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Abstract

Over the last two and a half years we have been demonstrating a new method-
ology for the design of rotorcraft flight control systems (FCS) to meet handling
qualities requirements. This method is based on multicriterion optimization as im-
plemented in the optimization package CONSOL-OPTCAD (C-0). This package
has been developed at the Institute for Systems Research (ISR) at the University
of Maryland at College Park. This design methodology has been applied to the
design of a FCS for the UH-60A helicopter in hover having the ADOCS control
structure. The controller parameters have been optimized to meet the ADS-33C
specifications. Furthermore, using this approach, an optimal (minimum control

energy) controller has been obtained and trade-off studies have been performed.
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1 Introduction

1.1 Design of rotorcraft flight control systems to meet handling qual-

ities requirements

In a classical SISO control system design process, the practical design specifications are
often replaced by standard control design specifications such as bandwidth, overshoot,
etc. The main reason for using these standard specifications is that some (or all) of
them can be satisfied using classical techniques such as root locus, Bode, etc. Of course,
using standard specifications, instead of the original ones, leads to an approximate
design. Moreover, these design techniques are limited to one or two (competing)
specifications. It is difficult, if not impossible to use them for the design of MIMO
control systems such as a modern rotorcraft FCS. Note that for MIMO systems some of
the standard SISO specifications are not defined or have only “conservative” meaning
(e.g., gain and phase margins).

In modern rotorcraft FCS design for handling qualities some MIMO control design
methods have recently been used. These methods include optimal techniques such as
LQR [1], H2/H [2,3], parametric optimization [4,5], etc., and other MIMO design
techniques such as eigenstructure assignment [6], QFT [7], Nyquist array [8], etc. (see
[9] for partial review). The main disadvantage of these MIMO techniques is that
using precisely the theoretical design procedure it is either impossible to meet all the
design requirements or many design iterations are required. Therefore many ad hoc
design methods, based on theoretical MIMO techniques, are also used. Using those
techniques (e.g., [10]) the design process is usually made in two phases. First we solve
the theoretical problem (e.g., LQR), then we tune the design to meet the handling
qualities requirements using simulation and/or test flight results (see for example [11]
and {3]).

In fact there are no direct design methods for meeting handling qualities require-

ments. In this research we propose to use multicriterion parametric optimization as



the basis for a new direct design methodology.

1.2 Research objectives

The main objectives of this research are:

e Development of a rotorcraft FCS design technique based on multicriterion opti-
mization. This method allows the designer to design “directly from the specs”

to meet any (nonstandard) design specifications, such as handling qualities.

e Demonstration of this method by finding a set of FCS parameters such that the
UH-60A in hover meets the LEVEL 1 performance requirements of the ADS-33C
[12] (a feasible solution).

e Further demonstration of this method by meeting the ADS-33C level 1 specifi-

cations with minimum actuator “energy” (an optimal solution).

e Demonstration of the use of this method and the above criterion to perform

trade-off studies.

1.3 Organization

The report is organized into seven sections. In Section 2 the general multicriterion-
optimization-based design process is presented followed by a brief description of each
of its components. The optimization package CONSOL-OPTCAD is introduced in
Section 3. The design setup for the UH-60A in hover is given in Section 4. In Section 5
the nominal (LEVEL 1) design is presented including design considerations and results.
In Section 6 two trade-off cases, performance/specification and performance/hardware,
are studied. In addition the robustness of the optimal design is examined. Finally,
some concluding remarks and some suggestions for future work are given in Section 7

This report has two appendices. Appendix A is a listing of all the computer code

used in the design process. A tutorial example is given in Appendix B.



2 Multicriterion-Optimization-Based Design Methodol-
ogy
2.1 Introduction

Real design problems are usually multifaceted. There is usually a variety of constraints
on the solution as well as a group of, often conflicting, objectives. It is extremely dif-
ficult, if not impossible, to translate such a collection of specifications into a single
objective functional as is required by most optimal control methods. As systems be-
come more complex and their required performance levels increase it becomes difficult,
if not impossible, to use classical methods to design satisfactory controllers.

The multicriterion-optimization-based design methodology is based on a combina-
tion of computer-based parametric optimization and human control designers. The
idea is to use the computer to compute performance measures and find controller
parameters that optimize them. The human designer decides whether the computer-
generated design is adequate, and if it is not, changes the problem posed to the com-
puter so as to drive the computer-generated solution in a better direction.

The role of the computer is a multicriterion parametric optimization. The human
designer’s first step is to translate the constraints and objectives of the design into a
collection of smooth scalar functions of the (vector of) design parameters, say f; (z)
where i = 1,2,...,n and g is an m-vector of design parameters. The computer then
tries to optimize (maximize)

max f (z) = max{ min «;f; (z)} (2.1)

zeC zeC |i=1,2,..n

where C is the set of allowable z’s (defined by some of the constraints) and «;, i =
1,2,...,n is a set of real weights chosen by the designer.
To understand why the design problem is posed this way, consider the following

example.
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Figure 2.1: a: solid - fi(z), dashed - fa(z). b: solid - f(z) = fi(z). ¢ solid - f(z)
for @y = 1, a3 = 1.5, dashed - f(z) for oy = 0.2, a2 = 2. d: solid - f(z) for
a1 =1, a2 = 3. b-d: dotted - fi(z), fa(z).



Let fi(z) and f2(z) of Figure 2.1-a be two performance measures of a control
system, where z is the scalar design (controller) parameter. Let f(z) = F (fi(z), f2(z))
be the optimization (maximization) objective (i.e., max f(z)). Suppose we define
f(z) = g% fi(z) (Figure 2.1-b). Then f2(z) has no effect on the solution to the
optimization problem. In fact then, z; is the only possible “optimal” solution. One
may try also taking fo(z) into account by defining a weighted objective function f(z) =
Y2, a;fi(z), a; € R (Figure 2.1-c). Then only z; or 72 can be “selected”. In order
to have more design degrees-of-freedom, let f(z) = 11;1{% a;fi(z). Then by choosing
«;’s the designer can change the “optimal” solution to be any z € [z1, 2], see Figure
2.1-d.

This simple example emphasizes the importance of the proper choice of F (-,-)
(the “design -specifications”). Such a “max/min” (m;:_xx miina,- fi(z)) or “min/max”
(mzin max o; fi(z)) optimization problem is the basis for the design methodology pre-
sented in this report. In fact, given n performance measures f;(z), ¢ = 1,2,...,n,
where £ € R™ is the vector of the design parameters (d.p.’s), the design can be

accomplished by performing the following three steps

Step 1 - Choose n a;’s.
Step 2 - Optimize f(z) over z. (2.2)
Step 3 - Check the design. If it is good, stop. Else, go to Step 1.

Note that we do not know yet how to implement the above design procedure. In
fact this is only a conceptual procedure, a more practical procedure is given below.
Note also that we do not even know how to define and compute the performance
measures, the f;(z)’s. Usually obtaining “good” f;(z)’s is a very complicated problem.
This task is a part of the preliminary stage which has to be completed prior to the
implementation of the above procedure.

The overall design process is schematically presented in Figure 2.2. It is assumed

that the physical system and the design specs are given, as is typically true in rotorcraft
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Figure 2.2: Schematic description of a multicriterion-optimization-based design pro-
cess



control design. The preliminary part of the design process (modeling, translation of
the design requirements into mathematical functions, and development of a simulation
program) is marked by thick (double line) arrows. The iterative parts of the process are
the computerized optimization (thin solid arrows) and the human designer interrupts
(thin dashed arrows).

The multicriterion-optimization-based design process has two main parts. First,
the designer has to prepare the design setup. This noninteractive part of the process
includes: modeling (mathematical representation of the system) and translation of the
design specifications into nice mathematical functions.

In the interactive part of the process, the optimization is done automatically by the
optimization/simulation package (see [13] and Section 3 below). The designer has to
continuously monitor the results by using the design evaluation tools, then if he finds
it necessary he can interrupt the process. The specific action that the designer may
take depends on several factors. Because the designer usually interrupts the process
through the designer/optimization interface, a major factor is the properties of the
specific optimization package. Some suggestions are given in Section 3.4 below.

A detailed description of the design process and its components is given in the

following sections.

2.2 Preparing the design setup

In preparing the design setup, much care should be taken because this stage affects
the whole design process. We especially have to consider the practical trade-off be-
tween “accuracy” and “time”. For higher accuracy we would like to choose the most
comprehensive model, to write a sophisticated simulation code, to use a small step size
for optimization, etc. However this choice leads to a very “time consuming” design
process. This problem becomes critical because of the presence of a human designer
in the design process.

Given the system and the design specifications, the following preparations have to



be made prior to the implementation of the iterative procedure.

2.2.1 Modeling the system

Very complicated mathematical models are often required in order to obtain accurate
simulation of real control systems. The first design task is to find the simplest model
which still captures the main dynamic characteristics of the system. Choosing simpler
models may spoil the design. On the other hand increasing the size and complexity,
may lead to a long and annoying design process. In most cases finding the “optimal”
model is not a simple task.

In this stage issues such as linear model vs. nonlinear model, continuous-time
model vs. discrete-time model, small model vs. large model, etc., have to be studied

carefully.

Remark 2.1 Usually the model also has to represent implementation limitations such
as actuator saturation, controller size, sampling rate, etc. Therefore sometimes (e.g.,

actuator saturation) a linearized model can not be used.

2.2.2 Translating the design requirements into “nice” mathematical func-

tions

Modern design requirements such as “handling qualities” are very difficult to translate
into smooth mathematical functions. In some cases these functions are defined in terms
of numerical evaluation of the solution to some differential equations (“simulation”).
In other cases even more mathematical manipulations (on the simulation results) are
required.

Using optimization special care should be taken with these translations. For most
optimization techniques, these mathematical functions have to be “smooth” with re-
spect to the design parameters (at least continuously differentiable). Even standard

performance measures, which are used in conventional design techniques, are often not



useful for optimization. For example, spectral characteristics such as eigenvalues, are
usually not differentiable with respect to the control law parameters.

Because most of these functions have no analytical expression, it is difficult and
in most cases even impossible to check their smoothness. Therefore in some cases
we may use nonsmooth functions for optimization. Usually these functions are not
smooth only at a finite number of points in the parameter space. Thus practically
they may work. However using such functions for optimization may cause the design

process to get stuck.

2.2.3 Defining the optimization criteria

This is the second part of the translation of the design specifications. The optimization
criteria are based on both the performance translations and some properties of the
optimization package. For example using CONSOL-OPTCAD [13] with a vector of
time (or frequency) dependent performance measure, the optimization criterion may

be given as a functional constraint or objective.

2.3 The computerized tools used in the design process

Three computerized tools are used in the design process: optimization, simulation,
and design evaluation (see the dotted box in Figure 2.2). These tools interact with
each other, thus it is essential to choose or develop the proper software packages and

interfaces.

2.3.1 Optimization

The role of the optimization in the design process is defined in Step 2 of the conceptual
procedure (2.2). Namely, finding a set of design parameters z* such that the f;(z*)’s
satisfy the criteria.

The particular implementation of the optimization “block” in the design pro-

cedure depends on the choice of the optimization package. In this research the



CONSOL-OPTCAD optimization package is used. This package has a built-in inter-
face with some common simulation languages including MATLAB. For more details

on CONSOL-OPTCAD see Section 3 below.

2.3.2 Simulation

Given the system model, the definition for f;(-), and the design parameters z, the
simulation generates f;(z)’s. Moreover the simulation also provides most of the infor-
mation required for the design evaluation.

In order to obtain more information required for the optimization, such as gradi-
ents, the simulation is often used iteratively. Therefore it is important to choose the
proper simulation language and to write an efficient simulation code. Other proper-
ties of the simulation language (package) should also be taken into account such as:
standard interface (to be used with the optimization package), “user friendly”, tech-
nically supported, etc. In fact, for these reasons we chose the MATLAB package as

the simulation package for this research.

Remark 2.2 Using other simulation packages, or even writing a special simulation
program using a standard computer language (e.g., C) may lead to a “faster” simula-
tion. However, because these solutions do not have the nice advantages of MATLAB,

the total time which may be spent using these alternatives may be larger.

2.3.3 Design Evaluation

“Design evaluation” stands for all the computerized tools which help the human de-
signer to obtain the right decisions during the design process. In some cases no ad-
ditional tools are required, e.g., when the standard outputs of the simulation and
optimization packages provide all the necessary information. However, in most real-
system-design cases some special tools are required. In particular this is true when

the design is made to meet requirements such as the handling qualities.

10



In this research we have developed such a specific evaluation “toolbox”. This
toolbox performs an on-line graphical analysis of the system performance which allows

the human designer to make on-line decisions. For more details see Appendix A.

2.4 The human designer

The human designer is definitely the most important component of the design proce-
dure. His or her role in the design process is given by Step 1 and Step 3 of the concep-
tual algorithm (2.2). However contrary to the computerized tools, it is generally not
clear what the designer has to do at any design iteration. In fact the decisions that
the designer takes are in many cases based on his intuition and experience. Therefore,
at least for the time being, the human designer can not be replaced by a computer.
The experience gained in using this methodology in this research and in other re-

lated projects may be used as the basis of new rules and guidelines for future designers.

3 The Optimization Package: CONSOL-OPTCAD

3.1 Introduction to CONSOL-OPTCAD

In an attempt to better represent real world design problems, CONSOL-OPTCAD (C-
O) allows for three qualitatively different types of design specifications. An objective
is a specification of a quantity that should be optimized (minimized or maximized).
Typically, multiple competing objectives are present. A hard constraint is a speci-
fication of a quantity that must achieve a specified threshold. A soft constraint is a
specification of a quantity that should achieve, or at least approach, a specified thresh-
old, i.e., should be optimized as long as this threshold is not achieved. Soft constraints
can be thought of as intermediate between objectives and hard constraints.

Choosing the proper scale factor for each design specification may be a difficult
task. Therefore instead of using a single scale factor (weight), each objective and soft

constraint (value) is scaled by C-O using “good” and “bad’ values according to the

11



formula
value — good

= s —
scaled value = value bad — good

(3.1)

where having any value achieve its corresponding good (bad) value should provide the
same level of satisfaction (dissatisfaction) to the designer. This uniform scaling rule
helps the designer in choosing the proper weights (if good = 0 then o; of (2.2) is 5;—3).
Note that using practical values for the good and bad scaling parameters may cause
too large differences between the sensitivity of the various d.p.’s. Therefore, in order
to make the parameter space more “uniform”, C-O also allows the designer to scale
each d.p. separately. In addition to the above design specifications, it is also possible
to put hard bounds on the d.p.’s.

In order to have a better understanding of these quantities, consider the following

simple example. Suppose we have to design a cheap audio amplifier, with ;gif:l <a

and maximum input power = b. The design (amplifier) parameters have some bounds
(e.g., negative feedback gain for stability). The corresponding optimization problem

has the following setup

objective = dollar cost min
hard const. = 225 <a (3.2)
soft const. = input power <b

hard bound = {b. gain < 0.

C-O divides the optimization process into 3 phases. In Phase 1, if s’;g;f; > a for every
choice of parameters, then it is impossible to satisfy the hard constraint unless we allow
C-O to increase the input power and the cost. Then C-O minimizes the amplifier input
power (Phase 2) and its cost (Phase 3).

C-O uses FSQP (Feasible Sequential Quadratic Programing) to solve the following

12



general optimization problem

min obji(z) Vi
subject to: softj(z) <O0Vj
hard}(z) <O0Vk
boundj(z) <O0VI

where obj?, soft], hard}, and bound;] are the scaled values of objectives, soft con-
straints, hard constraints and hard bounds, respectively. Problem (3.3) is then as-
signed three different meanings, corresponding to three different phases, according to
feasibility or infeasibility of  with respect to hard and soft constraints.

Phase 1 (hard feasibility problem): Not all hard constraints are satisfied. (3.3)
takes the form

minmax hard}(z)
T ok (3.4)
subject to: boundj(r) < 0VI.

Phase 2 (soft feasibility problem): All hard constraints are satisfied. Not all
(scaled) objectives and soft constraints are nonpositive. (3.3) takes the form
3 8 8
minmax {0bj; (:L'),SOft,-(w)}
subject to: hardi(z) <O0VEk (3.5)
boundj(z) <OV

Phase 3 (optimization problem): All hard constraints are satisfied and all (scaled)

objectives and soft constraints are nonpositive. (3.3) takes the form

xr_;tin max obji (z)
subject to: softi(z) <OVj
hardi(z) <O0Vk
boundj(z) <OWI.

(3.6)

13



C-0 has a PCOMB (performance “comb”) pseudo-graphical output display which
gives very useful information. An example of a PCOMB display is shown in figure 3.1

below.

3.2 Using C-O to meet the handling qualities requirements (ADS-
33C)

The design of a flight control system to meet the ADS-33C (Aeronautical Design Stan-
dard) [12] requirements can be obtained as a solution to the soft feasibility problem
(3.5). That is, all the ADS-33C requirements are translated into C-O hard and soft
constraints (no objective). The design goal is achieved when C-O successfully com-
pletes Phase 2.

Theoretically, if the feasible set is nonempty, and all the performance functions
are globally smooth and convexr with respect to the d.p.’s, then starting with any
(infeasible) point, the C-O solution will converge to a feasible solution. However
practically, none of the above three conditions (existence, smoothness, and convexity)
is guaranteed. We can not change the feasibility of the problem (and also its convexity),
but we can improve the smoothness of the performance functions by using proper
translations and/or smooth approximations. In fact, part of the art is finding ways to
describe the desired system performance mathematically so that the C-O solution will

converge to a “good” controller.

3.3 Using C-O to find an optimal controller

If there is more than one feasible solution, it is natural to search for the optimal
solution. First we have to choose the optimization objective (if it is not given a
priori). A natural choice for the objective function can be any scalar function of the
design parameters which has no constraints, that it would be nice to have it small (or
large), such as the control energy. Multiple objective functions may be taken. The

choice of objective functions has to be done with the same care (smoothness!) as for

14



<0>
Pcomb (Iter= 0) (Phase 1) (MAX_COST_HARD= 400.00000)

SPECIFICATION PRESENT GOOD G B BAD

01 objectivel -9.66e+02 0.00e+00 <== | [ 1.00e+00
02 objective2 1.20e+00 2.00e+00 I 1.00e+00
Cl1 hard_consl 4.00e-01 0.00e+00 -—- e ettt Ll > 1.00e-03
C2 soft_consl 3.50e-01 0.00e+00 * | 1.00e+00
C3 hard_cons2 1.05e+00 1.00e+00 < ——— it Lt 1.00e+04
FC1 soft_fcons 0.06e+00 0.00e+00 < -5.00e-02

<6>
Pcomb (Iter= 6) (Phase 2) (MAX_COST_SOFT= 0.3500000)

SPECIFICATION PRESENT GOOD G B BAD

01 objectivel -9.66e+02 0.00e+00 <== | i 1.00e+00
02 objective2 2.20e+00 2.00e+00 * 1.00e+00
C1 hard_consl -4.06e-02 0.00e+00 <-- | | 1.00e-03
C2 soft_consl 3.50e-01 0.00e+00 * | 1.00e+00
C3 hard_cons2 1.16e+00 1.00e+00 <-- -——- mmmm—e e 1.00e+04
FC1 soft_fcons 1.36e+00 0.00e+00 < -5.00e-02
<10>

Pcomb (Iter= 10) (Phase 3) (MAX_COST= -1000.0000)

SPECIFICATION PRESENT GOOD G B BAD

01 objectivel -9.99e+02 0.00e+00 <== | | 1.00e+00
02 objective2 2.20e+00 2.00e+00 1.00e+00
Ci hard_consl -4.06e-02 0.00e+00 <~-- ] | 1.00e-03
C2 soft_consl -0.10e-00 0.00e+00 ==========*| [ 1.00e+00
C3 hard_cons2 1.16e+00 1.00e+00 <————————————mmmmmmmmmmme 1.00e+04
FC1 soft_fcons 1.36e+00 0.00e+00 < -5.00e-02

Figure 3.1: An example of the C-O PCOMB output display. In Phase 1, C1 (hard
cons.) is minimized. In Phase 2, C2 (soft cons.) is minimized. In Phase 3, 02
(objective) is maximized. Double dashed lines - soft constraints and objectives. Single
dashed lines - hard constraints. * - scaled value € (—1,2). > - scaled value > 2 (too
bad). < - scaled value < —1 (very good). For more details on the PCOMB display
see [13].

15



the problem constraints. Note that the natural objective function may not always be
smooth (see for example Figure 5.7).

Theoretically, if the objective functions are smooth and convez with respect to the
d.p.’s, then starting with any (feasible) point, the C-O solution will converge to the
unique optimal solution. Practically, starting with any arbitrary feasible point, if the

C-0 solution converges, then it converges to a local minimum.

3.4 The C-O/designer interface

As we already mentioned, this is usually the only interface between the human designer
and the optimization process. The ability of the designer to guide and control the whole
process depends on the design degrees-of-freedom that C-O provides. The human
designer’s actions also depend on the simulation and optimization results. It is hard
to give a recipe which covers all the possible situations. The following guidelines are

given as general advice for the designer:

e Make the constraint and objective functions as smooth as possible (a smooth

approximation is better then a more accurate nonsmooth approximation).

o Freeze all the unnecessary d.p.’s. It saves time.

e Use all possible C-O information (“pcomb”,“print”, “trace”,“active”, etc.). Also
P

use the other design evaluation tools (e.g., time and frequency response, perfor-

mance map, etc.).

e If C-O gets stuck, “shake” the optimization.

Again there is no general solution for this situation. However the following list
may be used if the process gets stuck (termination of the computer run, the computer
starts to work very slowly, etc.).

If C-O gets stuck during Phase 2:

e Look for competing specs.

16



Change constraint weights (“good”, “bad” values).

Keep the scaled objective functions below the scaled constraint functions.

Change the nominal variations of some d.p.’s.

¢ Perfom one or two dimensional analysis (see Section 6 for example).

Change manually the value of some d.p.’s.

Improve the smoothness of constraint functions (use alternative definitions, or

approximations).

o Change controller structure (e.g., add dynamics).

If C-O has trouble switching from Phase 2 to Phase 3:

Near the boundaries C-O may work slowly. Change the variation step (“scale”), or
if it is possible (very close to the boundaries), “right-shift” or “left-shift” the “good”
value (i.e., spoil the good value so that C-O “jumps” to Phase 3).

If C-O gets stuck during Phase 3:

e Make all objective functions negative for all feasible d.p.’s (e.g., for minimization

less than their good values). This is required by C-O [13].

e Put small weights on the relevant constraints which might oppose the minimiza-

tion process (e.g., min. actuator "energy” vs. quickness).
e Look for competing objectives (no competing objectives in our design problem).
e Change objective weights (“good”, “bad” values).
e Change the nominal variations of some d.p.’s.
e Perfom one or two dimensional analysis.

e Change manually the values of some d.p.’s.
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e Improve the smoothness of objective functions (use alternative definitions, or

approximations).

Remark 3.1 When C-0 finds a local minimum it gives a CONGRATULATIONS
message. Using objective functions such as control energy, “push” the solution (some
performance measures) to the boundaries of the feasible set (LEVEL 1). Then C-O
may start to move slowly. Usually you do not have to wait for this message, just use

the design evaluation tools to decide when to stop the optimization process.

4 Design Setup

4.1 Introduction

The UH-60A (Black-Hawk) helicopter in hover was chosen as a benchmark example
for this research. Its flight control system has an ACAH (Attitude Command Atti-
tude Hold) response type. The design specifications are given in the ADS-33C [12],
Paragraph 3.3 - hover and low speed. The design specification affects both parts of
the design setup (i.e., system modeling and specification translation).

In addition to the optimization package (C-O) and the simulation package (MAT-
LAB), the design setup contains:

¢ A main C-O PDF adocs and some “include” spec files (see [13] and Appendix
A). These files contain all the ADS-33C information required by C-O.

e Initialization (init.m) and simulation (simu.m) M-files, containing the MATLAB
simulation code required to evaluate all the ADS-33C performance measures (see

Appendix A).
o The design evaluation M-files (see Appendix A).

The background and other considerations used to develop the above setup are

summarized in the following.
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4.2 Modeling the UH-60A in hover

The comprehensive rotorcraft aerodynamic model “UMGenhel” [14] requires too much
computer time for one simulation run to be useful for the purposes of this research.
Thus we wrote a simplified model which can be used by the optimization package (C-
0). The simplified model represents the helicopter linear dynamics and aerodynamics,
as well as the most important system nonlinearities (i.e., actuator saturation). The
specific representation of the helicopter in hover has been modified several times in
order to obtain the system performance measures as well as to satisfy some computa-
tional limitations.

The final configuration, shown in Figure 4.1, includes the following parts:

(7) Linearized and reduced (UMGenhel) dynamic model P(s) - The bare
airframe model has a total of 11 states, 9 states for the 6 DOF fuselage dy-
namics and 2 states for the main rotor flapping motion (using model reduction
techniques, the effect of higher dynamics is also included in the model). The
dynamic model is given by the following state equation

& = Az+ Bus+Wd, 1)

y = Cz

where = = (u,v,w,p,q,7, ¢,0,%) ', which stands for the longitudinal velocity (u),
lateral velocity (v), vertical velocity (w), roll rate (p), pitch rate (q), yaw rate
(r), roll angle (¢), pitch angle (8), and yaw angle (1). The state equation (4.1)
has two inputs, u, = (ug, ug, Uy, uc)T representing respectively the longitudinal,
lateral, tail rotor collective, and main rotor collective actuator displacements
(control). The second input dy = (dg, dg, d,,,)T represents respectively the pitch,
roll, and yaw (wind gust) disturbances. The output y, required to evaluate all the

desired specifications, is in fact all of the state vector excluding the longitudinal

(u) and lateral velocities (v).
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(i)

An important component of the initial task of this project was to verify the
(linearized) helicopter model. First this model was compared with the full UM-
Genhel model (39 states) [14], to verify the use of only 11 states. Then it was
compared with a simplified 6 DOF model (9 states) (used in [15]), to verify its
main characteristics. In addition, using “real” ADOCS parameters, its closed-

loop response was qualitatively checked.

