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Abstract

These tutorial notes discuss the basic ideas in the theory of controllabil-
ity and observability for nonlinear control systems. The theory treated
is primarily due to Hermann and Krener. The first section gives a short
overview of the issues, followed by section 2 which reviews distributions,
codistributions, and the Frobenius Theorem. Section 3 deals with controlla-
bility. Chow’s Theorem is presented, before beginning the Hermann—-Krener
theory. Finally, section 4 discusses the Hermann—Krener formulation of ob-
servability. A number of examples and illustrations are provided.
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Controllability and Observability of Nonlinear Systems

1. Introduction

Let M be a smooth manifold of dimension n. Denote by U an open neighborhood of

2% € M. We consider a control system X, described in local coordinates by

£(t) = f(z(t),u(t)) = f((t)) + BZ; g:(z(t))wsi(2),
y(t) = h(z(t)), z(0) = z°,

where t — u;(t) is a control function with values in a convex set  C IR ,t — z(t) is the

P

state trajectory with z(t) € M and ¢ — y(t) is the output curve with y(t) € IR®.

Given system T initialized at z°, the map
S0 i {t — u(t), t€[0,T]} — {t— y(t),t €[0,T]}

is called the input-output map.

Given a control ¢ — u(t), let ~, denote the corresponding flow:
z(t) = vu(t)z°.
We consider the following two concepts, with an emphasis on local ideas.

a. Controllability

Suppose we are given a system ¥ and an initial state z°. Let z! be another state. Is it

possible to choose a control ¢t — u(t) to steer T from z° to z!?

(This is often referred to as reachability, here z! is reachable from z°.)



If so, z! is accessible from z°. What are the accessible states? Is z° accessible from z1? Is
z! accessible from z° locally?
¥ is controllable if every state is accessible from every other state. What criteria (for

example, algebraic) tell us when ¥ is controllable (or has some weaker property)?

b. Observability

This time we are given an output “record” t — y(t), ¢t € [0,T]. We ask what informa-
tion about the states can be obtained from such a record.

Two initial states z°,z' are indistinguishable if no matter what control we use, the

corresponding trajectories always produce the same output record.
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What are the indistinguishable/distinguishable states? Can states be locally distin-
guished?

Y is observable if any state is distinguishable from any other state. What criteria is
available here, perhaps for weaker concepts?

In a sense, observability is a “dual” notion to controllability.

What follows is based on Hermann and Krener [1], and Isidori [2].



2. Distributions and Codistributions

Notation:
F(M)=  ring of smooth functions M — IR
X(M) = smooth vector fields on M.
(2 Lie algebra and a module over ¥(M))
X*(M) = smooth 1-forms on M
(a module over ¥(M))
Definitions

1. A distribution D is a submodule of X (M).
. D) ={X(z): X€D}LT:M (subspace of)
3. D = UzearD(z) (2 (singular) subbundle of T M)

[

4. If dim D(z) is constant, we say D is nonsingular.
5. A set of linearly independent vector fields {Xj,..., X} in a neighborhood U of z is

called a local basis (frame) if
D(y) = span{Xi(y),..., Xk(y)} forall y€U.

6. A point z is called a regular point of D if dimD(y) = dimD(z) for all y € U,U a
neighborhood of z. Otherwise, z is a singular point.

7. T(D) ={X € X(M) : X(z) € D(z) V= € M} (a distribution)

8. D is complete if D = I'(D). We shall assume that all distributions are complete.

Lemma A point z is a regular point of D if and only if there exists a local basis tn a
netghborhood of z.

Definitions

1. A codistribution & is a submodule of X*(M). £ is sometimes called a Pfaffian system.
2. E(z) ={w(z):weé}<T,M

3. E = UzemE(z) (a (singular) subbundle of T*M)

4. Analogous definitions for nonsingularity, completeness, local frame, etc.



Duality
pt = {weX*(M): {(w,X) =0V XeD}
£t = {XeX(M):{w,X)=0V we &}

D+ (resp. £7) is called the annihilator of D (resp. €) and is a codistribution (distribution).
Invariance Let X,Y € X(M), w € X*(M).

adxY = LxY = [X,Y] (Lie derivative)
D is adx tnvariant (or, tnvariant under X) if Y € D implies adxY € D.
adyw = Lxw (Lie derivative)

€ is adx tnvariant (invariant under X) if w € £ implies adxw € €.

