules

and a set of cost models, the task of finding a rewriting of a query that has minimal expected cost

(according to the cost models) is well-studied, and good commercial implementations of such code

exist (e.g. Grafe’s CASCADES system is presently being used by Microsoft).� The “optimized” algebra query then produced will be physically executed on the probabilistic

object base.� All the components above will use libraries consisting of: (i) A set of probabilistic conjunc-

tion, disjunction and difference strategies that allow the user to express what she knows about the

dependencies between events she is querying about — this is used in query formulation, query op-

timization, cost evaluation and query execution. (ii) A set of distribution functions that allow a user

to specify how probabilities are distributed over a space of possible values for an unknown attribute.

Giving a detailed description of all these components is clearly beyond the scope of a single paper.

In previous work, Kornatzky and Shimony [23] developed a probabilistic object calculus. In this

paper, we will expand the concept of a probabilistic object base used by them. We will then define

formally an Probabilistic Object Algebra (POA) and prove a host of query equivalence results. We

will report on a prototype implementation of the POA and describe experimental results — given

a query equivalence q1 = q2, these experimental results will identify when a query of the form q1
should be rewritten to a query of the form q2 and vice versa. To our knowledge, this paper is the first

to propose a probabilistic object algebra, the first to present results on query equivalences in such an

algebra, and the first to implement such an algebra on top of a commercial object database system.
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Figure 2: Architecture of POB system

4 Basic Probability Definitions

In this section, we present some basic definitions used to set up a probabilistic extension of object

bases. The probabilistic concepts are divided into two parts — (i) probabilistic conjunction, disjunc-

tion, and difference strategies, and (ii) distribution functions.

4.1 Probabilistic combination strategies

Suppose we know the probabilities of some events e1 and e2. For example, e1 may be the event

“The photographed plant p1 (in image I) is French Thyme.” Similarly, e2 may be the event “The

photographed plant p2 (in image I) is Mint.” Assume now that we are interested in the probability

of the complex event (e1 ^ e2). The probability of (e1 ^ e2) is computed in different ways based

upon our knowledge of the dependencies between e1 and e2.� e1 and e2 are independent. This may occur if we know that the plants p1 and p2 are growing

in the area independently of each other. In this case,P(e1 ^ e2) = P(e1) �P(e2) (that is, the

probability of (e1 ^ e2) is the product of the probabilities of e1 and e2).� e1 and e2 are mutually exclusive. Suppose, for example, we know that the plants p1 and p2 are

both either Thyme or Mint (e.g., if, for some reason, they cannot grow together in the same

place). This means that the eventse1 and e2 are mutually exclusive, and so we can immediately

say thatP(e1 ^ e2) = 0.� We are ignorant of the relationship between e1 and e2. This case occurs when we do not know

anything about the relationship between the plants p1 and p2 growing in the same area.

In this case, as already shown by Boole [5], the best we can say about the probability of (e1 ^e2) is that it lies in the interval [max(0;P(e1) +P(e2)� 1);min(P(e1);P(e2))].
5



Thus, the probability of (e1 ^ e2) depends not only on the probabilities of e1 and e2, but also on the

relationship between events e1 and e2. A similar situation applies when we consider complex events

such as (e1 _ e2). The above are only three examples of different ways of evaluating probabilities

of complex events. In general, depending on exactly what is known about the dependencies between

the events involved, there is a whole plethora of such probability computations.

In our framework, we use probability intervals instead of point probabilities for two reasons: (i)

In many applications, the probability of an event is often not precisely given; (ii) as shown by Boole

[5] back in 1854, when we do not know the dependencies between two events, all we can say is that

the probability of the conjunction/disjunction of the events can only be specified as an interval.

Definition 4.1 (consistent assignment of probabilistic intervals to two events) Suppose e1 and e2
have probabilities in the intervals I1 = [L1; U1] and I2 = [L2; U2], respectively. Such an assignment

of probabilistic intervals is consistent iff the following conditions hold:� If (e1 ^ e2) is contradictory1 , then L1 + L2 � 1.� If (e1 ^ :e2) is contradictory, then L1 � U2.� If (:e1 ^ e2) is contradictory, then L2 � U1.� If (:e1 ^ :e2) is contradictory, then U1 + U2 � 1.

In the sequel, all assignments of probabilistic intervals are implicitly assumed to be consistent un-

less stated otherwise. We denote for intervals I1 = [L1; U1] and I2 = [L2; U2] by I1 � I2 thatL1 � L2 and U1 � U2, and by I1 � I2 that I1 is contained in I2, i.e., L2 � L1 and U1 � U2.

As many relationships between events cannot be automatically inferred, it is imperative that the

user be able to specify, in his query, what knowledge he has about such relationships. To facili-

tate this, Lakshmanan et al. [24] have introduced generic conjunction and disjunction strategies.

Any function that satisfies the axioms listed below is called a conjunction or disjunction strategy,

respectively. (Given two events e1 and e2 with probabilities in the intervals I1 = [L1; U1] andI2 = [L2; U2], respectively, the notations “I = I1 
 I2” and “I = I1 � I2” are shorthand for

“(e1 ^ e2; I) = (e1; I1)
 (e2; I2)” and “(e1 _ e2; I) = (e1; I1)� (e2; I2)”, respectively.)

Axiom Name Conjunction Strategy Disjunction Strategy

Bottomline (I1
I2) � [min(L1; L2);min(U1; U2)] (I1�I2) � [max(L1; L2);max(U1; U2)]
Ignorance (I1
I2)� [max(0; L1+L2�1);min(U1; U2)] (I1�I2)� [max(L1; L2);min(1; U1+U2)]
Identity? (I1
[1; 1]) = I1 (I1�[0; 0]) = I1
Commutativity (I1
I2) = (I2
I1) (I1�I2) = (I2�I1)
Associativity ((I1
I2)
I3) = (I1
(I2
I3)) ((I1�I2)�I3) = (I1�(I2�I3))
Monotonicity (I1
I2) � (I2
I3) if I2 � I3 (I1�I2) � (I1�I3) if I2 � I3

1Contradictory here merely means “inconsistent in classical propositional logic.”
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In the above table, the Identity-axioms for conjunction and disjunction strategies assume that e1 ^e2 and :e1 ^ :e2 , respectively, are not contradictory.

While the notion of probabilisticconjunctionand disjunctionstrategies are recapitulated from Lak-

shmanan et al. [24], the concept of difference strategies below is new.

Definition 4.2 (probabilistic difference strategy) Suppose e1 and e2 have probabilities in the in-

tervals I1 = [L1; U1] and I2 = [L2; U2], respectively. A probabilistic difference strategy is a binary

operation	 that uses this information to compute the probabilistic interval I = [L; U ] for the event(e1 ^ :e2). When the events involved are clear from context, we use “I = I1 	 I2” to denote

“(e1 ^ :e2; I) = (e1; I1)	 (e2; I2)”. Every difference strategy must conform to the following pos-

tulates of probabilistic difference:

1. Bottomline: (I1 	 I2) � [min(L1; 1� U2);min(U1; 1� L2)].
2. Ignorance: (I1 	 I2) � [max(0; L1� U2);min(U1; 1� L2)].
3. Identity: If (:e1 ^ :e2) is not contradictory, then (I1 	 [0; 0]) = I1.

Some examples of probabilistic conjunction, disjunction, and difference strategies are given in

Table 1.

Strategy Operators

Ignorance ([L1; U1]
ig [L2; U2]) � [max(0; L1 + L2 � 1);min(U1; U2)]([L1; U1]�ig [L2; U2]) � [max(L1; L2);min(1; U1 + U2)]([L1; U1]	ig [L2; U2]) � [max(0; L1 � U2);min(U1; 1� L2)]
Independence ([L1; U1]
in [L2; U2]) � [L1 � L2; U1 � U2]([L1; U1]�in [L2; U2]) � [L1 + L2 � (L1 � L2); U1 + U2 � (U1 � U2)]([L1; U1]	in [L2; U2]) � [L1 � (1� U2); U1 � (1� L2)]
Positive Correlation ([L1; U1]
pc [L2; U2]) � [min(L1; L2);min(U1; U2)]
(when e1 implies e2, ([L1; U1]�pc [L2; U2]) � [max(L1; L2);max(U1; U2)]
or e2 implies e1) ([L1; U1]	pc [L2; U2]) � [max(0; L1 � U2);max(0; U1 � L2)]

Negative Correlation ([L1; U1]
nc [L2; U2]) � [0; 0]
(when e1 and e2 are ([L1; U1]�nc [L2; U2]) � [min(1; L1 + L2);min(1; U1 + U2)]
mutually exclusive) ([L1; U1]	nc [L2; U2]) � [L1;min(U1; 1� L2)]

Table 1: Examples of probabilistic combination strategies

Note that we do not assume any postulates that relate probabilistic conjunction, disjunction, and

difference strategies to each other (for example, postulates that express the distributivity of conjunc-

tion and disjunction strategies). Readers may make such assumptions if they wish — however, the

results of this paper stand even if these assumptions are not made.
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4.2 Probability distribution functions

Probability distribution functions assign probabilities to elementary events in a coherent way. For

example, if we are told that plant p1 is currently at one of the locations a; b; c with probability 60-70%, then a distributionfunction allows us to assign parts of this probability mass to the events “plantp1 is at location a,” “plant p1 is at location b,” and “plant p1 is at location c.”
Definition 4.3 (distribution function) Let X be a finite set. A (probability) distribution function� over X is a mapping from X to the real interval [0; 1] such that �x2X �(x) � 1.

We do not require that �x2X �(x) = 1 holds; we call any distribution function � with this property

complete. The above definition allows to conveniently assign probabilities to a subset X � Y of

elements, leaving the probabilities of the other elements open.

An important distribution function, which we often encounter in practice, is the uniform distri-

bution. For a finite set X , it is defined by uX(x) = 1jX j for all x 2 X . We abbreviate uX by u,

whenever X is clear from the context. Many other distribution functions are conceivable; we will

not embark on a study of this subject here.

Definition 4.4 (probabilistic triple) A probabilistic triple hX;�; �i consists of a finite setX , a dis-

tribution function� overX , and a function � : X ! [0; 1]mappingX to the real interval [0; 1] such

that (i) �(x) � �(x) for all x 2 X and (ii)
Px2X �(x) � 1 hold.

Informally, a probabilistic triple assigns each element x of a setX a probability interval [�(x); �(x)].
This assignment is consistent in the sense that we can assign each element in X a probability p(x)
from [�(x); �(x)] such that the sum of all p(x) adds up to 1.

5 Types and Probabilistic Object Base Schemas

In this section, we provide some basic definitions underlying a probabilistic object base (POB). We

first consider types and values, and then the schema of a POB. The notion of POB-schema is more

complex than in the context of relational databases, and may lead to inconsistent specifications; we

present efficient algorithms for checking schema consistency.

5.1 Types and values

We start with the definition of types.

Definition 5.1 (types) LetA be a set of attributes and let T be a set of atomic types. We define types

inductively as follows:� Every atomic type from T is a type.
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� If � is a type, then f�g is a type, which is called the set type of � ;� If A1; : : : ; Ak are pairwise different attributes from A and �1; : : : ; �k are types, then[A1 : �1; : : : ; Ak : �k] is a type. This type is called a tuple type over the set of attributesfA1; : : : ; Akg.
Given such a type � = [A1 : �1; : : : ; Ak : �k], we use �:Ai to denote �i.

Example 5.1 (Plant Example: types) In the Plant Example, some atomic types from T may be

given by integer, real, string, soiltype, and suntype. The attributes soil, sun (sun-exposure), andrain (daily water) describe various conditions needed for a plant to grow. Some (non atomic) types

include: soiltype; fsoiltypeg; and [soil : fsoiltypeg; sun: suntype; rain: integer].
Definition 5.2 (values) Every atomic type � 2 T has an associated domain dom(�). We define

values by induction as follows:� For all atomic types � 2 T , every v 2 dom(�) is a value of type � .� If v1; : : : ; vk are values of type � , then fv1; : : : ; vkg is a value of type f�g.� If A1; : : : ; Ak are pairwise different attributes from A and v1; : : : ; vk are values of types�1; : : : ; �k, then [A1 : v1; : : : ; Ak : vk ] is a value of type [A1 : �1; : : : ; Ak : �k].
Example 5.2 (Plant Example: values) Let us return to the types of Example 5.1. We assign the

usual domains to integer, real, and string. Let soiltype and suntype be enumerated types having the

domains floamy; swampy; sandyg and fmild;medium; heavyg, respectively. The value sets associ-

ated with the types of Example 5.1 are as follows:� soiltype : Any element of floamy; swampy; sandyg is a value of soiltype. For example, loamy
is a value of soiltype. When associated with a particular plant, this value might say that the

plant needs loamy soil to flourish.� fsoiltypeg : Any set of values of soiltype is a value of this type. For example, if a particular

plant can grow well in either loamy or swampy soil, then floamy; swampyg is an appropriate

value of this type that can be associated with this plant.� [soil : fsoiltypeg; sun : suntype; rain: integer] : Any triple (v1; v2; v3) is a value of this type,

where v1 is a set of values of soiltype, v2 is a value of suntype, and v3 is a value of integer.
For example, (floamy; swampyg;mild; 3) is a value of this type. It says that the plant needs

either loamy or swampy soil, mild sun, and 3 units of water per day to flourish.

Definition 5.3 (probabilistic tuple values) If A1; : : : ; Ak are pairwise different attributes from A
and (V1; �1; �1); : : : ; (Vk; �k; �k) are probabilistic triples whereV1; : : : ; Vk are sets of values of types�1; : : : ; �k, then the expression [A1 : (V1; �1; �1); : : : ; Ak : (Vk; �k; �k)] is a probabilistic tuple value

of type [A1 : �1; : : : ; Ak : �k] over the set of attributes fA1; : : : ; Akg. For probabilistic tuple valuesptv = [A1 : (V1; �1; �1), : : : ; Ak : (Vk; �k; �k)], we use ptv :Ai to denote (Vi; �i; �i).
9



It is important to note that the order of the Ai : (Vi; �i; �i)’s in a probabilistic tuple value ptv =[A1 : (V1; �1; �1), : : : ; Ak : (Vk; �k; �k)] is not important. That is, we adopt a set-oriented view of

probabilistic tuple values.

Example 5.3 (Plant Example: probabilistic tuple values) Let us consider a specific plant grow-

ing wild in a forest. We know that the soil type of this plant is loamy (presumably, as we can see,

the plant is flourishing in the place in which it is currently growing in). Moreover, we are sure that

this plant is Thyme, but unsure whether it is French Thyme (french), Silver Thyme (silver) or Wooly

Thyme (wooly). If we are sure with 20–60% probability each that it is French Thyme, Silver Thyme,

and Wooly Thyme, then we may encode this knowledge via the following probabilistic tuple value

of type [soil : soiltype; classi�cation : string] over the set of attributes fsoil; classi�cationg:[soil : hfloamyg; u; ui; classi�cation : hffrench; silver;woolyg; 0:6 u; 1:8 ui] .
Note that the expressions “0:6 u” and “1:8 u” denote the distribution function � and the function �,

respectively, that are defined by�(x) = 0:6�1=3and�(x) = 1:8�1=3 for allx from ffrench; silver;woolyg.
In the above definition, a probabilistic triple (Vi; �i; �i) may only assign a probability interval to

some values v (viz. those in Vi) for the attribute Ai. Nothing is stated for the (possibly infinitely

many) other values that Ai could have according to its type �i. We must find a clean and appealing

way in which such incomplete knowledge about the probability assignment is handled.

