
How Embedded Memory in Recurrent Neural NetworkArchitectures Helps Learning Long-term TemporalDependencies �Tsungnan Lin 1;2, Bill G. Horne 1 and C. Lee Giles 1;31 NEC Research Institute, 4 Independence Way, Princeton, NJ 085402 Department of Electrical Engineering, Princeton University, Princeton, NJ 085403 UMIACS, University of Maryland, College Park, MD 20742AbstractLearning long-term temporal dependencies with recurrent neural networks can be a di�cultproblem. It has recently been shown that a class of recurrent neural networks called NARXnetworks perform much better than conventional recurrent neural networks for learning certainsimple long-term dependency problems. The intuitive explanation for this behavior is thatthe output memories of a NARX network can be manifested as jump-ahead connections inthe time-unfolded network. These jump-ahead connections can propagate gradient informationmore e�ciently, thus reducing the sensitivity of the network to long-term dependencies.This work gives empirical justi�cation to our hypothesis that similar improvements in learn-ing long-term dependencies can be achieved with other classes of recurrent neural networkarchitectures simply by increasing the order of the embedded memory.In particular we explore the impact of learning simple long-term dependency problems onthree classes of recurrent neural network architectures: globally recurrent networks, locallyrecurrent networks, and NARX (output feedback) networks.Comparing the performance of these architectures with di�erent orders of embedded memoryon two simple long-term dependencies problems shows that all of these classes of network ar-chitectures demonstrate signi�cant improvement on learning long-term dependencies when theorders of embedded memory are increased. These results can be important to a user comfort-able to a speci�c recurrent neural network architecture because simply increasing the embeddingmemory order will make the architecture more robust to the problem of long-term dependencylearning.KEYWORDS:discrete-time, memory, long-term dependencies, recurrent neural networks, training, gradient-descent�Computer Science Technical Report CS-TR-3626 and UMIACS-TR-96-28, University of Maryland, College Park,MD 20742 1

1 IntroductionRecurrent Neural Networks (RNNs) are capable of representing arbitrary nonlinear dynamical sys-tems [24] and can be computationally quite powerful [25]. However, various empirical studies sug-gest that sometimes learning even simple behavior can be quite di�cult when using gradient-descentlearning algorithms. Recently, it has been demonstrated that at least part of this di�culty can beattributed to the problem of long-term dependencies [2, 18], i.e. those problems for which the desiredoutput of a system at time T depends on inputs presented at times t� T .In particular Bengio et al. [2] showed that if a system is to latch information robustly, thenthe fraction of the gradient in a gradient-based training algorithm due to information n time stepsin the past approaches zero as n becomes large. This e�ect is called the problem of vanishinggradient. Bengio et al. claimed that the problem of a vanishing gradient is the essential reason whygradient-descent methods are not su�ciently powerful to learn long-term dependencies.Several approaches have been suggested to circumvent the problem of vanishing gradients intraining RNNs. One possible approach is to preset initial weights by using prior knowledge [6, 9] butthis is often not available in many applications. Another approach is to use alternative optimizationmethods instead of gradient-based methods [2]. But, those algorithms can perform as poorly asgradient methods, or require far more computational resources. Alternatively, the input data canbe altered to represent a reduced description that makes global features more explicit and morereadily detectable [18, 22, 23]. Unfortunately, this approach may fail if short-term dependencies areequally as important. Hochreiter and Schmidhuber [12] propose a speci�c architectural approachwhich utilizes high-order gating units. Recently, it has been suggested that a network architecturethat operates on multiple time scales might be useful [10, 11].We have shown that a class of recurrent neural networks called NARX networks long-termdependencies when using a gradient descent training algorithm than previously reported in theliterature [16, 15]. The intuitive explanation for this behavior is that the output memories of aNARX neural network are manifested as jump-ahead connections in the time-unfolded network thatis often associated with algorithms as Backpropagation Through Time (BPTT). These jump-aheadconnections provide shorter paths for propagating gradient information, thus reducing the sensitivityof the network to long-term dependencies.We hypothesize that the similar improvement on learning long-term dependencies can be achieved2

