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1. Introduction. The Helmholtz equation arises in many physical applications,
e.g., scattering problems in electromagnetics and acoustics [Ernst94], [AbKr94]. In
realistic applications, a wide range of wavenumbers is often of interest. For a finite
element (or finite-difference) discretization of the two-dimensional Helmholtz equa-
tion, it is necessary that the number of grid points grows faster than quadratically
in the wavenumber in order to maintain a given accuracy [BaGoTu85a], [ThIBa97].
Thus, for high wavenumbers, the discretized Helmholtz equation “leads to a huge
linear system of equations” [AbKr94]. Due to the large bandwidth, the storage re-
quirement renders Gaussian elimination prohibitive. To handle high wavenumbers
and large domains for the Helmholtz equation in duct acoustics, Abrahamsson and
Kreiss [AbKr94] devised a special iteration technique related to separation of vari-
ables. However, the effectiveness of the method relies on the degree of separability of
the problem. Another way to address the computational difficulties for the discretized
Helmholtz equation is to design iterative methods. Bayliss et al. [BaGoTu83] used a
preconditioned conjugate gradient method applied to the normal equations for a finite
element discretization [BaGuTu82]. Due to the ill-conditioning of the normal equa-
tions, the unpreconditioned algorithm suffered from extremely slow convergence. The
convergence rate was substantially improved through preconditioners based on sym-
metric successive overrelaxation [BaGoTu83]; or a multigrid V-cycle [BaGoTu85b],
[Gold82]; only for the Laplacian part of the Helmholtz operator. Recently, the itera-
tive quasi-minimal residual algorithm has been applied to capacitance matrix methods
for exterior Helmholtz problems [Ernst94].

The objective of this paper is to develop a technique for solving the Helmholtz
equation with an iterative method. In order to be a viable method, it should exploit
the sparsity of the discretization matrix in an efficient way, converge rapidly, and be
competitive with Gaussian elimination in regard to the total arithmetic complexity.
Our approach is to apply a preconditioned Krylov subspace method [FrGoNa92] di-
rectly to the discretized equations. Typically and especially for high wavenumbers,
the discretization matrix is large, complex, indefinite, and ill-conditioned. As a result,
standard preconditioning techniques like diagonal scaling and incomplete LU decom-
position are likely to do poorly. Instead we construct preconditioners based on fast
transforms, see [Ott096] and the survey in [ChanNg96]. In order to get a highly struc-
tured matrix, facilitating the design of the preconditioner, a finite-difference method
is used for the discretization. For the same reason, special attentention is given to
the choice of radiation boundary conditions. A finite element method would be more
flexible for complicated geometries, but also less amenable to fast transform-based
preconditioners. This is particularly noticeable for higher orders of approximation,
where some of the degrees of freedom typically are not node values.

The paper is organized as follows. In §2 the governing equations, the boundary
conditions, and the finite-difference discretization of a Helmholtz problem are derived.
The specific problem is the propagation of hydroacoustic waves in a curvilinear duct.
The same technique would easily carry over to, e.g., an electromagnetic waveguide.
Issues concerning the preconditioner are treated in §3. Section 4 is devoted to com-
putational aspects with an emphasis on resolution criteria, i.e., relations between the
wavenumber, the grid size, and the desired accuracy. Finally, numerical experiments
are presented in §5 followed by conclusions.

2. The model problem. In this section the theory needed to determine the
system of equations for the model problem is discussed.
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2.1. Notation. The quantity I,, denotes the identity matrix of order m. The
square matrices diag; ., (8;) and trid; ,m(a;, Bj,7;) are defined in the following way:

B
Brm
B 71
as By Y2

trid; m (e, Bj,7;) = -
Am—1 6m—1 Ym—1
Um 6m

2.2. Governing equations. We study the propagation of time-harmonic sound
waves under water. Neglecting sound absorption and assuming that the fluid is homo-
geneous, the waves are governed by the Helmholtz equation

. RECE

where wu(xy,z2) is the phasor of the acoustic pressure Re(u(zi,z2)e™*27/?). The
wavenumber is given by k = 27 f/c¢, where f is the frequency, and ¢ = 1500 m/s
is the sound speed. For heterogeneous media, the sound speed and consequently the
wavenumber would depend on the space coordinates.