In the tradition of relational databases, we adopt a form of the closed world assumption (CWA):

We assume that every value v 2 dom(�i) � Vi has probability 0, i.e., it is implicitly assigned the

probability interval [0; 0]. Under this convention, “consistency” (which we will define formally later)

of the probability information given by (Vi; �i; �i) is preserved in the larger context of dom(�i): a

probability functionp over dom(�i) exists, compatible with (Vi; �i; �i), such that the sum of all p(v),v 2 dom(�i), is 1.

This CWA will underly our definition of the operations in the probabilistic object base algebra in

Section 7. Notice that still an open world view is possible for particular values. We may, for instance,

add v to V and set�(v) = 0, �(v) = 1; this explicitly expresses that the probability of v is unknown.

5.2 Probabilistic object base schema

Informally, a probabilistic object base schema consists of a hierarchy of classes. Membership of an

object in an immediate subclass of any class is expressed by a probability value.

Definition 5.4 (probabilistic object base schema) A probabilistic object base schema (POB-

schema) is a quintuple (C; �;);me; }), where:� C is a finite set of classes. Intuitively, these reflect the classes associated with this probabilistic

object base.
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� � maps each class from C to a tuple type. Intuitively, this mapping specifies the data type of

each class.� ) is a binary relation on C such that (C;)) is a directed acyclic graph (dag). Intuitively,

each node of the directed acyclic graph (C;)) is a class from C and each edge c1 ) c2 says

that the class c1 is an immediate subclass of c2.� me maps each class c to a partition of the set of all immediate subclasses of c. Intuitively, sup-

pose that the class c has the five subclasses c1; : : : ; c5 and suppose that me(c) is the partitionffc1; c2g; fc3; c4; c5gg. Here, me(c) produces two clusters. An object o belonging to class c
can belong to either or both clusters of c. However, the classes within a cluster are mutually

exclusive, that is, o cannot belong to both c1 and c2 in the same time.� } maps each edge in (C;)) to a positive rational number in the unit interval [0; 1] such that

for all classes c and all clusters P 2 me(c), it holds that �d2P}(d; c) � 1. Intuitively, ifc1 ) c2, then }(c1; c2) specifies the conditional probability that an arbitrary object belongs

to the subclass c1 given that it belongs to the superclass c2. The summation condition says that

the sum of the probabilities of edges within a mutually exclusive set of subclasses must sum

up to less than or equal to 1.

A directed path in the directed acyclic graph (C;)) is a sequence of classes c1; c2; : : : ; ck such thatc1 ) c2 ) � � � ) ck and k � 1. We use)? to denote the reflexive and transitive closure of).

Note that)? induces a natural partial order � on C by c � d iff c)? d for all c; d 2 C.

We use S(c) = fd 2 C j d ) cg to denote the set of all immediate subclasses of c 2 C, andS?(c) = fd 2 C j d )� cg to denote the set of subclasses of c 2 C. A class d is a subclass of a

partition cluster P iff d is a subclass of some c 2 P .

We will represent the above structure (excluding the type assignment �) in a graphical way as

shown in Figure 3, where the edges are labeled by conditional probabilities.

Example 5.4 (Plant Example: probabilistic object base schema) A POB-schema for the Plant Ex-

ample may consist of the following components:� C = fplants; annuals; perennials; vegetables; herbs; 
owers; annuals herbs, perennials 
owersg.� � is given by Table 2.� (C;)) is the graph resulting from Figure 1, if the d-nodes are contracted to plants.� me is the partitioning of edges shown in Figure 1.� } is the probability assignment in Table 2.
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annuals perennials vegetables herbs flowers

d d

plants

perennials_flowersannuals_herbs

0.6 0.4 0.2 0.3 0.4

0.30.8 0.30.4

Figure 3: Plant Example with probability assignment

For example, annuals and annual herbs are subclasses of plants, and annuals is an immediate sub-

class of plantswhileannual herbs is not; annual herbs is a subclass of the clusterfannuals, perennialsg.
The POB-schemas defined so far may be inconsistent. That is, it may not always be possible to find

a set of objects that satisfies the taxonomic and probabilistic knowledge expressed by the directed

acyclic graph, the partitioning of edges, and the probability assignment.

More formally, the consistency of a POB-schema is defined as follows.

Definition 5.5 (consistent POB-schema) Let S = (C; �;);me; }) be a POB-schema. An inter-

pretation of S is any mapping " from C to the set of all finite subsets of a setO. An interpretation "
of S is called a taxonomic model of S iff it satisfies the following conditions:

C1 "(c) 6= ;, for all classes c 2 C.

C2 "(c) � "(d), for all classes c; d 2 C with c) d.

C3 "(c)\"(d) = ;, for all distinct classes c; d 2 C that belong to the same clusterP 2 Sme(C).
We say that two classes c; d 2 C are taxonomically disjoint (t-disjoint) iff "(c) \ "(d) = ; for all

taxonomic models " of S. An interpretation " of S is a taxonomic and probabilistic model (or simply

model) of S iff it is a taxonomic model of S and it satisfies the following condition:

C4 j"(c)j = }(c; d) � j"(d)j for all classes c; d 2 C with c) d.

We say S is consistent iff a model of S exists.

Let us illustrate this definition within the Plant Example.

Example 5.5 (Plant Example: consistent POB-schema) Let S = (C; �;);me; }) be the POB-

schema given in Example 5.4. Let O be a set of cardinality 800, which is partitioned into pairwise

12



c �(c)plants [pname : string; soil: soiltype; rain : integer]annuals [pname : string; soil: soiltype; rain : integer;sun : suntype]perennials [pname : string; soil: soiltype; rain : integer;sun : suntype; expyears : integer]vegetables [pname : string; soil: soiltype; rain : integer;sun : suntype; expyears : integer]herbs [pname : string; soil: soiltype; rain : integer;sun : suntype; expyears : integer; classi�cation : string]
owers [pname : string; soil: soiltype; rain : integer;sun : suntype; expyears : integer; classi�cation : string]annuals herbs [pname : string; soil: soiltype; rain : integer;sun : suntype; expyears : integer; classi�cation : string]perennials 
owers [pname : string; soil: soiltype; rain : integer;sun : suntype; expyears : integer; classi�cation : string]
edge probabilityannuals) plants 0.6perennials ) plants 0.4vegetables ) plants 0.2herbs ) plants 0.3
owers) plants 0.4annuals herbs ) annuals 0.4annuals herbs ) herbs 0.8perennials 
owers) perennials 0.3perennials 
owers) 
owers 0.3

Table 2: Type assignment � and probability assignment }
disjoint subsetsO1, O2, : : : , O10 having cardinalities 90, 27, 126, 45, 192, 21, 98, 35, 70, and 96,

respectively. An interpretation " of S is given by the following table:c "(c) j"(c)jplants O1 [ � � � [ O10 800annuals O1 [ � � � [ O5 480perennials O6 [ � � � [ O10 320vegetables O1 [O9 160herbs O2 [O5 [O6 240
owers O3 [O7 [O10 320annuals herbs O5 192perennials 
owers O10 96

It is easy to see that " is also a model of S. For example, "(plants) 6= ;, "(annuals) � "(plants),"(annuals) \ "(perennials) = ;, and j"(annuals)j = 0:6 � j"(plants)j. Hence, S is consistent.

It would now be nice to have an efficient algorithm for deciding the consistency of a given POB-

schema. For this purpose, we need a suitable characterization of consistency. The following condi-

13



tion is a natural candidate.

Definition 5.6 (pseudo-consistent POB-schema) The POB-schema S = (C; �;);me; }) is

pseudo-consistent iff the following conditions hold:

P1 For any two different classes c1; c2 2 C with c1 )? c2, the product of the edge probabilities

is the same on all paths from c1 up to c2.

P2 For all clusters P 2Sme(C), no two distinct classes c1; c22P have a common subclass.

Example 5.6 (Plant Example: pseudo-consistent POB-schema) It is easy to see that the POB-

schema S = (C; �;);me; }) shown in Example 5.4 is pseudo-consistent:� The two paths from annuals herbs up to plants and from perennials 
owers up to plants have

both 0.24 and 0.12, respectively, as the product of the edge probabilities.� Neither annuals herbs nor perennials 
owers is a subclass of two t-disjoint classes.

Indeed, pseudo-consistency is a necessary condition for consistency.

Theorem 5.1 Every consistent POB-schema is pseudo-consistent.

However, pseudo-consistency is not a sufficient condition for consistency. Even worse than that,

deciding the consistency of a pseudo-consistent POB-schema is presumably intractable. We have

the following result.

Theorem 5.2 Deciding whether a given POB-schema S is consistent is NP-complete. Hardness

holds even if S is pseudo-consistent.

Proof. We show only membership in NP (the complete proof is given in [11]).

The problem is in NP, since it polynomially reduces to the NP-complete problem of deciding whether

a weight formula is satisfiable in a measurable probability structure [13]. More precisely, weight for-

mulas are defined as Boolean combinations of basic weight formulas, which are expressions of the

form a1 � w(�1) + � � � + ak � w(�k) � a with integers a1; : : : ; ak; a and propositional formulas�1; : : : ; �k. A measurable probability structure can be identified with a probability function on the

finite set of all truth assignments to the primitive propositions, which is extended in a natural way to

propositional formulas, basic weight formulas, and weight formulas.

It can now easily be shown that a POB-schema S = (C; �;);me; }) is consistent iff the conjunc-

tion of the following weight formulas, which capture C1–C4 in Def. 5.5, is satisfiable:

C1 :((�1) �w(c) � 0) for all classes c 2 C.

C2 (w(c ^ :d) � 0)^ ((�1) � w(c ^ :d) � 0) for all classes c; d 2 C with c) d.

14



C3 (w(c ^ d) � 0) ^ ((�1) �w(c ^ d) � 0) for all distinct classes c; d 2 C of the same cluster.

C4 (n � w(c) + (�m) � w(d) � 0) ^ ((�n) � w(c) +m � w(d) � 0) for all classes c; d 2 C
with c) d, where m and n are natural numbers such that }(c; d) = mn . 2

Nonetheless, polynomial algorithms for deciding the consistency of a POB-schema in relevant

special cases may be possible. Well-structured POB-schemas, which we introduce next, enjoy this

property.

Definition 5.7 (well-structured POB-schema) The POB-schema S = (C; �;);me; }) is well-

structured iff the following conditions hold:

W1 There exists a class c 2 C such that every class d 2 C is a subclass of c (i.e., the graph (C;))
has a top element).

W2 For all classes c 2 C and every distinct c1; c2 2 S(c), the set S := S?(c1) \ S?(c2) is either

empty or has a unique element dm 6= c1; c2 such that d)? dm for all d 2 S (i.e., c1,c2 either

have no common subclass or a greatest common subclass dm, which is different from them).

W3 For every class c 2 C, the undirected graph GS(c) = (V ; E) defined by V = me(c) andE = ffP1;P2g 2 V � V j P1 6= P2; SS?(P1) \ SS?(P2) 6= ;g is acyclic (i.e., multiple

inheritance does not cyclically connect partition clusters).

W4 For every class c 2 C: if the graph GS(c) has an edge, i.e., distinct clusters P1;P2 2 me(c)
have a common subclass, then every path from a subclass of c to the top element of (C;))
goes through c (that is, multiple inheritance can be locally isolated in the graph (C;))).

Informally, these conditions restrict multiple inheritance in a way which ensures that a model for

the schema S can be built bottom up from models of subschemas. Well-structuredness does not ap-

pear to be very restrictive in practice. For instance, let us reconsider the Plant Example.

Example 5.7 (Plant Example: well-structured POB-schema) The POB-schema S given in Ex-

ample 5.4 is well-structured:� Every class is a subclass of plants.� The classes annuals herbs and perennials 
owers are t-disjoint.� There are no cyclically connected partition clusters.� The multiple inheritance at the classes annuals herbs and perennials 
owers is locally isolated

under the class plants.
As far as well-structured POB-schemas are concerned, we have the nice result that pseudo-consistency

is a necessary and sufficient condition for consistency. However, the proof of this result is highly

nontrivial (see [11]).
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Theorem 5.3 Every pseudo-consistent and well-structured POB-schema S is consistent.

It is easily seen that any S = (C; �;);me; }) without multiple inheritance, i.e., jfd 2 C j c )dgj � 1 for each class c 2 C, satisfies W2-W4. We obtain the following corollary to Theorem 5.3.

Corollary 5.4 Every POB-schema with top element and without multiple inheritance is consistent.

It now remains to show that the pseudo-consistency and the well-structuredness of a POB-schema

can be decided efficiently. We first concentrate on the pseudo-consistency. Algorithm 5.2 uses Al-

gorithm 5.1 to provide a procedure to check pseudo-consistency.

Theorem 5.5 Deciding whether a given POB-schema S = (C; �;);me; }) is pseudo-consistent is

can be done using Algorithm 5.2 in timeO(n(e+n)), where n = jCj and e is the number of directed

edges in (C;)).
Proof. Algorithm 5.2 decides the pseudo-consistency of S in time O(ne). It uses Algorithm 5.1,

which computes the reachability relation of the graph (C;)) in time O(n(e+ n)).
We first show that Algorithm 5.1 runs in timeO(n(e+n)): The initialization steps 1–3, 4–7, and

8 run in timeO(n2),O(ne), andO(n), respectively. Next, it is easy to see that the for-loop in 15–17

is performed as many times as there are edges in (C;)), and each execution takesO(n) time. Thus,

the whole while-loop in 9–19 runs in time O(ne).
Hence, also Algorithm 5.2 runs in timeO(n(e+n)): The steps 1–2 run in timeO(n(e+n)). The

for-loop in 4–5 runs in linear time in the input size of me (i.e, in e). Thus, the whole for-loop in 3–5

runs in time O(ne). 2
We next focus on deciding well-structuredness via Algorithm 5.3.

Theorem 5.6 The problem of deciding whether a pseudo-consistent POB-schema S = (C; �;),me; }) is well-structured can be solved using Algorithm 5.3 in timeO(n2e), where n = jCj and e is

the number of directed edges in (C;)).
Proof. Algorithm 5.3 decides the well-structuredness of S. The steps 1–3 check whether S satisfies

W1. In 4–16, it is then checked whetherS satisfies W2. Moreover, the union of all undirected graphsGS(c)with c 2 C and the set of all classes with multiple inheritance at subclasses are computed. Step

17 checks that all the graphsGS(c) with c 2 C are acyclic (W2 ensures that theGS(c) have disjoint

edge sets). In 18–22, it is finally checked whether S satisfies W4.

We now show that Algorithm 5.3 runs in timeO(n2e). It is easy to see that the steps 1–2, 3, and 4

run in timeO(ne),O(n), andO(n(e+n)) = O(ne), respectively (note that W1 ensures e � n�1).

Step 10 is done one time for each edge in (C;)) and each class in a set of classes limited by C.

The set D there can be computed in time O(n). The tests in Step 11 and 12 can be done, using a

simple algorithm, in time O(n). Hence, the steps 5–16 run in time O(n2e). In step 17, the number

of clusters in
Sme(C) is in the worst case equal to e. Thus, step 17 can be performed in time O(e)
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Algorithm 5.1: reachability(S)

Input: POB-schema S = (C; �;);me; }).
Output: If S does not satisfy P1, then nil is returned. Otherwise, a mapping w : C � C ! [0; 1]

is returned such that w(c; d) is the product of the edge probabilities on
all paths from c up to d if such a path exists and w(c; d) is 0 otherwise.