Integrability

Definitions

1. A distribution D is tnvolutive if for all X € D, D is adx invariant.

2. An integral submanifold N of D is a connected immersed submanifold N C M such that
for all z € N, T,N < D(z). A mazimal integral submanifold is an integral submanifold
not properly contained in any other integral submanifold.

3. A distribution D is integrable if its maximal integral submanifolds define a partition of

M. This is called a foliation, the maximal integral submanifolds being called leaves.

Theorem (Frobenius) Let D be a nonsinguar distribution. Then D is integrable if and
only if D is involutive.
Following Boothby [6], we state and prove (sketch) a local version of the Frobenius
theorem.
Theorem (A local version of Frobenius Theorem) Let p € M be a regular point of D. Then,
on a neighborhood U of p, D is (completely) integrable if and only if D is involutive.
Since p is regular point, if D is k-dimensional, there exists a local basis {X3,..., Xk}

in a neighborhood U of p. To say that D is involutive means that

[X,',Xj] = ELIC%XI, 1<:,5<k



for some ¢; € F(U).

D is (completely) integrable if there exists local coordinates zj,...,z, in U such that
{#%, ¢=1,...,k} form a local basis for D. In this case the k-dimensional submanifold
{Z1,eeyZp 2 =6, 2" = ")

is an integral submanifold of D in U. A submanifold expressed in this form is called a slice.

Proof If D is (completely) integrable, then it is involutive, since

a J
-, —] =0 <z, 7<k.
[azi’asz 3 1_27 J =
Next, suppose that D is involutive. Proceed by induction. (The ideas are sketched).
k = 1. In this case D is determined by a vector field on U, call it X. Let integral curves

of X define the coordinate y;, that is, choose coordinates w1,...,y, such that X = 2

S
Hence D is integrable. The integral submanifolds are the integral curves. So in this case
the theorem is just existence of local flows.
Suppose that the theorem is true for distributions of dimensions 1,...,k — 1.
Let Xi,...,X} be a local basis for D and y,...,y, coordinates with X; = a‘%. Change

basis

Y1 = X1
i = Xi—(Xn)X:, 2<i:<k.

Then Ya,...,Y; are involutive and set No = {y; = 0}. Change coordinates on Nj :
Y2y--+sYn F* T2,...,Ty SO that
a a
span {Y2,...,Y:} = span {(—9—9-:—;, - a_xk}’
(by induction hypothesis). Extend this to a change of coordinates on U by setting X; = y;.
Then check that {aaTla cees 5%} forms a local basis for D on U. O

==z X(p) leaf or sfice

Fol 2
o;a?‘/on { Xe P is fdnjenf
fo /eaves




Definitions
1. We say that a codistribution £ is integrable if its annihilator £+ is integrable.

2. Let h: M — IR? be smooth.
R(dh) = codistribution spanned by dh;,...,dh,.

Lemma R(dh) is integrable.

Proof First, we check if £ is adx invariant, then £+ is ady invariant.

Letwe &, Yeét. Then (w,Y) =0 and adxw € £. Now

0=Lx(w,Y) = (w,Y)+ (w,Lx,Y)

= 0+ (w,LxY).
Hence LxY € £1. So we must show that
adx R(dh) C R(dh) for all X € R(dh)".
But this follows from

adxdh,' = <dh,,X> =0. 4

Remarks

1. A converse is also true. A nonsingular distribution is integrable if its annihilator is
locally spanned by exact 1-forms. (See Isidori, p.21.)

2. If € is integrable, then it defines a foliation via £+. If w € & its restriction to a leaf is
the zero 1-form.

3. If X € R(dh)*, then X is tangent to leaves of the foliation. In particular, (dh;, X) = 0,
so that h; is constant on leaves.

Local Representation (Isidori, pp.25)

Lemma Let D be a nonsingular involutive distribution of dimenston k and assume D 1is

invariant under a vector field X. Then at each p € M, there exist coordinates (U, §) in



which the vector field X can be represented as

rXl(gl,---,Sk;Ek-f-l,---;En) -

Xi(€1sevvs €y rtrse vy &n)
Xk+1(§k+1, s En)

i Xn(£k+1,~--a€n) J

Proof By Frobenius’ theorem, there exist coordinates (U, £) about p € M such that

D(q) = spa.n{—a—%(q),...,-é%:—(q)}, ceU.