We consider a physical domain

{ 1 = x1(&1,€2)
zy = w91, €)

that can be mapped onto the unit square

0<&6 <1
0<é <1

via an orthogonal transformation. Equation (1) is then transformed into
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where the metric coefficients a and e are given by
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2.3. Boundary conditions. We now choose the physical domain to be a two-
dimensional duct, see the shaded area in Fig. 1.

X d>
l I_1 B . 4

xXa

d

Fia. 1. The physical domain.

For the problem to be well-posed, conditions are needed on all four boundaries.
Our model problem is partly fixed by letting the physical boundary I'; be a soft wall
(air), whereas I'; is a rigid wall (rock). The sound field is generated by a source along
z2 = 0, specified by a source term ¢(£1) = g(#1(£1,0)). At z2 = d2 an artificial far-
zone boundary has been introduced. Originally, the domain is semi-infinite (da — 00),
but for computational reasons it is truncated by assigning d, some finite value. For
the soft wall Ty, the boundary condition is « = 0 (pressure release). This leads to

(3) u(0a€2) = 0’ 0 S €2 S 1a

in the computational domain. Since the bottom I'; is rigid, a condition on the normal
derivative is imposed:

Ou
6—n:0, (l‘l,l‘z)erz.

Due to the orthogonal transformation this becomes

(1) (L&) =0, 0<& <1,

For the radiation conditions at the near- and far-zone boundaries, Dirichlet—to—
Neumann (DtN) maps [KeGi89] are employed. The main reason for choosing nonlocal
DtN maps, instead of the local radiation conditions described in [BaGuTu82], is that
discretized DtN maps are more apt to preconditioning by fast transforms. Our de-
sign of radiation conditions follows the principles outlined in [FixMa78], where a
variational formulation of DtN conditions was derived for an axially symmetric duct
parametrized by cylindrical coordinates. Boundary conditions based on DtN maps
require the boundary in question to be a separable coordinate surface. Moreover, for
the radiation condition in [FixMa78§], it is implicitly assumed that the duct could be
extended beyond the artificial boundary by parallel straight walls. This is a so-called
anechoical termination [AbKr94]. Since the wavenumber & is independent of &5, the
above prerequisites are fulfilled by requiring the duct to be flat only in an infinitesimal
neighborhood of s = dy and x5 = 0. In the present application, the wavenumber
is actually a constant. Thus, without any significant loss of accuracy we can use the
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slightly more restrictive assumption that, in the vicinity of x5 = 0, there is a local
transformation

{1‘1 = &dg, 06 <1,
r2 = 52d2~

Substituting this into (2), together with (3) and (4), yields

_de 3%u  de 8w 2 —
q 087 ~ @ ot Kk d¢dsu = 0,

(5) u(0,&2) = 0,
F(1,6) = 0.

The condition at the near-zone boundary is based on the fact that the solution for

Ogglgla €2§0a

can be obtained through separation of variables, i.e., u(£1,&2) = ¥(&1)p(€2). Solv-
ing (5) with this ansatz gives

Um(€1) = V2sin((m— 3)7éy), m
om(&2) = Amexp(im 2)—|—Bmexp(—im 2), m=12 ...,

where
Am = ((m = Dmda/dg)’ — (kdy)?.

The eigenfunctions {1, (£1)}0-; are orthonormal with respect to the scalar product

g) = / F(E)g(E0)de,

The general solution to the eigenproblem (5) becomes

(6)  u(ér,é) = ZAmwm (&) exp(iv/=Am&s2) + B thm (€1) exp(—iv/—Am&z)
m=1
For mode indices below the cutoff limit, i.e.,

Kjdz 1
<qpp = | L2
(7) m < e {T +2J,

the eigenvalues A, become negative, yielding propagating modes. If A, were positive,
we would get evanescent modes. Analogously to the motivation in [FixMa78], the
influence of the evanescent modes is neglible, especially on the far field. Thus, an
appropriate way to truncate the series in (6) is to retain only the terms with mode
indices m < py. The situation is somewhat different for a purely exterior Helmholtz
problem, where an appropriate truncation of DtN maps is a more delicate matter
[GrKe95].