1. for each c; d 2 C do
2. if c = d then w(c; d) := 1
3. else w(c; d) := 0;
4. for each c 2 C do begin
5. S(c) := fd 2 C j d) cg;
6. �(c) := jfd 2 C j c) dgj
7. end;
8. N := fc 2 C j �(c) = 0g;
9. while N 6= ; do begin

10. take any c 2 N ;
11. N := N � fcg;
12. for each d 2 S(c) do begin
13. �(d) := �(d)� 1;
14. if �(d) = 0 then N := N [ fdg;
15. for each e 2 C with w(c; e) > 0 do
16. if w(d; e) > 0 and w(d; e) 6= w(d; c) �w(c; e) then return nil
17. else w(d; e) := w(d; c) �w(c; e)
18. end;
19. end;
20. return w.

Algorithm 5.2: pseudo-consistent(S)

Input: POB-schema S = (C; �;);me; }).
Output: true if S is pseudo-consistent and false otherwise.

1. w := reachability(S);
2. if w = nil then return false; (S does not satisfy P1)
3. for each c 2 C do
4. for each P 2 Sme(C) do
5. if jfe 2 P jw(c; e)> 0gj > 1 then return false; (S does not satisfy P2)
6. return true. (S is pseudo-consistent)

17



Algorithm 5.3: well-structured(S)

Input: Pseudo-consistent POB-schema S = (C; �;);me; }).
Output: true if S is well-structured and false otherwise.
Notation: We use top(S) to denote the top element of (C;)). For classes c 2 C, the

expression S� c denotes the POB-schema that is obtained from S by removing c.max(D), where D � C, is the set of all maximal members in D w.r.t.)?
1. for each c 2 C do
2. �(c) := jfd 2 C j c) dgj;
3. if jfc 2 C j �(c) = 0gj > 1 then return false; (S does not satisfy W1)
4. w := reachability(S);
5. E := ;;
6. M := ;;
7. for each c 2 C do
8. for each distinct P1;P2 2 me(c) do
9. for each (c1; c2) 2 P1 � P2 do begin

10. D := fd 2 C jw(d; c1) > 0; w(d; c2) > 0g;
11. if jmax(D)j > 1 or D \ fc1; c2g 6= ; then return false (S does not satisfy W2)
12. else if jmax(D)j = 1 then begin
13. E := E [ ffP1;P2gg;
14. M :=M [ fcg
15. end
16. end;
17. if (Sme(C); E) contains a cycle then return false; (S does not satisfy W3)
18. for each c 2M do begin
19. v := reachability(S� c);
20. for each d 2 C with w(d; c)> 0 do
21. if v(d; top(S)) > 0 then return false; (S does not satisfy W4)
22. end;
23. return true. (S is well-structured)

using standard algorithms for checking acyclicity. Finally, it is easy to see that the steps 18–22 run

in time O(n2e). 2
6 Inheritance and Probabilistic Object Base Instances

Thus far, we have not addressed inheritance of attributes which may arise through subclass relation-

ships in a POB-schema S. For example, if c is a subclass of d, and d’s type has an attributeA, then the

class c should inherit this attribute, unless c has already such an attribute. The issue of inheritance,

and in particular of multiple inheritance, has been extensively discussed in the literature, e.g. [4]. We

next incorporate inheritance in our framework, and finally define instances of a POB-schema.
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6.1 Inheritance completion and fully inherited schemas

We assume that any schema S = (C; �;);me; }) has an associated inheritance strategy, inhS, that

determines from which superclass d (if any) a class c inherits a top-level attributeA. More formally,inhS : C � A ! C, where A is the set of all top-level attributes of A, is a partial mapping that

assigns each pair of a class c 2 C and a top-level attribute A 2 A, a closest class d such that (i)c)? d)? d0 for some class d0 and (ii)A 2 B where �(d0) is a tuple type over a set of attributesB;

here, “closest” means that no proper subclass d00 2 S?(d)� fdg with properties (i) and (ii) exists.

(In particular, inhS(c; A) = c if �(c) possessesA.) The value of inhS(c; A) is undefined, if no suchd exists.

This notion of an inheritance strategy covers strategies (such as an ordering on classes) that are

commonly used to resolve multiple inheritance in practice. Similarly, if we wish to use the strategy

of the O2 system [2] where renamed inheritance of the same attribute with distinct origins is desired,

we could generalize inhS(c; A) to return all pairs d; A0 of classes d from which attributeA, renamed

to A0, is inherited.

Applying inhS on a POB-schemaS = (C; �;);me; }) induces another POB-schema S0 = (C 0; �0;)0;me0; }0),
which only differs fromS in its type assignment �0: �0(c) is the tuple type � = [A1 : �1; : : : ; Ak : �k ]
where A1; : : : ; Ak are all attributes that are inherited from c via inhS from classes d1; : : : ; dk, re-

spectively, and �1; : : : ; �k are the types of the attributes in �(�1); : : : ; �(�k), respectively. We call

this schema S0 the inheritance completion of S, and a scheme S which equals S0 fully inherited.

Example 6.1 (Plant Example: probabilistic object base schema) Let us review the schema S for

the Plant Example as defined in Example 5.4. It is easily checked that for every subclass c of any

class d, �(d) is a type over a subset of the attributes of �(c), i.e., all attributes in d are already present

in c. Thus, no attributes are inherited from proper superclasses, which means that S is fully inher-

ited. The type assignment � in Smay be considered ill-designed, however, since natural inheritance

relationships are not reflected in it.

Consider the redesigned type assignment �0 in Table 3, and adopt an inheritance strategy inhS
which resolves multiple inheritance by ordering “left-to-right” in Figure 1, i.e., orders annuals beforeherbs and perennials before 
owers.2 Then, the inheritance completion of the redesigned schemaS0 = (C; �0;);me; }) is the original schema S.

In the rest of this paper, we implicitly assume that schemas S are consistent and fully inherited. This

applies in particular to the definition of POB-instance in the next subsection, and the definitions of

the operations in the POB-Algebra in Section 7. Extending the definitions to schemas S which are

not full inherited–by replacing S with its inheritance completion S0 is straightforward.

2No renaming is assumed here for the same attribute with distinct origins.
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c �(c)plants [pname : string; soil : soiltype; rain : integer]annuals [sun : suntype]perennials [sun : suntype; expyears : integer]vegetables [sun : suntype; expyears : integer]herbs [sun : suntype; expyears : integer; classi�cation : string]
owers [sun : suntype; expyears : integer; classi�cation : string]annuals herbs [ ]perennials 
owers [ ]
Table 3: Redesigned type assignment �0

6.2 Probabilistic object base instance

We are now ready to define a probabilistic object base instance (POB-instance). The following as-

sumption is common in the context of object-oriented databases[22].

Assumption. In the rest of this paper, we assume that there is a (countably) infinite set O of object

identifiers (oids).

Each object, represented by an oid, is associated with a value. The objects populate a POB-instance

as follows.

Definition 6.1 (probabilistic object base instance) LetS = (C; �;);me; })be a consistent POB-

schema. A probabilistic object base instance (POB-instance) over S is a pair (�; �), where:� � : C ! 2O maps each class c to a finite subset ofO, such that �(c1)\�(c2) = ; for differentc1; c2 2 C. That is, the classes in C are mapped to pairwise disjoint sets of oids. We use�(C) to

abbreviate
Sf�(c) j c 2 Cg. We define the mapping�? : C ! 2O by�?(c) = Sf�(c0) j c0 2 C; c0 )? cg.

Intuitively,�(c) denotes the ids of all objects that are defined in the class c, while�?(c) denotes

the ids of all objects that belong to the class c.� � maps each oid o 2 �(C) to a probabilistic value of the appropriate type, i.e., type �(c) for

the class c such that o 2 �(c).
Let us provide a POB-instance for the POB-schema of Example 5.4.

Example 6.2 (Plant Example: probabilistic object base instance) A POB-instance over the POB-

schema shown in Example 5.4 is given as follows:� � and �? are the following mappings:
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c �(c) �?(c)plants fo1g fo1; o2; o3; o4; o5; o6; o7gannuals fg fo2; o3; o5; o6; o7gperennials fg fo4gvegetables fg fgherbs fg fo2; o3; o5; o6; o7g
owers fg fo4gannuals herbs fo2; o3; o5; o6; o7g fo2; o3; o5; o6; o7gperennials 
owers fo4g fo4g
Clearly, this is a very simple probabilistic object base (it contains only seven distinct objects).� � is the mapping shown in Table 4.oid �(oid)o1 [pname :hfLady-Fern;Ostrich-Ferng; u; ui;soil : hfloamyg; u; ui;rain : hf25; : : : ; 30g; u; ui]o2 [pname :hfCuban-Basil; Lemon-Basilg; u; ui;soil : hfloamy; sandyg; 0:7 u; 1:3ui;rain : hf20; : : : ; 30g; u; ui;sun : hfmild;mediumg; 0:8 u; 1:2ui;expyears : hf2; 3; 4g; 0:6u; 1:8 ui;classi�cation :hffrench; silver;woolyg; 0:6 u; 1:8 ui]o3 [pname : hfMintg; u; ui;soil : hfloamyg; u; ui;rain : hf20g; u; ui;sun : hfmildg; u; ui;expyears : hf2; 3; 4g; 0:6u; 1:8 ui;classi�cation :hffrench; silver;woolyg; 0:6 u; 1:8 ui]o4 [pname : hfAster; Salviag; u; ui;soil : hfloamy; sandyg; 0:6 u; 1:4ui;rain : hf20; : : : ; 25g; u; ui;sun : hfmildg; u; ui;expyears : hf2; 3; 4g; 0:6u; 1:8 ui;classi�cation :hffrench; silver;woolyg; 0:6 u; 1:8 ui]

oid �(oid)o5 [pname : hfThymeg; u; ui;soil : hfloamyg; u; ui;rain : hf20; : : : ; 25g; u; ui;sun : hfmild;mediumg; 0:8 u; 1:2 ui;expyears : hf2; 3g; 0:8 u;1:2ui;classi�cation :hffrench; silver;woolyg; 0:6 u; 1:8ui]o6 [pname : hfMintg; u; ui;soil : hfloamyg; u; ui;rain : hf20g; u; ui;sun : hfmildg; u; ui;expyears : hf2; 3; 4g; 0:6 u; 1:8 ui;classi�cation :hfapple; curlyg; 0:6 u; 1:4 ui]o7 [pname : hfSageg; u; ui;soil : hfsandyg; u; ui;rain : hf20; 21g; u; ui;sun : hfmildg; u; ui;expyears : hf2; 3; 4g; 0:6 u; 1:8 ui;classi�cation :hfred; tricolorg; 0:6 u; 1:4ui]
Table 4: Value assignment �

In classical object bases, the extent of a class c consists of all oids belonging to c. In probabilistic

object bases, the probabilistic extent of c specifies the probability that an oid belongs to c.
Definition 6.2 (probabilistic extent) Let I = (�; �) be a POB-instance over the consistent POB-

schema S = (C; �;);me; }). For all classes c 2 C, the probabilistic extent of c, denoted ext(c),
maps each oid o 2 �(C) to a set of rational numbers in [0; 1] as follows:
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1. If o 2 �?(c), then ext(c)(o) = f1g.
2. If o 2 �?(c0) with a class c0 2 C that is t-disjoint from c (that is, for all models " of S, the sets"(c0) and "(c) are disjoint), then ext(c)(o) = f0g.
3. Otherwise, ext(c)(o) = fp j p is the product of the edge probabilities on a path from c up to

a class c0 2 C, where c0 is minimal with o 2 �?(c0) and c)? c0 g.
Let us return to the Plant Example to see what the extents of the various classes are.

Example 6.3 (Plant Example: probabilistic extent) Let us consider the probabilisticextents of the

classes annuals herbs and perennials 
owers in the Plant Example:ext(annuals herbs)(o1) = f0:24g ext(perennials 
owers)(o1) = f0:12gext(annuals herbs)(o2) = f1g ext(perennials 
owers)(o2) = f0gext(annuals herbs)(o3) = f1g ext(perennials 
owers)(o3) = f0gext(annuals herbs)(o4) = f0g ext(perennials 
owers)(o4) = f1gext(annuals herbs)(o5) = f1g ext(perennials 
owers)(o5) = f0gext(annuals herbs)(o6) = f1g ext(perennials 
owers)(o6) = f0gext(annuals herbs)(o7) = f1g ext(perennials 
owers)(o7) = f0g
Definition 6.3 (coherent POB-instance) Let I = (�; �)be a POB-instance over the consistentPOB-

schema S = (C; �;);me; }). The POB-instance I is coherent iff for all classes c 2 C and all objectso 2 �(C), the probabilistic extent ext(c)(o) contains at most one element.

It is easy to see that the Plant Example described thus far is coherent. Note that testing whether a

given POB-instance I of a consistent schema S is coherent is feasible in polynomial time.

7 Probabilistic Object Bases: Algebraic Operations

In this section, we formally define the analogs of the classical relational operations on probabilis-

tic object bases. In the relational model, all standard relational operations take relations as input

(perhaps with other inputs as well) and produce relations as output. In the same vein, all standard

operations on POBs take POB-instances as input, and produce POB-instances as output. Recall that

all POB-schemas of input POB-instances are implicitly assumed to be consistent and fully inherited.

7.1 Selection

The first important operation to be defined is selection. Intuitively, given a POB-instance I over the

POB-schema S, the result of a selection operation is another POB-instance I0 over S such that the

objects in the extents of the classes in I0 all satisfy the selection condition of the query.
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Before describing the selection operation, we must formally define the syntax and the semantics

of probabilistic selection conditions. We start by defining path expressions.

Definition 7.1 (path expression) Let � = [A1 : �1; : : : ; Ak : �k] be any type. Then, (i) every Ai
is a path expression for � ; (ii) if �i is a tuple type and Pi is a path expression for �i, then Ai:Pi is a

path expression for � , for every i = 1; : : : ; k.

We now define the syntax of atomic selection conditions.

Definition 7.2 (atomic selection condition) Let S = (C; �;);me; }) be a POB-schema and letX
be a set of object variables. An atomic selection condition has one of the following forms:� x 2 c, where x is an object variable from X and c is a class from C.� x:P � v, where x is an object variable from X , P is a path expression over attributes names

from A, � is a binary predicate from f=; 6=;�;�; <;>;�;�;2;3g, and v is a value.� x:P1 =
 x:P2, where x is an object variable from X , P1 and P2 are two different path ex-

pressions over attributes from A, and 
 is a probabilistic conjunction strategy.

Let us consider some examples of atomic selection conditions.

Example 7.1 (Plant Example: atomic selection condition) In the Plant Example, some atomic se-

lection conditions are given as follows (x is an object variable):� Find all objects that are annuals and herbs.

This selection can be expressed by the atomic selection condition x 2 annuals herbs.� Find all objects that require a mild sun.

This selection can be expressed by the atomic selection condition x:sun = mild.� Find all objects that require over 21 units of rain.

This selection can be expressed by the atomic selection condition x:rain > 21.

We now define the syntax of selection conditions.

Definition 7.3 (selection condition) Let S = (C; �;);me; }) be a POB-schema. We define con-

junctive and disjunctive selection conditions by induction as follows.

If � is an atomic selection condition and
 is a probabilistic conjunction strategy, then � is a con-

junctive selection condition over 
. If � and  are conjunctive selection conditions over the same

object variable and the same probabilistic conjunction strategy
, then �
 is a conjunctive selec-

tion condition over 
.

If � is an atomic selection condition and � is a probabilistic disjunction strategy, then � is a dis-

junctive selection condition over �. If � and  are disjunctive selection conditions over the same
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object variable and the same probabilistic disjunctionstrategy�, then �� is a disjunctive selection

condition over �. A selection condition is a conjunctive or disjunctive selection condition.

Let us illustrate this definition via the Plant Example.