Actuator Model - The swashplate actuators are modeled using standard satu-
ration functions for displacement and rate limits and a 1°¢ order approximation
for the actuator dynamics (see Figure 4.1). Note that the displacement satura-

tion is implemented on the actuator command as is standard [16].

Delay D(s) - Pure delay (e~"*) represents an overall (7 sec.) channel delay

including: computation delays, A/D and D/A delays, unmodeled dynamics etc.

ADOCS control law - H is a constant gain, output feedback matrix. F(s) is a
decentralized feedforward dynamic controller obtained from the model following
concept [17], based on a command model dynamics M(s) and on a 1% or 2n¢
order approximation for the helicopter dynamics P,(s), see Figure 4.1. Note that
if Po(s) = P(s) then the resultant closed-loop transfer function is M(s). The
overall closed-loop system is controlled by the pilot using four input commands
& = (0, 84,0y, 0.) T representing respectively the longitudinal, lateral, tail rotor

collective, and main rotor collective cockpit commands.

In order to calculate efficiently all the desired performance measures, this model

has two different versions. There is a continuous-time linear model, for small amplitude

performance, where the actuator model is a simple 1% order model (no saturation)

and the delay D(s) is a 2" order Padé approximation. There is also a discrete-time

nonlinear model, for large amplitude performance, where all the continuous time parts

(i.e., P(s) and F(s)) are replaced by suitable ZOH equivalents, and the saturation

functions are implemented directly. The nonlinear simulation is obtained by solving
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the difference equations recursively. For more details see the M-files, init.m, simu.m,

and drsc.m in Appendix A.

4.3 The design specifications and their mathematical translations

The following five specifications were identified as those that are essential to meet the
ADS-33C [12]. These five requirements are naturally divided into two groups. Spec’s
1, 2, and 5 relate to small-amplitude responses and can be checked using linear models.
The remainder are related to moderate-amplitude responses and must be checked by

nonlinear simulation.

4.3.1 Spec 1: Small Amplitude Changes, Short Term Response to Control
Inputs

This modern frequency based criterion (bandwidth/phase-delay) replaces the tra-
ditional specifications which used limits based on time-delay and rise-time. The
bandwidth/phase-delay criterion emphasizes features directly related to closure of the
piloted loop, and it is a better metric than rise-time for the prediction of handling
qualities for small-amplitude precision tracking tasks. It is clear that pilots are also
sensitive to the shape of the phase curve at frequencies beyond the bandwidth fre-
quency. This shape is characterized by the phase-delay parameter [16]. Thus, the level
regions for the short-term response requirement are defined in the bandwidth/phase-
delay plane as shown in Figure 4.2-d. Actually, for small phase-delay systems this is
a “pure bandwidth” criterion. Above a certain value of phase-delay (about 0.2 sec)
it becomes a trade-off between bandwidth and phase-delay (i.e., the pilot can tolerate
higher phase-delay but then, in order to achieve the same performance level, he needs
higher bandwidth).

Bandwidth and phase-delay are measured from a frequency response (Bode) plot
of angular attitude response to cockpit controller input. Bandwidth and phase-delay,

as defined in the specification [12], Paragraphs 3.3.2.1 (Pitch, Roll) 3.3.5.1 (Yaw), are
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referenced to the helicopter with all augmentation loops closed. Thus, they can not
be simply calculated from the closed-loop design parameters. Usually, two bandwidth
frequencies are measured: the frequency for 6 db gain margin (wpw,,,), and the
frequency for 45° of phase margin (wpw,,,,.). For ACAH response types wpw,,,,,
is taken, since the nature of ACAH is such that the pilot does not have to close the
attitude loop for stabilization purposes, so the gain margin problems are less apparent.
Phase-delay is defined so that it represents all of the contributions to phase less than
—180°, see Figure 4.2-c, and is based on the observation that the phase curve tends
to be linear in the neighborhood of the crossover frequency.

In order to meet the LEVEL 1 (also true for other levels) requirement a two
dimensional geometrical measure D (normalized quadratic distance) is defined, such
that minimizing this measure implies better performance. The computation of this
measure is done in three steps. First, the graphical level curve is converted into an
analytic smooth function using a polynomial curve fitting algorithm. In order to
achieve a univalent function the level curve is represented as wpw = f(7g), i.e, the
bandwidth frequency is a function of the phase-delay, which is a nondecreasing C*
function, Figure 4.2-d (the dotted curve). This calculation is done only once in the
initialization routine (for more details see init.m in Appendix A). The other two steps
are executed in each iteration. First, the bandwidth and phase-delay are computed,
based on the definitions of Figure 4.2-c, using an efficient search algorithm. Second,
the D measure is calculated as the minimum normalized quadratic distance from the
current (wpw,7q) point to the level curve. Moreover, measure D is calculated only
for points which are not in the LEVEL 1 region (i.e., they are to the left of the
dotted curve in Figure 4.2-d), and it is set to zero for any (wpw,74) point within the
LEVEL 1 region. Because D(wpw, 7q) is quadratic, using the above definition keeps
it differentiable even on the boundary of the LEVEL 1 set (i.e., wpw = f(74)), and
gives an identical weight for any point in the desired set (LEVEL 1 region). The

computation of D uses the fact that the level curve is a nondecreasing function, so it
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eliminates the need to evaluate the function wpw = f(74) at each wpw = f(74) (for

more details see d_bw_pd.m in Appendix A).

Remark 4.1 The use of polynomial curve fitting is limited for the given data points.
That is, the approzimation wpw = f(74) holds only for 74 € [0,0.4] [12]. Therefore

hard constraints are used to guarantee that 74 < 0.4.

4.3.2 Spec 2: Small Amplitude Changes, Mid-Term Response to Control
Inputs

This requirement is, in general, the complementary part of the short term response re-
quirements of Spec 1. The short term criterion emphasizes features related to the high
frequency modes, whereas the mid-term influences mainly the low frequency modes.
Although, because of the particular definitions of both criteria, it is unavoidable that
this requirement overlaps the short-term one. The mid-term requirement is specified
for two different pilot operation modes: “Fully Attended Operations” - where all of
the helicopter tasks can be accomplished with full pilot attention to aircraft control
(e.g., other crew members handle the non-control tasks), and “Divided Attention Op-
erations” - where the pilot should be able to relinquish control of the helicopter for
short periods of time without encountering significant excursions. Consideration of
divided attention (as done in this research) ensures that, at least practically, any flight
control system which meets this requirement is stable. In fact a helicopter which meets
the fully attended requirement can have unstable mid-term response (as with many
present-day helicopters). For more information see [12], Paragraphs 3.3.2.2 (Pitch,
Roll) 3.3.5.2 (Yaw).

Remark 4.2 Although it is not an ADS-33C requirement, an asymptotic stability
hard constraint is used (i.e., R {A\n(A — BH)} < 0). This constraint is required for

numerical reasons.
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At the beginning we tried to use the damping ratio parameter ¢ for this require-
ment. This parameter, which is well defined for second-order systems, can be in-
terpreted in several different ways for higher order systems. Unfortunately, most of
these interpretations lead to numerical algorithms which are either significant time
consumers, or are not smooth enough, or both. For example, computing { as the
logarithmic decrement of the two first peaks of the system step response is very time
consuming. On the other hand, using eigenvalues, in order to find { as the ratio
between the imaginary and the real part of the 2"dorder approximated model, is
generally, not a smooth calculation. The computer time problem becomes critical
because this algorithm has to be executed in a multi-iteration optimization process.
The smoothness problem is sometimes even more critical because it may cause failure
of the optimization process.

During this work we have also examined several approximations for ¢ based on
model reduction techniques, system identification, 2"¢ and 37 order approximations,
etc. Unfortunately, these methods have been found to be either not accurate enough,
or too complicated, or both. Furthermore the original ADS-33C specification has a few
disadvantages. First, theoretically it also contains the undesired “long term” response
(phugoid modes). Second, using only the original definition does not always prevent
PIO (Pilot Induced Oscillations).

Therefore instead of using the original “damping ratio” (or “pole location”) crite-
rion we have used a classical stability margin criterion, gain margin (GM) > 6 db and
phase margin (PM) > 45°. Note that these classical stability margins are actually
SISO specifications. Therefore, for each channel, we have used the “broken-loop” of

figure 4.3 as the channel SISO approximation.

Remark 4.3 The Spec 2 results presented in the sequel have been obtained using an
incorrect broken-loop scheme, where only the position loop was broken. This sometimes
has led to an oscillatory closed loop characteristic (see for example the roll channel step

response in Figure 5.9). Using this incorrect scheme does not affect the main results
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Figure 4.3: “Broken loop” scheme for stability margins.

and the conclusions presented in this report. Furthermore the updated computer code
contains the correct scheme (see simu.m in Appendiz A and the tutorial ezample of

Appendiz B).

4.3.3 Spec 3: Moderate-Amplitude Attitude Changes (Attitude Quick-

ness)

Frequency domain-based criteria (e.g., bandwidth) fail in the presence of strong non-
linearities such as saturation. Therefore, in order to check the helicopter performance
during large maneuvers we have to define alternative criteria. Recall that for a 27¢

order linear system with a step input the following “quickness” ratio

peak rate
steady-state displacement

quickness = (4.2)

is directly related to the system bandwidth. This ratio is also a good approximation
for the system bandwidth for high order systems [16]. Using this criterion instead
of one of the classical linear measures of bandwidth allows the specification to make
the required bandwidth a decreasing function of the size of the maneuver, as shown
in Figure 4.4. For nonlinear systems, especially with saturation nonlinearities, this
concession is essential (i.e, it is unreasonable to require the same “bandwidth” for all

input heights). In these cases it is not correct to interpret this ratio as a bandwidth,

27



50 ’2‘\/ ‘3\,\ §

7 PR =
/.

3 N 3

@ \ ] o

L 0 \ 7 °

L NV N

-~ 1

o \ [

" E

-50 " ]

time [sec] time [sec]

LEVEL 1

-
n
T

o
wn
T

quickness [1/sec]

1 1 1
0 10 20 30 40 50 60
desired position (input) [deg]
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but it is better interpreted as a measure of agility (i.e., “quickness” ratio). For more
information see [16], Paragraphs 3.3.3 (Pitch, Roll) 3.3.6 (Yaw).

The calculation of the quickness ratio (4.2) is very simple. The max(-) operator is
used over the sampled rate vector. It is then normalized by the input height. Note
that using the max(-) operator in this case does not destroy smoothness because we
try to maximize the quickness ratio and the combination max/max is smooth. This
test theoretically has to be checked for an infinite number of inputs. Practically we
check it for each channel for only three different angles (1,2,3) as shown in Figure 4.4
(for more details see simu.m in Appendix A).

By definition, for nonlinear systems the quickness specification depends on the
input signal. In [12] the input signal is not explicitly specified. It is required that the

pilot perform agressive (displacement) manuevers. This may be interpreted as step
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Figure 4.5: Input signals for Spec 3.

inputs for the pitch and roll channels, and a pulse input for the yaw channel (the
yaw channel has an integrator in its desired model M(s) [18]). Therefore, taking into
account the rate limitations for the cockpit joystick and pedal [3], we have used the

rate-limited inputs of Figure 4.5.

4.3.4 Spec 4: Interaxis coupling

Helicopter dynamics are naturally interaxis coupled. The following requirements re-
late to the two common helicopter interaxis couplings. These are the cross-coupling
between pitch and roll (i.e., pitch/roll and roll/pitch), and yaw (rate) due to collec-
tive. These couplings are caused mostly by aerodynamic rotor moments and by the
nonsymmetric tail moments. Both couplings would adversely affect the pilot’s ability
to complete some high maneuver tasks. One of the most important design objectives
is to minimize these couplings.

The decoupling requirement is mostly significant for high maneuver responses.
Thus, it is checked only for large amplitude “step” responses (The coupling measures
are relative measures. Hence, in the case of linear systems small input amplitudes
can be used as well). The natural measure is used for the cross coupling between
pitch and roll (i.e., the ratio of peak off-axis response to desired response, Opx/@ges,
and ¢pr/04es ). To avoid use of nondifferentable functions such as max(-) and abs(-),
suitable upper and lower limits are defined to bound the response over the relevant

time interval (i.e., C-O functional constraints [13]).
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For the yaw-to-collective decoupling requirement a much more involved criterion is
required. This criterion is designed to meet the pilot’s needs during aggressive tasks.
This criterion is a measure of not only the magnitude, but also the shape of the yaw
rate response to a step collective stick input. The shape of the yaw rate is taken into
account by measuring the peak yaw rate r1 and the value of yaw rate after 3 seconds.
In case there is no peak in the time interval [0,3] the yaw rate at 1 second r(1) is
taken instead ([12], Paragraph 3.3.9). In addition to the above requirement, it is also
required that the maximum oscillation amplitude, following a step collective change
be below a certain limit. From accumulated experience this limit has to have units
[12], (i.e., it is not relative as in the pitch-roll case).

All the information required for the coupling specs is taken from the largest input
simulation of the quickness test (for more details see simu.m in Appendix A). An

example for Spec 4 performance measures is given in Figure 4.6.

4.3.5 Spec 5: Wind-gust rejection

The model-following concept allows the designer to increase the I/O bandwidth (the-
oretically unlimited) by changing the parameters of the desired model M(s) only.
Actually, this is the major advantage of using a model-following control, because in

most cases the designer can not achieve the desired bandwidth due to closed-loop
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Figure 4.8: Spec 5: Wind-gust rejection - required envelope

stability limitations (e.g., limited state feedback gains). However, this approach has
some disadvantages. One of them is that the disturbance rejection requirement (sys-
tem “stiffness”) is no longer directly related to the overall system bandwidth (i.e., we
can have a high-bandwidth, low-stiffness system). Therefore, the original wind-gust
rejection criterion ([12], Paragraph 3.2.6) is not suitable for the ADOCS configura-
tion. A new requirement was defined by using an approximate gust model, where the
gust peak value is chosen to fit the disturbance input point (recall from (4.1) that the
wind-gust is applied directly to the helicopter state equations). The wind-gust input
wave form is shown in Figure 4.7, the detailed definition of the new requirement is

presented in [19].

The wind-gust rejection criterion is a two parameter criterion. Following precisely

the requirements for the ACAH response type [12] leads to a pulse-input-settling-time
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criterion. The first parameter, settling-time, t;(a) is defined by the condition that the
absolute value of the response |y(t)| < a V t > t,(a), where a is 10% of the response
peak value. The second parameter is the peak value itself. Practically, settling-time
is obtained using a discrete-time search algorithm, which may cause ¢;(a) not to be
smooth with respect to the design parameters. Moreover, in order to obtain the
peak value we have to use the max(-) operator, and since the optimization algorithm
tries to minimize this peak it may cause some smoothness difficulties. To avoid this
possibility it is highly recommended that one uses functional constraints. Therefore,
the ACAH response type requirement was slightly changed such that the angular

position following a wind-gust input should lie between the two curves of Figure 4.8.

Remark 4.4 Theoretically the wind-gust rejection requirement should be checked us-
ing the time history data from the nonlinear simulation. Because this test has to be
simulated for 40 seconds it becomes the biggest time consumer of the simulation. In
order to save time, this test is implemented using a linear simulation. The linear sim-
ulation holds as far as the actuators rates and displacements do not hit the saturation
level. This (practically) holds when the system is stable (no counter example has been
found throughout this research). Proper “flags” have been added to the simulation to

ensure that the linearity assumption holds.

4.4 The design parameters

An important component of the design setup is the choice of the proper design param-
eters (d.p.’s). The considerations for this choice are a mixture of classical control and
optimization considerations. From the optimization point of view we would like to use
as few d.p.’s as possible in order to save “running time”. The control considerations,

based on the classical ADOCS design of [15], are summarized in the following.

e For stability and closed-loop properties a position/rate (“PD”) feedback is used.
Therefore the rate (Kg, Ky, K;) and the position (Kjy, Ky, Ky) feedback gains
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are used as the optimization d.p.’s.

e Recall from Section 2.2.1 that the feedforward controller F(s) consists of two
parts. There is the “open-loop inverse” part which “cancels” part of the heli-

copter dynamics. This part consists of the following 1! order approximation of

P(s), Puls) = diag (fa(s), Bs(s), 5 (s)), with
po(s) = ﬂ"1—)
Pols) = ot (43)
Buls) = 4.

We want to keep the “dynamic cancellation” properties of the feedforwaed con-

troller. Therefore the above approximate inverse parameters are fixed.

o The second part of the (model following) feedforward controller is the desired

model M(s) = diag (My(s), My(s), My(s)), with

Mo(s) = Gorage
02
My(s) = Grogy (44)

M¢(S) = Rﬁﬁj.

Note that the desired model is not an ADS-33C requirement. Therefore we can

free ay, ay and ay as the optimization d.p.’s.

5 The nominal design

5.1 Introduction

For the nominal design we consider performance LEVEL 1 for all MTEs (Mission Task
Elements) excluding target acquisition and tracking for UCE (Usable Cue Environ-

ment) 2 and 3. For detailed definitions see [12], Paragraph 3.3 - hover and low speed.
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The ADOCS controllers [17], [15] were chosen as the initial controllers.

The design was completed in two steps. First we solved the feasibility problem
(with no objective). Then we added an objective function and we found the optimal
controller.

The starting design controller (initial guess) was chosen as the final ADOCS design
of [18]. The performance map of this design is shown in Figure 5.1. Although this
design has been tuned by both simulations and flight tests, 8 out of the 25 ADS-33C

requirements are not satisfied.

5.2 Nominal design with the ADOCS control structure

The ADOCS flight control law is based on a decentralized SISO design. Using this con-
cept, the only way to reduce the system coupling level is by using high feedback gains
[15], [20]. Usually, high gains imply poor robustness (low stability margins). Therefore
using the ADOCS structure with the multicriterion-optimization-based design process
leads to “competing specs”. That is, trying to satisfy one design specification (Spec
4) cause other(s) (Spec 2) to fail. Competing specs slow the design process and may
cause the process to get stuck (even for smooth constraint functions).

In the first attempt, we tried to solve the feasibility problem or, at least, to find
the “best” (infeasible) solution without changing the ADOCS structure. After many
design iterations (C-O iterations and human designer interrupts) we concluded that it
is impossible to simultaneously satisfy all the ADS-33C requirements using the ADOCS
control structure. In the “best” design, as shown in Figure 5.2 only 3 performance

measures are not satisfied.

Remark 5.1 There is no definition for the “best” infeasible design (the best feasible
design is the optimal one). However using engineering intuition and ezperience, it
is possible to choose such a design. Moreover one may use C-O information and/or

other design measures to quantitatively order the infeasible solutions.
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Remark 5.2 It is difficult to prove that there is no feasible ADOCS controller. That
is, there may be such a feasible controller which can be found after many design iter-
ations. However then we can not consider it to be a practical solution. Furthermore,
the same conclusion (“LEVEL 1 performance can not be achieved using ADOCS”)

was also obtained in [21].

5.3 A feasible controller for the nominal design using an improved

ADOCS control structure

Two different techniques were studied in order to improve the results of Figure 5.2. Re-
call that not any classical structure can be used as a good structure for multicriterion-
optimization-based design. We were especially looking for a structure which required
only a few additional d.p.’s.

In the first (SISO) technique we tried to keep the decentralized control structure of

ADOCS and to add dynamic compensation to each channel. For example, we applied

C(s)_s+z_as+wc (5.1)
T s s+ow '

to the roll and pitch channels, where z, @ and w, are additional design parameters.
Using all six additional d.p.’s as free, C-O drives, z — 0, a — 1, i.e., the compensator
(5.1) is canceled. On the other hand freezing all/some of these d.p.’s, leads to new
competing specs (e.g., Spec 4 vs. Spec 5).

In the second (MIMO) technique we tried to improve the decoupling performance
of the controller by adding crossfeed compensation. In fact, in order to save d.p.’s we

used only crossfeed gains. The implementation of the improved ADOCS control law

1 Koy 0 0

. I Kgo 1 00 . S

is shown in Figure 5.3, where K¢ = consists of static gains.
0 0 1 Ky
0 0 01

This very simple and cheap solution, has only 3 additional d.p.’s. Using this

controller the helicopter performance is improved substantially as shown in Figure 5.4.
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Figure 5.3: An improved (ADOCS + crossfeed) control structure.

Furthermore, although the additional d.p.’s make the C-Q iteration a little longer, the
overall design process converges faster (no competing specs).

Parameter changes for a “background run” of = 100 C-O iterations (i.e., C-O ran
100 iterations using fixed weights and step size without designer interrupts) are shown

in Figure 5.5.

5.4 The optimal design

The feasible design shown in Figure 5.4 is not unique. Changing some optimization
parameters such as: initial guess, step size, etc., leads to other feasible solutions. In
order to find the best (optimal) solution, we first have to define the design objective.

In this research the design objective is to minimize the helicopter actuators energy.
However, using the simple actuator model of Figure 4.1 allows us to compute only
rates and displacements of the control actuators. In order to compute the actuator
energy a more detailed model is required (E = f(;‘r (rate x load) dt). Therefore, in
order to save running time, we used the RMS actuator rates as an approximation for
the RMS actuator power (E o« RMS power).

Using such an objective function, we expected the C-O solution to converge to some
boundaries of the feasible set (LEVEL 1 curves). Choosing the feasible controller of

Figure 5.4 as the starting point for this design, C-O chose this solution as the optimal
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Figure 5.5: Parameter changes for a background run of = 100 C-O iteration. Vertical
axes - parameter values. Horizontal axes - iteration number.
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Figure 5.6: Defining the feasible set for ay. dashed line is the current value ay and
the dash-dotted line is the minimum ay, which is 3.34 in this example, for achieving
level 1 performance

one after only one iteration. In order to understand why this happened, we performed

a local, one-dimensional analysis (see Section 2) as described in the following example:

e We identified a4 as the only parameter which (locally) affects the quickness ratio

of the roll channel (see “Spec 3: Quickness R” in Figure 5.4).
e We defined the feasible set (line segment) for a4 as shown in Figure 5.6.

e We plotted the roll quickness ratio as a function of o (Figure 5.7-a) for ay values
including the current value (dashed line) and the boundary line (dash-dotted) of

the feasible set.
o The other three plots (b-d) of Figure 5.7 are for alternative objective functions.

From Figure 5.7-a, we concluded that at the starting point in the d.p.’s space the
objective function is “flat” (at least in one direction). Therefore C-O did not move
from this point (the same is true for the yaw channel). Note that for the pitch channel
the solution is already on the LEVEL 1 boundary of Spec 1 (Figure 5.7). Thus it is
not possible to reduce the pitch channel quickness ratio.

Of course we can solve this problem (at least for the roll channel) using one of

the alternative objective functions (c or d of Figure 5.7). However these measures
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Figure 5.7: In all subplots: Horizontal axes - oy [rad/sec], vertical axes - Roll quickness
[1/sec], dashed lines - current a4, dash-dotted lines - minimum feasible ay. (a) and
(c) use the RMS actuator rate as the objective function. (b) and (d) use the RMS
actuator stroke as the objective function. (a) and (b) consider the saturation of the
actuator, while (c) and (d) do not.
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Figure 5.8: The optimal (nominal) controller; A - pitch, 7 - roll, © - yaw, % - not in
the desired level.

may not be good a approximation for the actuator energy. A better solution is to
“shake” the optimization using the ideas suggested in Section 3.4. In fact in this case
we have manually set ay = 5. This made C-O converge to the LEVEL 1 boundaries

as expected. The optimal performance map is shown in Figure 5.8.

Remark 5.3 Using linear models, the cross-over frequency can be used as a good
measure for the control energy. Then closed-loop parameters which affect the cross-
over frequency (i.e., feedback gains), also affect the control energy. However, using the

nonlinear model of Figure 4.1 the saturation effect is dominant over the linear effects.
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Figure 5.9: Attitude change for the nominal optimal design. Horizontal axes - time
[0-5 sec]. Vertical axes - attitude [deg]. Dashed1+0.75 lines - desired attitude [deg).

Therefore minimizing the cross-over frequency does not necessary lead to minimum
actuator energy. Moreover from Figure 5.8 we conclude that the feedback gains are
already on the LEVEL 1 boundaries (pitch < Spec 1, roll and yaw < Spec 4). Thus

they can not be further reduced.

The attitude change for the nominal optimal design is shown in Figure 5.9. Re-
call that using an incorrect broken-loop scheme led to oscillations in the roll channel

response (see Remark 4.3).
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6 Trade-off and robustness studies

6.1 Introduction

In this section we used the proposed design methodology to perform some trade-off
studies. We checked the changes in the performance of the helicopter as some of the
parameters change, while maintaining optimality.

Two main trade-off studies are presented:

¢ Performance/specifications - Going from the nominal optimal design (LEVEL

1) to higher performance levels.

¢ Performance/hardware - Changing some of the helicopter (actuators) param-

eters.

In order to make these trade-off studies quantitatively, a trade-off criterion is re-
quired. A natural choice for this criterion is the optimization objective (actuator RMS

rate). In fact we used the following normalized measure

def actuator RMS rate
t t ff = 1 . 6.1
actuator efiort actuator rate limit €01] (6.1)

In addition to the trade-off studies we tested the robustness of the FCS design to

perturbations in hover flight conditions.

