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This dissertation is concerned with the numerical analysis and computation of variational

models related to liquid crystals (LCs) and liquid crystal polymer networks (LCNs) as well as

modeling of LCNs.

We first present a finite element method and projection free gradient flow to minimize the

Frank-Oseen energy of nematic liquid crystals. The Frank-Oseen model is a continuum model

that represents the liquid crystal with a vector field that must satisfy a nonconvex unit-length

constraint pointwise. We prove convergence of minimizers of the discrete problem to minimizers

of the continuous problem using the framework of Γ-convergence. The convergence analysis

has no restrictions on the elastic constants or regularity of the solution beyond that required for

existence of minimizers. Due to the low regularity requirement, the method can capture point

defects. We also propose a projection free gradient flow algorithm to compute critical points

of the discrete energy. The gradient flow is conditionally stable under a mild restriction on the



numerical parameters. We finally present computations illustrating the influence of the elastic

constants on point defects as well as the influence of external magnetic fields.

The second part of this dissertation is concerned with modeling, numerical analysis, and

computation of thin LCNs. We first begin from a classical 3D energy of LCN and use Kirchhoff-

Love asymptotics to derive a reduced 2D membrane model. We then prove many properties of

the membrane model including a pointwise metric condition that zero energy states must satisfy

and construct a formal method to approximate configurations of LCN from higher degree defects

that approximately match this pointwise condition. To conclude, we develop a finite element

method to minimize the stretching energy. A key component of the discrete energy is to intro-

duce a regularization that is inspired by a bending energy for LCN, which is also derived in this

dissertation. We prove convergence of minimizers of the discrete problem to zero energy states of

the continuous problem in the spirit of Γ-convergence. To compute critical points of the discrete

problem, we propose a fully implicit gradient flow with Newton sub-iteration and study its super-

linear convergence under suitable assumptions. We finish with many simulations that highlight

interesting features of LCNs, including configurations arising from LC defects and nonisometric

origami.
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2.4 Initial and final components of Frank energy under Fréedericksz transition . . . . 66
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Chapter 1: Introduction

Liquid crystals (LC) are a class of materials that can have intermediate phases between

liquid and solid. One particular phase is the nematic phase, where LC molecules often retain

an orientation order with their neighbors but no longer retain a positional order. As a result, the

LC can flow like a liquid but retain desirable optical properties in the nematic phase, which is

ideal for optical applications [106, 110]. When coupled with a rubbery network, the combination

of LC and rubber becomes a liquid crystal elastomer (LCE) or liquid crystal polymer network

(LCN). A LCE/LCN material can deform when heated or actuated, and the deformation depends

on the orientation of the LC. An engineer can design (or blueprint) the orientation of the LC when

forming the LCE/LCN material, which makes these materials natural candidates for use in soft

robotics [26, 42, 72, 86, 117, 124].

The continuum modeling of LCs and LCE/LCNs results in nonlinear variational problems.

We refer to the classic books [57, 114] for references on the modeling of LC and the book [121]

for a reference on the modeling of LCE. These variational problems pose many challenges for

numerical analysis and computation. This dissertation is concerned with the numerical analysis

and computation of variational problems related to LC and LCN as well as modeling of LCN.

1



1.1 Framework for numerical analysis and computation

The variational problems under consideration share a similar structure. The problem is to

seek u : Ω→ R3 such that

u ∈ argminv∈AE[v].

where the domain Ω ⊂ Rd, d = 2, 3 is an open and bounded set and is the body occupied by

the LC or LCN, A ⊂ H1(Ω;R3) is a closed admissible set of functions, and E : A → R is the

energy we seek to minimize that is bounded from below.

For the problems addressed in this dissertation, a few challenges include: nonlinearity and

nonconvexity present in the energy E, low regularity of minimizers u, and nonlinearities that

arise from the admissible set A. As a result, we aim to solve such variational problems with a

flexible approach. We now go over the two components to this approach.

1.1.1 Formulation of discrete minimization problem and convergence of mini-

mizers

The first step is to formulate a discrete counterpart to the continuous problem. We discretize

the problem with a finite element method (FEM) [39]. We first triangulate Ω with a sequence of

triangulations {Tj}∞j=1. We now define what we mean by a triangulation of a set Ω following

[39, Def. 3.3.11]. A triangulation T = {Ti}Ni=1, is a finite set of elements Ti. An element

is a closed simplex, i.e. a triangle in 2D or tetrahedron in 3D. Additionally, the triangulation

satisfies the following properties. First, the interiors of the elements are disjoint, i.e. if i 6= k then

int(Ti) ∩ int(Tk) = ∅ . Second, the union of the elements is the closure of Ω, i.e. Ω = ∪T∈T T .

2



The last property of a triangulation is that if z is a vertex of an element Ti, then z is not in the

relative interior of an edge or face of any element. Note that if Ω has a polytopal boundary, then

there is a triangulation of Ω. If ∂Ω is sufficiently smooth and does not have a polytopal boundary,

then we approximate Ω arbitrarily closely with a suitable polytopal domain Ω̃ and triangulate Ω̃.

Since each triangulation has finitely many elements, we may define the mesh size of a

triangulation T as h = maxT∈T diam(T ). We work a sequence of triangulations {Tj}∞j=1 with

mesh size hj that satisfy limj→∞ hj = 0 in order for the discrete problem to better approximate

the continuous problem as j → ∞. Throughout this dissertation, we assume the sequence of

triangulations {Tj}∞j=1 is quasi-uniform (see [39, Def. 4.4.13]). For an element T , we denote

ρT := sup{diam(B) : B ⊂ T and B is a ball}. A sequence of triangulations is quasi-uniform

if there is c > 0 such that chj ≤ minT∈Tj ρT for all j. Accordingly, quasi-uniformity implies

that c diam(T ) ≤ ρT for all T ∈ ∪∞j=1Tj , which means that {Tj}∞j=1 is shape-regular or regular

[39, (4.4.16)]. The intuition behind shape-regularity is that the elements cannot degenerate and

become too skinny as j → ∞. When a sequence of meshes is quasi-uniform, we simplify

notation by indexing each triangulation with its mesh size hj and drop the dependence on j. The

resulting notation for a triangulation we use throughout this dissertation is Th and a sequence of

triangulations is {Th}h.

Given a triangulation, Th, of mesh size h, we introduce the finite dimensional space Vh :=

{vh ∈ C0(Ω;R3) : vh|T is affine ∀T ∈ Th} ⊂ H1(Ω;R3) consisting of all continuous functions

that are affine when restricted to an element T of Th. We chose a closed discrete admissible set

Ah ⊂ Vh that is a discrete analog to A. The choice of Ah depends on the problem, and Ah

may not necessarily be a subset of A. As we will see in Chapter 2, the condition Ah ⊂ A may

be too restrictive. Hence, we do not require Ah ⊂ A. We finally formulate a discrete energy

3



Eh : Ah → R that is bounded from below and is lower semicontinuous in Ah. The discrete

energy will be a modification of E that makes it amenable to computation. We refer to Chapter

4 for an example where Eh is a modification of E that is more amenable to computation. The

energy Eh and admissible set Ah are chosen such that the discrete minimization problem has a

minimizer. The discrete problem is to find uh ∈ Ah such that uh satisfies

uh ∈ argminvh∈AhEh[vh].

We then prove that minimizers of the discrete problem converge to the minimizers of the contin-

uous problem as h → 0. The framework follows that of Γ-convergence. We refer to [37, 38] for

introductions to the theory of Γ-convergence. There is a growing literature on Γ-convergent finite

element discretizations for problems arising in materials science. A non-exhaustive list includes

work in liquid crystals [33, 95, 96, 115] as well as plate and shell models [14, 18, 19, 23, 29, 30,

30, 31, 32, 105].

There are two kinds of results that we need to prove in this framework. We first note that

the framework is flexible with regard to the topology of the underlying space, and the choice of

topology depends on the problem. Hence, in listing the results we would like to prove, we use

the phrase “uh → u either strongly or weakly in H1(Ω;R3) as h → 0” since the choice of the

weak or strong topology on H1(Ω;R3) will depend on the specific problem we are studying.

• Recovery sequence: If u ∈ A, there exists a sequence {uh}h such that uh ∈ Ah and uh → u

either strongly or weakly in H1(Ω;R3) as h→ 0. Moreover,

lim sup
h→0

Eh[uh] ≤ E[u].

4



A recovery sequence result is analogous to a consistency result in numerical analysis.

• Compactness and lower bound: Let {uh}h be a sequence as h → 0 that satisfies uh ∈ Ah

for each h and satisfy the uniform bound Eh[uh] ≤ C < ∞. There is a subsequence (not

relabeled) uh such that uh → u ∈ A either strongly or weakly in H1(Ω;R3) as h → 0. We

also have

E[u] ≤ lim inf
h→0

Eh[uh].

The compactness and lower bound result is analogous to a stability result in numerical analysis.

These two ingredients combined lead to a subsequence of global minimizers of the discrete prob-

lem converging to a global minimizer of the continuous problem, which is often referred to as

the Fundamental Theorem of Γ-convergence [38, Theorem 2.1]. We now state and prove conver-

gence of minimizers.

Proposition 1.1 (convergence of minimizers). Suppose the recovery sequence property and com-

pactness and lower bound properties outlined above hold forEh andAh. For each h, let u∗h ∈ Ah

be a minimizer of Eh over Ah. Then as h → 0, the sequence {u∗h}h has a convergent subse-

quence (not relabeled) whose limit, u∗ ∈ A is a minimizer of E over the admissible set A, and

limh→0Eh[u
∗
h] = E[u∗].

Proof. Let u ∈ A. We invoke the recovery sequence property to construct {uh}h such that each

uh ∈ Ah, uh → u either weakly or strongly in H1(Ω;R3) as h→ 0, and

lim sup
h→0

Eh[uh] ≤ E[u].

5



By using the fact that u∗h is a minimizer of Eh over Ah, we have that

lim sup
h→0

Eh[u
∗
h] ≤ lim sup

h→0
Eh[uh] ≤ E[u].

By the compactness and lower bound property, {u∗h}h has a convergent subsequence (not rela-

beled) such that its limit is u∗ ∈ A. Additionally, we have

E[u∗] ≤ lim inf
h→0

Eh[u
∗
h] ≤ lim sup

h→0
Eh[u

∗
h] ≤ lim sup

h→0
Eh[uh] ≤ E[u].

Since u ∈ A is arbitrary, we take the infimum of the right hand side of the above inequality over

all u ∈ A to get E[u∗] ≤ infu∈AE[u], and u∗ is a minimizer of E over A. Additionally, we

have that E[u∗] ≤ lim infh→0Eh[u
∗
h] ≤ lim suph→0Eh[u

∗
h] ≤ E[u∗], whence limh→0Eh[u

∗
h] =

E[u∗].

We now make a few remarks before continuing. The functional framework for Gamma-

convergence is much more general than H1(Ω;R3), but the focus of this dissertation is on

H1(Ω;R3). Finally, the recovery sequence result requires that A 6= ∅, which we either enforce

with conditions on the data for the problem or other assumptions. Finally, for notational conve-

nience, we often replace a sequence {uh}h with uh to denote a sequence of discrete functions

indexed by h→ 0.

1.1.2 Iterative solvers for discrete minimization problem

Once we have a discrete energy Eh and discrete admissible set Ah ⊂ Vh, we propose

an iterative method to compute critical points of Eh over Ah. Due to the nonlinearities and
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nonconvexity of the variational problems under study, we choose to implement a gradient flow.

Given unh ∈ Ah, we seek un+1
h ∈ Ah to satisfy

un+1
h ∈ argminvh∈Ah

1

2τ
‖vh − unh‖2

∗ + Eh[vh],

where τ > 0 is a pseudo-time step and ‖ · ‖∗ is a norm on Vh induced by an inner product 〈·, ·〉∗,

which is known as a flow metric. The above problem is well-posed because vh 7→ 1
2τ
‖vh −

unh‖2
∗ + Eh[vh] is bounded from below, lower semicontinuous, and coercive on Vh.

The iterative scheme is formally a backward Euler discretization of the equation ∂tuh =

−∇Eh[uh]. One advantage of the gradient flow iteration is energy stability:

Eh[u
n+1
h ] +

1

2τ
‖un+1

h − unh‖2
∗ ≤ Eh[u

n
h],

which makes it a robust scheme provided we can solve the gradient flow subproblem. In Chapter

2, we actually linearize the gradient flow subproblem to make it computationally tractable while

retaining energy stability. In Chapter 4, we implement a fully implicit gradient flow scheme,

and discuss partial results of a Newton sub-itertation to solve the subproblem. We only expect

a gradient flow scheme to converge to critical points of Eh, while the Γ-convergence theory is a

statement about global minimizers of Eh over Ah. We acknowledge this gap between the con-

vergence of minimizers analysis and the properties of the iterative method, which is typical of

nonconvex optimization problems. However, in some cases in Chapter 5, computational evi-

dence suggests that the outputs of the iterative scheme achieve values of Eh that are close to the

minimum of the discrete energy Eh.
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1.2 Numerics for the full Frank-Oseen model of liquid crystals

Liquid crystals are materials that correspond to an intermediate phase of matter. In partic-

ular, they often retain optical properties of crystals, while being able to move freely like a fluid.

They may also deform easily in the presence of external fields. These properties lead to the use

of liquid crystals in liquid crystal displays [106]. More recently, physicists have been able to

assemble smectic liquid crystals into what is known as a compound eye [110].

Mathematical modeling of liquid crystals has a long history. Two books on the subject

include [57, 114]. One interesting aspect of the modeling of liquid crystal problems is that the

stationary problem is a variational problem with a nonconvex pointwise unit length constraint,

which leads to an interesting set of mathematical and numerical questions. For stationary contin-

uum models of liquid crystals, there are typically 3 models to chose from. They are the Frank-

Oseen model [64, 97], Ericksen model [63], and Landau de-Gennes or Q tensor model [57].

Chapter 2 develops a finite element method for the Frank-Oseen model [64, 97]. The

orientation of LC molecules in Ω is represented with a director field n : Ω → S2 =: {x ∈ R3 :

|x| = 1} and posits that the director field minimizes the following elastic energy:

E[n] =
1

2

∫
Ω

k1(divn)2 + k2(n · curln)2 + k3|n× curln|2 + (k2 + k4)
(
tr((∇n)2)− (divn)2

)
dx,

where ki > 0, i = 1, 2, 3, 4, are known as Frank’s constants. In Chapter 2 we consider the

admissible set

Ag := {v ∈ H1(Ω;S2) : v = g on ∂Ω},

where H1(Ω;S2) := {v ∈ H1(Ω;R3) : |v| = 1 a.e. in Ω}. If the boundary data g is Lipschitz,
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then Ag 6= ∅, and there exists minimizers of E over Ag [71]. There are a few challenges to this

variational problem. Firstly, the vector field n must satisfy a pointwise unit-length constraint,

which is nonconvex. Also, the terms (n · curln)2 and |n × curln|2 present additional nonlinear-

ities because of their nonquadratic nature. Partially due to these challenges, previous works on

numerics for the Frank-Oseen model [1, 8, 9, 13, 16, 17, 50, 51, 67, 74, 75, 123] contain some

limitations. One limitation in the works [8, 16, 67, 74, 75] is that they consider problems where

Frank’s constants are restricted beyond what is required in the existence theory in [71]. In or-

der to prove convergence to a minimizer, [1, 74] assume higher regularity of a solution beyond

H1(Ω;S2), which is the natural regularity induced by the energy E. Also, higher regularity rules

out modeling of point defects, like x 7→ x/|x|, which is important in the modeling of LC. Finally,

the algorithm developed [8, 9, 13] requires that the mesh is weakly acute, which is a restrictive

mesh condition in 3 dimensions. We go over the previous literature in more detail in Section

2.1.2.

Chapter 2 develops a finite element method for minimizing E over Ag. The discrete min-

imization problem we propose is as follows. Let {Th}h be a sequence of triangulations of Ω

indexed by mesh size h, and let Nh be the nodes of Th. The discrete admissible set reads

Ag,h,η := {vh ∈ Vh :
∥∥Ih[|vh|2 − 1]

∥∥
L1(Ω)

≤ η, ‖vh|∂Ω − g‖L2(∂Ω;R3) ≤ η, ‖vh‖L∞(Ω;R3) ≤ C},

where Vh is the space of continuous piecewise linear functions, Ih is the Lagrange interpola-

tion operator and C > 1 is an h independent constant. This discrete admissible set relaxes the

pointwise unit length constraint by only enforcing it at nodes z ∈ Nh within a prescribed small

tolerance η = ηh > 0. The discrete minimization problem is to find nh ∈ Ag,h,η such that nh
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satisfies

nh ∈ argminvh∈Ag,h,η
E[vh].

The main aspects of this work are listed below.

• Convergence of discrete minimizers: We show that a subsequence of discrete minimizers con-

verges weakly in H1 to a minimizer of the continuous problem as h→ 0. The techniques fol-

low the Γ-convergence framework outlined above and require no regularity beyondH1(Ω;R3).

The theory thus includes the presence of defects, which are of paramount importance in prac-

tice, and has no restrictions on the Frank constants beyond what is required in the existence

theory in [71]. The theory presented in Chapter 2 also allows for the addition on an external

magnetic field.

• Projection-free gradient flow: We propose a projection free gradient flow in the spirit of [16,

23, 32], which applies to general shape-regular meshes that may not be weakly acute. This is a

significant computational achievement. Each step of the gradient flow entails solving a linear

algebraic system due to the explicit treatment of the nonlinearities. We prove conditional

energy stability and control of unit length constraint under the mild condition τh−1 ≤ C,

where C depends on the Frank constants and initial data and τ is the pseudo-time step of the

iterative scheme.

• Computations: We present computations on how the Frank constants influence the structure of

defects. These seem to be the first such computations supported by theory. We also present

computations of magnetic effects, including the interaction of a magnetic field on a liquid

crystal around a colloid. This problem is notoriously difficult to assess with weakly acute
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meshes [96].

The work in this chapter corresponds to the paper [34].

1.3 Thin liquid crystal polymeric networks

LCNs are a coupling of liquid crystal molecules crosslinked with a rubbery polymer net-

work. They are one of many possible materials that enable spontaneous mechanical motion under

a stimulus. One common stimulus is heating [117, 124], and another potential stimulus is pho-

toactuation [42]. The deformation of LCNs depend on the orientation of the LC director, and a

practitioner can blueprint or program the LC director by stretching the rubber during formation

[42], photoalignment [117], or additive manufacturing [80, 81] to achieve a desired shape or con-

figuration [5, 92, 118, 122]. We refer the reader to [89, 122] for reviews of experimental work on

LCEs/LCNs.

Due to these desirable properties, engineers create soft robots using LCNs/LCEs materials,

such as LCE ribbons, which twist, deform, and move using thermal energy from the environment

[124], soft materials that “swim” away from light [42], and LCN actuators that can lift an object

tens of times its weight [117]. One advantage of soft robots is their resilience. For instance, the

actuators in [68, Figure 3] were able to lift objects through 11 thermal cycles with only negligible

reductions in performance.

There are two key commonalities of the soft robotics applications cited above. The first

commonality is that the LCE/LCN often undergoes large deformations. For example, the vox-

elated LCE setup in [117, Figure 2A] deformed into an array of 9 sharp cones. Also, the soft

robots in [124] deform into helical shapes and twist dramatically when actuated. In both these
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examples, a linear elastic model may not accurately describe the physics, since the deformations

are large. As a result, a nonlinear elastic model is crucial.

The second commonality of many soft robotics applications is that the 3D body comprised

of LCE/LCN is thin relative to its length and width. The swimmer in [42, Figure 3] consisted of

a sheet that was 0.32 mm thick and 5 mm in diameter. The voxelated LCE setup in [117, Figure

2A] was a 15 mm by 15 mm square and was 50 µm thick. Finally, the face that was created in

[5, Figure 5] was 20 mm long and 100 µm thick (see pg. 8 and Figure S9 of the Supplementary

Information Appendix of [5]). The ratios of thickness to diameter in these three cases were

2× 10−2, 3× 10−3, and 5× 10−3 respectively. In order to effectively model these materials, it is

advantageous to dimensionally reduce the model from 3D to 2D.

1.3.1 Modeling of thin LCN

Chapter 3 is concerned with the modeling of thin LCNs. For 3D bodies, one of the most

accepted elastic energies for modeling the interaction of the material deformation with the LCs

is known as the trace formula [28, 120, 121]:

E3D,t[u] =

∫ t/2

−t/2

∫
Ω

(
tr(∇uTL−1

n ∇uLm)− 3
)
dx′dx3

where Bt := Ω× (−t/2, t/2) is the thin 3D body, u : Bt → R3 is the deformation of the rubber

and is assumed to be incompressible, i.e. det∇u = 1. The vector field m : Bt → S2 is the initial

LC orientation, and n : Bt → S2 is the current LC orientation. The matrices

Ln = (s+ 1)−1/3(I3 + sn⊗ n), Lm = (s0 + 1)−1/3(I3 + s0m⊗m)

12



describe how the rubber stretches and shrinks relative to the LC orientations m,n. We discuss

these matrices in more detail in Chapter 3. One distinguishing feature of LCNs over LCEs is that

the LC is constrained by the rubber. We represent this with an algebraic constraint known as the

kinematic constraint

n =
∇u m

|∇u m|
,

which was also considered in [47, 98]. This hard constraint can also be enforced weakly with a

physically justified penalization [102, 113]. If we were interested in modeling LCEs, the cross-

links would be less dense, and the model would allow n to be totally free [44, 59] or subject

to a Frank elasticity term [12, 22, 87, 102]. We note that the constraint of the LC inside the

rubber, whether subject to a kinematic constraint or penalization, is a key modeling difference

between LCE/LCNs and nematic LCs, which is considered in Chapter 2. In computations in

Chapter 2, (see Figure 2.4 and Figure 2.5 below), a degree 2 defect for a nematic LC is unstable.

In fact, higher degree defects are unstable [40] for the one constant Frank model of nematic LCs.

However in LCNs, higher degree defects do not split apart due to the constraining nature of the

polymer network, and these higher degree defects can be realized in experiments [88].

We now give a broad overview of the contributions of Chapter 3. For a more detailed list

of contributions, we refer to the introduction of Chapter 3 later. We begin by deriving the formal

limit

Estr = lim
t→0

1

t
E3D,t

using Kirchhoff-Love asymptotics. This limit is a stretching energy. The Kirchhoff-Love ansatz

u takes the form

u(x′, x3) = y(x′) + φ(x′, x3)ν(x′)
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where x′ = (x1, x2), y : Ω→ R3 is the midplane deformation, ν is the unit normal to the surface

y(Ω), and φ(x′, ·) is a polynomial in x3. Choosing φ such that det∇u = 1+O(x3) and assuming

m is planar, the resulting energy is

Estr[y] =

∫
Ω

λ( 1

det I[y]
+

1

s+ 1

(
trI[y] + s0m · I[y]m + s

det I[y]

m · I[y]m

))
− 3

 dx′,

where I[y] = ∇′yT∇′y is the first fundamental form of y, ∇′ = (∂1, ∂2), and λ = 3

√
s+1
s0+1

is the

actuation parameter. This derivation follows the recent work of [98], but we relax a simplifying

assumption made in [98]. The assumption in [98] is that y is inextensible (i.e. det I[y] = 1),

which simplifies the enforcement of incompressibility in 3D. Relaxing this simplifying assump-

tion while still retaining incompressibility in 3D produces a slightly more physical model, which

we discuss more in Chapter 3. We then prove that y satisfies Estr[y] = 0 and is a minimizer

of Estr if and only if I[y] = g pointwise, where the matrix field g : Ω → R2×2 takes on

symmetric positive definite values and only depends on the initial LC orientation m and the

actuation parameter λ. This is known as a metric condition and is well known in the physics

literature. There are many works that study configurations that satisfy this metric condition

[4, 91, 92, 93, 94, 100, 101, 103, 118, 119] as well as works connecting the 3D trace formula

to the target metric [102], [121, Chapter 6.2]. Our contribution connects the 2D energy Estr and

the metric condition.

Once equipped with the target metric, we devise a new formal asymptotic method to con-

struct configurations y that approximately match the target metric from blueprinted director fields

m with a defect of degree n > 1. This formal construction helps explain the shapes that have

been observed experimentally in [88] and computationally in Chapter 5 of this dissertation. We
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conclude Chapter 3 with a derivation of a bending energy of LCN, which is the formal limit

Ebend = limt→∞
1
t3
E3D,t. Our derivation also follows the recent work of [98] but relaxes the

simplifying inextensibility assumption made in [98]. The bending energy serves as an inspiration

for the design of the discrete energy in Chapter 4.

The content of Chapter 3, except for the bending energy derivation, corresponds to content

in the papers [35, 36].

1.3.2 Numerical analysis and computations of thin LCN

Often, it is difficult to solve I[y] = g with closed form solutions. Chapter 4 develops a finite

element method to minimize the stretching energy Estr. The numerical minimization problem is

to find y∗h ∈ Vh such that y∗h satisfies

y∗h ∈ argminyh∈Vh

(
Estr[yh] + crh

2|yh|2H2
h

)
.

where | · |H2
h

is a discontinuous Galerkin (DG) H2 seminorm for continuous piecewise linear

functions. The second term in the discrete energy mimics the bending energy derived in Chapter

3. The contributions of Chapter 4 are as follows.

• Convergence of minimizers: We prove convergence of minimizers of the discrete problem to

zero energy states of the continuous problem. The convergence theory follows the framework

of Γ-convergence outlined in Section 1.1 and was also inspired by the seminal work [66].

• Iterative scheme: We devise a fully implicit gradient flow with Newton sub-iteration. We

prove energy stability of the gradient flow outer iteration and convergence of the outer iteration
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to critical points ofEh. We also prove partial results on the Newton sub-iteration under suitable

assumptions.

Chapter 5 focuses on computations of configurations of LCN using the method outlined in Chap-

ter 4. The computations include configurations arising from higher degree defects observed in lab

experiments [88] and shapes of compatible nonisometric origami predicted by [100, 101, 102].

We also compute configurations with spatially varying actuation parameter λ and configurations

of incompatible nonisometric origami.

The work in Chapters 4 and 5 corresponds to the papers [35, 36].
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Chapter 2: Full Frank-Oseen Model of Liquid Crystals

2.1 Introduction

This chapter develops a finite element method for the Frank-Oseen model of liquid crystals

[64, 97]. There are many computational and numerical analysis works pertaining to stationary

continuum models of liquid crystals. The first works on the Frank-Oseen model were [50, 51].

Other works on Frank-Oseen include [8, 9, 13] for gradient flow which projects the solution to

handle the constraint. One disadvantage of the projection is that triangulations are required to

be weakly acute to guarantee the energy decrease of the projection. Methods for the Ericksen

and uniaxial Q tensor models that use a projection method are [33, 96]. One way to fix this

is to introduce a pseudo-time step and control the constraint by making the pseudo-time step

size small. This results in a projection-free gradient flow. We point to the use of projection-

free methods in [16] for harmonic maps, and [75] for a simplified Frank-Oseen model. Other

uses of the projection-free method for liquid crystals includes work on the Ericksen model [95].

There has also been extensive work on the study of enforcing constraints via Lagrange multiplier.

These include a study of the saddle point problem for harmonic maps in [74] as well as a Newton

method for the Frank-Oseen energy in [1] and work on preconditioners for such Newton methods

[123]. Other numerical works on stationary liquid crystal models include [56, 67, 107, 115] and

recent work on harmonic maps includes error estimates [24] and algorithmic aspects [17]. For a
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review paper on numerical methods for liquid crystal problems, we point to [116].

2.1.1 Frank-Oseen model

The Frank-Oseen Model [64, 97] is a continuum model of liquid crystals. The liquid crystal

occupies a bounded domain Ω ⊂ R3. The Frank-Oseen model represents the liquid crystal with

a director field n : Ω→ S2 := {v ∈ R3 : |v| = 1}. At a point x ∈ Ω, the unit length vector n(x)

describes the average orientation of the liquid crystal molecules. The model [64, 97] posits that

n minimizes the following elastic energy:

E[n] =
1

2

∫
Ω

k1(divn)2 + k2(n · curln)2 + k3|n× curln|2 + (k2 + k4)
(
tr((∇n)2)− (divn)2

)
dx

(2.1)

over the admissible set class H1(Ω;S2). The four constants ki are known as Frank’s constants.

Previous analytical work [71] proved existence of minimizers of E over the admissible set

Ag := {n ∈ H1(Ω;R3) : |n| = 1 a.e. in Ω and n|∂Ω = g}, (2.2)

where g : ∂Ω → S2 is Lipschitz and ki > 0 for i = 1, 2, 3. The main idea for proving existence

of minimizers is to write a modified but equivalent energy with modified coefficients c0 > 0 and

ci ≥ 0 for i = 1, 2, 3:

Ẽ[n] =
1

2

∫
Ω

c0|∇n|2 + c1(divn)2 + c2(n · curln)2 + c3|n× curln|2dx. (2.3)

We recall the relevant results and observations from the analysis in Section 2.2.
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2.1.2 Previous related numerical works

There are many numerical methods to compute minimizers to the Frank-Oseen Energy

[1, 8, 9, 13, 16, 17, 24, 51, 74, 75]. The various previous methods fall into a few camps. The

collection of works [8, 9, 13, 16, 75] use a type of steepest descent method. At each step, the

steepest descent only searches in tangent directions to linearize the unit length constraint. The

violation of the constraint is then controlled either with a projection [8, 9, 13] or with a pseudo-

timestep parameter to control the constraint violation [16, 75]. The use of a pseudo-time step

is called a projection-free method. There is a large drawback to projecting the solution. In the

finite element context, one needs weakly acute triangulations, so that the projection step does not

increase the energy. This restriction can be hard to satisfy for 3 dimensional computations. The

previous projection-free works have also dealt with simplifications of the Frank-Oseen energy.

In [16], the one constant approximation k = ki for all i = 1, 2, 3 (also known as harmonic maps)

is considered. In [75], the authors consider k2 = k3, which combines the bend and twist terms to

|curl n|2.

The other group of methods use a Lagrange multiplier to enforce the unit length constraint

[1, 74]. These methods typically require additional regularity on the solution to allow for an anal-

ysis. For instance as noted by [1, Remark 3.9], their analysis requires that curl n ∈ L∞. Such

regularity requirements can exclude interesting point defects. Finally, we make note of other

Newton type methods explored recently in the literature. The work [17] compared the perfor-

mance of Newton-type methods with steepest descent type methods and various finite element

discretizations for harmonic maps. Also, the recent work [24] proved quasioptimal error esti-

mates for a finite element discretization of harmonic maps as long as the solution is regular and
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stable. The theory in [24] also suggests super-linear convergence of Newton method if the initial

guess is sufficiently close.

It should be noted that [115] proves a Γ-convergence type numerical analysis result for the

full constant Ericksen model, while the focus of this Chapter is on the full Frank-Oseen model,

where such an analysis has been absent in the literature.

2.1.3 Our contribution

This work presents a numerical method for computing minimizers the full Frank-Oseen

energy, without additional restrictions on the elastic constants or triangulation. The method com-

putes minimizers of the modified energy Ẽ over the following discrete admissible set:

Ag,h,η := {vh ∈ Vh :
∥∥Ih[|vh|2 − 1]

∥∥
L1(Ω)

≤ η, ; ‖vh|∂Ω − g‖L2(∂Ω;R3) ≤ η, ‖vh‖L∞(Ω;R3) ≤ C},

where Vh is the space of continuous piecewise linear vector valued functions on a triangulation

Th with mesh size h, Nh is the nodes of the triangulation, and Ih is the Lagrange interpolation

operator. Also, C > 1 is a constant that does not need to change with h. Our contributions are as

follows.

• Convergence of Discrete Minimizers In Section 2.3, we prove that discrete minimizers con-

verge up to a subsequence to a minimizer of the continuous problem. Our analysis is in the

spirit of Γ-convergence. The analysis also only requires ki > 0, which is what is required by

the existence analysis in [71]. The analysis presented here extends the Γ-convergence analysis

for harmonic maps discussed in [15, Example 4.6].
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• Projection-Free Gradient Flow In Section 2.4, we propose projection-free gradient flow al-

gorithm to compute critical points of Ẽ over Ag,h,η inspired by [16, 23]. The gradient flow

only requires solving linear systems, despite the quartic terms in the energy like (n · curl n)2

and |n × curl n|2. We also prove the gradient flow is energy stable under a mild condition

τh−1 ≤ c, for some constant c that depends on ki and the initial data. We also show that

although we need an L∞ bound on nh, we can still achieve error estimates of the violation of

the unit length constraint in L1 that go to zero if τh−1 ≤ c.

• Magnetic Effects In Section 2.5, we explain how our results may be adapted for when there is

a fixed magnetic field.

• Computations Finally in Section 2.6, we present computational results. We highlight quanti-

tative properties of the algorithm, the effect of Frank’s constants on defect configurations, as

well as some examples with an external magnetic field.

2.2 Notation and preliminaries

2.2.1 Properties of Frank-Oseen model

We first begin by setting notation and summarize the results in [71] for the continuous

problem. We first recall the Frank-Oseen energy:

E[n] :=
1

2

∫
Ω

k1(div n)2 + k2(n · curl n)2 + k3|n× curl n|2 (2.4)

+ (k2 + k4)
(
tr((∇n)2)− (div n)2

)
dx.
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We then define the admissible set of director fields as

Ag := {n ∈ H1(Ω;S2) : n|∂Ω = g} (2.5)

where we consider g Lipschitz. We note that if g is Lipschitz, then Ag is nonempty [71, Lemma

1.1].

Every term in E is not problematic from the computational point of view except for the

last term (k2 + k4)
(
tr((∇n)2)− (div n)2

)
, which is known as saddle splay. At first glance, it

is not entirely clear that this term is even bounded from below. This poses some challenge to

prove existence of minimizers and computation. However, in the presence of Dirichlet boundary

conditions, [71, Lemma 1.1] prove that the saddle splay term is constant.

Lemma 2.1 (saddle splay). There exists a constant Cg such that for all n ∈ Ag, we have

Cg =

∫
Ω

(k2 + k4)
(
tr((∇n)2)− (div n)2

)
dx (2.6)

The proof of this lemma relies on showing that the saddle splay can be written as a diver-

gence, which means that the saddle splay contribution only depends on boundary data, which

was first realized in [62]. In the presence of Dirichlet boundary conditions, this means that the

saddle splay term is constant.

The above lemma is good news because now one can modify the energy by adding a multi-

ple of Cg and not change the minimizers, which leads to the following proposition [71, Corollary

1.3].

Proposition 2.1 (modified energy). Let c0 = mini=1,2,3{ki} > 0 and let ci = ki− c0 ≥ 0. Define
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Ẽ : Ag → R by

Ẽ[n] := E[n] +
1

2
(c0 − k2 − k4)Cg (2.7)

Then, n∗ ∈ Ag is a minimizer of Ẽ in Ag if and only if n∗ is a minimizer of E in Ag.

It is clear that since Cg is a constant, then minimizers of Ẽ are also minimizers of E.

Currently, the explicit form of Ẽ is not exactly amenable to computation. Below is a proposition

that states an explicit form of Ẽ. The work for this was done in [71] however we state and prove

the result for completeness.

Proposition 2.2 (explicit form of Ẽ). Let c0 = min{ki} > 0 and let ci = ki − c0 ≥ 0 for

i = 1, 2, 3. Then, for n ∈ H1(Ω;S2)

Ẽ[n] =
1

2

∫
Ω

c0|∇n|2 + c1(div n)2 + c2(n · curl n)2 + c3|n× curl n|2dx (2.8)

Proof. Using the expression for Cg in (2.6), we write Ẽ in (2.7) as

Ẽ[n] = E[n] + (c0 − k2 − k4)Cg

=
1

2

∫
Ω

c0tr((∇n)2) + (k1 − c0)(div n)2 + k2(n · curl n)2 + k3|n× curl n|2dx.

Since |n| = 1 a.e. in Ω, (n · curl n)2 + |n× curl n|2 = |curl n|2. Hence, adding and subtracting

c0|curl n|2 to Ẽ[n] yields

Ẽ[n] =
1

2

∫
Ω

c0

[
tr((∇n)2) + |curl n|2

]
+(k1 − c0)(div n)2

+(k2 − c0)(n · curl n)2 + (k3 − c0)|n× curl n|2dx.

23



The result follows from the fact that |∇n|2 = tr((∇n)2) + |curl n|2 and the definition of ci =

ki − c0 for i = 1, 2, 3.

The modified energy Ẽ immediately looks friendlier than E. First off, it is easy to tell that

Ẽ is bounded from below. Secondly, Ẽ is coercive in H1 because c0 > 0. Thirdly, Ẽ is weakly

lower semicontinuous inAg because each ci ≥ 0. These facts are proved in [71, Lemma 1.4] and

are summarized by the following Lemma.

Lemma 2.2 (properties of Ẽ). The modified energy Ẽ is w.l.s.c. in H1(Ω;S2) and

1

2
c0

∫
Ω

|∇n|2dx ≤ Ẽ[n] ≤ 3(k1 + k2 + k3)

∫
Ω

|∇n|2dx (2.9)

for all n ∈ H1(Ω;S2).

Remark 2.1 (modified energy Ẽ). The proof of the weak lower semicontinuity only relies on the

fact that ci ≥ 0. Also the coercivity only relied on c0 > 0. Hence the coercivity and weak lower

semicontinuity of Ẽ defined in (2.8) hold over the larger spaceH1(Ω;R3). Thus, we will compute

with Ẽ as defined in (2.8).

Remark 2.2 (Simplifications of Ẽ). Note that if k1 = k2 = k3 = 1, then Ẽ takes on the following

form:

Ẽ[n] =
1

2

∫
Ω

|∇n|2dx,

which is known as the one constant approximation. Also, if k2 = k3 > k1, then Ẽ takes on the

following form

Ẽ[n] =
1

2

∫
Ω

k1|∇n|2 + c2|curl n|2dx,
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which was studied in [67, 75].

2.2.2 Discretization

We first define some notations for the discrete problem and summarize some useful results.

We denote a sequence of quasiuniform, shape-regular triangulations of Ω as {Th}h and refer back

to Section 1.1.1 for definitions of quasiuniform and shape-regular. The nodal set for Th will be

denoted by Nh. The space of continuous piecewise linear vector fields is defined by

Vh := {vh ∈ C0(Ω;R3) : vh|T ∈ P1 ∀T ∈ Th}.

Similarly, the space Qh will denote the space of continuous piecewise linear real-valued func-

tions:

Qh := {vh ∈ C0(Ω) : vh|T ∈ P1 ∀T ∈ Th}.

We also set Vh,0 := {vh ∈ Vh : vh|∂Ω = 0} to be the discrete space with zero boundary

conditions. Again, we use similar notation for Qh,0.

Another space that will be useful is a tangent space to nh ∈ Vh, which will be used in the

gradient flow algorithm. We denote Th(nh) as the space of tangent directions, namely,

Th(nh) := {vh ∈ Vh,0 : vh(z) · nh(z) = 0 ∀z ∈ Nh}.

Additionally, given a pseudo-time step τ > 0, we denote the discrete time derivative as the

backward difference:

dtn
k+1
h =

1

τ

(
nk+1
h − nkh

)
.
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Since the L2(Ω) norm and inner products are used frequently in this chapter, a norm should

be assumed to be L2 unless otherwise specified. For u, v ∈ L2(Ω), the L2 inner product will be

denoted by (u, v) =
∫

Ω
uv dx. Also, ‖u‖ =

√
(u, u). The same notation will be used for the

inner product of vector valued functions. That is, for u,v ∈ L2(Ω;R3), the L2 inner product is

denoted by (u,v) =
∫

Ω
u · vdx, and the norm of u is denoted by‖u‖ =

√
(u,u). We further

shorten notation by denoting‖u‖Wk,p(Ω;R3) =‖u‖Wk,p or‖u‖Wk,p(Ω) =‖u‖Wk,p when the domain

of integration is clearly Ω.

We now overview two useful results that are needed for the numerical method. The first

result is from [16].