The Ap,-terms in (6) correspond to rightgoing waves, and the By,-terms corre-
spond to leftgoing waves. In our model we have a source at the left boundary. We will
treat the rightgoing waves as originating from a “truncated” point source positioned
at depth & = 65 by letting

(8) Am = (Um(61),9(61)) = ¥m(8s), m=1,... e
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Note that leftgoing waves are feasible in order to handle possible reflections from the
curved bottom. Inserting (7) and (8) into (6) yields

(9) u(ér,&) = Zw Y¥m (€1) exp(iv/=Am&2) + Bimtm (€1) exp(—in/=Amé2)

The coefficients By, are determined from the solution by exploiting the orthonormality
of the functions 1, (£1). From (9) we get

(10) B, = <1/)m(€1)a u(fl, 0)) - 1/)771(65)

The nonlocal boundary condition at £ = 0 is obtained by differentiating (9) with
respect to & and using (10). Thus,

_¥ (€1,0) Z V= Am (¥ (€1), u(€r,0))¥m (&)

(11) = 22\/—A Y (83 )¥m (1)

m=1

The boundary condition at £ = 1 is derived in a similar way. Due to the anechoical
termination of the duct, there are no reflections, 1.e., only rightgoing waves:

(12) 51,52 Z Amtm fl)eXp< Ty _/\m(€2 - 1))’

m=1
where
A = ((m=H)wds/d,)” = (kds)?,
_ rkd, n 1
Hr = T 21
The coefficients A,, are determined by

Differentiation of (12) and insertion of (13) gives the condition for the far-zone bound-
ary:

(14)

65 (&, 1) Zv (U (1), 01, 1)) (€1) = 0

2.4. Discretization. Now when the analytical problem is defined, we design the
numerical method. Introduce a uniform grid as

{&,j = jhi, i=0,...,m +1,
€2,k = (k_%)hz, k=1 ., Mo,
where
1 1
h1: T hz:
mi + 5 my — 2
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Let w;j denote the approximate solution at the point (& ;,&2%). We use centered
difference operators to obtain second-order accuracy. Equation (2) is approximated
with

(15) - hfz(a]+§,k(uy+1,k —ujp) = a1 (e = uj-1))
—_9y/ — -
=y (0] (jn = i) — o s (i — wj 1)) — €y = 0

for inner points k = 2,...,mz2 — 1 and j = 1,...,my. The boundary conditions (3)
and (4) become

(16) uor =0, k=1,...,ma,
(17) Um 41,k = Umq ke, k=1,...,ma.

For the other two boundaries matters are more complicated. We discretize the
modal expansions involving the eigenfunctions ¥, (£1) by evaluating them on the
&-grid, i.e.,

(18) ¢, _{1/)m(€17] {\/ism — %)ﬂ'jhl)} . o m=1,...,mq,

j=1

and by approximating the integrals with a second-order accurate combination of the
composite trapezoid rule and the rectangle rule. QOur specific choice of &-grid and
quadrature rule makes the column vectors (18) orthonormal with respect to the dis-
crete scalar product

1
(W, ) = G5 Bt /0 G (€0 (E1)dE1

Moreover, a second-order accurate finite-difference discretization of the eigenproblem
yields ezactly the same eigenvectors as (18). The resulting discretization of condi-
tions (11) and (14) is

(19) hy ' (w1 — us) —ZZ\/—A Gt ha 3 (uy + up) = 22\/ mWm (8 )m,

m=1

br
(20) hy  (tmy = tmym1) =1 3 V= A Um ¥ b1 3 (tmy—1 + tm,) = 0,
m=1

_ T
U = (U17k~~~ uml’k) .
This can be written

(I, — Co)ur + (= Iy, — Co)uz = g1,

(_Iml - CT)um2—1 + (Iml - CT)umz = Oa

where

Me Hr
) . 1 . . P
(21) Cy = thy mg_l Vi _/\m1/)m1/)m7a Cr =1thy mg_l Vi _/\m1/)m1/)m7a
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He
g1 = —ihs Y 2/ = A thm (85) .
m=1

Notice that A,, depends on the depth and is different for the left and right boundaries.
Applying (15) to inner grid points, using (19) and (20), and eliminating the
boundary values defined by (16) and (17) gives the complete system of equations

Bu=y,
U g1
U9 0 .
u= S E g=1 . b B = tridg m,(Bk,—1, Br.o, Br 1),
U, 0
where
(22) Bio=1In, —Cy, Bi1=—In, —C,