6.2 Performance to specification

In this set of trade-off studies we tried to “push” the helicopter optimal performance
as high as possible. That is, we tried to drive the nominal optimal design (LEVEL 1)
to higher performance levels. As the design target (the highest level) we have chosen
LEVEL 1 for “target acquisition and tracking” ([12], Paragraph 3.3). This level is
marked as “LEVEL 1+1” in Table 6.1 (note that LEVEL 1+1 # LEVEL 2). Using

this notation allows us to quantify the intermediate levels between LEVEL 1 and
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Phase delay [sec]

MTE UCE | Attention | Design level
target acquisition and tracking | - - “Level 1+1”
>1 - “Level 17
all others - divided
1 full not considered

Table 6.1: ADS-33C design levels > 1 for hover.

Spec 1 : BW & PD for Roll & Yaw Spec 3 : Quickness
0.4 . e 25
P - — - -Level 1
s 2 Level 1+1
0.3 e - a
, e - —-—--Level 1+#
/ /~/ ) = 1.5}
0.2 /s % — T~
I / : c 1 t o~ - e,
/ - = -
S ' i
0.1 b Lo 0.5 T-- s b|> [a
at l Te =l -
0 1 . .
0 2 4 6 00 10 20 30
BandWidth [rad/sec] Step [deg]

Figure 6.1: Definition of levels > 1. LEVEL 1+# where # = a/b.

LEVEL 141 as shown in Figure 6.1. Recall from [12] that only Spec 1 (for roll and
yaw channels) and Spec 3 (f;)r all channels) are changed. In the first step, using only
a few C-O iterations, we achieved the design LEVEL 1+0.5 of Figure 6.2. Note that
the new dashed-dotted line indicates the boundaries of LEVEL 1+0.5 (for Spec 1 and
Spec 3). However in the second step, when we tried to achieve the LEVEL 1+0.75
C-0O got stuck in Phase 2 (see Figure 6.3).

Using the list of Section 2 we performed a one-dimensional analysis along the oy
axis of the d.p.’s space (all other d.p.’s are frozen). The quickness ratios of the three
points of Spec 3 for the yaw channel, as a function of oy, are shown in Figure 6.4
where the dotted line indicates the minimum required quickness ratio (the spec line).
The feasible set for oy is the intersection of the three line segments for which the
quickness ratios of Figure 6.4 are above the spec line. Therefore the feasible set for

LEVEL 1+0.75 is empty (the quickness ratio of the second point in Figure 6.4 is below
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Figure 6.2: Optimal design for LEVEL 140.5; A - pitch, 7 - roll, © - yaw, * - not in

the desired level.
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Figure 6.4: Yaw quickness ratios as function of oy. Dashed lines - Spec 3 boundaries
of Level 140.75.

the spec line for all o).

Reducing the specification level (spec line), we found that the maximum # is 0.65.
In Figure 6.6 we can see the actuator effort as a fuﬁction of # for all three channels.
For the nominal design (# = 0) all actuators have about the same effort (20 - 30%).
However increasing # (the required performance level) causes the effort of the tail rotor
actuator (yaw) to increase while that of the main rotor actuators remain (almost) the
same. That is, high level helicopter performance in hover is limited by the performance
(size ?7) of the tail rotor actuator.

The change of the d.p.’s as a function of # is shown in Figure 6.5. Note that
C-O increases the feedforward poles oy and ay, to achieve the quickness requirement.
The crossfeed gain Ky/4 is increased to compensate for the corresponding increase in

pitch-to-roll coupling.
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Figure 6.5: The percent change of the d.p.’s as a function of #.
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Figure 6.7: Definitions of the limits factor x4 and the time-constant factor v.

6.3 Performance to actuator limits

The actuator trade-off parameters are the rate and stroke limits and the time-constant.
The corresponding factors p € [0.5,2] (for limits) and v € [0.5,2] (for time-constant)
are defined in Figure 6.7. Note that each one of these parameters was changed simul-
taneously for all three channels.

The design for u € [0.75,2] is (almost) the same as for the nominal design (see for
example Figure 6.8 for u = 2). However trying to achieve LEVEL 1 performance with
g = 0.5 C-O got stuck. Again we performed a one-dimensional analysis along the oy
axis for three values of u, 0.5, 0.625, and 0.75 as shown in Figure 6.9. We saw that,
for p = 0.5 and p = 0.625, the feasible set of oy is empty (the quickness ratios for

the third point are below the spec line). We also found that g = 0.65 is the minimum
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Figure 6.8: Nominal design for p = 2; A - pitch, ¥ - roll, © - yaw, * - not in the
desired level.

admissible limit factor. The performance map for this case is shown in Figure 6.10.

From Figure 6.11 it can be seen that the actuator RMS rates change very little as

p increases. This makes the actuator effort decrease approximately as 1/u. Parameter

changes as function of u are shown in Figure 6.12. Note that generally rate saturation

improves the effective “damping ratio” of the system. That is, increasing u reduces

the effective damping ratio. In order to compensate for this loss of damping, C-O

increases the rate gains (especially K,) as y increases.
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6.4 Performance to actuator time-constants

In the second performance/hardware trade-off study, we first checked “slower” actu-
ators (i.e., v € (1,2]). The helicopter optimal performance for v € (1,1.75] does not
change much. However LEVEL 1 performance for v = 2 is difficult to achieve (design
requires many human/C-O design iterations).

Apparently “faster” actuators should give better results. However checking v =
0.5, C-O moved the nominal yaw quickness solution (performance) from (above) the

boundaries of the feasible set (LEVEL 1). Performing a one-dimensional analysis along
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the oy axis (Figure 6.13), we can see that the objective function (Figure 6.13-a) is
not smooth for all ay. Note that o 0 > ®pomina, thus the optimal performance
is above the LEVEL 1 boundary (yaw quickness o ay). From Figure 6.13 we also
conclude that the other objective function candidates are not smooth everywhere (al-
though RMS stroke looked better). Decreasing v for actuators with fixed rate and
stroke limits causes the actuators to act (almost) like relays. Indeed from Figure 6.14
it can be seen that actuators with v < 0.65 have “limit-cycle” response type. That is,
they may achieve the same performance level but with much higher effort as shown in

Figure 6.15. Parameter changes for this trade-off study are shown in Figure 6.16.

6.5 Robustness tests
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Figure 6.18: Performance for perturbed-hover; A - pitch, 7 - roll, ¢ - yaw.

The helicopter performance has been checked for four 10 kts perturbed level-flights

about hover as shown in Figure 6.17. The results of the nominal optimal design applied

to the perturbed-hover flight conditions are shown in Figure 6.18. Recall that using

actuator “energy” as the design objective makes the optimal design converge to some

(LEVEL 1) boundaries. Therefore using only this design methodology may lead to

poor robustness. Robustness considerations may be included in the design process as

it is implemented in the new NCD MATLAB toolbox [22].
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7.1

7.2

Conclusions

Design methodology

A new rotorcraft FCS design methodology, based on multicriterion optimization,

was presented.

Using this approach, the FCS designer uses optimization (C-O) to tune the
parameters of a fixed-structure controller. The designer has to monitor the

process continuously and interrupt if necessary.

In addition to his “engineering” skills (knowledge, experience, and intuition),

the designer has to develop “optimization” skills.

Today’s computers are powerful enough to make this method a real design tool.

UH-60A in hover - results

Level 1 feasible and optimal solutions for the UH-60A in hover were found using

this multicriterion-optimization-based design method.

Higher performance levels may be achieved without changing the helicopter pa-
rameters, but higher actuator effort is required. The “Level 1 4+ 1” can not be

achieved with the current actuators.

For level 1 performance, increasing actuator limits does not improve the rotor-
craft performance or the optimization criterion (except for the obvious reduction

of actuator effort).

The actuator time-constant has naturally an upper bound (200%). Practically
it also has a lower bound (~ 70%). Below this bound the actuator may oscillate

as can be seen in Figure 6.14.

Using an objective function which “pushes” the optimal solutions to the bound-

aries of the feasible set leads to poor robustness.
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7.3 Future work

Many theoretical and practical questions remain open for further research. First, in
order to demonstrate the usefulness of this design methodology, it should be applied
to other design tasks (e.g., other flight conditions, other helicopters, etc.). The hu-
man/process interface has to be simplified so this method can be used as a real design
tool. In addition some special issues in modeling, translating handling qualities re-
quirements, improving robustness, etc., have to be further studied.

Second, the specific design problem (UH-60A in hover) has to be completed, includ-
ing: rerunning the trade-off studies for the correct “broken-loop” scheme (see Section
4), updated parameters (e.g., smaller time-delays), and updated specifications (e.g.,

Spec 3 for yaw channel).

63



[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

References
J. J. Gribble & D. J. Murray-Smith, “Command Following Control Law Design
by Linear Quadratic Optimisation,” The 16-th European Rotorcraft Forum, Paper
I11.5.3, Glasgow (Sept., 1990).

M. D. Takahashi, “Design of Flight-Control Laws for a UH-60 Helicopter in Hover

Using an ‘Hz Loop-Shaping Synthesis Method,” NASA, US Army ASC, NASA
Tech. Memo. 103834, USAAVSCOM TR 91-A-006, Dec., 1991.

M. D. Takahashi, “Design and Comparison of Pitch-Roll H,, Control Laws With
and Without Rotor-State Feedback for a Hovering Helicopter,” NASA, US Army
ATCOM, NASA Tech. Memo. 108793, USAATCOM TR 93-A-013, Jan., 1994.

M. K. H. Fan, A. L. Tits, J. Barlow, N-K. Tsing, M. Tischler & M. Takahashi, “On
the Design of Decoupling Controllers for Advanced Rotorcraft in the Hover Case,”
AJAA 29th Aerospace Sciences Meeting , Reno, Nevada (Jan., 1991).

N-K. Tsing, “Computer-Based Techniques for Control System Design, with appli-
cations to Rotorcraft Control,” University of Maryland , Ph.D. Thesis, Dept. of
Electrical Engineering, College Park, MD, 1992.

G. Hughes, M. A. Manness & D. J. Murray-Smith, “Eigenstructure Assignment for
Handling Qualities in Helicopter Flight Control Law Design,” The 16-th European
Rotorcraft Forum, Paper I11.10.2, Glasgow (Sept., 1990).

R. A. Hess & P. J. Gorder, “Quantitative Feedback Theory Applied to the Design
of a Rotorcraft Flight Control System,” J. Guidance, Control and Dynamics Vol.
16, No. 4 (July, 1993), 748-753.

S. J. Williams, “The Application of Frequency Response Multivariable Design Tech-
niques to VSTOL Aircraft,” Cambridge Control Ltd., Report No. 5, May, 1988.

M. A. Manness, J. J. Gribble & D. J. Murray-Smith, “Multivariable Methods for
Helicopter Flight Control Law Design : A Review,” The 16-th European Rotorcraft
Forum, Paper II1.5.2, Glasgow (Sept., 1990).

64



[10]

[12]

[13]

[14]

[17]

(18]

W. Von Griinhagen, G. Bouwer, H-J. Pausder, F. Henscher & J. Kaletka, “A High
Bandwidth Control System for a Helicopter In-Flight Simulator,” Int. J. Control
Vol. 59, No. 1(1994), 239-261.

E. Low & W. L. Garrard, “Design of Flight Control Systems to Meet Rotorcraft
Handling Qualities Specifications,” J. Guidance, Control and Dynamics Vol. 16,
No. 1 (Jan., 1993), 69-78.

R. H. Hoh, D. G. Mitchell & B. L. Aponso, “Handling Qualities Requirements
for Military Rotorcraft,” US Army ASC, Aeronautical Design Standard, ADS-33C,
Aug., 1989.

M. K. H. Fan, A. L. Tits, J. L. Zhou, L. S. Wang & J. Koninckx, “CONSOL -
OPTCAD, User’s Manual,” Institute for System Research, Univ. of Maryland at
College Park , Tech. Report TR 87-212r2a, Aug., 1991.

F. D. Kim, S. R. Turnour & R. Celi, UMGenhel - Version 1.2, Center for Rotor-
craft Education and Research, Department of Aerospace Engineering, University

of Maryland, College Park, MD , Sept., 1991.
M. B. Tischler, “Digital Control of Highly Augmented Combat Rotorcraft,” NASA,
US Army ASC, NASA Tech. Memo. 88346, USAAVSCOM TR 87-A-5, May, 1987.

R. H. Hoh, D. G. Mitchell, B. L. Aponso, D. L Key & C. L. Blanken, “Background
Information and User’s Guide for Handling Qualities Requirements for Military

Rotorcraft,” US Army ASC, USAAVSCOM TR 89-A-8, Dec., 1989.

K. H. Landis & S. I. Glusman, “Development of ADOCS Controllers and Control
Laws Volume 2 - Literature Review and Preliminary Analysis,” NASA Ames Re-
search Center, US Army ASC, NASA Contractor Report 177339, USAAVSCOM
TR 84-A-7, 1984.

M. B. Tischler, J. W. Fletcher, P. M. Patrick, M. Morris & G. E. Tucker, “Flying
Analysis and Flight Evaluation of a Highly Augmented Combat Rotorcraft,” J. of
Guidance, Control, and Dynamics Vol. 14, No. 5 (Oct., 1991), 954-963.

65



{19] M. B. Tischler, “Sample Disturbance Response Specification,” Sept., 1990.

[20] G. Yudilevitch, “Optimal Decoupling Control,” Institute for Systems Research,
University of Maryland at College Park , Ph.D. Thesis, Dept. of Electrical Engi-
neering, ISR PHD 94-10, 1994.

[21] W. F. Jewell & W. F. Clement, “Crossfeed Compensation Techniques for Decou-

pling Rotorcraft Response to Control Inputs,” Systems Technology Inc., TR-1229-1,
Sept., 1985.

[22] A. Potvin, Nonlinear Control Design Toolbox for Use with MATLAB - User’s
Guide, The MathWorks Inc., 1993.

66



A List of all the required computer codes
A.1 C-O problem description files (PDF)

ADOCS - Main C-O PDF

/*

/*  ADOCS - PDF File */
;* Gil Yudilevitch ISR 11-11-93 *;
include "dp_adocs" /* Defines design parameters */
include "adocs.dp" /* Updates design parameters */
dt = 1/30

tf =5

dtg = 0.08

tfg = 40

global double getout();

global double geto(name, t, dt)
global char *name;

global double t, dt;

global {

global double r;

global int i;

global i=t/dt + 1.5;
global r = getout(name, i);

global return r;

global }

include "object.sat" /* objective - actuator RMS rate */
include "stable.all" /* stability */
include "specl.pit" /#* bandwidth vs. phase-delay */

include "specl.rol"
include "specl.yaw"

include "spec2.pit" /# stability margins */
include "spec2.rol"
include "spec2.yaw"

include "spec3.pit" /# attitude quickness */
include "spec3.rol"
include "spec3.yaw"

include "spec4.pit" /* interaxis coupling */
include "spec4.rol"
include "specd.yaw"

include "spec5.pit" /* wind gust rejection x/
include "specb.rol"
include "spech.yaw"

/* adocs /

spec*.chn - objective and constraint files

* - Spec number (1,2,3,4,8); chn - channel (pit,rol,yaw)
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/* /
/* OBJECTIVE - Min. Actuator RMS Rates */
/* Ref. briefing 04-94 */
/* Included file of ADOCS */
;* Gil Yudilevitch ISR 04-05-94 *é
objective "p_act_rate"
minimize {

return getout("pitch_AE",1)-1000;

}

good_value = 0.000

bad_value =1
objective "r_act_rate"
minimize {

return getout("roll_AE",1)-1000;

}

good_value = 0.000

bad_value =1
objective "y_act_rate"
minimize {

return getout("yaw_AE",1)-1000;

}

good_value = 0.000

bad_value =1
/ object.sat */
/* /
/* Included file of ADOCS.PDF */
;* Gil Yudilevitch ISR 05-14-93 *;

constraint "stable all" hard

return getout("eigen_A", 1);
}

<=

good_value = 0.000

bad_value = 0.001

/ END OF stable.all */
*/
/* SPECIFICATION 1 - Small Amplitude, Short Term Response */
/* Bandwidth & Phasedelay */
/* Pitch (ref. ADS-33C 3.3.2.1) */
/* Included file of ADOCS.PDF */
5* Gil Yudilevitch ISR 09-09-92 *§
constraint "pit bw pd" soft
{
return getout("pitch_dist", 1);
<=
good_value = 0.000
bad_value = 0.002

constraint "pit Td" hard
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return getout("pitch_pd", 1)-0.4;
}

<=
good_value = 0.0000
bad_value = 0.0001

/% END OF specl.pit /
/ *
/* SPECIFICATION 1 - Small Amplitude, Short Term Response */
/* Bandwidth & Phasedelay */
/* Roll (ref. ADS-33C 3.3.2.1) */
/* Included file of ADOCS.PDF */
/* Gil Yudilevitch ISR 09-09-92 */
/ */
constraint "rol bw pd" soft
return getout("roll_dist", 1);
}
<=
good_value = 0.000
bad_value = 0.002
constraint "rol Td" hard
return getout("roll_pd", 1)-0.4;
{=
good_value = 0.0000
bad_value = 0.0001
/* END OF specl.rol */
/ /
/* SPECIFICATION 1 - Small Amplitude, Short Term Response */
/* Bandwidth & Phasedelay x/
/* Yaw  (ref. ADS-33C 3.3.5.1) */
/* Included file of ADOCS.PDF */
;* Gil Yudilevitch ISR 09-09-92 *§
constraint "yaw bw pd" soft
return getout("yaw_dist", 1);
}
<=
good_value = 0.000
bad_value = 0.002
constraint "yaw Td" hard
return getout("yaw_pd", 1)-0.4;
}
{=
good_value = 0.0000
bad_value = 0.0001
/% END OF specl.yaw */
/ */
/* SPEC 2 - Small Amplitude, Mid Term Response */
/* Relative Stability (replaces: Damping Ratio) */
/* Pitch (ref. ADS-33C 3.3.2.2, briefing 10-93) */
/* Included file of ADOCS */
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5* Gil Yudilevitch ISR 11-11-93 *4
constraint "pit damp" soft
{
return getout("pitch_damp", 1);
}
<=
good_value = 0.000
bad_value = 0.001
/* spec2.pit /
/ */
/* SPEC 2 - Small Amplitude, Mid Term Response */
/* Relative Stability (replaces: Damping Ratio) */
/* Pitch (ref. ADS-33C 3.3.2.2, briefing 10-93) */
/* Included file of ADOCS */
/* Gil Yudilevitch ISR 11-11-93 */
/ /
constraint "rol damp" soft
{
return getout("roll_damp", 1);
}
<= .
good_value = 0.000
bad_value = 0.001
/* spec2.rol /
/ /
/* SPEC 2 - Small Amplitude, Mid Term Response */
/* Relative Stability (replaces: Damping Ratio) */
/* Pitch (ref. ADS-33C 3.3.5.2, briefing 10-93) */
/* Included file of ADOCS */
5* Gil Yudilevitch ISR 11-11-93 *§
constraint "yaw damp" soft
{
return getout("yaw_damp", 1);
<=
good_value = 0.000
bad_value = 0.001
/* spec2.yaw /
/ */
/* SPEC3 - Moderate Amplitude, Attitude Quickness */
/* q_pk/theta_pk */
/* Pitch (ref. ADS-33C 3.3.3) */
/* Included file of ADOCS */
;* Gil Yudilevitch ISR 11-11-93 *§

constraint "pit quickl" soft

return getout("pitch_ris", 1);

}
>=
good_value = 0.00
bad_value = -0.06
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constraint "pit quick2" soft

return getout("pitch_r2s", 1);

}
>=
good_value = 0.00
bad_value = -0.04

constraint "pit quick3" soft

return getout("pitch_r3s", 1);

}
>=
ood_value = 0.00
ad_value = -0.03
/ spec3.pit
/ */
/* SPEC3 - Moderate Amplitude, Attitude Quickness */
/* p_pk/phi_pk */
/* Roll (ref. ADS-33C 3.3.3) */
/* Included file of ADOCS */
5* Gil Yudilevitch ISR 11-11-93 *;
constraint "rol quickl" soft
{
return getout("roll_ris", 1);
>=
good_value = 0.00
bad_value = -0.014
constraint "rol quick2" soft
{
return getout("roll_r2s", 1);
>=
good_value = 0.00
bad_value = -0.08
constraint "rol quick3" soft
return getout("roll_r3s", 1);
>=
good_value = 0.00
bad_value = -0.07
/* spec3.rol /
/ */
/* SPEC3 - Moderate Amplitude, Attitude Quickness x/
/* r_pk/psi_pk */
/* Yaw (ref. ADS-33C 3.3.6) */
/* Included file of ADDCS */
;* Gil Yudilevitch ISR 11-11-93 *é

constraint "yaw quickl" soft

return getout("yaw_ris", 1);

71



0.00

good_value
-0.1

bad_value

constraint "yaw quick2" soft
return getout("yaw_r2s", 1);
>=

ood_value
ad_value

0.00
-0.07

constraint "yaw quick3" soft

return getout("yaw_r3s", 1);

}
>=
ood_value
ad_value

0.00
-0.04

/* spec3.yaw

* /
/* SPECIFICATION 4 - Decoupling */
/* theta/delta_phi */
/* Pitch (ref. ADS-33C 3.3.9.2) */
/* Included file of ADOCS.PDF */
;* Gil Yudilevitch ISR 12-23-92 *é

functional_constraint "pit dec up" soft
for t from O to 4 by dt
{ import dt;
return geto("pitch_d", t, dt)-0.25; }
<= good_curve = { return 0.00; }
bad_curve = { return 0.05; }

functional_constraint "pit dec lo" soft
for t from 0 to 4 by dt
{ import dt;
return geto("pitch_d", t, dt)+0.25; }
>= good_curve = { return 0.00; }

bad_curve = { return -0.05; }

/% END OF spec4.pit

/* */
/* SPECIFICATION 4 - Decoupling */
/* phi/delta-theta */
/* Roll (ref. ADS-33C 3.3.9.2) */
/* Included file of ADOCS.PDF */
5* Gil Yudilevitch ISR 12-23-92 *é

functional _constraint "rol dec up" soft
for t from 0 to 4 by dt
{ import dt;
return geto("roll_d", t, dt)-0.25; }
<= good_curve = { return 0.00; }
bad_curve = { return 0.05; }

functional_constraint "rol dec lo" soft
for t from O to 4 by dt

{ import dt;
return geto("roll_d", t, dt)+0.25; }

72



>= good_curve = { return 0.00; }
bad_curve = { return -0.05; }

/ END OF spec4.rol

/* SPECIFICATION 4 - Decoupling

/* yaw/collective

/* Yaw (ref. ADS-33C 3.3.9.1)

/* Included file of ADOCS.PDF

/* Gil Yudilevitch ISR 04-29-93

functional_constraint "yaw decl u" soft
for t from 3 to tf by dt
{ import dt;
return geto("yaw_d1", t-3, dt)-5; }
<= good_curve = { return 0.0; }
bad_curve = { return 0.5; }

functional constraint "yaw decl 1" soft
for t from 3 to tf by dt

{ import dt;
return geto("yaw_di", t-3, dt)+5; }
>= good_curve = { return 0.0; }
bad_curve = { return -0.5; }

constraint "yaw dec2 d" soft

{
return getout("yaw_d2", 1);

<=
good_value = 0.000
bad_value 0.002

/ END OF specd.yaw

/* SPECIFICATION 5 - Wind-Gust Rejection

/* Pitch (ref. M. Tischler 9/26/90)

/* Included file of ADOCS.PDF

/* Gil Yudilevitch ISR 09-09-92

functional_constraint "p ﬁust p u" soft
for t from O to 10 by dtg
{ import dtg;
return geto("pitch_g", t, dtg)-4; }
<= good_curve = { return 0.0; }
bad_curve = { return 0.3; }

functional_constraint "p gust p 1" soft
for t from 0 to 10 by dtg

{ import dtg;
return geto("pitch_g", t, dtg)+4; }
>= good_curve = { return 0.0;
bad_curve = { return -0.3; }

functional _constraint "p gust t u" soft
for t from 10+dtg to tig by dtg
{ import dtg;
return geto("pitch_g", t, dtg)-0.4; }
<= good_curve = { return 0.00; }
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bad_curve = { return 0.03; }

functional_constraint "p %ust t 1" soft
for t from 10+dtg to tfg by dtg
{ import dtg;
return geto("pitch_g", t, dtg)+0.4; }
>= good_curve = { return 0.00; }
bad_curve = { return -0.03; }

END OF spech.pit

/
/
/* SPECIFICATION 5 - Wind-Gust Rejection
/* Roll (ref. M. Tischler 9/26/90)

/* 1Included file of ADOCS.PDF

/* Gil Yudilevitch ISR 09-09-92

functional_constraint "r gust p u" soft
for t from 0 to 10 by dtg
{ import dtg;
return geto("roll_g", t, dtg)-4; }
<= good_curve = { return 0.0; }
bad_curve = { return 0.3; }

functional_constraint "r gust p 1" soft
for t from 0 to 10 by dtg

{ import dtg;
return geto("roll_g", t, dtg)+4; }
>= good_curve = { return 0.0; }
bad_curve = { return -0.3; }

functional_constraint "r %ust t u" soft
for t from 10+dtg to tfg by dtg
{ import dtg;
return geto("roll_g", t, dtg)-0.4; }
<= good_curve = { return 0.00; }
bad_curve = { return 0.03; }

functional_constraint "r gust t 1" soft
for t from 10+dtg to tfg by dtg

{ import dtg;
return geto("roll_g", t, dtg)+0.4; }
>= good_curve = { return 0.00; }
bad_curve = { return -0.03; }

/* END OF specb5.rol

/* SPECIFICATION 5 - Wind-Gust Rejection

/* Yaw (ref. M. Tischler 9/26/90)

/* Included file of ADOCS.PDF

/* Gil Yudilevitch ISR 09-09-92

functional _constraint "y gust p u" soft
for t from 0 to 10 by dtg
{ import dtg;
return geto("yaw_g", t, dtg)-4; }
<= good_curve = { return 0.0;
bad_curve = { return 0.3; }

functional_constraint "y gust p 1" soft
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for t from 0 to 10 by dtg

{

import dtg;

return geto("yaw_g", t, dtg)+4; }

>= good_curve

bad_curve

= { return 0.0;
= { return -0.3; }

functional_constraint "y %ust t u" soft
g

for t from 10+dtg to t

{

by dtg

import dtg;

return geto("yaw_g", t, dtg)-0.4; }

<= good_curve

bad_curve

= { return 0.00; }
= { return 0.03; }

functional_constraint "y %ust t 1" soft
g

for t from 10+dtg to t

{

by dtg

import dtg;

return geto("yaw_g", t, dtg)+0.4; }

>= good_curve

bad_curve

= { return 0.00; }
= { return -0.03; }

/*

END OF spec5.yaw */

A.2 MATLAB simulation files

init.m - Initialization file (run only once for each C-O run)

T ARk AR R AR R AR K Ao Ao KA KSR oK ook R o ook ko oo ok ok sk e o s ok o o o
% System Initialization File for ADOCS

% init.m CONSOL-MATLAB file

%  Continous-Linear Model for specs: 1 (Bandwidth-Phase delay) & 2 (stability
% margins) & 5 (Wind-gust).