Now adxD C D implies

Pe) o o
adx— € span {—,...,—}
g, € P Agee o 5g)
But
17} 8X;. 8
ady — = -7 (=— .
*a¢; =5 )7g,
Hence must have
2X;
‘=0 for i=k-+1,...,n; j=1,...,k. O
a¢; J

Remark If € is a nonsingular involutive codistribution of dimension (n — k), there exist

local coordinates such that
&= span {d§k+1, seey dgn}

If also € is invariant under X, then we can choose £i,..., & such that X has a represen-

tation of the above form.

These representations are useful in visualising controllability and observability.

Notation
(adx|D) = smallest adx invariant distribution containing D.

(adx|E) = smallest ady invariant codistribution containing &.



Refering to our control system X, we say that D (or £) is ad; tnvariant if D (or &) is

ady(. ) invariant for all u € Q™.
R(f) = distribution spanned by {f(-,u):v € Q™}

(ads|R(f)) is called the controllability distribution.

(ads|R(dh)) is called the observability codistribution.

Examples
1. M= IR? Ar= sp {3Z+%)

Az = sp{(l -+ zl)a%l -+ aizg}
These are smooth distributions.

/
ALY
yravs

7

However,
0 if z 0

Al N Ag(x) = { } ! ?é
AI(III) = Az(.’l?) if Iry = 0

is not a smooth distribution.

2. M =IR, A= sp {zZ}.

0 if z=0
1 ifz#0

dim A(z) = {
So z = 0 is a singular point of A.

3. M=R, A=sp {z1}. Then

AL(z) = {0} ifz#0
T°M if =0

Then Al is not a smooth codistribution.



4. M=1R?,  A={zZ+3Z} Then
At = sp{dzr; — dz,}

is a smooth codistribution.

3. Controllability

3.1. Chow’s Theorem

Consider a system X, defined in a néighborhood U, without drift that is f(z) = 0.
Define

A% U) = {u(s)z’: s€ R, r— u(r)
piecewise constant, u(r) € O™, v,(r)z° € U

forall 0 < |r| < 5.}

This is the set of states in U accessible from z° € U. Define ¥ to be the Lie algebra
spanned by the vector fields g;,...,gm on U. Note that ¥ is a distribution.

Assume that ¥ is nonsingular. Let N be the corresponding (maximal in U) integral
submanifold of ¥ passing through z°.

Theorem Suppose dim¥F(z) = k < n on U. Then A(z°,U) C N contains a relatively
open subset of N.

If dim 7(z) = n on U, then N = U and we have:

Corollary (Classical Chow’s theorem) If dim #(z) = n on U, then A(z°,U) contains an

open subset of U.
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The Lie algebra # gives the possible directions in which the system can evolve. Let ul
and u? be two controls, and f/ = £7, ¢; uf be the corresponding vector fields. Now ¥ can
evolve in the directions f*, f2. The theorem says it can evolve in the direction [f1, f2] € ¥

also (Brockett [5)).

(-3

x

[)Ll, $2d ™~
/
v

- Uy

All such trajectories lie in the integral submanifold N.

Proof (Based on Krener [3}, Isidori [2], p. 43) Choose u! € 2™ and set f!(z) = g(z)ul.
We can assume f1(zo) # 0, otherwise choose another u!. So f!(z) # 0 for z near z°, and
there exists 6; > 0 such that ¢; : Vi = (—61,61) — U, where ¢1(s1) = 71(s1)2°, is an
injective immersion. Thus Ny = ¢4(V1) is a 1-dimensional integral submanifold of ¥ in U.
Suppose we have constructed N;_; = ¢;_1(V;-1) and j < k. Note dim N;_; =5 — 1.

Claim: Given z € N;_;, we can choose u?/ € Q™ such that
fi(z) = g(z)w’ ¢ T.N,_;.