Lemma 2.3 (discrete unit length constraint). Let nh be a uniformly bounded sequence inH1(Ω;R3)

and further suppose nh → n strongly inL2(Ω;R3). If limh→0

∥∥Ih[|nh|2 − 1]
∥∥
L1 = 0, then |n| = 1

a.e. in Ω.

Proof. Let nh be a uniformly bounded sequence in H1(Ω;R3) such that nh → n strongly in

L2(Ω;R3) and limh→0

∥∥Ih[|nh|2 − 1]
∥∥
L1 = 0. Our goal is to show ‖|n|2 − 1‖L1 = 0. We first

apply triangle inequality to bound

‖|n|2 − 1‖L1 ≤ ‖|n|2 − |nh|2‖L1 + ‖|nh|2 − 1‖L1 .

The first term of the RHS goes to zero by the strong convergence nh → n in L2(Ω;R3). It is

sufficient to show ‖|nh|2 − 1‖L1 → 0 as h→ 0. We again apply triangle inequality to bound

‖|nh|2 − 1‖L1 . ‖Ih[|nh|2]− 1‖L1 + ‖Ih[|nh|2]− |nh|2‖L1 .
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The first term of the RHS goes to zero as h → 0 since limh→0

∥∥Ih[|nh|2 − 1]
∥∥
L1 = 0. What

remains to show is ‖Ih[|nh|2]−|nh|2‖L1 → 0 as h→ 0. Over an element T , we use an interpola-

tion estimate in L1(T ) and the fact that ∂2
ij|nh|2 = 2∂inh · ∂jnh a.e. in T because nh is piecewise

linear to obtain

‖|nh|2 − Ih[|nh|2]‖L1(T ) . h2‖D2[|nh|2]‖L1(T ) . h2‖∇nh‖2
L2(T ).

Summing over elements yields

‖|nh|2 − Ih[|nh|2]‖L1(Ω) . h2‖∇nh‖2
L2(Ω;R3×3).

Notice that the RHS goes to 0 as h → 0 because nh is uniformly bounded in H1(Ω;R3), which

completes the proof.

The next Lemma is a discrete Sobolev inequality that connects the L∞ norm and H1 norm.

This result is an easy consequence of a global inverse inequality and Sobolev imbedding and is

well known (see for instance [15, Remark 3.8]).

Lemma 2.4 (discrete Sobolev inequality). Let vh ∈ Vh,0. There is a constant cinv independent

of h such that for all vh ∈ Vh,0:

‖vh‖L∞ ≤ cinvh
−1/2‖∇vh‖ .

Proof. Let vh ∈ Vh,0. Then a global inverse inequality in three dimensions gives ‖vh‖L∞ ≤

C1h
− 1

2‖vh‖L6 . In 3 dimensions, L6(Ω) continuously imbeds into H1(Ω), so there is a constant
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C2 such that ‖vh‖L6 ≤ C2‖vh‖H1 . Due to the zero Dirichlet boundary conditions, ‖vh‖H1 ≤

Cp‖∇vh‖ by Poincaré inequality. Combining these estimates and setting cinv = C1C2Cp gives

the result.

2.3 Discrete minimization problem

The discrete minimization problem mimics the continuous problem. The main differences

are that rather than enforcing the constraint |nh| = 1 pointwise, which would lead to locking, the

constraint will be enforced at nodes of the triangulation but relaxed by a parameter η > 0. The

discrete admissible set is then

Ag,h,η := {vh ∈ Vh :
∥∥Ih[|vh|2 − 1]

∥∥
L1 ≤ η, ‖vh|∂Ω−g‖L2(∂Ω;R3) ≤ η, ‖vh‖L∞ ≤ C}. (2.10)

We note that C > 1 is some fixed constant. The parameter η = ηh will satisfy ηh → 0 as h→ 0.

We only need a uniform L∞ bound rather than L∞ control of the constraint.

The discrete problem is to find nh,η such that

nh,η ∈ argminvh∈Ag,h,η
Ẽ[vh].

The next task is to prove convergence of the discrete minimizers.

2.3.1 Convergence of minimizers

The framework follows that of Γ-convergence but not exactly. Recall that Ag is nonempty

if g is Lipschitz. We first state the recovery sequence result.
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Lemma 2.5 (recovery sequence). Let n ∈ Ag. There exists a sequence ηh → 0 and nh ∈ Ag,h,ηh

such that nh → n in H1(Ω;R3) and Ẽ[nh]→ Ẽ[n] as h→ 0.

Proof. Let n ∈ Ag 6= ∅. We proceed in three steps.

1. Approximation: Let nh = Ihn be the Clément interpolant [43, 48] of n, i.e. nh is defined

by

nh :=
∑
z∈Nh

nzφz, nz := |ωz|−1

∫
ωz

n

where {φz}z∈Nh is the nodal basis of Vh, and nz is the average of n over the patch ωz.

We have that nh → n in H1(Ω;R3). We also have the uniform L∞ bound:

‖nh‖L∞ ≤ ‖n‖L∞ = 1

by Jensen’s inequality for each nz. Due to continuity of the trace operator, there is a constant C

such that ‖nh|∂Ω − g‖L2(∂Ω;R3) ≤ C‖nh − n‖H1(Ω;R3) ≤ ηh → 0.

2. Constraint: We next show that ‖Ih[|nh|2 − 1]‖L1 → 0. We first bound the error by

triangle inequality

‖Ih[|nh|2 − 1]‖L1 ≤ ‖|nh|2 − Ih[|nh|2]‖L1 + ‖|nh|2 − 1‖L1 (2.11)

We use |n|2 = 1 a.e., the vector identity |a|2−|b|2 = |a−b|2 +2b·(a−b), and Cauchy-Schwarz

inequality to bound the second term of the RHS of (2.11):

‖|nh|2 − 1‖L1 ≤ ‖nh − n‖2 + 2‖n‖‖nh − n‖.
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The L2 error estimate for the Clement interpolant ‖nh − n‖ ≤ h‖n‖H1 then gives the bound

‖|nh|2 − 1‖L1 . h(‖n‖H1 + ‖n‖)‖n‖H1 . (2.12)

The bound on the first term of the RHS of (2.11) follows arguments from [16] and arguments in

the proof of Lemma 2.3. Over an element T , we use an interpolation estimate in L1(T ) and the

fact that ∂2
αβ|nh|2 = 2∂αnh · ∂βnh a.e. in Ω because nh is piecewise linear to obtain

‖|nh|2 − Ih[|nh|2]‖L1(T ) . h2‖D2[|nh|2]‖L1(T ;R3×3×3) . h2‖∇nh‖2
L2(T ;R3×3)

Summing over elements and using the H1 stability of the Clement interpolant yields

‖|nh|2 − Ih[|nh|2]‖L1(Ω) . h2‖∇nh‖2
L2(Ω;R3×3) . h2‖∇n‖2

L2(Ω;R3×3). (2.13)

Inserting the estimates (2.12) and (2.13) into (2.11) shows

‖Ih[|nh|2 − 1]‖L1 . h2‖∇n‖2 + h
(
‖n‖H1 + ‖n‖

)
‖n‖H1

Hence, ‖Ih[|nh|2 − 1]‖L1 ≤ ηh → 0 as h→ 0.

3. Energy: What is left to show is that the energies converge. Clearly,

∫
Ω

c0|∇nh|2 + c1(div nh)
2 →

∫
Ω

c0|∇n|2 + c1(div n)2.

Hence we need to show the convergence of the energies for the other terms. We focus our atten-
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tion on ‖nh · curl nh‖2 first. Note that it is sufficient to prove

lim
h→0
‖nh · curl nh‖ = ‖n · curl n‖ (2.14)

because x 7→ x2 is continuous. By triangle inequality, we have

∣∣‖nh · curl nh‖ − ‖n · curl n‖
∣∣ ≤ ‖nh · (curl nh − curl n)‖+ ‖(nh − n) · curl n‖

The first term goes to zero because ‖curl nh − curl n‖ → 0 and a uniform L∞ bound on

nh. For the second term, we have a pointwise convergent subsequence nhk → n such that

limhk→0 ‖(nhk − n) · curl n‖ = lim suph→0 ‖(nh − n) · curl n‖. By the uniform L∞ bound

‖nhk‖L∞(Ω;R3) ≤ 1, we have the pointwise bound |(nhk−n)·curl n| ≤ |nhk ·curl n|+|n·curl n| ≤

2|curl n| ∈ L2(Ω). Hence by dominated convergence theorem, ‖(nhk − n) · curl n‖ → 0, and

lim suph→0 ‖(nh − n) · curl n‖ = 0. Thus, limh→0 ‖(nh − n) · curl n‖ = 0, and (2.14) is proved.

The same arguments go for the ‖nh × curl nh‖2 term and the proof is complete.

Remark 2.3. Note that the uniform L∞ bound on nh is important for Step 3 in the proof of

Lemma 2.5. This is part of the reason for the enforcement of the L∞ bound in the definition of

Ag,h,η

Remark 2.4. Although we need aL∞ bound on nh, we only needed to estimate Ih[|nh|2−1] inL1.

This is part of the reason why the definition ofAg,h,η involves ‖Ih[|nh|2−1]‖L1 . Also, the gradient

flow studied in Section 2.4 will provide an L∞ bounded and estimates on ‖Ih[|nh|2 − 1]‖L1 .

Remark 2.5. The proof suggests that ηh → 0 as h→ 0 very slowly due to ‖nh|∂Ω−g‖L2(∂Ω;R3) →

0 without a rate. However one can introduce a new parameter ξ as the tolerance of boundary
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condition violation in the definition of the discrete space. In this case, one can take η ≈ h and

ξ → 0 without a rate. In practice, we typically solve with nh = Ihg on ∂Ω, which has error

estimates in terms of h if g is Lipschitz.

The next two results are important for compactness of minimizers as well as a liminf in-

equality in the Γ convergence framework.

Lemma 2.6 (equicoercivity). Ẽ satisfies

1

2
c0

∫
Ω

|∇nh|2dx ≤ Ẽ[nh] (2.15)

for all nh ∈ Ag,h,η.

Proof. The coercivity from Lemma 2.2 (properties of Ẽ) holds for any n ∈ H1(Ω;R3) and hence

holds for any nh ∈ Ag,h,η. See Remark 2.1.

Lemma 2.7 (Weak lower semicontinuity). Let nh,η ∈ Ag,h,η be such that η, h → 0, and nh,η ⇀

n∗, then

Ẽ[n∗] ≤ lim inf
h,η→0

Ẽ[nh,η] (2.16)

Proof. This proof follows the proof of lower semicontinuity of [71, Lemma 1.4]. See Lemma 2.2

and Remark 2.1.

Combining Lemmas 2.5 (recovery sequence), 2.6 (equicoercivity), and 2.7 (weak lower

semicontinuity) leads to the main convergence result.

Theorem 2.1 (convergence of minimizers). Let h→ 0. There exists a sequence {ηh}h such that

ηh → 0 as h→ 0 such that the sequence of minimizers n∗h,ηh of Ẽ over the admissible set Ag,h,ηh
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has a subsequence (not relabeled) n∗h,ηh such that n∗h,ηh ⇀ n∗ in H1(Ω;R3) and n∗ ∈ Ag is a

minimizer of Ẽ over Ag. Moreover, Ẽ[n∗h,ηh ]→ Ẽ[n∗] as h→ 0.

Proof. We proceed in 3 steps.

1. Convergence: Let n ∈ Ag. By Lemma 2.5 (recovery sequence), we have that there is

a sequence η = ηh such that ηh → 0 as h → 0 and there is a sequence nh,η ∈ Ag,h,η such that

nh,η → n in H1(Ω;R3) and lim suph→0 Ẽ[nh,η] ≤ Ẽ[n].

Using the fact that n∗h,η is a minimizer, we have that Ẽ[n∗h,η] ≤ Ẽ[nh,η], and

lim sup
h,η→0

Ẽ[n∗h,η] ≤ lim sup
h,η→0

Ẽ[nh,η] ≤ Ẽ[n].

Thus, Ẽ[n∗h,η] is bounded, and by Lemma 2.6 (equicoercivity), we have that there exists a n∗ ∈

H1(Ω;R3) such that there is a subsequence (not relabled) n∗h,η ⇀ n∗ in H1(Ω;R3) as h → 0.

To see that n∗ ∈ Ag, we need to prove that n∗ satisfies the unit length constraint pointwise a.e.

and satisfies the boundary conditions. We first show that |n∗| = 1 a.e. in Ω. Recall from Lemma

2.3 (discrete unit length constraint), it is sufficient to show that ‖Ih[|n∗h,η|2 − 1]‖L1 → 0, which

immediately follows since η → 0.

We now must show that n∗|Ω = g in the sense of trace. Since the trace operator is weakly

continuous in H1(Ω) to L2(∂Ω;R3), it is sufficient to show that n∗h,η → g in L2(∂Ω). By the

definition for Ag,h,η, we have ‖n∗h,η − g‖L2(∂Ω;R3) ≤ η. Hence, ‖n∗h,η − g‖L2(∂Ω;R3) → 0.

2. Characterization of n∗: We shall now proceed to show that n∗ is a minimizer. By

Lemma 2.7 (weak lower semicontinuity), lim infh,η→0 Ẽ[n∗h,η] ≥ Ẽ[n∗]. We then have

Ẽ[n∗] ≤ lim inf
h,η→0

Ẽ[n∗h,η] ≤ lim sup
h,η→0

Ẽ[n∗h,η] ≤ lim sup
h,η→0

Ẽ[nh,η] ≤ Ẽ[n].
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Note that Ẽ[n∗] ≤ Ẽ[n] for all n ∈ Ag, so n∗ is a minimizer.

3. Energy: The final claim is limh,η→0 Ẽ[n∗h,η] = Ẽ[n∗]. Since Ẽ[n∗] ≤ lim infh,η→0 Ẽ[n∗h,η],

it is sufficient to prove lim suph,η→0 Ẽ[n∗h,η] ≤ Ẽ[n∗]. By Lemma 2.5 (recovery sequence), we

construct n′h,η → n∗ in H1(Ω;R3) such that lim suph,η→0 Ẽ[n′h,η] ≤ Ẽ[n∗]. We use the assump-

tion that n∗h,η is a minimizer to prove the desired bound:

lim sup
h,η→0

Ẽ[n∗h,η] ≤ lim sup
h,η→0

Ẽ[n′h,η] ≤ Ẽ[n∗],

and the proof is complete.

Remark 2.6. The theory here only required H1(Ω;R3) regularity of the solution. Only requiring

H1(Ω;R3) regularity allows for point defects of LC. This contrasts with the theory in other papers

[1, 24, 74], which require higher regularity. The higher regularity requirements in [24, 74] yield

error estimates for harmonic maps and the higher regularity in [1] provide error estimates for

solving the Newton linearizations of the Frank-Oseen energy. The Γ-convergence theory here

does not provide error estimates.

2.4 Projection-free gradient flow for discrete problem

In this section, we propose a gradient flow algorithm to compute critical points of Ẽ over

the discrete admissible set Ag,h,η. The main idea follows that of [16, 23] to gain control of the

violation of the unit length constraint. Recall the modified Full Frank energy:

Ẽ[nh] = Ẽ1[nh] + Ẽ2[nh],
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where

Ẽ1[nh] :=
1

2

∫
Ω

c0|∇n|2 + c1(div n)2dx,

Ẽ2[nh] :=
1

2

∫
Ω

c2(n · curl n)2 + c3|n× curl n|2dx.

Here, Ẽ1 is the quadratic part of the energy and Ẽ2 contains the quartic contributions.

The gradient flow will involve a minimization problem at each step. Suppose we start with

the iterate nkh ∈ Vh such that |nkh(z)|2 − 1 = 0 at all nodes. Our goal is to find an increment

dtn
k+1
h , and set nk+1

h = nkh + τdtn
k+1
h . In order to make sure the minimization problem involves

a linear problem to solve, there are two linearizations.

We first linearize the constraint. Rather than find dtnk+1
h such that |nkh(z)+τdtn

k+1
h (z)|2 =

1, we search for dtnk+1
h ∈ T (nkh), which is the tangent space to the unit length constraint. Figure

2.1 shows what an increment dtnk+1
h looks like at a node z. Additionally, the addition of τ

and searching in tangent directions allows for control over the constrain violation: |nkh(z) +

τdtn
k+1
h (z)|2 = 1 + τ 2|dtnk+1

h (z)|2.

The second linearization acts on Ẽ2, which means the minimization problem for dtnk+1
h is

τdtn
k+1
h ∈ argminvh∈Th(nkh)

1

2τ
‖vh‖2

∗ + Ẽ1[nkh + vh] +
δẼ2[nkh; vh]

δn
(2.17)

where ‖ · ‖2
∗ is a norm induced by some flow metric. In order for δẼ2[nkh;τdtn

k+1
h ]

δn
to be a bounded

and controlled quantity, we ought to control dtnk+1
h in H1 , and the linearization of Ẽ2 ought

to be continuous on H1, which means nkh needs to be bounded in L∞. The desired control

of dtnk+1
h in H1 motivates the choice of the H1 norm for the flow metric i.e. ‖vh‖2

∗ = ‖∇vh‖2.
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Control of ‖∇dtnk+1
h ‖2 and the inverse inequality fromL∞ toH1 in Lemma 2.4 (discrete Sobolev

inequality), will then determine a condition on h and τ . The resulting system is

(1 + c0τ)(∇dtnk+1
h ,∇vh) + c1τ(div dtn

k+1
h , div vh) = −δẼ[nkh; vh]

δn
(2.18)

To recap, there are three main ingredients.

• Control ‖∇dtnk+1
h ‖2 from the flow metric.

• Use a pseudo-time step to control the violation of the unit length constraint.

• Combine control of the unit length constraint and ‖∇dtnk+1
h ‖2 to control the linearization of

Ẽ2.

This kind of strategy originated in the context of bilayer plates [23] and was also used in [32].

nkh(z) nkh(z)

nkh(z) + dtn
k+1
h (z)

nkh(z) + τdtn
k+1
h (z)

Figure 2.1: By searching in tangent directions, damping with τ yields |nkh(z) + τdtn
k+1
h (z)| =

1 + τ 2|dtnk+1
h (z)|2
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The resulting gradient flow algorithm is below.
Algorithm 1: Projection-free gradient flow

Data: Triangulation Th with meshsize h, pseudo-time step τ , stopping tolerance ε, and

initial guess n0
h ∈ Vh

Result: Approximate discrete local minimizer n∗h,τ,ε

k ← 0

while Ẽk−1 − Ẽk ≥ τε do
Compute increment dtnk+1

h ∈ T (nkh) to solve (2.18)

Update: nk+1
h = nkh + τdtn

k+1
h

end

We see the following property of Algorithm 1 immediately from Figure 2.1.

Remark 2.7 (lower bound on |nkh(z)|2). Given z ∈ Nh, we always have |nkh(z)|2 ≥ 1 if

|n0
h(z)|2 = 1. This is because dtnkh ∈ T (nkh), and

|nkh(z)|2 = |nkh(z)|2 + τ 2|dtnkh(z)|2 ≥ |nkh(z)|2

Applying an induction argument yields |nkh(z)|2 ≥ |n0
h(z)|2 ≥ 1.

2.4.1 Properties of gradient flow

The gradient flow Algorithm 1 has a few desirable properties. The most important property

is the following energy stability.

Theorem 2.2 (energy stability andL∞ control of constraint). Let n0
h ∈ Vh be such that |n0

h(z)|2 =

1 for all z ∈ Nh. There is a constant 0 < C ≤ 1 which may depend on Ẽ[n0
h], cinv, and ci for
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i = 0, 1, 2, 3 such that if τh−1 ≤ C then, for all k

Ẽ[nk+1
h ] +

τ

2
‖∇dtnk+1

h ‖
2 ≤ Ẽ[nkh],

and for all z ∈ Nh ∣∣∣|nk+1
h (z)|2 − 1

∣∣∣ ≤ 4c2
invτh

−1Ẽ[n0
h],

where cinv is the constant from Lemma 2.4 (discrete Sobolev inequality).

Proof. We break the proof into two cases.

Case 1. c3 = c1 = 0: We proceed by induction. We assume for k ≥ 0:

Ẽ[nkh] +
τ

2
‖∇dtnkh‖2 ≤ Ẽ[nk−1

h ] (2.19)

0 ≤ |nkh(z)|2 − 1 ≤ 4c2
invτh

−1Ẽ[n0
h] (2.20)

with n−1
h = n0

h; this is trivially satisfied for k = 0. Testing (2.18) with τdtnk+1
h :

(τ + c0τ
2)‖∇dtnk+1

h ‖
2 =− c0τ(∇nkh,∇dtnk+1

h )

− c2τ(nkh · curl nkh,n
k
h · curl dtn

k+1
h + dtn

k+1
h · curl nkh)

We split the proof into several steps.

1. Bound on ‖∇nk+1
h ‖: Recall that τdtnk+1

h = nk+1
h −nkh. By using the equality (b, b−a) =

1
2
(‖b‖2 − ‖a‖2 + ‖b− a‖2), we have

−c0τ(∇nkh,∇dtnk+1
h ) =

c0

2
‖∇nkh‖2 − c0

2
‖∇nk+1

h ‖
2 +

c0τ
2

2
‖∇dtnk+1

h ‖
2
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Inserting into the original equation and rearranging, we have

(
τ + c0

τ 2

2

)
‖∇dtnk+1

h ‖
2 +

c0

2
‖∇nk+1

h ‖
2 =

c0

2
‖∇nkh‖2 + I, (2.21)

where

I = −c2τ(nkh · curl nkh,n
k
h · curl dtn

k+1
h + dtn

k+1
h · curl nkh)

To estimate I , we apply Cauchy-Schwartz and triangle inequalities

|I| ≤ τc2‖nkh · curl nkh‖
(
‖nkh · curl dtn

k+1
h ‖+ ‖dtnk+1

h · curl nkh‖
)
.

Note that c2‖nkh · curl nkh‖2 ≤ 2Ẽ[n(0)] by the inductive hypothesis (2.19). Hence,

|I| ≤ τ

√
2c2Ẽ[n(0)]

(
‖nkh · curl dtn

k+1
h ‖+ ‖dtnk+1

h · curl nkh‖
)

≤ τ

√
2c2Ẽ[n(0)]

(
‖nkh‖L∞‖curl dtn

k+1
h ‖+ ‖dtnk+1

h ‖L∞‖curl nkh‖
)

≤ τ

√
2c2Ẽ[n(0)]

(
‖nkh‖L∞‖∇dtnk+1

h ‖+ ‖dtnk+1
h ‖L∞‖∇nkh‖

)
.

The induction hypotheses (2.19), (2.20) imply ‖nkh‖L∞ ≤ 1 + 4c2
invτh

−1Ẽ[n0
h] ≤ 1 + 4c2

invẼ[n0
h]

as well as ‖∇nkh‖ ≤
√

2
c0
Ẽ[n0

h]. Incorporating these into the above estimate with Lemma 2.4

(discrete Sobolev inequality) yields

|I| ≤ τ

√
2c2Ẽ[n0

h]

(
(1 + 4c2

invẼ[n0
h]) + cinvh

−1/2

√
2

c0

Ẽ[n0
h]

)
‖∇dtnk+1

h ‖

≤ τc′h−1/2‖∇dtnk+1
h ‖,
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where c′ depends on Ẽ[n0
h], c0, c2 and cinv. We then apply Young’s inequality to further estimate

|I| ≤ c′2

2
+
τ 2h−1

2
‖∇dtnk+1

h ‖
2.

Since τh−1 ≤ 1, we absorb the last term into the left hand side of (2.21) and obtain again using

the inductive hypothesis (2.19)

τ

2
‖∇dtnk+1

h ‖
2 +

c0

2
‖∇nk+1

h ‖
2 ≤ c0

2
‖∇nkh‖2 +

c′2

2
≤ Ẽ[n0

h] +
c′2

2
≤ c′′. (2.22)

Here, c′′ only depends on Ẽ[n0
h] and c′.

2. Estimate for ‖nk+1
h ‖L∞: We shall now obtain an intermediate estimate on ‖nk+1

h ‖L∞ .

Recall that dtnk+1
h ∈ Th(nkh). Hence, at nodes, dtnk+1

h (z) · nkh(z) = 0, and

|nk+1
h (z)|2 = |nkh(z) + τdtn

k+1
h (z)|2 = |nkh(z)|2 + τ 2|dtnk+1

h (z)|2.

By the inductive hypothesis (2.20) and and the assumption τh−1 ≤ 1, we deduce ‖nkh‖L∞ ≤

1 + 4c2
invẼ[n0

h] and

|nk+1
h (z)|2 ≤

(
1 + 4c2

invẼ[n0
h]
)2

+ τ 2‖dtnk+1
h ‖

2
L∞ .

Again applying Lemma 2.4 (discrete Sobolev inequality) and the assumption τh−1 ≤ 1, we now
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have an intermediate estimate on |nk+1
h (z)|2:

|nk+1
h (z)|2 ≤

(
1 + 4c2

invẼ[n0
h]
)2

+ τ 2h−1c2
inv‖∇dtnk+1

h ‖
2

≤
(

1 + 4c2
invẼ[n0

h]
)2

+ τh−1c2
invc

′′ ≤ c′′′, (2.23)

where c′′′ only depends on Ẽ[n0
h], cinv, and c′′. This is the desired estimate for ‖nk+1

h ‖2
L∞ but is

not quite (2.20) for k + 1. In this sense, (2.23) is an intermediate estimate.

3. Energy estimate: To prove the asserted energy estimate, we rewrite I in (2.21). To this

end, let

ak = nkh, bk = curl nkh

and note that

ak+1 · bk+1 − ak · bk =(ak+1 − ak) · bk

+ ak · (bk+1 − bk)

+ (ak+1 − ak) · (bk+1 − bk).

Squaring and rearranging terms, we end up with

|ak+1 · bk+1|2 =|ak · bk|2

+ 2ak · bk
[
(ak+1 − ak) · bk + ak · (bk+1 − bk)

]
+ 2ak · bk(ak+1 − ak) · (bk+1 − bk)

+
∣∣(ak+1 − ak) · bk + ak+1 · (bk+1 − bk)

∣∣2 .
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In view of the definition of ak and bk, after multiplying by c2
2

and integrating over Ω, this reads

c2

2

∥∥∥nk+1
h · curl nk+1

h

∥∥∥2

=
c2

2

∥∥∥nkh · curl nkh

∥∥∥2

(2.24)

+ c2τ(nkh · curl nkh, dtn
k
h · curl nkh + nkh · curl dtn

k+1
h )

+ c2τ
2(nkh · curl nkh, dtn

k+1
h · curl dtn

k+1
h )

+
c2τ

2

2

∥∥∥dtnk+1
h · curl nkh + nk+1

h · curl dtn
k+1
h

∥∥∥2

(2.25)

Adding (2.21) and (2.25) and canceling the order τ terms, we have

(
τ + c0

τ 2

2

)
‖∇dtnk+1

h ‖
2 + Ẽ[nk+1

h ] = Ẽ[nkh] + II + III, (2.26)

where

II = c2τ
2(nkh · curl nkh, dtn

k+1
h · curl dtn

k+1
h )

III =
c2τ

2

2

∥∥∥dtnk+1
h · curl nkh + nk+1

h · curl dtn
k+1
h

∥∥∥2

.

To achieve the energy inequality, we will estimate II and III separately. We first estimate II by

Cauchy-Schwarz and the inductive hypothesis (2.19):

|II| ≤ c2τ
2
∥∥∥nkh · curl nkh

∥∥∥∥∥∥dtnk+1
h · curl dtn

k+1
h

∥∥∥ ≤ τ 2

√
2c2Ẽ[nkh]

∥∥∥dtnk+1
h · curl dtn

k+1
h

∥∥∥ .
We then apply Hölder inequality and Lemma 2.4 (discrete Sobolev inequality) to estimate ‖dtnk+1

h ‖L∞ ≤
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cinvh
−1/2‖∇dtnk+1

h ‖ and

|II| ≤
√

2c2Ẽ[n0
h]τ

2
∥∥∥dtnk+1

h

∥∥∥
L∞

∥∥∥∇dtnk+1
h

∥∥∥
≤
√

2c2Ẽ[n0
h]cinvτ

2h−1/2
∥∥∥∇dtnk+1

h

∥∥∥2

≤ civτ 2h−1
∥∥∥∇dtnk+1

h

∥∥∥2

,

where civ depends on c2, Ẽ[n0
h], and cinv. We also estimate III using the inequality |a + b|2 ≤

2|a|2 + 2|b|2 and Hölder inequality:

|III| ≤ c2τ
2

(∥∥∥dtnk+1
h · curl nkh

∥∥∥2

+
∥∥∥nk+1

h · curl dtn
k+1
h

∥∥∥2
)

≤ c2τ
2

(∥∥∥dtnk+1
h

∥∥∥2

L∞

∥∥∥∇nkh

∥∥∥2

+
∥∥∥nk+1

h

∥∥∥2

L∞

∥∥∥∇dtnk+1
h

∥∥∥2
)

The energy decrease from the inductive hypothesis (2.19), the intermediate estimate on ‖nk+1
h ‖2

L∞

from (2.23), and Lemma 2.4 (discrete Sobolev inequality) helps us further bound III as follows:

|III| ≤ c2τ
2

(∥∥∥dtnk+1
h

∥∥∥2

L∞

2

c0

Ẽ[n
(0
h ] + (c′′′)2

∥∥∥∇dtnk+1
h

∥∥∥2
)

≤ c2τ
2

(
c2
invh

−1 2

c0

Ẽ[n
(0
h ] + (c′′′)2

)∥∥∥∇dtnk+1
h

∥∥∥2

≤ τ 2h−1cv
∥∥∥∇dtnk+1

h

∥∥∥2

,

where cv depends on c2, cinv, c
′′′ and Ẽ[n0

h]. Inserting the estimates of II and III into (2.26)

yields the following inequality:

(
τ + c0

τ 2

2

)
‖∇dtnk+1

h ‖
2 + Ẽ[nk+1

h ] ≤ Ẽ[nkh] + τcviτh−1
∥∥∥∇dtnk+1

h

∥∥∥2

.
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We pick τh−1 so that τh−1 ≤ 1
2cvi

=: C where cvi depends only on cinv, Ẽ[n0
h], c0, c2. With this

choice of τh−1, we then have the desired energy inequality (2.19) for k + 1:

τ

2
‖∇dtnk+1

h ‖
2 + Ẽ[nk+1

h ] ≤ Ẽ[nkh].

4. Constraint for nk+1
h : Using the orthogonality of nkh and dtnk+1

h , we have

|nk+1
h (z)|2 = |nkh(z)|2 + τ 2|dtnk+1

h (z)|2.

Again applying the Lemma 2.4 (discrete Sobolev inequality), we have

|nk+1
h (z)|2 = |nkh(z)|2 + τ 2h−1

∥∥∥∇dtnk+1
h

∥∥∥2

≤ |nkh(z)|2 + 2c2
invτh

−1
(
Ẽ[nkh]− Ẽ[nk+1

h ]
)
,

whence,

|nk+1
h (z)|2 − |nkh(z)|2 ≤ 2c2

invτh
−1
(
Ẽ[nkh]− Ẽ[nk+1

h ]
)
.

Since |nk+1
h (z)|2 = |nkh(z) + τdtn

k+1
h |2 ≥ |nkh(z)|2 ≥ 1, summing over k and using telescoping

cancellation yields

|nk+1
h (z)|2 − 1 ≤ 2c2

invτh
−1
(
Ẽ[n0

h]− Ẽ[nk+1
h ]

)
≤ 2c2

invτh
−1Ẽ[n0

h],

because |n0
h(z)| = 1 and Ẽ[nk+1

h ] ≥ 0. The lower bound |nk+1
h (z)|2−1 ≥ 0 follows immediately

from |nk+1
h (z)|2 ≥ |nkh(z)|2 and the inductive hypothesis (2.20). See Remark 2.7. These two
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inequalities are the desired nodal length violation in (2.20) for k+ 1, and completes the inductive

argument in the case c1 = c3 = 0

Case 2. c1 6= 0, c3 6= 0: We now sketch the remaining case when c1 6= 0, c3 6= 0.

First we deal with c1 6= 0. Since the splay term is dealt with implicitly, we immediately get

the energy decrease of this term using similar quadratic identities.

If c3 6= 0, there are three steps that need to be checked. First, one would need to ensure that

the intermediate estimates in (2.22) and (2.23) remains valid. This is indeed the case because an

application of the techniques in the above proof would show there is a c′ such that

c3τ

∣∣∣∣(nkh × curl nkh,n
k
h × curl dtn

k+1
h + dtn

k+1
h × curl nkh

)∣∣∣∣ ≤ c′τh−1/2‖∇dtnk+1
h ‖,

and one can balance using Young’s inequality to achieve a similar estimate like (2.22). Then the

other intermediate estimate (2.23) would follow.

The next key step would be to achieve a version of (2.25). In fact, one can replace dot

products with cross products in (2.25) due to the quartic structure of the bend term. Then the

energy inequality would follow from the same techniques to estimate the remainder terms in

(2.26).

An interesting observation is that once energy stability is achieved, one does not need to

take τh−1 → 0 to recover control of the unit length constraint violation. In fact, if we measure the

constraint violation in a weaker norm, then taking τ → 0 would recover the unit length constraint

as long as τh−1 ≤ C where C is the constant from Theorem 2.2 (energy stability and L∞ control

of constraint). We explore this next.
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Corollary 2.1 (control of L1 violation of constraint). Let n0
h ∈ Vh such that |n0

h(z)|2 = 1 for all

z ∈ Nh. Suppose τh−1 ≤ C, where C is the constant from Theorem 2.2 (energy stability and L∞

control of constraint). Then ∥∥∥Ih[|nk+1
h |

2 − 1]
∥∥∥
L1

. τẼ[n0
h]

Proof. Suppose τh−1 ≤ C. Then the Theorem 2.2 (energy stability and L∞ control of constraint)

implies

Ẽ[nk+1
h ] +

τ

2
‖∇nkh‖2 ≤ Ẽ[nkh] (2.27)

for all k. Recall that at nodes, we have

|nk+1
h (z)|2 = |nkh(z)|2 + τ 2|dtnk+1

h (z)|2.

Multiplying by h, and summing over z ∈ Nh, implies

h
∑
z∈Nh

|nk+1
h (z)|2 = h

∑
z∈Nh

|nkh(z)|2 + τ 2h
∑
z∈Nh

|dtnk+1
h (z)|2.

Combining the norm equivalence h
∑

z∈Nh |dtn
k+1
h (z)|2 ≈ ‖dtnk+1

h ‖2 and Poincaré inequality

‖dtnk+1
h ‖2 . ‖∇dtnk+1

h ‖2, we deduce

h
∑
z∈Nh

|nk+1
h (z)|2 . h

∑
z∈Nh

|nkh(z)|2 + τ 2‖∇dtnk+1
h ‖

2.
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Summing over k = 0, . . . , ` yields

0 ≤ h
∑
z∈Nh

(
|n(`+1)
h (z)|2 − 1

)
.
∑̀
k=0

τ 2‖∇dtnk+1
h ‖

2.

The left hand side is equivalent to ‖Ih[|n(`+1)
h (z)|2 − 1]‖L1 . Estimating the right hand side with

the energy inequality (2.27) yields

‖Ih[|n(`+1)
h (z)|2 − 1]‖L1 . τẼ[n0

h],

which is the desired estimate.

The next two corollaries state that Algorithm 1 computes a critical point of Ẽ in the discrete

admissible set Ag,h,η. They mimic results for harmonic maps [13, Lemma 3.8.],[16, Proposition

3.1].

Corollary 2.2 (residual estimate). Given ε > 0, there is an integer kε such that Ẽ[n
(kε−1)
h ] −

Ẽ[n
(kε)
h ] < ετ . Moreover, n

(kε)
h satisfies

∣∣∣∣∣δẼ[n
(kε)
h ; vh]

δn

∣∣∣∣∣ ≤ (1 + τc0 + τc1)
√

2ε‖∇vh‖ (2.28)

for all vh ∈ T (n
(kε)
h ).

Proof. We recall the fundamental energy decay estimate

Ẽ[nk+1
h ] +

τ

2

∥∥∥∇dtnk+1
h

∥∥∥2

≤ Ẽ[nkh].
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The above implies that Ẽ[nkh]− Ẽ[nk+1
h ] ≥ 0. Also note the telescoping sum, so

0 ≤
K∑
k=0

(
Ẽ[nkh]− Ẽ[nk+1

h ]
)

= Ẽ[n0
h]− Ẽ[n

(K+1)
h ] ≤ Ẽ[n0

h]

and each term is nonnegative. Therefore, the series 0 ≤
∑∞

k=0(Ẽ[nkh]− Ẽ[nk+1
h ]) converges, and

lim
k→∞

(
Ẽ[nkh]− Ẽ[nk+1

h ]
)

= 0.

Hence, there exists a kε such that Ẽ[n
(kε)
h ]− Ẽ[n

(kε+1)
h ] ≤ ετ . Also, note that

∥∥∥∇dtn(kε+1)
h

∥∥∥2

≤ 2

τ

(
Ẽ[n

(kε)
h ]− Ẽ[n

(kε+1)
h ]

)
≤ 2ε.

Using the gradient flow equation in (2.18), we have

δẼ[n
(kε)
h ,vh]

δn
= (1 + τc0)(∇dtn(kε+1)

h ,∇vh) + τc1(div dtn
(kε+1)
h , div vh),

where the asserted estimate

∣∣∣∣∣δẼ[n
(kε)
h ,vh]

δn

∣∣∣∣∣ ≤ (1 + τc0 + τc1)
∥∥∥∇dtn(kε+1)

h

∥∥∥‖∇vh‖ ≤ (1 + τc0 + τc1)
√

2ε‖∇vh‖

follows immediately.

Theorem 2.3. Let ε→ 0, and let n
(kε)
h be chosen from Corollary 2.2 (residual estimate). Firstly,

there are cluster points of {n(kε)
h }ε>0. Secondly, if n∗h is a cluster point of {n(kε)

h }ε>0, then it is a

48



critical point of Ẽ over Vh in tangential directions, namely

δẼ[n∗h; vh]

δn
= 0 (2.29)

for all vh ∈ T (n∗h).

Proof. We first note that we have the uniform bound ‖∇n
(kε)
h ‖ ≤ 2

c0
E[n0

h] due to Lemma 2.6

(equicoercivity) and the energy decreasing property of Theorem 2.2 (energy stability and L∞

control of constraint). By compactness in the finite dimensional space Vh, we deduce the first

claim that there are cluster points of {n(kε)
h }ε>0.

If n∗h is a cluster point, we shall now prove that it is a critical point in the sense (4.50). Let

vh ∈ T (n∗h). Consider the discrete function φh ∈ Vh defined as φh = Ih[|n∗h|−2(vh × n∗h)],

which is well-defined because |n∗h(z)| ≥ 1 for all z ∈ Nh. Note that n∗h(z) × φh(z) = vh(z) at

each z ∈ Nh because vh ∈ T (n∗h) and the cross product identity a× (b×c) = (a ·c)b− (a ·b)c.

Moreover, Ih[n
(kε)
h × φh] ∈ T (n

(kε)
h ).

Consider a subsequence n
(kε)
h → n∗h as ε→ 0 in any norm because Vh is finite dimensional.

Then Ih[n
(kε)
h × φh]→ vh

δẼ[n
(kε)
h ; Ih[n

(kε)
h × φh]]

δn
→ δẼ[n∗h; vh]

δn

because δẼ
δn

is continuous in each argument. Also, from Corollary 2.2,

∣∣∣∣∣δẼ[n
(kε)
h ; Ih[n

(kε)
h × φh]]

δn

∣∣∣∣∣ ≤ (1 + τc0 + τc1)
√

2ε‖∇Ih[n(kε)
h × φh]‖ ≤ C

√
ε→ 0,
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whence

δẼ[n∗h; vh]

δn
= 0

for all vh ∈ T (n∗h).

Remark 2.8 (cross product). The trick of the cross product to avoid the tangent space has been

used before in both numerical analysis and analysis of related problems [8, 10, 13, 45]. However,

it may not extend to showing that a discrete critical point of Ẽ converges to a critical point

of the continuous problem as h → 0 like in [13]. This is because the product of two weakly

convergent sequences may not converge weakly, which becomes an issue for the terms other than

the Dirichlet energy. However, this is not an obstruction in the discrete setting with fixed h since

the underlying space Vh is finite dimensional.