% Discrete-Nonlinear Model for specs: 3 (Quickness) & 4 (coupling).

% Gil Yudilevitch ISR - UMD 04-09-94
o HAARRA A AR AR A A AR AR A KA AR A A A A A A o 3o Ko Ko 3K 3o 3K Ko R SR K s ok sk o ok

% Optimization Set-up

OPSYS = 1; % Operating system: 0 - DOS (PC); 1 - UNIX (Working station).

MATLAB = 1; % Matlab run type: O - C-0/MATLAB run; 1 - autonomous MATLAB run.

CONSOL = 0; % C-0 run type: O - Background; 1 - interactive.

LEVEL = 0; % Contineuos performance level (0,1): O - Level 1, 1 - Level 1+.

LIMIT = 1; % Actuator limits: actual_limit = LIMIT*nominal_limit.

TIME = 1; % Actuator time const. (TC): actual_TC = TIME*nominal_TC.

SPEC1 = 1; Y% Specs: 0 - Specs are not included; 1 - Specs are included.

SPEC2 = 1{;

SPEC3 = 1;

SPEC4 = 1;

SPEC5 = 1; % f

FLIGHT = ’h’; J Flight conditions (about hover) 1 hr 10 kts each direction
% b

% System Block Diagram

Y e

A Gd

% |

% v

./0 R ’-_—’Rm E 3 TTT, d === ,-—_—’ s T A8 27T, Y

% -——>| F |——>0——>| D I-->| Sc f——>0—->| Sr |—->| K/s |-4+->] P |-==+-=>

% -—— % —_——- L [—— [, [ |

% | i | |
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h
)
%

dt
tf

1/30;
5; t =0:dt:tf; nt=length(t);

ti= min(find(t==1));

t3= min(find (t==3));

dtg=0.08; tfg=40;

tg=0:dtg:tfg;

n10=max(find (tg<=10)); nfg=length(tg);
wo=logspace(-1,1,50);

% Model Components

% Sampling rate 30 Hz
% Command Type Time Axis

% Index for 1 & 3 sec.

% Time vector for wind-gust inputs

% Frequency vector

% 1. Helicopter 6 DOF Dynamics + Rotor Aerodynamics
%4 Linear Continuous Time Model

% # of states
% # of inputs
% # of outputs

11 ( 9 for 6 dof dyn
4

% u linear velocity along X axis
% v linear velocity along Y axis
how linear velocity along Z axis
% p angular velocity about X axis
% q angular velocity about Y axis
% r angular velocity about Z axis
% phi angle about X axis

% theta - angle about Y axis

% psi angle about Z axis

% blc longitudinal flap (-als)

% bis lateral flap (-bis)

h

% Units: linear velocity [ft /sec]

4 =—-— angular velocity [rad/sec]

% helicopter angle [rad ]

% flap angle [rad ]
B10to4 = zeros(10,4); % Trans.

amics + 2 for rotor aerodynamics )

7 ( 4 for the linear case --> C 4 x 11 )

State Qutput  Input
1
2
3 * 5 4 delta_c
4 * 6
5 * 7
6 4
7 2 2 delta_phi
8 1 1 delta_theta
9 3 3 delta_psi
10
11

* - used for NL only
delta_# [in]

10 (UMGENHEL) --> 4 inputs

B10to4(1,2) = 1; B10to4(2,1) = 1; B10to4(4,3) = 1; B10to4(3,4) = 1;

% Continueous Time

if OPSYS == 1,
eval([’load A11’ ,FLIGHT,’ -ascii;’]); % Load A,B UMGENHEL matrices for Unix
eval({’load Bi1’,FLIGHT,’ -ascii;’]);
eval([’Ap = A11’,FLIGHT,’;’]);
eval([’Bp = B11’,FLIGHT, ’*B10to4;’]);

else,

eval([’load al1’,FLIGHT,’.;’]);
eval([’load b11’,FLIGHT,’.;’]);

eval([’Ap = a1l’,FLIGHT,’;’]);
eval([’Bp = b11’,FLIGHT, ’*B10to4;’]);
end;

Ccp=[00000001000
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% Load A,B UMGENHEL matrices for PC
% for the FLIGHT conditions



00000010000
00000000100
0000010000 0];

Dp = zeros(4,4);

[Apm,Bpm,Cpm,Dpm]=modred (Ap,Bp,Cp,Dp, [10,11]); Y% Reduced to 9 states for
% "inverse plant” parameters

% Discrete Time

[Apd,Bpd] = c2d(Ap,Bp ,dt); ¥ digital ZOH equivalence for the plant

% Pure Delay 2_nd Order Pade Approximation (for the continuous linear part !!)

:/. _____ - - _——

i Total Delay was taken equal for all channels. Total delay for Pitch
% from Mark’s AIAA paper is 223 ms ==> 200 ms "pure" and 25 ms Actuator
% Time-Constant (see later in SP-Actuator Model)

Td = [0.2;0.2;0.2;0.2];
[Ad1,Bd1,Cd1,Dd1] = pade(Td(1),2);

[Ad2,Bd2,Cd2,Dd2] = pade(Td(2),2);
[Ad3,Bd3,Cd3,Dd3] = pade(Td(3),2);
[Ad4,Bd4,Cd4,Dd4] = pade(Td(4),2);

(Ad,Bd,Cd,Dd]=append (Ad1,Bd1,Cd1,Dd1,Ad2,Bd2,Cd2,Dd2);

(Ad,Bd,Cd,Dd]=append (Ad,Bd,Cd,Dd,Ad3,Bd3,Cd3,Dd3);
[Ad,Bd,Cd,Dd]=append(Ad,Bd,Cd,Dd,Ad4,Bd4,Cd4,Dd4) ;

Ndel = round(Td/dt); % # of delayed sampling intervals (for NL computation)

% Swashplate-Actuators Model
Y mmm e ————

% LINEAR PART :-

K = 1/(TIME*0.025)*ones(1,4); % 1/(Time Constant) equal actuators
[as1,bsl,csl,dsl1] = t£2ss([0,K(1)],[1,K(1)]);
[as2,bs2,cs2,ds2] = tf2ss([0,K(2)],[1,K(2)]);
[as3,bs3,cs3,ds3] = t£2ss([0,K(3)],[1,K(3)]);
[as4,bsd,cs4,ds4] = t£2ss([0,K(4)],[1,K(4)]);

[As,Bs,Cs,Ds] = append(asi,bsi,csl,dsl,as2,bs2,cs2,ds2);
[As,Bs,Cs,Ds] = append(As,Bs,Cs,Ds,as3,bs3,cs3,ds3);
[As,Bs,Cs,Ds] = append(As,Bs,Cs,Ds,as4,bs4,cs4,ds4);

% NONLINEAR SATURATIONS :-
% **x Al]l data is given at cockpit units (i.e., in’s of stick or pedal)

% *** The trim (hover) conditions set to be zero (see table below)
% *** The swashplate mechanizem ("limits coupling") is NOT taken in acount

% *xx The rate limits are taken as: full strok per 1 sec

% Command Limits Table, Ref. Sikorsky SER 70452 p 6.16 Fig. 6.3.1

% channel | Pitch i Roll | Yaw | Collective |
% actual [-5.0 +0.2 +5.0|-5.0 -0.5 +5.0|-2.69 +0.85 +2.69| 0.0 +5.0 +10.0]|
% simulation|-5.2 0.0 +4.8|-4.5 0.0 +5.5|-3.54 0.00 +1.84|-5.0 0.0 + 5.0]|
Csl = LIMIT*[ -5.2 -4.5 -3.54 -5]; Y% Displacement (Commands) Lower Limits
Csu = LIMIT#[ 4.8 5.5 1.84 5]; Y Displacement (Commands) Upper Limits
Rsl = LIMIT*[-10 -10 -5.38 -10]; Y% Rate Lower Limits

Rsu = LIMIT+[ 10 10 5.38 10]; % Rate Upper Limits

% Linear Continuous-Time Open-Loop
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{Ao,Bo,Co,Do] = series(Ad,Bd,Cd,Dd,As,Bs,Cs,Ds);
(A0,Bo,Co,Do] = series(Ao,Bo,Co,Do,Ap,Bp,Cp,Dp);

% Closed-Loop (Design) Parameters, Initial Values

% -- . —

% Design parameters
! gn

if MATLAB == 1,

dp_NOM

%Kr_p=0; Kp_r=0; Kc_y=0; % Crossfeed gains (for decentralized control)
end;

% Inverse plant (ff) constants

A e T

Bpm(5,1); FGphi = Bpm(4,2); FGpsi
-Apm(5,5); FTphi = ~Apm(4,4); FTpsi

FGtet
FTtet

Bpm(6,3) ;
-Apm(6,6);

% Time Response Inputs
4

DtR = pi/180;

Stet = DtR*[ 5,17.5,30];

Sphi =-DtR%[10,35 ,60]; % the worst direction (nonsymmetric saturation)
Spsi = DtR+[10,35 ,60];

Scol = 5;

? Linear Wind-Gust Model

(ag,bg,cg,dg] = tf2ss([0 0.44 0],[1 2 11);
[Ag,Bg,Cg,Dgl=append(ag,bg,cg,dg,ag,bg,cg,dg) ;
[Ag,Bg,Cg,Dgl=append (Ag,Bg,Cg,Dg,ag,bg,cg,dg) ;
(Ag,Bg,Cg,Dgl=append (Ag,Bg,Cg,Dg, [1,[1,[], 0);
Bgg=zeros(23,4);

Bgg(17,1)=-Apm(5,5); Bgg(16,2)=-Apm(4,4); Bgg(18,3)=-Apm(6,6);

% Level 1 curve for spec 1

% --—- - -—

Ts = [0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 .
0.225 0.250 0.275 0.300 0.325 0.350 0.375 0.400];

Ws = [2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.105 2.235 .
2.405 2.685 3.005 3.275 3.505 3.905 4.155 4.455];

PL1=polyfit(Ts,Ws,6);

Ws = Ws + 1.5%LEVEL;

PL =polyfit(Ts,Ws,6);

% LEVEL factors for spec 3
Y —

d3pl = 0.93; d3p2 = 0.78; d3p3 = 0.68;
d3rl = 0.96; d3r2 = 0.50; d3r3 = 0.10;
d3y1 = 0.98; d3y2 = 0.76; d3y3 = 0.64;

% Optimization Parameters (optional for interactive C-0/MATLAB run)
[}

if MATLAB == 0 & CONSOL == 1,
coNs = [1:3,2,4,6,8:16,1,3,17,5:2:17];
BAD = [3;3;3;0.002;0.002;0.002;0.01;0.01;0.01;0.04;0.03;0.09;0.08;...
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0.07;0.04;0.05;0. 05 0.002;0. 5 0 3;0.03;0.3;0.03;0.3;0.03];

Tter=-1; iter=[]; witer=(] s www=(1; =ti;
perf=[]1; dps=[]; grad=[]; bad=BAD;
end;

? SIMU.MAT saved varlables default values

pitch_dist=0; roll dist=0; yaw_dist=0; pitch_bw =0; roll_bw =0; yaw_bw =0;
pitch_pd =0; roll_pd =0; yaw_pd =0; pitch_damp=0; roll_damp=0; yaw_damp=0;
pitch_rls =0; roll_ris =0; yaw_rls =0; pitch_r2s =0; roll_r2s =0; yaw_r2s =0;
pitch_r3s =0; roll_r3s =0; yaw_r3s =0; pitch.d =0; roll_d =0; yaw_dl =0;
yaw_d2 =0; pitch_g =0; roll_g =0; yaw_g =0; eigen_A =0; 0BJ =0;
pitch_Weco =0; roll _Wco =0; yaw_Wco =0; pitch_AE =0; roll_AE =0; yaw_AE =0;

Name=’Gil Yudilevitch’;
Date=amdate;

AR LI 22 T PR end of init.m ek o ok o 3 o ke ok o ok ek o ok o ok o o o o e o o o ok ok o o o ok ke ok ok ok ok ok ok oK

simu.m - Main simulation file

% Aok ok sk ok ok oK R KR AR Ao oK Ko Ko Ko Kok ok ok ok o ook ks sk s ko ok sk ko ko ok
% System Simulation File for ADOCS

% simu.m CONSOL-MATLAB file

% Continous-Linear Model for specs: 1 (Bandwidth-Phase delay) & 2 (stability
% margins) & 5 (Wind-gust).

% Discrete-Nonlinear Model for specs: 3 (Quickness) & 4 (coupling).

% Gil Yudilevitch ISR - UMD 04-09-94
% ek ok sk ok ok ook s ok sk ok ok ok ok sk ok o ok sk o o KR o o ko ok o oo o o o oK KoK o ok ok sk ok ok sk sk ok ok ok ok ok ook

% Feedforward (including Model Following & "Inverse Closed-Loop")

% --—- e e e e e e e e e i e e e e

if MATLAB==1, disp(’Feedforward control’); end;

% Continuous Time

[Af_tet,Bf_tet,Cf_tet,Df_tet] =
t£2ss (Mtet ™2+ [1/FGtet Kq+1/FGtet/FTtet Ktet], [1 2*Mtet Mtet~2]);

[Af_phi,Bf_phi,Cf_phi,Df_phi] =

t£2ss (Mphi~2+[1/FGphi Kp+1/FGph1/FTph1 Kphi], [1 2*Mphi Mphi~2]);
[Af_psi,Bf_psi,Cf_psi,Df_psi] = ..

tf2ss( Mpsix[1/FGpsi Kr+1/FGp51/FTps1 Kpsil, {1 Mpsi ol;
[Af,Bf,Cf,Df]=append (Af_tet,Bf _tet,Cf_tet,Df_tet »Af_phi,Bf_phi, Cf_phl Df_phi);
[Af,Bf,Cf,Df]=append(Af,Bf, Cf Df, Af -psi,Bf_psi,Cf_psi,Df_psi);

[Af ,Bf,Cf,Df)=append (Af ,Bf,C£,Df,[1,[],[]1,1);

% Discrete Time

[Afd,Bfd] = c2d(Af,Bf,dt);

% Crossfeed design
[}
Y mmmmmmmmm—mmmmem

if MATLAB==1, disp(’Crossfeed control’); end:

Kef = [1 Kr_p 00
Kp_r 1 00
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0 ] 1 Ke_y
0 0 0 1];

Bocf = BoxKcf; Docf = DoxKcft;

% Stabilization Feedback Gains Matrix

# uvwp q r phi theta psi bic bis

H=1[...
0000 KqO O Ktet 0 0 0 % delta_theta
0O00KpO O Kphi© O 0 O % delta_phi
0000 0 Kro 0 Kpsi 0 O % delta_psi
0000 0 O O 0 0 0 0)]; Y% delta-collective

% Linear Closed-Loop

% order and # of states:

% 6 - Feedforward

% 8 - Delay (4 x 2nd order Pade apprx.)

% 4 - Swashplate actuators

%4 11 - 6 DOF + rotor (outputs: theta, phi, psi, r)

HH=[zeros(4,12) ,H];

Ac=Ao-Bocfx*HH;

eigen_A=max(real(eig(Ac)));
[A,B,C,D)=series(Af,Bf,Cf,Df,Ac,Bocf,Co,Docf);

A Linear "Broken-Loop" (open-loop)

HH(i 17) = 0; HH(1,20) =

[Ao1,Bo1,Col,Dol] = .

serles(Ao-Bocf*HH Bocf( 1),Cor(1,:),Docf(l,l),O,i,Ktet,Kq);
HH(1,17) = Kq; HH(l 20) = Ktet;

HH(2,16) = 0; HH(2,19) =

[A02,Bo2, Co2,D02] = .

series(Ao-Bocf*HH,Bocf (:,2),Cor(2,:),Docf(2,2),0,1 ,Kphi,Kp) ;
HH(2,16) = Kp; HH(2,19) = Kphl,

HH(3,18) = 0; HH(3,21) = 0;

[A03,B03,C03,D03] =

serles(Ao Bocf *xHH Bocf( ,3),Cor(3,:),Docf(3,3),0,1,Kpsi,Kr);
HH(3,18) = Kr; HH(3 21) = Kpsi;

% Nonlinear Closed-Loop (Time Response)

% Command Response | oredr and # of states:

% 6 - Feedforward

% 4 - Swashplate actuators

% 11 - 6 DOF + rotor (outputs: theta, phi, psi, p, q, r, W)

if MATLAB==1, disp(’Nonlinear step response:’); end;

% Pitch input
Y e

nR=1;
if SPECS
aR-pllot(t Stet(S) Stet(1),’p’); drsc; X11 = X; Urll = Us;
if MATLAB =
disp(’ Pitch Small?):
Usil = Xs(i:nt,:);
end;
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aR— ilot(t, Stet(3) Stet(2),’p?’); drsc; X12 = X;

ATLAB==1
dlsp(’

Uri2 = Us; Usl2 =

end

1f (SPEC3+SPEC4) >=

aR=pilot(t, Stet(3) Stet(3) p');

if MATLAB==
disp(’

Uri3 = Us; Usi3 =

end;
end;

% Roll input
VA

nR=2;
if SPEC3 =

aR-pllot(t Sph1(3) Sphi(1),’p’);

if MATLAB =
disp(’

Us21 = Xs(1:nt,:);

end;

aR=pilot(t,Sphi(3),Sphi(2),’p’);

ATLAB==
disp(’

Ur22 = Us; Us22 =

end;
end;
if (SPEC3+SPEC4) >=

aR=pilot(t, Sph1(3) Sphi(3),’p’);

if MATLAB==1,
disp(’
Ur23 = Us; Us23 =
end;
end;

% Yaw input

nR=3
if SPECS

aR-pllot(t Sp51(3) Spsi(1),’r?*);

if MATLA
disp(’

Us31 = Xs(1:nt,:);

end;

aR= ilot (t,Spsi(3),8psi(2),’r’);

ATLAB==1,
disp(’
Ur32 = Us; Us32
end;

if MATLAB==1,
disp(’

Ur33 = Us; Us33 =

end;
end;

% Collective input
.
nR—

if SPEC4 =1,

Xs(1:nt,:);

Xs(1:nt,:);

Xs(i:nt,:);

Xs(l:nt,:);

= Xs(1:nt,:);
aR-pllot(t Spsi(3),Spsi(3),’r’);

Xs(1:nt,:);

Pitch Medium’);

drsc; X13 = X;
Pitch Large’);

drsc; X21 = X; Ur21
Roll Small’);

drsc; X22 = X;
Roll Medium’);

drsc; X23 =
Roll Large’);

drsc; X31 = X; Ur31
Yaw Small’);

drsc; X32 =

Yaw Medium’);

drsc; X33 = X;
Yaw Large’);
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aR=pilot(t,Scol,Scol,’p’); drsc; X41 = X;

if MATLAB==1,
disp(’ Collective’);
Ur41l = Us; Us4l = Xs(1i:nt,:);
end;
end;
if SPECS5 == 1,

% Linear Wind Gust response

% Gust Response | States order:

% 6 - Gust model

% 8 =~ Pure delay

% 4 - Swashplate actuators

% 11 - 6 DOF + rotor (outputs: theta, phi, psi)

[Agc,Bgc,Cgc,Dgcl=series(Ag,Bg,Cg,Dg,Ac,Bgg,Co,Doct) ;
[ygl,x] = step(Agc,Bgc(:,1),Cgc(l,:),Dge(1,1),1,tg);
pitch_up=x(:,08); pitch_ur=K(1)*(x(:,08)-x(:,15));
[yg2,x] = step(Agc,Bgc(:,2),Cgc(2,:),Dge(2,2),1,tg);
roll_up =x(:,10); roll_ur =K(2)*(x(:,10)-x(:,16));
(yg3,x] = step(Agc,Bgc(:,3),Cgc(3,:),Dge(3,3),1,tg);
yav_up =x(:,12); yaw_ur =K(3)*(x(:,12)-x(:,17));
if MATLAB==1, disp(’Linear wind-gust response’);
if max(pitch_up) > Csu(l) | ...
min(pitch_up) < Csl(1l) | max(abs(pitch_ur)) > abs(Rsl(1)),
ddisp(’ Warning: Pitch actuator is saturated !’);
end;
if max(roll_up) > Csu(2) | ...
min(roll_up) < Csl(2) | max(abs(roll_ur)) > abs(Rsl(2)),
ddisp(’ Warning: Roll actuator is saturated !’);
end;
if max(yaw_up) > Csu(3) | ...
min(yaw_up) < Cs1(3) | max(abs(yaw_ur)) > abs(Rsl(3)),
disp(’ Warning: Yaw actuator is saturated !’);
end;
end;
end;

%

% New objectives (4/94)
Y e e

% Quadratic objectives (actuator "energy")

% ———

pitch_AE = qcost(dt,Ur11(:,1),1);
Toll_AE = qcost(dt,Ur21(:,2),1);
yaw_AE = qcost(dt,Ur31(:,3),1);

Z Actuator efforts

effl = sqrt(qcost(dt,Uri1(:,1),1)/5)/10;
eff2 = sqrt(qcost(dt,Ur21(:,2),1)/6)/10;
eff3 = sqrt(qcost(dt,Ur31(:,3),1)/5)/5.38;

if MATLAB==1, disp(’Computing specs performance:’); end;
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if SPEC1 ==

if MATLAB==
[pitch_dist,pitch_bw,pitch_pd]

(roll_dist
[yaw_dist
end;

% Spec 2
'/. ______

if SPEC2 ==

i, disp(’
d_bw_pd(A,B,
,roll_bw ,roll_pd ] = d_bw_pd(A,B,
,yaw_bw ,yaw_pd ] A,B

if MATLAB ==
% zeta is not used for optimization anymore

[Zeta,max_wn] =

disp(’
end;

Spec 2’);

c
c
c

d_bw_pd(A,B,C,

% we are using GM & PM criterion instead of zeta

GMO=6; PM0=45;

(mo1,poi]l=bode(Aol,Bol,Col,Dol,1,w0);
,Wg,pitch_Weo] = imargin(mol,pol,wo); pitch_GM = 20%1ogl0(Gm);

{Gm,pitch_PM

d_g.p = (pltch GM/GM0-1)"2; d_p_p =
GM >= GMO & pltch PM >= PMD, pitch_damp
elseif pitch_GM >= GMO & pitch_PM < PM0O, pitch_damp
elseif pitch_GM < GMO & pitch_PM >= PMO, pitch_damp

if pitch_

else,

% standard gain and phase margin

Spec 1’); end;

D,1,1,PL1); % [ ,rad/sec,sec]
D,2,2,PL);

D,3,4,PL);

zeta(A,max([pitch_bw,roll bw,yaw bwl)); % [ ], []

(pitch_PM/PM0-1)"2;

0;
d_g.p;

d_p_p;

pitch_damp = d_g_p+d_p_p; end;

[mo2,po2]=bode (A02,B02,C02,D02,1,wo0);

[Gm,rol1_PM

,Wg,roll_Weo ] = imargin(mo2,po2,wo); roll_GM = 20%loglO(Gm);

d_g_r = (roll_GM/GMO0-1)"2; d_p_r = (roll_PM/PM0-1)"2;

if roll_GM >= GMO & roll_PM >= PMO, roll_damp
elseif roll _GM >= GMO & roll _PM < PMO, roll_damp
elseif roll_GM < GMO & roll_PM »>=

else,

PMD, roll_damp

roll_damp

[mo3,po3]=bode (A03,Bo3,C03,D03,1,wo);
,Wg,yaw_Weco 1] = 1marg1n(m03,p03 wo); yaw_GM = 20%1oglO(Gm);
GM/GMO-1)"2; d_p (yaw_PM/PMO-1)" 2

if yaw_GM >= GMO & yaw_ PM >— PMO yaw_damp
elseif yaw_GM >= GMO & yaw_PM < PMO, yaw_damp
elseif yaw_GM < GMO & yaw_PM >= PMO, yaw_damp
yaw_damp =

(Gm,yaw_PM
d_g_y = (yaw_

else,
end;