Suppose not. Then g(z)u € T;N;-; V u € Q™. This implies #(z) C T,N;_; for all
z € Nj_1. Define
- T,N;j—y if z€ N;_
7(.’1:) _ ziV5—1 j-1

F(z), if ze€U\N;-1
Then by construction g;(z),...,gm(z) € F(z) ,z € U, and 7 C 7. Let X;,X; be vector
fields on U with X;(z) € 7(z). Then X;, X, are vector fields on N;_y, so

[X]_,Xz](l?) € TzNj_.l = ?(Z), I e N_-,'._l.
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Also,
[Xl,Xz](x) € .7(.’13) for z € U\Nj..l.

Hence ¥ is involutive, and so ¥ = 7.

But k = dim 7(z) < dim 7(z) = dimT,N;_; =5 — 1, = € N;_;.

This is a contradiction since 7 < k, proving the claim.

By continuity, we can shrink V7=, N~! if necessary so that f7(z) & T,N;_; for all z €
N;_1. Also, shrinking further if necessary, there exits 6; > 0 such that ;(s;) z € U for
z € Nj_1, s; € (—6;,6;). Set V; = V;_1 X (—6;,6;) and define

¢j(81, sy Sj) = 'yj(sj)d)j_l (51, ey Sj_l).

By assumption, ¢;-1 has rank j — 1. It remains to verify that ¢; has rank 7, from which
it follows that N; is a j-dimensional integral submanifold of 7 in U.

Now ¢jx = Vjs¢j-14. Sofor 1 <i<j—1,

0o Jd
¢j*(5:)(31, ey 85-1,0) = id¢j—1*(5;)(81, cees8i-1)
o .., O .
¢j*(£]‘.)(31, cee385-1,0) = Wj*(O)Zd(gs—j) = f(z),

where Z = ¢;_1(s1,...,8;-1) € N;_3. Thus if §; is sufficiently small,
o .
{65:(57) (515 8i) Hen

are j linearly independent vectors at ¢;(s1,-..,s;) € N;.

This process terminates at j = k, and therefore Ny is the desired relatively open subset of
N. O
The situation is more complicated when ¥ has drift, that is, f(z) # 0. In particular,

distinction must be made between forward and reverse time. Without drift, reversing time

amounts to replacing v by —u.
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Define

A(z°,U) = {vu(s)z®: s> 0, r+ u(r) piecewise
constant, u(r) € A™, v,(r)z° € U

for all 0 <r < s}

This is the set of states in U accessible from z° € U by going forward in time only. Let ¥
be the Lie algebra generated by f,g1,...,9m on U.

Again, assume that 7 is nonsingular on U and let N be the corresponding (maximal in U)
integral submanifold of ¥, passing through z°.

The following generalization of Chow’s theorem is due to Krener, [3].

Theorem (Krener) Suppose dim ¥(z) =k on U. Then A(z°,u) C N contains a relatively
open subset of N.

Proof Refer to [3]. O

This time asymmetry is reflected in the following. Define

C(zU) = {vu(s)z®: s <0, r+— u(r) piecewise constant

u(r) € Q™, 7,(r)z® € U for all s <r <0}.

If 2! € C(2° U), then it is possible to steer the system from z! to z° by going forward in
time, that is going backwards from z° to z!. This is sometimes stated “z! is controllable to
z°”, distinguishing between accessibility (reachability) and (this notion of) controllability.

In general A(z° U) # C(z%U), however they coincide when ¥ has no drift, or when

f € span {g1,...,9m}-

3.2. Hermann-Krener Formulation

We summarize the ideas and results of Hermann and Krener [1], modified a little by
the more recent ideas in Krener [4].

Controllability and Local Controllability

A state z! is U-accessible from z° if there exits a bounded measurable control ¢ — u(t),

defined on some interval [0, T], such that the corresponding trajectory t — z(t), =z(t) €
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U, for all t € [0,T], z(0) = z°, z(T) = z'. We define the accessible sets by

A(z°,U) = {z'€U: z' is U-accessible from z°},

A(z%) = A(=°,M).

If ' € A(z® U), in general it is not true that z° € A(z',U). So accessibility is a reflexive,

transitive but not symmetric relation.

We say ¥ is controllable at z° if A(z°) = M, and controllable if A(z°) = M for all z° € M.