Example 7.2 (Plant Example: selection condition) In the Plant Example, some selection condi-

tions are given as follows (x is an object variable):� The atomic selection conditionsx2 annuals herbs,x:sun=mild, and x:rain> 21 given in Ex-

ample 7.1 are selection conditions.� Find all objects that are annuals and herbs and that require a mild sun. This selection can

be expressed by the selection conditionx2 annuals herbs
x:sun=mild, where
 is a prob-

abilistic conjunction strategy.� Find all objects that require a mild sun or over 21 units of rain. This selection can be ex-

pressed by the selection condition x:sun=mild� x:rain> 21, where � is a probabilistic dis-

junction strategy.

We are now ready to define the syntax of probabilistic selection conditions.

Definition 7.4 (probabilistic selection condition) Let S = (C; �;);me; }) be a POB-schema. (i)

If � is a selection condition and L and U are real numbers from [0; 1] with L � U , then (�)[L; U ]
is a probabilistic selection condition. (ii) If � and  are probabilistic selection conditions over the

same object variable, then :�, (� ^  ), and (� _  ) are probabilistic selection conditions.

Let us consider some examples of probabilistic selection conditions.

Example 7.3 (Plant Example: probabilistic selection condition) In the Plant Example, some prob-

abilistic selection conditions are given as follows (x is an object variable):� The selection of all objects that require both a mild sun and over 21 units of rain with a prob-

ability of 30–50%, can be done by using the probabilistic selection condition (x:sun=mild
 x:rain> 21)[0:3; 0:5], where 
 is a probabilistic conjunction strategy.� The selection of all objects that require a mild sun with a probability of at least 40%, and

over 21 units of rain with a probability of at least 80%, can be done by using the probabilistic

selection condition (x:sun=mild)[0:4; 1]^ (x:rain> 21)[0:8; 1].
It is important to note that each selection condition and each probabilistic selection condition con-

tains exactly one object variable.

It now remains to define the semantics of selection and probabilistic selection conditions. For this

purpose, each pair (S; o) consisting of a POB-schema S = (C; �;);me; }) and an oid o 2 �(C)
in a POB-instance I = (�; �) over S is associated with a probabilistic interpretation prob I;o, which
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assigns a probabilistic interval to selection conditions, and a truth value to probabilistic selection

conditions. We start by assigning probabilistic intervals to atomic selection conditions:

Definition 7.5 (satisfaction of atomic selection conditions) Let I = (�; �)be a POB-instance over

the POB-schema S = (C; �;);me; }) and let o 2 �(C). The probabilistic interpretation with re-

spect to I and o, denoted prob I;o, is the partial mapping from all atomic selection conditions to the

set of all subintervals of [0; 1] that is defined by:� prob I;o(x 2 c) = [min(ext(c)(o));max(ext(c)(o))].� If �(o):A = hV; �; �i and AP is a path expression for the type of o, thenprob I;o(x:AP � v)= [L;min(1; U)] such that [L; U ] =Pu2W [�(u); �(u))] ;
where W = fu 2 V j val(P; u) �vg and val(P; u) is defined as follows:3 val(P; u) = u,

if P is empty, and val(P; u) = val(P 0; u0) if P = :B P 0 and u:B = u0 otherwise (i.e.,val(P; u) returns the value of the component of �(o) described by the path expressionAP ).

Note that we canonically define prob I;o(x:A � v) = [0; 0] for fu2V j u � vg = ;. We further

assume that prob I;o(x:AP � v) is undefined if the path expressionAP is undefined for �(o),
or if val(P; u) � v is undefined for some u 2 V .� If �(o):Ai = hVi; �i; �ii and AiPi is a path expression for the type of o, for i 2 f1; 2g, then:prob I;o(x:A1 P1 =
 x:A2 P2)= [L;min(1; U)] such that[L; U ]=P(u1;u2)2W [�1(u1); �1(u1)]
 [�2(u2); �2(u2)] ;
where W = f(u1; u2) 2 V1 � V2 j val(P1; u1) = val(P2; u2)g, and val(�; �) is defined as

above. We canonically define prob I;o(x:A1=
 x:A2) = [0; 0] for an empty sum. We assume

that prob I;o(x:A1 =
 x:A2) is undefined if A1 P1 or A2 P2 is undefined for �(o).
Let us give an example to illustrate this definition.

Example 7.4 (Plant Example: satisfaction of atomic selection conditions) In the Plant Example,

the probabilistic interpretations prob I;o with o 2 fo1; o2; : : : ; o7g map the atomic selection condi-

tions x2 annuals herbs, x:sun=mild, and x:rain> 21 to the following subintervals of [0; 1]:
3As usual, the sum

Px2X [�(x); �(x)] denotes
�Px2X �(x);Px2X �(x)�.
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o prob I;o(x 2 annuals herbs) prob I;o(x:sun = mild) prob I;o(x:rain > 21)o1 [0:24; 0:24] undefined [1:00; 1:00]o2 [1:00; 1:00] [0:40; 0:60] [0:82; 0:82]o3 [1:00; 1:00] [1:00; 1:00] [0:00; 0:00]o4 [0:00; 0:00] [1:00; 1:00] [0:67; 0:67]o5 [1:00; 1:00] [0:40; 0:60] [0:67; 0:67]o6 [1:00; 1:00] [1:00; 1:00] [0:00; 0:00]o7 [1:00; 1:00] [1:00; 1:00] [0:00; 0:00]
We next assign probabilistic intervals to selection conditions:

Definition 7.6 (satisfaction of selection conditions) Let I = (�; �) be a POB-instance over the

POB-schema S = (C; �;);me; }) and let o 2 �(C). We extend prob I;o to a partial mapping from

the set of all selection conditions to the set of all closed subintervals of [0,1] as follows:prob I;o(�
  ) = prob I;o(�)
 prob I;o( ):prob I;o(��  ) = prob I;o(�)� prob I;o( ):
Let us illustrate this definition via the Plant Example.

Example 7.5 (Plant Example: satisfaction of selection conditions) In the Plant Example, the two

selection conditions �st = “x 2 annuals herbs 
st x:sun = mild” and  st = “x:sun = mild 
stx:rain > 21” are assigned the following subintervals of [0; 1]:o prob I;o(�in) prob I;o(�ig) prob I;o( in ) prob I;o( ig)o1 undefined undefined undefined undefinedo2 [0:40; 0:60] [0:40; 0:60] [0:33; 0:49] [0:22; 0:60]o3 [1:00; 1:00] [1:00; 1:00] [0:00; 0:00] [0:00; 0:00]o4 [0:00; 0:00] [0:00; 0:00] [0:67; 0:67] [0:67; 0:67]o5 [0:40; 0:60] [0:40; 0:60] [0:27; 0:40] [0:07; 0:60]o6 [1:00; 1:00] [1:00; 1:00] [0:00; 0:00] [0:00; 0:00]o7 [1:00; 1:00] [1:00; 1:00] [0:00; 0:00] [0:00; 0:00]
We are now ready to assign truth values to probabilistic selection conditions:

Definition 7.7 (satisfaction of probabilistic selection conditions) Let I = (�; �) be a POB-in-

stance over the POB-schema S = (C; �;);me; }) and let o 2 �(C). We extend prob I;o to proba-

bilistic selection conditions as follows:� prob I;o j= (�)[L; U ] iff prob I;o(�) � [L; U ].� prob I;o j= :� iff it is not the case that prob I;o j= �.� prob I;o j= � ^  iff prob I;o j= � and prob I;o j=  .
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� prob I;o j= � _  iff prob I;o j= � or prob I;o j=  .

Let us give an illustrating example.

Example 7.6 (Plant Example: satisfaction of probabilistic selection conditions) In the Plant Ex-

ample, it is easy to see that:� prob I;o2 j= (x:sun=mild
in x:rain> 21)[0:3; 0:5] (see Example 7.5).� prob I;o2 6j= (x:sun=mild
ig x:rain> 21)[0:3; 0:5] (see Example 7.5).� prob I;o2 j= (x:sun=mild)[0:4; 1]^ (x:rain> 21)[0:8; 1] (see Example 7.4).� prob I;o3 6j= (x:sun=mild)[0:4; 1]^ (x:rain> 21)[0:8; 1] (see Example 7.4).

After these preparations, we are finally ready to define the selection operation.

Definition 7.8 (selection on POB-instances) Let I= (�; �)be a POB-instance over the POB-sche-

ma S = (C; �;);me; }) and let � be a probabilistic selection condition over the object variable x.

The selection on I with respect to �, denoted ��(I), is the POB-instance (�0; � 0) over S, where:� �0(c) = fo 2 �(c) j prob I;o j= � g.� �0 = � j �0(C) (that is, the mapping � restricted to �0(C)).
The following example shows precisely what happens in the case of the Plant Example when we

perform selection with respect to probabilistic selection conditions.

Example 7.7 (Plant Example: selection) In the Plant Example, the selection on I = (�; �) with

respect to the probabilistic selection condition (x:sun=mild)[0:4; 1] ^ (x:rain> 21)[0:8; 1] is the

POB-instance (�0; � 0) over S (see Example 7.4), where �0 and �0 are shown in Table 5. This resultc �0(c)plants fgannuals fgperennials fgvegetables fgherbs fg
owers fgannuals herbs fgperennials 
owers fo4g oid �0(oid)o2 [pname : hfCuban-Basil; Lemon-Basilg; u; ui;soil : hfloamy; sandyg; 0:7 u; 1:3ui;rain : hf20; : : : ; 30g; u; ui;sun : hfmild;mediumg; 0:8 u; 1:2ui;expyears : hf2; 3; 4g; 0:6u; 1:8 ui;classi�cation :hffrench; silver;woolyg; 0:6 u; 1:8 ui]
Table 5: �0 and �0 resulting from selection

is also obtained by the selection on I with respect to (x:sun=mild 
in x:rain> 21)[0:3; 0:5] (see

Example 7.5). The selection on Iwith respect to (x:sun=mild
ig x:rain> 21)[0:3; 0:5], in contrast,

produces the empty POB-instance over S (see Example 7.5).
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7.2 Projection

In this section, we define projection of POB-instances on arbitrary sets of attributes. We first define

the projection of POB-schemas on sets of attributes.

Definition 7.9 (projection of POB-schemas) Let S = (C; �;);me; }) be a POB-schema and letA be a set of attributes. The projection ofS onA, denoted�A(S), is the POB-schema (C; �0;);me; }),
where the new type�0(c) of each class c 2 C is obtained from the old type�(c) = [B1 : �1; : : : ; Bk : �k ]
by deleting all Bj : �j’s withBj =2 A.

Let us consider an example to illustrate the projection of POB-schemas.

Example 7.8 (Plant Example: projection of POB-schemas) Let the POB-schema S be given by

the POB-schema described in Example 5.4. Then, the projection of S on the set of attributesA =fpname; raing has the type assignment �0 shown in Table 6.c �0(c)plants [pname : string; rain : integer]annuals [pname : string; rain : integer]perennials [pname : string; rain : integer]vegetables [pname : string; rain : integer]herbs [pname : string; rain : integer]
owers [pname : string; rain : integer]annuals herbs [pname : string; rain : integer]perennials 
owers [pname : string; rain : integer]
Table 6: Type assignment �0 resulting from schema projection

Given a consistent POB-schema as input, the projection operation always produces a consistent

POB-schema as output. This is shown by the following theorem.

Theorem 7.1 Let S = (C; �;);me; }) be a POB-schema and let A be a set of attributes. If S is

consistent, then �A(S) is consistent.

We next define the projection of probabilistic tuple values.

Definition 7.10 (projection of probabilistic tuple values) Let ptv be a probabilistic tuple value of

the form [B1 : (V1; �1; �1); : : : ; Bk : (Vk; �k; �k)] and letA be a set of attributes. The projection ofptv on A, denoted �A(ptv), is obtained from [B1 : (V1; �1; �1); : : : ; Bk : (Vk; �k; �k)] by deleting

all Bj : (Vj; �j ; �j)’s withBj =2 A.

We give a small example to illustrate projection of probabilistic tuple values.

Example 7.9 (Plant Example: projection of probabilistic tuple values) Let the probabilistic tu-

ple value ptv be given as follows (note that ptv is associated with the object o2 in Example 6.2):

ptv = [ pname: hfCuban-Basil; Lemon-Basilg; u; ui;
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soil : hfloamy; sandyg; 0:7 u; 1:3 ui;rain: hf20; : : : ; 30g; u; ui;sun : hfmild;mediumg; 0:8 u; 1:2ui;expyears : hf2; 3; 4g; 0:6u; 1:8ui;classi�cation : hffrench; silver;woolyg; 0:6 u; 1:8 ui]
The projection of ptv on the set of attributesA = fpname; raing is given as follows:�A(ptv) = [pname: h Cuban-Basil; Lemon-Basilg; u; ui; rain : hf20; : : : ; 30g; u; ui]
We are now ready to define the projection of POB-instances.

Definition 7.11 (projection of POB-instances) Let I = (�; �) be a POB-instance over the POB-

schema S = (C; �;);me; }) and let A be a set of attributes. The projection of I on A, denoted�A(I), is defined as the POB-instance (�0; � 0) over the POB-schema �A(S), where:� �0(c) = �(c) for all classes c 2 C.� �0(o) = �A(�(o)) for all oids o 2 �(C).
Let us illustrate this definition within the Plant Example.

Example 7.10 (Plant Example: projection of POB-instances) Let the POB-instance I = (�; �)
be given by the POB-instance described in Example 6.2. The projection of I onA = fpname; raing
is the POB-instance (�0; � 0), where �0 and �0 are given Table 7 (note that �0 is the same as �).c �0(c)plants fo1gannuals fgperennials fgvegetables fgherbs fg
owers fgannuals herbs fo2; o3; o5; o6; o7gperennials 
owers fo4g oid � 0(oid)o1 [pname : hfLady-Fern;Ostrich-Ferng; u; ui,rain : hf25; : : : ; 30g; u; ui]o2 [pname : hfCuban-Basil; Lemon-Basilg; u; ui,rain : hf20; : : : ; 30g; u; ui]o3 [pname : hfMintg; u; ui, rain : hf20g; u; ui]o4 [pname : hfAster; Salviag; u; ui,rain : hf20; : : : ; 25g; u; ui]o5 [pname : hfThymeg; u; ui, rain : hf20; : : : ; 25g; u; ui]o6 [pname : hfMintg; u; ui, rain : hf20g; u; ui]o7 [pname : hfSageg; u; ui, rain : hf20; 21g; u; ui]

Table 7: �0 and �0 resulting from projection

7.3 Renaming

In this section, we define renaming of (top-level) attributes in POB-instances. This operation is espe-

cially useful in connection with cartesian product and join (see Sections 7.4 and 7.5). We first define

renaming conditions.
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Definition 7.12 (renaming condition) LetS = (C; �;);me; }) be a POB-schema and letA be the

set of all top-level attribute names of S. A renaming condition is an expression of the form ~B ~C,

where ~B = B1; B2; : : : ; Bl is a list of distinct attribute names fromA, and ~C = C1; C2; : : : ; Cl is a

list of distinct attributes fromA�(A�fB1; B2; : : : ; Blg) (this condition ensures that each attributeCi that is in A must also occur inB, i.e., be renamed itself).

Let us give an example of a renaming condition within the Plant Example.

Example 7.11 (Plant Example: renaming condition) Let us consider the POB-schema computed

in Example 7.8. A renaming condition is given by pname; rain pname2; rain2.

We now define the renaming of attributes in POB-schemas.