% Spec 3
Y —mmmme

if SPEC3 =

if MATLAB == 1, disp(’

pitch_ri
pitch_ris
pitch_r2
pitch_r2s
pitch_r3
pitch_r3s
roll_ri
roll_ris
roll_xr2
roll_r2s
roll_r3
roll_r3s
yaw_ril

max(Xll( ,15))/Stet(1); % [1/sec]
pitch_ri1-(0.70+d3p1+LEVEL);
max(X12(:,15))/Stet(2);
pitch_r2-(0.40+d3p2*LEVEL) ;
max(X13(:,15))/Stet(3);
pitch_r3-(0.25+d3p3+LEVEL) ;
min(X21(:,14))/Sphi(1);
roll_r1-(1.39+d3r1*LEVEL);
min(X22(:,14))/Sphi(2);
roll_r2-(0.85+d3r2*LEVEL) ;
min(X23(:,14))/Sphi(3);
roll_r3-(0.75+d3r3*LEVEL) ;
max(X31(:,16))/Spsi(1);
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d_p_r;

d_g_r;

d_g_r+d_p_r; end;

yi
d _g_y+d_p_y; end;

Spec 3’); end;



yaw_rls = yaw_ri1-(1.42+d3y1*LEVEL);
yaw_r2 = max(X32(:,16))/Spsi(2);
yaw_r2s = yaw_r2-(0.67+d3y2*LEVEL);
yaw_r3 = max(X33(:,16))/Spsi(3);
yaw_r3s = yaw_r3-(0.36+d3y3*LEVEL);
end;
% Spec 4
Y o
if SPEC4 == 1,
if MATLAB==1, disp(’ Spec 4’); end;
pitch_d = X23(1:121,18)/Sphi(3); %1
roll_d = X13(1:121,17)/Stet(3);
yaw_dl = 180/pi*X41(t3:nt,16); % [deg/sec]
Mrl = max(X41(:,16)); Jrl = £find(X41(:,16) == Mrl); % for w(t) < 0
if t(Jrl) >= t3, r1 = X41(t1,16); else, r1 = Mrl; end; ¥ and r(t) > 0
r3 = X41(t3,16)-r1;
y_y = -180/pi*r1/X41(t3,13);
x_y = 180/pi*r3/X41(t3,13);
a_y = (x_y-0.15)"2; b_y = (y_y-0.65)"2; c_y = (x_y+0.2)"2;
if (x_y >= 0.15) & (y_y < 0.65),
yaw_d2 = a_y;
elseif (x_y < -0.2) & (y_y < 0.65),
yaw_d2 = c_y;
elseif (x_y >= -0.2) & (x_y < 0.15) & (y_y >= 0.65),
yaw_d2 = b_y;

elseif (x_y >= 0.15) & (y_y >= 0.65),
yaw_d2 = a_y + b_y;

elseif (x_y < -0.2) & (y_y >= 0.65),
yaw_d2 = b_y + c_y;

else,
yaw_d2 = 0;
end;
end;
% Spec 5
Y mmmmmm
if SPEC5 == 1,
if MATLAB==1, disp(’ Spec 5’); end;
pitch_g = 180/pi*ygl; % [deg]
roll_g = 180/pixyg2;
yav_g = 180/pi*yg3;
end;

% 1 objective

% OBJ = 60*(pitch_Wco+roll_Wco+yaw_Wco)+pitch_AE+6*roll_AE+30*yaw_AE - 1000;

if MATLAB==0,

save simu pitch_dist roll_dist yaw_dist ...
pitch bw roll_bw yaw_bw
pitch_.pd 1roll pd yaw.pd ...
pitch_damp roll_damp yaw_damp ...
pitch_Wco roll _Wco yaw_Wco
pitch_AE roll_AE yaw_AE
pitch_ris roll ris yaw_ris
pitch_r2s roll_r2s yaw_r2s
pitch_r3s roll_r3s yaw_r3s
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pitch_d roll_d yaw_dl yaw_d2 ...
pitch_g roll_g yaw_g eigen_A %0BJ
end;

% URUULRRAAUUDIRRAAIIRAAANAAN%  end of simu.m  AARRAAAAUARAARALIAALARDA RN AL AN

*m - MATLAB functions (used in simu.m)

function [d,Bw,Pd] = d_bw_pd(A,B,C,D,Iu,Iy,PL);

% Calculate bandwidth [rad/sec] and phase-delay [sec] for

% the SISO system (input Iu output Iy) of:

% dx/dt = Ax + Bu

% y =Cx+Du

% Then calculate the distance (d) of (Bw,Pd) for a given boundary
% curve (PL).

%  [d,Bw,Pd] = d_bw_pd(4,B,C,D,Iu,Iy)

% MATLAB function for ADOCS
% Gil Yudilevitch ISR 11-19-92

% Calculate Bw

———————————

epsilon = 0.1°(i-1);
while p > -135,
w = w+epsilon;
p=angle(C(Iy,:)*inv(j*wreye(size(A))-A)*B(:,Iu)+D(Iy,Iu))*180/pi;
if p > 0, p=p-360; end;
end;
P=q; .
w = w-epsilon;
end;
Bw = w+epsilon/2;

p=0;

for i = 1:5,
epsilon = 0.17(i-1);
while p > -180,

w = wtepsilon;
p=angle(C(Iy,:)*inv((j*wreye(size(4))-A))*B(:,Iu)+D(Iy,Iu))*180/pi;
if p > 0, p=p-360; end;
end;
P=q; .
w = w-epsilon;
end;
w = w+epsilon/2;
p=angle(C(Iy,:)*inv((j*2*wreye(size(A))-A))*B(:,Iu)+D(Iy,Iu))*180/pi-360;

% Assumption, at 2%w180 : -180 deg >= phase >= -540 deg !!!
Pd = -(180+p)+*pi/360/w;
% Calculate d
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d=Bw-polyval(PL,Pd);
if 4 > 0, d=0;
else,
dmin=100;
d=(d/4.45)"2;
PdO=Pqd;
while d < dmin,
dmin=d;
Pd0=Pd0-0.005;
g-((Pd-PdO)/O 14)" 2+((Bw-polyval(PL,Pd0))/4.45)"2;
en
d=dmin;
end;

function Xd = delay(XX,D,k)
% Delays the time vector XX(k) k=1,2,... by D time units

% MATLAB function for ADOCS
% Gil Yudilevitch ISR 14-03-93

[m,n] = size(XX);
for i=1:n,
if D(i) >= k,
Xd(i) = XX(1,1i);
else,
Xd(i) = XX(k-D(i),i);
end;
end;

Y, Aok o oo Ao oo Aok o AR koo ok o ko K A ko KKK o ok Ak ko 3ok ok ko ok
% Digital Recursive Simulation Command (inputs)

% Solve NON-LINEAR equations for simu.m (CONSOL-MATLAB file)
%  CAUTION: This is a MATLAB SCRIPT file !!!

% Gil Yudilevitch ISR 02-04-93
9, ook ks ok oo ok koo o K o ok oK ook o KoK K K o o o ok o Ao ok SR ok ok o o o ok o

Xf = zeros(nt,6 );

Xs = zeros(nt,4 );

Xp = zeros(nt,11);

R=zeros(nt,4); R(:,nR)=aR’;

for k=1:nt,
Rm(k,:) = Xf(k,:)*Cf’ + R(k,:)*Df’;
E(k,:) = Rm(k,:) - Xp(k,:)*H’;
Ed(k,:) = delay(E,Ndel,k);
Ec(k,:) = Ed(k,:)*Kcf’;
Rs(k,:) = 1limit(Csl,Csu,Ec(k,:));
Uu(k,:) = (Rs(k,:)-Xs(k,:)).*K;
Us(k,:) = limit(Rsl,Rsu,Uu(k,:));
Xf(k+1,:) = Xf(k,:)*Afd’ + R(k,:)*Bfd’;
Xs(k+1,:) = Xs(k,:) + Us(k,:)*dt;
Xp(k+1,:) = Xp(k,:)*Apd’ + Xs(k,:)*Bpd’;

end;

X=[Xf(1:nt,:) Xs(1:nt,:) Xp(1:nt,:)];
function y=limit(1l,u,x)

% Saturation function:

h
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h "y (output component)

% u | /e---

% L/

o e /=== > x (input component)
% /1

% —/ 11

% %,¥,1,u are all vectors of the same length
7
% y = limit(1,u,x)

% MATLAB function for ADOCS
% Gil Yudilevitch ISR 09-22-92

n=length(1);
for i=1:n,
if x(i) >= u(i), y(i)=u(i);

else, ‘
if x(i) <= 1(d), y@)=1(1);

else, y(@)=x(i);

end; end;

function u=pilot(t,r,a,type)

-~

% type u
% b e a for pitch and roll channels
% ’p’osition | /

% |/r
/

% u

| for yaw channel
% ‘r’ate H

a
/\
/T \
% / N>t

% MATLAB function for ADOCS
% Gil Yudilevitch ISR 06-02-94

if type == ’p’,
T-max(flnd(t<-a/r))
1u-[r*t(i :T), a*ones(l length(t)-T)]1;
se,
¢ T=max (find(t<=sqrt(a/r}));
3=[r*t(1:T),r*(t(T)-t(2:T)),zeros(l,length(t)-2*T+1)];
end;

A.3 Some M-files for design evaluation

specs.m - Performance map (color)
% MATLAB M-file (SCRIPT !!!) for PERFORMANCE MAP (COLOR) DISPLAY
A
% Gil Yudilevitch ISR 12-23-92

clg; mp=4; delta=le-b;
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if SPEC1 == 0,

[pitch_ dlst,pltch bw,pitch_pd] = d_bw_pd(A,B,C,D,1,1,PL1);
[roll_dist ,roll_bw ,roll_pd ] = d_bw_pd(A,B,C,D,2,2,PL);
[yaw_dist ,yaw_bw ,yaw_pd ] = d_bw_pd(A,B,C,D,3,4,PL);

end;
w1=0:0.001:0.4;
x1=polyval(PL1,wl);
x1p=polyval (PL,wl);
subplot(341);
if LEVEL == 0,
£i11([0.565,x1,x1(401:-1:1)-1.45),[0,wl,w1(401:-1:1)],°r’,..
(x1,6,6, 2] {w1,0.4,0,0],’b’,
[0,x1-1.45,01,[0,wl,0.4], )}
else,
flll(EXIp 6,6,3.5],([w1,0.4,0,0],c?,
[0.55,x1 x1(401 ~-1:1)-1.45], [0, wl w1(401 -1:101,°'r?,
{x1p,6,x1(401:-1:1),3.5], [wi,0.4,w1(401:~1:1),0], b},
[0,x1~1.45,0],[0,w1,0.4],’m’);
end;
axls([O 6,0,0.4]); hold on;
putflll(yaw bw ,yaw_pd ,0,
putfill(pitch_bw,pitch_pd,0

6,
’6’ bl

putfill(roll_bw ,roll_pd ,0,6,0,

if exist(’COLOR’) == 0, title( Spec 1 : Bawdwidth & Phase-delay’);
else, title(’1 : BW vs. PD’); end;

ind=’’; if pitch_dist > delta, ind=’#’; end;

xtext([0,6],0.28,[°1 ?,ind],’]’ ,mp);

ind=’’; 1f roll dlst > delta, 1nd-’*’, end;

xtext ([0,61,0.20,[’2 ’,ind], ’1?,mp);

ind=’’; 1f yaw_ dlst > delta, 1nd-’*’; end;

xtext([0,6],0.12,[’3 ’,ind],’]’,mp);

ylabel(’Phase delay [sec]’); xlabel(’BandWidth [rad/sec]’); axis;

if exist(’Title’), Tit=Title; else, Tit=’UH-60 Hover performance’; end;
if ex1st(’Iter ), if Iter >= 0,

ooo
h.h-h

0 3);
0 »1);
0 »2) 3

Tit=[Tit,’ Completed ’,num2str(Iter) ’ C-0 iterations’];
end; end;
if exlst(’DeGr’),

Tit=[Tit,’; Design grade: ’,num2str(DeGr)];
end;

if exist(’Name’) ,
Tit=[Tit,’; ’ ,Name] ;
end;
if ex1st(’Date’),
Tit=[Tit,’ ’ Date];
end;
if exist(’COLOR’) == 0, text(-2.5,.5,Tit); end;
hold off;

% Spec 2
'/. ______

[Zeta,max_wn] = zeta(A,max([pitch_bw,roll_bw,yaw_bw])); % [ 1, []

if SPEC2 =
[mol,pol]-bode(Aol Bo1,Col,Do1,1,wo0);

(Gm,pitch_PM,Wg,pitch_ Wco] 1marg1n(m01,p01 wo); pitch_GM = 20*1og10(Gm);
[mo2,po2]-bode(Ao2 Bo2,C02,D02,1,w0) ;
[Gm,rol1_PM ,Wg,roll_Wco ] = 1marg1n(mo2,po2 wo); roll_GM = 20*1og10(Gm);
[mo3,po3]-bode(A03 Bo3,Co03,D03,1,wo0) ;
[Gm,yaw_PM ,Wg,yaw_ Wco ] = 1marg1n(mo3,p03,wo); yaw_GM = 20*logl0(Gm);

end;

subplot (342) ;
£i11([6,12,12,6] , [45,45,90,90] »'b, ..
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(0,12,12,6,6,01, [0,0,45,45,90,90], ’r*);
axis([0.12.0,90});

if exist(’COLOR’) = 0, title(’Spec 2 : Stability margins’);
else, title(’2 : Stability margins’); end;
xlabel (’GM [db]’); ylabel(’PM [deg]l’); hold on;
putfill(pitch_GM,pitch_PM,0,12,0,90,1);

putfill(roll_GM ,roll_PM ,0,12,0,90,2);

putfill(yaw_GM ,yaw_PM ,0,12,0,90,3);

ind=’’; if pitch_ damp > delta, 1nd-’*’, end

xtext ([0,12],63,[’4 ’,ind],’]’,mp);

ind=’?; 1f roll _damp > delta, 1nd—’*’, end
xtext([0,12],45,[’5 ?,ind],’]’ ,mp);

ind=’’; if yaw_damp > delta, ind=’%*’; end;
xtext([0,12],27,(’6 ’,ind],’]’,mp);

if exist(’COLOR’) =
text (-30,-30, [’Wco = ’,num2str(n2s(p1tch Weco,2)),...
’, ?,num2str(n2s(roll_Wco ,2)),...
. 7, num2str(n2s (yaw_VWco ,2)),’ [rad/sec]’]);
text( 5,-30,[’Rrms = ’,num2str(n2s(sqrt(pitch_AE/5),2)),..
', 7, num2str(n2s(sqrt(roll_AE/5) ,2)),...
', 7 ,num2str(n2s(sqrt(yaw_AE/5) ,2)),’ {in/sec]l’]l);
text( 40,-30,[’Zeta = ’ ,num2str(n2s(Zeta,2)),’ at *,...
4 num2str (n2s(max_wn,2)),’ [rad/sec]’]);
end;
hold off;

% Spec 3
Y ——mm

if SPEC3 == 0,
nR=1;
aR=Stet(1); drscd; X11
aR=Stet(2); drscd; X12
aR=Stet (3); drscd; Xi3
nR=2;
aR-Sphl(i), drscd; X21
aR=Sphi(2); drscd; X22
aR=Sphi(3); drscd; X23
nR=3;
aR—Sp31(1), drscmd; X31
aR=Spsi(2); drscmd; X32
aR=Spsi(3), drscmd; X33
pitch_ri = max (X11(: 15))/Stet(1), % [1/sec]
pitch_ris= pitch_ri- (O 70+d3p1*LEVEL) ;
pitch_r2 = max(X12(:,15))/Stet(2);
pitch_r2s= pitch_r2-(0.40+d3p2+LEVEL) ;

.. e we

X
X
X
X
X
X

" we we

3

X;
X
X;

pitch_r3 = max(X13(:,15))/Stet(3);

pitch_r3s= pitch_r3-(0.25+d3p3*LEVEL);

roll_rl = min(X21(:,14))/Sphi(1);

roll_rils = roll_ri-(1.39+d3r1i*LEVEL);

roll_r2 = min(X22(:,14))/Sphi(2);

roll_r2s = roll_r2-(0.85+d3r2*LEVEL);

roll_r3 = min(X23(:,14))/Sphi(3);

roll_r3s = roll_r3-(0.75+d3r3+«LEVEL);

yaw_rl = max(X31(:,16))/X31(length(t),6)/Kpsi;

yaw_rls = yaw_ri1-(1.42+d3y1*LEVEL); %\

yaw_r2 = max(X32(:,16))/X32(1length(t),6)/Kpsi; %\

yaw_r2s = yaw_r2-(0.67+d3y2+LEVEL); % impulse !

yaw_r3 = max(X33(:,16))/X33(length(t),6)/Kpsi; %

gaw_rSs = yaw_r3-(0.36+d3y3«LEVEL) ; W/
end;
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Xps=[ 6 10 15 20 25 30];
Yps=[0.70 0.58 0.42 0.35 0.28 0.25];
Pp=polyfit(Xps,Yps,2); Xpi=5:.25:30; Yp=polyval(Pp,Xpi);
Xrs=[ 10 20 30 40 50 60];

Yrs=[1.39 1.07 0.90 0.80 0.75 0.70];

r-polyflt(er Yrs,2); Xri=10:.5:60; Yr=polyval(Pr,Xri);
Xys=[ 10 20 30 40 50 60];

Yys=[1.42 1.06 0.79 0.54 0.43 0.36];
Py=polyfit(Xys,Yys,2); Xyi=10:.5:60; Yy=polyval(Py,Xyi);
Ypsp=Yps+LEVEL*([1.63 1.42 1.25 1.10 1.00 0.93]-Yps);
Ppp=polyfit (Xps,Ypsp,2); Ypp=polyval(Ppp,Xpi);
Yrsp=Yrs+LEVEL*([2.35 1.85 1.50 1.21 0.98 0.80]-Yrs);
Prp=polyfit(Xrs,Yrsp,2); Yrp=polyval(Prp,Xri);
Yysp=Yys+LEVEL*([2.40 1.87 1.58 1.33 1.13 1.00]-Yys);
Pyp=polyfit(Xys,Yysp,2); Yyp=polyval(Pyp,Xyi);
ly=length(Yp);

%P
sub lot(343),
if LEVEL =
£111([0, Xpi, 35,35,0], [Yp(1),¥p,Yp(ly),2.5,2.5],
) [0,Xpi,35,35,0], [Yp(1) ,¥p,¥p(1y),0,0], 'r ),
else,

£i11([0, Xpi,35,35,0], [Ypp(1),Ypp, Ypp(ly) 2.5,2.5],’c’,
[0,Xpi,35,35,Xpi(1y:-1:1),0],
(Yyp(1),Yp, Yp(ly) Ypp(ly), Ypp(ly -1:1) Ypp(l)] b,
(0,Xpi,35,35,0], [Yp(1),Yp,Yp(1y),0 0], r’);

end;

if ex1st(’COLOR’) == 0, tltle(’Spec 3 : Quickness P’);
else, t1t1e(’3 Quickness P’); end;
ax1s([0 35,0,2.5]); hold on;

xlabel(’Step(P) [deg] ) ylabel(’max(q)/Step(P) [1/sec]’);
putfill( 5,max(pitch_ r1),0,35,0,2.5,1);
putfill(17.5,max(pitch_r2),0,35,0,2.5,1);

putfill( 30,max(pitch_r3),0,35,0,2.5,1);

ind=’’; if pitch_rls < -delta, ind=’*’; end;
xtext([0,35],1.75,[°7 ’,ind],’]’,mp);

ind=’7; 1f pltch r2s < —delta, 1nd—’*’ end;

xtext ([0,35]),1.25,[’8 ?,ind], '}’ ,mp);

ind=’’; 1f pltch r3s < -delta, 1nd—’*’ end;
xtext([0,35],0.75,{’9 ?,ind],*]’,mp);

hold off;

%R
sub lot(344);
EVEL == 0,
f111([0 Xri,70,70,01, [Yr(1),¥r ,Yr(1ly),2.5,2.51,°b,

{0,Xri,70,70,60,50,0], [Yr(l) Yr Yr(ly) 0. 4 0. 4 0 45,0.45],’r’,..

[0,50,60,70,70,0],[0.45,0.45,0.4,0.4,0,0],’m’);
else,

£i11([0,Xri,70,70,0], [Yrp(1),Yrp,Yrp(ly),2.5,2.5],’c’,..
[0,Xri,70,70,Xri(1y:-1:1),0],
[Yr(1) Yr Yr(ly) Yrp(1y), er(ly -1:1),Yrp(11, b7,

[0,Xri,70,70,60,50,0], [Yr(l) Yr Yr(ly) 0.4,0.4,0. 45 O 45],’r?,...

[0,50, 60 70, 70 0] [0 45 0.45,0.4,0.4,0,0],’m’);
end;

if exlst(’COLOR’) == 0, title(’Spec 3 : Quickness R’);
else, t1t1e(’3 ¢ Quickness R’); end;
axis([0,70,0,2.5]); hold on;

xlabel(’ Step(R) [deg] ); ylabel(’ max(p)/Step(R) [1/sec]’);
putf£ill(10,max(roll_r1),0,70,0,2.5,2);
putfill(SS,max(roll_r2),0,70,0,2.5,2);
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putfill(GO,max(roll_rS),0,70,0,2.5,2);
ind=’’; if roll_ris < -delta, ind=’x’; end;
xtext(tO,TO],1.75,[’10 ?,ind],’]’,mp);
ind=’’; if roll_r2s < -delta, ind=’*’; end;
xtext([0,70],1.25,[’11 ’,indj,’]’,mp);
ind=’’; if roll_r3s < -delta, ind=’%’; end;
xtext (£0,701,0.75,[’12 7,ind},?]" ,mp)
hold off;

%Y

subplot (345) ;

if LEVEL == 0, .

£i11([0,Xyi,70,70,0], [Yy(1),Yy,Yy(1y),2.5,2.51,b’,...
[0,xyi,70,70,60,10,01, [Yy(1),Yy,Yy(1y),0.17,0.17,0.417,0.417],’z’, ...

1 [0,10,60,70,70,0],[0.417,0.417,0.17,0.17,0,0],’m’);

else,

£i11([0,Xyi,70,70,0], [Yyp(1),Yyp,Yyp(ly),2.5,2.5], ¢c’,...
(0,Xyi,70,70,Xyi(1y:-1:1),0]1,...
[Yy(1),Yy,Yy(1y),Yyp(1y),Yyp(ly:-1:1),Yyp(1)]1,’b’,...
[0,Xyi,70,70,60,10,0], [Yy(1),Yy,¥Yy(1y),0.17,0.17,0.417,0.417], ’¢’, ...

q [0,10,60,70,70,0],[0.417,0.417,0.17,0.17,0,0], 'm?);

end;

if exist(’COLOR’) == 0, title(’Spec 3 : Quickness Y’);

else, title(’3 : Quickness Y’); end;

axis([0,70,0,2.5)); hold on;

xlabel(’Step(Y) [deg]’); ylabel(’max(r)/Step(Y) [1/sec]’);

putfill(10,max(yaw_r1),0,70,0,2.5,3);

putfill(35,max(yaw_r2),0,70,0,2.5,3);

put£ill(60,max(yaw_r3),0,70,0,2.5,3);

ind=’?; if yaw_rls < -delta, ind=’#’; end;

xtext([0,70],1.75,[°13 ’,ind],’]’,mp);

ind=’’; if yaw_r2s < -delta, ind=’#*’; end;

xtext([0,70],1.25,[’14 ’,ind],’]’,mp);

ind=’’; if yaw_r3s < -delta, ind=’*’; end;

xtext([0,70),0.75,[156 ?,ind],’]? ,mp);

hold off;
% Spec 4
Y —mmmmm
if SPEC4 == 0,
nR=4; aR=Scol; drscd; X41 = X;
pitch_d = X23(1:121,18)/Sphi(3); %L1
roll_d = X13(1:121,17)/Stet(3);
yaw_dl = 180/pi*X41(t3:nt,16); % [deg/sec]
Mrl = max(X41(:,16)); Jrl = £find(X41(:,18) == Mri1); % for w(t

) <0
if t(Jrl) >= t3, r1 = X41(t1,16); else, rl = Mrl; end; % and r(t) > 0
r3 = X41(t3,16)-r1;
y_y = -180/pi*r1/X41(£3,13);
x_y 180/pi*r3/X41(t3,13);
a_y = (x.y-0.15)"2; b_y = (y_y-0.65)"2; c_y = (x_y+0.2)"2;
if (x_y >= 0.15) & (y_y < 0.65),
yaw_d2 = a_y;
elseif (x_y < =-0.2) & (y_y < 0.65),
yaw_d2 = c_y;
elseif (x_y >= -0.2) & (x_y < 0.15) & (y_y >= 0.65),
yaw_d2 = b_y;
elseif (x_y >= 0.15) & (y_y >= 0.65),
yaw_.d2 = a_y + b_y;
elseif (x_y < -0.2) & (y_y >= 0.65),
yaw_d2 = b_y + c_y;
else,
yaw_d2 = 0;
end;
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end;

% P/R

subplot (346) ;

£i11([0,4,4,0],[-. 25 »—+.256,.25 ,.25 1,’b’,...
{o, 4,4,0],[ .25,.60 ,.60 ],’r’,..
[0,4,4,0],[ 60 .60,.75 ,.75 ],’m’,
{0,4,4,0]),[~.60,-.60,~-.25,-.25], ',
fo,4,4,01,[-.75,-.75,-.60,-.60], ’m’),

hold on;

plot(t(1:121),pitch_d,’y’); axis([0,4,-.75,.75]); hold off;
if exist(’COLOR’) == 0, title(’Spec 4 : Coupling P/R’);
else, title(’4 : Coupling P/R’); end;
xlabel(’time [sec]’); ylabel(’P/Step(R) ’);

ind=?’; if max(abs(pltch d)) > 0.25+delta, ind=’%’; end;
xtext ([0,4],0,[’16 ’,ind],’]’,mp);

% R/P
subplot (347);
£i11([0,4,4,0],[-.25,-.25,.25 ,.25 ],’b’,..