However, it may be necessary to go a long way or for a long time to reach points near z°:
=,
~
xo
x -
N

A stronger notion of controllability would require that the trajectory stay near z°:

Thus, we say that X is locally controllable at z° if for all neighborhoods U of z°, A(z°,0)
is also a neighborhood of z°. ¥ is locally controllable if 3 is locally controllable at every
z°e M.

The above definitions consider the ability of X to steer from one state to another.

Accessibility Property

We noted above that U-accessibility is not an equivalence relation. According to
Hermann-Krener, it is possible to define an equivalence relation on U containing all U-

accessible patrs. They call this weak U-accessibility.
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Write
WA, U) ={z' € U: 2% z° weakly U-accessible},

WA(®) = W A(, M).

Here, z' € WA(2°,U) if and only if z° € WA(z*,U).
Analogously, one can define concepts of (local) weak controllability.

Another aspect of controllability is the ability of controls to influence all modes. Thus:
We say that ¥ has the accessibility property if A(z°) has nonempty interior for all z° € M.
T has the local accessibility property if for every z° € M, and every neighborhood U of z°,
A(z°,U) has nonempty interior.

Theorem If X 15 locally weakly controllable, then ¥ has the local accessibility property.
Proof Suppose X is locally weakly controllable. The argument is similar to that used in
the proof of Chow’s theorem, only the Claim is true for a different reason.

If f(z,u) € T;Nj—; for all u € Q™, then ~,(t)z € N;; for all ¢, for all w € Q™. This con-

tradictors local weak controllability. O

Controllability Rank Condition

We say that ¥ satisfies the controllability rank condition at z° if in a neighborhood
of 2%, dim(ads|R(f))(z) = n. If this holds for all z° € M, we say that T satifies the
controllability rank condition.

Theorem If ¥ satisfies the controllability rank condition at z° € M, then ¥ has the local
accessibility property at z°.
Proof By assumption, z° is a regular point for (ads|R(f)). By Chow’s theorem, A(z°, U)

contains an open subset of U. O

There is almost a converse:

Theorem If ¥ has the local accessibility property, then the controllability rank condition
1s satisfied generically.

Proof Suppose there exits U C M such that dim{ads|R(f))(z) =k < n for z € U. Let
z° € U and U’ be the corresponding maximal integral submanifold passing through z°.

Then A(z°,U) C U', contradicting the local accessibility property. O
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Remarks

1. The rank condition is an algebraic test for a form of controllability.

2. We have the following implications:

local controllability = controllability
! Y
local accessibility property = accessibility property.

3.3. Local Representations (Isidori, p. 29, 40)

Write
P= (adeSp{g1, ceerGm})s

R = (ads|R(f))-

If z is a regular point of P + sp{f}, then
(P + sp{f})(z) = R(z).

Let r =dimR.
Theorem Let P, P + sp{f}, R be nonsingular, and suppose P C R,P # R. Then, at
each p € M, there exist coordinates (U, &) tn which ¥ ts represented by:

(& = At ) =P, ga(Enre sz wi

b1 = froalbryeo &)+ 2R, Givor (G1y- -0, En)u
ér = fr(Er,---,fn)
ér+1 =0

én = 0

Proof According to the representation theorem in §2, there exits local coordinates such

that
o o o o o

361’”"3&—1}’ R:{éﬁ""’ﬁﬁé}'

P={
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The first (r — 1) coordinates represent the (maximal in U) integral submanifolds of P,
while the first r coordinates represent those of R. Since f,g;,...,9w € R, the components
forr+1,...,n are zero. O
This gives us a geometrical picture of the behavior of X. All trajectories of ¥ are contained

in slices of the form

Ny ={ép1=c1,..., én =c¢n—}, (r— dimensional)
depending on the initial condition. The controls can affect the (r—1) directions Bi&’ cen, ‘—3?9:
only. The drift f causes ¥ to move from one (r — 1) dimensional slice N' = {¢ =

€0y--+5 &n = €pn—y} to another. In this sense £, is analogous to time.

Corjrol + \
irections
W

U=0 u#o
(deift direction) (control exerted)

If f, = 0, all trajectories are contained in an (r — 1) dimensional slice N', and there is no

drift effect. This corresponds to f(z) =0or f € R.