in other classes of recurrent neural network architectures by increasing the orders of embedded mem-ory. It is worth noting that one of the �rst uses of embedded memory in recurrent network archi-tectures was that of Jordan [14]. In this paper, we empirically justify this hypothesis by showingthe relationship between memory order of a RNN and its sensitivity to long-term dependencies. InSection 2, we discuss three classes of conventional recurrent neural networks architectures: glob-ally recurrent networks (the architecture, not the training procedure, used by Elman) [5]; locallyrecurrent networks (in particular the Frasconi, Gori and Soda's model) [7]; NARX networks [3, 20],and their corresponding models with a high order embedded memory. In Section 3, we provide aempirical comparison of these architectures by investigating their performance on learning two sim-ple long-term dependencies problems: the latching problem and a grammatical inference problem.These simulations show that these classes of recurrent neural network architectures all demonstratesigni�cant improvement on learning long-term dependencies when the embedded memory order isincreased.2 Embedding high order memory in recurrent neural net-work architecturesSeveral recurrent neural network architectures have been proposed; for a collection of papers on thevariety see [8]. One taxometric classi�cation for these architectures can be based on the observabilityof their states: speci�cally they can be broadly divided into two groups depending on whether ornot the states of the network are observable or not [13]. For another taxometric approach based onmemory types, see Mozer [19]. For this study we picked three classes of networks: globally recurrent(GR) networks [5], locally recurrent networks (LR) [7], and NARX networks [3, 20]; and theircorresponding architectures with high-order embedded memory. It should be pointed out that ourembedded memory simply consists of simple tapped delayed values to various neurons and not moresophisticated embedded memory structures [19, 4]. NARX networks are a typical model of networkswith observable states. GR networks are a popular class of network with globally connected hiddenstates, and LR networks belong to locally recurrent network architecture class also with hiddenstates. 3

2.1 Globally connected RNNsThese networks (which we will call GR networks) are a class of recurrent networks in which thefeedback connections come from the state vector to the hidden layer, as illustrated in Figure 1 (a).These hidden states are sometimes called context units in the literature. Suppose such a network withnu input nodes, nh hidden nodes of, and ny output nodes, the dynamic equation can be describedby: oi(t) = f 0@ nhXj=1whijoj(t � 1) + nuXk=1wuikuk(t) +wbi1A : (1)yi(t) = f 0@ nhXj=1wyijoj(t) + wbi1A (2),where o(t) and y(t) denotes the real valued outputs of the hidden and output neurons at time t,and f is the nonlinear function.This network with a high order of embedded memory di�ers from standard globally connectedrecurrent network in that they have more than one state vector per feedback loop. Specially, for aGR network with embedded memory of order m, the dynamic equations of hidden nodes become:oi(t) = f 0@ mXk�1 nhXj=1whijmoj(t� k) + nuXk=1wuikuk(t) +wbi1A : (3)Figure 1 (b) illustrates an GR network with embedded memory of order two.2.2 Locally recurrent networksIn this class of networks, the feedback connections are only allowed from neurons to themselves,and the nodes are connected together in a feed forward architecture [1, 7, 21, 28]. Speci�cally, weconsider networks proposed by Frasconi et al. [7] (we will call LR), as shown in Figure 2 (a). Thedynamic neurons of LR networks can be described by4

Delays

Single Layer

Single Layer

y(t)

u(t)
o(t−1)

o(t)(a) Single Layer

Single Layer

y(t)

u(t)

o(t)

Delays

Delays

o(t−1)

o(t−2) (b)Figure 1: (a) A standard GR network. (b) A GR network with embedded memory of order two.oi(t) = f 0@whiioi(t � 1) +Xj wuijuj(t) + wbi1A (4)where oi(t) denotes the output of the ith node at time t, and f is the nonlinearity. For a networkwith embedded memory of order m, the output of the dynamic neurons becomesoi(t) = f 0@ mXn=1whiioi(k � n) +Xj wuijuj(t) + wbi1A : (5)Figure 2 (b) shows a LR network with embedded memory of order two. Locally recurrent modelsusually di�er in where and how much output feedback is permitted; see [28] for a discussion ofarchitectural di�erences.2.3 NARX recurrent neural networksAn important class of discrete{time nonlinear systems is the Nonlinear AutoRegressive with eXoge-nous inputs (NARX) model [3, 17, 26, 27]:y(t) = f �u(t�Du); : : : ; u(t� 1); u(t); y(t�Dy); : : : ; y(t � 1)� ; (6)5

y(t)

o(t)

o(t−1)

u(t)

D D D(a)
y(t)

o(t)

D D

u(t)