{o,4,4,0],[ .25, .25,.60 ,.60 ],°’r’,

(0,4,4,0],[ .60, .60,.75 ,.75 ],’m’,

[0,4,4,0],[-. 60 ~-.60,-.25,-.25],'r?,

[0,4,4,01,[-. -.75,-.60,-.60], ’m’);
hold on;
plot(t(1:121),roll_d,’g’); axis([0,4,-.75,.75]); hold off;
if exist(’COLOR’) == 0, title(’Spec 4 : Coupling R/P’);
else, title(’4 : Coupling R/P’); end;
xlabel(’time [sec]’); ylabel(’R/Step(P) ’);
ind=’’; if max(abs(roll d)) > 0.25+delta, ind=’*’; end;
xtext([0,41,0,[’17?,ind],’]’ ,mp);

% Y/C
subplot(348);
fii(f-1.,-.70,-.70,.7,.7,1.,1.,-1.1,[0,0,.90,.90,0,0,1.,1.1,’m?,
{-.7,~-.15,-.15,.2,.2,.7,.7,~ 7] (0,0, .65,.65,0,0,.9,. 9],’r’
[-.15 .2, 2 A g [0 0,.65, 65] ’b’) ax1s([ 1,1,0,11); hold on,
- 2

if exist(’GOLOR’) = tltle(’Spec 4 Coupling /¢ a’);
else, t1t1e(’4 : Coupling Y/C a’); end;
putfill(-x_y,y_y,-1,1,0,1,3);

x1label(’r3/|w(3) | [deg/ft]’); ylabel(’|r1/w(3)| [deg/ft]’); hold off;

ind='’; if yaw_d2 > delta, ind=’*’; end; xtext([-1,1]1,0.5,[’18 ’,ind],’]’,mp);

subplot(349); t3_5=3:dt:5;
fill([3,5,5,3] (-5 ,-5 ,6 ,51,’v’,[3,5,5,3],[5,5,10,10],’r?’
{3,5,5,3],[- 10 10 5 -5], ’r’) hold on;
plot(t3_5,yaw_ d1,’w’); axis([3,5,-10,10]); hold off;
if exlst(’COLOR’) =0, tltle(’Spec 4 : Coupling Y/C b’);
else, title(’4 : Coupling Y/C b’); end;
xlabel(’time [sec]’); ylabel(’r [deg/sec]’);
ind=’’; if max(abs(yaw_d1)) > 5+delta, ind=’*’; end;
xtext([3,5],0,[’19 ’,ind],’}’ ,mp);
if exist(’COLOR’) == 0,
text(2.5,-15,'1level 1 - blue’);
if LEVEL > 0, text(5,-15,’level 1+ - cyan ’); end;
text(10,-15,’pitch ~ yellow’);
text (2.5, 17 ’level 2 - red’)

text(10,-17, 'roll - green’ 3
text (2.5, -19 ’level 3 - magenta’);
text(lO,-lQ,’yaw - white’);

end;

% Spec 5
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if SPEC5 =
[Agc, Bgc Cgc Dgcl=series(Ag,Bg,Cg,Dg,Ac,Bgg,Co,Do);
[ygl,x] = step(Agc,Bgc(:,1),Cgc(l,:),Dge(1,1),1,tg);
pitch_up=x(:,8 ); pitch_ ur=K (1) *(x(:,8 )-x(: ,15)) ;
(yg2,x] = step(Agc Bgc(:,2),Cgc(2,:),Dgc(2, 2) 1,tg);
roll_up =x(:,10); roll_ur -K(2)*(x( »10)-x(: 16)),
[yg3,x] = step(Agc Bge(:,3),Cgc(3,:),Dge(3, 3,1 ,tg);
yav_up =x(:,12); yaw_ur -K(3)*(x( »12)-x(: 17)),

pitch_g = 180/p1*yg1 % [deg]
roll_g = 180/pi*yg2;
yaw_g = 180/pi*yg3;
end;
Xr=[0,10,10,40,40,0]; Xb=[0,10,10,40,40,10,10,0];
%P
subplot(3,4,10);

f£ill1(Xr, [4,4,0.4,0.4,5,5],’r? ,Xr,[-4 ,-0.4,-0.4,-5,-5],'r’
Xb,[-4,-4, -o 4,20.4,0.4,0.4.4 41, b’); hold on;

plot(tg pltch g’y ), axis([0,40,-5,5]);

if exist(’COLOR’) == 0, tltle(’Spec 5 : Wind-Gust P’);

else, tltle(’S : Wind-Gust P’); end;

xlabel (’time [sec]’ ); ylabel(’P [degl’); hold off;

ind=’’; if max(abs(pltch g(1:n10))) > 4+delta, 1nd-’*’; end;

xtext([0,401,1,[°20 ?,ind],’])’ ,mp);

ind=’’; if max(abs(pitch_g(n10+1:nfg))) > 0.4+delta, ind=’*’; end;

xtext([0,40],-1,[’21 ?,ind],’])’ ,mp);

if max(pitch_up) > Csu(l) | ...
min(pitch_up) < Cs1l(1) | max(abs(pitch_ur)) > abs(Rsl(1)),
satp=’Saturated’;

else, satp=’’; end;

text(11,1.5,satp);

%R
subplot(3,4,11); roll_g;
£i11(Xr,[4,4,0.4,0.4,5,5],’r’ ,Xr,[-4,-4,-0.4,-0.4,-5,-51,°’r?,.
Xb,[-4,-4,-0.4,-0.4,0.4,0.4,4 4], ’) hold on;
plot(tg,roll_g,’g’); axis([0,40,-5,5]);
if exist(’COLOR’) == 0, title(’Spec 5 : Wind-Gust R’);
else t1t1e(’5 : Wind-Gust R’); end;
xlabel(’tlme [sec]’); ylabel(’R [deg]’); hold off;
ind=?’; if max(abs(roll_g(l ni0))) > 4+delta, 1nd-’*’; end;
xtext([0,40],1,[°22 ?’,ind],’]’ ,mp);
ind=’’; if max(abs(roll_g(n10+1:nfg))) > 0.4+delta, ind=’#*’; end;
xtext ([0,40],-1,[723 ’,ind],’]’,mp);
if max(roll_up) > Csu(2) | ...
min(roll_up) < Csl(2) | max(abs(roll_ur)) > abs(Rsl1(2)),
satr=’Saturated’;
else, satr=’’; end;
text(11,1.5,satr);

%Y

subplot(3,4,12);

£i11(Xr,[4,4,0.4,0.4,5,5]),’r’ ,Xr,[-4,-4, 0 4 -0.4,-5,-6]1,’'r’,
Xb, [-4,-4,-0.4,-0.4,0.4,0.4.4,4],'5°); hold on;

plot(tg yaw_g,’w ) axls([o 40,-5,51);

if exist(’COLOR’) == 0, t1t1e(’Spec 5 : Wind-Gust Y’);

else, tltle(’s : Wind-Gust Y’); end;

xlabel(’time [sec]’ ); ylabel(’Y [deg]l’); hold off;

ind=’’; if max(abs(yaw_g(i ni0))) > 4+de1ta, 1nd-’*’; end;

xtext([0,40],1,[’24 ’,ind],’]’,mp);

ind=’’; if wax(abs(yaw_g(n10+1:nfg))) > 0.4+delta, ind=’%’; end;
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xtext([0,40],~1,[’25 ?,ind],?]’ ,mp);
if max(yaw_up) > Csu(3) | ...
min(yaw_up) < Csl(3) | max(abs(yaw_ur)) > abs(Rsl(3)),
saty=’Saturated’;
else, saty=’’; end;
text(11,1.5,saty);

axis(’normal’);

attitude.m - Attitude response

% MATLAB M-file (SCRIPT !!!) for ATTITUDE CHANGE DISPLAY

; Gil Yudilevitch ISR 02-20-94

l1=length(t);
O=ones(1,1);

figure(1); clf;

subplot(3,3,1); nplot(t,[X11(:,18)/DtR,5«0 ],2);

ylabel(’Small’); title(’Pitch’); rtext(-0.2,5,’5’); ftext(-2,2,’Small’);
subplot(3,3,4); nplot(t,[X12(:,18)/DtR,17.5%0]1,2);

ylabel(’Medium’); rtext(-0.2,17.5,717.5°); ftext(-2,10,’Medium’);
subplot(3,3,7); nplot(t, [X13(:,18)/DtR,30%x0 ],2);

ylabel(’Large’); rtext(-0.2,30,’30°); ftext(-2,15,’Large’);

Mn=min(min(Ur13(:,1))); Mx=max(max(Ur13(:,1)));

subplot(3,3,2); nplot(t,[X21(:,17)/DtR,-10%0],2); title(’Roll’);
subplot(3,3,5); nplot(t,[X22(:,17)/DtR,~-35%0],2);
subplot(3,3,8); nplot(t,[X23(:,17)/DtR,-60%0],2);

subplot(3,3,3); nplot(t, [X31(:,19)/DtR,10%0],2); title(’Yaw’);
rtext(-0.2,10,10°);

subplot(3,3,6); nplot(t, [X32(:,19)/DtR,35%0],2);
rtext(-0.2,35,’35);

subplot(3,3,9); nplot(t, [X33(:,19)/DtR,60%0],2);
rtext(-0.2,60,’60’);

actuator.m - Actuator rates and strokes

% MATLAB M-file (SCRIPT !!!) for ACTUATOR RATES & STROKES DISPLAY

? Gil Yudilevitch ISR 02-20-94

figure(1); clf;

subplot(3,4,1 ); nplot(t,Uri1(:,1),2); title(’Pitch’); ftext(~2,0,’Small’);
subplot(3,4,5 ); nplot(t,Uri2(:,1),2); ftext(-2,-5,’Medium’);
subplot(3,4,9 ); nplot(t,Ur13(:,1),2); ftext(-2,-5,’Large’);

Mn=min(min(Ur13(:,1))); Mx=max(max(Ur13(:,1)));
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subplot(3,4,2 ); nplot(t,Ur21(:,2),2); title(’Roll’);
subplot(3,4,6 ); nplot(t,Ur22(:,2),2);
subplot(3,4,10); nplot(t,Ur23(:,2),2);
subplot(3,4,3 ); nplot(t,Ur31(:,3),2); title(’Yaw’);
subplot(3,4,7 ); nplot(t,Ur32(:,3),2);
subplot(3,4,11); nplot(t,Ur33(:,3),2);

subplot(3,4,4 ); nplot(t,Ur41(:,4),2); title(’Collective’);
Title = ’Actuators Strokes’;
figure(2); clf;

subplot(3,4,1 ); nplot(t,Us11(:,1),2); ftext(-2,-0.5,’Small’); title(’Pitch’);
subplot(3,4,5 ); nplot(t,Us12(:,1),2); ftext(-2,-1.8, Medium’);
subplot(3,4,9 ); nplot(t,Us13(:,1),2); ftext(-2,-2.5,’Large’);

Mn=min(min(Us13(:,1))); Mx=max(max(Usi3(:,1)));

subplot(3,4,2 ); nplot(t,Us21(:,2),2); title(’Roll’);
subplot(3,4,6 ); nplot(t,Us22(:,2),2);
subplot (3,4, nplot(t,Us23(:,2),2);

10);
subplot(3,4,3 ); nplot(t,Us31(:,3),2); title(’Yaw’);
subplot(3,4,7 ); nplot(t,Us32(:,3),2);
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B A tutorial example

In the following design example the initial controller is the final ADOCS design of [18],
with the crossfeed gains K;p, K, and K,y initially set to zero. The final design is the
nominal optimal design (see Section 5). Two changes are implemented in this example.
First, a correct “broken-loop” scheme of Figure 4.3 is used (see Remark 4.3). Second,
updated (75 ms) time delays for all channels are used. This final optimal design has
better “damping” characteristics than the design of Section 5.

The tutorial example is a complete “record” of the screen (except some unnecessary
messages). In addition some comments are given following the % sign. They are not

generated by the computer during the design process.

% The following tap command only works in the GLUE (UMCP) system
archimedes:/software/control/adocs/pjpotter/adocs/convert: tap console

% Convert the adocs file (which includes dp.adocs.fin) to adocs.o and adocs.d
% tiles for use by Solve

archimedes:/software/control/adocs/pjpotter/adocs/convert: convert adocs

Welcome to CONSOL-OPTCAD (TM)
CONVERT Version 1.2 (Released 5/92)

Copyright (c) 1991, University of Maryland at College Park.
All Rights Reserved.
(developed by Michael K.H. Fan, Andre L. Tits,
Jian L. Zhou, Li-Sheng Wang and Jan Koninckx)

[processing adocs]

[processing dp_adocs]

[processing adocs.dp.fin]
design parameter Ktet is set to 10.40000
design parameter Kphi is set to 8.40000
design parameter Kpsi is set to 7.60000
design parameter Kq is set to 6.80000
design parameter Kp is set to 1.30000
design parameter Kr is set to 4.00000
design parameter Mtet is set to 2.00000
design parameter Mphi is set to 2.50000
design parameter Mpsi is set to 2.00000
design parameter Kr_p is set to 0.00000
design parameter Kp_r is set to 0.00000
design parameter Kc_y is set to 0.00000

{processing stable.all]

[processing object.sat]

[processing specl.pit]

[processing speci.rol]

[processing specl.yaw]

[processing spec2.pit]

[processing spec2.rol]
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[processing spec2.yaw]
[processing spec3.pit]
[processing spec3.rol]
[processing spec3.yaw]
[processing spec4.pit]
[processing spec4.rol]
[processing spec4.yaw]
[processing specbh.pit]
[processing spec5.rol]
[processing spec5.yaw]

warning: design parameter Kpsi never used
varning: design parameter Ktet never used
warning: design parameter Mpsi never used
warning: design parameter Mtet never used
warning: design parameter Kp never used
warning: design parameter Kq never used

warning: design parameter Kr never used

warning: design parameter Kc_y never used
warning: design parameter Kp_r never used
warning: design parameter Kr_p never used
warning: design parameter Kphi never used
warning: design parameter Mphi never used

[compiling adocs.c]
[writing adocs.d]

% After copying adocs.d and adocs.o files to working solve directory,
% change path to that directory and initiate the Solve command

archimedes:/software/control/adocs/pjpotter/adocs/convert: cd ../solve/1
archimedes:/software/control/adocs/pjpotter/adocs/solve/1: solve -matlab adocs

Welcome to CONSOL-OPTCAD (TM)
SOLVE Version 1.7 (Released 8/92)

Copyright (c) 1991, University of Maryland at College Park.
All Rights Reserved.
(developed by Michael K.H. Fan, Andre L. Tits,
Jian L. Zhou, Li-Sheng Wang and Jan Koninckx)
[loading/reading adocs.o and

ool
[reading adocs.d]
[calling simulator initialization (if any)]
[connecting to MATLAB engine ...]
[including file init.m ...]
[calling problem initialization (if any)]

type "help" for help
type "help info" for information

% Identify command to identify the optimization problem
y P P

<0> identify
PROBLEM: adocs
12 Design Parameter(s)
3 Objective(s)
20 Constraint(s)
18 Functional Constraint(s)

% Print command to ensure correct initial design parameters
% (dp’s) were included

<0> print

Name Value Variation wrt O Prev Iter=0
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Ktet 1.04000e+01 1.0e+00
Kphi 8.40000e+00 1.0e+00
Kpsi 7.60000e+00 1.0e+00
Kq 6.80000e+00 1.0e+00
Kp 1.30000e+00 1.0e+00
Kr 4.00000e+00 1.0e+00
Mtet 2.00000e+00 1.0e+00
Mphi 2.50000e+00 1.0e+00
Mpsi 2.00000e+00 1.0e+00
Kr_p 0.00000e+00 1.0e+00
Kp_r 0.00000e+00 1.0e+00
Kc_y 0.00000e+00 1.0e+00

% Pcomb command to get an initial look at the
% feasibility problem (note Phase 2)

<0> pcomb

Pcomb (Iter= 0) (Phase 2) (MAX_COST_SOFT= 48.0187)

SPECIFICATION PRESENT  GOOD G B BAD

01 p_act_rate -9.19e+01 0.00e+00 <== | | 1.00e+00
02 r_act_rate -9.60e+01 0.00e+00 <== | | 1.00e+00
03 y_act_rate -6.53e+01 0.00e+00 <== | I 1.00e+00
Ci stable all -6.04e-02 0.00e+00 <-- I | 1.00e-03
C2 pit bw pd 0.00e+00 0.00e+00 ==========x ! 2.00e-03
C3 pit Td -2.36e-01 0.00e+00 <-- I I 1.00e-04
C4 rol bw pd 0.00e+00 0.00e+00 ==========% | 2.00e-03
C5 rol Td -2.70e-01 0.00e+00 <-- I I 1.00e-04
C6 yaw bw pd 0.00e+00 0.00e+00 ==========x | 2.00e-03
C7 yaw Td -3.56e-01 0.00e+00 <-- I I 1.00e-04
C8 pit damp 2.72e-03 0.00e+00 > 1.00e-03
C9 rol damp 0.00e+00 0.00e+00 ==========x% | 1.00e-03
C10 yaw damp 6.68e-03 0.00e+00 > 1.00e-03
Ci1 pit quickl 4.24e-01 0.00e+00 < -6.00e-02
C12 pit quick2 6.26e-01 0.00e+00 < -4.00e-02
C13 pit quick3 6.07e-01 0.00e+00 < -3.00e-02
C14 rol quickl -6.72e-01 0.00e+00 | | ==> -1.40e-02
C15 rol quick2 -2.54e-01 0.00e+00 | | ==> -8.00e-02
C16 rol quick3 -2.53e-01 0.00e+00 i | ==> -7.00e-02
C17 yaw quickl 8.31e-01 0.00e+00 < -1.00e-01
C18 yaw quick2 5.42e-01 0.00e+00 < =7.00e-02
C19 yaw quick3 b5.60e-01 0.00e+00 < -4.00e-02
C20 yaw dec2 d 3.31e-03 0.00e+00 * 2.00e-03
FC1 pit dec up -1.94e-01 0.00e+00 <== i | 5.00e-02
FC2 pit dec lo 2.50e-01 0.00e+00 < -5.00e-02
FC3 rol dec up -2.40e-01 0.00e+00 <== i ! 5.00e-02
FC4 1rol dec lo 2.64e-02 0.00e+00 -5.00e~-02
FC5 yaw decl u -4.01e+00 0.00e+00 <== | | 5.00e-01
FC6 yaw decli 1 3.82e+00 0.00e+00 < -5.00e-01
FC7 p gust p u -2.22e+00 0.00e+00 <== | | 3.00e-01
FC8 p gust p 1l 3.92e+00 0.00e+00 < -3.00e-01
FC9 p gust t u -4.47e-01 0.00e+00 <== | I 3.00e-02
FC10 p gust t 1 3.10e-01 0.00e+00 < -3.00e-02
FC1i r gust p u -2.92e-01 0.00e+00 * | I 3.00e-01
FC12 r gust p 1 3.57e+00 0.00e+00 < -3.00e-01
FC13 r gust t u -4.25e-01 0.00e+00 <== | I 3.00e-02
FCi4 r gust t 1 -1.61e-03 0.00e+00 | * -3.00e-02
FC15 y gust p u -3.06e+00 0.00e+00 <== | I 3.00e-01
FC16 y gust p 1 3.96e+00 0.00e+00 < -3.00e-01
FC17 y gust t u -4.36e-01 0.00e+00 <== | ] 3.00e-02
FC18 y gust t 1 3.31e-01 0.00e+00 < -3.00e-02

% Sim command, connects to MATLAB to allow graphical interpretation of pcomb
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<0> sim
Enter MATLAB, type ’back’ to leave
>> specs
>> prspecs
>> print
>> back
back to SOLVE

% Run command, run 2 iterations of the feasibility problem

<0> run 2

<2> print

Name Value Variation
Ktet 1.02668e+01 1.0e+00
Kphi 8.85963e+00 1.0e+00
Kpsi 7.48843e+00 1.0e+00
Kq 6.86021e+00 1.0e+00
Kp 1.78719e+00 1.0e+00
Kr 4.25991e+00 1.0e+00
Mtet 1.99901e+00 1.0e+00
Mphi 4,75462e+00 1.0e+00
Mpsi 2.00000e+00 1.0e+00
Kr_p 9.58741e-02 1.0e+00
Kp_r -3.38780e-01 1.0e+00
Ke_y -5.40903e-03 1.0e+00
<2> pcomb

Pcomb (Iter=

SPECIFICATION

01 p_act_rate
r_act_rate
y_act_rate
stable all

02
03
C1
c2
C3
C4
C5
Cé
Cc7
C8
C9
C10
Ci1
C12
C13
Ci4
C15
C16
C17
Ci8
C19
C20
FC1
FC2
FC3
FC4
FC5
FCé
FC7
FC8

pit
pit
rol
rol
yaw
yaw
pit
rol
yaw
pit
pit
pit
rol
rol
rol
yaw
yaw
yaw
yaw
pit
pit
rol
rol
yaw
yaw

bw pd
Td
bw pd

damp

quickl
quick2
quick3
quickl
quick?
quick3
quickl
quick2
quick3
dec2 d
dec up
dec lo
dec up
dec lo
decl u
decl 1

p gust p u
p gust p 1

2) (Phase 2)

PRESENT

-9.
-7.
-6.
-4,

0.
-2.

0.
-2.
.00e+00
.56e-01
.93e-03
.00e+00
.34e-03
.34e-01
.33e-01
.11e-01
.20e-02
.00e-01
.72e-02
.23e-01
.39e-01
.59e-01
.78e-03
.68e-01
.50e-01
.50e-01
.48e-02
.14e+00
.20e+00
.22e+00
.97e+00

] ]
POORRORWO

) 1
WN D PBRWNDNR =T O W

19e+01
35e+01
53e+01
43e-02
00e+00
30e-01
00e+00
85e-01

(MAX_COST_SOFT= 1.93252)

GOOD

0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00

wrt 0
-1%
5%
-1%
0%
37%
6%
0%
90%
0%
ko kY
*kok kY
*okok kY

Prey
1%
0%
0%
4%,
0%
0%
6%
0%

-1442%
50%
HokkkY

Iter=2

—_————— W
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.00e+00
.00e+00
.00e+00
.00e-03
.00e-03
.00e-04
.00e-03
.00e-04
.00e-03
.00e-04
.00e-03
.00e-03
.00e-03
.00e-02
.00e-02
.00e-02
.40e-02
.00e-02
.00e-02
.00e-01
.00e-02
.00e-02
.00e-03
.00e-02
.00e-02
.00e-02
.00e-02
.00e-01
.00e-01
.00e-01
.00e-01



FC9

FC10
FC11
FC12
FC13
FC14
FC15
FCie
FC17
FC18

p gust
p gust
gust
gust
gust
gust
gust
gust
gust
gust

ct 'Y ot t'TUT bt ot

u
1
u
1
u
1
u
1
u
1

WG HH KK

<2> sim

Enter MATLAB,

>> specs
>> prspecs
>> print
>> back

back

to SOLVE

-4,
2.
-6.
3.

28e-01
98e-01
91e-01
T4e+00

-4.,57e-01

1.
-3.
3.
-4,
3.

44e-01
07e+00
97e+00
30e-01
17e-01

.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00

COOOO0OO0OOO0O0OO

type ’back’ to leave

% Still in Phase 2, run 2 more iteratioms

<2> run 2

<4> print

Name -Value Variation
Ktet 9.84782e+00 1.0e+00
Kphi 9.18396e+00 1.0e+00
Kpsi 7.38528e+00 1.0e+00
Kq 7.05046e+00 1.0e+00
Kp 2.17128e+00 1.0e+00
Kr 4.48474e+00 1.0e+00
Mtet 1.99720e+00 1.0e+00
Mphi 5.87986e+00 1.0e+00
Mpsi 2.00000e+00 1.0e+00
Kr_p 6.68756e-02 1.0e+00
Kp_r -3.21602e-01 1.0e+00
Kc_y -6.54780e~-02 1.0e+00
<4> pcomb

Pcomb (Iter=

SPECIFICATION
01

02
03
C1
C2
c3
C4
C5
cé
c7
cs
Cco
C10
C11
Ci2
C13
Ci4
C15
C16
C17
Ci8

p-act_rate
r_act_rate
y.act_rate
stable all
pit bw pd
pit Td

rol bw pd
rol Td
yaw bw pd
yaw Td

pit damp
rol damp
yaw damp
pit quickl
pit quick2
pit quick3
rol quickl
rol quick2
rol quick3
yaw quickl
yaw quick2

4) (Phase 2)

PRESENT

-6

-2

1
TOOWOINOORBROONMWO

9.19e+01
-6.
.49e+01
-4.
0.

26e+01

52e-02
00e+00

.30e-01

0.
-2.
.00e+00
.56e-01
.67e-05
.00e+00
.00e+00
.27e-01
.25e-01
.04e-01
.46e-01
.Tile-01
.74e-02
.26e-01
.3%e-01

00e+00
90e-01

vrt 0
-5
9%
=24
3%
67%
12
0%
135)
0%
*okok kY
*okkk,
okokok Y

Prev
-2%
2%
0%
1%
11%
27
0%
129
0%
77%
10%
71%

Iter=4

(MAX_COST_SOFT= 0.0666746)

GOOD

.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00

[efolofoYoJololotoNoRoNoNoloNoNoRoYoNoloNe)

—_—————,———_—_—e —_——

AAANANAAAANANA
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-3

.00e-02
.00e-02
3.

00e-01

.00e-01
.00e-02
-3.
.00e-01
-3.
.00e-02
-3.