2.4.2 Practical implementation: Lagrange multiplier

To practically implement the gradient flow step in (2.18) we introduce a Lagrange multi-

plier λh ∈ Qh,0 the space of scalare continuous piecewise linear functions that vanish on ∂Ω, and

the bilinear form for the linear constraint uh ∈ Th(nkh), i.e. (nkh(z) · uh(z) = 0)

bk(λh,vh) =

∫
Ω

Ih[λh(vh · nkh)],
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which is a mass lumped L2 inner product between λh and vh ·nkh. The gradient flow step is solved

as a saddle point system:

a(dtn
k+1
h ,vh) + bk(λh,vh) = 〈f (k),vh〉 ∀vh ∈ Vh,0 (2.30)

bk(ρh, dtn
k+1
h ) = 0 ∀ρh ∈ Qh,0, (2.31)

where

a(uh,vh) := (1 + c0τ)(∇uh,∇vh) + c1τ(div uh, div vh)

and

〈f (k),vh〉 := −δẼ[nkh; vh]

δn
.

The saddle point system in (2.30) and (2.31) is well-posed. First, the bilinear form a is coercive

over Vh,0, and hence is coercive over the kernel of bk. The bilinear form bk satisfies the following

h-dependent and potentially suboptimal inf-sup inequality. We point to [24, Lemma 3.1(i)] for

an inf-sup for bk measured in different norms.

Proposition 2.3 (inf-sup for linearized constraint). Let the hypothesis of Theorem 2.2 (energy

stability and L∞ control of constraint) hold i.e. τh−1 ≤ C and |n0
h(z)| = 1 for all nodes z ∈ Nh.

Let nkh ∈ Vh be the k-th iterate generated by Algorithm 1. Then the bilinear form bk : Qh,0×Vh,0

satisfies the following inf-sup inequality

inf
λh∈Qh,0\{0}

sup
vh∈Vh,0\{0}

bk(λh,vh)

‖vh‖H1(Ω;R3)‖λh‖L2(Ω)

≥ ch3/2 (2.32)
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where c > 0 only depends on Ẽ[n0
h] and shape regularity and quasiuniformity of the sequence of

triangulations.

Proof. To prove the result, it is sufficient to prove that given a λh ∈ Qh,0 there exists vh ∈ Vh,0

such that bk(λh,vh) ≥ ch3/2‖vh‖H1(Ω;R3)‖λh‖.

Let λh ∈ Qh,0. We choose vh = Ih[λhn
k
h] ∈ Vh,0. At each node, z ∈ Nh, we have

λh(z)vh(z) · nkh = |λh(z)|2|nkh(z)|2.

Recall that Algorithm 1 produces |nkh(z)|2 ≥ 1 at each node by the argument in Remark 2.7

(lower bound on |nkh(z)|2). Hence, λh(z)vh(z) · nkh ≥ λh(z)2, and there is a constant c > 0

independent of h such that

bk(λh,vh) =

∫
Ω

Ih[λh(vh · nkh)] dx ≥
∫

Ω

Ih[λ
2
h] dx ≥ c‖λh‖2

by virtue of the norm equivalence ‖Ih[λh]‖ ≈ ‖λh‖ on Qh,0.

We are left to show ‖vh‖H1(Ω;R3) ≤ ch−3/2‖λh‖L2(Ω). We start with a generic element

T ∈ Th and apply triangle inequality

‖∇vh‖L2(T,R3×3) ≤ ‖∇(λhn
k
h − Ih[λhnkh])‖L2(T ;R3×3) + ‖∇(λhn

k
h)‖L2(T ;R3×3).
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We handle the first term with an error estimate for the Lagrange interpolant and Hölder inequality

‖∇(λhn
k
h − Ih[λhnkh])‖L2(T ;R3×3) . h‖D2(λhn

k
h)‖L2(T ;R3×3×3)

. h‖∇λh‖L2(T ;R3)‖∇nkh‖L∞(T ;R3×3)

where the last inequality uses the fact that ∂2
ij(λhvh) = ∂iλh∂jvh + ∂jλh∂ivh for linear functions

on T .

We handle the second term by applying a product rule and Hölder inequality

‖∇(λhn
k
h)‖L2(T ;R3×3) . ‖nkh‖L∞(T ;R3)‖∇λh‖L2(T ;R3) + ‖λh‖L2(T )‖∇nkh‖L∞(T ;R3×3)

Theorem 2.2 (energy stability and L∞ control of constraint) produces ‖nkh‖L∞(T ;R3) . 1. Hence,

‖∇
(
λhn

k
h

)
‖L2(T ;R3×3) . ‖∇λh‖L2(T ;R3) + ‖λh‖L2(T )‖∇nkh‖L∞(T ;R3×3)

Adding the estimates together yields

‖∇vh‖L2(T ;R3×3) ≤ ‖λh‖L∞(T )‖∇nkh‖L2(T ;R3×3) + ‖∇λh‖L2(T ;R3) + ‖λh‖L2(T )‖∇nkh‖L∞(T ;R3×3)

Squaring, summing over elements, and taking a square root yields

‖∇vh‖ ≤ ‖∇λh‖+ ‖λh‖‖∇nkh‖L∞ .

We finally apply global inverse inequalities ‖∇nkh‖L∞ . h−3/2‖∇nkh‖ and ‖∇λh‖ . h−1‖λh‖,
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Theorem 2.2 (energy stability and L∞ control of constraint), and Lemma 2.6 (equicoercivity) to

see that

‖∇vh‖ . h−3/2‖λh‖

with a hidden constant only depending on the initial energy Ẽ[n0
h] and shape regularity and quasi-

uniformity of the sequence of triangulations {Th}h.

Remark 2.9. If ∇nkh was uniformly bounded in L∞(Ω;R3×3), then the inf-sup condition reads

inf
λh∈Qh,0\{0}

sup
vh∈Vh,0\{0}

bk(λh,vh)

‖vh‖H1(Ω;R3)‖λh‖L2(Ω)

≥ ch

1 + h‖∇nkh‖L∞

The assumption that ∇nkh is uniformly bounded in L∞(Ω;R3×3) is similar to the assumptions in

[74] and [24]. In our context, [24, Lemma 3.1] would imply

inf
λh∈Qh,0\{0}

sup
vh∈Vh,0\{0}

bk(λh,vh)

‖vh‖H1(Ω;R3)‖λh‖H−1(Ω)

≥ c‖∇nkh‖−1
L∞ . (2.33)

If Ω ⊂ R2, then [74, Theorem 4.2] would also give an h-independent inf-sup constant.

In the presence of defects in Ω ∈ R3, we do not expect ∇nkh to be uniformly bounded

in L∞(Ω;R3×3). The inverse inequality and Theorem 2.2 (energy stability and L∞ control of

constraint) yields ‖∇nkh‖L∞ . h−3/2‖∇nkh‖ ≤ Ch−3/2, and the h dependence in (2.33) would

be on par with what we proved in (2.32). However, our result measures λh in a stronger norm

than [24, 74].

Remark 2.10 (Newton iteration). If we were to implement Newton’s method to find critical

points of Ẽ over Ag,h,0, the system for the Newton iterate dtnk+1
h = nk+1

h − nkh and dtλk+1
h =
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λk+1
h − λkh would look like

δ2Ẽ[nkh; dtn
k+1
h ,vh]

δn2
+ bk(dtλ

k+1
h ,vh) = −δẼ[nkh; vh]

δn
− bk(λkh,vh)

bk(ρh, dtn
k+1
h ) = −1

2

∫
Ω

Ih

[(
|nkh|2 − 1

)
ρh

]
dx.

The above system has a similar structure to the system (2.30) and (2.31). First, the form bk would

satisfy the same h dependent inf-sup condition. Another issue is that it is not clear whether

δ2E[nkh; ·, ·]/δn2 is coercive. One probably needs to further modify Ẽ as was done in [1] to ensure

coercivity. However, the work in [1, Remark 3.9] shows that a modification of δ2E[nkh; ·, ·]/δn2

is coercive if k2/k3 ∈ (1 − εk, 1 + εk) for some εk that depends on nkh, where εk → 0 as

‖∇nkh‖L∞ →∞. As a result, we might expect to lose coercivity with mesh refinement if k2 6= k3

and if there are defects present in the LC.

For solving the saddle point system, we use MINRES [99]. For preconditioning, we employ

a block diagonal preconditioner motivated by preconditioned MINRES for Stokes’ equations [61,

Chapter 6.2]. We pick the upper left block to be an appropriate preconditioner of the Laplacian

like the multigrid preconditioner implemented in NGSolve [108]. The lower right block of the

preconditioner is the mass matrix Mij =
∫

Ω
φiφj dx, where φi are the nodal basis functions of

Qh. The number of preconditioned MINRES iterations grows likeO(h−1) as seen in Table 2.1 in

Section 2.6. This computational evidence suggests that the preconditioning strategy we employ

might be suboptimal. Additionally, the inf-sup condition in (2.32) is not uniform in h and the

growth in MINRES iterations could be due to the lack of uniform stability of the system (2.30)

and (2.31). We refer to [75, 123] for work on preconditioning systems similar to (2.30)-(2.31).
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2.5 Magnetic effects

This section addresses how to adapt the previously discussed results in the presence of a

fixed magnetic field H ∈ L2(Ω;R3),

For a fixed magnetic field H the magnetic energy is [114, Ch. 4.1]

Em[n] = −χA
2

∫
Ω

(n ·H)2dx

where χA is the diamagnetic anisotropy, which measures how much a liquid crystal wants to

either align with the magnetic field or align orthogonally to the magnetic field. The parameter

χA may be positive or negative depending on the material. For this chapter, we consider χA ≥ 0,

which favors alignment of n with H.

With the magnetic energy, the total energy becomes

Etotal[n] := Ẽ[n] + Em[n]

Since the magnetic contribution is a lower order term, existence of minimizers is still true [70,

Theorem 2.3]. We now summarize the numerical results in the presence of the extra magnetic

field H and remark on how the proofs are modified.

2.5.1 Convergence of minimizers

The first proof to modify would be the proof of Lemma 2.5 (recovery sequence). Since

nh → n strongly in L2 and nh is uniformly bounded in L∞, then Em[nh] → Em[n] up to a
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subsequence by Lebesgue Dominated Convergence Theorem, and the recovery sequence result

would carry over. For Lemma 2.6 (equicoercivity), the uniform bound in L∞ in the definition

of Ag,h,η would ensure that Em[nh,η] ≥ −C|χA|
2
‖H‖2, which does not impact equicoercivity.

Finally, for Lemma 2.7 (weak lower semicontinuity), the liminf inequality also does not change

with the magnetic field since if nh ⇀ n in H1, then a subsequence satisfies nh → n strongly in

L2. Thus, Em[nh]→ Em[n] because H is fixed. Therefore, the following theorem holds with the

magnetic field.

Theorem 2.4 (convergence of minimizers). Let h, η → 0, and n∗h,η be a sequence of minimizers

of Ẽ + Em over the admissible set Ag,h,η. Then there is a subsequence (not relabeled) n∗h,η such

that n∗h,η ⇀ n∗ ∈ Ag in H1(Ω;R3) such that n∗ is a minimizer of Etotal over Ag.

2.5.2 Gradient flow

Also, the gradient flow is only slightly modified. To guarantee energy decrease, we treat

Em explicitly in the gradient flow since χA ≥ 0. The resulting modification to the gradient flow

equation is to find dtnk+1
h ∈ Th(nkh) that solves

(1 + τc0)(∇dtnk+1
h ,∇vh) + τc1(div dtn

k+1
h , div vh) = −δEtotal[n

(k); vh]

δn
∀vh ∈ Th(nkh).

(2.34)
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The explicit treatment guarantees energy decrease due to the quadratic identity (a, a − b) =

1
2
‖a‖2 − 1

2
‖b‖2 + 1

2
‖a− b‖2. We have

−δEm[nkh; τdtn
k+1
h ]

δn
= −χA

1

2

∥∥∥nkh ·H∥∥∥2

+ χA
1

2

∥∥∥nk+1
h ·H

∥∥∥2

− τ 2χA
2

∥∥∥dtnk+1
h ·H

∥∥∥2

= Em[nkh]− Em[nk+1
h ]− τ 2

2

∥∥∥dtnk+1
h ·H

∥∥∥2

Adding this to the proof of Theorem 2.2 (energy stability and L∞ control of constraint) would

still ensure total energy decrease, and the validity of the following theorem.

Theorem 2.5 (energy decrease with magnetic effects). Let n0
h ∈ Vh such that |n0

h(z)|2 = 1 for

all z ∈ Nh. There is a constant 0 < C ≤ 1 which may depend on Etotal[n0
h], cinv, and ci for

i = 0, 1, 2, 3 such that if τh−1 ≤ C then, for all k

Etotal[n
k+1
h ] +

τ

2
‖∇dtnk+1

h ‖
2 ≤ Etotal[n

k+1
h ],

and for all z ∈ Nh

||nk+1
h (z)|2 − 1| ≤ 4c2

invτh
−1Etotal[n

0
h],

where cinv is the constant from Lemma 2.4 (discrete Sobolev inequality).

The other Corollaries in Section 2.4 would also hold.

2.6 Computational results

The algorithm proposed was implemented in the mutli physics software NGSolve [108] and

visualizations were made with ParaView [6]. Since we are interested in the influence of Frank’s
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constants. We introduce the following notation to denote splay, twist, and bend:

splay(n) :=

∫
Ω

(div n)2dx,

twist(n) :=

∫
Ω

(n · curl n)2dx,

bend(n) :=

∫
Ω

(n× curl n)2dx.

We also use short hand notation for the Lp discrete unit length constraint error

errp(nh) :=
∥∥Ih[|nh|2 − 1]

∥∥
Lp(Ω)

.

Finally n∞h will denote the solution produced by Algorithm 1 when the desired tolerance is

reached.

2.6.1 Frank’s constants and defects

This section presents how defects may change behavior under the influence of Frank’s

constants k1 (splay), k2 (twist), k3 (bend). The first example is the instability of x 7→ x/|x| for k2

sufficiently small, known as Hélein’s condition. The second example is the instability of a degree

two defect and the influence of Frank’s constants on the resulting configuration.

2.6.1.1 Hélein’s condition

This computation presents the instability of degree 1 defect depending on ki known as

Hélein’s condition [73], which has also been computationally studied in [9]. Results in [77] state

that the second variation of E over Ag with Ω = B1(0) at n1(x) = x/|x| is positive definite if
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and only if

8(k2 − k1) + k3 ≥ 0, (2.35)

which is Hélein’s condition. Note that bend(n1) = twist(n1) = 0, so n1 consists of pure

splay. Hélein’s condition states that there is a tradeoff between the splay and bend and twist

energies. If the bend and twist constants k2, k3, are small relative to the splay constant k1, then

it is energetically favorable for a configuration to bend and twist a little; (2.35) does not hold. If

k1 is small relative to k2, k3, then (2.35) is valid and the energy cannot reduce by bending and

twisting.

For the next set of computations, we let the parameters be

k1 = k3 = 1, k2 = 0.1, τ = h = 2−`/2

and remesh Ω for ` = 4, . . . , 9 to see how the projection-free gradient flow behaves when decreas-

ing h and τ . This simulation corresponds to a violation of (2.35). Note that from Theorem 2.2

(energy stability and L∞ violation of constraint) and Corollary 2.1 (control of L1 violation of con-

straint), we expect err∞(n∞h ) . 1, and err1(n∞h ) . h. Figure 2.2 shows that err1(n∞h ) . h

and err∞(n∞h ) starts to decrease and perform slightly better than O(1). The table in Table 2.1

shows the initial and final energy as well as gradient flow iteration counts. Note that the number

of gradient flow iterations grows like O(τ−1). Table 2.1 also shows the number of MINRES iter-

ations to compute the saddle point problem with residual error less than 10−8 for the first iterate

of the gradient flow. The preconditioning strategy we employ is outlined in Section 2.4.2. The

number of MINRES iterations grows like O(h−1). We note that the stairstep behavior of the
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Figure 2.2: Plot of discrete unit length constraint errors ‖Ih[|n∞h |2 − 1]‖Lp(Ω) for p = 1,∞. Note
that Theorem 2.2 and Corollary 2.1 imply that err1(n∞h ) . h and err∞(n∞h ) . 1 provided
τh−1 ≤ C. The computational results corroborate the theory.

MINRES iterations is probably due to the fact that we are remeshing Ω rather than performing

mesh refinement.

For the smallest meshsize and τ , we plot the initial and final configuration in Figure 2.3.

We also present the initial and final splay, bend and twist in Table 2.3. Note that bend and twist

increase by an order of magnitude from the initial to final configuration, which confirms the

suspicion that the liquid crystal can decrease the energy by reducing splay at a modest cost of

increasing twist and bend.

2.6.1.2 Influence of Frank’s constants on instability of degree 2 defect

We now explore the influence of Frank’s Constants on the instability of a degree 2 defect.

All simulations were computed with the following parameters

Ω = B1(0), h = τ =
1

16
, ε = 10−4.
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h Ẽ[n0
h] Ẽ[n∞h ] GF Iterations MINRES Iterations

2−2 21.686 21.147 396 40
2−5/2 22.281 21.556 177 44
2−3 23.067 21.883 264 72

2−7/2 23.197 21.952 394 80
2−4 23.491 21.998 562 144

2−9/2 23.498 21.958 823 128

Table 2.1: Table of initial energies, final energies, number of gradient flow iterations for different
values of h computing a degree 1 defect under Hélene’s condition. Last column is the number of
MINRES iterations to reach a residual error less than 10−8 for one step of the gradient flow for
different values of h. We see that the number of gradient flow iterations grows like O(τ−1) =
O(h−1) and the number of MINRES iterations also grows like O(h−1).

` err1(n∞h ) err∞(n∞h ) GF Iterations
1 1.19e-02 1.16e-01 74
2 6.29e-03 6.11e-02 138
3 3.24e-03 3.14e-02 265
4 1.64e-03 1.59e-02 520
5 8.27e-04 8.01e-03 1030
6 4.16e-04 4.028e-03 2051

Table 2.2: Discrete unit length constraint errors and number of gradient flow iterations for a
degree 1 defect under Hélene’s condition with h = 1/8, τ = 1

2`
for ` = 1, . . . , 6 and ε = 10−3/2.

Both the L1 and L∞ errors for the discrete unit length constraint decreases linearly with τ , which
is expected from Theorem 2.2 and Corollary 2.1 if h is fixed. Also, gradient flow iterations
increase like O(τ−1), which is also expected if ε is fixed.

splay(nh) twist(nh) bend(nh)
Initial 49.4 .0286 .138
Final 42.7 10.2 2.68

Table 2.3: Initial and final splay, twist, and bend for computed solution with k1 = k3 = 1 and
k2 = .1 and h = τ = 2−9/2 and ε = 10−3/2 (the stopping parameter of Algorithm 1). Note
that twist and bend increase by at least an order of magnitude while splay only decreases slightly.
This sheds light on Hélein’s condition being a tradeoff between splay and twist and bend.
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Figure 2.3: Above is the {y = 0} slice of the projected director field. The right is the computed
minimizer with k1 = k3 = 1 and k2 = .1 and numerical parameters h = 2−9/2, τ = h, ε =
10−3/2 (the stopping parameter of Algorithm 1)

The starting configuration and boundary conditions is given by the degree 2 defect:

n2(x) = π−1
(
(π(x/|x|)2

)
.

where π : S2 → C is the stereographic projection. This example has been explored previously in

the one constant case [8, 13, 50]. The map n2 has a singularity at x 6= 0 due to x 7→ x/|x| in the

argument of π. We sketch why n2 has a singularity of degree 2. Consider xθ = (cos θ, sin θ, 0).

The stereographic projection π maps xθ to z = eiθ, so π(xθ)
2 = e2iθ. Mapping back with π−1

yields n2(xθ) = (cos 2θ, sin 2θ, 0), which we can see has a winding number of 2 if we integrate

the path integral around the unit circle S2 ∩ {x3 = 0}.

In fact, this technique also produces higher degree defects, i.e. nm(x) = π−1(π(x/|x|)m)

would be the defect of degree m. For all numerical simulations, the initial configuration is n0
h =
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Ihn2. Figure 2.4 shows the initial condition and the result of the gradient flow for the one constant

case ki = 1. Figure 2.5 shows the final configurations for k1 = 1, k2 = .75 and k3 = 1, 3, 5. Note

in Figure 2.5 that as k3 increases, the computed solution transitions from two bending defects to

two splay defects. In fact, as k3 = 1, 3, 5, the value of 8(k2 − k1) + k3 from Hélein’s condition

is −1, 0, 1. When 8(k2 − k1) + k3 < 0, we expect that bending and twist configurations are

preferable based on Hélein’s condition. Likewise for 8(k2 − k1) + k3 ≥ 0, we expect splay

configurations to be preferable. This is just a heuristic, but we see the different configurations

arise in Figure 2.5.

Figure 2.4: Initial and final configurations from Algorithm 1 with ki = 1 for i = 1, 2, 3, h = τ =
1/16 and ε = 10−4. A degree 2 defect for the initial condition splits into two degree 1 defects.

2.6.2 Magnetic effects

2.6.2.1 Fréedericksz transition

We next study the Fréedericksz transition [65], which is an experimental technique to

determine Frank’s constants. We describe the set up to determine k1. The domain is Ω =

(−1, 1) × (0, w) and Dirichlet boundary conditions are set on the top and bottom boundaries
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Figure 2.5: Initial and final configurations from Algorithm 1 and k1 = 1, k2 = .75 and k3 =
1, 3, 5. As k3 = 1, 3, 5, the equilibrium configuration changes from 2 bending degree 1 defects
for k3 = 1 to two degree 1 splay like defects for k3 = 5.

ΓD = (−1, 1) × {0.w}. For the splay configuration, the boundary condition is g(x) = e1. The

applied magnetic field is H = He3 for H to be determined. Note that n0 := g has zero energy

and is a critical point of Ẽ. However, analysis in [57, 114] show n0 becomes unstable when

H >
1

2w

√
k1

χA
.

For the numerical experiment, we take the following material parameters

w =
1

2
, k1 = 2.3, k2 = 1.5, k3 = 4.8, χA = 1.21, H = 9.5,

where ki are scaled constants for PAA at 125 degrees Celsius [114, pg 123] and χA is the scaled

constant for PAA at 122 degrees Celsius [114, pg 174]. The numerical parameters are

h = τ =
1

32
, ε =

10−4

2
.
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For the initial condition, we consider a perturbation of the equilibrium state:

n0
h = Ih

[
e1 + u

|e1 + u|

]
, u = 256[x(1− x)y(1− y)]2z(.5− z)e3.

Here, ‖u‖L∞(Ω;R3) ≈ .03. Figure 2.6 shows the initial and final configurations of the gradient

flow. Note that Dirichlet boundary conditions were note imposed on the sides, so our use of the

modified energy Ẽ may not be entirely faithful to E. However we still see energy decrease in the

gradient flow algorithm as evidenced by Figure 2.7.

The reason why an experimenter can measure k1 using this experiment is that the compe-

tition between the magnetic energy and the elastic energy only happens in the splay term. Table

2.4 shows that the splay is the dominant part of the energy that increases.

Figure 2.6: Initial and final configurations from Algorithm 1 and k1 = 2.3, k2 = 1.5, k3 =
4.8, χA = 1.21, H = 9.5.

splay(nh) twist(nh) bend(nh)
Initial 1.71e-03 5.15e-04 5.14e-04
Final 1.82 2.36e-02 8.06e-02

Table 2.4: Initial and final splay, twist, and bend for computed solution for the Fréedericksz
transition experiment with k1 = 2.3, k2 = 1.5, k3 = 4.8, χA = 1.21, H = 9.5 and numerical
parameters h = τ = 1

32
, and ε = 10−4

2
. Note the large increase in splay relative to bend and twist

indicating that most of the increase in the elastic energy is due to splay.
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Figure 2.7: Energy decay for Fréedericksz transition experiment vs gradient flow iterations.

2.6.2.2 Magnetic effects and a colloid

This computational example reveals the influence of the magnetic field on a liquid crystal

configuration around a colloid. One salient feature of computing with a colloid is the inherent dif-

ficulty to mesh with weakly acute triangulations due to the domain topology, and hence to realize

projection methods that enforce energy decrease. This contrasts strikingly with the simplicity of

the current projection-free approach. The setup is similar to what was done in [96]. The domain,

boundary conditions, and magnetic field are

Ω = [−2, 2]3 \B3/4(0), g(x) =


x/|x|, x ∈ ∂B3/4(0)

e3, x ∈ ∂[−2, 2]3

, H = He2.

Here, H = 0, 1, 2, 4. Note that the magnetic field H is orthogonal to the outer boundary g =

e3. In this sense, this setup is similar to the Fréedericksz transition computed earlier. There

is competition between matching the outer boundary condition and paying little elastic energy

versus reducing the magnetic energy. The main difference with the Fréedericksz transition is

twofold: first the Dirichlet boundary condition is enforced everywhere on ∂Ω, and second the
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presence of the colloid. The numerical parameters are

h =
1

8
, τ =

h

4
, ε = 10−4

see Algorithm 1.

Figure 2.8 shows n∞h with varying H . Note that for H = 1, 2, the computed minimizer

looks quite similar to the H = 0 case. For H = 4, the computed n∞h is nearly parallel to the

magnetic field, except for near the boundary, where Dirichlet boundary conditions are imposed.

We can see that n∞h is nearly parallel to the magnetic field for H = 4 since the final energy is

Etotal[n
∞
h ] ≈ −120 while the final energies for H = 0, 1, 2 are approximately 28.4, 27.1, 18.9

respectively. This suggests a transition similar to Fréederickz occurs where the magnetic field

overcomes the elastic energy.

68



Figure 2.8: Influence of magnetic field on liquid crystal with colloid. Color is y component of
n∞h (Top left) H = 0, (Top right) H = 1, (Bottom left) H = 2, (Bottom right) H = 4. Note the
large change in behavior from H = 2 to H = 4. The director field for H = 2 behaves more or
less like H = 0. However for H = 4, the director field is almost totally parallel to e2 except near
the boundary.
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Chapter 3: Modeling of Thin Liquid Crystal Polymeric Networks

We recall from the discussion in Section 1.3 that the 3D body comprised of LCE/LCN in

many applications [5, 42, 117] is thin relative to its length and width. As a result, it is advan-

tageous to model such LCNs with dimensionally reduced models, which is the subject of this

chapter. The scaling of thickness in models of thin 3D elastic bodies dictates the 2D models of

LCNs/LCEs. If the energy is scaled linearly with the thickness, the resulting model is a mem-

brane model: the energy is a function of the first fundamental form of the deformed surface

and encodes stretching. Works that studied membrane models include [44, 54, 98]. For LCNs,

the first fundamental form of zero stretching energy states satisfy a pointwise metric condition.

Extensive work dedicated to examining configurations that satisfy this metric condition include

[4, 91, 92, 93, 94, 100, 101, 103, 119]. For a review of these techniques, we refer to [118]. The

second common scaling is a cubic scaling in the thickness, and results in a plate model driven by

bending. The metric condition giving zero stretching energy becomes a constraint in the bending

model. Some existing bending models include theory derived via formal asymptotics [98], a von

Karman plate model derived in [90] using asymptotics, a rigorous Gamma convergence theory

for a model of bilayer materials composed of LCEs and a classical isotropic elastic plate [22],

or a plate model where the LC dramatically changes its orientation through the thickness [2].

Moreover, reduced 1D models for LCNs/LCEs have been explored as well; we refer to [21] for
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a rod model and to [3, 112] for ribbon models.

An outline and highlight of the contributions of this chapter are as follows.

• In Section 3.1, we present a derivation of a classical 3D elastic model of LCE, which was first

derived by Bladon, Warner, and Terentjev [28]. The discussion follows discussions previously

done in [121].

• In Section 3.2, we derive a 2D membrane model of LCN, prove numerous properties, and

present a new technique for the construction of approximate configurations.

– In Section 3.2.1, we derive a membrane model of LCN, following [98]. The key difference

is that [98] assumes the midplane of the deformed surface is inextensible. This chapter drops

this simplifying assumption by tuning the Kirchhoff-Love ansatz to conform to incompress-

ibility in 3D.

– In Section 3.2.2, motivated by [98], we derive the 2D membrane model from 3D rubber

elasticity via an asymptotic analysis. We also connect Wstr and W3D with the notion of

minimal energy extension which relates the model derived and a similar model in [47].

Moreover, we show that zero energy states of Wstr satisfy a target metric condition. This

metric condition is known throughout the physics literature and is typically derived for the

3D model [102], [121, Chapter 6.2].

– We present a new formal construction of solutions for rotationally symmetric blueprinted

director fields m with a defect of degree n > 1. Our technique hinges on the ideas of lifted

surfaces (inspired by [101]), composition of defects and Taylor expansion.

• This chapter concludes by presenting a derivation of a bending model of LCN, following [98].
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Again, we remove the simplifying inextensibility assumption in [98] by tuning the Kirchhoff-

Love ansatz to conform to incompressibility in 3D.

3.1 3D elastic energy: neo-classical energy

3.1.1 Derivation of neo-classical energy

We begin with a derivation of the neo-classical energy density in (3.1) due to [28, 120, 121].

This initial discussion will follow discussion in [121].

We let B ⊂ R3 be some 3 dimensional body and we consider x ∈ B. At x, the polymer

network is comprised of many strands as well as cross-links. Since the model we are considering

is a continuum model, we consider many such strands in a small volume at x. We first consider

a set of vectors {ri}nsi=1 to be comprised of end-to-end vectors of a strand at the point x, and

ns denotes the number of strands per unit volume. Also, the current configuration of strands

is obtained by ri = Frif , where F is the deformation gradient, and rif is the initial end-to-end

vector that describes the crosslinks at the formation of the polymer network. Here, we assume

the deformation gradient is incompressible and satisfies det F = 1. Additionally, we assume

the initial strands are distributed normally as rf ∼ N (0,Lm), where Lm is a matrix of second

moments determined by the initial LC director field m, which is to be determined later. The

entropic free energy at the point x is the sum of the entropic free energies of each strand

F =
ns∑
i=1

−kbT ln(N(ri))

where N(ri) is the number of potential configurations the strand can take that results in the end-
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to-end vector ri, kb is the Boltzmann constant, and T is the temperature. The number N(r) is

proportional to a Gaussian distribution whose second moments depends on the current liquid

crystal orientation n. In particular, we have that

N(r) ∝ (2π)−3/2 det(L−1/2
n )exp

(
−1

2
rTL−1

n r

)
,

where Ln will be some symmetric positive definite matrix to be determined later. Inserting the

normal distribution into the entropic free energy in place of N(r) yields

F = −kbnsT ln
(

(2π)−3/2 det L−1/2
n

)
+

ns∑
i=1

kbT

2
(ri)TL−1

n ri.

We may drop the term kbnsT ln
(

(2π)−3/2 det L
−1/2
n

)
since it is a constant and will not impact

minimizers of F . The sum above can be well approximated by taking the average if ns is large.

Hence, we write

F =
kbTns

2

∫
R3

wTL−1
n w dr(w),

where we are integrating with respect to the probability measure of the distribution of the ri’s.

Recall ri = Frif , so we apply a change of variables to the above integral to obtain

F =
kbTns

2

∫
R3

(Fv)TL−1
n (Fv)| det F| drf (v)

=
kbTns

2

∫
R3

(Fv)TL−1
n (Fv)(2π)−3/2 det(L−1/2

m )exp

(
−1

2
vTL−1

m v

)
dv,

where we used the assumption that rf ∼ N (0,Lm), the formula for the probability density of

N (0,Lm), and the incompressibility assumption det F = 1.
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Using the property that aTb = tr(abT ), we may rewrite the integral as

F =
kbTns

2

∫
R3

tr(FTL−1
n FvvT )(2π)−3/2 det(L−1/2

m )exp

(
−1

2
vTL−1

m v

)
dv.

Moving the integral inside the trace, noting that FTL−1
n F is constant in terms of v, we have

F =
kbTns

2
tr

(
FTL−1

n F

∫
R3

vvT (2π)−3/2 det(L−1/2
m )exp

(
−1

2
vTL−1

m v

)
dv

)
.

Note that ∫
R3

vvT (2π)−3/2 det(L−1/2
m )exp

(
−1

2
vTL−1

m v

)
dv = Lm

because Lm is the second moments matrix of N (0,Lm). Therefore, the energy becomes

F =
kbTns

2
tr(FTL−1

n FLm).

Writing µ = kbTns as the shear modulus, we have the neo-classical trace formula in (3.1)

except for the form of Ln,Lm. Since, Lm and Ln are interpreted as second moments, we require

that both tensors are symmetric positive definite. We also assume that the liquid crystal director

fields m,n are eigenvectors of Lm and Ln respectively. Finally, we assume that Lm is uniaxial

as in Lm has two equal eigenvalues. We likewise assume Ln is uniaxial. Combining these

assumptions leads to Lm and Ln taking the form

Lm = a0(I3 + s0m⊗m), Ln = a(I3 + sn⊗ n)
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where s0, s describes the degree of orientation of the strands around m and n respectively. If

a, a0 > 0, then s, s0 satisfy

s, s0 > −1

to respect the positive definiteness assumption of Lm and Ln. See also Section 3.1.3. Note that

we do not see Ln in the energy but rather

L−1
n = a−1

(
I3 −

s

s+ 1
n⊗ n

)
.

To have some intuition as to why we should expect to use L−1
n , we consider a specific case. As

s→∞, the strands become better aligned with n. If an end-to-end vector ri is parallel to n, then

there are many more potential strand configurations leading to ri. As a result the entropy increases

and the entropic energy should decrease. One final remark is that a, a0 only influence the energy

by becoming multiplicative constants. Hence, for the rest of this chapter and dissertation, we

shall set

a0 = (s0 + 1)−1/3, a = (s+ 1)−1/3

so that det Lm = det Ln = 1.

3.1.2 3D elastic energy

To summarize, we have discussed the molecular basis for the neo-classical trace formula

[28, 120, 121]. We shall now denote this energy density by

W3D(x,F) :=
µ

2

[
tr
(
FTL−1

n FLm

)
− 3
]
, (3.1)
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where x := (x′, x3) := (x1, x2, x3) ∈ B is the space variable and F ∈ R3×3 is the deformation

gradient. Note that we are interested in thin films of LCNs, and mathematically slender materials

are usually modeled as 3D hyper-elastic bodies B := Ω × (−t/2, t/2), with Ω ⊂ R2 being a

bounded Lipschitz domain and t > 0 being a small thickness parameter. We denote by u : B →

R3 the 3D deformation of the LCNs material, so that ∇u = F. Since the shear modulus µ, is

a multiplicative constant, we set µ = 2 for the rest of this dissertation. The constant −3 was

added to ensure that the energy density is nonnegative, we refer to Corollary 3.1 (nondegeneracy

of W3D) below.

We define m : B → S2 the blueprinted nematic director field on the reference configu-

ration. The director field n : B → S2 is the director field on the deformed configuration, to be

defined below, whereas

Lm := (s0 + 1)−1/3(I3 + s0m⊗m) (3.2)

is the reference step length tensor, and

Ln := (s+ 1)−1/3(I3 + sn⊗ n) (3.3)

are the tensors recently discussed. Recall from the previous discussion, s0, s ∈ L∞(Ω) are

nematic order parameters that refer to the reference configuration and deformed configuration

respectively. They are typically constant and depend on temperature, but may vary in Ω if the

liquid crystal polymers are actuated non-uniformly. These parameters have a physical range

−1 < s0, s ≤ C <∞. (3.4)
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We emphasize that the energy density W3D(x,F) defined in (3.1) depends explicitly on coordi-

nates x, due to the dependence of m,n, s, s0 on x.

In the case where s = s0 = 0, the step length tensors become Lm = Ln = I3, the identity

matrix I3 ∈ R3×3, and the formula (3.1) reduces to the classical neo-Hookean energy density

for rubber-like materials W3D(F) = |F|2 − 3. Recall, we have assumed that the material is

incompressible, i.e,

det F = 1. (3.5)

The density of crosslinks between the mesogens and polymer network differentiate LCNs

(also called liquid crystal glasses) and liquid crystals elastomers (LCEs): the former has moderate

to dense crosslinks, while in the latter the density of crosslinks is low [122]. In this chapter,

we focus on LCNs and leave a study of LCEs for future research. Mathematically, the strong

coupling in LCNs is reflected in terms of director fields via a kinematic constraint [98]:

n :=
Fm

|Fm|
. (3.6)

This implies that, in contrast to LCEs [22, 121], n is not a free variable for models of LCNs; in

fact it is also called frozen director [47]. For LCEs the energy density may be minimized over

n first and next over F, like in [44, 52], or a Frank elastic energy for n may be introduced (c.f.

[12, 22, 87]). Moreover, we note that a director field description may not be the only choice for

modeling LC components. One can also formulate a model with Q-tensor descriptions like in

[41].
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Using the energy density (3.1), the 3D elastic energy is given by

E3D,t[u] =

∫ t/2

−t/2

∫
Ω

W3D(x,∇u) dx′dx3, (3.7)

where x′ ∈ Ω, x3 ∈ (−t/2, t/2), subject to incompressibility and kinematic constraints det∇u =

1 and n = ∇um
|∇um| .

3.1.3 Properties of 3D elastic energy

This subsection is dedicated to proving some properties of the 3D elastic energy (3.1),

which will be useful later.

In view of definition (3.2) and (3.3) for step length tensors, we first observe that Lm can be

equivalently expressed as follows in the orthonormal basis {m,w1,w2}:

Lm = (s0 + 1)2/3m⊗m + (s0 + 1)−1/3w1 ⊗w1 + (s0 + 1)−1/3w2 ⊗w2, (3.8)

where (w1,w2) are orthonormal vectors spanning the space orthogonal to m. Likewise Ln may

be expressed in the basis {n,v1,v2} for orthonormal vectors (v1,v2) spanning the space orthog-

onal to n:

Ln = (s+ 1)2/3n⊗ n + (s+ 1)−1/3v1 ⊗ v1 + (s+ 1)−1/3v2 ⊗ v2. (3.9)

The assumptions (3.4) together with s0, s ∈ L∞(Ω) imply that the eigenvalues of Lm and Ln are

bounded away from 0 and∞, and Lm,Ln are thus invertible. Moreover, the dyadic representation
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(3.9) provides an explicit inverse for Ln

L−1
n = (s+ 1)−2/3n⊗ n + (s+ 1)1/3v1 ⊗ v1 + (s+ 1)1/3v2 ⊗ v2 ,

or equivalently

L−1
n = (s+ 1)1/3

(
I3 −

s

s+ 1
n⊗ n

)
. (3.10)

Since both Lm and L−1
n are symmetric positive definite, the energy density in (3.1) can be

rewritten as a neo-Hookean energy density:

W3D

(
(x, z),F

)
=
∣∣L−1/2

n FL1/2
m

∣∣2 − 3. (3.11)

We stress the importance of (3.11) because it is critical for the energy scaling argument in Propo-

sition 4.3. To see the non-negativity of (3.11), we first observe that a basic linear algebra argument

exploiting eigenvalues of FTF yieldsWH
3D(F) = |F|2−3 ≥ 0 provided det F = 1. Consequently,

since det Lm = det L−1
n = 1 according to (3.8) and (3.10), the constraint det F = 1 implies that

(3.11) is non-negative.

More precisely, WH
3D(F) is non-degenerate in the sense that it is bounded from below by

dist(F, SO(3))2 := infR∈SO(3) |F − R|2. We now state and prove lower and upper bounds for

WH
3D(F). The former can also be found in [102, Proposition A.3]. The latter will be used in the

numerical analysis in Lemma 4.1.

Proposition 3.1 (bounds for WH
3D(F)). Let F ∈ R3×3 satisfy det F = 1. Then,

dist
(
F, SO(3)

)2 ≤ |F|2 − 3 ≤ 3 dist
(
F, SO(3)

)2
. (3.12)
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Proof. Let F ∈ R3×3 be such that det F = 1. We first use the polar decomposition, F = RU for

U symmetric positive definite (SPD) and R ∈ SO(3), to write |F|2 − 3 = |RU|2−3 = |U|2−3,

and dist(RU, SO(3))2 = dist(U, SO(3))2.