D

D D D
o(t−2)

o(t−1) (b)Figure 2: (a) A standard LR network. (b) A LR network with embedded memory of order two.where u(t) and y(t) represent input and output of the network at time t, Du and Dy are the input-memory and output-memory order, and the function f is a nonlinear function. When the functionf can be approximated by a Multilayer Perceptron, the resulting system is called a NARX recurrentneural network [3, 20].In this paper, we shall consider NARX networks with zero input order and . Thus the operationof the network id de�ned by y(t) = f �u(t); y(t�Dy); : : : ; y(t � 1)� ; (7)Figure 3 shows a NARX architecture with output memory of order 3.3 Experimental ResultsSimulations were performed to explore the e�ect of embedded memory on learning long-term depen-dencies in these three di�erent recurrent network architectures. The long-term dependency problemsinvestigated were the latching problem and a grammatical inference problem. These problems werechosen because they are simple and should be easy to learn but typlify the long-term dependencyissue. For more complex problems involving long-term dependencies see [12].In order to establish some metric for comparison in the experimental results, we gave the recurrent6

D D D

y(t)

u(t) y(t−1)y(t−2)y(t−3)Figure 3: A NARX network with output memory of order 3.Architecture Network Description # weightsMemory order # states # hidden neurons In-hid-outGR(1) 1 6 6 nodes 3-6-1 85GR(2) 2 10 5 nodes 3-5-1 91GR(3) 3 12 4 nodes 3-4-1 81NARX(2) 2 2 11 nodes 3-11-1 111NARX(4) 4 4 8 nodes 3-8-1 97NARX(6) 6 6 6 nodes 3-6-1 85LR(1) 1 14 14 nodes 3-14-1 109LR(2) 2 22 11 nodes 3-11-1 110LR(3) 3 27 9 nodes 3-9-1 111Table 1: Architecture description of di�erent recurrent networks used for the latching problem.networks su�cient resources (number of weights and training examples, adequate training time) toreadily solve the problem but held the the number of weights approximately invariant across allarchitectures. Also note that in some cases the order of the embedded memory is the same.3.1 The latching problemThis experiment evaluates the performance of di�erent recurrent network architectures with variousorder of embedded memory on a problem already used for studying the di�culty in learning long-term dependencies [2, 11, 16].This problem is a minimal task designed as a test that must necessarily be passed in order for anetwork to robustly latch information [2]. In this two-class problem, the class of a sequence depends7

only on the �rst 3 time steps, the remaining values in the sequence is uniform noise. There are threeinputs u1(t), u2(t), and a noise input e(t). Both u1(t) and u2(t) are zero for all times t > 3. At timet = 1, u1(1) = 1 and u2(1) = 0 for samples from class 1, and u1(1) = 0 and u2(1) = 1 for samplesfrom class 2. The noise input e(t) is given bye(t) = 8>><>>:0 t � 3U (�b; b) 3 < t � T (8)where U (�b; b) are samples drawn uniformly from [�0:155; 0:155]. Target information was onlyprovided at the end of each sequence. For comparison, our training particulars are identical tothose of [2]. For strings from class one, a target value of 0:8 was chosen, for class two, �0:8 waschosen. The length of the noisy sequence could be varied in order to control the span of long-termdependencies. For our experiment, the input sequences were 1 and �1 and were one-hot encodedinto two input neurons with trainable weights. The noise input weights were 0 until after 3 timesteps, then 1. Figure 4 shows the architecture for the latching problem.For each of these three architectures, several networks with di�erent orders of embedded memorywere trained. To compare the e�ects of di�erent orders of embedded memory in every class of net-works on learning long-term dependencies while holding as many other factors as possible constant,particular attention was paid to equalize the number of weights. Table 1 gives a detailed descriptionof all networks used in the latching problem. The weight connected the noisy input was �xed as 1:0.In order to learn the task, the networks have to develop two attractors to latch the information andstill remain inside the basin of the attractors of being resistant to noise when t > 3. The abilityof learning this minimal problem is a measure of the e�ectiveness of propagating the gradient fordi�erent neural network architectures with various memory orders.We varied the length of noisy inputs, T , from 10 to 60 in increments of 2. For each value of T ,we ran 50 simulations. For each simulation, we generated 30 strings from each class and the initialweights were randomly distributed in the range [�0:5; 0:5].The network was trained with a MSE cost function using simple BPTT algorithmwith a learningrate of 0:1 for a maximum of 200 epochs. Updates occurred at the end of each string and the errorwas back-propagated the full length of the string. If the absolute error between the output of the8

