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1 IntroductionRecurrent Neural Networks (RNNs) are capable of representing arbitrary nonlinear dynamical sys-tems [24] and can be computationally quite powerful [25]. However, various empirical studies sug-gest that sometimes learning even simple behavior can be quite di�cult when using gradient-descentlearning algorithms. Recently, it has been demonstrated that at least part of this di�culty can beattributed to the problem of long-term dependencies [2, 18], i.e. those problems for which the desiredoutput of a system at time T depends on inputs presented at times t� T .In particular Bengio et al. [2] showed that if a system is to latch information robustly, thenthe fraction of the gradient in a gradient-based training algorithm due to information n time stepsin the past approaches zero as n becomes large. This e�ect is called the problem of vanishinggradient. Bengio et al. claimed that the problem of a vanishing gradient is the essential reason whygradient-descent methods are not su�ciently powerful to learn long-term dependencies.Several approaches have been suggested to circumvent the problem of vanishing gradients intraining RNNs. One possible approach is to preset initial weights by using prior knowledge [6, 9] butthis is often not available in many applications. Another approach is to use alternative optimizationmethods instead of gradient-based methods [2]. But, those algorithms can perform as poorly asgradient methods, or require far more computational resources. Alternatively, the input data canbe altered to represent a reduced description that makes global features more explicit and morereadily detectable [18, 22, 23]. Unfortunately, this approach may fail if short-term dependencies areequally as important. Hochreiter and Schmidhuber [12] propose a speci�c architectural approachwhich utilizes high-order gating units. Recently, it has been suggested that a network architecturethat operates on multiple time scales might be useful [10, 11].We have shown that a class of recurrent neural networks called NARX networks long-termdependencies when using a gradient descent training algorithm than previously reported in theliterature [16, 15]. The intuitive explanation for this behavior is that the output memories of aNARX neural network are manifested as jump-ahead connections in the time-unfolded network thatis often associated with algorithms as Backpropagation Through Time (BPTT). These jump-aheadconnections provide shorter paths for propagating gradient information, thus reducing the sensitivityof the network to long-term dependencies.We hypothesize that the similar improvement on learning long-term dependencies can be achieved2



in other classes of recurrent neural network architectures by increasing the orders of embedded mem-ory. It is worth noting that one of the �rst uses of embedded memory in recurrent network archi-tectures was that of Jordan [14]. In this paper, we empirically justify this hypothesis by showingthe relationship between memory order of a RNN and its sensitivity to long-term dependencies. InSection 2, we discuss three classes of conventional recurrent neural networks architectures: glob-ally recurrent networks (the architecture, not the training procedure, used by Elman) [5]; locallyrecurrent networks (in particular the Frasconi, Gori and Soda's model) [7]; NARX networks [3, 20],and their corresponding models with a high order embedded memory. In Section 3, we provide aempirical comparison of these architectures by investigating their performance on learning two sim-ple long-term dependencies problems: the latching problem and a grammatical inference problem.These simulations show that these classes of recurrent neural network architectures all demonstratesigni�cant improvement on learning long-term dependencies when the embedded memory order isincreased.2 Embedding high order memory in recurrent neural net-work architecturesSeveral recurrent neural network architectures have been proposed; for a collection of papers on thevariety see [8]. One taxometric classi�cation for these architectures can be based on the observabilityof their states: speci�cally they can be broadly divided into two groups depending on whether ornot the states of the network are observable or not [13]. For another taxometric approach based onmemory types, see Mozer [19]. For this study we picked three classes of networks: globally recurrent(GR) networks [5], locally recurrent networks (LR) [7], and NARX networks [3, 20]; and theircorresponding architectures with high-order embedded memory. It should be pointed out that ourembedded memory simply consists of simple tapped delayed values to various neurons and not moresophisticated embedded memory structures [19, 4]. NARX networks are a typical model of networkswith observable states. GR networks are a popular class of network with globally connected hiddenstates, and LR networks belong to locally recurrent network architecture class also with hiddenstates. 3