Bm2,—1 = _Iml - CT’ Bm270 = Iml - CT’

and for k =2,...,my — 1:

=
[
|

-1 o= diagg, (—ya7, ),

Bko = trldjyml(—aj_%yk,ajyk,—a]»_l_%yk),

_a 21
Bk,l - dlag]’,ml(_'ya%k{_%),
where
_ -1 -1 2
a1,k - a%,k—i_a%,k +7(a17k_%+a17k+%)_hlelyka
. — -1 —1 2 . .
o = a]»_%yk—I—a]»_l_%’k—I—'y(a].’k_%—I—a].’k_l_%)—hle]yk, j=2,...,m — 1,
—_ -1 -1 2
Omy kb = aml—%,k+7(amlyk_%+am17k+%)_hlem1,ka
- M
v = 2

By some minor modifications, the discretization could accommodate other combi-
nations of boundary conditions on the boundaries I'y and I'y. For Dirichlet conditions
at I'y and I's, a suitable grid for & would be

1
i = jh =20,... 1, hi= .
gly] Jhi, J Oa am1+ ) 1 m1+1
The resulting alteration of the matrix B would solely be
Oy b = Gy 1 F Gy 1+ ’V(a;ﬁ,k_% + a;fh“%) — hiem, k-

For Neumann conditions at I'y and I's, a convenient choice of £;-grid would be

. . 1
Gi=0—3h, j=0,..m+1, h=—.
my
This would cause a; j to change into

_ -1 -1 2
a1,k = a%,k + Py(alyk_% + a17k+%) - hlelyka

but leaving the rest of B intact.
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3. Preconditioning. We employ a Krylov subspace method to solve the system
of equations. For simplicity and robustness, we choose the restarted generalized mini-
mal residual (GMRES(¢)) algorithm [SaadSch86], where £ is the restarting length. For
the iterative method to be competitive, an effective preconditioner is needed. Other-
wise the cost of computing the solution would be too high. After preconditioning, the
original system Bu = g is transformed into M ~'Bu = M ~'g. We construct a precon-
ditioner that preserves the block structure of B, thus exploiting sparsity. Moreover,
it should be possible to form and apply the preconditioner at low arithmetic costs.
To meet these demands, we use a preconditioner [Ott096] based on fast trigonomet-
ric transforms [VLoan92], [BaSw91]. The main idea in the design is to approximate
the matrix B with a preconditioner having the same block structure, and where all
the blocks have the same prescribed eigenvectors. These eigenvectors depend on the
boundary conditions, but are chosen so that the corresponding similarity transforma-
tion is associated with a fast transform.

For the discretization matrix B in §2.4, a Dirichlet condition was imposed on I'y
and a Neumann condition on I';. Hence, a suitable choice for the unitary eigenvector
matrix is

QE[(]1,~~~,Qm1], Qm:\/aﬂjma

which is connected to a slightly modified [Ott096] sine transform-II [VLoan92]. Form
a preconditioner

M = tridg m, (Me,—1, My 0, Mz 1),
the blocks of which are diagonalized by @, 1.e.,
(23) Mk,r = QAk,rQ*a

where Ay, r = —1,0,1, are diagonal matrices. There are several possible choices
for Ay . The specific choice

Ak,r = dlag(Q*Bk,rQ)

minimizes || By , — M}, »||p for matrices of type (23), and it also minimizes || B — M]||p.
Observe that the blocks defined by (21) can be rewritten as linear combinations of
outer products ¢mq),. This means that the matrix blocks (22) corresponding to the
left and right boundaries will be diagonalized by @. In fact, for a duct with a flat
bottom, all the blocks in B would be diagonalized by @, yielding M = B [Ott096].
Hence, the operator M~ is a direct fast Helmholtz solver for rectangular domains.
For a duct with a curved bottom, blocks corresponding to inner grid lines will not
be completely diagonalized. However, when the domain is moderately curved, the
preconditioner presumably acts like a viable convergence accelerator.

For the Dirichlet—Dirichlet and Neumann—Neumann boundary conditions dis-
cussed in §2.4, the eigenvector matrices would rather be chosen as those associated
with the sine and cosine transforms, respectively. The preconditioners thus arising
would also yield direct fast solvers for rectangular domains, see [Ott096].