D D D D

e(t) u (t)1
u (t)2

y(t)

Neural Network

1.0Figure 4: The network used for the latching problem.network and the target value was less than 0:6 on all strings, the simulation was terminated anddetermined successful. If the simulation exceeded 200 epochs and did not correctly classify all strings,then the simulation was ruled a failure.Figures 5 (a) to (c) show plots of the percentage of those runs that were successful for di�erentclasses of networks with di�erent orders of embedded memory. It is clear from these plots thatthe network architectures with high order embedded memory become increasingly less sensitive tolong{term dependencies as the memory order was increased.An interesting comparison between the architectures GR(1) and NARX(6) is shown in Figure 5(d). Since the two architectures have the exact same number of weights, hidden nodes, and states,the only di�erence is the amount of memory order. Clearly, NARX networks perform far betterthan the GR networks at learning the latching problem.3.2 Grammatical Inference (Tree Automata) ProblemIn previous problem, the inputs to the network were followed by a noise term. In this experiment,we consider learning to classify strings of boolean values, which are labelled according to someprespeci�ed automata.In this example, the class of a string is completely determined by its input symbol at someprespeci�ed time t. For instance, Figure 6 shows a �ve-state automaton, in which the class of eachstring is determined by the third input symbol. When that symbol is \1", the string is accepted;otherwise, it is rejected. By increasing the length of the strings to be learned, we will be able to9

GR(1)

GR(2)

GR(3)

10 15 20 25 30 35 40 45 50 55 60
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T

%
 s

uc
ce

ss
fu

l s
im

ul
at

io
ns (a) LR(1)

LR(2)

LR(3)

10 15 20 25 30 35 40 45 50 55 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T

%
 s

uc
ce

ss
fu

l s
im

ul
at

io
ns (b)

NARX(2)

NARX(4)

NARX(6)

10 15 20 25 30 35 40 45 50 55 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T

%
 s

uc
ce

ss
fu

l s
im

ul
at

io
ns (c)

GR(1)

NARX(6)

10 15 20 25 30 35 40 45 50 55 60
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T

%
 s

uc
ce

ss
fu

l s
im

ul
at

io
ns (d)Figure 5: Performance on the latching problem. Plots of percentage of successful simulations from 50runs as a function of T , the length of input strings, for di�erent classes of network architectures withdi�erent orders of embedded memory: (a) Globally connected RNN (GR) , (b) Locally connectedRNN (LR), (c)NARX, (d) NARX v.s. GR(1).

10

0,1 0,1

0,1

0,1

0

1Figure 6: A �ve-state tree automaton. The unlabeled arrow is the start state and the double circledstate is the the acceptance state.Architecture Network Description # weightsMemory order # states # hidden neurons In-hid-outGR(1) 1 6 6 nodes 1-6-1 55GR(2) 2 10 5 nodes 1-5-1 66GR(3) 3 12 4 nodes 1-4-1 61NARX(2) 2 2 11 nodes 1-11-1 56NARX(4) 4 4 8 nodes 1-8-1 57NARX(6) 6 6 6 nodes 1-6-1 55LR(2) 2 22 11 nodes 1-11-1 56LR(4) 4 32 8 nodes 1-8-1 57LR(6) 6 36 6 nodes 1-6-1 55Table 2: Architectural description of di�erent recurrent network architecture used for the tree au-tomata problem.control the span of long-term dependencies, in which the output will depend on input values far inthe past.For this experiment all inputs were encoded into one input neuron with the 2 alphabets encodedrespectively as 0 and 1. For each simulation, we randomly generated a training set and an indepen-dent testing set, each consisting of 500 strings of length T such that there were an equal number ofpositive and negative strings. We varied T from 10 to 30. For the accepted strings, a target valueof 0:8 was chosen, for the rejected strings �0:8 was chosen. All other experimental parameters werethe same as the previous experiment.Because memory order LR(1) networks were experimentally unable to learn sequences of lengthgreater than 10, di�erent LS networks were used. Table 2 shows all the architectures used in thisexperiment.The network was trained by using a simple BPTT algorithm with a learning rate 0:01 for amaximum of 200 epochs. If the simulation exceeded 200 epochs and did not correctly classify all11