3.4. Controllable Subsystems

As the above geometrical description suggests, it may be possible to restrict ¥ to a
submanifold on which it is controllable. We mention one result in this direction.
Theorem Suppose dim(ads|R(f))(z) = k < n for all z € M. Fiz z° € M. Then there
exits a system ¥' defined on the mazimal integral submanifold N of (ads|R(f)) passing
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through z° which has the local accessibility property. Further, T satisfies the controllability

rank condition.

3.5. Examples

1. Linear systems. r = Az + Bu, M = IR".
f(z) = Az gi(:c) = B; (B; = ith column of B)
[Az, B;] = —AB; [Az,[Az, Bi]] = —A’B;, ete.

R(f)(z) = span {AzaBla"'aBm}'
(adf|R(f)} = span {Bi,...,Bm, ABi,...,ABpy,...,A" 'By,..., A" 'B,}
dim(ads|R(f)) = rank {B,AB,...,A" !B}

Thus the controllability rank condition is equivalent to the requirement that rank

{B,AB,...,A" 1B} = n. In this case, this is equivalent to global controllability.

2. Bilinear systems = Az + X2, (N;z)u;
f(z) = Az, ¢'(z) = Nz
[f,d'] = —[4, N{] (matrix commutator).

R(f)(z) = span {Az,Niz,...,N,z}
(ads|R(f))(z) = span {R(f)(z), [4,N|(z), [4,[4,N']/(z),[N',N*](z), etc...}

Note that R(f)(0) = (ads|R(f))(0) = 0, so bilinear systems are not controllable at 0.
This example is discussed in detail in Brockett [8], where N* are skew symmetric matrices.
Then the trajectories evolve on the sphere M : |z(t)| = |z(0)]. Controllability is studied in

terms of the matrix equations
X@)=(A+37, w()N)X(¢) , X(0)=1LI

It turns out that X (¢) is contained in a subgroup of SO(n). If this subgroup acts transi-

tively on S™1, then the bilinear systems is controllable on M.
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Now the Lie algebra of SO(n) is O(n), the real skew symmetric matrices. If
{A9 Nl’ oo aNm}LA = O(n)a

then the above mentioned subgroup is SO(n), which acts transitively on $"1, and so the
bilinear system is controllable on M.

3. M= RZ :i}]_ =u u € IR

2

:i:2=$1

2% = (z;(0) =0, =z(0) =0).

f(:l:) = (0, mi)T 3 g(x) = (I’O)T'
R(f)(=) ={ e, m=0
IR*, z,#0

(ads|R(f))(z) = IR? for all z.

Thus the controllability rank condition is satisfied everywhere. However,

A(z%) = {(z1,23) : 2 >0} U {z"}

NI | =

— ’\x'

I’lo‘f acecess ible

Clearly A(z°) has non-empty interior.
This example is due to Crouch and Byrnes [9]. They remark that this system is invariant

under the Z, action on IR? defined by

(-'51, -’52) — (—-’51, 932)-‘
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4. Observability

4.1. Hermann — Krener Formulation

Once again we review the ideas and results in [1], influenced by the more recent work
in [4].
Observability and Local Observability

Two states z°, z! are U-distinguishable if there exits a bounded measurable control
t — u(t), defined on some interval [0, T, such that the corresponding trajectories t — z*(t)
satisfy £'(0) = 2*, z'(t) € U for all ¢t € [0,T], and h(z'(t)) # h(z?(t)) for some ¢t € [0,T].

Define indistinguishability sets

I(z°,U) = {z'€U: z' is not U distinguishable from z°},

I(z%) = I(z°M).

If 2! € I(2°U), z*e€ I(z',U), then in general z? & I(z° U). Thus indistinguishability
defines a reflexive, symmetric but not transitive relation. However, when U = M, we get
an equivalence relation.

We say that T is observable at z° if I(z°) = {z°}, and observable if I(z°) = {z°} for all
z° € M.

Thus, for an observable system X, all the input-output maps S,0, z° € M, are distinct.

A stronger concept is the following. L is locally observable at z° if for all neighborhood U
of 20, I(z°,U) = {z°}; and T is locally observable if this is true for all z° € M.

Notice that this requires that states be distinguishable by local experiments.

Distinguishability Property

It may suffice to distinguish locally between points, either by local or global experi-
ments. We shall discuss an appropriate equivalence relation in section 4.4.