2.1 Globally connected RNNsThese networks (which we will call GR networks) are a class of recurrent networks in which thefeedback connections come from the state vector to the hidden layer, as illustrated in Figure 1 (a).These hidden states are sometimes called context units in the literature. Suppose such a network withnu input nodes, nh hidden nodes of, and ny output nodes, the dynamic equation can be describedby: oi(t) = f 0@ nhXj=1whijoj(t � 1) + nuXk=1wuikuk(t) +wbi1A : (1)yi(t) = f 0@ nhXj=1wyijoj(t) + wbi1A (2),where o(t) and y(t) denotes the real valued outputs of the hidden and output neurons at time t,and f is the nonlinear function.This network with a high order of embedded memory di�ers from standard globally connectedrecurrent network in that they have more than one state vector per feedback loop. Specially, for aGR network with embedded memory of order m, the dynamic equations of hidden nodes become:oi(t) = f 0@ mXk�1 nhXj=1whijmoj(t� k) + nuXk=1wuikuk(t) +wbi1A : (3)Figure 1 (b) illustrates an GR network with embedded memory of order two.2.2 Locally recurrent networksIn this class of networks, the feedback connections are only allowed from neurons to themselves,and the nodes are connected together in a feed forward architecture [1, 7, 21, 28]. Speci�cally, weconsider networks proposed by Frasconi et al. [7] (we will call LR), as shown in Figure 2 (a). Thedynamic neurons of LR networks can be described by4
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only on the �rst 3 time steps, the remaining values in the sequence is uniform noise. There are threeinputs u1(t), u2(t), and a noise input e(t). Both u1(t) and u2(t) are zero for all times t > 3. At timet = 1, u1(1) = 1 and u2(1) = 0 for samples from class 1, and u1(1) = 0 and u2(1) = 1 for samplesfrom class 2. The noise input e(t) is given bye(t) = 8>><>>:0 t � 3U (�b; b) 3 < t � T (8)where U (�b; b) are samples drawn uniformly from [�0:155; 0:155]. Target information was onlyprovided at the end of each sequence. For comparison, our training particulars are identical tothose of [2]. For strings from class one, a target value of 0:8 was chosen, for class two, �0:8 waschosen. The length of the noisy sequence could be varied in order to control the span of long-termdependencies. For our experiment, the input sequences were 1 and �1 and were one-hot encodedinto two input neurons with trainable weights. The noise input weights were 0 until after 3 timesteps, then 1. Figure 4 shows the architecture for the latching problem.For each of these three architectures, several networks with di�erent orders of embedded memorywere trained. To compare the e�ects of di�erent orders of embedded memory in every class of net-works on learning long-term dependencies while holding as many other factors as possible constant,particular attention was paid to equalize the number of weights. Table 1 gives a detailed descriptionof all networks used in the latching problem. The weight connected the noisy input was �xed as 1:0.In order to learn the task, the networks have to develop two attractors to latch the information andstill remain inside the basin of the attractors of being resistant to noise when t > 3. The abilityof learning this minimal problem is a measure of the e�ectiveness of propagating the gradient fordi�erent neural network architectures with various memory orders.We varied the length of noisy inputs, T , from 10 to 60 in increments of 2. For each value of T ,we ran 50 simulations. For each simulation, we generated 30 strings from each class and the initialweights were randomly distributed in the range [�0:5; 0:5].The network was trained with a MSE cost function using simple BPTT algorithmwith a learningrate of 0:1 for a maximum of 200 epochs. Updates occurred at the end of each string and the errorwas back-propagated the full length of the string. If the absolute error between the output of the8
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4 ConclusionIn this paper, we explore the impact of embedded memory on various recurrent neural networksarchitectures for learning long{term dependency problems, i.e. when the desired output depends oninputs presented at times far in the past, which has been shown to be di�cult for gradient basedalgorithms.Motivated by the analysis of the problem of learning long-term dependencies and the successof NARX networks on problems including grammatical inference and nonlinear system identi�ca-tion [13], we explore the ability of other recurrent neural networks with a high order of embeddedmemory on problems that involve long-term dependencies. We chose three classes of recurrent neu-ral network architectures based on state-observerability: hidden state globally recurrent and locallyrecurrent networks, and observeable state NARX networks.We tested this approach of extending memory in conventional recurrent neural networks on twosimple long-term dependency problems. Our experimental results show that each of these classesof recurrent neural networks architectures can demonstrate signi�cant improvement on learninglong-term dependencies when the memory order of the network is increased.The intuitive explanation for this behavior is that the embedded memories are manifested asjump{ahead connections in the unfolded network that is often used to describe algorithms likeBackpropagation Through Time. These jump-ahead connections provide a shorter path for propa-gating gradient information, thus reducing the sensitivity of the network to long-term dependencies.Another explanation is that the states do not necessarily need to propagate through nonlinearitiesat every time step, which may avoid a degradation in gradient due to the partial derivative of thenonlinearity. We speculate that using increased memory order will also help other recurrent net-work architectures on learning long-term dependency problems. Though speci�c architectures canbe constructed for this problem, the approach of increasing memory order can be easily be appliedto any recurrent architecture already in use of course at the cost of increased numbers of weights.AcknowledgmentsWe would like to thank J�urgen Schmidhuber for many useful discussions on this material.13
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