Definition 7.13 (renaming in POB-schemas) Let S = (C; �;);me; }) be a POB-schema and letN = B1; B2; : : : ; Bl C1; C2; : : : ; Cl be a renaming condition. The renaming in S with respect

toN , denoted �N (S), is the POB-schema (C; �0;);me; }), where the new type �0(c) of each classc 2 C is obtained from the old type �(c) = [A1 : �1; : : : ; Ak : �k] by replacing each attributeAj withAj = Bi for some i 2 f1; : : : ; lg by the new attributeCi.
Note. Though the above definition does not include renaming of nested attributes, this may be

accomplished by a straightforward extension. For the sake of simplicity, we skip this.

Let us give an example to illustrate the renaming of attributes in POB-schemas.

Example 7.12 (Plant Example: renaming of POB-schemas) Let the POB-schema S be given by

the POB-schema computed in Example 7.8. The renaming of S with respect to the renaming condi-

tion pname; rain pname2; rain2 has the following type assignment �0:c �0(c)plants [pname2 : string; rain2 : integer]annuals [pname2 : string; rain2 : integer]perennials [pname2 : string; rain2 : integer]vegetables [pname2 : string; rain2 : integer]herbs [pname2 : string; rain2 : integer]
owers [pname2 : string; rain2 : integer]annuals herbs [pname2 : string; rain2 : integer]perennials 
owers [pname2 : string; rain2 : integer]
Given a consistent POB-schema as input, the renaming operation always produces a consistent

POB-schema as output. This is shown by the following theorem.

Theorem 7.2 Let S = (C; �;);me; }) be a POB-schema and let N be a renaming condition. If S
is consistent, then �N (S) is consistent.

We next define the renaming of attributes in probabilistic tuple values.
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Definition 7.14 (renaming of probabilistic tuple values) Let ptv be a probabilistic tuple value of

the form [A1 : (V1; �1; �1); : : : ; Ak : (Vk; �k; �k)] and letN = B1; B2; : : : ; Bl C1; C2; : : : ; Cl be

a renaming condition. The renaming of ptv with respect to N , denoted �N (ptv), is obtained from[A1 : (V1; �1; �1); : : : ; Ak : (Vk; �k; �k)] by replacing each attributeAj withAj = Bi for some i 2f1; : : : ; lg by the new attributeCi.
We give a small example to illustrate the renaming of attributes in probabilistic tuple values.

Example 7.13 (Plant Example: renaming in probabilistic tuple values) Let the probabilistic tu-

ple value ptv taken from Example 7.9 be as follows:ptv = [pname: hfCuban-Basil; Lemon-Basilg; u; ui; rain : hf20; : : : ; 30g; u; ui]
The renaming in ptv with respect to pname; rain pname2; rain2 is given as follows:ptv = [pname2: hfCuban-Basil; Lemon-Basilg; u; ui; rain2 : hf20; : : : ; 30g; u; ui]
We are now ready to define the renaming of attributes in POB-instances.

Definition 7.15 (renaming in POB-instances) Let I = (�; �) be a POB-instance over the POB-

schema S = (C; �;);me; }) and let N be a renaming condition. The renaming in I with respect

to N , denoted �N (I), is defined as the POB-instance (�0; � 0) over the POB-schema �N (S), where:� �0(c) = �(c) for all classes c 2 C.� �0(o) = �N (�(o)) for all oids o 2 �(C).
Let us illustrate this definition within the Plant Example.

Example 7.14 (Plant Example: renaming in POB-instances) Let the POB-instance I = (�; �)
be given by the POB-instance computed in Example 7.10. The renaming in I with respect to the

renaming condition pname; rain pname2; rain2 is the POB-instance (�0; �0), where �0 and �0 are

given in Table 8 (note that �0 is the same as �).

7.4 Cartesian Product

In this section, we define the cartesian product of two POB-instances. In classical relational data-

bases, the cartesian product of two relations consists of the set of all tuples that can be obtained by

concatenating a tuple in the first relation with a tuple in the second relation. If one follows this intu-

ition, the cartesian product of two POB-instances should be obtained by concatenating the property

list of any object in the first POB-instance with the property list of any object in the second POB-

instance. This will be the intuition underlying our definition of cartesian product.

Let us first come back to the Plant Example to show that the cartesian product is meaningful.
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c �0(c)plants fo1gannuals fgperennials fgvegetables fgherbs fg
owers fgannuals herbs fo2; o3; o5; o6; o7gperennials 
owers fo4g oid � 0(oid)o1 [pname2 : hfLady-Fern;Ostrich-Ferng; u; ui,rain2 : hf25; : : : ; 30g; u; ui]o2 [pname2 : hfCuban-Basil; Lemon-Basilg; u; ui,rain2 : hf20; : : : ; 30g; u; ui]o3 [pname2 : hfMintg; u; ui,rain2 : hf20g; u; ui]o4 [pname2 : hfAster; Salviag; u; ui,rain2 : hf20; : : : ; 25g; u; ui]o5 [pname2 : hfThymeg; u; ui,rain2 : hf20; : : : ; 25g; u; ui]o6 [pname2 : hfMintg; u; ui,rain2 : hf20g; u; ui]o7 [pname2 : hfSageg; u; ui,rain2 : hf20; 21g; u; ui]
Table 8: �0 and �0 resulting from renaming

Example 7.15 (Plant Example: cartesian product) Suppose we are interested in pairs of plants

that flourish with a certain probability in the same environment (for example, in pairs of plants that

have the same rain requirements with some probability). To obtain this information, we must some-

how connect the knowledge tied to each oid with the knowledge tied to other oids.

The first challenge in defining the cartesian product of two POB-instances is the following. Sup-

pose we know that the POB-schemas of our two POB-instances are S1 = (C1; �1;)1;me1; }1) andS2 = (C2; �2;)2;me2; }2). Let S = (C; �;);me; }) denote the schema of the cartesian product

instance. What should the relationship between S1;S2, and S be?

Recall that in classical relational databases, the cartesian productR1�R2 of relation schemesR1
and R2 is only defined if they have disjoint sets of attributes. Further, R1 � R2 and R2 �R1 yield

the same schema; similarly, we desire that S1 � S2 = S2 � S1 holds. This needs special care.

In the rest of this paper, we assume that for each scheme S = (C; �;);me; }), C is a database

relation, i.e., the classes c 2 C are tuples over a relation scheme R = R(S) associated with S. Two

POB-schemas S1 and S2 can be combined using cartesian product under the following condition:

Definition 7.16 (cartesian-product-compatible POB-schemas) The two POB-schemasS1 = (C1,�1;)1;me1; }1) and S2 = (C2, �2;)2;me2; }2) are cartesian-product-compatible iff R(S1) andR(S2) are disjoint and for all classes c1 2C1 and c2 2C2: �1(c1) and �2(c2) are tuple types over

disjoint sets of attributes.

Note that any POB-schemas S1 and S2 can be made cartesian product compatible by renaming of

attributes inR(S1), R(S2) and attributes of tuple types.

Definition 7.17 (cartesian product of POB-schemas) Let S1 = (C1; �1;)1;me1; }1) and S2 =(C2, �2;)2;me2; }2) be two cartesian-product-compatible POB-schemas, and let R1 = R(S1)
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and R2 = R(S2). The cartesian product of S1 and S2, denoted S1�S2, is the POB-schema S =(C; �;);me; }) such that:� C = C1 � C2.� For all c 2 C, let �(c[R1]; c[R2]) = [A1 : �1; : : : ; Ak : �k; Ak+1 : �k+1; : : : ; Ak+m : �k+m],
where�1(c[R1]) = [A1 : �1; : : : ; Ak : �k] and �2(c[R2]) = [Ak+1 : �k+1; : : : ; Ak+m : �k+m].4� The directed acyclic graph (C;)) is defined as follows. For all c; d 2 C:c) d iff (c[R1])1 d[R1] ^ c[R2] = d[R2]) or (c[R1] = d[R1] ^ c[R2])2 d[R2]):� The partitioningme is given as follows. For all c 2 C:me(c) = fP1�fc[R2]g j P1 2 me1(c[R1])g [ ffc[R1]g�P2 j P2 2 me2(c[R2])g:� The probability assignment } is defined as follows. For all c) d:}(c; d) = 8<:}1(c[R1]; d[R1]) if c[R2] = d[R2]}2(c[R2]; d[R2]) if c[R1] = d[R1] .

(Note that C = C1 � C2 implicitly defines that R(S) = R1 [R2.)

Let us illustrate this definition within the Plant Example.

Example 7.16 (Plant Example: cartesian product of POB-schemas) Let S1 be the POB-schema

computed in Example 7.8, and let S2 be the POB-schema computed in Example 7.12 in which each

class c is replaced by c0. The cartesian product schema S1 � S2 = (C; �;);me; }) is as follows:� A partial view on the set of classes C is given in Figure 4 (note that we use pl, an, pe, ve,he, 
, ah, and pf as abbreviations for plants, annuals, perennials, vegetables, herbs, 
owers,annuals herbs, and perennials 
owers, respectively).� Each class c 2 C is assigned the following type under �:�(c) = [pname: string; rain: integer; pname2: string; rain2: integer] :� A partial view on the directed acyclic graph (C;)), the partitioning me, and the probability

assignment } is also given in Figure 4.

The cartesian product of two consistent POB-schemas is always consistent:

4As usual, c[U ] denotes the restriction of tuple c to the attributes in U .
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Figure 4: Some classes in the cartesian product of the Plant Example

Theorem 7.3 Let S1 and S2 be two cartesian-product-compatible POB-schemas. If S1 and S2 are

consistent, then S1 � S2 is consistent.

Proof. LetS1= (C1; �1;)1;me1; }1),S2= (C2, �2;)2;me2; }2), andS1�S2= (C; �;);me; }).
Let "1 : C1 ! 2O1 and "2 : C2 ! 2O2 be models of S1 and S2, respectively. Let the mapping" : C ! 2O, where C = C1 � C2 and O = O1 �O2, be defined as follows:"(c) = "1(c[R1])� "2(c[R2]); for all c 2 C .

We now show that " is a model of S. We first prove C1. Since "1(c1) 6= ; for all classes c1 2 C1 and"2(c2) 6= ; for all classes c[R2] 2 C2, we get "(c) 6= ; for all classes c 2 C. We next show C2 and

C4. Let c; d 2 C with c ) d. Without loss of generality, we can assume that c[R1] )1 d[R1] andc[R2] = d[R2]. Since "1 is a model of S1, it holds that "1(c[R1]) � "1(d[R1]) and j"1(c[R1])j =}1(c[R1]; d[R1]) � j"1(d[R1])j. Hence, it immediately follows "(c) � "(d) and j"(c)j = }(c; d) �j"(d)j. We finally prove C3. Let c; d 2 C be two distinct classes that belong to the same clusterP 2 Sme(C). Without loss of generality, we can assume that c[R1]; d[R1] 2 C1 belong to the

same cluster P1 2 Sme1(C1) and that c[R2] = d[R2]. Since "1 is a model of S1, it holds that"1(c[R1]) \ "1(d[R1]) = ;. Thus, it follows that "(c) \ "(d) = ;. 2
We now define the cartesian product of probabilistic tuple values.

Definition 7.18 (cartesian product of probabilistic tuple values) Let ptv1 and ptv 2 be two prob-

abilistic tuple values over the disjoint sets of attributesA1 andA2, respectively. The cartesian prod-

uct of ptv1 and ptv2, denoted ptv1�ptv2, is the probabilistic tuple valueptv over the set of attributesA1 [A2 defined by:� ptv :A = ptv1:A for all attributes A 2 A1 .
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� ptv :A = ptv2:A for all attributes A 2 A2 .

Note that ptv1 � ptv2 = ptv2 � ptv1, since by convention the ordering of attributes in a complex

value tuple is immaterial.

Example 7.17 (Plant Example: cartesian product of probabilistic tuple values) Let us consider

the following two probabilistic tuple values (taken from Examples 7.10 and 7.15, respectively):ptv1 = [pname: hfCuban-Basil; Lemon-Basilg; u; ui; rain: hf20; : : : ; 30g; u; ui]ptv2 = [pname2: hfMintg; u; ui; rain2: hf20g; u; ui] :
The cartesian product of ptv1 and ptv2 is given as follows:ptv1 � ptv2 = [pname: hfCuban-Basil; Lemon-Basilg; u; ui; rain: hf20; : : : ; 30g; u; ui;pname2: hfMintg; u; ui; rain2: hf20g; u; ui]:

We are finally ready to define the cartesian product of two POB-instances. As in the case of classes,

we assume in the rest of this paper that each oid o 2 O that occurs in a POB-instance I = (�; �)
over S is a tuple for the relation scheme R(S); each such o may be written as the list (o1; : : : ; om)
of the values for the attributes A1; : : : ; Am of R(S).
Definition 7.19 (cartesian product of POB-instances) Let I1 = (�1; �1) and I2 = (�2; �2) be two

POB-instances over the cartesian-product-compatible POB-schemasS1= (C1; �1;)1;me1; }1) andS2 = (C2; �2;)2;me2; }2), respectively. The cartesian product of I1 and I2, denoted I1 � I2, is

defined as the POB-instance (�; �) over the POB-schema S = S1 � S2, where� �(c) = �1(c[R1])� �2(c[R2]), for all c 2 C (here, �1(c[R1])� �2(c[R2]) � O is assumed).� �(o) = �1(o[R1])� �2(o[R2]), for all o 2 �(C).
Let us illustrate this definition within the Plant Example.

Example 7.18 (Plant Example: cartesian product of POB-instances) Let I1 and I2 be the POB-

instances computed in Examples 7.10 and 7.15, respectively. The cartesian product of I1 and I2 is

the POB-instance (�; �), where partial views of � and � are given in Table 9:

7.5 Join

In classical relational databases, the join operator is a generalization of the cartesian product. This

will also be the case for the join of POB-instances, which is defined in this section. We start with the

notion of join-compatibility.
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c �(c)(pl; pl) f(o1; o1)g(an; pl) fg(ah; pl) f(o2; o1); (o3; o1);(o5; o1); (o6; o1); (o7; o1)g(pf; pl) f(o4; o1)g oid �(oid)(o1; o1) [pname : hfLady-Fern;Ostrich-Ferng; u; ui,rain : hf25; : : : ; 30g; u; ui,pname2 : hfLady-Fern;Ostrich-Ferng; u; ui,rain2 : hf25; : : : ; 30g; u; ui](o2; o1) [pname : hfCuban-Basil; Lemon-Basilg; u; ui,rain : hf20; : : : ; 30g; u; ui,pname2 : hfLady-Fern;Ostrich-Ferng; u; ui,rain2 : hf25; : : : ; 30g; u; ui](o3; o1) [pname : hfMintg; u; ui,rain : hf20g; u; ui,pname2 : hfLady-Fern;Ostrich-Ferng; u; ui,rain2 : hf25; : : : ; 30g; u; ui]
Table 9: � and � resulting from cartesian product (partial view)

Definition 7.20 (join-compatible POB-schemas) Two POB-schemas S1 = (C1; �1,)1;me1, }1)
andS2 = (C2, �2;)2;me2; }2) are join-compatible iffR(S1) andR(S2) are disjointand�1(c1):A =�2(c2):A for all classes c1 2 C1, c2 2 C2 and attributesA defined for both �1(c1) and �2(c2).
Definition 7.21 (join of POB-schemas) Let S1 = (C1; �1;)1;me1; }1) and S2 = (C2, �2;)2,me2; }2) be two join-compatible POB-schemas, and let R1 = R(S1) and R2 = R(S2) . The join

of S1 and S2, denoted S1 ./ S2, is the POB-schema S = (C; �;);me; }), where C,), me, and }
are as in the definition of S = S1 � S2 (see Definition 7.17), and � is defined as follows:� For all c 2 C, the tuple type �(c) = [A1 : �1; : : : ; Al : �l] contains exactly all Ai : �i that

belong to either the tuple type �1(c[R1]) or the tuple type �2(c[R2]).
Theorem 7.4 Let S1 and S2 be two join-compatible POB-schemas. If S1 and S2 are consistent,

then S1 ./ S2 is consistent.