We say that ¥ has the distinguishability property if every z° € M has an open neigh-
borhood U such that I(z°) NU = {z°}.

¥ has the local distinguishability property if every z° € M has an open neighborhood
V such that for all open neighborhoods U of z°, U C V, one has I(z°,U) NV = {z°}.
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Note These concepts were called weakly observable and locally weakly observable in [1].

Observability Rank Condition

We say that X satisfies the observability rank condition at z° if in a neighborhood of
z°, dim{ady, R (dh))(z) = n. If this holds for all z° € M, we say that T satisfies the
observability rank condition.

Theorem If ¥ satisfies the observability rank condition at z° € M, then T has the local
distinguishability property at z°.

Proof First, let U be any neighborhood of z°. Suppose that I (2% U) # 0 and let 2! €
I(z°,U). Then we claim that ¢(z°) = ¢(z') for every ¢ € G, where § = (ads|{h1,...,hp}).
(Note d§ = (ad,|R(dh)). ) |

To see this: let u!,...,u* € O™ and s1,...,8;, > 0 be sufficiently small. Since z! €
I(z°,0),

Pi(Yuy (k) © - 0 Yuy (51)2°) = Ai(Fur (88) © -+ . 0 Y, (1) z1).

Differentiate with respect to sg,...,s; and evaluate at 0 gives

ads o...0ads (h;)z® = ady, o...0ad;, (k) 2.
f1 i f1 fi

But § is spanned by such functions. Hence the claim.
Since dimdg = n around z°, there exits ¢1,..., ¢, € § such that dés,...,dd, are linearly
independent. Define

®:z— (¢1(2),-..,0n(z))%.

Now D®(z°) is nonsingular, so by the inverse function theorem, ® is locally injective,
say in a neighborhood V. Then if U C V is a neighborhood of z°, the claim implies
I(z°,U) = {z°}. O

Once again, we have a partial converse:

Theorem If ¥ has the local distinguishability property, then the observability rank condi-
tion is satisfied generically.

Proof (Sketch). Suppose there exits U C M such that dim{ad;|R(dh))(z) = k < n for
z € U. Let 2° € U, and consider T restricted to U, that is, Z[y. Now (ads|R(dh))*

is a n — k > 0 dimensional integrable distribution. If z! is in the same leaf as z°, then
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Szo[v= $:,[v, so Ty does not have the local distinguishability property. Hence neither

does Y. O

Remarks

1. The rank condition is an algebraic test for a (weak) form of observability.

2. We have:
local observability == observability
4 Y
local distinguishability property = distinguishability property

4.2. Local Representations (Isidori, p. 29, 50)

Write Q = (ads|R(dh)), s=dim@, d=n-—s.
Theorem Let Q be nonsingular. Then, at each p € M, there exist coordinates (U, £) in

which ¥ is represented by

r €1= fil1, ., &) + 57 @i (61,... > T ) Us

63 = fs(&la ey En) + E,";1 Gis (&17 ey ﬁn)ui
és+1 = fs+1(€8+1a cevs fn) + 221 gi,s+1($s+1a ceey gn)ui

én = fn(§s+17-- . afn) + Er—_l Gin (§s+1’ ey fn)u:
y,-=h,-(§s+1,...,§,,), i=1,...,p.

Proof This follows from the representation theorem in §2. ]

Notice that the outputs depend only on €41, ..., é,. Leaves of Q* are (n —s) dimensional,

given by slices of the form
N = {£3+1 T Clyeeny én = cn—s}-

If 2%, z! € N, then the last (n — s) coordinates of the trajectories t — z°(t), t — z'(¢t),
agree at time £, for all ¢, that is £9(t) = ¢}(t), 7 =s+ 1,...,n. Hence they produce the

same output, and are indistinguishable. ¥ moves slice to slice.
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4.3. Duality

The above discussion parallels somewhat the discussion on controllability, and some
duality is evident. A duality is well known for linear systems, and a corresponding notion
for nonlinear systems is expressed in terms of the duality between vector fields and 1-forms.
This idea was developed by Krener and Hermann [7].

In linear system theory, a pair (4, B) is controllable if
C = span {B,AB,...,A" B} = R".