1. Lower bound: It is thus sufficient to prove

|U|2 − 3 ≥ dist(U, SO(3))2.

Since U is SPD there exists Q ∈ SO(3) such that U = QTΛQ with Λ a diagonal matrix with

the eigenvalues λ1, λ2, λ3 > 0 of U. Moreover, det U = 1 yields λ3 = 1
λ1λ2

, and |U| = |Λ|

implies

|U|2 − 3 = λ2
1 + λ2

2 +
1

λ2
1λ

2
2

− 3.

On the other hand, dist(U, SO(3)) = |U−I3| because |U−R| = |Λ−QRQT |with R ∈ SO(3)

is minimized by QRQT = I3, whence R = I3. Consequently,

dist(U, SO(3))2 = (λ1 − 1)2 + (λ2 − 1)2 +

(
1

λ1λ2

− 1

)2

(3.13)

= λ2
1 + λ2

2 +
1

λ2
1λ

2
2

− 2

(
λ1 + λ2 +

1

λ1λ2

)
+ 3

= λ2
1 + λ2

2 +
1

λ2
1λ

2
2

− 3 + 2

(
3− λ1 − λ2 −

1

λ1λ2

)
= |U|2 − 3 + 2

(
3− λ1 − λ2 −

1

λ1λ2

)
. (3.14)

A basic calculus argument gives supλ1,λ2>0

(
3− λ1 − λ2 − 1

λ1λ2

)
≤ 0, whence

dist(U, SO(3))2 ≤ |U|2 − 3,
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and the lower bound is proved.

2. Upper bound: In view of (3.13) and (3.14) it suffices to prove

(λ1 − 1)2 + (λ2 − 1)2 +

(
1

λ1λ2

− 1

)2

≥ λ1 + λ2 +
1

λ1λ2

− 3.

Without loss of generality, let us assume λ3 = 1
λ1λ2
≥ 1 and write

λ1 + λ2 +
1

λ1λ2

− 3 =
( 1

λ1λ2

− 1
)
−
(

1− λ1λ2

)
+ λ1 + λ2 − λ1λ2 − 1.

The first two terms satisfy the following relation

( 1

λ1λ2

− 1
)
−
(

1− λ1λ2

)
= λ1λ2

( 1

λ1λ2

− 1
)2

≤
( 1

λ1λ2

− 1
)2

because λ1λ2 ≤ 1. The remaining terms, instead, obey the relation

λ1 + λ2 − λ1λ2 − 1 = −(λ1 − 1)(λ2 − 1) ≤ (λ1 − 1)2 + (λ2 − 1)2

by virtue of Young’s inequality. This proves the desired upper bound.

An immediate consequence of Proposition 3.1 (bounds on WH
3D(F)) is that the 3D energy

density is nondegenerate and thereby nonnegative.

Corollary 3.1 (nondegeneracy of W3D). Let x ∈ B. If F ∈ R3×3 satisfies det F = 1, then

W3D(x,F) ≥ dist(L−1/2
n FL1/2

m , SO(3))2. (3.15)
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Proof. Recall that by (3.8) and (3.10), det(L
−1/2
n FL

1/2
m ) = 1 is valid. Applying Proposition 3.1

with the form (3.11) yields (3.15).

3.2 Membrane model of liquid crystals polymer networks

In this section, we introduce a formal asymptotic derivation of a membrane model of LCNs,

discuss properties of the model related to its global minimizers, and present a technique for formal

construction of solution profiles with defects.

We assume the 3D director field m : B → S2 is planar and it depends only on x′, and

therefore, with a slight abuse of notations, we define m : Ω → S1 to be the 2D blueprinted

director field. We denote by y : Ω→ R3 the 3D deformation of the 2D midplane Ω.

The 2Dmembrane model is the following formal minimization problem: find y∗ ∈ H1(Ω;R3)

that solves

y∗ ∈ argminy∈H1(Ω;R3)Estr[y], Estr[y] :=

∫
Ω

Wstr(x
′,∇y)dx′, (3.16)

where Wstr is a stretching energy density that is only a function of x′ ∈ Ω and the first funda-

mental form I[y] = ∇yT∇y. It is defined as

Wstr(x
′,∇y) := λ

[
1

J [y]
+

1

s+ 1

(
tr(I[y]) + s0Cm[y] + s

J [y]

Cm[y]

)]
− 3, (3.17)

where the actuation parameter λ : Ω→ R+ is given and well-defined by

λ = λs,s0 := 3

√
s+ 1

s0 + 1
, (3.18)
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because s, s0 > −1. If the material is heated, then λ < 1, whereas if it is cooled, then λ > 1.

Moreover, J [y], Cm[y] are among the following abbreviations:

J [y] = det I[y], Cm[y] = m · I[y]m, Cm⊥ [y] = m⊥ · I[y]m⊥. (3.19)

We employ a similar notation when the second argument of Wstr is F ∈ R3×2

I(F) := FTF, J(F) := det I(F),

Cm(F) := m · I(F)m, Cm⊥(F) := m⊥ · I(F)m⊥.

(3.20)

We stress that at this stage is not clear that (3.16) is well posed; hence the expression “formal

minimization problem”.

3.2.1 Derivation of stretching energy from asymptotics

This section is dedicated to deriving a 2D stretching or membrane energy from (3.7) via

formal asymptotics as the thickness t goes to zero. In particular, we shall derive the formal limit

Estr = limt→0
1
t
E3D[u]. This procedure will follow closely the derivation of [98], but we will

relax the simplifying assumption det I[y] = 1 made in [98]. We also contrast the asymptotic

method presented here with the more analytical method presented in [47]. The connection be-

tween the two will be explored in Section 3.2.2.1.
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3.2.1.1 Kirchhoff-Love assumption and overview of strategy

We assume that the 3D deformation u : B := Ω× (−t/2, t/2)→ R3 takes the form

u(x′, x3) = y(x′) + φ(x′, x3)ν(x′) (3.21)

where y : Ω → R3 is the reduced deformation and ν : Ω → R3 is the normal to the deformed

midplane y(Ω). We posit that φ takes the form:

φ(x′, x3) = α(x′)x3 +O(x2
3), (3.22)

which is a modified Kirchhoff-Love assumption. The higher order terms would be useful for

deriving the bending energy, but we do not need them for the stretching energy. Note that α

is undetermined for the moment. Later, α will be chosen so that u is incompressible in an

asymptotic sense, i.e. det∇u(x′, x3) = 1 +O(x3).

The goal of asymptotics is to write the energy W3D(x,∇u) given in (3.1) for the deforma-

tion u in terms of powers of t and the reduced stretching energy Wstr(x
′,∇′y)

∫ t/2

−t/2

∫
Ω

W3D(x,∇u) dx′dx3 = t

∫
Ω

Wstr(x
′,∇′y) dx′ +O(t3), (3.23)

where ∇′ := (∂1, ∂2) denotes the gradient with respect to x′. The stretching energy Wstr in

(3.23) gives the leading order effects of the energy as the body thickness t vanishes in the sense

that formally

lim
t→0

1

t

∫ t/2

−t/2

∫
Ω

W3D(x,∇u) dx′dx3 =

∫
Ω

Wstr(x
′,∇′y) dx′.
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The third order term in (3.23) corresponds to the bending energy Wben and will be examined later

in Section 3.4. Combined with the modified Kirchhoff-Love assumption (3.21), the process to

derive the stretching energy is as follows:

1. Write the Cauchy tensor C = FTF in terms of leading order terms.

2. Write W3D in terms of C and powers of x3.

3. Collect O(1) terms of W3D which contribute to the stretching energy.

4. Determine α so that u satisfies incompressibility in an asymptotic sense.

3.2.1.2 Cauchy tensor

Substituting (3.21) into C := ∇uT∇u yields

C = ∇uT∇u =

 Cφ CT
1×2

C1×2 C1×1

 , (3.24)

where

Cφ = ∇′yT∇′y + φ(∇′νT∇′y +∇′yT∇′ν) + φ2∇′νT∇′ν +∇′φ⊗∇′φ (3.25)

C1×2 = (ν ⊗∇′φ)T∂3φν = ∂3φ∇′φ (3.26)

C1×1 = (∂3φ)2. (3.27)

Here, we have used the facts that ∇′yTν = 0, ∇′νTν = 0 and |ν| = 1. Since ∇′φ(x′, x3) =

∇′αx3 +O(x2
3) and ∂3φ(x′, x3) = α+O(x3), we have C1×2 = O(x3), and hence we may drop
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C1×2 as a higher order term.

Also ignoring any terms higher than constant order, we have

Cφ = I[y] +O(x3),

where I[y] = ∇′yT∇′y is the first fundamental form of y. Since

(
∂3φ(x′, x3)

)2
= α(x′)2 +O(x3),

we find

C =

I[y] 0

0 α(x′)2

+O(x3). (3.28)

3.2.1.3 Expanding W3D

Recall that we assume that the 3D blueprinted director field m lies in the plane i.e.

m(x) = (m̃(x′), 0)T . (3.29)

First, substituting the kinematic constraint (3.6) into (3.1) with F = ∇u and using the explicit

expressions (3.8) for Lm and (3.10) for L−1
n , we obtain

W3D(x′,∇u) = λ
(

tr C +
s0

s+ 1
m ·Cm− s

s+ 1

m ·C2m

m ·Cm

)
− 3, (3.30)
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where λ is defined in (3.18), and we notice that from now on W3D depends on x′ instead of x,

due to the assumption (3.29). Then plugging the asymptotic form (3.28) of C into (3.30) and

using (3.29), the energy density W3D(x′,∇u) becomes

W3D(x′,∇u)

= λ

[
tr I[y] + α(x′)2 +

s0

s+ 1
m̃ · I[y]m̃− s

s+ 1

m̃ · I[y]2m̃

m̃ · I[y]m̃

]
− 3 +O(x3).

Since I[y] is a 2× 2 matrix, the Cayley-Hamilton Theorem gives

I[y]2 =
(
tr I[y]

)
I[y]− det I[y] I2,

so that the energy now reads

W3D(x′,∇u)

= λ

[
α(x′)2 +

1

s+ 1

(
tr I[y] + s0m̃ · I[y]m̃ + s

detI[y]

m̃ · I[y]m̃

)]
− 3 +O(x3).

We now have all the constant order terms of W3D(x′,∇u). The only remaining task is to deter-

mine α(x′). We do this next.

3.2.1.4 Incompressibility

Since we would like u to satisfy incompressibility det∇u = 1+O(x3), we impose det C =

1 +O(x3). By (3.28), we see that

det C = det I[y]α(x′)2 +O(x3), (3.31)
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whence

α(x′) =
1√

det I[y]
(3.32)

gives us the desired equality det C = 1+O(x3) in view of (3.21) and (3.22). This further implies

∇u = [∇′y, (det I[y])−1/2ν] +O(x3). (3.33)

3.2.1.5 Stretching energy

For convenience of presentation, from now on we slightly abuse notation and drop the

prime for ∇′ and tilde for m̃. Therefore, we will denote

m = m̃ ∈ R2, m = (m̃, 0)T ∈ R3 (3.34)

depending on whether we regard m as a vector in R2 or R3. We conclude that, with the steps

built in Sections 3.2.1.1-3.2.1.4, we finally derive the stretching energy in (3.17), namely

∫
Ω

λ

[
1

J [y]
+

1

s+ 1

(
tr(I[y]) + s0Cm[y] + s

J [y]

Cm[y]

)]
− 3 dx′.

3.2.1.6 Comparison with inextensibility constrained stretching energy

If we assume det I[y] = 1, then the stretching energy density (3.16) reduces to that of [98,

Eq. (14)]. However, the stretching energy density (3.16) is slightly more physical. In particular,

relaxing the inextensibility constraint means that minimizers of Estr produce a Kirchhoff-Love

ansatz that has lower 3D energy compared with minimizers subject to the inextensibility con-
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straint det I[y] = 1.

We shall see from Corollary 3.4 (immersions of g are minimizers with vanishing energy)

below that Estr[y] = 0 and y is a global minimizer to Estr if and only if

I[y] = λ2m⊗m + λ−1m⊥ ⊗m⊥.

Suppose y satisfies the above metric condition. Combining the above metric condition with the

Kirchhoff Love assumption from (3.21), we have that

u(x′, x3) = y(x′) +
x3√
λ
ν(x′), (3.35)

whose Cauchy tensor is

C = ∇uT∇u =

 I[y] O(x3)

O(x3) λ−1

 .

Inserting C into the 3D energy density (3.30) we obtain,

W3D(x,∇u) = 0.

We now enforce the inextensibility assumption det I[y] = 1. Suppose F ∈ R3×2 minimizes

Wstr(x
′, ·) subject to the constraint det FTF = 1. Using standard calculus techniques, one can

show that

FTF =

√
s+ 1

s0 + 1
m⊗m +

√
s0 + 1

s+ 1
m⊥ ⊗m⊥ =: G̃,

which is a target metric condition derived in [98, Eq (17)]. Now suppose ỹ : Ω→ R3 satisfies the
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metric condition I[ỹ] = G̃ pointwise. Combining the above metric condition with the Kirchhoff

Love assumption from (3.21), we have that

ũ(x′, x3) = ỹ(x′) + x3ν̃(x′),

whose Cauchy tensor is

C̃ = ∇ũT∇ũ =

G̃ 0

0 1

 .

Defining λ̃ =
√

s+1
s0+1

and inserting C̃ into the 3D energy density (3.30) we obtain,

W3D(x,∇ũ) = λ

((
s0 + 1

s+ 1

)
λ̃+ λ̃−1 + 1

)
− 3.

We then using the relation λ̃ = λ3/2 to compute

W3D(x,∇ũ) = 2λ−1/2 + λ− 3.

If λ 6= 1, there is actuation of the LCN, and

W3D(x,∇ũ) = 2λ−1/2 + λ− 3 > 0 = W3D(x,∇u),

where u was given by (3.35). What this example shows is that when there is actuation of the

LCN, configurations with Estr[y] = 0 always have lower 3D energy than configurations that

minimize Estr[y] subject to the inextensibility constraint det I[y] = 1.

90



3.2.2 Properties of Stretching Energy

3.2.2.1 Minimal energy extension.

In this section we show that the stretching energy density (3.17) is the minimal energy

extension of the 3D energy (3.1). The proof is similar to that of [44, Lemma 5.3] and is related

to how [47] derives the model.

Proposition 3.2 (minimal energy extension). Let F ∈ R3×2 have rank 2. The following equality

between Wstr defined in (3.17) and W3D given in (3.1) is valid

Wstr(x
′,F) = inf

b∈R3:det[F, b]=1
W3D(x′, [F, b]) . (3.36)

Moreover, the unique minimizer b is

F1 × F2

|F1 × F2|2
=: argminb∈R3:det[F, b]=1W3D(x′, [F, b]), (3.37)

where F1,F2 are columns of F.

Proof. The incompressibility constraint reads det[F,b] = bT (F1 × F2) = 1. Using (3.30) and

(3.34) to determine W3D(x′, [F,b]) for b ∈ R3 yields

W3D(x′, [F,b]) = λ
(

tr I(F) + |b|2 +
s0

s+ 1
Cm(F)− s

s+ 1

|I(F)m|2 + (b · Fm)2

Cm(F)

)
− 3.

If we append the term µ
(
bT (F1 × F2) − 1

)
to W3D(x′, [F,b]), with Lagrange multiplier µ, we
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see that b and µ solve the following saddle point system

2λ
(
I3 − s

(s+1)Cm(F)
Fm⊗ Fm

)
F1 × F2

(F1 × F2)T 0


b

µ

 =

0

1

 ,

whose unique solution is b = (F1×F2)/|F1×F2|2 and µ = − 2λ
|F1×F2|2 . Note that the uniqueness

of b follows from the invertibility of the upper-left 3 × 3 block matrix, which follows from the

fact that s
s+1

< 1. Since |F1 × F2|2 = det I(F) = J(F), substituting the minimizing b into the

3D energy yields

W3D

(
x′, [F,b]

)
= λ

(
tr I(F) +

1

J(F)
+

s0

s+ 1
Cm(F)− s

s+ 1

|I(F)m|2

Cm(F)

)
− 3. (3.38)

Applying the Cayley Hamilton Theorem for a 2×2 matrix A, namely A2−tr(A)A+(det A)I2 =

0, to the last term inside bracket on the RHS of (3.38) yields

|I(F)m|2

Cm(F)
=

m · I(F)2m

Cm(F)
= tr I(F)− J(F)

Cm(F)
. (3.39)

We then insert (3.39) into the RHS of (3.38) to obtain

W3D

(
x′, [F,b]

)
= λ

( 1

J(F)
+

1

s+ 1

[
tr I(F) + s0Cm(F) + s

J(F)

Cm(F)

])
− 3 = Wstr(x

′,F),

which is the desired equality.

Remark 3.1 (asymptotics vs minimal energy extension). If F = ∇y, then the minimizing b in
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Proposition 3.2 (minimal energy extension) is

b =
ν√

det I[y]
.

This corroborates that the asymptotic expression (3.33) gives the correct extension. However,

this formula for b relies on the fact that m is planar; see (3.34). If m were not planar, then the

formula for b would be more complicated: we refer to [102].

An immediate consequence of the above result and the neo-Hookean form of the 3D energy

in (3.11) is that the stretching energy also has a neo-Hookean structure. We will exploit this

structure in the numerical analysis in Section 4.3

Corollary 3.2 (neo-Hookean form of the stretching energy). Let F ∈ R3×2 have rank 2, b =

F1×F2

|F1×F2|2 , and n = Fm
|Fm| . Then det[F, b] = 1 and Wstr(x

′,F) satisfies

Wstr(x
′,F) =

∣∣L−1/2
n [F, b]L1/2

m

∣∣2 − 3. (3.40)

The next corollary is an easy consequence of Proposition 3.2 (minimal energy extension of

W3D) and Corollary 3.1 (nondegeneracy of W3D).

Corollary 3.3 (nondegeneracy of Wstr). The stretching energy Wstr(x
′,F) satisfies

Wstr

(
x′,F

)
≥ dist

(
L−1/2

n [F, b]L1/2
m , SO(3)

)2 ≥ 0 (3.41)

for all F ∈ R3×2 such that rank(F) = 2 and b = F1×F2

|F1×F2|2 .

Proof. Combine Proposition 3.2 and Corollary 3.1 (nondegeneracy of W3D).
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Remark 3.2 (special rotations). An important by-product of Corollary 3.3 is that any solution

y ∈ H1(Ω;R3) of Estr[y] = 0 must satisfy the pointwise relation

L−1/2
n [∇y, b]L1/2

m ∈ SO(3)

a.e. in Ω where b = ∂1y×∂2y
|∂1y×∂2y|2 is a scaled normal. This observation will turn out to be useful later

in the proof of Proposition 3.3 and Proposition 4.3.

3.2.2.2 Global minimizers and target metrics.

In this section, we characterize global minimizers of (3.16). We show that minimizing the

stretching energy density Wstr is equivalent to satisfying the target metric constraint pointwise.

We point to [102, Appendix A] for a similar result, but for a related 3 dimensional model.

Proposition 3.3 (target metric). The stretching energy density Wstr(x
′,F) = 0 vanishes at F ∈

R3×2 if and only if I(F) = g where g ∈ R2×2 is given by

g = λ2m⊗m + λ−1m⊥ ⊗m⊥, (3.42)

λ is defined in (3.18) and m⊥ : Ω→ S1 is perpendicular to m.
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Proof. First suppose that I(F) = g. Inserting (3.42) into (3.17) gives

Wstr(x
′,F) = λ

(
1

det g
+

1

s+ 1

(
trg + s0m · gm + s

det g

m · gm

))
− 3

= λ

(
λ−1 +

1

s+ 1

(
λ2 + λ−1 + s0λ

2 + sλ−1
))
− 3

= λ

(
λ−1 +

1

s+ 1

(
(s0 + 1)λ2 + (s+ 1)λ−1

))
− 3

= λ

(
2λ−1 +

s0 + 1

s+ 1
λ2

)
− 3.

Note that s0+1
s+1

= λ−3 according (3.18), whence

Wstr(x
′,F) = λ

(
2λ−1 + λ−3λ2

)
− 3 = 0.

Now suppose that Wstr(x
′,F) = 0. Corollary 3.3 (nondegeneracy of Wstr) guarantees

0 = Wstr(x
′,F) ≥ dist(L−1/2

n [F, b]L1/2
m , SO(3))2 ≥ 0,

for b = F1×F2

|F1×F2|2 . This implies there is a rotation R ∈ SO(3) such that

L−1/2
n [F, b]L1/2

m = R.

Multiplying both sides by RT yields

L1/2
m [F, b]TL−1

n [F, b]L1/2
m = I3.
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We shall now perform some algebraic operations to determine what I(F) = FTF should satisfy.

First, multiplying on the left and right by L
−1/2
m gives

[F, b]TL−1
n [F, b] = L−1

m .

The definitions (3.2) and (3.3) of Lm and Ln, with m ∈ R3 given by (3.34), imply

L−1
m = (s0 + 1)1/3

(
I3 −

s0

s0 + 1
m⊗m

)
, L−1

n = (s+ 1)1/3
(
I3 −

s

s+ 1
n⊗ n

)
,

and combined with the kinematic constraint n = Fm
|Fm| , this further yields

L−1
m = [F, b]TL−1

n [F, b] = (s+ 1)1/3

I(F) 0

0 1
J(F)



− s

(s+ 1)2/3Cm(F)

I(F)m⊗ I(F)m 0

0 0

 .

(3.43)

We express I(F) in terms of the orthonormal basis m,m⊥ ∈ R2 and scalars a1, a2, a3

I(F) = a1m⊗m + a2m⊥ ⊗m⊥ + a3(m⊥ ⊗m + m⊗m⊥).

We may do this because {m⊗m,m⊥ ⊗m⊥, e3 ⊗ e3} is the basis of the 3 dimensional space of

symmetric 2 × 2 matrices. We also extend m to R3, according to (3.34), and represent L−1
m on

the orthonormal basis (m, 0)T , (m⊥, 0)T , e3 of R3. We next compare the upper-left 2× 2 blocks
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of the matrix representations of the left and right-hand sides of (3.43) to obtain

(s0 + 1)−2/3 0

0 (s0 + 1)1/3

 = (s+ 1)1/3

a1 a3

a3 a2

− s

(s+ 1)2/3

a1 a3

a3 a2
3/a1

 .

By matching entries, a3 must vanish and (s + 1)1/3a2 = (s0 + 1)1/3, which entails that a2 =(
s0+1
s+1

)1/3

= λ−1. Finally,

(s0 + 1)−2/3 =
(
(s+ 1)1/3 − s(s+ 1)−2/3

)
a1 = (s+ 1)−2/3a1,

whence a1 =
(
s+1
s0+1

)2/3

= λ2. Therefore, we get

I(F) = λ2m⊗m + λ−1m⊥ ⊗m⊥ = g,

which is the desired expression of I(F).

A direct consequence of the characterization of the target metric is that H1 isometric im-

mersions of g are minimizers to the stretching energy.

Corollary 3.4 (immersions of g are minimizers with vanishing energy). Let y ∈ H1(Ω;R3) be a

deformation. Then y satisfies

I[y] = g a.e. in Ω, (3.44)

i.e., y is an isometric immersion of the metric g defined in (3.42), if and only if y is a global

minimizer to (3.16) with Estr[y] = 0.

Therefore, the solvability of (3.16) is related to the long standing open problem in differ-
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ential geometry of existence of isometric immersions in R3 for a general metric g : Ω → R2×2.

Smooth isometric immersions in R3 are known to exist for certain metrics with positive or nega-

tive curvatures, while there are also examples of metrics that have no C2 isometric immersions;

we refer to the book [69] for discussions and further references. Corollary 3.4 requires the mini-

mal regularity y ∈ H1(Ω;R3), but we further assume the existence of anH2 isometric immersion

to prove convergence of our FEM with regularization (4.12) in Section 4.3. The existence of ei-

ther H1 or H2 isometric immersions seems to be an open question, to the best of our knowledge.

Finally, it is conceivable that g is not immersible and yet there is a global minimizer y of (3.16)

with Estr[y] > 0; this justifies the requirement Estr[y] = 0 in Corollary 3.4. We explore this

matter computationally in Section 5.4. Therefore, if there exists an H1 isometric immersion of g,

a pure geometric fact unrelated to LCN, global minimizers of Estr[y] overH1(Ω;R3) are guaran-

teed to exist; otherwise, Estr[y] may not vanish over H1(Ω;R3). On the other hand, minimizers

of Estr[y] might not be unique, because g could have many isometric immersions in general.

From another point of view, this issue is also related to lack of convexity and is discussed in

Section 4.1.1.

3.3 Asymptotic profiles of defects

We now construct asymptotic profiles for blueprinted director fields m with defects of

several degrees. We are not aware of studies of shapes beyond the Gauss curvature obtained in

[92] for higher degree defects. Our approximate solutions provide insight on the complicated

shapes that can be programmed upon actuation. We reproduce these profiles computationally

later in Section 5.1.
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3.3.1 Lifted surfaces

Lifted surfaces for LCNs/LCEs are originally introduced in [102]. We adapt the idea to the

reduced model (3.16) in this subsection. To this end, we consider the following parameterization

of lifted surfaces

yl(x′) =
(
αx′, φ(αx′)

)T ∀x′ ∈ Ω, (3.45)

where α ∈ R will be determined later. Here, φ : αΩ → R represents the graph of the lifted

surfaces. Our goal is to match the metric g in (3.42) with I[yl], i.e,

I[yl] = g = λ2m⊗m + λ−1m⊥ ⊗m⊥ = (λ2 − λ−1)m⊗m + λ−1I2. (3.46)

Since (3.45) yields

I[yl] = α2∇φ(αx′)⊗∇φ(αx′) + α2I2, (3.47)

(3.46) is valid if φ satisfies |∇φ| =
√
λ3 − 1 a.e. in Ω, and α = λ−1/2, with the properties that

λ > 1 and λ is constant over Ω. Substituting them into (3.45) gives

yl(x′) =
(
x′λ, φ(x′λ)

)T
, x′λ := λ−1/2x′. (3.48)

Since this deformation is an isometric immersion of the metric (3.42), it is also an equilibrium

configuration provided m(x′) = ±(λ3 − 1)−1/2∇φ(x′λ) according to Corollary 3.4. We observe

that the discussion so far has restricted λ > 1, which means the LCN is being cooled. If λ < 1
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and φ satisfies ±
√
λ−3 − 1∇φ(λx′) = m⊥(x′), then a lifted surface of the form

yl(x′) =
(
λx′, φ(λx′)

)T
, (3.49)

satisfies I[yl] = g. Since a lifted surface may be constructed for λ < 1 in a similar fashion as for

λ > 1, we restrict the remaining discussion of this section to λ > 1. However, we note that the

computations in Section 5.1 typically set λ < 1.

3.3.2 Surfaces for defects of degree 1 and 1/2

To set the stage, we first go over known lifted surfaces that arise from degree 1 and degree

1/2 defects. These solutions will match the metric g exactly, and will help us later in constructing

approximate solutions for higher order defects in Sections 3.3.5 and 3.3.6.

A director field m1 with a defect of degree 1 reads

m1(x′) =
x′

|x′|
. (3.50)

If R1 is a rotation of ±π/2, the corresponding exact solution y1 for R1m1 reads

y1(x′) =
(
x′λ, φ1(x′λ)

)T
(3.51)

where

φ1(x′) =
√
λ3 − 1 (1− |x′|); (3.52)

y1 is a cone with vertex at the origin as long as λ > 1 [91]. If λ < 1, then the cone solution
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in (3.52) is no longer well defined. In fact, the director field m1 in (3.50) will produce what is

known as an anticone configuration [91]. The solution for a degree 1 defect will be a cone or

anti-cone depending on the angle αr between m1 and x′ as well as λ [94]. See Fig. 3.1 for the

cone and anti-cone shapes computed by our algorithm.

Figure 3.1: Computed solution with the blueprinted director field m1 that has degree 1 defect,
λ < 1 and αr = 0 (right), π/2 (left). The left configuration is a cone, and the right configuration
is an anticone. We refer to Section 5.1 for details of these numerical simulations.

Next, we introduce a solution induced by a director field with a degree 1/2 defect, which

will help us construct an approximate solution for a degree 3/2 defect in Section 3.3.6. Motivated

by [92], we consider the director field

m1/2(x′) =


sign(x2)e2, x1 ≥ 0

x′

|x′| , x1 < 0 ,

(3.53)

and note that m⊥ ⊗m⊥ is the typical line field for a defect of degree 1/2 at the origin. Since

m1/2(x′) = m1(x′) when x1 < 0, we expect a cone configuration forming in the left half-plane.

For λ > 1, an exact solution is given by the lifted surface configuration

y1/2(x′) =
(
x′λ, φ1/2(x′λ)

)T
, (3.54)
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where

φ1/2(x′) =


√
λ3 − 1 (1− |x2|), x1 ≥ 0

√
λ3 − 1 (1− |x′|), x1 < 0

. (3.55)

This entails stretching in the direction m1/2 and shrinking in the perpendicular direction m⊥1/2,

which in turn explains the shape of y1/2 in Fig. 3.2 for x1 > 0. We see that when x1 < 0, the

map y1/2 coincides with the cone in (3.51). We plot m1/2 (left), y1/2 (middle) and our computed

solution (right) in Fig.3.2.

Figure 3.2: Director field m1/2 from (3.53) (left), lifted surface y1/2 from (3.54)-(3.55) for λ =
21/3 (middle), and computed solution in a unit disc domain with m = m1/2 and a Dirichlet
boundary condition that is compatible with (3.54)-(3.55) (right). Note that the gradient of φ1/2 is
parallel to m1/2 whereas m⊥1/2 is the typical director field for a 1/2 defect.

3.3.3 Higher degree defects: main idea and idealized construction

We now consider rotationally symmetric blueprinted director fields mn with defects of

integer degree n > 1. Such director fields are given in polar coordinates by

mn(r, θ) =
(

cos(nθ), sin(nθ)
)
. (3.56)
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We observe that the line field mn⊗mn in (3.46) exhibits a discontinuity at the origin. We denote

by gn the metric generated by mn and arbitrary λ via (3.42). Ideally, the goal is to build on the

solution (3.51) for n = 1 and composition of defects to obtain a solution yn with degree n defect.

The main idea is as follows.

We exploit the relation to the complex-valued function fn(z) = ein arg(z) to write

mn(x′) = p−1
(
fn(p(x′))

)
,

where z = |z|ei arg(z) for any z ∈ C and p : R2 → C is the map p(x′) = x1 + ix2. From this

perspective, we can write a director field with degree n defect as the multiplication or composition

of two director fields with degree 1 and n− 1 defects

einarg(z) = eiarg(z)ei(n−1)arg(z).

If m1 := (µ1, µ2) and mn−1 := (ξ1, ξ2), then µ1 + iµ2 = ei arg(p(m1)) and ξ1 + iξ2 = ei arg(p(mn−1))

imply

ei arg(p(mn)) = (µ1 + iµ2)(ξ1 + iξ2) = (µ1ξ1 − µ2ξ2) + i(µ1ξ2 + µ2ξ1).

Applying p−1 to both sides yields

mn =

µ1 −µ2

µ2 µ1


ξ1

ξ2

 = R1mn−1, (3.57)

where R1 :=
(
m1,m

⊥
1

)
is a rotation matrix that depends on x′. In view of (3.46) we may write
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the metric gn at x′ as

gn = (λ2 − λ−1)R1

(
mn−1 ⊗mn−1

)
RT

1 + λ−1I2. (3.58)

Assuming λ > 1, we compare (3.58) with the metric that arises from function composition of

two defects of degree 1 and n− 1. With x′λ = λ−1/2x′ already defined in (3.48), we consider the

following modified lifted surface

yn(x′) :=
(
x′λ, φn

(
v(x′λ)

))T
. (3.59)

Compared to either (3.51) or (3.54) of Section 3.3.1, we now compose φn with an unknown

function v : λ−1/2Ω→ λ−1/2Ω. We then apply the chain rule to determine

I[yn(x′)] = λ−1I2 + λ−1∇v(x′λ)
T
(
∇φn(v(x′λ))⊗∇φn(v(x′λ))

)
∇v(x′λ). (3.60)

To match (3.58) an ideal construction would be to find φn and v so that

∇φn(v(x′λ)) =
√
λ3 − 1 mn−1(x′)

and∇v(x′λ) = R1(x′)T . We will find φn in terms of φn−1, but before we do so we need to argue

with v. An ideal v should have a gradient whose rows are m1 and m⊥1 . Since m1 points radially

outward and m⊥1 is tangent to concentric circles, the choice of v in polar coordinates should be

v(r, θ) = (v1(r), v2(θ)) in order for the rows of ∇v to be parallel to m1 and m⊥1 . One such
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choice of v is

v(r, θ) =

a log r

a θ

 (3.61)

for a > 0, whose gradient in Euclidean coordinates is formally

∇v(x′) =
a

|x′|
R1(x′)T . (3.62)

The choice of v1(r) = a log r is so that the scaling of 1
r

matches the gradient of v2(θ) = aθ.

Here, ∇v matches R1(x)T up to the scaling a
|x′| , and we nearly recover the ideal v. Finding a

vector field v whose gradient equals a space-dependent rotation R1(x′)T is questionable. In fact,

in order for curl
(
ψ(r)m⊥1 (x)

)
= 0 and potentially have an antiderivative, the only choice of ψ

is ψ(r) = a
r
. Therefore, ψ(|x′|) = a

|x′| is the only scaling for which one may hope to find an

antiderivative of ψ(|x′|)R1(x′)T . The choice of φn is designed to compensate for this scaling. If

φn(x′) :=

√
λ3 − 1

n an−1
|x′|n ⇒ ∇φn(x′) =

|x′|
a
∇φn−1(x′), (3.63)

which is consistent with (3.52) for n = 1. Combining the inductive hypothesis

∇φn−1

(
v(x′λ)

)
=
√
λ3 − 1 mn−1(x′),
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with the recursion relation (3.63) yields

∇
[
φn
(
v(x′λ)

)]
= ∇v(x′λ)

T∇φn
(
v(x′λ)

)
=
|v(x′λ)|
|x′λ|

R1(x′λ)∇φn−1

(
v(x′λ)

)
=
|v(x′λ)|
|x′λ|

√
λ3 − 1R1(x′)mn−1(x′) =

|v(x′λ)|
|x′λ|

√
λ3 − 1 mn(x′).

This shows that we need |v(x′)| = |x′| to close the argument, which may not be possible unless

v(x′) = R(x′)Tx′ with R(x′) a rotation. This in turn would not lead to (3.62). Finally, the

cone solution for n = 1 satisfies ∇φ1(x′λ) = ±
√
λ3 − 1 m1(x′), whereas the ideal construction

requires ∇φ1

(
v(x′λ)

)
= ±
√
λ3 − 1 m1(x′). The sign does not matter because g1 is invariant

under m1 7→ −m1, but there is a mismatch in the argument of ∇φ1 since v(x′λ) may not be

equal to x′λ everywhere. We next discuss how to circumvent these obstructions to the idealized

construction via approximation.

3.3.4 Formal approximation of idealized construction

We now build an approximate deformation yn such that I[yn] ≈ gn. To this end, we modify

v from (3.61), so that v(x′λ) ≈ x′λ near the point x∗ = (a, 0)T for a > 0; this avoids a singularity

at 0. To guarantee that v(x∗) = x∗ and∇v(x∗) = I2, we choose

v(x′) =


a
2
log(x2

1 + x2
2) + Ca

a arctan(x2/x1)

 , (3.64)
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where Ca = a − a log(a). Hence, v satisfies (3.62) and the formal Taylor expansion

v(x′) = x∗ + (x′ − x∗) +O
(
|x′ − x∗|2

)
= x′ +O

(
|x′ − x∗|2

)
,

or equivalently the following expression in the rescaled coordinates x′λ

v(x′λ) = x′λ +O
(
|x′ − x∗|2

)
, (3.65)

because λ = O(1). Using (3.65), we approximately satisfy the three crucial requirements

|v(x′λ)|2 = |x′λ|2 +O(|x′ − x∗|2),

m1(v(x′λ)) = m1(x′λ) +O(|x′ − x∗|2),

∇
[
φn
(
v(x′λ)

)]
=
√
λ3 − 1 mn(x′) +O(|x′ − x∗|2).

Inserting these formal approximations into (3.60) yields a map yn defined by (3.59) for n ≥ 2

that approximately satisfies the metric constraint in a vicinity of x∗

I[yn(x′)] = gn(x′) +O(|x′ − x∗|2). (3.66)

3.3.5 Approximate surfaces for defects of degree two

We now specialize the above construction for n = 2. In view of (3.63), we realize that

φ2(x′) :=

√
λ3 − 1

2a
|x′|2 ⇒ ∇φ2(x′) =

√
λ3 − 1

a
x′ =

√
λ3 − 1

a
|x′|m1(x′),
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Hence, (3.59) gives an approximate map y2 with

φ2

(
v(x′)

)
=

√
λ3 − 1

2a

((
a

2
log
(
x2

1 + x2
2

)
+ a− a log a

)2

+ a2arctan2
(x2

x1

))
,

for x1 > 0 and any a > 0 not be too large so that y2 captures the correct defect configuration.

We display φ2 ◦ v for a = .75, λ = 1.1 in Fig. 3.3, reflected for x1 < 1 to account for symmetry,

along with the computed solution from Section 5.1.

Figure 3.3: Approximate lifted surface for degree 2 defect (left) and computed solution with the
director field m2 in Section 5.1 (right). Our derivation requires x1 > 0, but the solution should
be symmetric across the x2x3 plane, which is why we plot a reflected solution for x1 < 0. We
recover two bumps, consistent with the simulation but at the cost of a singularity at the origin.

3.3.6 Approximate surface for degree 3/2 defect

We now apply the above approach of composing defects, but for a defect of degree 3/2.

We intend to explain the intriguing “bird beak” shape observed in our computations displayed in

Figures 3.4 and 5.1. We first observe that the explicit expressions (3.54) and (3.55) for a defect

of degree 1/2 do not quite conform with (3.56) for n = 1/2, except in the vicinity of the origin.
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Motivated by the recursion relation (3.57), we still write the degree 3/2 director field as

m3/2(x′) = R1(x′)m1/2(x′), (3.67)

with m1/2 given in (3.53). We now construct an approximate map y3/2 such that

I[y3/2(x′)] ≈ g3/2(x′) = (λ2 − λ−1)m3/2(x′)⊗m3/2(x′) + λ−1I2,

according to (3.58) for λ > 1. The deformation y3/2 satisfies in turn (3.59), namely

y3/2(x′) =
(
x′λ, φ3/2(v(x′λ))

)T (3.68)

with φ3/2 related to φ1/2 via (3.63). Since we are interested in an approximation for x1 > 0 to

capture the “bird beak” structure, we deduce from (3.55)

∇φ3/2(x′) =
|x′|
a
∇φ1/2(x′) ⇒ ∇φ3/2(x′) =

√
λ3 − 1

|x′|
a

sign(x2) e2.

Unfortunately, this ideal relation is incompatible because curl
( |x′λ|

a
sign(x2)e2

)
6= 0 and we need

to amend the construction of φ3/2 by approximation. To this end, we define for x1 > 0 the

following modification of φ3/2

φ3/2(x′) =
√
λ3 − 1

(
1− 1

a

∫ |x2|
0

√
s2 + x2

1 ds
)
, (3.69)
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whose gradient is

∇φ3/2(x′) = −
√
λ3 − 1

|x′|
a

sign(x2)e2 −
√
λ3 − 1

1

a

(∫ |x2|

0

x1√
s2 + x2

1

ds

)
e1.

Exploiting that the integrand in the second term is bounded by 1 yields

∇φ3/2(x) = −
√
λ3 − 1

|x|
a

sign(x2) e2 −
√
λ3 − 1

a
O(|x2|).