GR(1)

GR(2)

GR(3)

10 12 14 16 18 20 22 24 26 28 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T

%
 s

uc
ce

ss
fu

l s
im

ul
at

io
ns (a) LR(2)

LR(4)

LR(6)

10 12 14 16 18 20 22 24 26 28 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T

%
 s

uc
ce

ss
fu

l s
im

ul
at

io
ns (b)

NARX2
NARX4
NARX6

10 12 14 16 18 20 22 24 26 28 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T

%
 s

uc
c.

 s
im

ul
at

io
ns (c)

GR(1)

NARX6

10 12 14 16 18 20 22 24 26 28 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d)Figure 7: Tree Automata Problem. Plots of percentage of successful simulations out of 80 as afunction of T , the length of input strings, for di�erent classes of networks with di�erent ordersof embedded memory: (a) Globally connected RNN (GR), (b) Locally connected RNN (LR), (c)NARX, (d) NARX v.s. GR.strings in the training set, then the simulation was ruled a failure. We found that when the networklearned the training set perfectly, then it would consistently perform perfectly on the testing set aswell. For each value of T , we ran 80 simulations.Figures 7 (a) to (c) show plots of the percentage of the runs that were successful in each case. Acomparison between NARX networks and GR networks was shown in Figure 7 (d).Again, we note the same improvement on learning long-term dependencies obtained by increasingthe order of embedded memory in each class of recurrent neural network architectures.12

4 ConclusionIn this paper, we explore the impact of embedded memory on various recurrent neural networksarchitectures for learning long{term dependency problems, i.e. when the desired output depends oninputs presented at times far in the past, which has been shown to be di�cult for gradient basedalgorithms.Motivated by the analysis of the problem of learning long-term dependencies and the successof NARX networks on problems including grammatical inference and nonlinear system identi�ca-tion [13], we explore the ability of other recurrent neural networks with a high order of embeddedmemory on problems that involve long-term dependencies. We chose three classes of recurrent neu-ral network architectures based on state-observerability: hidden state globally recurrent and locallyrecurrent networks, and observeable state NARX networks.We tested this approach of extending memory in conventional recurrent neural networks on twosimple long-term dependency problems. Our experimental results show that each of these classesof recurrent neural networks architectures can demonstrate signi�cant improvement on learninglong-term dependencies when the memory order of the network is increased.The intuitive explanation for this behavior is that the embedded memories are manifested asjump{ahead connections in the unfolded network that is often used to describe algorithms likeBackpropagation Through Time. These jump-ahead connections provide a shorter path for propa-gating gradient information, thus reducing the sensitivity of the network to long-term dependencies.Another explanation is that the states do not necessarily need to propagate through nonlinearitiesat every time step, which may avoid a degradation in gradient due to the partial derivative of thenonlinearity. We speculate that using increased memory order will also help other recurrent net-work architectures on learning long-term dependency problems. Though speci�c architectures canbe constructed for this problem, the approach of increasing memory order can be easily be appliedto any recurrent architecture already in use of course at the cost of increased numbers of weights.AcknowledgmentsWe would like to thank J�urgen Schmidhuber for many useful discussions on this material.13