For the join of two probabilistic tuples values ptv1 and ptv2, we need to combine the two values

of a common attribute Ai to a single value for the result. This is done through conjunction of the

probabilistic triples representing these values, along the following definition.

Definition 7.22 (conjunction strategies on probabilistic triples) Let (V 0; �0; �0) and (V 00; �00; �00)
be two probabilistic triples and let
 be a probabilistic conjunction strategy.

We define (V 0; �0; �0)
 (V 00; �00; �00) as the probabilistic triple (V; �; �) with:� V = fv 2 V 0 \ V 00 j [�0(v); �0(v)]
 [�00(v); �00(v)] 6= [0; 0]g.� [�(v); �(v)] = [�0(v); �0(v)]
 [�00(v); �00(v)] for all v 2 V .

Note that impossible values v in V 0 \ V 00 (having probability 0) are excluded from V as they

are implicitly represented by the CWA. The outcome pt = pt1 
 pt2 is well-defined only if pt is

consistent, which requires that
Pv2V �(v) � 1. When an inconsistency arises, we flag an error.
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Definition 7.23 (join of probabilistic tuple values) Let ptv1 and ptv2 be two probabilistic tuple

values over the sets of attributesA1 andA2, respectively, such that for allA 2 A1 \A2, the valuesptv1:A and ptv2:A are of the same type. Let 
 be a probabilistic conjunction strategy. The join ofptv1 and ptv 2 under 
, denoted ptv 1 ./
 ptv2, is the probabilistic tuple value ptv over A1 [ A2
defined by:� ptv :A = ptv1:A for all attributes A 2 A1 �A2 .� ptv :A = ptv2:A for all attributes A 2 A2 �A1 .� ptv :A = ptv1:A
 ptv 2:A for all attributes A 2 A1 \A2 .

Note that, for any probabilistic conjunction strategy
, ptv1 ./
 ptv2 = ptv2 ./
 ptv1 holds, i.e.,

the join of probabilistic tuples values is commutative.

Example 7.19 Let us consider the following two probabilistic tuple values:ptv1 = [A : hfa; bg; 0:6u; 1:4ui; B : hfa; cg; 0:7 u; 1:3 ui]ptv2 = [A : hfa; b; cg; 0:3u; 2:4ui; C : hfc; dg; 0:4u; 1:6ui]
The join of ptv1 and ptv2 under independence is given as follows:ptv1 ./
in ptv 2 = [A : hfa; bg; 0:06u; 1:12ui; B : hfa; cg; 0:7u; 1:3ui; C : hfc; dg; 0:4u; 1:6ui]:
Definition 7.24 (join of POB-instances) Let I1 = (�1; �1) and I2 = (�2; �2) be two POB-instances

over the join-compatiblePOB-schemasS1 = (C1; �1;)1;me1; }1) andS2 = (C2; �2;)2;me2; }2),
respectively, and letR1 = R(S1) andR2 = R(S2). LetA1 andA2 be the sets of top-level attributes

of S1 and S2, respectively. Let
 be a probabilistic conjunction strategy. The join of I1 and I2 under
, denoted I1 ./
 I2, is the POB-instance (�; �) over the POB-schema S1 ./ S2, where:� �(c) = f(o1; o2) 2 �1(c[R1])� �2(c[R2]) j for all A 2 A1 \A2:

if (�1(o1) ./
 �2(o2)):A = hV; �; �i, then V 6= ;g, for all c 2 C1�C2.� �(o) = �1(o[R1]) ./
 �2(o[R2]), for all o 2 �(C).
7.6 Intersection, Union, and Difference

In this section, we define the classical set operations of intersection, union, and difference for two

POB-instances over the same schema.

The definition of intersection is intuitive: common objects are selected, and their respective at-

tribute values are combined by conjunction. We introduce the following notion.
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Definition 7.25 (intersection of probabilistic tuple values) Let ptv1 and ptv2 be probabilistic tu-

ple values over the same set of attribute names A and let 
 be a probabilistic conjunction strategy.

The intersection of ptv 1 and ptv2 under 
, denoted ptv1 \
 ptv2, is the probabilistic tuple valueptv overA defined by ptv :A = ptv1:A
 ptv2:A for all A 2 A.

Definition 7.26 (intersection of POB-instances) Let I1 = (�1; �1) and I2 = (�2; �2) be two POB-

instances over the same POB-schema S and let
 be a probabilistic conjunction strategy. The inter-

section of I1 and I2 under 
, denoted I1 \
 I2, is the POB-instance (�; �) over S, where:� �(c) = �1(c) \ �2(c) .� �(o) = �1(o) \
 �2(o) .

The union of two POB-instances is defined in the same spirit as their intersection.

Definition 7.27 (disjunction strategies on probabilistic triples) Let pt1 = (V 0; �0; �0) and pt2 =(V 00; �00; �00) be two probabilistic triples and let� be a probabilistic disjunction strategy. Then pt1�pt2 is the probabilistic triple pt = (V; �; �), where:� V = V 0 [ V 00 .� [�(v); �(v)] = 8>>><>>>:[�0(v); �0(v)] if v 2 V 0 � V 00[�00(v); �00(v)] if v 2 V 00 � V 0[�0(v); �0(v)]� [�00(v); �00(v)] if v 2 V 0 \ V 00 .

As in the case of conjunction, the outcome pt of pt1�pt2 is only defined if pt is consistent, which

requires that
Pv2V �(v) � 1. A violation of this condition indicates incorrect data or improper

application of the disjunction strategy�. Again, this is flagged.

Definition 7.28 (union of probabilistic tuple values) Let ptv1 and ptv2 be two probabilistic tuple

values over the same set of attribute names A and let � be a probabilistic disjunction strategy. The

union of ptv1 and ptv2 under �, denoted ptv1 [� ptv2, is the probabilistic tuple value ptv over A
defined by ptv :A = ptv1:A� ptv2:A for all A 2 A.

Definition 7.29 (union of POB-instances) Let I1 = (�1; �1) and I2 = (�2; �2) be two POB-instances

over the same POB-schema S such that �1(c1)\�2(c2) = ; for all pairs of distinct classes c1; c2 2 C.

Let � be a probabilistic disjunction strategy. The union of I1 and I2 under �, denoted I1 [� I2, is

defined as the POB-instance (�; �) over S, where:� �(c) = �1(c) [ �2(c) .� �(o) = 8>>><>>>:�1(o) if o 2 �1(C)� �2(C)�2(o) if o 2 �2(C)� �1(C)�1(o) [� �2(o) if o 2 �1(C) \ �2(C) .
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Finally, we consider the difference of two POB-instances. For this, we use the notion of a differ-

ence strategy for probabilistic tuple values.

Definition 7.30 (difference strategies on probabilistic triples) Let pt1 = (V 0; �0; �0) and pt2 =(V 00; �00; �00) be two probabilistic triples and let 	 be a probabilistic difference strategy.

We define pt1 	 pt2 as the probabilistic triple pt = (V; �; �)with:� V = V 0 � fv 2 V 0 \ V 00 j [�0(v); �0(v)]	 [�00(v); �00(v)] = [0; 0g] .� [�(v); �(v)] = 8<:[�0(v); �0(v)] if v 2 V � V 00[�0(v); �0(v)]	 [�00(v); �00(v)] if v 2 V \ V 00 .
Definition 7.31 (difference of probabilistic tuple values) Let ptv1 and ptv2 be two probabilistic

tuple values over the same set of attribute names A, and let 	 be a probabilistic difference strategy.

The difference of ptv1 and ptv2 under	, denoted ptv1 �	 ptv2 is the probabilistic tuple value ptv
overA defined by ptv :A = ptv1:A	 ptv2:A for all A 2 A.

Definition 7.32 (difference of POB-instances) Let I1 = (�1; �1) and I2 = (�2; �2) be POB-in-

stances over the same POB-schema S and let	 be a probabilistic difference strategy. The difference

of I1 and I2 under 	, denoted I1 �	 I2, is defined as the POB-instance (�; �) over S, where:� �(c) = �1(c) .� �(o) = 8<:�1(o) if o 2 �1(C)� �2(C)�1(o)�	 �2(o) if o 2 �1(C) \ �2(C) .

8 POB Algebra: Equivalence Results

In this section, we derive some results on equivalences which hold in our POB-algebra. We focus

here on equivalences similar to well-known equivalences in the context of classical relational alge-

bra. The list of equivalences is by no means complete, but shows that query optimization is possible

along similar lines in classical relational algebra [1]. Our first result says that the selections may be

reordered.

Theorem 8.1 Let I = (�; �) be a POB-instance over the POB-schema S. Let �1 and �2 be two

probabilistic selection conditions. Then��1(��2(I)) = ��2(��1(I)) = ��1^�2(I); (1)

where the last expression assumes that �1 and �2 have the same object variable.

Our next result says two things: first that the projections may be reordered and second, that projec-

tions may be pushed through selections under appropriate contributions.
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Theorem 8.2 Let I be a POB-instance over the POB-schema S. Let A andB be sets of attributes,

and let � be a probabilistic selection condition in which all path expressions start with attribute

names fromA. Then,�A(�B(I)) = �B(�A(I)) (2)�A(��(I)) = ��(�A(I)) : (3)

The next result, which states that selections and projections can be pushed through the renaming op-

erator, requires some notation. For any renaming conditionN : ~B ~C, the inverse of N , denoted

by N�1, is the renaming condition ~C  ~B. Furthermore, the notation �N(X) stands for the result

of applying the renaming N on the formal objectX .

Theorem 8.3 Let I be a POB-instance over the POB-schema S, and letN be a renaming condition

for S. Let � be a probabilistic selection condition and let A be a set of attributes. Then��(�N(I)) = �N (��N�1(�)(I)) (4)�A(�N(I)) = �N (��N�1(A)(I)) : (5)

The following theorem shows that joins are always associative and commutative, regardless of what

conjunction strategy is used in the join. In addition, selects may be pushed “through” a join by ap-

propriately splitting the selection condition and the same is true of projections.

Theorem 8.4 Let S1, S2, and S3 be pairwise join-compatible POB-schemas and let I1, I2, and I3
be POB-instances over S1, S2, and S3, respectively. Let 
 be a probabilistic conjunction strategy.

Let �1, �2, and �3 be probabilistic selection conditions such that �1 and �2 involve only attributes

fromA1 �A2 andA2 �A1, respectively, where A1 andA2 denote the sets of top-level attributes

of S1 and S2, respectively. Let B be a set of attributes and defineB1 = (B[A2) \A1 andB2 =(B [A1) \A2. Then I1 ./
 I2 = I2 ./
 I1 (6)(I1 ./
 I2) ./
 I3 = I1 ./
 (I2 ./
 I3) (7)��1^�2^�3(I1 ./
 I2) = ��3(��1(I1) ./
 ��2(I2)) (8)�B(I1 ./
 I2) = �B(�B1(I1) ./
 �B2(I2)) : (9)

Note that in classical relational databases, Equivalence (8) remains true if �1 and �2 access common

attributes ofA1 andA2. This is no longer guaranteed for POBs, as the join may change the value of
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common attributes. As cartesian product is a special case of join, we obtain the following corollary

to Theorem 8.4.

Corollary 8.5 Let S1, S2, and S3 be pairwise cartesian-product-compatible POB-schemas and letI1, I2, and I3 be POB-instances overS1,S2, andS3, respectively. Let �1, �2, and�3 be probabilistic

selection conditions such that �1 and �2 involve only attributes from the sets of top-level attributesA1 and A2 of S1 and S2, respectively. Let B be a set of attributes and let B1 = B \ A1 andB2 = B \A2. Then I1 � I2 = I2 � I1 (10)(I1 � I2)� I3 = I1 � (I2 � I3) (11)��1^�2^�3(I1 � I2) = ��3(��1(I1)� ��2(I2)) (12)�B(I1 � I2) = �B1(I1)� �B2(I2) : (13)

Theorem 8.6 Let I1, I2, and I3 be POB-instances over the same POB-schema S. Let 
 /� /	 be

a probabilistic conjunction/disjunction/difference strategy and let A be a set of attributes. Then,I1 \
 I2 = I2 \
 I1 (14)(I1 \
 I2) \
 I3 = I1 \
 (I2 \
 I3) (15)I1 [� I2 = I2 [� I1 (16)(I1 [� I2) [� I3 = I1 [� (I2 [� I3) (17)�A(I1 \
 I2) = �A(I1) \
 �A(I2) (18)�A(I1 [� I2) = �A(I1) [� �A(I2) (19)�A(I1 �	 I2) = �A(I1)�	 �A(I2) : (20)

Note that literally taken, Equations (20) and (18) are not true for relational databases. The reason

is that we use oids for objects in POBs, while relational databases contain simply values.

9 Implementation

We have implemented a prototype of a distributed probabilistic object database system. The server

(POB server) runs on top of ObjectStore (Version 6.0), and is implemented in SUN-C++ (Version 4.2).

A thin client for handling database transactions is implemented using GNU-C++ (Version 2.8.1).
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9.1 POB Server

The POB-server is a collection manager of POB-schemas, where each POB-schema consists of a

set of POB-classes and their associated POB-object instances. There are two types of POB-schemas

that the server manages: the persistent schemas, which correspond to the permanent data that the

database keeps, and temporary schemas, which maintain intermediate schemas created during trans-

action processing.

The probability interpreter contains a collection of functions for computing probabilistic con-

junction and disjunction strategies. It holds, in addition, a library of distribution functions for ma-

nipulating probabilistic tuple values associated with objects in the database.

The POB-schema class maintains an inheritance probability table (the probability assignment }
in Definition 5.4). The class contains methods to add and remove POB classes, add and remove

POB-objects, and POB-classes, and to retrieve POB-objects and POB-classes. In addition, given

two classes c1; c2, there is a method that computes the probability that c1 is a subclass of c2.

Each object in the POB class has a name, a collection of attributes and their associated types, and

a collection of parent POB-class names along with their associated probability assignments. Meth-

ods associated with POB-class objects provide abilities to establish attribute/type information, par-

ent POB-class/probability assignments, adding and removing POB-objects from the POB-class, and

various self-replicating functions that are useful for query processing.

POB objects contain an object name, the oid, a collection of probabilistic tuple values, and a POB-

class pointer which points to the POB-class of which it is an instance. The POB-class pointer is

provided for fast access to class-level information: attributes, types, parents, etc. Methods associated

with POB-objects include functions for setting probabilistic tuple values and various self-replicating

functions to facilitate query processing.

The POB Server handles client requests. It contains a pointer to an ObjectStore database which

maintains persistence for the POB-server. The POB Server includes methods for: connecting to a

database, disconnecting from a database, creating and removing schemas, creating and removing

classes, creating and removing objects, computing the probability that an object is a member of classc1 given that it is a member of class c2, computing the probabilistic extent of a class, checking if an

object satisfies a given probabilistic selection condition, executing an arbitrary query in the proba-

bilistic object algebra, and a variety of printing functions.

Note that each method may not correspond to a logical unit of work — in this case a request. In

some instances, several requests are handled within one method while in other instances, a single

request is handled through a combination of methods.
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9.2 Experiments

Using the POB Server, we have conducted a set of experiments to assess the various equivalences

described in Section 8 as well as to assess the performance of selection. We do not describe all

the experiments we conducted (due to space reasons), but only a few sample experiments are listed

below. The limiting factor in all experiments was the size of the “largest intermediate schema.” This

is the number of objects in the largest schema encountered when executing the query. For a selection

query, this is just the number of objects in the POB-instance on which the selection is performed. In

the case of a join/cartesian product, this is the product of the sizes of the POB-instances being joined

(or whose Cartesian product is being computed). In the experiments involving Equations 8, 12 and

13 described below, we varied the number of objects in the largest intermediate schema from 0 to

270,000 objects and measured the times taken (on a Sun Ultra 10 workstation) for both the left side

and the right side of the rewrite rules in question. The idea was to see whether the left side of a rule

should be rewritten to the right side or the other way round.