For each iteration, the computation # = M~y has to be performed. Due to the
structure of the blocks of M, it holds that

A= (Im2 & Q*)M(Im2 ® Q) = tridk,mQ(Ak,—l,Ak,O,Ak,l),
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leading to
M_l = (Im2 @ Q)A_l(lmz @ Q*)

The computation £ = M~y can now be done in three steps.

Lv= (Im2 @ Q*)y

2. solve Az = v

3. 2= (Im, @ Q)2
Step 2 consists of solving a block tridiagonal system, where each block is diagonal.
By permuting the unknowns, we get m; independent tridiagonal systems of order ms.
Steps 1 and 3 consist of ms sine transforms-1I and inverse sine transforms-II of length
my. We can utilize fast Fourier transform methods [BaSw91] for computing these
transforms [Ott096].

4. Computational issues.

4.1. Resolution. Since the solutions to the Helmholtz equation are waves, it
is evident that the grid size A must follow the wavenumber x in order to achieve a
given accuracy. A naive approach would be to use a fixed number of grid points per
wavelength, i.e., keeping kh constant. Bayliss et al. [BaGoTu85a] established that
such a resolution criterion is insufficient. Instead they presented estimates predicting
that the Ly norm of the error behaves like QO(kPT1h?) for a pth-order finite element
discretization. Similar estimates have been rigorously proved [ThIBa97] for a one-
dimensional model problem with Dirichlet—Robin boundary conditions. The estimates
are in accordance with results conjected from numerical experiments [ThoPin94]. The
objective of this section 1s to specify convenient resolution criteria, for the finite-
difference discretization in §2.4, resembling those in [BaGoTu85a].

The analysis is based on a one-dimensional counterpart of (2), i.e.,

d?v

(24) T a2

—(kd2)’v =10, 0<é& <1,

with Robin boundary conditions

—%(0) —ikdav(0) = —2ikdyA,
2
(25) j—g}z(l) —ikdav(l) = 0

replacing (11) and (14). Note that for a one-dimensional problem, the Sommerfeld
condition (25) is exact inasmuch as it allows only rightgoing waves. Applying the
same discretization as in §2.4 to (24) results in

(26) —(Vp41 — 20 + vp—1) — (nd2)2h§vk = 0, k=2,...,ms—1,
h
(27) —(1}2 - 1}1) - Z'K?dz 72(1}1 + 1}2) = —Qinzth,
. hy
(28)  (Vmy — Umy—1) — z;@dz?(vmrl +Um,) = 0

for the finite-difference approximation vy /s v(&2,5). The difference equation (26) has
the following characteristic equation

2 — (2= (kd2)*h3)r+1=0
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with roots denoted by r; and r5. The root

(Kidz)zhz (Kidz)4h4
e (a2

corresponds to the rightgoing mode; whereas the remaining root

7“1:1—

K?dz 2]7,2 K?dz 4h4
( 2) 2—\/—(Kjd2)2h§—|—( 4) 2

is associated with the leftgoing mode. Thus, the solution to (26) is

7“2:1—

vp = Cﬂjf_% + Czrf;_%,
where the coefficients C; and C are determined from (27) and (28), yielding
C1 = (1+O((rd2)*h3)) A, Co = O((kd2)?h3A).

_s
Combining this with a Taylor expansion of rlf 2 leads to

Z'(K?dz)?)hg
24
Comparing this with the true solution to (24), i.e.,

v(€ax) = Aexp(ird2€ay),

vy = Aexp (mdzgzyk + Ear + 0((Kid2)4h§)) + O((kd2)*h2A).

(Kidz)Shz

we conclude that the leading phase error of magnitude o 252716 grows linearly

in &;. Furthermore, a reasonable resolution criterion is

(Kidz)Shg —
24 o

where 7 1s a given tolerance. Notice that for this resolution we obtain
vy = Aexp(irdaoy +itéay + O(T%(Kidz)_%)) + O(7(kdy) ™1 A).

When xds is sufficiently large and 7 is less than one, the terms Q(r(kd2)~1A) and
O(T%(Kidz)_%), representing artificial reflections and amplitude errors, are neglible
compared with the phase error 7€ 1. Under these circumstances, the phase error is a
measure of the pointwise relative error. Extensive numerical experiments, comparing
the numerical solution vy with the true solution v(&; ), corroborate that the phase
error prediction above is sharp.