To approximate the first fundamental form I[y3/2], we recall (3.60) and compute

∇v(x′λ)
T∇φ(v(x′λ)) =

√
λ3 − 1R1(x′λ)

|v(x′λ)|
|x′λ|

sign(v(x′λ)2)e2 +O(|v(x′λ)2|),

where v(x′λ)2 = a arctan(x2/x1) denotes the second component of v(x′λ) written in (3.64). We

thus deduce sign(v(x′λ)2) = sign(x2) for x1 > 0 and, employing that m1/2(x) = sign(x2) e2 for

x1 > 1 along with (3.67), we arrive at

∇v(x′λ)
T∇φ(v(x′λ)) =

√
λ3 − 1 m3/2(x′) +O(|x2|) +O(|x′ − x∗|2),

because arctan(x2/x1) = O(|x2|) for x1 away from 0. The expression (3.68) for y3/2 with φ3/2

defined in (3.69) gives an approximate shape profile that satisfies

I[y3/2(x′)] = g3/2(x′) +O(|x2|) +O(|x− x∗|2).
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The contour plot of the corresponding lifted surface φ3/2

(
v(x′λ)

)
is displayed in Fig. 3.4 (left)

for a = .75. We note that the profile has a similar bird beak shape to the computational result

reported in Fig. 3.4 (right) and Fig. 5.1. For the x1 < 0, m1/2(x′) = m1(x′), and one can apply

the arguments in Section 3.3.5 to get the asymptotic profile for x1 < 0.

Figure 3.4: Contour plot of approximate lifted surface for degree 3/2 defect for a = .75 and
x1 > 0 (left) and computational result for a degree 3/2 defect obtained in Section 5.1. The
profile matches the computed “bird beak” shape. To see this, notice that contour lines pinch off
as x1 → 0. As a result, the lifted surface gets steeper near the origin. This helps explains the
“bird beak” shape.

The compositional method explains why we should expect the intriguing “bird beak”. We

now provide a heuristic explanation. If a is fixed but x1 is small, we drop x1 in the integrand of

(3.69), and φ3/2(x′) behaves like φ̃3/2(x′) :=
√
λ3 − 1

(
1 − 1

2a
|x2|2

)
. We see that level sets of

this function are straight lines |x2| = constant that increase as |x2| decreases to 0, very much like

level sets of φ1/2(x′) in (3.55) for x1 > 0. On the other hand, the lifted surface φ3/2(v(x′λ)) from

(3.68) behaves like

φ̃3/2(v(x′λ)) =
√
λ3 − 1

(
1− a

2
arctan

( |x2|
x1

)2)
, (3.70)

whose level sets are radial lines |x2|
x1

= constant that increase as |x2|
x1

decreases to 0. Therefore, the
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lifted surface φ̃3/2(v(x′λ)) pinches off at the origin in the sense that it develops a discontinuity.

In Section 3.3.3 we advocated that a defect of degree 3/2 could be viewed as a composition of

degree 1/2 and 1 defects. The effect of the degree 1 defect on (3.54) is to twist or compress the

horizontal level sets of φ1/2(v(x′λ)) into radial level sets of φ̃3/2(v(x′λ)). This is due to the action

of the vector-valued map v and boils down to the replacement of |x2| in (3.55) by a
2

arctan
( |x2|
x1

)2

in (3.70).

3.4 Bending energy for LCN

This section deals with computing the formal limit of vanishing thickness scaled with t3.

One reason to introduce a bending energy is that due to lack of convexity, minimizing the stretch-

ing energy may induce wrinkling and the membrane problem may be ill-posed. We point to

Section 4.1.1 for a discussion of this phenomenon. One remedy is to introduce a bending energy,

which will be well-posed due to convexity in the highest order terms. In particular, we compute

the formal limit via Kirchhoff-Love asymptotics:

Ebend[y] = lim
t→∞

1

t3
E3D,t[u]

whereE3D,t is from (3.7) The bending energy would correspond the second term in the expansion

E3D,t[u] =

∫ t/2

−t/2

∫
Ω

Wstr(x
′,∇′y) + x2

3Wbend(x
′,∇′y, D2y) dx′dx3 +O(t5).

Similar to the stretching energy, we follow closely the work of [98].
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3.4.1 Review of relevant differential geometry

This section briefly reviews the relevant differential geometry needed to derive a bending

energy. We refer the reader to books [60, 78] for references on differential geometry. The LCE

energy will depend on products of the gradient of y and ν, which is to be seen. These products

will correspond to first, second, and third fundamental forms of y. We now define them below

I[y] = ∇′yT∇′y, II[y] = −∇′νT∇′y, III[y] = ∇′νT∇′ν. (3.71)

It is easy to tell that I[y], and III[y] are symmetric. The second fundamental form, II[y] is also

symmetric, but it is not obvious. Recall that ∂iy · ν = 0. Applying ∂i to this expression leads to

(∂j∂iy) · ν = −∂iy · ∂jν. Hence, II[y]ij = (∂j∂iy) · ν = II[y]ji, and II[y] is symmetric.

Another nice feature of these fundamental forms is that they relate to the shape operator

and the curvatures of a surface. We first recall some definitions of the curvatures of a surface.

Definition 3.1 (Shape operator). Let y : Ω → R3 be the parameterization of a surface y(Ω)

embedded in R3 (i.e. y is one-to-one). Let N : y(Ω) → R3 be defined by N(z) = ν(y−1(x))

because ν : Ω → R according to (3.21). For a smooth enough surface and sufficiently small

ε > 0, we may consider a tubular neighborhood of width ε, denoted U(y(Ω))ε, so that we may

extend N : U(y(Ω))ε → R3 normally. We define the shape operator as S = ∇N(I3 −N⊗N).

Note that S is a symmetric matrix with at least one zero eigenvalue corresponding to the

vector N. To see this, we introduce the distance function:

d(z) = dist(z,y(Ω)).
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Note that ∇d = N, so we have D2d = ∇N. Combined with the fact that NT∇N = 0, we have

that S = D2d is symmetric, and N is in the kernel of S. The other eigenvalues are known as

the principle curvatures of y(Ω). We now define the principle curvatures as well as the mean and

Gauss curvature.

Definition 3.2 (mean and Gauss curvature). The eigenvalues corresponding to tangent eigenvec-

tors of S are known as the principle curvatures and are denoted as κ1, κ2. The mean curvature,

H , and Gauss curvature, K, are defined as

H =
κ1 + κ2

2
, K = κ1κ2. (3.72)

The corresponding fundamental forms also relate to the mean and Gauss curvature. These

results are well known, and we refer the reader to the book chapter [60, Chapter 3-3] as well

as [78, Proposition 3.5.5] and [78, Proposition 3.5.6]. For completeness, we state and prove the

relevant results in the following lemma.

Lemma 3.1 (second and third fundamental form relations). The mean and Gauss curvature are

also expressed as the following

tr(−II[y]I[y]−1) = 2H, det(−II[y]I[y]−1) = K (3.73)

and the third fundamental form can be expressed as

III[y] = −2H II[y]−K I[y] (3.74)
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Proof. We begin with (3.73). Let x′ ∈ Ω and let z = y(x′). We assume every function in this

calculation is evaluated at x′ unless further specified. We first claim that II[y] = −∇′yTS(z)∇′y.

Using the definition of S, we have

S(z) = ∇N(z)(I3 −N(z)⊗N(z)).

We multiply on the left by∇′yT and on the right by∇′y so then

∇′yTS(z)∇′y = ∇′yT∇N(z)∇′y.

where we used the fact that N(z)T∇′y(x) = νT∇′y = 0. Since N(y(x′)) = ν(x′), taking the

derivative with respect to x′ of both sides and using chain rule yields∇N(z)∇′y(x′) = ∇′ν(x′).

Hence

∇′yTS(z)∇′y = ∇′yT∇′ν = −II[y]. (3.75)

Since S(z)N(z) = 0, the shape operator S(z) aacts on the tangent space to y(Ω), and it can thus

be represented in the basis (∂1y, ∂2y) via a matrix S̃ ∈ R2×2, namely

S(z)∂iy =
2∑
j=1

S̃ji∂jy(z) =⇒ ∇′yS̃ = S∇′y

The matrix S̃ is well defined since ∇′y has full rank, and the range of S(z)∇′y is the range of

∇′y. Suppose (vi, µi) ∈ R2 × R, is an eigenpair of S̃, then

S̃vi = µivi =⇒ S(z)∇′yvi = µi∇′yvi,
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whence µi is an eigenvalue of S(z) with an eigenvector ∇′yvi in the tangent plane of y(Ω) at z.

Hence, the eigenvalues of S̃ are κ1, κ2. Note that since S̃ solves∇′yS̃ = S(z)∇′y, then we have

S̃ = I[y]−1∇′yTS(z)∇′y = −I[y]−1II[y]

by virtue of (3.75). Hence,

tr(−II[y]I[y]−1) = tr(S̃) = κ1 + κ2 = 2H,

det(−II[y]I[y]−1) = det(S̃) = κ1κ2 = K,

which proves (3.73).

For (3.74), it is sufficient to prove S̃2 = I[y]−1III[y]. To see this, we first utilize Cayley-

Hamilton Theorem for S̃:

S̃2 − tr(S̃)S̃ + (det S̃)I2 = 0

We then use the fact that tr(S̃) = 2H , det(S̃) = K, and S̃ = −I[y]−1II[y] to write

S̃2 + 2H I[y]−1II[y] +KI2 = 0 (3.76)

If we prove, S̃2 = I[y]−1III[y], then (3.74) immediately follows from (3.76).

We first show that∇′yTS(z)2∇′y = III[y]. Recall that S(z) = ∇N(z)(I3−N(z)⊗N(z))

is symmetric, and N(z)T∇′y = 0. Hence,

∇′yTS(z)2∇′y = ∇′yT∇N(z)T∇N(z)∇′y.
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We also have computed that∇N(z)∇′y = ∇′ν, so

∇′yTS(z)2∇′y = ∇′νT∇ν = III[y].

Thus, it is sufficient to show S̃2 = I[y]−1∇′yTS(z)2∇′y. We use the relation S̃ = I[y]−1∇′yTS(z)∇′y

to compute

S̃2 = I[y]−1∇′yTS(z)∇′yI[y]−1∇′yTS(z)∇′y.

Note that ∇′yI[y]−1∇′yT∇′yv = ∇′yv for all v ∈ R2, so ∇′yI[y]−1∇′yT acts like the identity

in the range of∇′y. Since the range of S(z) is the range of∇′y, we have S(z)∇′yI[y]−1∇′yTS(z) =

S(z)2, and

S̃2 = I[y]−1∇′yTS(z)2∇′y,

which completes the proof of (3.74).

3.4.2 Kirchhoff-Love assumption

We now expand the modified Kirchhoff-Love assumption (3.21) to include higher order

terms

u(x′, x3) = y(x′) + φ(x′, x3)ν(x′). (3.77)

φ(x′, x3) = α(x′) + β(x′)x2
3 + γ(x′)x3

3 +O(x4
3). (3.78)

The process to derive bending energy follows similarly to the stretching energy and is as follows:

1. Write the Cauchy tensor C = FTF in terms of powers of φ.

117



2. Write W3D in terms of C and powers of x3.

3. Collect O(x2
3) terms of W3D which contribute to the bending energy.

4. Determine α, β, γ so that u satisfies incompressibility in an asymptotic sense.

Since we are computing the formal limit Ebend[y] = limt→0
1
t3
Et,3D[y], we assume that y already

satisfies Estr[y] = 0, so that the limit is finite. This means that by Corollary 3.4 (immersions of

g are minimizers with vanishing energy), we have that

I[y] = λ2m̃⊗ m̃ + λ−1m̃⊗ m̃, λ = 3

√
s+ 1

s0 + 1
.

Moreover, for the purposes of this chapter we deal with s, s0 as constants in space. Hence

α = det I[y] = λ is a constant.

3.4.3 Cauchy tensor

Using (3.77), we have

∇u = [∇′y + φ∇′ν + ν ⊗∇′φ, ∂3φν].

Computing C = ∇uT∇u, we have

C = ∇uT∇u =

Cφ +∇′φ⊗∇′φ ∂3φ∇′φ

∂3φ∇′φT (∂3φ)2

 ,
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where

Cφ = I[y]− 2φII[y] + φ2III[y], (3.79)

and we used the fact that νTν = 1,νT∇′y = 0, and νT∇′ν = 0.

Recall that α = λ, which is constant, so

∇′φ = ∇′(α(x′) + β(x′)x2
3 + γ(x′)x3

3 +O(x4
3)) = ∇′β(x′)x2

3 +O(x3
3).

Hence,∇′φ⊗∇′φ = O(x4
3). Thus,

C =

 Cφ ∂3φ∇′φ

∂3φ∇′φT (∂3φ)2

+O(x4
3). (3.80)

3.4.4 Incompressibility

For incompressibility, we want to determine α, β, γ such that det C = 1 + O(x3
3). Note

that we already determined that α = (det I[y])−1/2, so that det C = 1 +O(x3). Hence, we will

determine β, γ so that the O(x3) and O(x2
3) terms of det C are 0.

We first compute det C:

det C = det Cφ(∂3φ)2 +D +O(x3
3),
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where

D = ∂3φ∂1φ

∣∣∣∣∣∣∣∣∣
(Cφ)2,1 (Cφ)2,2

∂3φ∂1φ ∂3φ∂1φ

∣∣∣∣∣∣∣∣∣− ∂3φ∂1φ

∣∣∣∣∣∣∣∣∣
(Cφ)1,1 (Cφ)1,2

∂3φ∂1φ ∂3φ∂1φ

∣∣∣∣∣∣∣∣∣ .
Note that since∇′φ = O(x2

3), then D = O(x4
3). Hence,

det C = det Cφ(∂3φ)2 +O(x3
3).

We now compute det Cφ as

det Cφ = J [y] det
(
CφI[y]−1

)
= J [y] det

(
I2 − 2φII[y]I[y]−1 + φ2III[y]I[y]−1

)
,

where J [y] = det I[y] as previously defined in (3.19). Since −2φII[y]I[y]−1 + φ2III[y]I[y]−1 is a

2× 2 matrix, we use the expansion det(I2 + A) = 1 + trA + det A, to write

det Cφ = J [y]
(
1− 2φtr(II[y]I[y]−1) + φ2tr(III[y]I[y]−1) + 4φ2 det(II[y]I[y]−1)

)
+O(φ3).

Applying Lemma 3.1 (second and third fundamental form relations) yields

det Cφ = J [y](1 + 4φH + φ2(4H2 + 2K)) +O(φ3)

= J [y](1 + 4αHx3 + (4βH + α2(4H2 + 2K))x2
3) +O(x3

3).
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Multiplying det Cφ and (∂3φ)2 = α2 + 4βαx3 + (6αγ + 4β2)x2
3 +O(x3

3) results in

det Cφ(∂3φ)2 = J [y]

[
α2 + (4α3H + 4βα)x3 (3.81)

+ (6αγ + 4β2 + 4βα2H + α4(4H2 + 2K) + 16α2Hβ)x2
3

]
+O(x3

3).

To ensure that theO(x3) term in (3.81) is 0, we need 4α3H+4βα = 0, which implies β = −Hα2.

To set the O(x2
3) order term in (3.81) to zero we require

6αγ + 4β2 + 4βα2H + α4(4H2 + 2K) + 16α2Hβ = 0.

Substituting β = −Hα2 and solving for γ, yields γ = α3

3
(6H2 − K). To summarize, we

determined

α = J [y]−1/2 (3.82)

β = −J [y]−1H = −Hα2 (3.83)

γ =
J [y]−3/2

3
(6H2 −K) =

α3

3
(6H2 −K), (3.84)

which ensures det C = 1 +O(x3
3).

Remark 3.3 (comparison with [98]). Note that if we assume det I[y] = 1, then α = 1, β = −H ,

and γ = 1
3
(6H2 − K), which agrees with [98]. This is the key difference in our derivation

compared with that of [98]: we relax the inextensibility constraint det I[y] = 1, which makes the

model a bit more realistic in practice. We refer to Section 3.2.1.6.
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3.4.5 Expanding W3D

Recall that we computed W3D in terms of C back in (3.30) when deriving the stretching

energy. Inserting C from (3.80) into (3.30) yields:

W3D(x′,∇u) = λ

(
(∂3φ)2 + trCφ +

s0

s+ 1
m ·Cφm−

s

s+ 1

m ·C2
φm

m ·Cφm

)
−3+O(x4

3), (3.85)

where m : Ω → S1 is the planar director field denoting the initial LC orientation. Note that Cφ

is a 2× 2 matrix, and we may apply Cayley Hamilton again to see that

C2
φ = trCφCφ − det(Cφ)I2.

Rearranging the energy density now reads:

W3D(x′,∇u) = λ(∂3φ)2 +
λ

s+ 1

(
trCφ + s0m ·Cφm + s

det Cφ

m ·Cφm

)
− 3 +O(x4

3). (3.86)

We shall now expand W3D in terms of powers of φ. Note that the trCφ and the m ·Cφm terms

are linear in Cφ, so their asymptotic expansion will be easy. We use the expansion of Cφ in (3.79)

to compute

trCφ = trI[y]− 2φtrII[y] + φ2trIII[y], (3.87)

and

m ·Cφm = Cm[y]− 2φCII [y] + φ2CIII [y], (3.88)
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where CII [y] = m · II[y]m, and CIII [y] = m · III[y]m, and Cm[y] = m · I[y]m as defined in

(3.19). We turn our attention to the last term. The numerator is

det Cφ = J [y](1 + 4φH + φ2(4H2 + 2K)) +O(φ3).

We now look at the denominator. We write out

1

m ·Cφm
=

1

Cm[y]

1

1− 2φCII [y]Cm[y]−1 + φ2CIII [y]Cm[y]−1
,

With use of the expansion 1
1+x

= 1− x+ x2 +O(x3) for |x| < 1, we write the above equality as

1

m ·Cφm
=

1

Cm[y]

(
1 + 2φCII [y]Cm[y]−1 − φ2φCIII [y]Cm[−1] + 4φ2CII [y]2Cm[y]−2

)
+O(φ3).

Note that this expansion is valid for sufficiently small thickness t. Dividing m·Cφm from det Cφ

yields

det Cφ

m ·Cφm
=

J [y]

Cm[y]
A. (3.89)

where

A = 1+φ(4H + 2CII [y]Cm[y]−1)

+ φ2(8HCII [y]− CIII [y]Cm[y]−1 + (4H2 + 2K) + 4CII [y]2Cm[y]−2).
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Inserting (3.87), (3.88), and (3.89) into (3.86), we have the expansion of W3D in terms of φ:

W3D(x′,∇u) = λ(∂3φ)2 +
λ

s+ 1

[
trI[y]− 2φtrII[y] + φ2trIII[y] + s0Cm[y] (3.90)

− 2φs0CII [y] + φ2s0CIII [y] + s
J [y]

Cm[y]
A

]
− 3 +O(x3

3).

We now collect the O(x2
3) terms for W3D(x′,∇u) to derive the bending energy. To do this, we

replace powers of φ or ∂3φ with their respective O(x2
3) term. Hence, we replace (∂3φ)2 with

(6αγ + 4β2), φ with β, and φ2 is α2 in (3.90) to deduce the bending energy density

Wbend(x
′,∇y, D2y) =λ(6αγ + 4β2) (3.91)

+
λ

s+ 1

[
−2β(trII[y] + s0CII [y]) + α2(trIII[y] + s0CIII [y]) + s

J [y]

Cm[y]
A

]
,

where A now reads:

A =β(4H + 2CII [y]Cm[y]−1)

+ α2

(
8HCII [y]Cm[y]−1 − CIII [y]Cm[y]−1 + (4H2 + 2K) + 4CII [y]2Cm[y]−2

)
.

Utilizing the expressions of β, γ in (3.83) and (3.84), we have that A simplifies to

A = α2

(
(−2HCII [y]Cm[y]−1)

+ 8HCII [y]Cm[y]−1 − CIII [y]Cm[y]−1 + 2K + 4CII [y]2Cm[y]−2

)
.
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Applying Lemma 3.1 (Second and third fundamental form relations), we haveCIII [y] = −2HCII [y]−

KCm[y] and may further simplify

A = α2(8HCII [y]Cm[y]−1 + 3K + 4CII [y]2Cm[y]−2). (3.92)

We now use the expressions of β, γ in (3.83) and (3.84) to obtain

(6αγ + 4β2) = α4(16H2 − 2K). (3.93)

Using the equality III[y] = −2H II[y] −K I[y] from Lemma 3.1 (second and third fundamental

form relations) and the expressions of β, γ in (3.83) and (3.84), we simplify

α2
(

trIII[y] + s0CIII [y])− 2β(trII[y] + s0CII [y]
)

= −Kα2
[
trI[y] + s0Cm[y]

]
. (3.94)

We use the fact that λα2 = 1 and insert (3.92), (3.93), and (3.94) into (3.91) to obtain the final

form of the bending energy density:

Wbend(x
′,∇y, D2y) =

(16H2 − 2K)

J [y]
+

1

s+ 1

[
−KtrI[y]− s0KCm[y] (3.95)

+ s
det I[y]

Cm[y]

(
8H

CII [y]

Cm[y]
+ 4

CII [y]2

Cm[y]2
+ 3K

)]
.
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3.4.6 Final bending energy

We integrate the energy in the x3 direction and use
∫ t/2
−t/2 x

2
3dx3 = 1

12
to derive the final

bending energy

Ebend[y] =
1

12

∫
Ω

Wbend(x
′,∇y, D2y)dx′ (3.96)

We shall now do some comparison with [98]. Note that if we enforce an inextensibility assump-

tion, J [y] = 1, then the energy (3.96) coincides with the energy of [98, Eq (74)]. The bending

energy (3.96) is slightly more realistic than [98, Eq (74)], we refer to Section 3.2.1.6 for more

discussion.

Further suppose that y satisfies Estr[y] = 0. Then, I[y] = g due to Corollary 3.4 (immer-

sions of g are minimizers with vanishing energy). The bending energy then simplifies to

Ebend[y] =
1

12

∫
Ω

16H2

J [y]
+

s

s+ 1

J [y]

Cm[y]

(
8H

CII [y]

Cm[y]
+ 4

CII [y]2

Cm[y]2

)
dx′ + C(g)

where C(g) is a constant that only depends on the metric g. Note that the Gauss curvature K

only depends on g due to Gauss’s Theorema Egregium [60, Ch. 4-3].

An important point to make is that often the bending energy can be rewritten as quadratic in

the Hessian rather than a quadratic in terms of the second fundamental form. Suppose we further

simplify the energy to the case s = 0. We also have J [y] = λ, and the bending energy reduces to

Ebend[y] =
4

3λ

∫
Ω

H2dx′ =
4

3λ

∫
Ω

tr(g−1/2II[y]g−1/2)2dx′

which is special case of the energy found in prestrained plates [27, 30]. Due to work done in [30,
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Proposition 1], we may write

Ebend[y] =
4

3λ

∫
Ω

tr(g−1/2II[y]g−1/2)2dx′ =
4

3λ

∫
Ω

|tr(g−1/2D2yg−1/2)|2dx′ + C(g)

where C(g) is again a constant that depends on g and its derivatives. We point to similar results

in the case of bending energies for isometries [14] as well as shells [105]. This simplification is

important because it means that we should expect the bending energy to behave like a quadratic

function of D2y, which motivates the choice of regularization in the numerics in Chapter 4. This

rewriting of the bending energy also makes numerics for a bending energy more tractable, but we

leave numerics for the bending energy for future study.
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Chapter 4: Numerical Analysis of Thin Liquid Crystal Polymeric Networks

The concern of this chapter is to develop a numerical method to solve the membrane prob-

lem of LCNs. Recall from Corollary 3.4 (immersions of g are minimizers with vanishing energy),

that Estr[y] = 0 if and only if y is an isometric immersion of g, namely I[y] = g a.e. in Ω. Most

of the attention in the physics literature has focused on satisfying this metric condition to predict

shapes of LCNs [4, 91, 92, 93, 94, 100, 101, 103, 118, 119]. However, as we saw in Section

3.3, constructing an exact solution for more complicated metrics, like those arising from higher

degree LC defects, can be quite difficult. Also, solving the metric condition exactly becomes

even more difficult if the actuation parameter varies spatially. Finally, some metrics may not

admit immersions, so the metric condition will not be a useful tool in predicting the shapes when

actuated. These reasons suggest the need for numerical methods to solve the membrane problem,

which we develop in this chapter.

Computation of LCEs/LCNs have received some attention. Publications include computa-

tions of various membrane models [103], a membrane model with regularization [47], a bending

model of LCE bilayer structure [22], a relevant 2D model for LCEs [87], 3D models [46, 52],

and LCE rods [21]. Literature involving numerical analysis is limited, to the best of our knowl-

edge. Paper [87] proves well-posedness of a mixed method for a 2D model with Frank-Oseen

regularization.
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An outline and highlight of the contributions of this chapter are as follows.The main con-

tribution of this chapter is a new finite element method for solving a membrane model of LCNs

presented in Chapter 3.

• In Section 4.1, we recall the membrane model developed in Section 3.2. We also prove lack of

quasiconvexity in Section 4.1.1, which motivates the need for regularization.

• Section 4.2 presents the FEM. The key is to add a regularization that is inspired by the bend-

ing energy derived in Chapter 3. This regularization circumvents the quasiconvexity issues

presented in Section 4.1.1.

• In Section 4.3, we present a convergence analysis of the numerical method inspired by the

seminal work [66]. In particular, we prove that a subsequence of minimizers of the discrete

energy converges to minimizers of the continuous energy in the framework of Γ-convergence.

The main result is Theorem 4.1. We also note that the proof of this result is technical, and

the main challenge lies in the construction of the recovery sequence. In particular, the recov-

ery sequence needs to remain bounded away from a singularity in the energy. To meet this

challenge, we employ a Lusin truncation argument and prove additional results needed for the

construction in Lemmas 4.2, 4.3, and 4.5.

• In Section 4.4, we discuss how to introduce folds or creases into the numerical model. This

section is motivated by previous works on folding [18] and [20]. For physical applications, the

motivation comes from nonisometric origami [100, 101, 102].

• In Section 4.4 we present a gradient flow iteration with Newton sub-iteration to solve for

critical points of the discrete energy. We prove various properties of the Newton sub-iteration.
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4.1 Problem statement: a membrane model

The focus of this chapter is on solving the 2D membrane model of LCNs introduced in

Section 3.2. We now recall the membrane model as well as relevant parameters.

The 2D membrane model consists of the following formal minimization problem: find

y∗ ∈ H1(Ω;R3) such that

y∗ ∈ argminy∈H1(Ω;R3)Estr[y], Estr[y] :=

∫
Ω

Wstr(x,∇y)dx. (4.1)

Recall the stretching energy density Wstr is only a function of x ∈ Ω and the first fundamental

form I[y] := ∇yT∇y of the surface y(Ω) and is given by

Wstr(x,∇y) = λ

[
1

J [y]
+

1

s+ 1

(
tr(I[y]) + s0Cm[y] + s

J [y]

Cm[y]

)]
− 3 ; (4.2)

hereafter J [y], Cm[y] are among the following notational abbreviations:

J [y] := det I[y], Cm[y] := m · I[y]m, Cm⊥ [y] := m⊥ · I[y]m⊥. (4.3)

Note that if J [y], Cm[y] are bounded away from 0, then
∫

Ω
Wstr(x,∇y)dx is finite. If the second

argument of Wstr is a generic matrix F ∈ R3×2 instead, then we define I(F), J(F), Cm(F), and

Cm⊥(F) similarly as

I(F) = FTF, J(F) = det I(F) ,

Cm(F) = m · I(F)m, Cm⊥(F) = m⊥ · I(F)m⊥ .

(4.4)
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We observe that J [y] can be written in terms of Cm[y], Cm⊥ [y] and ∂1y × ∂2y as

J [y] = Cm[y]Cm⊥ [y]− (m⊥ · I[y]m)2 , (4.5)

J [y] = |∂1y × ∂2y|2. (4.6)

We note that (4.2) is consistent with the stretching energy in [98] after additionally assuming

an inextensibility constraint J [y] = 1 and incorporating the multiplicative parameter λ and the

constant −3.

Throughout this chapter, we do not impose any boundary condition so that the materials un-

der consideration have free boundaries. If necessary, one can take Dirichlet boundary conditions

into account with a simple modification on theories and simulations. Moreover, s0, s ∈ L∞(Ω)

are nematic order parameters that refer to the reference configuration and deformed configuration

respectively. These parameters are typically constant in time and depend on temperature, but

may vary in Ω if the liquid crystal polymers are actuated non-uniformly by a light source. Their

physical range is s0, s > −1 and s0, s are bounded away from −1 i.e.

essinfx∈Ωs0(x) > −1, essinfx∈Ωs(x) > −1 . (4.7)

The actuation parameter of the model is

λ = λs,s0 = 3

√
s+ 1

s0 + 1
. (4.8)

If the material is heated, then λ < 1. Likewise, if cooled, then λ > 1. For s, s0 non-constant, the
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assumption on s, s0 in (4.7) implies that λ : Ω→ R satisfies

0 < essinfx∈Ωλ(x) ≤ esssupx∈Ωλ(x) <∞. (4.9)

The energy density (4.2) lacks convexity, which raises the question of the actual meaning

of a minimizer y∗ ∈ H1(Ω;R3) in (4.1). It also presents the main difficulty for discretization,

convergence analysis, and design of efficient iterative solvers for the discrete minimization prob-

lem.

4.1.1 Challenges: lack of convexity

The lack of convexity of the stretching energy (4.2) translates into lack of weak lower

semicontinuity of (4.2) and prevents one from using the direct method of calculus of variations to

prove the existence of minimizers, and is also responsible for serious computational challenges.

To stress the importance of convexity or lack there-of, we present a modification of a clas-

sical 1D example known as the Bolza example [55, Example 4.8]; see also [11, Example 2.1].

We next extend this situation to 2D.

Example 4.1. We consider the double well energy defined on W 1,4
0 ((0, 1))

E1D[u] =

∫ 1

0

((u′)2 − 1)2 + cu2dx, (4.10)
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with some nonnegative c, and define a sequence of sawtooth functions starting with

u1(x) =


x, x < 1

2

1− x, x ≥ 1
2
.

To construct u2, we subdivide the intervals [0, 1/2] and [1/2, 1] into [0, 1/4], [1/4, 1/2] and

[1/2, 3/4], [3/4, 1] and then alternating the derivative between ±1 on the 4 subintervals. The

function u2 is a sawtooth with derivative of ±1 and maximum height 1
4
. Given un, we do the

same subdividing procedure to get a un+1 to get a sawtooth of height 1
2n+1 . The resulting se-

quence consists of un that satisfy |u′n(x)| = 1. The first few elements are plotted in Figure 4.1.

The sequence un ⇀ 0 in W 1,4((0, 1)), but

0 = lim
n→∞

E1D[un] < E1D[0] = 1

Thus, the energyE1D is not weakly lower semicontinuous onW 1,4, and if c > 0 the direct method

of the calculus of variations would fail to provide the existence of a minimizer. If c = 0, then any

un is a minimizer to E1D over W 1,4.

Figure 4.1: Example 4.1: First four elements un of the minimizing sequence of (4.10).
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On the discrete level, the above example is also important, because the lack of convexity

means that a standard weak compactness result in H1 will not be enough to prove convergence

of minimizers. We shall see in Proposition 4.1 that the stretching energy does not satisfy the

relevant convexity condition for us to expect weak lower semicontinuity. To illustrate this point,

we present an example of some minimizers to E that extends Example 4.1 to 2D. The first el-

ement of the sequence of minimizers is a pyramid from [92]. We later display several pyramid

configurations in Section 5.3.1 computed with our FEM.

Example 4.2. Let Ω = [−1, 1]2 and let m be the blueprinted director field depicted in Figure

4.2(a) and let y1 be the solution in Figure 4.2(b) with λ < 1. The surface y1(Ω) is a square pyra-

mid with base width 2λ and height
√
λ−1 − λ2, and first fundamental form I[y] = g with target

metric g given by (3.42). We can mimic the subdivision procedure of Example 4.1 to produce

a sequence yn such that I[yn] = g, and yn ⇀ y∗ in H1(Ω;R3), where y∗(x) = (λx1, λx2, 0).

The first three elements of the sequence are displayed in Figure 4.3. Since I[yn] = g, we deduce

E[yn] = 0 for all n, according to Corollary 3.4 (immersions of g are minimizers). Moreover,

I[y∗] = λ2I 6= g a.e. in Ω because λ 6= 1. Inserting ∇y∗ into Wstr yields Wstr(x,∇y∗) > 0 a.e.

in Ω due to Proposition 3.3 (target metric), whence

lim inf
n→∞

E[yn] = 0 < E[y∗].

We thus conclude that E is not weakly lower semicontinuous in H1(Ω;R3).
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Figure 4.2: Example 4.2: Blueprinted director field m and pyramid surface y1(Ω) for λ = 1
2

from [92].
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Figure 4.3: Example 4.2: First three elements yn(Ω) of a minimizing sequence with foldings on
dyadic squares concentric with Ω.

−0.4−0.2 0
0.2

0.4 −0.5

0

0.5

0

0.5

1

−0.4−0.2 0
0.2

0.4 −0.5

0

0.5

0

0.5

1

−0.4−0.2 0
0.2

0.4 −0.5

0

0.5

0

0.5

1

The notions of quasiconvexity and rank-one convexity, defined next, are relevant in this

context. We refer to the book [55] for background on this topic. The first concept is quasicon-

vexity [55, Def. 1.5(ii)].

Definition 4.1 (quasiconvexity). A function f : Rm×n → R is quasiconvex if

f(F) ≤ inf
φ∈W 1,∞

0 ((0,1)n;Rm)

∫
(0,1)n

f(F +∇φ(z))dz,

for all F ∈ Rm×n.

The intuition behind the above definition is that one cannot decrease the energy by adding

laminations, which are Lipschitz perturbations φ ∈ W 1,∞
0 ((0, 1)2;R3) in our case. Going back to
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Example 4.1, we can see that if f1D(p) = (p2 − 1)2, then adding u′n to 0 decreases the energy

f1D(0) = 1 > 0 =

∫
(0,1)

f1D(u′n(z))dz ≥ inf
φ∈W 1,∞

0 ((0,1),R)

∫
(0,1)

f1D(0 +∇φ(z))dz.

Hence, f1D is not quasiconvex. This is in fact obvious because for f : R → R, convexity and

quasiconvexity are equivalent [55, Theorem 1.7(ii)].

The notion of rank-one convexity is weaker than quasiconvexity [55, Def. 1.5(i)].

Definition 4.2 (rank-one convexity). A function f : Rm×n → R is rank-one convex if

z 7→ f(F + za⊗ c)

is convex for all F ∈ Rm×n, a ∈ Rm, c ∈ Rn and z ∈ R.

For real-valued f : Rm×n → R, quasiconvexity implies rank-one convexity [55, Thm

1.7(i)]. We show next that the stretching energy density found in (4.2) is not rank-one convex. An

intuition behind is as follows. A necessary condition for a piecewise affine map to be continuous

is that the gradient is rank-one connected across the folds (F1,F2 ∈ Rm×n are rank-one connected

if rank(F1 − F2) = 1). If an energy is not rank-one convex, then we can make a fold preserving

continuity and without increasing the energy. In Example 4.2,∇yn is rank-one connected across

folds.

Proposition 4.1 (lack of rank-one convexity). Let s, s0 > −1 and fix x ∈ Ω. Then there exists a

F ∈ R3×2 and rank-one perturbation a⊗ c such that

z 7→ Wstr(x,F + za⊗ c)
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is not convex at z = 0.

Proof. Let F ∈ R3×2 be so that FTF = µ2m ⊗ m + 1
µ2

m⊥ ⊗ m⊥ = Aµ for some µ to be

determined later. Let a ∈ R3 be a unit vector orthogonal to the range of F. Then, the rank-one

perturbation F̂ = F + za⊗m of F satisfies

I(F̂) = F̂T F̂ = FTF + z2m⊗m = Aµ + z2m⊗m

= Aµ

(
I2 + z2A−1

µ m⊗m
)

= Aµ

(
I2 +

z2

µ2
m⊗m

)
.

Since the eigenpairs of this rank-one perturbation of identity are (1,m⊥) and (1 + z2

µ2
,m), its

determinant reads det
(
I2 + z2

µ2
m⊗m

)
= 1 + z2

µ2
, whence J(F̂) = (det Aµ)(1 + z2

µ2
) = 1 + z2

µ2
.

Inserting this into the stretching energy (4.2) gives

Wstr(x, F̂) = λ

 1

1 + z2

µ2

+
s0 + 1

s+ 1
z2 +

s0 + 1

s+ 1
µ2 +

1

µ2

− 3

which as a function of z reads equivalently

Wstr(x,F + za⊗m) = λ

 1

1 + z2

µ2

+
s0 + 1

s+ 1
z2

+ Cs,s0,µ,

with a constant Cs,s0,µ that depends on s, s0, and µ. Computing the second derivative with respect

to z, we have

d2

dz2
Wstr(x,F + za⊗m) = λ

[
8z2

µ4(1 + z2/µ2)3
− 2

µ2(1 + z2/µ2)2
+ 2

s0 + 1

s+ 1

]
.
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Evaluating at z = 0, yields

d2

dz2
Wstr(x,F + za⊗m)

∣∣∣
z=0

= 2λ

[
s0 + 1

s+ 1
− 1

µ2

]
.

Taking µ sufficiently small ensures that d2

dz2
Wstr(x,F + za ⊗ m)

∣∣
z=0

< 0, which means that

z 7→ Wstr(x,F + za⊗m) is not convex at z = 0, as asserted.

4.1.2 Strategies to deal with lack of convexity

In this section, we discuss two strategies to deal with the lack of convexity and the literature

related to LCEs/LCNs. For an introduction on numerics for nonconvex variational problems, we

refer to [15, Chapter 9]. The first strategy consists of computing the quasiconvex envelope of the

energy density. For nonnegative, Borel measurable, and locally bounded f : Rm×n → R, the

quasiconvex envelope can be expressed as follows using [55, Theorem 1.9]:

f qc(F) = inf
φ∈W 1,∞

0 ((0,1)n;Rm)

∫
(0,1)n

f(F +∇φ(z))dz. (4.11)

Note that this formula is the right hand side of Definition 4.1. The integral of the quasiconvex

envelope f qc is sometimes the relaxed or effective energy. For a 1D energy, the procedure reduces

to computing the convex envelope. In Example 4.1 without the lower order term, the weak limit

of un is 0 and turns out to be a minimizer of the relaxed energy. For 1D problems, working with

the convex envelope fixes the weak lower semicontinuity issue. In the context of LCNs/LCEs,

the authors of [44, 59] derive explicit expressions of quasiconvex envelopes, which is a rare

occurrence. If the quasiconvex envelope is not known, then approximating the rank-one convex
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envelope might be an alternative; we point to [54] for work on approximating rank-1 convex

envelopes with applications in LCNs/LCEs.

There are advantages to work with the quasiconvex envelope. The first one is that it can be

derived as the rigorous mathematical limit in a Γ-convergence dimension reduction theory. For

example, if s = s0 = 0, recall that W3D reduces to WH
3D(F) = |F|2 − 3, and the rigorous Γ-

convergence theory [53, Theorem 2.4] applies: the ensuing Γ-limit of 1
t
E3D,t is the quasiconvex

envelope of

WH
2D(F′) =

1

det F′TF′
+ |F′|2 − 3,

where F′ ∈ R3×2; see also [44] for another example. We also refer to classical works [83, 84],

which are membrane theories without the constraint of incompressibility in 3D and also result in

the Γ-limit being a quasiconvex envelope. Moreover, dealing with the relaxed energy is preferable

in some physically relevant situations, such as the study of microstructures. One such situation is

a stretched sheet experiment [82], which was also studied in [52].