00e-02
00e-01
00e-02

BAD

U R
NN WO R NN RN R e e

.00e+00
.00e+00
.00e+00
.00e-03
.00e-03
.00e-04
.00e-03
.00e-04
.00e-03
.00e-04
.00e-03
.00e-03
.00e-03
.00e-02
.00e-02
.00e-02
.40e-02
.00e-02
.00e-02
.00e-01
.00e-02



C19 yaw quick3 5
C20 yaw dec2 d O.
FC1 pit dec up -1.
FC2 pit dec lo 2.
FC3 1rol dec up -2.
FC4 1xol dec lo 4.
FC5 yaw decl u -4
FC6 yaw deci 1 4
FC7 p gust pu -2
FC8 p gﬁst pl 3
FCO p gust t u -4
FClOpgust t 1 2
FCi1 r gust p u -8
FC12 r gust p1 3
FC13 r gust t u -4
FCl4 r gust t 1 1
FC15 y gust p u -3
FCi6 y gsst g 1 3
FC17 y gust t u -4
FCi18 y gust t 1 3
<4> sim

Enter MATLAB, type
>> specs

>> prspecs

>> print

>> back

back to SOLVE

.60e-01

00e+00
66e-01
50e-01
50e-01
2ie-02

.25e+00
.79e+00
.20e+00
.96e+00
.43e-01
.89%e-01
.98e-01
.74e+00
.53e-01
.42e-01
.09e+00
.97e+00
.31e-01
.18e-01

‘back’

.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00

QOO0 OO O0COOO0OO0OO0OO0OOOOOOOO

to leave

% Still in phase 2, run 1 iteration

<4> run 1

<5> print

Name Value v
Ktet 9.78278e+00 1
Kphi 9.23057e+00 1
Kpsi 7.37243e+00 1
Kq 7.07734e+00 1
Kp 2.22992e+00 1
Kr 4.51307e+00 1
Mtet 1.99695e+00 1
Mphi 6.04718e+00 1
Mpsi 2.00000e+00 1
Kr_p 6.21835e-02 1
Kp_r -3.24220e-01 1
Kc_ -7.20799%e-02 1
<5> pcomb

Pcomb (Iter=
FICATION

SPECI
01

02
03
Ci
c2
C3
C4
C5
cé
c7
C8

pit
pit
rol
rol
yaw
yaw

5) (Phase 2)

PRESENT
p-act_rate -9.19e+01
r.act_rate -6.26e+01
y.act_rate -6.49e+01
stable all -4.53e-02

bw pd  0.00e+00
Td -2.30e-01
bw pd  0.00e+00
Td -2.91e-01
bw pd  0.00e+00
Td -3.56e-01
damp 9.47e-06

pit

ariation
.0e+00
.0e+00
.0e+00
.0e+00
.0e+00
.0e+00
.0e+00
.0e+00
.0e+00
.0e+00
.0e+00
.0e+00

<

wrt O Prev

-5Y% 0%
9% 0%
-2% 0%
4% 0%
71% 2%
12% 0%
0% 0%
1419 2%
0% 0%
kKKK Y =7%
*kokok Y oY%

Aok Kok, 10%

Iter=5

(MAX_COST_SOFT= 0.00946629)

GOOD

.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00

OCOO0OO0OO0OOOCOOOO
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.00e-02
.00e-03
.00e-02
.00e-02
.00e-02
.00e-02
.00e-01
.00e-01
.00e-01
.00e-01
.00e-02
.00e-02
.00e-01
.00e-01
.00e-02
.00e-02
.00e~01
.00e-01
.00e-02
.00e-02

BAD

el Sl VN S e

.00e+00
.00e+00
.00e+00
.00e~-03
.00e-03
.00e-04
.00e-03
.00e-04
.00e-03
.00e-04
.00e-03



C9 rol damp 0.00e+00 0.00e+00
C10 yaw damp 0.00e+00 0.00e+00
Cll pit quickl 4.26e-01 0.00e+00
C12 pit quick2 6.24e-01 0.00e+00
Ci3 pit quick3 6.03e-01 0.00e+00
C14 rol quickl 2.45e-01 0.00e+00
Ci15 rol quick2 6.07e-01 0.00e+00
C16 rol quick3 1.19e-01 0.00e+00
C17 yaw quickl 8.27e-01 0.00e+00
C18 yaw quick2 5.39e-01 0.00e+00
C19 yaw quick3 5.60e-01 0.00e+00
C20 yaw dec2 d 0.00e+00 0.00e+00
FC1 pit dec up -1.66e-01 0.00e+00
FC2 pit dec lo 2.50e-01 0.00e+00
FC3 1rol dec up -2.50e-01 0.00e+00
FC4 rol dec lo 4.31e-02 0.00e+00
FC5 yaw decl u -4.26e+00 0.00e+00
FC6 yaw decl1 1 4.85e+00 0.00e+00
FC7 p gust p u -2.19e+00 0.00e+00
FC8 p gust p1 3.96e+00 0.00e+00
FC9 p gust t u -4.44e-01 0.00e+00
FC10 p gust t 1 2.88e-01 0.00e+00
FC11 r gust p u -9.25e-01 0.00e+00
FC12 r gust p 1 3.74e+00 0.00e+00
FC13 r gust t u -4.53e-01 0.00e+00
FC14 r gust t 1 1.42e-01 0.00e+00
FC15 y gust p u -3.09e+00 0.00e+00
FC16 y gust p 1 3.97e+00 0.00e+00
FC17 y gust t u -4.31e-01 0.00e+00
FC18 y gust t 1 3.18e-01 0.00e+00
<5> run 1

<6> print

Name Value Variation
Ktet 9.75853e+00 1.0e+00
Kphi 9.24782e+00 1.0e+00
Kpsi 7.36767e+00 1.0e+00
Kq 7.08728e+00 1.0e+00

Kp 2.25177e+00 1.0e+00

Kr 4.52359e+00 1.0e+00
Mtet 1.99686e+00 1.0e+00
Mphi 6.10938e+00 1.0e+00
Mpsi 2.00000e+00 1.0e+00
Kr_p 6.02392e-02 1.0e+00
Kp_.r -3.25297e-01 1.0e+00
Kc_y =7.45238e-02 1.0e+00
<6> pcomb

Pcomb (Iter=

SPECIFICATION
01 p_act_rat
02 r_act_rat
03 y_act_rat
Cl1 stable al
C2 pit bw pd
C3 pit Td

C4 rol bw pd
C5 rol Td

C6 yaw bw pd
C7 yaw Td

6) (Phase 2)

PRESENT
e -9.1%e+01
e -6.24e+01
e -6.49e+01
1l -4.53e-02
0.00e+00
-2.30e-01
0.00e+00
-2.91e-01
0.00e+00
-3.56e-01

*

AAANAANAAANAAN

wrt 0 Pr
-6Y%
10%
-3%
4%
73Y%
13Y%
0%
144Y,
0%

* koY, -
ook kY
*okkkY,

ey
0%
0%
0%
0%
0%
0%
1%
0%
3%
0%
3%

Iter=6

(MAX_COST_SOFT= 0.00134145)

GOOD

.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00

[eNeoleNoRoNaleNoYoN ol
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-1

-3

.00e-03
.00e-03
-6.
-4,
-3.
.40e~02
-8.
-7.
-1.
-7.
-4,
.00e-03
.00e-02
-5.
.00e-02
-5.
.00e-01
-5.
.00e-01
-3.
.00e-02
.00e-02
.00e-01
-3.
.00e~-02
-3.
.00e-01
-3.
.00e-02
-3.

00e-02
00e-02
00e-02
00e-02
00e~-02
00e-01
00e-02
00e-02
00e-02
00e-02
00e-01

00e-01

00e-01
00e-02
00e-01
00e-02

BAD

NN R

.00e+00
.00e+00
.00e+00
.00e-03
.00e-03
.00e-04
.00e-03
.00e-04
.00e-03
.00e-04



C8
C9
C10
Ci1
Ci2
Ci3
Ci4
Ci5
C16
C17
C18
C19
C20
FC1
FC2
FC3
FC4
FC5
FCé
FC7
FC8
FC9
FC10
FC11
FC12
FC13
FC14
FC15
FC16
FC17
FC18

dddd HH HR OO O

gust
gust
gust
gust
gust
gust

% Still in phase 2, run 2 more iterations

z

b
¢t DT DY o +'TOT
HE HE g HE HE S

<6> run 2

<8> pcomb

Pcomb (Iter=

SPECIFICATION

01 p_act_rate
r_act_rate
y_act_rate
stable all

02
03
C1
Cc2
C3

pit
pit
rol
rol
yaw
yaw
pit
rol
yaw
pit
pit

it
gol
rol
rol
yaw
yaw
yaw
yaw

bw pd
Td

bw pd
Td

bw pd
Td
damp
damp
damp
quickl
quick2
quick3
quicki
quick2
quick3
quickl
quick2
quick3
dec2 d

.34e-06
.00e+00
.00e+00
.25e-01
.24e-01
.02e-01
.45e-01
.20e-01
.27e-01
.27e-01
.39e-01
.60e-01
.00e+00
.66e-01
.50e-01
.50e-01
.35e-02
.26e+00
.87e+00
.19e+00
.96e+00
.45e-01
.87e-01
.35e-01
.T4e+00
.53e-01
.42e-01
.09e+00
.97e+00
.31e-01
.18e-01

PRESENT

-6

-4,
0.

-2

0.
-2.

I
QU ANOIDIBROONWO

9.1%e+01
-6.

24e+01
.49e+01
54e-02
00e+00
.30e-01
00e+00
91e-01
.00e+00
.56e-01
.67e-08
.00e+00
.00e+00
.25e-01
.23e-01
.02e-01
.45e-01
.26e-01
.31e-01
.27e-01
.39e-01
.60e-01
.00e+00

[eRelofoloYotofofofoloNoNofoNoloNoNoleloNeYeNe]

.00e+00
.00e+00
.00e+00 <
.00e+00 <
.00e+00 <
.00e+00 <
.00e+00 <
<
<
<
<

[eJeNojoRolofolofolofoloNolofofoNoloNofolofolololofolole oo o)

.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00

.00e+00
.00e+00
.00e+00
.00e+00
.00e4+00 ==========
.00e+00 <
.00e+00 <
.00e+00 <
.00e+00

.00e+00 <
.00e+00 <
.00e+00 <
.00e+00 <
.00e+00 <
.00e+00 <
.00e+00 <
.00e+00 <
.00e+00 <
.00e+00 <
.00e+00 <
.00e+00 <
.00e+00 <
.00e+00 <

8) (Phase 2) (MAX_COST_SOFT= 2.66865e-05)

GOOD

.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00 =
.00e+00

—_———————— e e —
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-1

-1

-5
-5
-5
-3
-3

-3
-3

.00e-03
.00e-03
.00e-03
-6.
-4,
-3.

00e-02
00e-02
00e-02

.40e-02
-8.
-7.

00e-02
00e-02

.00e-01
-7.
-4,
.00e-03
.00e-02
.00e-02
.00e-02
.00e~-02
.00e-01
.00e-01
.00e-01
.00e-01
.00e-02
.00e-02
.00e-01
-3.
.00e-02
-3.
.00e-01
.00e-01
.00e-02
.00e-02

00e-02
00e-02

00e-01
00e-02

BAD

[ R R
NPNHRJORWEHROOH RN N e

.00e+00
.00e+00
.00e+00
.00e-03
.00e-03
.00e-04
.00e-03
.00e~-04
.00e-03
.00e-04
.00e-03
.00e-03
.00e-03
.00e-02
.00e-02
.00e-02
.40e-02
.00e-02
.00e-02
.00e-01
.00e-02
.00e-02
.00e-03



FC1 pit dec up
FC2 pit dec lo
FC3 1rol dec up
FC4 1ol dec lo
FC5 yaw decl u
FC6 yaw decl 1
FC7 p gust p u
FC8 pgust pl
FC9 st tu
FC10 g ggst t1
FCil1 r gust p u
FC12 r gust p 1
FC13 r gust t u
FC14 r gust t 1
FC15 st pu
FC16 g ggst g 1
FC17 y gust t u
FC18 y gust t 1
% Note

<8> sim
Enter MATLAB, type ’back’ to leave
>> specs
>> prspecs

>>
>>

rint
ack

back to SOLVE

% Push good value of C8 just above present value, using setgb command,

-1

-9

1

.66e-01
2,
-2.
4.
-4,
4.
-2.
3.
-4,
2.

50e-01
50e-01
36e-02
26e+00
88e+00
19e+00
96e+00
45e-01
87e-01

.41e-01
3.
-4,

T74e+00
53e-01

.42e-01
-3.
3.
-4,
3.

09e+00
97e+00
31e-01
18e-01

QOO0 OO OO0 OO0OO0OOOOOOOO

.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00

% to shake process into phase 3

<8> setgb C 8 = 1.00e-07,1.00e-03
<8> run 0
<8> pcomb

% Note Phase 3

Pcomb (Iter=

SPECIFICATION

01 p.act_rate
r_act_rate
y.act_rate
stable all

02
03
C1
c2
C3
C4
C5
C6
c7
c8
Cco
C10
Cc11
C12
C13
Ci14
C15
C16
C17
Ci8
C19

pit
pit
rol
rol
yaw
yaw
pit
rol
yaw
pit
pit
pit
rol
rol
rol
y aw
yaw
yaw

bw pd
Td

bw pd
Td

bw pd
Td
damp
damp
damp
quickl
quick2
quick3
quickl
quick?2
quick3
quickl
quick2
quick3

PRESENT

-6

J
NANORBNNOIDIPOONMDWO

9.19e+01
-6.
.49e+01
-4,

0.
-2.

0.
-2.
.00e+00
.56e-01
.67e-08
.00e+00
.00e+00
.25e-01
.23e-01
.02e-01
.45e-01
.26e-01
.31e-01
.27e-01
.39e-01
.60e-01

24e+01

54e-02
00e+00
30e-01
00e+00
91e-01

GOOD

QCQOOOO0OO0O0O0OOOOFHROOOOOOOOOOCO

.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e-07
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00

<
<
<
<
<
<
<
<
<

8) (Phase 3) (MAX_COST= -62.3947)

numerous constraints on the "good" boundary, especially C8, use
% ’sim’ to graphically display pcomb results

S S S —— |
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.00e-02
.00e-02
.00e-02
.00e-02
.00e-01
.00e-01
.00e~01
.00e-01
.00e-02
.00e-02
.00e-01
.00e-01
.00e-02
.00e-02
.00e-01
.00e-01
.00e-02
.00e-02

BAD

| N N T U I I I |
DR WD O b s b N R b N - -

.00e+00
.00e+00
.00e+00
.00e-03
.00e-03
.00e-04
.00e-03
.00e-04
.00e-03
.00e-04
.00e-03
.00e-03
.00e-03
.00e-02
.00e-02
.00e-02
.40e-02
.00e-02
.00e-02
.00e-01
.00e-02
.00e-02



C20 yaw dec2 d 0.

FC1 pit dec up -1

FC7 st
FC8 g gﬁst
FC9 st
FC10 g ggst
FCil r gust
FCi2 r gust
FC13 r gust
FC14 r gust
FC15 y gust
FC16 y gust
FC17 y gust
FC18 y gust

1
-3
3

At T'TY cttUT ctctOT
HE HE PE HE HE HE HE

-4,
4.
-2.
3.
-4.
2.
-9.
3.
-4,

00e+00

.66e-01
FC2 pit dec lo 2.
FC3 rol dec up -2.
FC4 rol dec lo 4.
FC5 yaw decl
FC6 yaw decl

50e-01
50e-01
36e-02
26e+00
88e+00
19e+00
96e+00
45e-01
87e-01
41e-01
74e+00
53e-01

.42e-01
.09e+00
.97e+00
-4,

3.

31e-01
18e-01

QOO0 O0COO0OOCOOO0OOOOO0O0O O

.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00

A/\/\/\AA{I\AAAAAA
L]

<

-3

.00e-03
.00e-02
.00e-02
.00e-02
.00e-02
.00e-01
.00e-01
.00e-01
.00e-01
.00e-02
.00e-02
.00e-01
.00e-01
.00e-02
-3.

3.
-3.

3.
-3.

00e-02
00e-01
00e-01
00e-02
00e-02

% Now in phase 3, concerned only with the objectives, so to speed up process
% reduce priority of following constraints

<8> setgb
<8> setgb
<8> setgb
<8> setgb
<8> setgb
<8> setgb
<8> setgb
<8> setgb
<8> setgb

aaaaQaaan

% Weight the first objective in order to push it toward the boundary

11 =0,-
12 =0,-
13 =0,-
14 =0,-
15 =0,-
16 =0,-
17 =0,-

10ed
10e4
10e4
10ed
10ed
10ed
10ed

18 =0,-10e4

19 =0,-

10e4

<8> setgb 0 1 =0,10

<8> run 0
<8> pcomb

Pcomb (Iter=

SPECIFICATION
01 p-act_rate -9.
02 r_act_rate -6.
.49e+01

03 y_act_rate -6

C1 stable
C2 pit bw
C3 pit Td
C4 rol bw
C6 rol Td
C6 yaw bw
C7 yaw Td

C8 pit damp

CS rol damp

C10 yaw damp

C11 pit quickl
C12 pit quick2
C13 pit quick3
C14 rol quickl
C15 rol quick2
C16 1rol quick3
C17 yaw quickil
C18 yaw quick2
C19 yaw quick3

all -4.
pd O.
-2.

pd O
-2.

pd O
-3

2

0

0

4

6

6

2

6

1

8

5

5

8) (Phase 3)
PRESENT

19e+01
24e+01

54e-02
00e+00
30e-01

.00e+00

91e-01

.00e+00
.56e-01
.67e-08
.00e+00
.00e+00
.25e-01
.23e-01
.02e-01
.45e-01
.26e-01
.31e-01
.27e-01
.39e-01
.60e-01

(MAX_COST= -9.18756)
GOOD

OO0 O0OOO0OOOCOOHROOOOOOOOOO

.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00

.00e+00

——— e ——————— e 1)

1056

o2}
o
o
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.00e+01
.00e+00
.00e+00
.00e-03
.00e-03
.00e-04
.00e-03
.00e-04
.00e-03
.00e-04
.00e-03
.00e-03
.00e-03
.00e+05
.00e+05
.00e+05
.00e+05
.00e+05
.00e+05
.00e+05
.00e+05
.00e+05



C20 yaw dec2 d 0.00e+00 0.00e+00
FC1 pit dec up -1.66e-01 0.00e+00
FC2 pit dec lo 2.50e-01 0.00e+00
FC3 1rol dec up -2.50e-01 0.00e+00
FC4 1ol dec lo 4.36e-02 0.00e+00
FC5 yaw decl u -4.26e+00 0.00e+00
FC6 yaw decl1 1 4.88e+00 0.00e+00
FC7 p gust p u -2.19e+00 0.00e+00
FC8 p gust p1 3.96e+00 0.00e+00
FC9 p gust t u -4.45e-01 0.00e+00
FC10 p gust t 1 2.87e-01 0.00e+00
FCi1l r gust p u -9.41e-01 0.00e+00
FC12 r gust p 1 3.74e+00 0.00e+00
FC13 r gust t u -4.53e-01 0.00e+00
FC14 r gust t 1 1.42e-01 0.00e+00
FC15 y gust p u -3.09e+00 0.00e+00
FC16 y gust p 1 3.97e+00 0.00e+00
FC17 y gust t u -4.31e-01 0.00e+00
FC18 y gust t 1 3.18e-01 0.00e+00
<8> run 2

<10> print

Name Value Variation
Ktet 9.68140e+00 1.0e+00
Kphi '9.25585e+00 1.0e+00
Kpsi 7.36426e+00 1.0e+00
Kq 7.06584e+00 1.0e+00
Kp 2,26597e+00 1.0e+00

Kr 4.52861e+00 1.0e+00
Mtet 1.32703e+00 1.0e+00
Mphi 6.14147e+00 1.0e+00
Mpsi 2.00000e+00 1.0e+00
Kr_p 8.29262e-02 1.0e+00
Kp_r -3.17911e-01 1.0e+00
Kc_y -7.57832e-02 1.0e+00
<10> sim

Enter MATLAB, type ’back’ to leave
>> specs

>> back

back to SOLVE

==========% |
<== | |
<
<== | |
<== I |
<
<== | |
<
<== | [
<
<== | |
<
<== | |
<
== | |
<
<== | |
<
wrt O Prev Iter=10
-6% 1)/
10% 0%
-3Y 0%
3% 0%
74% 0%
13% 0%
-33% -6%
1457, 0%
0% 0%
*okkkY, 10Y%
*okkkY, -2%
*okokok, 0%

% First objective has been pushed to boundary, weight second objective
% to try and push it

<10>
<10>
<10>
<10>

setgb 0 1

=0,1

setgb 0 2 =0,10

run O
pcomb

Pcomb (Iter=

SPECI
01

02
03
C1
c2
C3
C4
C5
Cé
c7
C8

FICATION

10) (Phase 3) (MAX_COST= -6.2533)

PRESENT

p-act_rate -9.83e+01
r_act_rate -6.25e+01
y-act_rate -6.49e+01
stable all -4.39e-02
pit bw pd  0.00e+00

pit Td -2.10e-01
rol bw pd 0.00e+00
rol Td -2.91e-01
yaw bw pd  0.00e+00
yaw Td -3.56e-01
pit damp 6.29e~-08

GOCD

.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00

HOOOOOOOOOO
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—_———————— W

.00e-03
.00e-02
.00e~02
.00e-02
.00e-02
.00e-01
.00e-01
.00e-01
.00e-01
.00e-02
.00e-02
.00e-01
.00e-01
.00e-02
.00e-02
.00e-01
.00e-01
.00e-02
.00e-02

BAD

RN N

.00e+00
.00e+01
.00e+00
.00e-03
.00e-03
.00e-04
.00e-03
.00e-04
.00e-03
.00e-04
.00e-03



C9 rol damp 0.00e+00 0.00e+00
C10 yaw damp 0.00e+00 0.00e+00
Ci11 pit quickl 1.40e-02 0.00e+00
Ci2 pit quick2 2.72e-01 0.00e+00
C13 pit quick3 3.48e-01 0.00e+00
Ci4 1ol quickl 2.49e-01 0.00e+00
C15 rol quick2 6.34e-01 0.00e+00
C16 rol quick3 1.36e-01 0.00e+00
C17 yaw quickl 8.27e-01 0.00e+00
C18 yaw quick2 5.39e-01 0.00e+00
C19 yaw quick3 65.60e-01 0.00e+00
C20 yaw dec2 d 0.00e+00 0.00e+00
FC1 pit dec up -1.62e-01 0.00e+00
FC2 pit dec 1o 2.50e-01 0.00e+00
FC3 rol dec up -2.50e-01 0.00e+00
FC4 1ol dec lo 8.11e-02 0.00e+00
FC5 yaw dect u -4.26e+00 0.00e+00
FC6 yaw decl1 1 4.88e+00 0.00e+00
FC7 p gust p u -2.19e+00 0.00e+00
FC8 p gust pl 3.96e+00 0.00e+00
FCO9 p gust t u -4.41e-01 0.00e+00
FC10 p gust t 1 2.85e-01 0.00e+00
FC11 r gust p u -9.53e-01 0.00e+00
FC12 r gust p 1 3.76e+00 0.00e+00
FC13 r gust t u -4.57e-01 0.00e+00
FC14 r gust t 1 1.57e-01 0.00e+00
FC15 y gust p u -3.09e+00 0.00e+00
FC16 y gust p 1 3.97e+00 0.00e+00
FC17 y gust t u -4.32e-01 0.00e+00
FCi8 y gust t 1 3.16e-01 0.00e+00
<10> run 2

<12> print

Name Value Variation
Ktet 9.08983e+00 1.0e+00
Kphi 9.55674e+00 1.0e+00
Kpsi 7.35924e+00 1.0e+00
Kq 7.24229e+00 1.0e+00

Kp 2.12648e+00 1.0e+00

Kr 4.52575e+00 1.0e+00
Mtet 1.32703e+00 1.0e+00
Mphi 5.97543e+00 1.0e+00
Mpsi 2.00000e+00 1.0e+00
Kr_p 2.54135e-01 1.0e+00
Kp_r ~3.08781e-01 1.0e+00

Ke y -7.57832e-02 1.0e+00
<12> pcomb

Pcomb (Iter= 12) (Phase
SPECIFICATION PRESENT  GOOD

01 p_act_rate -9.82e+01 0.00e+00
02 r_act_rate -6.41e+01 0.00e+00
03 y_act_rate -6.49e+01 0.00e+00
Cl1  stable all -3.19e-02 0.00e+00
C2 pit bw pd 0.00e+00 0.00e+00
C3 pit Td -2.03e-01 0.00e+00
C4 1rol bw pd 0.00e+00 0.00e+00
C5 1rolTd -2.89e~01 0.00e+00
C6 yaw bw pd 0.00e+00 0.00e+00
C7 yaw Td -3.56e-01 0.00e+00
C8 pit damp 0.00e+00 1.00e-07

wrt O Prey

-6%  -5%
3% 3%
0% 0%
2% 2%
-6 ~5Y%
0% 0%
0% 0%
=25 =24
0% 0%
206%  153Y%
=24 -3%
0% 0%

3) (MAX_COST= -6.40774)
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Iter=12

—_——————————— W

-1
-1
-1
-1
-1
-1

-3
-3

.00e-03
1.00e-03

00e+05

.00e+05
.00e+05
.00e+05
.00e+05
.00e+05
.00e+05
-1.
-1.
.00e-03
.00e-02
-5.
.00e-02
-5.
.00e-01
-5.
.00e-01
-3.
3.00e-02
-3.
.00e-01
.00e-01
.00e-02
.00e-02
.00e-01
-3.
.00e-02
~-3.