This corresponds to the controllability rank condition, and C can be identified with the

controllability distribution. A pair (C, A) is observable if
O = span {C,CA,...,CA" 1} = R™.

This is the observability rank condition, and O is the observability codistribution.

This is equivalent to requiring

ot = 'hl ker(C A*) = {0},

1=0

which says that the annihilator of the observability codistribution is zero.

4.4. Observable Quotient Systems

Even if a system ¥ on M is not observable, it may be possible to define a “quotient
system” &' on M/I which is observable, for an appropriate equivalence relation I. The
equivalence classes ought to be the leaves of the above mentioned foliation.

In this section we shall 8imply state two results.

z1Iz° if and only if z! € I(z°), or equivalently, z° € I(z'). Then I is an equivalence
relation on M. In fact, I is closed (continuity of ODEs on initial conditions). Then M/I
is Hausdorff. In general, I need not be regular. (Recall that I is regular if M/I admits a
C®* structure for which 7 : M — M/I is a submersion.).

Theorem (Sussman) Let © be symmetric (that is, for all u € Q™ there exits v € O™ such

that f(z,u) = —f(z,v) for all z € M ). If (Z,2°) has the local accessibility condition,
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then I is closed and regular. Also, there ezits a system X' defined on M' = M/I such
that (Z',I(z°)) is observable, has the local accessibility property, and realizes the same
input-output map.

We say that z°, z! are strongly indistinguishable, written z°SIz?!, if there exits a con-
tinuous « : [0,1] — M such that a(0) = 2%, «(1) = z!, and z°Ta(s), for all s € [0,1]. Then
ST is an equivalence relation and z°SIz! implies z°Iz!. If ¥ has the local distinguishability
property at z°, then $I(z°) = {z!:z'S1z°} = {«°}.

Theorem Suppose dim{ads|R(dh))(z) =k < n, for all z € M. Then:

(i) SI is a regular equivalence relation;

(ii) there ezits a system &' on M' = M/SI which has the local distinguishability property;
(iii) (%,2° and (¥, SI(z°)) release the same input-output map, for all z° € M;

(iv) if & is (locally) controllable, then so is ;

(v) i £ has the (local) accessibility property, then so does pHE

(vi) ¢f E satisfies the controllability rank condition, then so does Y, and moreover, M'

ts Hausdorff.

4.5. Examples
1. z = f(z), z€ R"
y = h(z), y € IR.

fl@)=Th: Fo)E  dh(z) = TN, Zdn,
Lih(z) = £k, fie)g2(z) Lsdh =dLsh

G = span{h,Lsh, L}k, etc} = R(h)
(ads|R(dR)) = d§ = span {dh,Lydh, L}dh, etc}

2.Linear Systems T = Az

y=Cz

f(z) = Az fiz) = Zj:l ai; Tj h(z) =Cz = Zn:c,- z;

i=1



Lgh(z) = Z:(Zi:l aij %) C; = 2 (ATCT)z!
Dih(z) = 3 ((47)*C7)a

=1

Lidh = dLih =3 ((AT)*CTdz;

i=1

(ads|R(dh)) = span {C,CA,...,CA™ '}

-
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Thus the observability rank condition is equivalent to the requirement that rank

{C,CA,...,CA"™ '} = n. Here, this is equivalent to global observability.

The Lie differentiation is just differentiating the output (n — 1) times:

z(t) = ey, y(t) = Cetx.
y(0) = Czo
] 9(0) — CAz
y"(0) = CA™ 1z

This system of n equations can be solved uniquely for z; in terms of (y(0),...

if rank {C,CA,...,CA™1} =n.

3. M=IR, T=u
y =sinz
f(z) =0, g(z) =1, h(z) =sinz

0 3
R(f) = sp (2}, (adfIR())) = spam {2} = R
dh = (cos z)dz Lydh = (sinz)dz

(ads|R(dh))(z) = span{(cosz)dz, (sinz)dz} ~ IR

,y1(0))

Therefore both the controllability and observability rank conditions are satisfied. The

system is in fact controllable, but not observable.

Let zo = 0. Then I(z°) = {2km,k€ Z} ~ Z.

However, on M' = S! = IR/Z, the system is observable. (It is again controllable, and we

have “minimal realization”.)
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