On the other hand, computing with the quasiconvex envelope presents several disadvan-

tages. First, it is difficult to derive explicit expressions for quasiconvex envelopes, especially

when the energy is anisotropic, such as the stretching energy in (4.2); the energies studied by

[44, 52, 59] were all isotropic. We refer to the book [55], which covers known strategies for com-

puting quasiconvex envelopes. Another issue is that there may be many minimizers to the relaxed

energy. In Example 4.1, without boundary conditions and lower order terms, any u : (0, 1)→ R

whose derivative satisfies u′(x) ∈ [−1, 1] for a.e. x ∈ (0, 1) would be a minimizer to the relaxed

energy. Existence of many minimizers may occur in higher dimensions as well. For the stretch-

ing energy (4.2), we expect that the zero level set of relaxed energy density would be short maps,
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i.e. y ∈ H1(Ω;R3) such that g − I[y] ≥ 0 is positive semidefinite. Our conjecture is motivated

by the results of [83, 104]. If short maps are minimizers to the relaxed problem, then the weak

limit of yn ⇀ y∗ from Example 4.2 would be a minimizer to the relaxed problem.

Afterall, our interest in this chapter is in the shapes and configurations that LCNs can

produce rather than in microstructures. One example is the experimental work [88], which studies

the configurations that arise from liquid crystal defects. As a result, we employ the second

possible strategy, which is regularization.

In Example 4.1, regularizing would entail adding the term ε|u′′|2 to the energy. For ε > 0

fixed, the regularization would gain additional compactness, and a minimizing sequence would

converge strongly in W 1,4((0, 1)), thereby bypassing the lack of convexity of the double well.

The model of [47] utilizes the regularized energy

∫
Ω

Wstr(x,∇y) + ε| div∇y|2,

where ε > 0 is a positive fixed constant. This is a dimensionally reduced model from the 3D

model of [25], which incorporates a Hessian term to the energy.

We are interested in the membrane model and would like to recover the target metric in the

limit. We consider the regularized energy

Eε[y] = Estr[y] + ε

∫
Ω

∣∣D2y
∣∣2, (4.12)

where ε scales likes h2. One may view this as analogous to a higher order bending term. This kind

of energy blending is studied by [98]. An alternative approach from [111] develops a membrane
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theory from a 3D model with regularization term ε|D2u|2 and studies the limit ε → 0 as the

thickness t→ 0.

Yet another physically motivated approach would be to consider a pure bending theory,

where the nonconvexity lives inside the constraint. A recent example of a bending theory for

LCEs is [22]. We also refer to works on prestrained plates for rigorous Γ-convergence theories

[27, 85] and numerics [29, 30].

4.2 Discrete minimization problem

Let {Th}h be a shape regular sequence of triangulations with mesh size h. We denote by Eh

the set of interior edges to of each triangulation, and by Nh the set of nodes of the triangulation.

The space for discrete deformations consists of continuous piecewise linear functions:

Vh := {yh ∈ C0(Ω;R3) : yh|T ∈ P1 ∀ T ∈ Th}. (4.13)

We propose the regularized discrete energy Eh : Vh → R defined by

Eh[yh] =

∫
Ω

Wstr(x,∇yh) dx +Rh[yh] (4.14)

where the regularization term

Rh[yh] := crh
2
∑
e∈Eh

1

h

∫
e

|[∇yh]|2︸ ︷︷ ︸
=|yh|2

H2
h

(4.15)
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is a rescaling of the DG discrete H2-seminorm for continuous piecewise linear functions:

|yh|2H2
h

:=
∑
e∈Eh

1

h

∫
e

|[∇yh]|2, (4.16)

and cr : Ω → R+ is a non-negative regularization parameter of our choice. The notation [∇yh]

denotes the jump of∇yh across edges e ∈ Eh

[∇yh]
∣∣
e

= ∇y+
h −∇y−h , (4.17)

where∇y±h (x) := lim
s→0
∇yh(x±sne) and ne is a unit normal vector to e (the choice of its direction

is arbitrary but fixed).

We point out that, in the discontinuous Galerkin (DG) contexts (for instance [29, 49]), a

discrete H2 semi-norm is defined as

|yh|2H2
h(Ω)

:= ‖D2
hyh‖2

L2(Ω) +
∑
e∈Eh

h−1
e ‖[∇yh]‖2

L2(e) +
∑
e∈Eh

h−3
e ‖[yh]‖2

L2(e), (4.18)

where D2
h denotes a piecewise Hessian on every element. Substituting continuous piecewise

affine yh ∈ Vh into (4.18), we can see that only the second term remains while other terms

vanish, leaving us with (4.16). This motivates our choice (4.15) for the regularization term (4.15),

which in fact further satisfies Rh[yh] ≈ h2|yh|2H2
h(Ω)

provided cr is uniformly positive and {Th}h

is a quasi-uniform sequence of triangulations. We note that |yh|2H2
h(Ω)

scales oscillations of the

elementwise constant ∇yh between adjacent elements of Th for yh ∈ Vh and, consequently, can

be viewed as a discrete approximation of the Hessian of yh.

To justify that (4.16) is indeed a discrete H2-seminorm, we argue heuriscally as follows.
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Since yh is elementwise affine, we view Hh[yh]|e := [∇yh]|e
h

as a finite difference Hessian of yh.

If one extends the definition ofHh[yh]|e to elements T ∈ Th so that e ⊂ ∂T , the discrete nature of

Hh[yh] guarantees the validity of the inverse estimate h
∫
e

∣∣Hh[yh]
∣∣2 ≈ ∫

T

∣∣Hh[yh]
∣∣2 and results

in the equivalence

|yh|2H2
h(Ω) =

∑
e∈Eh

1

h

∫
e

|[∇yh]|2 =
∑
e∈Eh

h2 1

h

∫
e

∣∣∣∣ [∇yh]

h

∣∣∣∣2
=
∑
e∈Eh

h

∫
e

∣∣Hh[yh]
∣∣2 ≈ ∑

T∈Th

∫
T

∣∣Hh[yh]
∣∣2 =

∫
Ω

∣∣Hh[yh]
∣∣2.

The regularization term h2
∫

Ω

∣∣Hh[yh]
∣∣2 thus mimics the higher order bending energy (4.12)

where h is proportional to the thickness of a thin 3D body.

We emphasize that a full model of LCNs is a blending of stretching energy and bending

energy, which comes from higher order terms in the thickness t in the expansion (3.23) [22, 98,

102, 121]. This leads to a bending energy that incorporates the second fundamental form II[y],

and thus to a nonlinear combination of second order derivatives of the deformations y. Ideally,

one is able to express this energy in terms of the Hessian of y [15, 19, 29, 31]. In the context

of piecewise affine deformations yh ∈ Vh, second order derivative information is contained in

|yh|H2
h(Ω) and so in Rh[yh]. Therefore, for cr uniformly positive and {Th}h quasi-uniform, one

can compare Rh[yh] ≈ h2|yh|2H2
h(Ω)

with the scaled bending energy t2Eben[y] := t2‖D2y‖2
L2(Ω),

and realize that the meshsize parameter h plays a similar role to the thickness parameter t in

the expansion of 1
t
E3D using (3.23) [22, 98, 102, 121]. Moreover, allowing cr to vanish over

a polygonal Γ made of edges of Eh mimics discretely a material amenable to folding across Γ

[18, 20]. We prove convergence of minimizers of (4.1) over Vh, including creases.
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We regard (4.15) as a discrete regularization mechanism rather than a discrete form of the

bending energy Ebend[y] , even though such a simplified form of Ebend[y] has been considered

widely in the literature; we refer for instance [47, 102]. The true bending energy [98, 102, 121]

involves II[y] and its reduction to D2y is a matter of current research. We leave the numerics for

Ebend for a future study.

Moreover, we view (4.15) as a mechanism for equilibria selection. In the absence of regu-

larization, i.e. cr = 0 in (4.15), minimizers y∗h ∈ Vh of (4.1) can exhibit extra bumps and wrin-

kling which have negligible influence on the stretching energy. This is a manifestation of lack

of convexity of Wstr, and thus of uniqueness, and leads to the formation of micro-structure [15].

This topic is well studied in the theory and computation of nonlinear elasticity, but it is not the

focus of this chapter. We invoke (4.15) to suppress numerical oscillations in Section 5.6 as well

as to allow for folding in the development of compatible origami-structures in Section 5.3 and

incompatible origami-structures in Section 5.4. The latter lead to weak limits y∗ ∈ H1(Ω;R3)

with Estr[y∗] > 0, so it is unclear whether they are minimizers of the stretching energy Estr.

Our next task is to solve the discrete counterpart of (4.1), namely

y∗h ∈ argminyh∈VhEh[yh]. (4.19)

According to the discussions in Section 4.1.1, we can also expect lack of quasi-convexity in

the first term of Eh[yh] in (4.14). This feature brings the main difficulty to solve the discrete

minimization problem (4.19) and to analyze convergence of y∗h towards a minimizer y∗ of (4.1).

These topics are discussed in Section 4.3.
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4.3 Convergence of discrete minimizers

This section is dedicated to proving convergence of discrete minimizers under the following

regularity assumption.

Assumption 4.1. The metric g defined in (3.42) admits anH2 isometric immersion. That is, there

exists a y ∈ H2(Ω;R3) such that∇yT∇y = g a.e. in Ω.

Under the regularity Assumption 4.1, the main result can be stated as follows.

Theorem 4.1 (convergence of minimizers). Let Assumption 4.1 hold and let yh be a minimizer

of Eh. Then there is a subsequence (not relabeled) of yh − yh that converges in H1(Ω,R3)

strongly to a function y∗ ∈ H2(Ω;R3) that satisfies E[y∗] = 0, i.e. y∗ is an isometric immersion

I[y∗] = ∇y∗T∇y∗ = g.

We start with a roadmap to the proof of convergence of discrete minimizers, which is

inspired by the seminal work [66]. The first step is to build a recovery sequence yh for the

isometric immersion y ∈ H2(Ω;R3) in Assumption 4.1, that exhibits the desired energy scaling

Eh[yh] . h2 (see Proposition 4.3.) For such a y we know that J [y] = λ ≥ cs,s0 > 0 for a

constant cs,s0 depending on s, s0, so the challenge is to show a similar lower bound for J [yh].

To address this challenge, we resort to a Lusin approximation argument for Sobolev functions

similar to that is used in [66]. To achieve the desired energy scaling of Eh[yh] . h2, we exploit

both frame indifference and the neo-Hookean structure of the stretching energy in Corollary 3.2.

We proceed as follows starting with Corollary 3.2

∫
Ω

Wstr(x,∇yh)dx =

∫
Ω

(∣∣L−1/2
nh

[∇yh, bh]L
1/2
m

∣∣2 − 3
)
dx, (4.20)
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where nh = ∇yhm
|∇yhm|

and bh = ∂1yh×∂2yh
|∂1yh×∂2yh|2

. We next recall that Remark 3.2 implies that R =

L
−1/2
n [∇y, b]L

1/2
m ∈ SO(3), because Estr[y] = 0 according to Proposition 3.3 (target metric).

This enables us to use the rotation R to rewrite the integrand as

∣∣L−1/2
nh

[∇yh, bh]L
1/2
m

∣∣ =
∣∣R + Ah|, Ah := L−1/2

nh
[∇yh, bh]L

1/2
m −R,

and invoke frame indifference. Multiplying by RT does not change the energy, i.e.

∫
Ω

Wstr(x,∇yh)dx =

∫
Ω

(∣∣RTR + RTAh

∣∣2 − 3
)
dx =

∫
Ω

(∣∣I3 + RTAh

∣∣2 − 3
)
dx.

Lemma 4.1 below leads to a quadratic expansion around I3:

∫
Ω

Wstr(x,∇yh)dx =

∫
Ω

(∣∣I3 + RTAh

∣∣2 − 3
)
dx . ‖Ah‖2

L2(Ω).

Finally, an error estimate on y − yh and properties of yh in Lemma 4.5 further imply that

‖Ah‖2
L2(Ω) . h2 and |yh|2H2

h
. 1, whence Eh[yh] . h2 according to (4.14).

Existence of a recovery sequence yh so that Eh[yh] . h2 implies that global discrete

minimizers y∗h are uniformly bounded in the H2
h-seminorm. The uniform bound means that a

subsequence of y∗h converges strongly in H1(Ω), which bypasses the convexity issues of Wstr.

The tools to go from a discrete H2-bound to additional compactness have been developed for

bending problems [31]. We go over the relevant results in Lemmas 4.6 and 4.7.

We now connect our work with the existing literature. As in [66], energy scaling brings

additional compactness, but the mechanism here is H2-regularity of isometric immersions rather

than the geometric rigidity result in [66]. We refer to [102] for a geometric rigidity result in the
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context of LCEs. Moreover, we learned from [102] that R is a suitable rotation to exploit frame

indifference and perform a quadratic expansion of
∣∣I3 + RTAh

∣∣2 around the identity.

4.3.1 Preliminaries

This section covers preliminaries to lay the groundwork for the main results later. Subsec-

tion 4.3.1.1 contains preliminaries on how to approximate an H2-isometric immersion of g. The

key question is

given y ∈ H2(Ω;R3) that satisfies∇yT∇y = g, how does one construct yh ∈ Vh

such that ‖y − yh‖H1(Ω;R3) . h and J [yh] > 0 a.e. in Ω?

This kind of approximation requires some control in W 1,∞(Ω). To achieve control over J [yh] in

L∞, we regularize y with a yµ ∈ W 2,∞(Ω;R3) such that J [yµ] ≥ c. One obstacle with such a

regularization is that J [y] ≥ c > 0 is a nonconvex constraint, so convolution may not preserve

it. We note that there has been work on approximating maps while preserving the existence of a

normal vector [53]. In [53, Proposition 4.1], the authors are able to approximate maps by smooth

maps with well-defined normal, but the approximation is in the L∞-norm rather than H1. In our

context, however, we deal with functions that have higher regularity than [53]. Hence, we are able

to take advantage of Lusin truncation of Sobolev functions and ideas used in the construction of

a recovery sequence in [66].

Subsection 4.3.1.2 discusses the regularization of a piecewise constant matrix field by an

H1-matrix field. This regularization provides additional compactness and relies on a quasi-

interpolant that has been used in previous works on DG methods for bending problems [31].

Our presentation is brief but selfcontained.
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4.3.1.1 Preliminaries for energy scaling

We first establish a quadratic expansion of the neo-Hookean formula around the identity,

thereby slight improving on [102, Proposition A.2].

Lemma 4.1 (scaling of neo-Hookean formula near identity). If A ∈ R3×3 satisfies det(I3 +A) =

1, then ∣∣I3 + A
∣∣2 − 3 ≤ 3

∣∣A∣∣2.
Proof. Since det(I3 + A) = 1, we may apply Proposition 3.1 (bounds for WH

3D(F)) to bound

|I3 + A|2 − 3 ≤ 3 dist
(
I3 + A, SO(3)

)2 ≤ 3
∣∣I3 + A− I3

∣∣2 = 3
∣∣A∣∣2,

which is the desired result.

We next introduce without proof a truncation argument for Sobolev functions from [66,

Proposition A.2]; this is a suitable form of Lusin Theorem. The original result is stated with

boundary conditions but it is still valid without them. We also point to a similar result in [125,

Theorem 3.11.6].

Lemma 4.2 (truncation of H2-functions). Let y ∈ H2(Ω;R3). There exists yµ ∈ W 2,∞(Ω;R3)

such that

‖yµ‖W 2,∞(Ω;R3) ≤ Cµ, (4.21)

and for Sµ := {x ∈ Ω : y(x) 6= yµ(x) or ∇y(x) 6= ∇yµ(x)} we have the estimate

|Sµ| ≤ C
ω(µ)

µ2
(4.22)
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on the measure |Sµ| of Sµ, where

ω(µ) =

∫
{|y|+|∇y|+|D2y|≥µ

2
}

(
|y|+ |∇y|+ |D2y|

)2
dx

satisfies ω(µ)→ 0 as µ→∞.

Motivated by the proof of [66, Theorem 6.1(ii)], we refine Lemma 4.2 (truncation of H2

functions) for our purposes. In our case, the isometric immersion y given by Assumption 4.1

satisfies y ∈ H2(Ω;R3) ∩W 1,∞(Ω,R3) and J [y] ≥ cs,s0 > 0 by virtue of I[y] = g.

Lemma 4.3 (truncation ofH2-functions with Lipschitz control). If y ∈ H2(Ω;R3)∩W 1,∞(Ω;R3)

and J [y] ≥ c > 0, then the function yµ ∈ W 2,∞(Ω;R3) given by Lemma 4.2 satisfies the follow-

ing bounds for µ sufficiently large:

‖yµ‖W 2,∞(Ω;R3) ≤ Cµ, (4.23)

‖yµ‖H2(Ω;R3) ≤ C‖y‖H2(Ω;R3), (4.24)

‖yµ‖W 1,∞(Ω;R3) ≤ C
(
1 + ‖y‖W 1,∞(Ω;R3)

)
, (4.25)

J [yµ] ≥ c

2
, (4.26)

‖yµ − y‖H1(Ω;R3) ≤ C
(
1 + ‖y‖W 1,∞(Ω;R3)

)√ω(µ)

µ
, (4.27)

where C are generic constants independent of the truncation parameter µ.

Proof. We first invoke Lemma 4.2 (truncation of H2 functions): For all µ > 0, there exists a

yµ ∈ W 2,∞(Ω;R3) such that yµ = y and ∇yµ = ∇y on a set Ω \ Sµ, where |Sµ| ≤ Cω(µ)/µ2

and limµ→∞ ω(µ) = 0. Additionally, ‖yµ‖W 2,∞(Ω;R3) ≤ Cµ, which is (4.23).
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We shall now prove that yµ satisfies the asserted properties starting with (4.24). Using

properties of yµ on the good and bad sets yields

‖yµ‖2
H2(Ω) =

∫
Sµ

|yµ|2 + |∇yµ|2 + |∇2yµ|2 +

∫
Ω\Sµ
|yµ|2 + |∇yµ|2 + |∇2yµ|2

≤ C|Sµ|µ2 +

∫
Ω\Sµ
|y|2 + |∇y|2 + |∇2y|2 ≤ C|Sµ|µ2 + ‖y‖2

H2(Ω).

Since C|Sµ|µ2 = Cω(µ) ≤ C‖y‖2
H2(Ω), (4.24) follows immediately.

In order to show (4.25) and (4.26), we first note that J [yµ(x)] ≥ c and |∇yµ(x)| ≤ C

clearly hold for a.e. x ∈ Ω \ Sµ. We now focus on x ∈ Sµ. First, we proceed similarly to the

proof of [66, Theorem 6.1(ii)] to show that there exists δ > 0 such that B(x, R)∩Ω \Sµ 6= ∅ for

R := δ
√
Cω(µ)µ−1 and all x ∈ Sµ. Otherwise, B(x, R) ∩ Ω = B(x, R) ∩ Sµ and, since Ω is

Lipschitz, there exists A > 0 such that

AR2 ≤ |B(x, R) ∩ Ω| = |B(x, R) ∩ Sµ| ≤ |Sµ| ≤
Cω(µ)

µ2
.

Setting δ =
√

(2/A) produces a contradiction. Returning to x ∈ Sµ, we pick a z ∈ Ω \ Sµ such

that |x− z| ≤ R and employ (4.21) to write

|∇yµ(x)−∇yµ(z)| ≤ CµR = Cµδ
√
ω(µ)µ−1 = Cδ

√
ω(µ). (4.28)
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Therefore,

|∇yµ(x)| ≤ |∇yµ(x)−∇yµ(z)|+ |∇yµ(z)|

≤ C(δ
√
ω(µ) + ‖∇y‖L∞(Ω)) ≤ C(1 + ‖∇y‖L∞(Ω)),

for µ sufficiently large; this shows (4.25). Moreover,

J [yµ(x)] = J [yµ(z)] +
(
J [yµ(z)]− J [yµ(x)]

)
≥ c−

∣∣J [yµ(z)]− J [yµ(x)]
∣∣. (4.29)

Exploiting the Lipschitz continuity of J [yµ(x)] = det I[yµ(x)] within a ball of W 1,∞(Ω) of

radius proportional to (1 + ‖∇y‖L∞(Ω), and combining the estimates (4.25) and (4.28) for yµ

yields ∣∣J [yµ(z)]− J [yµ(x)]
∣∣ ≤ C

(
1 + ‖∇y‖L∞(Ω)

)
δ
√
ω(µ),

whence the right-hand side is smaller than c/2 provided µ is sufficiently large. Inserting this back

into (4.29) gives J [yµ(x)] ≥ c
2
, which is (4.26).

It remains to prove (4.27). We first write the error ‖yµ − y‖2
H1(Ω;R3) as

‖yµ − y‖2
H1(Ω;R3) =

∫
Sµ

|yµ − y|2 + |∇yµ −∇y|2dx,

according to the definition of Sµ in Lemma (4.2) (truncation of H2 functions). The W 1,∞-bound

(4.25) on yµ in conjunction with the estimate (4.22) on the measure of Sµ produces the bound

‖yµ − y‖2
H1(Ω;R3) ≤ C

(
1 + ‖y‖W 1,∞(Ω;R3)

)2|Sµ| ≤ C
(
1 + ‖y‖W 1,∞(Ω;R3)

)2 ω(µ)

µ2
.
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Taking the square root of both sides yields the desired estimate.

Remark 4.1. The argument in the proof of Lemma 4.3 is similar to that in the proof of [66, Theo-

rem 6.1(ii)], while the key difference is the object of interest. We want control over ‖∇yµ‖L∞(Ω)

and J [yµ], while [66] needs the gradient of the recovery sequence to be in an L∞-neighborhood

of SO(3).

Remark 4.2. We stress that the significance of (4.27) is to provide a rate of convergence in H1

relative to the blow up of the parameter µ that controls the W 2,∞ norm, for which it is crucial

that y ∈ W 1,∞(Ω;R3). If y ∈ H2(Ω;R3) but not in W 1,∞(Ω;R3), then Sobolev embedding

combined with (4.24) gives the reduced rate for all 2 < p <∞

‖yµ − y‖H1(Ω;R3) ≤ ‖yµ − y‖W 1,p(Ω;R3)

∣∣Sµ∣∣ p−2
2p ≤ C‖y‖H2(Ω;R3)µ

−1+2/p.

The next few results deal with numerical preliminaries that are important for energy scaling.

The next result says that interpolating an H2 function gives a discrete function that has a uniform

discrete H2-bound. We present the proof for completeness but the argument can be found in the

proof of [31, Proposition 5.3].

Lemma 4.4 (Lagrange interpolation stability in H2). Let y ∈ H2(Ω;R3). Then the Lagrange

interpolant Ihy ∈ Vh satisfies |Ihy|H2
h(Ω) . ‖y‖H2(Ω;R3).

Proof. Consider an arbitrary edge e ∈ Eh, and its neighboring elements T1, T2 ∈ Th. Since

y ∈ H2(Ω;R3), the jump of ∇y across e is zero. Then, by a trace inequality, interpolation
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estimate and the fact that Ihy is linear on each element,

‖[∇Ihy]‖L2(e) = ‖[∇Ihy −∇y]‖L2(e)

≤ h−1/2‖∇Ihy −∇y‖L2(T1∪T2) + h1/2‖D2Ihy −D2y‖L2(T1∪T2)

. h1/2‖D2y‖L2(T1∪T2).

Dividing both sides by h1/2, squaring and summing over edges gives the assertion in view of

(4.16).

We next establish other approximation properties of the Lagrange interpolant.

Lemma 4.5 (discrete approximation of H2-maps). Let y ∈ H2(Ω;R3) satisfy y ∈ W 1,∞(Ω;R3)

and J [y] ≥ c a.e. in Ω. For all h > 0 sufficiently small, there exists yh ∈ Vh such that

‖yh‖W 1,∞(Ω;R3) . 1 + ‖y‖W 1,∞(Ω;R3) and the following estimates are valid

J [yh] ≥
c

4
, (4.30)

‖yh − y‖H1(Ω;R3) . h
(
1 + ‖y‖W 1,∞(Ω;R3) + |y|H2(Ω;R3)

)
, (4.31)

|yh|H2
h(Ω) . 1 + ‖y‖H2(Ω;R3). (4.32)

Proof. We first invoke Lemma 4.3 (truncation of H2-functions with Lipschitz control) with µh =

δh−1 to regularize y with a yµh; the constant δ > 0 will be determined soon. We choose yh =

Ihy
µh to be the discrete approximation of y. Since |yµh|W 2,∞(Ω) ≤ Cµh, in light of (4.23), a

standard error estimate for the Lagrange interpolant gives the W 1,∞-error estimate

‖∇yh −∇yµh‖L∞(Ω) . h|yµh|W 2,∞(Ω) . hµh = δ.
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This, together with (4.25), implies uniform W 1,∞-bounds for yh,y
µh , which in turn yield the

following error estimate for J [yh]:

‖J [yh]− J [yµh ]‖L∞(Ω) ≤ Cδ.

We choose δ sufficiently small, so that Cδ < c
4
. Hence, for this choice of δ, we have

J [yh] ≥ J [yµh ]− ‖J [yh]− J [yµh ]‖L∞(Ω) ≥ J [yµh ]− Cδ ≥ c

2
− c

4
=
c

4
,

provided h sufficiently small, and correspondingly µh = δh−1 is sufficiently large for (4.26) to

be valid. This proves the first assertion (4.30).

For the second assertion (4.31), we apply the triangle inequality

‖y − yh‖H1(Ω;R3) ≤ ‖y − yµh‖H1(Ω;R3) + ‖yµh − yh‖H1(Ω;R3),

and observe that (4.27) from Lemma 4.3 implies

‖y − yµh‖H1(Ω;R3) ≤ Cµ−1
h

(
1 + ‖y‖W 1,∞(Ω;R3)

)
.

For the remaining term we utilize a standard error estimate for the Lagrange interpolant, in con-

junction with (4.24) from Lemma 4.3, to arrive at

‖yµh − Ihyµh‖H1(Ω;R3) . h|yµh|H2(Ω;R3) . h‖y‖H2(Ω;R3).
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Combining the last two bounds with µ−1
h = hδ−1 . h yields the desired estimate

‖y − yh‖H1(Ω;R3) . h
(
1 + ‖y‖W 1,∞(Ω;R3) + ‖y‖H2(Ω;R3)

)

because δ has already been fixed. Finally, the uniform H2
h-bound (4.32) follows from Lemma 4.4

(Lagrange interpolation stability in H2) and the H2-bound (4.24) on yµ in Lemma 4.3 .

4.3.1.2 Preliminaries for compactness

The first result is to show that the stretching energy is coercive in H1, which will be impor-

tant for some weak compactness results in the proof of Theorem 4.2

Proposition 4.2 (coercivity). There exists C(s, s0) > 0, c ≥ 0 such that the stretching energy

Estr[y] defined in (4.1) satisfies

C(s, s0)
(
‖∇y‖2

L2(Ω;R3×2) + ‖J [y]−1/2‖2
L2(Ω)

)
− 3|Ω| ≤ Estr[y] ∀y ∈ H1(Ω;R3). (4.33)

Proof. Recall the expression (4.38),

Estr[y] =

∫
Ω

(∣∣∣L−1/2
n [∇y,b]L1/2

m

∣∣∣2 − 3

)
dx.

where n = ∇y m
|∇y m| and b = ν√

J [y]
.

We now invoke an elementary result for any matrix A ∈ Rd×d and an SPD matrix B ∈

Rd×d, which is |AB|2 ≥ λmin(B)2|A|2 and |BA|2 ≥ λmin(B)2|A|2 where λmin(B) = min1≤j≤d{λj(B)} >
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0. To see this, we decompose B in dyadic form

B =
d∑
i=1

λibi ⊗ bi,

where {bi}di=1 is an orthonormal set of eigenvectors of B in Rd. Then,

AB =
d∑
i=1

λ)iAbi ⊗ bi.

Since the dyads bi ⊗ bi are orthogonal in the Frobenius inner product, we can bound

|AB|2 =
d∑
i=1

λ2
i |Abi ⊗ bi|2

≤ λmin(B)2

d∑
i=1

|Abi ⊗ bi|2

= λmin(B)2

∣∣∣∣∣∣
d∑
i=1

Abi ⊗ bi

∣∣∣∣∣∣
2

= λmin(B)2 |AId|2 = λmin(B)2 |A|2 .

The same argument works for |BA|2.

These properties allow us write the lower bound

Estr[y] ≥
∫

Ω

λmin(Lm)

λmax(Ln)

∣∣[∇y,b]
∣∣2 − 3 dx.

In view of the forms of Lm,Ln in (3.2) and (3.3), their eigenvalues are explicit, namey (s0 +

1)2/3, (s0 + 1)1/3 and (s+ 1)2/3, (s+ 1)2/3 respectively. Recall the assumptions on s, s0 in (4.7),
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we have that there is a constant C(s, s0) > 0 such that λmin(Lm)
λmax(Ln)

≥ C(s, s0) for a.e. x ∈ Ω. Thus,

Estr[y] ≥ C(s, s0)

∫
Ω

∣∣[∇y,b]
∣∣2 − 3 dx.

Using the fact that |b|2 = J [y]−1 completes the proof.

We show now how to extractH1-compactness for sequences of continuous piecewise linear

functions which are not naturally in H2(Ω). We proceed by discrete regularization via Clement

interpolation as in [31].

Suppose first that we have a piecewise constant function v over Th, namely v|T ∈ P0 for all

T ∈ Th. Given a generic node z ∈ Nh, with corresponding star (or patch) ωz, let Vh(ωz) be the

space of continuous piecewise linear functions over ωz. We define the local L2-projection over

Vh(ωz) as follows:

vz ∈ Vh(ωz) :

∫
ωz

(vz − v)vh = 0 ∀vh ∈ Vh(ωz); (4.34)

note that vz = v if v ∈ Vh(ωz). We define the Clement interpolant Ihv ∈ Vh to be

Ihv :=
∑
z∈Nh

vz(z)φz, (4.35)

where {φz}z∈Nh denotes the nodal basis of Vh associated with z ∈ Nh.

Lemma 4.6 (regularization of piecewise constant functions). If v is a piecewise constant function

over Th, then its piecewise linear quasi-interpolant Ihv ∈ C0(Ω) defined in (4.34) and (4.35)
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satisfies the error estimates

‖v − Ihv‖L2(Ω) + h‖∇Ihv‖L2(Ω) . h

√∑
e∈Eh

1

h

∫
e

[v]2. (4.36)

Proof. This is a corollary of [31, Lemma 2.1].

This lemma is instrumental to derive compactness properties from sequences of functions

with uniform H2
h-bounds. This is what we establish next. The proof follows the proof of [31,

Proposition 5.1], but we sketch it for completeness.

Lemma 4.7 (compactness properties). Let yh ∈ Vh satisfy the uniform bounds ‖∇yh‖L2(Ω;R3×2) .

1 and |yh|H2
h(Ω) . 1. Then there exists y ∈ H2(Ω;R3) such that a subsequence (not relabeled)

of yh converges strongly

(yh − yh)→ y

in H1(Ω;R3) as h→ 0, where yh := |Ω|−1
∫

Ω
yh is the mean value of yh.

Proof. Let yh be a sequence that satisfies the uniform bound ‖∇yh‖L2(Ω;R3×2) . 1. Poincaré

inequality further implies the uniform bound ‖yh − yh‖H1(Ω;;R3) . 1. Therefore, there is y ∈

H1(Ω;R3) and a subsequence (not relabeled) of (yh − yh) such that (yh − yh)→ y strongly in

L2(Ω;R3) and weakly in H1(Ω;R3).

To extract additional regularity of y, we consider wh = Ih(∇yh) ∈ [Vh]
3×2 with Ih

defined in (4.35). In view of the uniform bound |yh|H2
h(Ω) . 1, (4.36) of Lemma 4.6 implies that

wh is uniformly bounded in H1(Ω;R3×2) and wh −∇yh → 0 strongly in L2(Ω;R3×2), whence

wh → ∇y weakly in L2(Ω;R3×2). The uniform H1-bound of wh means that a subsequence

(not relabeled) of wh → ∇y strongly in L2(Ω;R3×2) and ∇y ∈ H1(Ω;R3×2). Consequently, a
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subsequence (not relabeled) of∇yh → ∇y strongly in L2(Ω;R3×2) and completes the proof.

4.3.2 Energy scaling and compactness

Our next result is a crucial discrete energy scaling estimate. It states that if there is an H2-

deformation y that satisfies the target metric (i.e. an H2-isometric immersion), then the discrete

energy Eh[yh] associated with the yh of Lemma 4.5 (discrete approximation of H2 maps) scales

like Eh[yh] . h2. In the language of Γ-convergence, this is a recovery sequence result.

Proposition 4.3 (recovery sequence). If y ∈ H2(Ω;R3) ∩ W 1,∞(Ω;R3) is the deformation of

Assumption 4.1, then for any h sufficiently small there exists yh ∈ Vh such that

Eh[yh] . h2
(
1 + ‖y‖W 1,∞(Ω;R3) + |y|H2(Ω;R3)

)
. (4.37)

Proof. By Assumption 4.1, we know that y ∈ H2(Ω;R3) satisfies ∇yT∇y = g, whence

Estr[y] = 0 by Proposition 3.3 (target metric), as well as J [y] = λ ≥ cs,s0 > 0 by Proposi-

tion 4.2 (coercivity) . By Lemma 4.5, for h sufficiently small, there exists yh ∈ Vh such that

J [yh(x)] ≥ cs,s0
4

and |yh|H2
h
. 1 + ‖y‖H2(Ω;R3). The latter implies that Rh[yh] = crh

2|yh|2H2
h
.

h2(1 + ‖y‖H2(Ω;R3)) in (4.14). It thus remains to show that
∫

Ω
Wstr(x,∇yh)dx . h2, for which

we resort to (4.38)

Wstr(x,∇yh) =
∣∣∣L−1/2

nh
[∇yh,bh]L

1/2
m

∣∣∣2 − 3 (4.38)

where the kinematic constraint reads nh = (∇yh)m
|(∇yh)m| . We split the proof into three steps.
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Step 1. Error estimate of scaled normal vectors. We recall that these vectors are

b =
∂1y × ∂2y

J [y]
, bh =

∂1yh × ∂2yh
J [yh]

,

with J [y] = |∂1y × ∂2y|2 and J [yh] = |∂1yh × ∂2yh|2. We claim that |b− bh| . |∇y −∇yh|

pointwise for which we write

∣∣b− bh
∣∣ ≤ ∣∣∂1y × ∂2y

∣∣ ∣∣∣∣ 1

J [y]
− 1

J [yh]

∣∣∣∣+
1

J [yh]

∣∣∂1y × ∂2y − ∂1yh × ∂2yh
∣∣.

Since J [yh] ≥
cs,s0

4
, according to (4.30), the Lipschitz bound on y yields

∣∣b− bh
∣∣ . ∣∣∣∣ 1

J [y]
− 1

J [yh]

∣∣∣∣+
∣∣∂1y × ∂2y − ∂1yh × ∂2yh

∣∣.
We now add and subtract ∂1y × ∂2yh, and apply the triangle inequality along with the bound

‖yh‖W 1,∞(Ω;R3) . 1 + ‖y‖W 1,∞(Ω;R3) from Lemma 4.5, to further estimate

∣∣b− bh
∣∣ . ∣∣∣∣ 1

J [y]
− 1

J [yh]

∣∣∣∣+
∣∣∇y −∇yh

∣∣.
Since x 7→ 1

x
is Lipschitz on [

cs,s0
4
,∞), we deduce

∣∣∣∣ 1

J [y]
− 1

J [yh]

∣∣∣∣ . ∣∣J [y]− J [yh]
∣∣.

Likewise, on bounded subsets of R3×2, the map F 7→ J(F) is Lipschitz. Hence, we again use the
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uniform W 1,∞-bound of yh from Lemma 4.5 to obtain

∣∣J [y]− J [yh]
∣∣ . ∣∣∇y −∇yh

∣∣.
Combining these bounds gives the desired pointwise error estimate for the scaled normals

|b− bh| . |∇y −∇yh|.

Step 2. Estimate on the kinematic constraint. Since J [yh] = det I[yh] ≥ c
4
, according to

(4.30), we deduce that I[yh] is uniformly positive definite and

∣∣∇yhm
∣∣2 = mT∇yTh∇yhm = mT I[yh]m ≥ c′

for a constant c′ > 0 depending on c; a similar estimate is valid for
∣∣∇ym

∣∣. Since yh ∈

W 1,∞(Ω;R3) is uniformly bounded, in view of Lemma 4.5, and the map x 7→ x/|x| is Lips-

chitz on bounded subsets of {x ∈ R2 : |x| ≥
√
c′}, we see that

|n− nh| =
∣∣∣∣ ∇ym

|∇ym|
− ∇yhm

|∇yhm|

∣∣∣∣ . |∇ym−∇yhm| ≤ |∇y −∇yh|.

Step 3. Energy Scaling. We now rewrite the neo-Hookean relation (4.38) of Wstr(x,∇yh)

as follows after adding and subtracting R := L
−1/2
n [∇y, b]L

1/2
m ∈ SO(3):

Wstr(x,∇yh) =
∣∣R + Ah

∣∣2 − 3, Ah := L−1/2
nh

[∇yh, bh]L
1/2
m − L−1/2

n [∇y, b]L1/2
m .
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The fact that R ∈ SO(3) is a consequence of Remark 3.2 (special rotations) provided I[y] =

∇yT∇y = g, or equivalently Wstr[y] = 0. We exploit frame indifference to multiply by RT

without changing the energy density

Wstr(x,∇yh) = |RTR + RTAh|2 − 3 = |I3 + Ah|2 − 3.

Note that det
(
I3 + RTAh

)
= det(L

−1/2
nh [∇yh, bh]L

1/2
m ) = 1, because (3.8), (3.9) and Propo-

sition 3.2 (minimal energy extension) imply det Lnh = det Lm = det[∇yh, bh] = 1. We then

apply Lemma 4.1 (scaling of neo-Hookean formula near identity) to obtain

∫
Ω

Wstr(x,∇yh)dx =

∫
Ω

|I + RTAh|2 − 3 dx ≤ 3

∫
Ω

|RTAh|2 = 3

∫
Ω

|Ah|2.

It thus suffices to show
∫

Ω
|Ah|2dx . h2. Adding and subtracting L

−1/2
nh [∇y,b]L

1/2
m , and using

the triangle and Young’s inequalities, yields

|Ah|2 .
∣∣L−1/2

nh
([∇yh, bh]− [∇y, b])L1/2

m

∣∣2 +
∣∣(L−1/2

n − L−1/2
nh

)[∇y, b]L1/2
m

∣∣2
.
∣∣[∇yh, bh]− [∇y, b]

∣∣2 +
∣∣L−1/2

n − L−1/2
nh

∣∣2 . ∣∣∇y −∇yh
∣∣2,

where the last inequality follows from the preceding steps. In fact, Step 1 implies

∣∣[∇yh, bh]− [∇y, b]
∣∣ . ∣∣∇yh −∇y

∣∣,
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while Step 2, together with (3.10) and the assumptions (4.7) and s ∈ L∞(Ω) on s gives

∣∣L−1/2
n − L−1/2

nh

∣∣ . ∣∣n− nh
∣∣ . ∣∣∇y −∇yh

∣∣.
Finally, applying (4.31) of Lemma 4.5 (discrete approximation of H2-maps) yields

∫
Ω

|Ah|2dx .
∫

Ω

|∇y −∇yh|2dx = ‖y − yh‖2
H1 . h2

(
1 + ‖y‖W 1,∞(Ω;R3) + |y|H2(Ω;R3)

)
,

(4.39)

which is the desired estimate.

Remark 4.3 (regularity of m). It is worth realizing that the proof of Proposition 4.3 only re-

quires regularity on y, but not of m beyond L∞(Ω). We stress, however, that y ∈ H2(Ω;R3) ∩

W 1,∞(Ω;R3) implies g = ∇yT∇y ∈ H1(Ω;R2×2) ∩ L∞(Ω;R2×2) with g given in (3.42) in

terms of m. This regularity is borderline and does not guarantee continuity of g (or m) in Ω.

The next Proposition establishes compactness: if a discrete yh satisfies an appropriate en-

ergy scaling, then a subsequence converges to a minimizer of E.

Proposition 4.4 (compactness). Let yh ∈ Vh satisfy Eh[yh] ≤ Ch2 for a positive constant C,

and let yh := |Ω|−1
∫

Ω
yh. Then there is a subsequence (not relabeled) of yh−yh that converges

in H1(Ω;R3) strongly to a limit y∗ ∈ H2(Ω;R3) and E[y∗] = 0.