Effectiveness of Equation 8. Our first experiment evaluated the effectiveness of pushing selections

into joins (Theorem 8.4). Figure 9.2(a) shows what happens if the selectivity is varied using inde-

pendence. It is easy to see that the right side of this equation pays off in a huge way and that as

the selectivity decreases (i.e., fewer and fewer objects are selected), more and more objects can be

efficiently handed. For instance, with 20% selectivity, 270,000 objects in the largest intermediate

schema can be computed in about 30 seconds.

Figure 9.2(b) shows the effect of evaluating the right side of Equation 8 with different probabilistic

strategies. We see that precisely which strategy is used has very little impact on the computation time,

disputing the oft-held folk claim that assuming independence of events is necessary for efficiency

reasons.

Effectiveness of Equation 12. We conducted experiments similar to those described above with

Equation 12. Figure 9.2(c) shows the result of testing — it shows that pushing selections into a

cartesian product may save up to 80–90% of the time and this saving increases as the number of

objects increases.

Effectiveness of Equation 13. We conducted experiments similar to those described above with

Equation 13. Figure 9.2(d) shows the result of testing — it shows that pushing projections into a

cartesian product does not help very much. The reason for this is because projection does not reduce

the number of objects.

Effectiveness of Selection. We also conducted some experiments on the effectiveness of selection

on POB-schemas of sizes between 3000 and 10000 objects. In the experiment, we executed queries

of the form “Select x from schema e where x:D > val”. Figure 9.2(e) shows the result when two

different selectivities are used — 50% (i.e. half the objects satisfy the selection condition) and 30%

(i.e. 30% of the objects satisfy the selection condition). We also tested what happens when we con-
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sider membership selection queries of the form “Select x from schema e where (x is a member of

class C)”. Figure 9.2(f) shows the result of this query with two different selectivities. Note that

the queries generally exhibit linear behavior w.r.t. the number of objects. In addition, membership

queries are computationally more expensive than simple inequality queries.

10 Related Work

Our work has been inspired by the prior work of Kornatzky and Shimony [23] who describe a prob-

abilistic object-oriented data model in which, like in our approach, uncertainty in the values of at-

tributes and in the class graph may be represented by probabilities. The main differences between

[23] and our approach can be briefly summarized as follows:� The work in [23] introduces an object calculus for extracting objects from probabilistic object-

oriented databases. This calculus can thus be compared to our selection operation. It is more restric-

tive in the sense that it only handles probabilitieson atomic formulas (which always evaluate to either

true or false), while our selection operation also handles probabilities on conjunctions and disjunc-

tions of atomic formulas, using probabilistic conjunction and disjunction strategies. Specifically, we

make no independence assumption (which [23] does). On the other hand, their object calculus has

quantifiers, which our selection operation does not include. However, it could be easily extended in

this direction.� We also discuss in detail, the algebraic operations of projection, renaming, cartesian product,

join, selection, union, intersection, and difference. As they were developing a calculus, [23] does

not deal with this.� We introduce for the first time, results on query equivalences in probabilistic object bases, and

to our knowledge, our system is the first implementation of a probabilistic object base.� In [23], the class graph is a directed tree without multiple inheritance. Moreover, incomparable

classes are always disjoint. In contrast, in our approach, the class graph may be any directed acyclic

graph, thus allowing multiple inheritance. Furthermore, the disjointness of classes can be expressed

in a flexible way by grouping them into partition clusters. The consistency of schema declarations

is guaranteed for a large subclass extending directed trees.� Kornatzky and Shimony assume a precise probability distribution on the set of all possible val-

ues of an attribute (including a null value ? that represents the inapplicability of an attribute). Our

approach, in contrast, just requires an interval range for probability distributions. Furthermore, ob-

jects occurring as attribute values are given special treatment in [23]; our model can be extended in

this respect.
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� In [23], the probabilistic extent of a class is derived from statistical and subjective probabilities.

Since, in general, inconsistency may arise, the notion of cutsets of classes is introduced there. The

probabilistic extent of a class is then given by statistical probabilities in the class hierarchy and by

subjective probabilities with respect to a cutset. Our probabilistic extent, in contrast, is just derived

from statistical probabilities and classical class membership. We thus avoid all the problems that

come along with mixing up statistical and subjective probabilities.

A step towards the model proposed in the present paper is an extension of the relational model

allowing complex values [12] with probabilities. However, the model in [12] has no a class hierarchy

and, in particular, inheritance is not addressed. Thus, it has no features of an object oriented system,

and is essentially in the group of probabilistic relational database models, which we discuss next.

ProbView [24] is a probabilistic relation database model which generalizes various approaches

(like, for example, [3, 6]). Cavallo and Pittarelli’s important paper [6] views relations in a (flat) re-

lational database as probability distribution functions, where tuples in the same relation are viewed

as pairwise disjoint events whose probabilities sum up to 1. Drawbacks of this approach have been

pointed out in [8]. An extension of the model using probability intervals, which are viewed as con-

straints on the probabilities, is reviewed in [28]. Barbará et al. [3] consider a probabilistic extension

to the relational model, in which imprecise attributes are modeled as probability distributions over

finite sets of values. No probabilities can be assigned to outmost tuples. Their approach assumes that

key attributes are deterministic (have probability 1) and that non-key attributes in different relations

are independent. As pointed out in [3], “lossy” joins are possible in this model.

Another important probabilistic database model is that of Dey and Sarkar [8], which assigns each

tuple in a (flat) relational database a probability value in a special attribute. Based on [8], a proba-

bilistic extension to SQL is developed in [9]. The classical relational operations are in [8] defined

adopting different assumptions on the relationship between tuples; in particular, join assumes inde-

pendence; union and difference assume positive correlation; and compaction assumes disjointness

or positive correlation. Our model is far more general.

Fuhr and Rölleke [14] consider a probabilistic version of NF2 relations, extending their approach

for flat tuples [15], and define a relational algebra for this model. Probabilities are assigned to tuples

and to values of nested tuples (that is, set-valued attributes), which are viewed as events that have

an associated event expression. The algebraic operators manipulate tuples by combining value and

event expressions appropriately. An intensional semantics is developed in [14] in which probabil-

ities are defined through possible worlds. The evaluation method assumes that in nondeterministic

relations (that is, relations with uncertain tuples), joint occurrence of two different values is either

always independent or impossible—this is certainly restrictive.

Dyreson and Snodgrass [10] provide a version of SQL to handle temporal indeterminacy, where

there is uncertainty about when an event occurs. They use a relational framework and focus on the
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important case where the space of values over which uncertainty exists is huge.

Kießling and his group [20] developed a framework called DUCK for reasoning with uncertainty.

They provide an elegant, logical, axiomatic theory for uncertain reasoning in the presence of rules.

In contrast, in our framework, rules are not present; rather, our interest is in extending object database

models to handle uncertainty in an algebraic setting.

In an important paper, Lakshmanan and Sadri [26] show how selected probabilistic strategies can

be used to extend the previous probabilistic models. Lakshmanan and Shiri [27] show how deduc-

tive databases may be parameterized through the use of conjunction and disjunction strategies, an

approach also followed by Dekhtyar and Subrahmanian [7]. We have built in this paper upon the

important concept of probabilistic conjunction and disjunction strategies, but in an object oriented

instead of a logic programming setting.

11 Conclusion

In this paper, we proposed an extension of the relational algebra to handle probabilistic modes of

uncertainty in object oriented database systems. More precisely, the main contributions of this paper

can be briefly summarized as follows:

1. We presented a formal definition of a probabilistic object base, which extends previous defini-

tions given by Kornatzky and Shimony [23].

2. We gave a formal model theoretic basis for discussing the consistency of POBs, and showed

that consistency checking is NP-complete in general. We then defined classes of POBs for which

consistency can be checked in polynomial time, and provided efficient algorithms for this task.

3. We developed an algebra that extends the relational algebra to probabilisticobject bases. Specif-

ically, this algebra recognizes that probabilities of complex events depend on existing knowledge

about dependencies between events, and hence, it allows users to express algebraic queries under

appropriate conjunction, disjunction, and difference strategies (which encode such dependence in-

formation).

4. We presented a number of equivalence results that may form a set of rewrite rules to be used in

query optimization.

5. Our POB framework has been implemented on top of ObjectStore and the VisiBroker ORB.

6. Finally, we conducted a set of experiments on the efficacy of our equivalence results for query

rewriting (and hence for query optimization).

Several tasks remain for further work. One is the enhancement of the current prototype by a so-

phisticated POB-algebra query manager, which optimizes queries by using cost models and rewrite
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rules as shown in Figure 2. For the front end of the system, it would be well worth developing a

probabilistic version of SQL (similar to, for example, Dey and Sakar’s language PSQL [9]).
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Appendix

This appendix contains the proofs of all technical results in the main body of the paper.

Proof of Theorem 5.1. Let S = (C; �;);me; }) be a consistent POB-schema. We first show P1.

Suppose that there are two different paths from a class c1 to another class c2. Let p and q be the

products of the edge probabilities on these two paths. By C1 and C4, every model " of S satisfies"(c2) 6= ; and p � j"(c2)j = j"(c1)j = q � j"(c2)j. Thus, we get p = q.

We next prove P2 by contradiction. Let us assume that there exists some clusterP 2Sme(C) and

that there are two distinct classes c1; c22P that have a common subclass c 2 C. Hence, by C2 and

C3, every model " of S satisfies "(c) = ;. But this contradicts C1. 2
Proof of Theorem 5.2. It remains to show NP-hardness. We give a polynomial reduction from the

NP-complete problem of graph 3-colorability [16]. Let (V;E)be an undirected graph. We now have

to construct a POB-schema S such that (V;E) is 3-colorable iff S is consistent. The main idea is to

represent each node v2V by three pairwise disjoint and nonempty classes d1v, d2v, and d3v, which en-

code the three colors and the properties of a mapping from V into the color set. Each edge fu; vg 2E
is then represented by making d1u, d2u, and d3u disjoint from d1v, d2v, and d3v, respectively.

The technical formalization is quite tricky. The POB-schema S = (C; �;);me; }) is constructed

as follows. We initializeC,), and}with fb; c1; c2; dg,f(c1; b); (c2; b); (d; c1)g, and f(c1; b; 1=4); (c2; b; 3=4); (d; c1; 1)g,
respectively, and extend them as follows. We add to C for each v2V and i2 f0; 1; 2gclasses civ anddiv, and for each fu; vg 2E and i2 f0; 1; 2g classes diu;v and div;u. For each v 2V and i2 f0; 1; 2g,
we add the edges civ ) b, d ) civ, div ) civ , and div ) c2, and assign them the probabilities1=2, 1=2, 1=2, and 1=3, respectively. Furthermore, for each diu;v 2C where i2 f0; 1; 2g, we add the

edges diu;v ) ciu and diu;v ) c2, and assign them probabilities 1=2 and 1=3, respectively. Finally,

let �(c) = [ ] for all c 2 C and me as follows:me(b) = ffc1; c2gg [ ffcivg j v2V; i2 f0; 1; 2gg,me(c1) = ffdgg,me(c2) = ffd1v; d2v; d3vg j v2V g [ ffdiu;v; div;ug j fu; vg 2E; i2 f0; 1; 2gg,me(civ) = ffcg j c 2 C; c) civg for all v 2V and i2 f0; 1; 2g, andme(c) = ;, for all other classes c 2 C.

Note that the constructed POB-schema S is pseudo-consistent. It finally remains to show that the

undirected graph (V;E) is 3-colorable iff S is consistent.

()) If (V;E) is 3-colorable, then a mapping 
 : V ! f0; 1; 2g exists with 
(u) 6= 
(v) for allfu; vg 2 E. As easily checked, the following interpretation ", where O = fo0; o1; o2; o3g, is a

model of S:
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"(b) = fo0; o1; o2; o3g"(c1) = fo3g"(c2) = fo0; o1; o2g"(d) = fo3g"(civ) = foj ; o3g, where j = (
(v) + i) mod 3 (for all v2V and i2 f0; 1; 2g)"(div) = fojg, where j = (
(v) + i) mod 3 (for all v2V and i2 f0; 1; 2g)"(diu;v) = fojg, where j = (
(v) + i) mod 3 (for all diu;v 2C where i2 f0; 1; 2g).(() If " is a model of S, then it satisfies "(c2) 6= ; and the following conditions:j"(div)j = 1=3 � j"(c2)j for all v 2 V and i2 f0; 1; 2g"(div) \ "(djv) = ;, for all v 2 V and i; j2 f0; 1; 2gwith i 6= j"(diu;v) \ "(div;u) = ;, for all fu; vg 2 E and i2 f0; 1; 2g"(d1v) [ "(d2v) [ "(d3v) = "(c2), for all v 2 V"(div) = "(div;u), for all diu;v 2 C where i2 f0; 1; 2g (as div ) civ, div;u ) civ).

Since "(c2) is nonempty, there exists some o 2 "(c2). Let the mapping 
 : V ! f0; 1; 2g be defined

by 
(v) = i iff o 2 "(div) for all nodes v 2 V . It is now easy to see that 
 is well-defined and that
(u) 6= 
(v) for all edges fu; vg 2 E. Hence, (V;E) is 3-colorable. 2
We next concentrate on the proof of Theorem 5.3. We need the following two lemmata.

Lemma 11.1 Let S = (C; �;);me; }) be a well-structured POB-schema. Let c 2 C be any class

and let P1;P2 2 me(c) be two distinct partition clusters. Then the common subclasses of P1 andP2 that are maximal with respect to)? are pairwise t-disjoint.

Proof. The claim follows immediately from W2. 2
Lemma 11.2 LetS = (C; �;);me; })be a well-structured POB-schema. Let c2C such thatGS(c)
contains at least one edge. Let Pl be a leaf or isolated node in a graphG= (V ; E) that results fromGS(c) by iteratively removing leaves or isolated nodes. Suppose dl2C is a subclass of Pl but not

of any other node P in G, and that d2C is a subclass of some node P in G but not of Pl. Then dl
and d are not t-disjoint and d =2 S?(dl), dl =2 S?(d).
Proof. We give a proof by contradiction. Assume first that dl and d are t-disjoint. This means

that there must be some class c0 2C, some partition cluster P 0 2me(c0), and two distinct classesd0l; d02P 0 such that dl)? d0l and d)? d0. Suppose now that c0 is not a subclass of c. By W1, there

exists a top element c> with d0l)? c> and d0)? c>. By W4, all paths from dl up to c> via d0l and c0
and all paths from d up to c> via d0 and c0 must go through c. Thus, c must be a subclass of both d0l
and d0. But this contradicts P2. Hence, c0 must be a subclass of c. Suppose now that c = c0. Thus,P 0
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belongs to me(c). By the assumptions on dl and d, the cluster P 0 cannot belong to G, which means

it was removed in the construction of G from S(c). However, since the edges fPl;P 0g and fP ;P 0g
are in GS(c), this raises a contradiction. It follows that c0 must be a proper subclass of c and thus a

subclass of some clusterP 002me(c). Again, by the assumptions on dl and d, this cluster P 00 cannot

belong to G, and assuming that P 00 was in the construction of G raises again a contradiction. This

proves that dl and d are t-disjoint.