References[1] A.D. Back and A.C. Tsoi. FIR and IIR synapses, a new neural network architecture for timeseries modelling. Neural Computation, 3(3):337{350, 1991.[2] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient isdi�cult. IEEE Transactions on Neural Networks, 5(2):157{166, 1994.[3] S. Chen, S.A. Billings, and P.M. Grant. Non{linear system identi�cation using neural networks.International Journal of Control, 51(6):1191{1214, 1990.[4] B. de Vries and J. C. Principe. The gamma model | A new neural model for temporalprocessing. Neural Networks, 5:565{576, 1992.[5] J.L. Elman. Finding structure in time. Cognitive Science, 14:179{211, 1990.[6] P. Frasconi, M. Gori, M. Maggini, and G. Soda. Uni�ed integration of explicit rules and learningby example in recurrent networks. IEEE Transactions on Knowledge and Data Engineering,7(2):340{346, 1995.[7] P. Frasconi, M. Gori, and G. Soda. Local feedback multilayered networks. Neural Computation,4:120{130, 1992.[8] C.L. Giles, G.M. Kuhn, and R.J. Williams. Dynamic recurrent neural networks: Theory andapplications. IEEE Transactions on Neural Networks, 5(2), 1994. Special Issue.[9] C.L. Giles and C.W. Omlin. Inserting rules into recurrent neural networks. In S.Y. Kung,F. Fallside, J. Aa. Sorenson, and C.A. Kamm, editors, Neural Networks for Signal ProcessingII, Proceedings of The 1992 IEEE Workshop, pages 13{22, Piscataway, NJ, 1992. IEEE Press.[10] M. Gori, M. Maggini, and G. Soda. Scheduling of modular architectures for inductive infer-ence of regular grammars. In ECAI'94 Workshop on Combining Symbolic and ConnectionistProcessing, Amsterdam, pages 78{87. Wiley, August 1994.[11] S. El Hihi and Y. Bengio. Hierarchical recurrent neural networks for long-term dependencies.In Advances in Neural Information Processing Systems 8. MIT Press, Cambridge, MA, 1996.[12] S. Hochreiter and J. Schmidhuber. Long short term memory. Technical Report FKI-207-95,Fakultat fur Informatik, Technische Universitat Munchen, Munchen, 1995.[13] B.G. Horne and C.L. Giles. An experimental comparison of recurrent neural networks. InAdvances in Neural Information Processing Systems 7, pages 697{704. MIT Press, 1995.[14] M. I. Jordan. Attractor dynamics and parallelism in a connectionist sequential machine. InProceedings of the Eighth Conference of the Cognitive Science Society, pages 531{546. Erlbaum,1986.[15] Tsungnan Lin, B.G. Horne, P. Tino, and C.L. Giles. Learning long-term dependencies in narxrecurrent neural networks. IEEE Transactions on Neural Networks. Accepted.[16] Tsungnan Lin, B.G. Horne, P. Tino, and C.L. Giles. Learning long-term dependencies is notas di�cult with narx recurrent neural networks. In Advances in Neural Information ProcessingSystems 8. MIT Press, Cambridge, MA, 1996. In press.[17] L. Ljung. System identi�cation : Theory for the user. Prentice-Hall, Englewood Cli�s, NJ,1987. 14

[18] M. C. Mozer. Induction of multiscale temporal structure. In J.E. Moody, S. J. Hanson, andR.P. Lippmann, editors, Neural Information Processing Systems 4, pages 275{282. MorganKaufmann, 1992.[19] Michael C. Mozer. Neural net architectures for temporal sequence processing. In A.S. Weigendand N.A. Gershenfeld, editors, Time Series Prediction, pages 243{264. Addison{Wesley, 1994.[20] K.S. Narendra and K. Parthasarathy. Identi�cation and control of dynamical systems usingneural networks. IEEE Trans. on Neural Networks, 1(1):4, 1990.[21] P.S. Sastry, G. Santharam, and K.P. Unnikrishnan. Memory neuron networks for identi�cationand control of dynamical systems. IEEE Transactions on Neural Networks, 5(2):306{319, 1994.[22] J. Schmidhuber. Learning complex, extended sequences using the principle of history compres-sion. Neural Computation, 4(2):234{242, 1992.[23] J. Schmidhuber. Learning unambiguous reduced sequence descriptions. In J. E. Moody, S. J.Hanson, and R. P. Lippman, editors, Advances in Neural Information Processing Systems 4,pages 291{298. San Mateo, CA: Morgan Kaufmann, 1992.[24] D.R. Seidl and R.D. Lorenz. A structure by which a recurrent neural network can approximatea nonlinear dynamic system. In Proceedings of the International Joint Conference on NeuralNetworks 1991, volume II, pages 709{714, July 1991.[25] H.T. Siegelmann and E.D. Sontag. On the computational power of neural nets. Journal ofComputer and System Sciences, 50(1):132{150, 1995.[26] H.-T. Su and T.J. McAvoy. Identi�cation of chemical processes using recurrent networks. InProceedings of the American Controls Conference, volume 3, pages 2314{2319, 1991.[27] H.-T. Su, T.J. McAvoy, and P. Werbos. Long{term predictions of chemical processes usingrecurrent neural networks: A parallel training approach. Industrial Engineering and ChemicalResearch, 31:1338{1352, 1992.[28] A.C. Tsoi and A. Back. Locally recurrent globally feedforward networks, a critical review ofarchitectures. IEEE Transactions on Neural Networks, 5(2):229{239, 1994.
15