Proof. Proposition 4.2 (coercivity) implies that ‖∇yh‖2
L2(Ω;R3×2) . 1, whereas

h2|yh|2H2
h
. crh

2|yh|2H2
h

+

∫
Ω

Wstr(x,∇yh) = Eh[yh] . h2

yields |yh|2H2
h
. 1. Therefore, Lemma 4.7 (compactness properties) guarantees the existence of
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y∗ ∈ H2(Ω;R3) such that a subsequence (not relabeled) (yh − yh) → y∗ converges strongly in

H1(Ω;R3). It remains to show that E[y∗] = 0.

We can choose a further subsequence yh such that∇yh → ∇y a.e. in Ω, whence

J [yh]→ J [y∗], ∇yh m→ ∇y∗ m, a.e. in Ω.

Our goal is to show that
∫

Ω
Wstr(x,∇yh)→

∫
Ω
Wstr(x,∇y∗), for which we recall that

Wstr(x,∇yh) + 3 =
∣∣∣L−1/2

nh
[∇yh,bh]L

1/2
m

∣∣∣2 ≥ C(s, s0)

J [yh]
,

where C(s, s0) is the constant from Proposition 4.2 (coercivity). The above inequality is a by-

product of the proof of Proposition 4.2 (coercivity). We first show that J [yh] does not vanish

and the singular term 1
J [yh]

is well defined. If Bh,η := {x ∈ Ω : J [yh] <
cs,s0
η
}, then we define

c̃s,s0 = C(s,s0)
cs,s0

and obtain

Wstr(x,∇yh) ≥
C(s, s0)

J [yh]
− 3 ≥ ηc̃s,s0 − 3 ∀x ∈ Bh,η,

where η > 3c̃−1
s,s0

is to be determined. This implies that

|Bh,η| ≤
1

ηc̃s,s0 − 3

∫
Bh,η

Wstr(x,∇yh) ≤
Eh[yh]

ηc̃s,s0 − 3
≤ Ch2

ηc̃s,s0 − 3
.

Since ∇yh is piecewise constant, Bh,η is a collection of Nη elements of the triangulation Th. By
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the shape regularity of {Th}h, there is γ > 0 such that |Bh,η| ≥ Nηγh
2. Hence,

Nηγh
2 ≤ Ch2

ηc̃s,s0 − 3
.

Taking η > 0 sufficiently large implies that Nη = 0 and J [yh] ≥
cs,s0
η

a.e. in Ω, whence we infer

that J [y∗] ≥ cs,s0
η

a.e. in Ω. Likewise this implies that |∇y∗m|2 = Cm[y∗] > 0 a.e. because

cs,s0
η
≤ J [y∗] ≤ Cm[y∗]Cm⊥ [y∗] according to (4.5). Combined with continuity of x 7→ 1/x for

positive x, we have 1
J [yh]

→ 1
J [y∗]

and ∇yhm
|∇yhm|

→ ∇y∗m
|∇y∗m| pointwise a.e. in Ω. Thus, both

L−1/2
nh

[∇yh,bh]L
1/2
m → L

−1/2
n∗ [∇y∗,b∗]L1/2

m ,

and

Wstr(x,∇yh)→ Wstr(x,∇y∗)

pointwise a.e. in Ω.

Since Wstr(x,∇yh) ≥ 0, by virtue of Corollary 3.3 (nondegeneray of stretching energy),

we apply Fatou’s Lemma to deduce the desired result

E[y∗] =

∫
Ω

Wstr(x,∇y∗)dx ≤ lim inf
h→0

∫
Ω

Wstr(x,∇yh) ≤ lim
h→0

Eh[yh] = 0.

This concludes the proof.

We are now ready to prove the convergence of discrete minimizers.

Proof of Theorem 4.1. The proof follows readily from Propositions 4.3 (recovery sequence), 4.4

(compactness), and 3.3 (target metric).
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4.4 Piecewise H2-deformations: nonisometric origami

This section is dedicated to the analysis of piecewise H2-deformations rather than globally

H2-deformations. The inspiration for this extension comes from [18] and [20]. For physical

applications, the motivation comes from nonisometric origami [100, 101, 102].

Let Ω = ∪ni=1Ωi be a disjoint partition of Ω, where each Ωi is polygonal. We denote by Γ

the boundaries of all Ωi’s, which is the set of creases or folding set. We then define the space of

piecewise H2 functions to be

VΓ = {y ∈ W 1,∞(Ω;R3) : y|Ωi ∈ H2(Ωi;R3) for all i = 1, . . . , n}. (4.40)

We shall approximate minimizers y∗ ∈ VΓ of (4.1) with folding across Γ. To this end, we make

the geometric assumption

Γ ⊂
⋃
e∈Eh

e, (4.41)

i.e. the triangulation is fitted to Γ. We denote by E ih the interior skeleton to each Ωi (so that edges

on Γ are excluded) and define the new discrete energy with folds as

Eh,Γ[yh] :=

∫
Ω

Wh(x,∇yh)dx +Rh,Γ[yh], (4.42)

where the regularization term is given by Rh,Γ[yh] := crh
2|yh|2H2

h(Ω\Γ)
and

|yh|2H2
h(Ω\Γ)

:=
n∑
i=1

∑
e∈Eih

1

h

∫
e

∣∣[∇yh]
∣∣2. (4.43)

166



We point out that (4.43) does not include jumps across Γ, which in turn allows for folds across Γ

without penalty on the energy. This modeling feature is responsible for the formation of noniso-

metric origami within this setting.

We next adjust the regularity Assumption 4.1 to the new framework.

Assumption 4.2. There exists a y ∈ W 1,∞(Ω;R3) such that I[y] = g a.e. in Ω and y|Ωi ∈

H2(Ωi;R3) ∩ C1(Ωi;R3) for all i = 1, . . . , n.

We relax theH2-regularity but observe that y|Ωi ∈ C1(Ωi;R3) implies that g|Ωi ∈ C(Ωi;R2×2)

is slightly stronger than the mere L∞ ∩H1-regularity of g as discussed in Remark 4.3. We point

out that Assumption 4.2 might not be always satisfied. It is possible that such a piecewise H2-

isometric immersion does not exist if one of Ωi has reentrant corners.

We now state the new recovery sequence result.

Proposition 4.5 (recovery sequence). If y ∈ VΓ is the deformation of Assumption 4.2, then for h

sufficiently small the Lagrange interpolant yh = Ihy ∈ Vh satisfies

Eh,Γ[yh] . h2

1 +
n∑
i=1

‖y‖C1(Ωi;R3) + ‖y‖H2(Ωi;R3)

 .

Proof. In view of (4.41) and y|Ωi ∈ H2(Ωi;R3) from Assumption 4.2, Lemma 4.4 (Lagrange

interpolation stability in H2) applied to each Ωi gives |yh|H2
h(Ωi) . ‖y‖H2(Ωi;R3). Moreover, we

also have the standard error estimate ‖y − yh‖H1(Ωi;R3) . h|y|H2(Ωi;R3).

To derive the energy scaling, we first show that J [yh] ≥ c/2 a.e. for sufficiently small h

provided J [y] = det g ≥ c > 0. Since y ∈ C1(Ωi;R3), the function∇y is uniformly continuous

in Ωi with modulus of continuity σ(t) (i.e. σ(t)→ 0 as t→ 0). Therefore, ‖∇y−∇yh‖L∞(Ω) .
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σ(h) and, for h sufficiently small, we obtain

J [yh] ≥ J [y]−
∣∣J [yh]− J [y]

∣∣ ≥ c− Cσ(h) ≥ c

2
,

because J [y] is Lipschitz continuous in W 1,∞(Ω;R3) on bounded balls. Applying the arguments

in Proposition 4.3 (recovery sequence), we deduce

∫
Ωi

Wstr(x,∇yh)dx + crh
2|yh|2H2

h(Ωi)
. h2

on each Ωi. Summing over Ωi yields the desired result.

The compactness result in the previous section carries over to the case with jumps, but with

a small modification. The analog to Theorem 4.1 (convergence of discrete minimizers) reads as

follows.

Theorem 4.2 (convergence of discrete minimizers with creases). Let Assumption 4.2 hold and

let yh be a minimizer of Eh,Γ with yh = |Ω|−1
∫

Ω
y. Then, as h→ 0, we have that

Eh,Γ[yh] . h2 (4.44)

and yh− yh has a strongly convergent subsequence (not relabeled) yh− yh → y∗ in H1(Ω;R3)

to a function y∗ ∈ VΓ that satisfies E[y∗] = 0 and I(y∗) = g a.e. in Ω.

Proof. We first apply Proposition 4.5 (recovery sequence) to deduce thatEh,Γ[yh] ≤ Eh,Γ[Ihy] .

h2 because yh is a minimizer of Eh,Γ. Moreover, since E[yh] ≤ EΓ,h[yh] . h2 by definition

(4.42), Proposition 4.2 (coercivity) implies the uniform bound ‖∇yh‖L2(Ω) . 1 and, hence, the
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weak convergence of a subsequence (not relabeled) of yh − yh to a function y∗ ∈ H1(Ω;R3).

We need to prove further regularity of y∗.

Proceeding now as in Lemma 4.7 (compactness properties) and Proposition 4.4 (com-

pactness) over each subdomain Ωi, we can show that up to a subsequence ∇yh|Ωi → ∇y∗|Ωi

converges strongly in L2(Ωi;R3×2) and that ∇y∗|Ωi ∈ H1(Ωi;R3×2) and I[y∗|Ωi ] = g a.e.

in Ωi for each i = 1, . . . , n. In view of Proposition 3.3 (target metric) we also obtain that

Wstr(x,∇y∗|Ωi) = 0 for each i = 1, . . . , n, whence E[y∗] = 0.

It remains to show that y∗ ∈ W 1,∞(Ω;R3) is globally Lipschitz. We note that y∗|Ωi ∈

W 1,∞(Ωi;R3) for each i = 1, . . . , n because I[y∗|Ωi ] = g ∈ L∞(Ωi;R2×2), which in turn implies

that the trace of y∗|Ωi on ∂Ωi is continuous. Since y∗ ∈ H1(Ω;R3), we infer that the jumps

[y∗]|Γ = 0 must vanish, thereby showing that y∗ ∈ C(Ω;R3) is uniformly continuous in Ω. This,

in addition to being piecewise Lipschitz, proves that y∗ is globally Lipschitz, whence y∗ ∈ VΓ

as asserted.

4.5 Iterative solver

We design a nonlinear discrete gradient flow to find a solution to (4.19) in this subsection.

Due to the stretching energy being non-quadratic and non-convex, we end up with a nonlinear

non-convex discrete problem to solve.

4.5.1 Nonlinear gradient flow.

Implicit gradient flows are robust methods to find stationary points of energy functionals E

regardless of their convexity, and have the advantage of built-in energy stability; they belong to
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the class of energy descent methods. Consider the auxiliary evolution equation ∂tA[y]+δE[y] =

0, where A is a symmetric elliptic operator, δE[y] stands for the first variation of E, and t is a

pseudo-time. The backward Euler discretization reads: given yn ∈ H solve for yn+1 ∈ H

1

τ

(
Ayn+1 − Ayn

)
+ δE[yn+1] = 0,

where τ is the time-step discretization parameter and H is a suitable Hilbert (or even metric)

space. The weak formulation of this semi-discrete equation is equivalent to minimizing the aug-

mented functional

Ln[y] :=
1

2τ
‖y − yn‖2

A + E[y] (4.45)

where ‖ · ‖A is the norm associated with the operator A : H → H∗, i.e. ‖y‖2
A := 〈Ay,y〉. This

can be reinterpreted as finding a minimizer of E constrained to be closed to yn; so the first term

in (4.45) penalizes the deviation of y from yn in the A-norm.

Since the stretching energy Estr from (4.1) and (4.2) is formulated in H = H1(Ω;R3),

we choose A = I − ∆ and the corresponding norm to be the H1(Ω)-norm. This choice has

the property of making Ln convex in H1(Ω;R3) provided yn is sufficiently smooth and τ is

sufficiently small. With this in mind, we devise a discrete counterpart of (4.45) to find stationary

points of Eh in (4.14) under some additional assumptions on the current iterate ynh ∈ Vh to be

discussed below. We thus seek to solve

yn+1
h ∈ argminyh∈VhL

n
h[yh] (4.46)
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where

Lnh[yh] :=
1

2τ
‖yh − ynh‖2

H1(Ω) + Eh[yh]. (4.47)

The corresponding Euler-Lagrange equation results from computing the first order variation of

Lnh[yh] in the direction vh

δLnh[yh](vh) =
1

τ
(yh,vh)H1(Ω) + δEh[yh](vh)− F n

h (vh) = 0 ∀vh ∈ Vh, (4.48)

where F n
h ∈ V∗h is defined as

F n
h (vh) :=

1

τ
(ynh,vh)H1(Ω),

and

δEh[yh](vh) = δEstr[yh](vh) + δRh[yh](vh).

A direct but tedious computation shown in Appendix A gives an explicit expression for δEstr[yh](vh),

which turns out to depend nonlinearly on yh. Therefore, (4.48) is a nonlinear discrete equation

for yh ∈ Vh.

We now state the energy stability of (4.47) provided (4.46) is solved exactly. This is a

natural property for implicit gradient flows.

Theorem 4.3 (energy stability). Given ynh ∈ Vh for any n ≥ 0, suppose yn+1
h ∈ Vh minimizes

Lnh[yh] defined in (4.47). Then Eh[yn+1
h ] ≤ Eh[y

n
h], and the inequality is strict if yn+1

h 6= ynh .
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Moreover, for any N ≥ 1,

Eh[y
N
h ] +

1

2τ

N−1∑
n=0

‖yn+1
h − ynh‖2

H1(Ω) ≤ Eh[y
0
h]. (4.49)

Proof. Since yn+1
h minimizes Lnh, we have Lnh[yn+1

h ] ≤ Lnh[ynh], whence

1

2τ
‖yn+1

h − ynh‖2
H1(Ω) + Eh[y

n+1
h ] = Lnh[yn+1

h ] ≤ Lnh[yhh] = Eh[y
n
h].

This proves monotonicity of Eh[ynh] and, adding over n = 1 : N − 1, yields (4.49).

A corollary of this energy stability result is that there are subsequences of the iteration

defined by (4.46) converge to critical points of Eh. This is also a standard property for implicit

gradient flows.

Corollary 4.1 (critical points of Eh). Let y0
h ∈ Vh satisfy Eh[y0

h] < ∞. Consider the sequence

{ynh}∞n=0 defined recursively by (4.46). There is a constant 0 ≤ C <∞ such that ‖ynh‖H1(Ω) ≤ C

for all n ≥ 0.

Additionally, let y∗h ∈ Vh be a cluster point of {ynh}∞n=0,namely there is a subsequence of

{ynh}∞n=0 which converges to y∗h. Then y∗h is a critical point of Eh in the sense that

δEh[y
∗
h](vh) = 0, ∀vh ∈ Vh. (4.50)

Proof. We break the proof into two steps.

Step 1. Uniform H1 bound. Let y0
h ∈ Vh satisfy Eh[y0

h] < ∞. Consider the sequence
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{ynh}∞n=0 defined recursively by (4.46). For each N ≥ 1, Theorem 4.3 (energy stability) tells us

Eh[y
N
h ] +

1

2τ

N−1∑
n=0

‖yn+1
h − ynh‖2

H1(Ω) ≤ Eh[y
0
h]. (4.51)

By Proposition 4.2 (coercivity), there is a constant C(s, s0) > 0 such that

C(s, s0)
(
‖yh‖2

H1(Ω) + ‖J [yh]
−1/2‖2

L2(Ω)

)
− 3|Ω| ≤ Eh[yh] (4.52)

For N ≥ 1, (4.51) combined with (4.52) yields

‖yh‖2
H1(Ω) ≤

Eh[y
0
h] + 3|Ω|

C(s, s0)
<∞, (4.53)

which proves the uniformH1 bound. We now have that {ynh}∞n=0 is a uniformly bounded sequence

in the finite dimensional space Vh equipped with the H1 norm. Hence, the sequence has cluster

points in Vh.

Step 2. Cluster points are critical points. Suppose y∗h ∈ Vh is a cluster point. There is

a subsequence (not relabled) {ynh}∞n=0 such that ynh → y∗h in H1(Ω;R3). Since Vh has finite

dimensions, we also have that ynh → y∗h in W 1,∞(Ω).

Let vh ∈ Vh. To prove (4.50), it is sufficient to prove that limn→∞ δEh[y
n
h](vh) =

δEh[y
∗
h](vh). To see this we recall that ynh solves the Euler Lagrange equation (4.48). Thus,

1

τ
(ynh − yn−1

h ,vh)H1(Ω) + δEh[y
n
h](vh) = 0. (4.54)

The energy decrease property in (4.51) and the nonnegativity of Eh from Corollary 3.3 (nonde-
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generacy) implies that

1

2τ

∞∑
n=0

‖ynh − yn−1
h ‖2

H1(Ω) ≤ Eh[y
0
h] <∞,

and consequently, limn→∞ ‖ynh − yn−1
h ‖H1(Ω) = 0. Passing the limit of (4.54) as n → ∞ brings

us to

lim
n→∞

δEh[y
n
h](vh) = 0.

Hence, in order to prove (4.50), it suffices to show limn→∞ δEh[y
n
h](vh) = δEh[y

∗
h](vh). Recall

from (4.53), there is a constant C <∞ such that the sequence ynh satisfies

‖ynh‖H1(Ω;R3) + ‖J [ynh]−1‖L1(Ω) ≤ C.

Note that ynh ∈ Vh and J [ynh]−1 is piecewise constant. We may apply global inverse inequalities

‖ynh‖W 1,∞(Ω;R3) . h−1‖ynh‖H1(Ω;R3) and ‖J [ynh]−1‖L∞(Ω) . h−2‖J [ynh]−1‖L1(Ω)

to obtain the bound

‖ynh‖W 1,∞(Ω;R3) + ‖J [ynh]−1‖L∞(Ω) ≤ Ch−2 <∞, (4.55)

for some C <∞ that is independent of h. Passing a limit n→∞ also shows us that y∗h satisfies

the upper bound (4.55). We point to Appendix A for a lengthy derivation of δEh[ynh](vh), but

an important feature is that the map yh 7→ δEh[yh](vh) is continuous at y∗h if y∗h satisfies (4.55).
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Therefore, limn→∞ δEh[y
n
h](vh) = δEh[y

∗
h](vh), which completes the proof of (4.50).

It is worth realizing that a critical point of Eh may not be a global discrete minimizer of

Eh. Finally, given a tolerance tol1 > 0, we stop the nonlinear gradient flow when

1

τ

∣∣Eh[yNh ]− Eh[yN−1
h ]

∣∣ < tol1

is satisfied for some N > 0. The function yNh ∈ Vh is the desired output. We next discuss how

we solve the nonlinear equation (4.48).

4.5.2 Newton sub-iteration

We solve each step n of the iterative scheme (4.48) by a Newton-type sub-iteration. In fact,

we let yn,0h := ynh and assume yn,kh ∈ Vh is given. We then solve for the increment δyn,kh ∈ Vh

by

δ2Lnh[yn,kh ](δyn,kh ,vh) = −δLnh[yn,kh ](vh) ∀vh ∈ Vh, (4.56)

and update yn,k+1
h := yn,kh + δyn,kh . Equation (4.56) is linear in the unknown δyn,kh because yn,kk

is known. Moreover, given a tolerance tol2, we stop (4.56) when

∣∣δLnh[yn,Mh ](δyn,Mh )
∣∣1/2 ≤ tol2,

for some integer M > 0 and set yn+1
h := yn,Mh . The expression of δ2Lnh[yh](vh,wh) for

yh,vh,wh ∈ Vh is tedious to compute but is given in Appendix A.

We next assess the performance of the Newton sub-iterations for solving (4.48). We base
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our comments below on our numerical experiments of Section 5. We present a thorough discus-

sion of well-posedness and convergence for the Newton sub-iterations in this section, provided

y0
h ∈ Vh is close to the discrete solution. Below are some reasons why we expect the Newton

sub-iteration to perform well.

• Initialization. When yih ∈ Vh is given in the gradient flow outer iteration, it is natural to

choose yi,0h := yih as initial guess for the Newton’s inner iterations that is designed to compute

yi+1
h . If yi,∗h is a local minimizer of (4.47) and Eh[y0

h] ≤ α, then (4.49) implies

1

2τ
‖yi,∗h − yih‖2

H1(Ω) ≤ Eh[y
i
h] ≤ Eh[y

0
h] ≤ α,

whence the H1-distance between yi,0h and the minimizer yi,∗h is proportional to τ 1/2. This not

only reveals the crucial role of τ but also of the H1-metric for the discrete flow (4.47), which

is the norm governing the stretching energy (4.1).

• Well-posedness and convergence. In view of (4.46), the quadratic structure of the flow metric

term τ−1(·, ·)H1(Ω) may compensate for the lack of ellipticity of δ2Eh[yh](·, ·) due to the lack of

quasi-convexity of Eh, provided τ is sufficiently small. Therefore, we expect well-posedness

and superlinear convergence of the proposed Newton method, when τ is small.

• Moderate condition on τ . Our simulations of Section 5 confirm solvability and convergence

of the Newton sub-iterations (4.56) with moderate values of τ relative to the meshsize h. Con-

sequently, the restriction on τ is mild for current simulations and yet prevents the use of back-

tracking techniques. This constrasts strikingly with our theoretical estimates below, which

suggest an a priori relation τ . h2 for quadratic convergence; see Remark 4.4.
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A natural question is whether the Newton equation (4.56) is well-posed in each sub-step

n and yn,kh converges to a minimizer of (4.47) as k → ∞ in a neighborhood of the previous

iterate ynh , provided τ is sufficiently small. Heuristically, the lack of convexity of the stretching

energy works against the well-posedness and convergence of the Newton sub-iteration, but the

flow metric τ−1(·, ·)H1(Ω) in (4.48) is chosen to dominate δEh[ynh] when τ is small enough.

We now discuss properties of the proposed Newton sub-iteration (4.56). We first state the

following ellipticity of δ2Lnh[yh](·, ·) but prove it in Appendix A.

Theorem 4.4 (ellipticity). Given yh ∈ Vh, let the piecewise constant eigenvalues λ1[yh] ≤

λ2[yh] of I[yh] over Th satisfy

0 < c1 ≤ λ1[yh] ≤ λ2[yh] ≤ c2 ∀T ∈ Th, (4.57)

with c1, c2 independent of h and T . Then for τ small enough, there exists a constant c > 0

independent of h such that

δ2Lnh[yh](vh,vh) ≥ c‖vh‖2
H1(Ω;R3) ∀vh ∈ Vh. (4.58)

We next state a Lipschitz property of δ2Lnh but postpone its proof to Appendix A.

Theorem 4.5 (Lipschitz property). Let yh, ỹh ∈ Vh be given and both satisfy (4.57). Then, there

exists a constant M independent of h such that

∣∣δ2Lnh[yh]− δ2Lnh[ỹh]
∣∣(vh,wh) ≤

M

h
‖yh − ỹh‖H1(Ω;R3)‖vh‖H1(Ω;R3)‖wh‖H1(Ω;R3), (4.59)
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for any vh,wh ∈ Vh.

With Theorems 4.4 (ellipticity) and 4.5 (Lipschitz property) at hand, we state an error esti-

mate for each Newton sub-iteration (4.56) and refer to Appendix A for its proof.

Corollary 4.2 (quadratic estimate). If yn,kh satisfy (4.57) for any n ≥ 0 and k ≥ 0, then (4.56) is

well-posed and δyn,kh is the unique solution. Moreover, if yn,k+1
h := yn,kh + δyn,kh , then

‖yn,k+1
h − yn,∗h ‖H1(Ω;R3) ≤

M

2ch
‖yn,kh − yn,∗h ‖

2
H1(Ω;R3), (4.60)

where c,M are the constants appearing in (4.58) and (4.59) and yn,∗h is a local minimizer of Lnh.

Together with a further condition on the initialization yn,0h , the estimate (4.60) guarantees

the convergence of Newton sub-iterations.

Remark 4.4 (quadratic convergence). If yn,0h satisfies

‖yn,0h − yn,∗h ‖H1(Ω) ≤
ch

M
, (4.61)

then for k ≥ 0 an induction argument combined with (4.60) yields

‖yn,k+1
h − yn,∗h ‖H1(Ω) ≤

1

2
‖yn,kh − yn,∗h ‖H1(Ω) <

ch

M
. (4.62)

This implies that the Newton sub-iterations yn,kh remain within an H1-ball of radius ch
M

centered

at yn,∗h and converge to yn,∗h ; in view of (4.60) this convergence is quadratic. It remains to check

whether the initialization condition (4.61) is realistic. Assume that Eh[y0
h] ≤ α for a constant
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α > 0 and recall that yn,0h = ynh to deduce

1

2τ
‖yn,∗h − ynh‖2

H1(Ω) ≤ Lnh[yn,∗h ] ≤ Lnh[ynh] = Eh[y
n
h] ≤ Eh[y

0
h] ≤ α.

Consequently, if

τ ≤ c2h2

2M2α

then (4.61) is valid. However, quantitative numerical experiments in Section 5.2 reveal that the

largest admissible value of τ is independent of h. This is strikingly better than our theoretical

prediction.

Remark 4.5 (assumption (4.57)). We now argue heuristically that the crucial assumption (4.57)

is realistic in practice for each iterate yn,kh and n, k ≥ 0. Suppose that I[yn,kh ] is close to g point-

wise in the sense that

‖I[yn,kh ]− g‖L∞(Ω) ≤ ε, (4.63)

for some ε > 0. We recall that the eigenvalues of g are λ2, λ−1 with λ > 0 defined in (4.8). Then

the eigenvalues of I[yn,kh ], denoted by λ1[yn,kh ] ≤ λ2[yn,kh ], satisfy

c1 = min{λ2, λ−1} − cε ≤ λ1[yn,kh ] ≤ λ2[yn,kh ] ≤ max{λ2, λ−1}+ cε = c2,

with some constant c > 0. This turns out to be (4.57) for yn,kh provided ε is sufficiently small so

that the constants c1, c2 > 0. Computations in Section 5.7 show conclusively that ‖I[ynh]−g‖L∞(Ω)

decreases monotonically as n increases when m is smooth. They also indicate that ‖I[ynh] −

g‖L1(Ω) decreases monotonically regardless of the regularity of m. This gives computational sup-
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port for (4.63) and all iterates yn,kh provided I[y0
h] is close to the target metric g in the max-norm.

We conclude this section by summarizing the proposed strategy in Algorithm 2.

Algorithm 2: (nonlinear gradient flow scheme)

Given a pseudo time-step τ > 0 and target tolerances tol1 and tol2;
Choose initial guess y0

h ∈ Vh;
while τ−1

∣∣Eh[yn+1
h ]− Eh[ynh]

∣∣ > tol1 do
Set yn,0h = ynh , k = 0;

while
∣∣δLnh[yn,kh ](δyn,kh )

∣∣1/2 > tol2 do
Solve (4.56) for δyn,kh ;
Update yn,k+1

h ← yn,kh + δyn,kh , k = k + 1;
end
Update yn+1

h := yn,kh , where k is the index of last sub-iterate.
end
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Chapter 5: Computation of Thin Liquid Crystal Polymer Networks

In this chapter, we investigate computationally the wealth of shapes that can be created

upon actuation of an LCN, with special emphasis on the effect of defects and creases. We have

implemented Algorithm 2 using the multiphysics finite element software Netgen/NGSolve [109],

and the visualization relies on ParaView [7]. We focus on the ability of our discrete reduced

model (4.19) to capture quite appealing and practical physical phenomena related to shape for-

mation. We also present insightful numerical experiments that show quantitative properties of

Algorithm 2 and document the convergence of the proposed method.

In order to allow for locally refined triangulations, which are instrumental for some simu-

lations, we modify the regularization term in (4.15) as follows

Rh[yh] = cr
∑
e∈Eh

he

∫
e

|[∇yh]|2, (5.1)

and similarly forRh,Γ in (4.43). In some experiments we measure the deviation of I[y∞h ] from the

target metric g for the final iterate y∞h as an indicator of error between an approximate solution

and an exact global minimizer to (4.1). We quantify the metric deviation via

eph[y
∞
h ] := ‖I[y∞h ] − g‖Lp(ΩR2×2), (5.2)
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for p = 1,∞. Since global minimizers to (4.1) are characterized by the metric constraint (3.44) of

Corollary 3.4 (immersions of g are minimizers with vanishing energy), a small metric deviation

(5.2) implies that the approximate solution yNh is close to an exact global minimizer.

5.1 Rotationally symmetric director fields and defects

Let Ω ⊂ R2 be the unit disc. Motivated by [46, 88, 91, 122], we let the blueprinted

director field m be a rotation of (3.56) by an angle α, namely

m(r, θ) =
(

cos(n(θ + α)), sin(n(θ + α))
)
; (5.3)

recall that n is the defect degree and that m is discontinuous at the origin. We run Algorithm 2

with several values of α and n and display the output in Fig. 5.1. To illustrate the effectiveness

of Algorithm 2 to capture physical phenomena, we also compare the computed shapes with ex-

perimental and expected configurations in [91, 122] and find striking similarities. We use the

following physical and numerical parameters

s = 0.1, s0 = 1; tol1 = 10−6, tol2 = 10−10, τ = 0.1, h = 1/32, cr = 1,

let x = (x1, x2) ∈ Ω, and initialize Algorithm 2 with y0
h = Ihy

0, where

y0(x) =
(
x, 0.05(1− |x|2)

)
(5.4)

is a small perturbation of a flat disc (i.e. y(Ω) = Ω).
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Figure 5.1: Director fields with point defects of degree n. First row displays n = 2, 3/2,−1 and
α = 0 (from left to right). Each panel shows experimental and expected configurations from
[88] as well as two views of the computed solution. Second row depicts experimental pictures
from [58] and our simulations of the cone structure n = 1, α = π

2
(left) and anti-cone structure

n = 1, α = 0 (right). The numerical model reproduces experimental observations well.
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5.2 Quantitative properties

In this subsection, we investigate computationally some quantitative properties of the pro-

posed method, and in particular the role of meshsize h and pseudo time step τ . Our goals are as

follows.

• Convergence of metric deviation. We measure the metric deviation eh[y∞h ] defined in (5.2)

as an error between computed solutions y∞h and global minimizers, and recall that g is given

by (3.42). We expect convergence of eh[y∞h ] as h→ 0.

• Convergence of energy. We know that the exact minimum energy is 0 from discussions

of Section 3.2.2. Therefore, we also expect convergence of the energy error |Eh[y∞h ]| :=

|Eh[y∞h ]− 0| as h→ 0.

• Role of pseudo time-step τ . We expect that the well-posedness and convergence of Newton

method (4.56) depend on τ . We thus disclose the influence of τ on the final energy Eh(y∞h ),

metric deviation eh(y∞h ) and the number of gradient flow iterations N .

We consider three experiments to explore these issues computationally.

Experiment 1: smooth m. Let Ω be the unit square Ω = [−0.5, 0.5]2 and

m = (x+ 1, y + 1)/
√

(x+ 1)2 + (y + 1)2. (5.5)

We take parameters

s = 0.1, s0 = 1; cr = 0, tol1 = 10−10, tol2 = 10−9,
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and the initialization y0
h = Ihy

0 with

y0(x1, x2) =
(
x1, x2, 0.8(x1 − 0.5)(x1 + 0.5)(x2 − 0.5)(x2 + 0.5)

)
. (5.6)

Tables 5.1 and 5.2 display the results. We see that in Table 5.1 both eh[y∞h ] and |Eh[yh]| are rather

insensitive to τ but N decreases with increasing τ . The fact that performance does not improve

for smaller τ motivates us to explore the largest admissible time step τmax with various h in Table

5.2, which also reveals the convergence of our method.

τ eh[y
∞
h ] |Eh[y∞h ]| N

0.2 4.66909E-3 2.3484E-5 2304
0.4 4.66909E-3 2.3484E-5 1151
0.8 4.66910E-3 2.3484E-5 574
1.6 4.66918E-3 2.3482E-5 286
3.2 diverge diverge diverge

Table 5.1: Experiment 1 with the blueprinted director field (5.5). This reveals influence of τ on
the energy error, metric deviation eh, and the number of gradient flow iterations N with fixed
h = 1/32.

h τmax eh(y
∞
h ) |Eh(y∞h )| N

1/16 2.23 9.45213E-3 8.7909E-5 267
1/32 2.11 4.66924E-3 2.3482E-5 216
1/64 2.10 2.30916E-3 5.7742E-6 130

1/128 2.09 1.22053E-3 1.5746E-6 129

Table 5.2: Experiment 1 with the blueprinted director field (5.5). This gives the largest admissible
time step τmax that guarantees the well-posedness and convergence of Newton step for various
h. Convergence of errors as h → 0 are observed with corresponding τmax, which change slowly
with h.

Experiment 2: effect of regularization. We consider the same set-up as Experiment 1 but

instead of cr = 0 we take cr = 1.
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Experiment 3: m with defects. We consider the set-up in Section 5.1. The director field

m is the degree 3/2 defect given in (5.3). The parameters are as those from Section 5.1:

s = 0.1, s0 = 1; tol1 = 10−6, tol2 = 10−10.

However, we take cr = 0 instead of cr = 1.

The energy errors |Eh[y∞h ]| and metric deviation eh[y∞h ] for Experiments 1,2,3 are plotted

in Fig. 5.2 for meshsizes h = 1/16, 1/32, 1/64, 1/128. We discuss them next.

10−2 10−1.8 10−1.6 10−1.4 10−1.2

10−6
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10−1

1
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h

error

Experiment 1: eh(y∞h )
Experiment 2: eh(y∞h )
Experiment 3: eh(y∞h )
Experiment 1: |Eh(y∞h )|
Experiment 2: |Eh(y∞h )|
Experiment 3: |Eh(y∞h )|

Figure 5.2: Convergence of errors for Experiments 1,2,3. We can see that the regularization has
almost no influence on convergence rates, while it results in a slightly larger value of errors. For
Experiment 3 with discontinuous m the errors are significantly larger. In all cases we observe
that eh[y∞h ] is linear in h, while |Eh[y∞h ]| is quadratic in h for Experiments 1,2 and has a rate
slightly worse than quadratic (it is approximately O(hlog2 3)) for Experiment 3.

We conclude with a summary of quantitative observations.

• The metric deviation eh[y
∞
h ] converges as O(h). The energy error |Eh(y∞h )| converges as

O(h2) or sub-quadratically, depending on the regularity of m.

– |Eh[y∞h ]| converges as O(h2) in Experiments 1 and 2, when m is smooth and g is likely
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to admit a H2 isometric immersion. This computational result corroborates the validity of

Assumption 4.1 and the energy scaling in Proposition 4.3.

– |Eh[y∞h ]| converges sub-quadratically in Experiment 3, when m has a degree 3/2 defect.

It is plausible that g does not admit a H2 isometric immersion, and if so the validity of

Assumption 4.1 is questionable. It is worth realizing that this assumption is responsible for

the quadratic energy scaling in Proposition 4.3 (recovery sequence).

• The Newton sub-iteration is well-posed and convergent when τ is small enough. The influence

of h on τmax is negligible. This is much better than τ . h2, the theoretical prediction in

Remark 4.4 (quadratic convergence).

• Once τ is chosen such that the Newton method is well-posed and convergent, further decreas-

ing of τ has only a negligible influence on errors.

• For fixed h, the number of gradient flow iterationsN = O(τ−1), and so does the computational

time. Minimizing N is crucial for computational efficiency.

These conclusions corroborate convergence of the proposed finite element method with nonlin-

ear solver and the fact that an ideal choice of τ is its largest admissible value τmax for various

problems. We do not need to take τ → 0 as triangulations refine, and τmax provides a moderate

upper bound for τ . This is an advantage compared to a linearized gradient flow (e.g. [29]) and a

fixed point sub-iteration scheme (e.g. [19]) in that both require τ depending on h.
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5.3 Compatible nonisometric origami

Recall in Section 4.4, we introduced a modification to Eh, that allows for folds or creases

along some polygonal set Γ = ∪Ni=1γi, which is the union of line segments γi. This section is

dedicated to computing configurations of compatible nonisometric origami, which we explain

below.

Compatibility: We assume the blueprinted director field m to be constant in each subdo-

main. We say the set-up of nonisometric origami is compatible if

• m satisfies the compatibility condition proposed in [102, formula (6.3)], namely

|mγ+i
· tγi | = |mγ−i

· tγi |,

for any i = 1, . . . , N , where tγi represents a unit tangent vector to γi and mγ±i
denote m

restricted to the two subdomains that share γi;

• The actuation parameters s, s0, and thus the parameter λ defined in (4.8), are continuous across

γi for i = 1, . . . , N .

The compatibility condition means that the tangential component of the line field m ⊗m and

parameter λ are continuous across γi. Therefore, since any equilibrium configuration satisfies the

metric constraint (3.44) with metric g defined in (3.42), such configuration sustains compatible

stretching on both sides of a folding line γi.

In Section 4.4, we exploit the fact that the regularization parameter cr may depend on the

edge e to incorporate the creases Γ in the discrete energy Eh,Γ in (4.42). We thus take regular-
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ization parameter cr = 0 along the folding lines Γ and cr = 100 in the rest of domain, i.e., we

rewrite (4.43) as

Rh,Γ[yh] = crh
∑

e∈Eh\Γ

∫
e

[∇yh]
2. (5.7)

In fact, the zero regularization (no jumps of gradient) models a weakened (or damaged) material

on creases [18], and mathematically this allows for the formation of kinks. On the other hand, the

large regularization in the subdomains serves as a mechanism to force small bending energy on

minimizers of the discrete stretching energy Eh. Consequently, equilibrium configurations prefer

flat surfaces and folds to meet the target metric (3.44), namely nonisometric origami.

5.3.1 Pyramids

We consider piecewise constant blueprinted director fields m and set-up creases Γ and

subdomains Ωi as depicted in Fig.5.13. In this experiment, we take Ω = [0, 1]2,

s = 0.1, s0 = 1, h = 1/64, tol1 = 10−10, tol2 = 10−6.

Case 1. We first consider the set-up on the left of Fig.5.3, τ = 1, and use initialization

y0
h = Ihy

0 with

y0(x1, x2) =
(
x1, x2, 0.8x1(1− x1)x2(1− x2)

)
. (5.8)

Case 2. We then consider the set-up on the right of Fig.5.3, τ = 0.4, and use the same

initialization as (5.8),
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Case 3. We also apply another initialization

y0(x1, x2) = 0.2 cos
(
7π(x1 − 0.5)

)
x2(x2 − 1) (5.9)

to the set-up on the right of Fig.5.3 and take τ = 0.5.

The computed solutions for all three cases are shown in Fig.5.4. We get pyramid-like final

configuration for Case 1, which is consistent with the prediction in [92]. For Cases 2 and 3, we

obtain different equilibria starting from different initial states, but the difference in final energies

is about 10−6. They are indeed global minimizers, because computed metric deviations e∞h [y∞h ]

are 1.6 × 10−3, 2.5 × 10−3, 2.4 × 10−3 for Cases 1,2,3 respectively. Therefore, this gives an

example where global minimizers to (4.19) are non-unique, and computed equilibrium shapes

depend on initializations. This verifies the heuristic discussion in Section 4.1.1, confirms the lack

of quasi-convexity of this model, and illustrates capability and accuracy of our numerical method

for computing origami structures.

Case 4. To confirm that the pyramid-like origami structure is not an effect due to the

triangulation, we generate a triangulation with h = 1/64 unfitted to the two diagonals Γ of

the square. We consider the same set-up as in Case 1 except that the regularization parameter

cr(x) = 0 if x ∈ Γ0.02 and cr(x) = 100 otherwise, where Γd := {x ∈ Ω : dist(x,Γ) < d} is a

strip surrounding the crease Γ.