Assume next that dl 2 S?(d) holds. Then dl is a subclass of P , which contradicts that dl is not a

subclass of any node in G different from Pl. The case d 2 S?(d) is analogous. 2
We are now ready to prove Theorem 5.3.

Proof of Theorem 5.3. Let S = (C; �;);me; }) be a pseudo-consistent and well-structured POB-

schema. Let c> denote the top element of S. By P1 and W1, there exists a unique mapping � : C ![0; 1] such that �(c>) = 1 and that �(c) = }(c; d) ��(d) for all c; d 2 C with c) d (define �(c) as

the product of the edge probabilities on any path from c to c>).

It is now easy to see thatS is consistent iff there exists a finite nonempty setO, a mapping " from C
to 2O; and a mapping � from O to the set of all rational numbers in [0; 1] such that:

(1) "(c) � "(d) for all classes c; d 2 C with c) d.

(2) "(c)\ "(d) = ; for all distinct classes c; d2C that belong to the same P 2 Sfme(e) j e2Cg.
(3)
Po2O �(o) = 1.

(4) �(c) =Po2"(c) �(o) for all classes c 2 C.

Informally, � assigns a mass to each object (possibly 0), and �(c) is the share of the total mass of

all objects in c. Such O, ", and � are now constructed by induction on the structure of S. Owing to

possibly complex relationships between classes in S, the proof is naturally involved.

We first consider the case where S has no multiple inheritance, i.e., (C;)) is a tree with root c>.

Basis: For C = fc>g, we define O = fog, "(c>) = fog, and �(o) = 1. It is easy to see that theseO, ", and � have the properties (1)–(4) in S.

Induction: LetP1; : : : ;Pl be the partition clusters in me(c>). Let S?1 = (C?1 ; �?1;)?1;me?1; }?1); : : : ;S?l = (C?l ; �?l ;)?l ;me?l ; }?l ) be the greatest POB-schemas that are contained in S, that have the top

element c>, and that do not contain any classes from S(c>)�P1; : : : ; S(c>)� Pl.
Without loss of generality, let us consider the partition cluster P1 = fc1; : : : ; ckg. Let Si =(Ci; �i;)i;mei; }i) be the greatest POB-schema that is contained in S and has the top element ci,foralli 2 f1; : : : ; kg. Each Si is pseudo-consistent and well-structured. Hence, by the induction

hypothesis, there exist Oi, "i, and �i that satisfy (1)–(4) in Si. It is now easy to verify that the fol-

lowingO?1, "?1, and �?1 have the properties (1)–(4) in S?1:
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� O?1 = fog [ kSi=1fcig � "(ci).� "?1(c>) = O?1 and "?1(di) = fcig � "i(di) for all di 2 Ci and i 2 f1; : : : ; kg.� �?1(o) = 1� kPi=1}(ci; c>) and �?1(ci; oi) = }(ci; c>) ��i(oi), for all i 2 f1; : : : ; kg, oi 2 Oi.
That is, there existO?1; : : : ;O?l , "?1; : : : ; "?l , and �?1; : : : ; �?l that satisfy (1)–(4) in S?1; : : : ;S?l . We

finally defineO, ", and � with the properties (1)–(4) in S as follows:� O = O?1 � � � � � O?l .� "(c>) = O and "(d?i ) = f(o?1; : : : ; o?l ) 2 O j o?i 2 "?i (d?i )g for all d?i 2 C?i � fc>g andi 2 f1; : : : ; lg.� �(o?1; : : : ; o?l ) = lQi=1�?i (o?i ) for all (o?1; : : : ; o?l ) 2 O.

Let us next concentrate on POB-schemas S = (C; �;);me; }) with limited multiple inheritance:

For every c 2 C and every two distinct P1;P2 2 me(c), it holds that every c1 2 P1 and c2 2 P2
have at most one common subclass (which must then be different from c1; c2).

In this case, we must be more careful in the induction step. Along the same line of argumentation,

we may constructO?i , "?i , and �?i with (1)–(4) in S?i , for all i 2 f1; : : : ; lg, since P2 ensures that any

two classes in the same partition cluster have pairwise disjoint sets of subclasses. The construction

of O, ", and �, however, is by induction on the structure of GS(c>) as follows.

Basis: For l = 1, we define O = O?1, " = "?1, and � = �?1.

Induction: For l > 1 and GS(c>) = (me(c>); ;) (no common subclasses), the proof is as above.

For l > 1 and GS(c>) 6= (me(c>); ;), by W3, the undirected graphGS(c>) contains at least one

leaf or one isolated node. Without loss of generality, let this node be given byPl. LetS0 = (C 0; �0;)0;me0; }0)
be the POB-schema that unifies the POB-schemas S?1; : : : ;S?l�1 under the top element c>. By the

induction hypothesis, there existO0, "0, and �0 with the properties (1)–(4) in S0.
Let e1; : : : ; em withm � 0 denote all the classes in C0\C?l �fc>g. It is now important to point out

that, by the assumption on common subclasses and Lemma 11.1, the classes ei are pairwise t-disjoint.

Moreover, by Lemma 11.2, each classes c0 2 C 0�fc>; e1; : : : ; emg and c? 2 C?�fc>; e1; : : : ; emg
are not t-disjoint and c0 62 S?(c?), c? 62 S?(c0) hold. Let bO = O0 � ("0(e1) [ � � � [ "0(em)) andbO?l = O?l � ("?l (e1) [ � � � [ "?l (em)). We now defineO, ", and � as follows:� O = bO0 � bO?l [Smj=1 "0(ej)� "?l (ej) .
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� "(d) = 8>>>>>>><>>>>>>>:O if d = c>"0(d)� "?l (d) if d 2 fe1; : : : ; emgf(o0; o?l ) 2 O j o0 2 "0(d)g if d 2 C 0 � fc>; e1; : : : ; emgf(o0; o?l ) 2 O j o?l 2 "?l (d)g if d 2 C? � fc>; e1; : : : ; emg .� �(o0; o?l ) = 8<:�0(o0) � �?l (o?l ) = �(ej) if (o0; o?l ) 2 "0(ej)� "?l (ej)�0(o0) � �?l (o?l ) = (1�Pmj=1 �(ej)) if (o0; o?l ) 2 bO0 � bO?l .

(Note that
Po02"0l(ej) �0(o0) =Po?l 2"?l (ej) �?l (o?l ) = �(ej) and

Po02 bO0 �0(o0) =Po?l 2 bO?l �?l (o?l ) =1�Pmj=1 �(ej).) It can now easily be shown thatO, ", and � have the properties (1)–(4) in S.

Let us finally consider the case of pseudo-consistent and well-structured POB-schemas S with-

out any further restrictions. In this case, the classes e1; : : : ; em of the previous induction may have

proper subclasses. The main ideas of the proof are now as follows. By the induction hypothesis, the

subschema Sej under ej is consistent. Since the classes ej are pairwise disjoint, and each path from

a class in Sej beyond that schema must pass through ej , we can informally assume that the subgraph

below ej is replaced by a partition cluster fej;1; : : : ; ej;njg with
Pi2f1;:::;njg }(ej;i; ej) = 1 for allj 2 f1; : : : ; mg, where we introduce a class ej;i for each object in the model of Sej . We then apply

the same construction as above, using ej;1; : : : ; ej;nj ; instead of ej , for all j 2 f1; : : : ; mg. 2
Proof of Theorem 7.1. Immediate from the fact that the consistency of S is independent of �. 2
Proof of Theorem 7.2. Immediate from the fact that the consistency of S is independent of �. 2
Proof of Theorem 7.4. Analogous to Theorem 7.3 (observe that the consistency of a POB-schema

is independent of the type assignment). 2
Proof of Theorem 8.1. Let I2 = (�2; �2) = ��2(I), I1;2 = (�1;2; �1;2) = ��1(��2(I)), and I1^2 =(�1^2; �1^2) = ��1^�2(I). Since �1 ^ �2 is logically equivalent to �2 ^ �1, it suffices to show thatI1;2 and I1^2 coincide. For each c 2 C, we have�1;2(c) = fo 2 �2(c) j prob I2;o j= �1g= fo 2 �(c) j (prob I;o j= �2) ^ (prob I2;o j= �1)g= fo 2 �(c) j (prob I;o j= �2) ^ (prob I;o j= �1)g= fo 2 �(c) j prob I;o j= �1 ^ �2g= �1^2(c);
the key fact is thatprob I2;o j= �1 is equivalent toprob I;o j= �1, if o belongs to�2(c), i.e., prob I;o j=�2 is true. Furthermore, for each class c 2 C,
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�1;2(c) = �2(c)j�1;2(c)= �(c)j�2(c)j�1;2(c)= �(c)j�1;2(c) as �1;2(c) � �2(c)= �(c)j�1^2(c) as �1;2(c) = �1^2(c)= �1^2(c):
This proves the result. 2
Proof of Theorem 8.2. Equation (2): immediate from the fact that �A(�B(I)) = �A\B(I).

Equation (3): By the definition of selection, the oid o is selected from I iff prob I;o j= � holds.

Since � accesses only attributes in the schema S0 = �A(S), and since the projection �A(I) =: I0
lets all such components of o survive, we have that prob I;o j= � iff prob I0;o j= �, for every oid o.

Thus, by definition of �A it follows that �A(��(I)) = �A(��(I0)). Since �A(��(I0)) and ��(I0)
have the same schema, we have �A(��(I0)) = ��(I0)). It follows �A(��(I)) = ��(�A(I)). 2
Proof of Theorem 8.3. Equation (4): Let I = (�; �). Consider any top-level attribute E from the

schema of �N (I). Then, there is a top-level attribute D from S (not necessarily different from E)

such that �N (D) = E. Let o be any oid, and set �0 := �N�1(�). We then obtain:�N (�(o)):E = �N (�(o):D) = �N (�(o):�N�1(E)):
By induction on the structure of�, we thus obtain that prob �N(I);o j= � iff prob I;o j= �0 holds for all

oids o populating I (equivalently, �N (I)). Thus, o belongs to ��(�N(I)) iff it belongs to �N (��0(I)),
and since selection and renaming do not change class membership, o belongs in ��(�N (I)) and in�N (��0(I)) to the same class. Since selection does not affect the value assignment,o has in��(�N(I))
and in �N (��0(I)) also the same probabilistic value. Thus ��(�N(I)) = �N (��0(I)).

Equation (5): The proof is analogous as for classical relational databases (class hierarchy and prob-

ability assignment do not play a role here).

We first observe that the schemas on the two sides coincide. Indeed, ifA is a top-level attribute of

the schema of�A(�N (I)), thenA 2 A and �N�1(A) is a top-level attribute ofS. Thus, �N (�N�1(A)) =A is a top-level attribute of the schema of �N (��N�1(A)(I)). Conversely, ifA is a top-level attribute

of �N (��N�1(A)(I)), then �N�1(A) is a top-level attribute of S and, moreover, A 2 A. Thus, A is

a top-level attribute of the schema of �A(�N(I)). It follows from this that the schemes on the two

sides of Equation (5) coincide. Since projection and renaming do not affect class membership of ob-

jects, I, �A(�N (I)), and �N (��N�1(A)(I)) are populated by the same objects o, with the same class

membership function. The value of the (existing) attribute A of object o in both �A(�N(I)) and�N (��N�1(A)(I)) is given by �(o):�N�1(A), where I = (�; �). This establishes that �A(�N(I))
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and �N (��N�1(A)(I)) coincide. 2
Proof of Theorem 8.4. Equation (6) (commutativity of the join) holds because (i) the join in classical

databases (used to generate the POB-schema of the join and the oids of its instance) is commutative,

(ii) classical set intersection \ is commutative, and (iii) the conjunction strategy
 is commutative.

Equation (7) (associativity of join): A simple analysis of the possible cases for membership of

an attribute A in the sets of top-level attributes A1, A2, and A3 of S1;S2; and S3, respectively,

establishes that the join of probabilistic tuple values is associative. From associativity of classical

relational join and set intersection, it is then easy to see from the definition of join for POB-instances

that (I1 ./
 I2) ./
 I3 = I1 ./
 (I2 ./
 I3) holds.

Equation (8): By Theorem 8.1 we have ��1^�2^�3(I1 ./
 I2) = ��3(��1^�2(I1 ./
 I2)). Thus,

it remains to establish that ��1^�2(I1 ./
 I2) = ��1(I1) ./
 ��2(I2) holds.

The set of top-level attributes of the schema of I1./2 := I1 ./
 I2 is A1 [ A2. For each A 2A1 � A2, its value for an object o = (o1; o2) in I1./2, provided A exists for o, is by definition

of join given by �1(o1):A. Since �1 involves only top-level attributes from A1 � A2, this impliesprob I1./2;o j= �1 iff prob I1;o1 j= �1. Similarly, we obtain thatprob I1./2;o j= �2 iff prob I2;o2 j= �2;

hence, prob I1./2;o j= �1 ^ �2 iff prob Ii;oi j= �i, for i 2 f1; 2g.
Thus, for every oid o = (o1; o2) belonging to ��1^�2(I1 ./
 I2) it holds that oi is in ��i(Ii), fori 2 f1; 2g, and thus (o1; o2) belongs to ��1(I1) ./
 ��2(I2). Moreover, since selection does not

change an object’s value assignment,o has in��1(I1) ./
 ��2(I2) the same value as in��1^�2(I1./2).
Conversely, if o = (o1; o2) belongs to��1(I1) ./
 ��2(I2), then o belongs to I1./2, andprob I1./2 ;o j=�1 ^ �2 holds. Thus, o belongs also to ��1^�2(I1./2), and has in it the same value as in ��1(I1) ./
��2(I2). This proves ��1^�2(I1 ./
 I2) = ��1(I1) ./
 ��2(I2).

Equation(9): Since projection does not change class membership, both�B(I1 ./
 I2) and�B(�B1(I1) ./
�B2(I2)) are populated by the objects o = (o1; o2) from I1 ./
 I2. The inner projections�B1 , �B2
remove all top-level attributesA 2 A1[A2 from o1 and o2, respectively, which are neither common

attributes ofA1 andA2 nor inB. Each such attribute of o in I1 ./
 I2 is removed by the projection�B applied to it. Thus, the value of o in �B(I1 ./
 I2) and �B1(I1) ./
 �B2(I2) is the same. It

follows �B(I1 ./
 I2) = �B(�B1(I1) ./
 �B2(I2)). 2
Proof of Theorem 8.6. Equations (14) and (15) are immediate from commutativity and associativity,

respectively, of set intersection and the probabilistic conjunction strategy
.

Equations (16) and (17) can be concluded similarly, with disjunction strategy � in place of 
,

based on the following observation: without loss of generality, we may assume that each object o
occurring in one of I1, I2, and I3 occurs in all of them and belongs to the same class; furthermore,

the set V of values of a top-level attribute A associated with o is always the same. The reason is

that technically, we may add o to the POB-instances in which it is missing, and add values v to V in
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each Ii and set �(v) = �(v) = 0 such that V is everywhere the same. Thanks to the postulate of

Ignorance for�, this does not change the result of the expressions in Equations (16) and (17). Under

this technical assumption, only the intersection case in the definitions of [�(v); �(v)] (Def. 7.27) and�(o) as in Def. 7.29 is relevant, for which the properties obviously hold.

Equation (18) holds since projection simply removes attributes while it does not affect class mem-

bership of objects, and the intersection pt1 \
 pt2 of probabilistic tuple values pt1 and pt2 is the

aggregation of (independent) intersections pt1:Ai 
 pt2:Ai of all their attributesAi. The argument

for Equations (19) and (20) is analogous (as above, we may add oids o and values v to simplify the

value assignment to o in I1 [� I2 and I1 �	 I2, respectively). 2
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