Thus, for the two-dimensional problem in §2.4, we are led to the following reso-
lution in the &;-direction:

(29) hy — EZZ;: my — [— + 2} .

For the &;-direction, the choice of resolution is more subtle. Lacking a more sophisti-
cated analysis, a rescaling of condition (29) is advocated:

dy — max(dy, d,),

(30) hy — M’ my — [i _ 1-‘ .
(Kidl)5 hl 2



12 KURT OTTO AND ELISABETH LARSSON

4.2. Complexity. In this section we discuss the efficiency of our method re-
garding memory requirement and arithmetic complexity. Note that only the highest
order terms will be considered, and that the number of arithmetic operations will be
normalized by the number of unknowns myms. A complex addition will be counted
as two arithmetic operations, a complex multiplication as six arithmetic operations,
and a complex division as eleven arithmetic operations.

In order to determine the arithmetic complexity, we must specify how the initial
approximation and the stopping criterion are computed. As an initial approximation
we use the preconditioned right-hand side M ~1g, which is advantageous if M~ B is
close to the identity matrix. We have imposed the following stopping criterion

1M~ (g — Bul)|2
1M =gl

with tolerance e = 10~*,

The arithmetic work can be divided into initialization and iteration. The initial
part consists of forming [Ott096] the preconditioner and factorizing the tridiagonal
systems at a cost of a,; = 20mﬁllog2m + 139, where m = 2[log2mi+1)+1  The
computation of the initial approximation is done with a preconditioner solve that
requires dps = QOmﬁ1 log, m + 117 arithmetic operations per unknown. The iterative
method also goes through some initial steps. The cost for these is a;, = 2ap,+am 410,
where a,, = 40 is the work required for a matrix—vector product y = Bz. Accordingly,
the total arithmetic cost for the initialization becomes @it = aps + aps + @i

The work for one iteration of GMRES(¢) is taken as the average over a complete
cycle of £ iterations, and is given by a;; = am + aps + 8¢ + 44.

If we let n;; be the number of iterations required for convergence, then the total
work for solving M=t Bu = M ~'g with the GMRES(¢) method is a;nit + 1tz

The memory requirement for our method is my, +m, +m;;; where my,, = Tmyms
is the number of memory positions needed for the coefficient matrix, the right-hand
side, and the solution; m, = 8m;m. 4+ 4mms is the number of memory positions used
by the preconditioner; and m;; = 2(¢ 4+ 1)mymsy denotes the storage requirement for
the iterative method. Note that a complex value is considered to take up two memory
positions.

In Table 1 our method is compared with band Gaussian elimination, which is the
standard solution technique. The storage requirements have been normalized by the
number of unknowns.

TABLE 1
Comparison of GMRES({) and band Gaussian elimination.

arithmetic complexity memory requirement
band GE Sm% + 27Tmq 4dmq + 4
GMRES({) | 802 log, 1 + 540 2417+ 42

+ 1i1(202- log, m 4 8( + 201)
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5. Numerical experiments. In this section the results from some numerical
experiments are presented. In all experiments, the systems of equations have been
solved using the GMRES(¢) method combined with the preconditioner defined in §3.
The orthogonal grid is generated by a code based on the method described in [Abra91].
The implementations are made in Fortran 90, utilizing 64 bit precision for the grid
generation, and 32 bit precision for the iterative method and the preconditioner. The
numerical experiments were performed on a DEC AlphaServer 8200 £v5/300." The
geometry of the duct, i.e., the bottom profile is defined by the following functions:

tanh(s(#—é.))—tanh(—sé.
$1(9) = dz + (dr - dz)tanhEsEl—écgg—tanhE—séc; 0<h<1
l‘z(g) = Hdz ’ - -

where

4

6. = 0.5, =
0-5 s min(é., 1 — 8,)

By this choice the depth varies smoothly from d; at the left boundary to d, at the right
boundary. The parameter 6. determines the center of the slope, whereas s controls
the steepness. By increasing s, the slope steepens and the bottom flattens out at the
ends. The relative source depth §; is set to 0.5 in all experiments. We use resolution
criteria (29) and (30) with a phase error tolerance 7 = 8%.