The computed solution for the Case 4 is also displayed in Fig. 5.4 (third row). We still

get the pyramid-like configuration, but with tiny wrinkling appearing in the strips Γ0.02, due to

the lack of regularization in this region. We present a thorough discussion of the computational

effect of regularization in Section 5.6.
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Figure 5.3: This is the set-up for experiments in Subsection 5.3.1. Solid lines inside the square
represent the locations of the creases, and arrows shows the piecewise constant director field m
in each subdomain. In this case, m = (0,−1), (−1, 0), (0, 1), (1, 0) in different subdomains.

Figure 5.4: Non-isometric origami: First row, pyramid-like final configurations for Case 1 and
Case 2. Second row, different views of final configuration for Case 3 exhibiting multiple folds.
Third row, different views of final configuration for Case 4, thereby confirming that the pyramid-
like configuration is not an effect due to the triangulation.
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5.3.2 Folding table.

The set-up of blueprinted director field m, creases Γ and subdomains of Ω = [0, 1]× [0, 2]

are displayed in Fig.5.5 (left). We choose parameters

s = 0.1, s0 = 1; h = 1/64, τ = 0.5, tol1 = 10−6, tol2 = 10−10.

Case 1. We use the initialization y0
h = Ihy

0 with

y0(x1, x2) =
(
x1, x2, 0.8x1(1− x1)x2(2− x2)

)
. (5.10)

Case 2. We use the initialization y0
h = Ihy

0 with

y0(x1, x2) =
(
x1, x2, 0.8x1(1− x1)x2(1− x2)

)
. (5.11)

Simulations for both cases are presented in Fig.5.5. We get final configurations consistent with the

predicted and experimental shapes in [103, Figure 5.2]. The two distinct final states correspond

to different initial configurations. However, final energies areEh[y∞h ] = 8.27×10−6, 5.97×10−6

and the metric deviations are e1
h[y
∞
h ] = 4.5× 10−3, 3.7× 10−3 for the two cases. Consequently,

this provides yet another example of non-unique minimizers due to the non-convex nature of the

discrete model (4.19).
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Figure 5.5: Folding table: Setting for origami in Subsection 5.3.2 (left). Final configurations for
Case 1 (middle) and Case 2 (right).

5.3.3 Folding cube.

We now consider the design in [101] whose folded shape is an origami cube. The set-up is

given in Fig.5.6 (left), where the domain Ω is a rhombus with vertices (0, 1), (0, 2), (
√

3, 0), (
√

3, 1).

We take a graded triangulation such that h = 1/128 near the creases and h = 1/32 everywhere

else. We choose the parameters

s = −1/3, s0 = 1; τ = 0.1, tol1 = 10−8, tol2 = 10−10,

and use the initialization y0
h = Ihy

0 with

y0(x1, x2) =
(
x1, x2, 0.8x1(x1 −

√
3)
(
x2 +

√
3

3
x1 − 1

)(
x2 +

√
3

3
x1 − 2

))
. (5.12)

The evolution of our nonlinear gradient flow is displayed in Fig.5.6 (right). We reach the de-

sired cube equilibrium configuration with final energy Eh[y∞h ] = 7.34× 10−8 and metric defect

e1
h[y
∞
h ] = 3.6× 10−4. This relaxation dynamics is not physically motivated, but it is meaningful

for an evolution without intertial effects.
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Figure 5.6: Folding cube: Rhombus Ω, creases Γ and director field m⊥ (left). Gradient flow
iterates y0

h,y
110
h ,y310

h ,y1010
h and final configuration y1287

h displayed clockwise.

The choice s = −1/3 and s0 = 1 is crucial for the shape to form a perfect cube. This

can be justified in the spirit of [92] as follows. We expect that rhombi subdomains in Fig. 5.6 to

deform into faces of the cube, which are squares; this is depicted in Fig. 5.7. We assume that

the diagonals of undeformed rhombi are parallel to m⊥,m and denote their lengths by L1, L2. If

s < s0 then λ =
(
s+1
s0+1

)1/3
< 1 according to (4.8), whence the expression (3.42) of the metric g

reveals that the material stretches in the direction m⊥ and shrinks along m with ratios 1/
√
λ, λ.

If `1, `2 stand for the diagonals of the deformed square, then they satisfy `1 = (1/
√
λ)L1 and

`2 = λL2 as well as `1 = `2. Consequently, we see that λ−3/2 = L2/L1 =
√

3 upon choosing

s0 = 1, that s = −1/3 as asserted.

5.3.4 Curved creases

The creases are arcs in this example motivated by [76]. The set-up in Fig. 5.8 (left) shows

that the domain Ω is a square and the creases Γ are curved solid lines. We use a graded tri-
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Figure 5.7: Folding cube: rhombus with diagonals L1, L2 deforms into a square with diagonals
`1 = `2 to match the target metric and thus minimize the stretching energy.

angulation such that h = 1/128 near the arcs and h = 1/32 everywhere else. We choose the

parameters

s = 0.1, s0 = 1; τ = 0.5, tol1 = 10−6, tol2 = 10−10,

and use the initialization (5.11). The equilibrium shape is displayed in Fig. 5.8, which is like a

tent. This examples shows the ability of our discrete model (4.19) to deal with curved creases.

5.4 Incompatible nonisometric origami

In this section, we allow the physical quantities m, s, s0 to violate the compatibility con-

dition in Section 5.3, namely to be discontinuous across creases Γ. This entails a discontinuity

of g and requires the material to sustain incompatible stretching on both sides of the creases. In

light of Corollary 3.4 (immersions of g are minimizers with vanishing energy) and the discussion

after it, the existence of an H1 isometric immersion y of such a discontinuous g is questionable,

and we would hypothesize that there is no deformation y ∈ H1(Ω;R3) such that I[y] = g and

correspondinglyEstr,Γ[y] = 0, due to the incompatible stretching. Computational evidence given
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Figure 5.8: Curved creases: Square domain Ω, curved creases Γ (solid lines), and director field
m (left). The dashed lines are lines of discontinuity of m rather than creases. Two views of final
tent equilibrium configuration (right).

below shows that the discrete energy Eh[yh] and metric defect e1
h[y] decrease with meshsize to a

positive value and the discrete solution yh converges, at least weakly, in view of Proposition 4.2

(coercivity). We present two simulations and discuss the structure of this limit. To this end, we

again consider the modified regularization (5.7) with cr = 0 along the folding lines and cr = 100

in the rest of the domain.

5.4.1 Lifted square origami.

Let Ω := [0, 1]2 be the unit square and the creases and subdomains be as depicted in

Fig. 5.9 (left). The latter are concentric squares with vertices connected by folding lines. We

take s = s0 = 1 in the inner square (ideally no deformation) and s = 0.1, s0 = 1 in the annulus

between the two squares so that λ < 1 in this region. This implies shrinking along the direction

of the director field m, hence parallel to the sides, and stretching in the orthogonal direction m⊥.
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λ = 1

Figure 5.9: Lifted square origami: Lines indicate creases and arrows indicate the blueprinted
director field m in regions where λ < 1 (left). The inner square has λ = 1 (no internal deforma-
tion). Two views of equilibrium configuration show that buckling takes place to accommodate
the lack of data compatibility.

We use the initialization (5.11) and choose the parameters to be

h = 1/64, τ = 0.1, tol1 = 10−6, tol2 = 10−10.

We plot two views of the final configuration on the middle and right of Fig. 5.9. We see that

the inner region has no internally-induced deformation but shrinks and lifts up out of plane to

accommodate itself to the change in the outer region.

h Eh[y
∞
h ] e1

h[y
∞
h ]

1/32 0.0277 0.177
1/64 0.0127 0.103

1/128 0.00751 0.0754
1/256 0.00525 0.0626

Figure 5.10: Lifted square origami: The table shows a monotone decrease of discrete energy
Eh[y

∞
h ] and metric defect e1

h[y
∞
h ] in terms of h, which stabilizes to a positive value. Side views of

the deformations for h = 1/128 (middle) and h = 1/64 (right). The buckling is more pronounced
for smaller h.
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To explore the asymptotic behavior of y∞h as h→ 0 we run a series of experiments reported

in Fig. 5.10. We see that the energy Eh[y∞h ] is O(10−2) and decreases but not quadratically; in

fact, it seems that it stabilizes to a positive value. Recall that the quadratic scaling Eh[yh] .

h2 of (4.44) in Theorem 4.2 (convergence of discrete minimizers with creases) leads to strong

convergence in H1(Ω;R3) to a piecewise H2-limit y∗ such that Estr,Γ[y∗] = 0 and I[y∗] = g.

This reveals that g may not admit an isometric immersion, at least not with the regularity stated in

Theorem 4.2. This in turn contrasts with the compatible origami shapes in Section 5.3 for which

the final energies are O(10−5) and O(10−7), making it likely that Estr,Γ[y∗] = 0.

Fig. 5.10 also shows that buckling is more pronounced for smaller regularization, which

happens for smaller h = 1/128. Finally, we view the regularization term Rh,Γ[yh] as a numerical

mechanism that selects some equilibrium configurations in the limit h → 0. This process is

related to the quasiconvex envelope of Estr, which is not known for Estr given by (4.1) and (4.2)

and is hard to find. We refer to Section 4.1.1 for a discussion of quasiconvexity.

5.4.2 Lifted M-origami

We explain now how to exploit the idea in Subsection 5.4.1 as a building block to design

lifted configurations of any polygonal shapes. In fact, for any polygonal subdomain P ⊂ Ω :=

[0, 1]2 with dist(P, ∂Ω) > 0, we can always construct a dilation P ′ of P so that it is “concentric”

with P and P ⊂ P ′ with dist(P ′, ∂Ω) > 0. Then we further connect corresponding vertices of P

and P ′ with folding lines, and also let all the sides of ∂P and ∂P ′ be creases. We finally take m

parallel to the sides of ∂P and λ < 1 in P ′ \ P , while λ = 1 in P and Ω \ P ′. The discontinuity

of λ across creases implies again Estr[y] > 0 for all y ∈ H1(Ω;R3).

198



λ = 1 λ = 1

Figure 5.11: Lifted M-origami: Lines indicate creases and arrows indicate the blueprinted director
field m in regions where λ < 1, whereas λ = 1 within and outside the M.

We apply this procedure to an M-shaped subdomain. The set-up is shown in Fig. 5.11 and

all the parameters are the same as in Subsection 5.4.1. In particular s = 0.1 inside the M-annulus

region while s = 1 in the rest of domain. We use a graded triangulation of size h = 1/256 near

the creases and otherwise h = 1/32.

We display the computed solution in Fig. 5.12, which is the desired lifted M-shape. We

stress that the background and solid M are not completely flat due to the same buckling effect

already discussed in Section 5.4.1. However, this effect is not so pronounced because the shrink-

ing layer is thin relative to the rest of the M and background. We emphasize that the current

procedure is different from the construction of lifted surfaces in Section 3.3.1. The latter requires

|∇φ| =
√
λ3 − 1 a.e. in Ω, which makes it harder to implement; recall the discussion after (3.47).

5.5 Actuation parameters s and s0

Parameters s and s0 encode the effect of environment actuation, such as light and heat,

and determine the magnitude of stretches or shrinks in the directions m⊥ or m for equilibrium

configurations. Therefore, when s is close to s0 we can only expect a minor deformation; on the

other hand, the material deforms significantly if s is far away from s0. In this Subsection, we
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Figure 5.12: Lifted M-origami: Two views of final equilibrium configuration. Color on the right
picture represents the value of y3 and shows that the solid M and background are not completely
flat.

explore the role of s and s0 by our discrete model (4.19).

5.5.1 Pyramids with different s.

We consider the set-up of Fig.5.13: the domain is the square Ω = [0, 1]2, its diagonals are

the creases Γ, and the blueprinted director field m is parallel to the sides of Ω. We choose the

parameters

s0 = 1; h = 1/64, τ = 1, tol1 = 10−6, tol2 = 10−10,

regularization constants cr = 0 along the creases and cr = 100 everywhere else, and initialization

(5.11). We take s = 0.9, 0.5, 0.1,−0.3 and compare the results.

With arguments similar to those in Subsection 5.3.3 related to Fig. 5.7, one can easily see

that the length of each side of the pyramid base should be λ = ( s+1
s0+1

)
1
3 . In Fig. 5.14, we compare

this theoretical value with computations of such lengths for different values of s, and display
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Figure 5.13: Set-up for experiments in Subsection 5.5.1. Square domain Ω with solid diago-
nals representing the creases and arrows parallel to the sides indicating the piecewise constant
blueprinted director field m.

−0.2 0 0.2 0.4 0.6 0.8
0.7

0.8

0.9

1

s

Comparison

Figure 5.14: Pyramids with varying actuation parameter s: Comparison between computed
length (blue dashed) and theoretical value λ = ( s+1

s0+1
)
1
3 (pink dots) of the pyramids base for

several values of s (left). Computed pyramid solutions for values s = −0.3, 0.1, 0.5, 0.9 ap-
proaching s0 = 1 (right).
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the final equilibrium configurations for s = −0.3, 0.1, 0.5, 0.9; the agreement is remarkable. We

observe that the pyramid height decreases to 0 as s increases toward s0 = 1, and thus λ→ 1 (no

deformation).

5.5.2 Pyramids with space varying s.

All preceding simulations assume s constant in space. We now consider the effect of vary-

ing s in space, while keeping all other parameters in Subsection 5.5.1 unchanged. This corre-

sponds, for instance, to the situation that light stimulus is applied non-uniformly to the material.

We take

s = 1− 14.4x1(1− x1)x2(1− x2). (5.13)

Figure 5.15: Pyramid with space varying s: The resulting pyramid for s given in (5.13) has
curved faces, creases and sides.

The computed solution, displayed in Fig.5.15, consists of a pyramid with curved faces,

creases and sides. For the flat pyramids of Fig 5.14, following [92], we can predict the opening

angle φ of the pyramid to satisfy sinφ =
√

s+1
s0+1

. The opening angle is formed by two line

segments: the vertical line from the vertex of the pyramid to the center of the base and the line

segment from the vertex to the midpoint of the side of the base. Since s0 = 1 and s decreases
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monotonically towards the center of the base from s = 1 on the base boundary, we realize that φ

should decrease as well. This is consistent with our computed solution.

5.5.3 Four cones.

In this case, we take Ω := [−0.5, 0.5]2 and parameters

s0 = 1; h = 1/64, τ = 0.1, tol2 = 10−10, tol1 = 10−6.

We choose the parameters s = 0.1 and cr = 1 inside the four circles with radius 0.2 and centers

(±0.25,±0.25), and s = 1 and cr = 100 everywhere else in the domain. We set the blueprinted

director field as in (5.3), with n = 1 and α = π/2

m(x1, x2) =
(

cos(θi + π/2), sin(θi + π/2)
)

(5.14)

where θi := θi(x1, x2) for i = 1 : 4 is the angle between the positive x1-axis and the line con-

necting (x1, x2) with (0.25, 0.25), (−0.25, 0.25), (−0.25,−0.25), (0.25,−0.25) in each quadrant,

respectively. For instance,

θ1(x1, x2) :=


arctan(x2−0.25

x1−0.25
) x1 > 0.25

arctan(x2−0.25
x1−0.25

) + π x1 ≤ 0.25.

(5.15)

Moreover, we initialize the discrete gradient flow with y0
h = Ihy

0 and

y0(x1, x2) =
(
x1, x2, 0.8(x1 − 0.5)(x1 + 0.5)(x2 − 0.5)(x2 + 0.5)

)
. (5.16)
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Figure 5.16: Four cones: Equilibrium shape showing four rotationally symmetric cones with ver-
tices at (±0.5,±0.5) and curved lateral surfaces. The parameter s and metric g are discontinuous
across the boundaries of four circles of radius 0.2 centered at the vertices.

The equilibrium shape is displayed in Fig. 5.16, and consists of four cones with vertices at

the four prescribed points (±0.25,±0.25). Locally around each vertex, the shape is a rotationally

symmetric cone as in Subsection 5.1 with n = 1 and α = π/2, but the lateral surface flattens out

as it meets the background substrate. This is due to the incompatibility created by the discontinu-

ous parameter s and metric g cross the boundary of the four circles. This configuration is similar

to the experimental one in [117].

5.6 Wrinklings and regularizations

We now elaborate on the role of the regularization term Rh defined in (4.15) in the forma-

tion of equilibrium configurations.

5.6.1 Degree −1 defect

First, we consider a blueprinted director field m with a defect of degree n = −1 rotated

by an angle α = 0 as described in (5.3) of Section 5.1. Fig. 5.17 compares two simulations

with Algorithm 2 and regularization parameter cr = 0 (left) and cr = 1 (right). We observe
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the formation of wrinklings (or micro-structure) at the scale h in final configurations produced

when cr = 0 and a smooth shape for cr = 1. We conclude that the regularization term Rh can

effectively remove such oscillations.

Figure 5.17: Degree −1 defect: Final configurations with cr = 0 (left) and cr = 1 (right) for
a director field m with degree n = −1 and α = 0 in (5.3). The regularization term removes
oscillations.

5.6.2 Incompatible square origami

We repeat the simulations of Section 5.4.1 with the same parameters except for cr = 1

away from creases Γ (top) and cr = 0 (bottom) of Fig. 5.18. We learned in Section 5.4.1 that

this setting gives rise to buckling but, comparing with Fig. 5.9 when cr = 100 in Ω \ Γ, we now

realize that a smaller regularization parameter leads to a more significant buckling. Moreover,

the regularization Rh with cr = 1 removes wrinklings observed for cr = 0.

An illuminating discussion follows about e1
h[y
∞
h ] and Eh[y∞h ]. We obtain

cr = 100, 1, 0 ⇒ e1
h[y
∞
h ] ≈ 0.1, 0.035, 0.01; Eh[y

∞
h ] ≈ 0.012, 0.0026, 8.9× 10−4.

Does this mean that the final configuration of Fig. 5.18 for cr = 0 is closer to a true global
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minimizer of the stretching energy Estr,Γ than the others? To elucidate this question, we conduct

a refinement analysis for cr = 0 and cr = 100 and report it in Fig. 5.19. We see that Eh[y∞h ] and

e1
h[y
∞
h ] converge linearly to 0 for cr = 0, whereas these quantities seem to decrease to a positive

value for cr = 100. In contrast, for the compatible pyramid origami of Example 4.2, displayed in

Fig. 5.4, Eh[y∞h ] and e1
h[y
∞
h ] can reach the value 10−14 by simply reducing the stopping tolerance

tol1, even for a very coarse meshsize h = 1/16. The reason is that an exact solution y∗ for

the compatible pyramid origami is piecewise affine over Th, because Th matches the creases, so

that y∗ ∈ Vh. We resort to Corollary 3.4 (isometric immersions are minimizers with vanishing

energy) and Theorem 4.2 (convergence of discrete minimizers with creases) to infer that there

exists a piecewise H2 isometric immersion for the compatible pyramid origami but not for the

incompatible square origami.

We further wonder about the limit of y∞h as h → 0 for cr = 0. Although coercivity of the

energy Eh[y∞h ] implies that {y∞h }h have a weakly convergent subsequence in H1(Ω;R3), and we

do observe computationally that Estr[y∞h ] → 0, the weak limit y might not have zero stretching

energy due to the lack of quasi-convexity of Estr. To illustrate this point we consider again

the explicit example of compatible folding pyramids of Example 4.2 with vanishing stretching

energy. The sequence {y∗i }∞i=1 consists of flat pyramids folding across dyadic concentric creases

Γi at distance 2−i from each other and matched by the triangulation Th. The first three discrete

solutions y∗i,h computed by our method are displayed in Fig. 5.4 and satisfy y∗i,h = y∗i ∈ Vh

for i = 1, 2, 3. The sequence {y∗i }∞i=1 converges weakly in H1(Ω;R3) to y∗(x′) = (λx′, 0)T as

i→∞, but the limit satisfies Estr[y∗] > 0. This lack of weak lower semicontinuity of Estr inH1

is related to the lack of quasiconvexity of Estr; we refer to Section 4.1.1 for details. We can now

create a sequence of discrete minimizers yh ∈ Vh that converge weakly to y∗(x′) = (λx′, 0)T
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Figure 5.18: Incompatible square origami: Two views of the final configurations with regular-
ization parameter cr = 1 (top) and cr = 0 (bottom) away from the creases. Wrinkling occurs for
cr = 0.

as h → 0: (a) let Th be a uniform dyadic partition of Ω made of right triangles with cartesian

edges of size h = 2−i for i ∈ N; (b) let i(h) = log2(1/h) and y∗i(h) be a folding pyramid with

creases Γi(h); (c) take yh := y∗i(h) ∈ Vh and note that Eh[yh] = 0. We expect a similar behavior

for the incompatible square origami, except that we are not able to characterize the weak limit.

Computing the quasiconvex envelope, a key step in this regard, is still open for this problem.

We now justify heuristically the shape of y in Figs. 5.9 and 5.18. We observe that any

side of the inner square has to shrink by a factor λ < 1 due to the annulus but remain constant

due to the inner square. This incompatible deformation can be realized by developing wrinkles

in the inner square with increasing frequency towards the sides so that the length is maintained

but accommodated in a shorter interval; a similar mechanism consisting of rapid oscillations
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Figure 5.19: Incompatible square origami: Plots of Eh[y∞h ] and e1
h[y
∞
h ] with several meshsizes

h and regularization parameters cr = 0, 100. For cr = 0 we observe that Eh[y∞h ] and e1
h[y
∞
h ] are

both O(h), whereas for cr = 100 they stabilize to a positive value as h decreases.

towards the domain boundary is studied in [79] for a simplified model. Any approximation of

this deformation within the finite element space Vh introduces the triangulation scale h and the

effect of regularization Rh[yh]. The former suppresses infinite wrinkling while the latter prevents

the formation of wrinkles at any scale and favors piecewise smooth deformations. Since discrete

solutions do not allow infinite oscillations near creases, buckling out of plane is then a natural

phenomenon to occur to accommodate incompatible stretching. Figs. 5.9 and 5.18 depict the

final configuration and show that the faces and creases are not flat but curved, although all the

creases are straight lines in the undeformed configuration.

We may conclude that the regularization (4.15) serves as a mechanism to select minimizers

of stretching energy for compatible origami, while a competition between stretching and bending

energies determines the final shape for incompatible origami.
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5.7 Metric errors in the flow

We take Ω = [−0.5, 0.5]2 and parameters

s = 0.1, s0 = 1; h = 1/64, τ = 0.48, cr = 1, tol1 = 10−6, tol2 = 10−10.

Analogously to (5.10) and (5.8), we initialize the discrete gradient flow with a perturbation of the

flat square y0
h = Ihy

0 where

y0(x1, x2) =
(
x1, x2, 0.8(x1 − 0.5)(x1 + 0.5)(x2 − 0.5)(x2 + 0.5)

)
. (5.17)

Case 1: Smooth m. We choose the smooth blueprinted director field

m(x1, x2) := (x1 + 1, x2 + 1)/
√

(x1 + 1)2 + (x2 + 1)2. (5.18)

Case 2: Rough m. We consider a defect of degree n = 3/2 and α = 0 in (5.3).

Fig. 5.20 contains plots of the metric errors and energies in the discrete gradient flow for

both cases. We observe that the energy Eh[ynh] always decays monotonically as expected from

Theorem 4.3 (energy stability). The metric defect e1
h[y

n
h] also converges monotonically as n in-

creases in both cases. In contrast, the error e∞h [ynh] decreases monotonically in Case 1 (smooth

m) but not in Case 2 (rough m). The latter is due to the discontinuity of m at the origin, hence

of the target metric g, but occurs only at the beginning of the flow. The error e∞h [ynh] stabilizes

asymptotically but is much larger than e1
h[y

n
h]. This behavior is consistent with the discontinuity

of g but against assumption (4.63) of Remark 4.5 and assumption (4.57), in the sense that satis-
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fying (4.63) for y0
h might not be enough to guarantee (4.63) for all iterates yn,kh . Nonetheless, we

emphasize again that our Newton sub-iterations always work properly in practice with a simple

and straightforward choice of τ rather insensitive to h.

Figure 5.20: Plots of metric errors of e1
h[y

n
h] (blue curve), e∞h [ynh] (red curve) and energy Eh[ynh]

(black curve) of the gradient flow for n ≥ 0. Case 1: m smooth (left) and Case 2: m rough (right).
Except for e∞h [ynh] in Case 2, the behaviors ofthe metric errors and energy errors is monotone.
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Appendix A: Gradient flow and Newton method: discussion and proofs

In this appendix we present the lengthy explicit expressions of δEh and δ2Lnh, as well as

proofs of the theorems in Section 4.5. To aid in the derivation, we introduce the notation

K[yh,vh] = ∇yTh∇vh +∇vTh∇yh, (A.1)

which is the linearization of I[yh].

We first show the expressions of the first variation

δEh[yh](vh) = δEstr[yh](vh) + δRh[yh](vh)

at yh ∈ Vh along the variational direction (or test function) vh ∈ Vh. Since the regularization

term Rh[yh] in (5.1) is quadratic, its first variation reads

δRh[yh](vh) = 2
∑
e∈Eh

crhe

∫
e

[∇yh] : [∇vh].

The first variation of the nonlinear and nonconvex energy Estr reads instead

δEstr[yh](vh) = T1[yh,vh] + T2[yh,vh] + T3[yh,vh] + T4[yh,vh],
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where

T1[yh,vh] := −
∫

Ω

J [yh]
−1tr

(
I[yh]−1K[yh,vh]

)
T2[yh,vh] :=

1

s+ 1

∫
Ω

(
2∇yh : ∇vh + s0m ·K[yh,vh]m

)
T3[yh,vh] := − s

s+ 1

∫
Ω

J [yh]

Cm[yh]2
m ·K[yh,vh]m

T4[yh,vh] :=
s

s+ 1

∫
Ω

J [yh]

Cm[yh]
tr
(

I[yh]−1K[yh,vh]
)
,

and J [yh], Cm[yh] are defined in (3.19) and K[yh,vh] in (A.1).

We next compute the second order variation of Lnh at yh ∈ Vh. In fact, we obtain

δ2Lnh[yh](vh,wh) =
1

τ
(wh,vh)H1(Ω)

+ δ2Estr[yh](vh,wh) + δ2Rh[yh](vh,wh),

(A.2)

for arbitrary vh,wh ∈ Vh. In view of (5.1), the last term is actually independent of yh and reads

δ2Rh[yh](vh,wh) = 2
∑
e∈Eh

∫
e

crhe[∇vh] : [∇wh]. (A.3)

Moreover, the second variation of Estr can be written as follows

δ2Estr[yh](vh,wh) =
4∑
i=1

δyhTi[yh,vh](wh), (A.4)
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in terms of the first variations of the earlier quantities Ti

δyhT1[yh,vh](wh) =

∫
Ω

J [yh]
−1tr

(
I[yh]−1K[yh,wh]

)
tr
(

I[yh]−1K[yh,vh]
)

+

∫
Ω

J [yh]
−1tr

(
I[yh]−1K[yh,vh] I[yh]−1K[yh,wh]

)
−
∫

Ω

J [yh]
−1tr

(
I[yh]−1K[vh,wh]

)
,

δyhT2[yh,vh](wh) =
1

s+ 1

∫
Ω

(
2∇wh : ∇vh + s0m ·K[vh,wh]m

)
,

δyhT3[yh,vh](wh) = − s

s+ 1

∫
Ω

J [yh]

Cm[yh]2
tr
(

I[yh]−1K[yh,wh]
)

m ·K[yh,vh]m

+ 2
s

s+ 1

∫
Ω

J [yh]

Cm[yh]3
(
m ·K[yh,vh]m

)(
m ·K[yh,wh]m

)
− s

s+ 1

∫
Ω

J [yh]

Cm[yh]2
m ·K[vh,wh]m,

and

δyhT4[yh,vh](wh) =
s

s+ 1

∫
Ω

J [yh]

Cm[yh]
tr
(

I[yh]−1K[yh,wh]
)

tr
(

I[yh]−1K[yh,vh]
)

− s

s+ 1

∫
Ω

J [yh]

Cm[yh]
tr
(

I[yh]−1K[yh,vh] I[yh]−1K[yh,wh]
)

+
s

s+ 1

∫
Ω

J [yh]

Cm[yh]
tr
(

I[yh]−1K[vh,wh]
)

− s

s+ 1

∫
Ω

J [yh]

Cm[yh]2
tr
(

I[yh]−1K[yh,vh]
)

m ·K[yh,wh]m.

We are ready to discuss the proof of ellipticity of δ2Lnh, which requires time-step τ small enough

and guarantees the Newton method to be well-posed.
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Proof of Theorem 4.4 (ellipticity). If wh = vh in (A.3), this regularization term gives

δ2Rh[yh](vh,vh) = 2Rh[vh] > 0.

We only need to estimate the four terms in the expansion of δ2Estr[yh](vh,vh) by replacing

wh = vh in (A.4), and using the flow metric term to control them.

We compute for the piecewise constant quantities J [yh]
−1 and Cm[yh]

−1

J [yh]
−1 = λ−1

1 λ−1
2 ≤ c−2

1 for all T ∈ Th,

where 0 < c1 ≤ λ1 = λ1[yh] ≤ λ2 = λ2[yh] ≤ c2 according to (4.57), and

Cm[yh]
−1 ≤ λ−1

1 ≤ c−1
1 for all T ∈ Th.

Moreover, one can easily verify that for any SPD matrices A,B,C ∈ R2×2,

tr(AB) ≤ λmax(A)|B|, tr(ABAC) ≤ λmax(A)2|B||C|.

We apply this property toA = I[yh]−1,B = K[yh,vh] andC = K[yh,wh]. Since λmax(I[yh]−1) ≤

λ−1
1 < c−1

1 . we obtain

∣∣δyhT1[yh,vh](vh)
∣∣ ≤ 2c−4

1 ‖K[yh,vh]‖2
L2(Ω) + c−3

1 ‖K[vh,vh]‖L1(Ω).
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Moreover, for any 3× 2 matrices A,B we have

|ATB| ≤ σmax(A)|B|,

where σmax(A) := λmax(ATA)
1
2 is the largest singular value of A. We apply this estimate to

A = ∇yh and B = ∇vh to arrive at

∣∣K[yh,vh]
∣∣2 ≤ 4

∣∣∇yTh∇vh
∣∣2 ≤ 4λ2

∣∣∇vh
∣∣2 ≤ 4c2

∣∣∇vh
∣∣2, (A.5)

whence ‖K[yh,vh]‖2
L2(Ω;R2×2) ≤ 4c2‖∇vh‖2

L2(Ω;R3×2). Therefore,

∣∣δyhT1[yh,vh](vh)
∣∣ ≤ (8c−4

1 c2 + 2c−3
1

)
‖∇vh‖2

L2(Ω;R3×2).

Similarly, one can estimate the other terms, and conclude that

∣∣δyhTj[yh,vh](vh)∣∣ ≤ C(s, s0, c1, c2,m)‖∇vh‖2
L2(Ω;R3×2) j = 2, 3, 4. (A.6)

Recalling the expression (A.2) for δ2Lnh[yh](vh,vh], we realize that

δ2Lnh[yh](vh,vh) ≥
(

1

τ
− C(s, s0, c1, c2,m)

)
‖∇vh‖2

L2(Ω;R3×2)

and choosing τ sufficiently small depending on s, s0, c1, c2,m yields the desired estimate (4.58).

We next prove the Lipschitz property of δ2Lnh. This is a crucial step towards the conver-
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gence of Newton method.

Proof of Theorem 4.5 (Lipschitz property). To prove (4.59), we first note that

δ2Lnh[yh](vh,wh)− δ2Lnh[ỹh](vh,wh) = δ2Estr[yh](vh,wh)− δ2Estr[ỹh](vh,wh),

as the flow metric and regularization terms both canceled because they are independent of yh, ỹh.

Therefore, we only need to check first variations of T1, T3, T4, because that of T2 does not depend

on yh. Since the many ensuing terms can be treated with similar techniques, we illustrate the

process with a typical one, namely the second term of δyhT1. In fact, we denote

T5[yh; vh,wh] := tr
(
I[yh]−1K[yh,vh] I[yh]−1K[yh,wh]

)
, (A.7)

and observe that
∣∣T5[yh; vh,wh]

∣∣ ≤ 4c−2
1 c2

∣∣∇vh
∣∣∣∣∇wh

∣∣, in view of (A.5). We now estimate the

second term of δyhT1[yh,vh](wh) as follows:

∣∣∣ ∫
Ω

J [yh]
−1T5[yh; vh,wh]− J [ỹh]

−1T5[ỹh; vh,wh]
∣∣∣

≤
∫

Ω

∣∣∣J [ỹh]T5[yh; vh,wh]− J [yh]T5[ỹh; vh,wh]

J [yh]J [ỹh]

∣∣∣
≤ c−4

1

∫
Ω

∣∣∣J [yh]
(
T5[yh; vh,wh]− T5[ỹh; vh,wh]

)∣∣∣
+ c−4

1

∫
Ω

∣∣∣(J [ỹh]− J [yh]
)
T5[yh; vh,wh]

∣∣∣
≤ c−4

1 c2
2

∫
Ω

∣∣∣T5[yh,vh,wh]− T5[ỹh,vh,wh]
∣∣∣

+ 4c−6
1 c2

∫
Ω

∣∣∣J [ỹh]− J [yh]
∣∣∣∣∣∣∇vh

∣∣∣∣∣∣∇wh

∣∣∣.
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We can easily rewrite

∣∣∣T5[yh,vh,wh]− T5[ỹh,vh,wh]
∣∣∣ ≤ 9∑

i=6

Ti[yh, ỹh, ; vh,wh], (A.8)

where

T6[yh, ỹh, ; vh,wh] =
∣∣∣tr((I[yh]−1 − I[ỹh]−1)K[yh,vh] I[yh]−1K(yh,wh)

)∣∣∣,
T7[yh, ỹh, ; vh,wh] =

∣∣∣tr(I[ỹh]−1(K[yh,vh]−K[ỹh,vh])I[yh]−1K[yh,wh]

)∣∣∣,
T8[yh, ỹh, ; vh,wh] =

∣∣∣tr(I[ỹh]−1K[ỹh,vh](I[yh]−1 − I[ỹh]−1)K[yh,wh]

)∣∣∣,
T9[yh, ỹh, ; vh,wh] =

∣∣∣tr(I[ỹh]−1K[ỹh,vh]I[ỹh]−1
(
K[yh,wh]−K[ỹh,wh]

))∣∣∣.
Note that for SPD matrices A,B,C ∈ R2×2, there holds

|tr((A−1 −B−1)C)| = |tr(A−1(B − A)B−1C)| ≤ λmax(A−1)λmax(B−1)|B − A||C|.

Using this property and (A.5), we obtain

T6[yh, ỹh, ; vh,wh] ≤ c−2
1

∣∣I[yh]− I[ỹh]
∣∣ ∣∣K[yh,vh] I[yh]−1K[yh,wh]

∣∣
≤ 4c−3

1 c2

∣∣I[yh]− I[ỹh]
∣∣ ∣∣∇vh

∣∣ ∣∣∇wh

∣∣
≤ 4c−3

1 c2
2

∣∣∇yh −∇ỹh
∣∣ ∣∣∇vh

∣∣ ∣∣∇wh

∣∣,
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and a similar estimate for T8[yh, ỹh, ; vh,wh]. Likewise, we can derive

T7[yh, ỹh, ; vh,wh] ≤ 4c−2
1 c

1/2
2

∣∣∇yh −∇ỹh
∣∣ ∣∣∇vh

∣∣ ∣∣∇wh

∣∣,
and a similar estimate for T9[yh, ỹh, ; vh,wh].

Finally, collecting these estimates and resorting to an inverse inequality yields

∫
Ω

∣∣∣T5[yh,vh,wh]− T5[ỹh,vh,wh]
∣∣∣

. h−1‖∇yh −∇ỹh‖L2(Ω;R3×2)‖∇vh‖L2(Ω;R3×2)‖∇wh‖L2(Ω;R3×2),

with a hidden constant depending on c1, c2. Moreover, we can easily estimate

|J [ỹh]− J [yh]| . |∇ỹh −∇yh|,

with a hidden constant depending on c1, c2. This further implies that

∣∣∣ ∫
Ω

T5[yh,vh,wh]

J [yh]
− T5[ỹh,vh,wh]

J [ỹh]

∣∣∣ . h−1‖yh − ỹh‖H1(Ω;R3)‖vh‖H1(Ω;R3)‖wh‖H1(Ω;R3).

We can apply the same procedure to all the other terms in δyhTj for j = 1, 3, 4 to conclude the

proof of (4.59).

Theorems 4.4 (coercivity) and 4.5 (Lipschitz property) are instrumental to proof the fol-

lowing quadratic estimate of the Newton sub-iterations.

Proof of Corollary 4.2 (quadratic estimate). Since (4.57) is satisfied for any yn,kh with fixed
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n, k ≥ 0 by assumption, Theorem 4.4 (coercivity) implies that δ2Lnh[yh] is coercive at yn,kh ,

whence the Newton step (4.56) is well-posed when τ is small enough.

We then rewrite (4.56) as

δ2Lnh[yn,kh ](yn,k+1
h − yn,∗h ,vh) = δ2Lnh[yn,kh ](yn,kh − yn,∗h ,vh)− δLnh[yn,kh ](vh),

and also

δLnh[yn,kh ](vh) =

∫ 1

0

δ2Lnh
[
yn,∗h + s(yn,kh − yn,∗h )

]
(yn,kh − yn,∗h ,vh)ds,

as δLnh[yn,∗h ](vh) = 0 for all vh ∈ Vh. Substituting this into the preceding equality gives

δ2Lnh[yn,kh ](yn,k+1
h − yn,∗h ,vh)

=

∫ 1

0

(
δ2Lnh[yn,kh ]− δ2Lnh

[
yn,∗h + s(yn,kh − yn,∗h )

])
(yn,kh − yn,∗h ,vh)ds.

Taking vh = yn,k+1
h −yn,∗h and using Theorem 4.4 (coercivity) to estimate the left-hand side from

below and Theorem 4.5 (Lipschitz property) to bound the right-hand side from above yields

c‖yn,k+1
h − yn,∗h ‖

2
H1(Ω;R3) ≤

M

2h
‖yn,kh − yn,∗h ‖

2
H1(Ω;R3) ‖y

n,k+1
h − yn,∗h ‖H1(Ω;R3).

This concludes the proof.
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[13] Sören Bartels. Stability and convergence of finite-element approximation schemes for
harmonic maps. SIAM journal on numerical analysis, 43(1):220–238, 2005.
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[73] Frédéric Hélein. Minima de la fonctionelle energie libre des cristaux liquides. CR Acad.
Sci. Paris, 305:565–568, 1987.

[74] Qiya Hu, Xue-Cheng Tai, and Ragnar Winther. A saddle point approach to the computation
of harmonic maps. SIAM Journal on Numerical Analysis, 47(2):1500–1523, 2009.

[75] Qiya Hu and Long Yuan. A Newton-penalty method for a simplified liquid crystal model.
Advances in Computational Mathematics, 40(1):201–244, 2014.

[76] Martin Kilian, Aron Monszpart, and Niloy J Mitra. String actuated curved folded surfaces.
ACM Transactions on Graphics, 36(3):1–13, 2017.

[77] David Kinderlehrer and Biao Ou. Second variation of liquid crystal energy at x/|x|. Pro-
ceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences,
437(1900):475–487, 1992.

[78] Wilhelm Klingenberg. A course in differential geometry, volume 51. Springer Science &
Business Media, 2013.

[79] Robert V. Kohn and Stefan Müller. Surface energy and microstructure in coherent phase
transitions. Communications on Pure and Applied Mathematics, 47(4):405–435, 1994.

[80] Arda Kotikian, Ryan L. Truby, John William Boley, Timothy J. White, and Jennifer A.
Lewis. 3d printing of liquid crystal elastomeric actuators with spatially programed nematic
order. Advanced Materials, 30(10):1706164, 2018.

[81] Xiao Kuang, Devin J. Roach, Jiangtao Wu, Craig M. Hamel, Zhen Ding, Tiejun Wang,
Martin L. Dunn, and Hang Jerry Qi. Advances in 4d printing: materials and applications.
Advanced Functional Materials, 29(2):1805290, 2019.

[82] Isabel Kundler and Heino Finkelmann. Strain-induced director reorientation in nematic
liquid single crystal elastomers. Macromolecular rapid communications, 16(9):679–686,
1995.
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