It would be interesting to investigate the arithmetic speedup for the precondi-
tioned GMRES({) method compared with plain GMRES(¢), but the latter does not
converge in a reasonable number of iterations. However, the effectiveness of the pre-
conditioner 1s indicated when comparing unpreconditioned and preconditioned spec-
tra. The spectra for a small problem are shown in Figs. 2 and 3.

|2 ]
©
SN ]
g o
8
=]
-0.025}; ]
0 Re(A) 0

Fia. 2. The spectrum of B for dy = 300, dp = 50, d = 20, and f = 25.

* The actual computer is part of the Yggdrasil computing facilities at the Dept. of Scientific
Computing, Uppsala Univ.
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Fic. 3. The spectrum of M~1B for do = 300, d; = 50, dr = 20, and f = 25.

The preconditioned spectrum exhibits a high degree of clustering around one, which
is favorable for Krylov subspace methods [Axel94], [Axel88].

Since the preconditioner coincides with the discretization matrix for the model
problem in a duct with a flat bottom, it 1s to be expected that the rate of convergence
will be affected by the geometry. When the bottom of the duct gets more curved,
the preconditioner is not as good an approximation of B. Figure 4 shows how the
geometry influences the number of iterations for GMRES(6). Notice that here the
number of iterations decreases when the problem size increases (and the duct gets
less curved).
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Fia. 4. Number of iterations for ducts where the length do 15 varied. All the other parameters
are held constant, dy = 50, dr = 20, and f = 100.
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Another interesting issue 1s how the frequency affects the number of iterations.
This is demonstrated in Fig. 5 for a duct of medium steepness and frequencies in the
low—to—intermediate range.
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Fia. 5. Number of iterations for different frequencies, do = 500, dy = 50 and d, = 20.

In Figs. 6 and 7, the results from comparative experiments are shown. The number
of unknowns depends cubically on the frequency and ranges from 7452 to 2563902. It
is clear that our method is more efficient than band Gaussian elimination both regard-
ing arithmetic complexity and memory requirement for all problem sizes considered.
Furthermore, the relative gain increases as the frequency increases.
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Fia. 6. Arithmetic gain for GMRES(6) compared with band Gaussian elimination.



16 KURT OTTO AND ELISABETH LARSSON

50

45 | 1

40 | ]

35+ B

memory gain
= N N W
o o o1 O
L L L L

[y
o
T
I

25 50 75 100 125 150 175
frequency [Hz]

Fia. 7. Memory gain for GMRES(6) compared with band Gaussian elimination.

Finally, we display the solutions for two different frequencies. We have chosen
rather low frequencies, because those solutions are easier to visualize.

500

X2

Fia. 8. The solution for f = 25, do = 500, dy = 50 and dr = 20. The contour of the duct is
also depicted.
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500

X2

Fia. 9. The solution for f = 75, do = 500, dy = 50 and dr = 20. The contour of the duct is
also depicted.

Note that, for the lower frequency, only one wave mode is transmitted in the narrow
part of the duct. For the higher frequency, several modes are transmitted and interfere.

6. Conclusions. We have applied a preconditioned GMRES({) algorithm to a
second-order finite-difference discretization of the two-dimensional Helmholtz equa-
tion subject to Dirichlet, Neumann, and DtN boundary conditions. The precondi-
tioner is based on fast transforms, and results in a direct fast Helmholtz solver for
rectangular domains. The memory requirement for the preconditioned method is lin-
ear in the number of unknowns. Thus, the sparsity of the original discretization matrix
is efficiently exploited. Numerical experiments, for a hydroacoustic wave propagation
problem, show that the preconditioned iterative method yields a significant gain both
in storage requirement and arithmetic complexity, when it is compared with band
Gaussian elimination. Especially, the relative gain increases when the wavenumber is
raised. Moreover, the number of iterations required for convergence grows moderately
(or even decreases) as the number of unknowns increases.

In order to suppress the phase error, the number of unknowns has to grow cub-
ically in the wavenumber due to the second-order accurate discretization. Thus, for
high wavenumbers, the discretization is less tractable from a computational point of
view. The memory requirement might be a bottle-neck. To mitigate this adverse
effect, high-order discretizations will be investigated in a forthcoming paper. An-
other pertinent concern is to perform a more rigorous phase error analysis. Further
directions of research will also entail applications to heterogeneous media, e.g., cases
where the sound speed depends on the depth due to temperature gradients, changes
in hydrostatic pressure, and variable salinity.
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