00e+05
00e+05
00e-02
00e-02
00e-01
00e-01
00e-02

00e-01
00e-02

BAD

O R N N e

.00e+00
.00e+01
.00e+00
.00e-03
.00e-03
.00e-04
.00e-03
.00e-04
.00e-03
.00e-04
.00e-03



C9
C10
Ci1
C12
C13
Ci14
Ci15
Ci16
C17
Cc18
C19
C20
FC1
FC2
FC3
FC4
FC5
FC6
FC7
FC8
FC9
FC10
FCi1
FC12
FC13
FC14
FC15
FC16
FC17
FC18
<12>

rol damp 0
yaw damp 0
pit quickl 3
pit quick2 2
pit quick3 3
rol quickl 2
rol quick2 6
rol quickd 1
yaw quicki 8
yaw quick2 5
yaw quick3 5
yaw dec2 d O
pit dec up -1
pit dec lo 2
rol dec up -2
rol dec lo 8.
4
4
2
4
3
2
1
3
4
2
3
3
4
2

yaw decl
yaw decl

gust
gust
gust
gust
gust
gust
gust
gust
gust
gust

et H W K HOD O
&+ 'O o VD & OO
HE HE HE HE HE HE g

Enter MATLAB, type
>> specs
>> back

back

% Note in the last 2 iterations the second objective changed very

to SOLVE

00e+00
00e+00

.06e-02
.85e-01
.56e-01
.91e-01
.61e-01
.56e-01
.28e~01
.38e-01
.59e-01
.00e+00
.34e-01
.50e-01
.50e-01

66e-02

.26e+00
.88e+00
.20e+00
.00e+00
.95e~01
.64e-01
.02e+00
.90e+00
.98e-01
.52e-01
.09e+00
.97e+00
.32e-01
.97e-01

’back’ to

[eJoNoYaNeloNoloNoloRoloNaototofoRotooNolofolofolalelo o o)

.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00

leave

—SEssSEEEs

#*

—_—

-1
-1
-1
-1

-5
-5

-3
-3

% little, rather than try and continue to push it, freeze some dp’s (to
% speed up the optimization) and try to push the third objective, then
% return to the second objective

<12>
<12>
<12>
<12>
<12>

Pcomb (Iter=

freeze Ktet Kphi Kpsi Kq Kp Kr
setgb 0 2 =0,1e00
setgb 0 3 =0,1e01

run O
pcomb

e

SPECIFICATION PRESENT
01 p_act_rate -9.82e+01
02 r_act_rate -6.41e+01
03 y_act_rate -6.49e+01
C1 stable all -3.19e-02
C2 pit bw pd 0.00e+00
C3 pitTd -2.03e-01
C4 10l bw pd 0.00e+00
C5 1rol Td -2.89e-01
C6 yaw bw pd 0.00e+00
C7 yaw Td -3.56e-01
C8 pit damp 0.00e+00
C9 rol damp 0.00e+00
Cl0 yaw damp 0.00e+00
C11 pit quickl 3.06e-02

GOOD

COORROOO0OO0OOO0OOO0O

.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e~07
.00e+00
. 00et00
.00e+00
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12) (Phase 3) (MAX_COST= -6.4906)
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.00e-03
.00e-03
-1.
-1.
-1.
-1.

00e+05
00e+05
00e+05
00e+05

.00e+05
.00e+05
.00e+05
.00e+05
-1,
.00e-03
.00e-02
-5.
.00e-02
.00e-02
.00e-01
.00e-01
.00e-01
-3.
.00e-02
-3.
.00e-01
-3.
.00e-02
.00e-02
.00e-01
.00e-01
.00e-02
-3.

00e+05

00e-02

00e-01
00e-02
00e-01

00e-02

BAD

e e e = NN N

.00e+00
.00e+00
.00e+01
.00e-03
.00e-03
.00e-04
.00e-03
.00e-04
.00e-03
.00e-04
.00e-03
.00e-03
.00e~-03
.00e+05



Ci12 pit quick2 2.85e-01
C13 pit quick3 3.56e-01
C14 rol quicki 2.91e-01
C15 rol quick2 6.61e-01
C16 rol quick3 1.56e-01
C17 yaw quickl 8.28e-01
C18 yaw quick2 5.38e-01
C19 yaw quick3 5.59e-01
C20 yaw dec2 d 0.00e+00
FC1 pit dec up -1.34e-01
FC2 pit dec lo 2.50e-01
FC3 rol dec up -2.50e-01
FC4 1rol dec lo 8.66e-02
FC5 yaw decl u -4.26e+00
FC6 yaw decl 1 4.88e+00
FC7 p gust p u -2.20e+00
FC8 p gust p 1l 4.00e+00
FC9 p gust t u -3.95e-01
FC10 p gust t 1 2.64e-01
FC11 r gust p u -1.02e+00
FC12 r gust p 1 3.90e+00
FC13 r gust t u -4.98e-01
FC14 r gust t 1 2.52e-0t
FC15 y gust p u -3.09e+00
FC16 y gust p 1 3.97e+00
FC17 y gust t u -4.32e-01
FCi8 y gust t 1 2.97e-01
<12> run 2

<14> sim

Enter MATLAB, type ’back’
>> specs

>> prspecs

>> print

>> back

back to SOLVE

<14> run 2

<16> sim

Enter MATLAB,
>> back
back to SOLVE

<16>

Name
Ktet
Kphi
Kpsi

print

-y -
<16> pcomb

Value

.08983e+00
.55674e+00
.35924e+00
.24229e+00
.12648e+00
.52575e+00
.32703e+00
.98800e+00
.13820e-01
.19954e-01
.82576e-01
.57832e-02

NWNOOORLENNNOO

Pcomb (Iter=
SPECIFICATION

01
02

p-act_rate -9.82e+01 0.00e+00 <=
r_act_rate -6.42e+01 0.00e+00 <=

type ’back’

[ N N N T T

.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00

[eYoNeXoNoloNeoloRoloReloNootoloNotoNoloflolafolele o o)

to leave

to leave

.0e+00
.0e+00
.0e+00
.0e+00
.0e+00
.0e+00
.0e+00
.0e+00
.0e+00
.0e+00
.0e+00
.0e+00

<

Variation wrt O

-6Y
3%
0%
2%

-6%
0%
0%

-2%

-59Y,
165Y

20%
0%

-10%
4
-4Y,
0%

16) (Phase 3) (MAX_COST= -8.40986)

PRESENT

GOOD
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G
I
|

Iter=16
frozen
frozen
frozen
frozen
frozen
frozen

-1.
-1.

-1
-1
-1

-1

-3
-3

00e+05
00e+05

.00e+05
.00e+05
.00e+05
-1.
-1.

00e+05
00e+05

.00e+05
.00e-03
.00e-02
-5.
.00e-02
-5.
.00e-01
~5.
.00e-01
-3.
.00e~-02
-3.
.00e-01
-3.
.00e-02
.00e-02
.00e-01
.00e-01
.00e-02
-3.

00e-02
00e-02
00e-01
00e-01
00e-02
00e-01

00e-02

BAD

1.
1.

00e+00
00e+00




03
C1
c2
C3
C4
C5
ceé
Cc7
C8
C9
C10
C11
C12
C13
Ci4
C15
Ci6
C17
C18
C19
C20
FC1
FC2
FC3
FC4
FC5
FCé
FC7
FC8
FC9

FC10 !

FCi1
FC12
FC13
FC14
FC15
FC16

FC17
<16>

Enter MATLAB,

y-act_rate -8

pit
pit
rol
rol
yaw
yaw
pit
rol
yaw
pit
pit

it
gol
rol
rol
yaw
yaw
yaw
yaw
pit

y gust
FC18 y gust

sim

>> specs
>> prspecs
>> print

>>

ack
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back to SOLVE

.41e+01
stable all -3.
bw pd 0.
.03e-01
.00e+00
.90e-01
.00e+00
.57e-01
.00e+00
.00e+00
.00e+00
.18e-02
.86e-01
.57e-01
.86e-01
.63e-01
.58e-01
.46e-03
.91e-01
.10e-01
.00e+00
.40e-01
.50e~-01
.50e-01
.63e-02
.26e+00
.88e+00
.21e+00
.00e+00
.92e-01
.61e-01
.02e+00
.90e+00
.97e-01
.47e-01
.09e+00
.97e+00
.30e-01
.00e-01

22e-02
00e+00

0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00
1.00e-07
0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00

’back’ to leave
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% Return to the second objective, now that the third is at the boundary

<16> setgb 0 3
<16> setgb 0 2

% Return C8 good value to 0 now that the optimization has made it <= 0

=0,1e00
=0,10

<16> setgb C 8 =0,1e-03
<16> run 0
<16> pcomb

Pcomb (Iter=
SPECIFICATION

01
02
03

GOOD

16) (Phase 3) (MAX_COST= -6.42203)

PRESENT
p_act_rate -9.82e+01 0.00e+00 <==
r_act_rate -6.42e+01 0.00e+00 <==
y_act_rate -8.41e+01 0.00e+00 <==
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.00e+01
.00e-03
.00e-03
.00e-04
.00e-03
.00e-04
.00e-03
.00e-04
.00e-03
.00e-03
.00e-03
.00e+05
.00e+05
.00e+05
.00e+05
.00e+05
.00e+05
.00e+05
.00e+05
.00e+05
.00e-03
.00e-02
.00e-02
.00e-02
.00e-02
.00e-01
.00e-01
.00e-01
.00e-01
.00e-02
.00e-02
.00e-01
.00e-01
.00e-02
.00e-02
.00e-01
.00e-01
.00e-02
.00e-02

BAD

1.
1.
1.

00e+00
00e+01
00e+00



C1 stable all -3.22e-02 0.00e+00
C2 pit bw pd 0.00e+00 0.00e+00
C3 pit Td -2.03e-01 0.00e+00
C4 rol bw pd 0.00e+00 0.00e+00
C5 rol Td -2.90e-01 0.00e+00
C6 yaw bw pd 0.00e+00 0.00e+00
C7 yaw Td -3.57e-01 0.00e+00
C8 pit damp 0.00e+00 0.00e+00
C9 rol damp 0.00e+00 0.00e+00
C10 yaw damp 0.00e+00 0.00e+00
C11l pit quickl 3.18e-02 0.00e+00
C12 pit quick2 2.86e-01 0.00e+00
C13 pit quick3 3.57e-01 0.00e+00
C14 rol quickl 2.86e-01 0.00e+00
C15 rol quick2 6.63e-01 0.00e+00
C16 rol quick3 1.58e-01 0.00e+00
C17 yaw quickl 4.46e-03 0.00e+00
C18 yaw quick2 3.91e-01 0.00e+00
C19 yaw quick3 5.10e-01 0.00e+00
C20 yaw dec2 d 0.00e+00 0.00e+00
FC1 pit dec up -1.40e-01 0.00e+00
FC2 pit dec 1o 2.50e-01 0.00e+00
FC3 1ol dec up -2.50e-01 0.00e+00
FC4 1rol dec lo 8.63e-02 0.00e+00
FC5 yaw decl u -4.26e+00 0.00e+00
FC6 yaw decl1 1 4.88e+00 0.00e+00
FC7 p gust p u -2.21e+00 0.00e+00
FC8 p gust p1l 4.00e+00 0.00e+00
FC9 p gust t u -3.92e-01 0.00e+00
FC10 p gust t 1 2.61e-01 0.00e+00
FCil r gust p u -1.02e+00 0.00e+00
FC12 r gust p 1 3.90e+00 0.00e+00
FC13 r gust t u -4.97e-01 0.00e+00
FC14 r gust t 1 2.47e-01 0.00e+00
FC15 y gust p u -3.09e+00 0.00e+00
FCi6 y gust p 1 3.97e+00 0.00e+00
FC17 y gust t u -4.30e-01 0.00e+00
FC18 y gust t 1 3.00e-01 0.00e+00
<16> run 2

<18> print

Name Value Variation
Ktet 9.08983e+00 1.0e+00
Kphi 9.55674e+00 1.0e+00
Kpsi 7.35924e+00 1.0e+00
Kq 7.24229e+00 1.0e+00

Kp 2.12648e+00 1.0e+00

Kr 4.52575e+00 1.0e+00
Mtet 1.32703e+00 1.0e+00
Mphi 5.98778e+00 1.0e+00
Mpsi 8.13820e-01 1.0e+00
Kr_p 2.21514e-01 1.0e+00
Kp_r -3.83921e-01 1.0e+00
Ke_y -7.57832e-02 1.0e+00
<18> pcomb

Pcomb (Iter= 18) (Phase 3) (MAX_COST= -6.42418)

SPECIFICATION PRESENT
01 p_act_rate -9.82e+01
02 r_act_rate -6.42e+01
03 y_act_rate -8.41e+01

GOOD

0.00e+00
0.00e+00
0.00e+00

I
I
|
|
|
|
|
|
|
|
S=========% |
== I |
<
== I I
<
== l |
<
<== [ I
<
== I |
<
== I |
<
== I l
<
== I I
<
{== | I
<
wrt 0 Prev Iter=18
0% 0% frozen
0% 0% frozen
0% 0%  frozen
0% 0%, frozen
0% 0% frozen
0% 0% frozen
0% 0%
0% 0%
0% 0%
0% o%
0% 0%
0% 0%
G

==
==
==
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.00e~03
.00e-03
.00e-04
.00e-03
.00e-04
.00e-03
.00e-04
.00e~03
.00e-03
.00e-03
.00e+05
.00e+05
.00e+05
.00e+05
.00e+05
.00e+05
.00e+05
.00e+05
.00e+05
.00e-03
.00e-02
.00e-02
.00e-02
.00e-02
.00e-01
.00e-01
.00e-01
.00e-01
.00e-02
.00e-02
.00e-01
.00e-01
.00e-02
.00e-02
.00e-01
.00e-01
.00e-02
.00e-02
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BAD

1.00e+00
1.00e+01
1.00e+00



Ci stable all -3.21e-02 0.00e+00

C2 pit bw pd 0.00e+00 0.00e+00

C3 pit Td -2.03e-01 0.00e+00

C4 1r0l bw pd 0.00e+00 0.00e+00

C5 1rol Td -2.90e-01 0.00e+00

C6 yaw bw pd 0.00e+00 0.00e+00

C7 yaw Td -3.57e-01 0.00e+00

C8 pit damp 0.00e+00 0.00e+00

C9 rol damp 0.00e+00 0.00e+00

Ci0 yaw damp 0.00e+00 0.00e+00

Ci1 pit quicki 3.22e-02 0.00e+00 *
Ci2 pit quick2 2.86e-01 0.00e+00 *
Ci3 pit quick3 3.57e-01 0.00e+00 *
C14 1ol quickil 2.86e-01 0.00e+00

C15 rol quick2 6.63e-01 0.00e+00 *
C16 rol quick3 1.59e-01 0.00e+00 *
C17 yaw quickl 4.44e-03 0.00e+00

C18 yaw quick2 3.91e-01 0.00e+00

C19 yaw quick3 65.10e-01 0.00e+00 *
C20 yaw dec2 d 0.00e+00 0.00e+00 ==========x%
FC1 pit dec up -1.40e-01 0.00e+00 <== |
FC2 pit dec lo 2.50e-01 0.00e+00 <

FC3 1rol dec up -2.50e-01 0.00e+00 <== i
FC4 1ol dec lo 8.64e-02 0.00e+00 <

FC5 yaw decl u -4.26e+00 0.00e+00 <== I
FC6 yaw decl 1 4.88e+00 0.00e+00 <

FC7 p gust p u -2.21e+00 0.00e+00 <== |
FC8 p gust p1 4.00e+00 0.00e+00 <

FC9 p gust t u -3.92e-01 0.00e+00 <== |
FC10 p gust t 1 2.61e-01 0.00e+00 <

FC11 r gust p u -1.03e+00 0.00e+00 <== ]
FC12 r gust p 1 3.90e+00 0.00e+00 <

FC13 r gust t u -4.97e-01 0.00e+00 <== ]
FC14 r gust t 1 2.47e-01 0.00e+00 <

FC156 y gust p u -3.09e+00 0.00e+00 <== |
FC16 y gust p 1 3.97e+00 0.00e+00 <

FC17 y gust t u -4.30e-01 0.00e+00 <== |
FC18 y gust t 1 2.99e-01 0.00e+00 <
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% Freeze all dp’s but the one you are trying to push to the boundary in
% order to help/speed up the optimization. Note slow progress above, 0/

% change wrt O for all parameters in previous print

<18> freeze Mtet Mpsi Kr_p Kp.r Kc_y

<18> print

Name Value Variation wrt 0 Prev
Ktet 9.08983e+00 1.0e+00 0% 0%
Kphi 9.55674e+00 1.0e+00 0% 0%
Kpsi 7.35924e+00 1.0e+00 0% 0%
Kq 7.24229e+00 1.0e+00 0% 0%
Kp 2.12648e+00 1.0e+00 0% 0%
Kr 4.52575e+00 1.0e+00 0% 0%
Mtet 1.32703e+00 1.0e+00 0% 0%
Mphi 5.98778e+00 1.0e+00 0% oY%
Mpsi 8.13820e-01 1.0e+00 )4 0%
Kr_p 2.21514e-01 1.0e+00 0% 0%
Kp_r -3.83921e-01 1.0e+00 0% 0%
Ke_y -7.57832e-02 1.0e+00 0% 0%

<18> run 1
Segmentation fault (core dumped)
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Iter=18
frozen
frozen
frozen
frozen
frozen
frozen
frozen

frozen
frozen
frozen
frozen

.00e~03
.00e-03
.00e-04
.00e-03
.00e-04
.00e-03
.00e-04
.00e-03
.00e-03
.00e-03
.00e+05
.00e+05
.00e+05
.00e+05
.00e+05
.00e+05
.00e+05
.00e+05
.00e+05
.00e-03
.00e-02
.00e-02
.00e-02
.00e-02
.00e-01
.00e-01
.00e-01
.00e-01
.00e-02
.00e-02
.00e-01
.00e-01
.00e-02
.00e-02
.00e-01
.00e-01
.00e-02
-3.

00e-02



% Console terminated at this point a number of times.
% return to the same point, the dp‘s above were introduced into the
% adocs.dp.fin file (’included‘ in the adocs file) and then adocs was

In order to

% converted (’convert adocs’) in order to create the adocs.o and adocs.d

% files necessary to run solve. Rather than trying to force the roll

% channel down to the boundary from above (thereby introducing

% segmentation faults as before), the parameter Mphi was reduced to
% bring the roll channel below the level I/level II boundary and thus
% the optimization back into phase 2

archimedes:/software/control/adocs/pjpotter/adocs/solve/Tischler: \
? /software/control/adocs/bin/solve -matlab adocs

[loading/reading adocs.o and

Welcome to CONSOL-OPTCAD (TM)
SOLVE Version 1.7 (Released 8/92)

Copyright (c) 1991, University of Maryland at College Park.

All Rights Reserved.
(developed by Michael K.H. Fan,

Jian L. Zhou,

[reading adocs.d]

[calling simulator initialization (if any)]
[connecting to MATLAB engine ...]

[including file init.m ..
[calling problem initialization (if any)]

type "help" for help

-]

Andre L. Tits,

Li-Sheng Wang and Jan Koninckx)

type "help info" for information

Variation wrt O
.0e+00
.0e+00
.0e+00
.0e+00
.0e+00
.0e+00
.0e+00
.0e+00
.0e+00
.0e+00
.0e+00
.0e+00

<0> print

Name Value

Ktet 9.08983e+00 1
Kphi 9.55674e+00 1
Kpsi 7.35924e+00 1
Kq 7.24229e+00 1
Kp 2.12648e+00 1
Kr 4.52575e+00 1
Mtet 1.32703e+00 1
Mphi 5.00000e+00 1
Mpsi 8.13820e-01 1
Kr_p 2.21514e-01 1
Kp_r -3.83921e-01 1
Ke_y -7.57832e-02 1
<0> set Mphi = 4.5

<0> setgb C11 =0,-1.00e+05
<0> setgb C12 =0,-1.00e+05
<0> setgb C13 =0,-1.00e+05
<0> setgb C14 =0,-1.00e+05
<0> setgb C15 =0,-1.00e+05
<0> setgb C16 =0,-1.00e+05
<0> setgb C17 =0,-1.00e+05
<0> setgb C18 =0,-1.00e+05
<0> setgb C19 =0,-1.00e+05
<0> run 0

<0> pcomb

Pcomb (Iter=

SPECIFICATION

01

0) (Phase 2)

PRESENT

(MAX_COST_SOFT= 0.550734)

GOOD

.l

p-act_rate -9.82e+01 0.00e+00 <==
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BAD
1.00e+00




* ¥

AANAANANAANAANAN A{l\/\/\/\l\/\/\ A A
1l

02 r_act_rate -7.49e+01 0.00e+00
03 y_act_rate -8.41e+01 0.00e+00
Ci  stable all -3.21e-02 0.00e+00
C2 pit bw pd 0.00e+00 0.00e+00
C3 pit Td -2.03e-01 0.00e+00
C4 rol bw pd 0.00e+00 0.00e+00
C5 rol Td -2.79e-01 0.00e+00
C6 yaw bw pd 0.00e+00 0.00e+00
C7 yaw Td -3.57e~01 0.00e+00
C8 pit damp 0.00e+00 0.00e+00
C9 rol damp 0.00e+00 0.00e+00
C10 yaw damp 0.00e+00 0.00e+00
C11 pit quickl 3.22e-02 0.00e+00
C12 pit quick2 2.86e-01 0.00e+00
C13 pit quick3 3.57e-01 0.00e+00
Ci4 rol quickl 1.07e-01 0.00e+00
C15 1rol quick2 3.27e-01 0.00e+00
C16 1rol quick3 -3.86e-02 0.00e+00
C17 yaw quickl 4.44e-03 0.00e+00
Ci8 yaw quick2 3.91e-01 0.00e+00
C19 yaw quick3 5.10e-01 0.00e+00
C20 yaw dec2 d 0.00e+00 0.00e+00
FC1 pit dec up -1.45e-01 0.00e+00
FC2 pit dec lo 2.50e-01 0.00e+00
FC3 rol dec up -2.50e-01 0.00e+00
FC4 rol dec lo 8.64e-02 0.00e+00
FC5 yaw decl u -4.26e+00 0.00e+00
FC6 yaw decl 1 4.88e+00 0.00e+00
FC7 p gust p u -2.21e+00 0.00e+00
FC8 p gust pl 4.00e+00 0.00e+00
FCO9 p gust t u -3.92e-01 0.00e+00
FC10 p gust t 1 2.61e-01 0.00e+00
FC11l r gust p u -1.03e+00 0.00e+00
FC12 r gust p 1 3.90e+00 0.00e+00
FC13 r gust t u -4.97e~01 0.00e+00
FC14 r gust t 1 2.47e-01 0.00e+00
FC156 y gust p u -3.09e+00 0.00e+00
FC16 y gust p 1 3.97e+00 0.00e+00
FC17 y gust t u -4.30e-01 0.00e+00
FC18 y gust t 1 2.99e-01 0.00e+00
<0> freeze Ktet Kphi Kpsi Kq Kp Kr Mtet
<0> print

Name Value Variation wrt O
Ktet 9.08983e+00 1.0e+00
Kphi 9.55674e+00 1.0e+00
Kpsi 7.35924e+00 1.0e+00
Kq 7.24229e+00 1.0e+00

Kp 2.12648e+00 1.0e+00

Kr 4.52575e+00 1.0e+00
Mtet 1.32703e+00 1.0e+00
Mphi 4.50000e+00 1.0e+00
Mpsi 8.13820e-01 1.0e+00
Kr_p 2.21514e-01 1.0e+00
Kp_r -3.83921e-01 1.0e+00
Ke_y -7.57832e-02 1.0e+00
<0> run 1

<1> pcomb

Pcomb (Iter=

SPECIFICATION

1) (Phase 2)

PRESENT

Prev

Iter=0
frozen
frozen
frozen
frozen
frozen
frozen
frozen

frozen
frozen
frozen
frozen

(MAX_COST_SOFT= 0.000109968)

GOOD
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.00e+00
.00e+00
.00e~03
.00e-03
.00e-04
.00e-03
.00e-04
.00e-03
.00e-04
.00e-03
.00e-03
.00e-03
.00e+05
.00e+05
.00e+05
.00e+05
.00e+05
.00e+05
.00e+05
.00e+05
.00e+05
.00e-03
.00e-02
.00e-02
.00e-02
.00e~-02
.00e-01
.00e-01
.00e-01
.00e-01
.00e-02
.00e-02
.00e-01
.00e-01
.00e-02
.00e-02
.00e-01
.00e-01
.00e-02
.00e~02

BAD



01 p_act_rate -9.82e+01
02 r_act_rate -7.28e+01
03 y_act_rate -8.41e+01
Ci stable all -3.21e-02
C2 pit bw pd 0.00e+00
C3 pit Td -2.03e-01
C4 1rol bw pd 0.00e+00
Cs rol Td -2.81e-01
C6 yaw bw pd 0.00e+00
C7 yaw Td -3.57e-01
C8 pit damp 0.00e+00
C9 rol damp 0.00e+00
C10 yaw damp 0.00e+00
C11 pit quickl 3.22e-02
C12 pit quick2 2.86e-01
C13 pit quick3 3.57e-01
Ci4 1ol quickl 1.59e-01
C15 1ol quick2 3.97e-01
C16 rol quick3 -7.70e-06
C17 yaw quickl 4.44e-03
C18 yaw quick2 3.91e-01
C19 yaw quick3 b5.10e-01
C20 yaw dec2 d 0.00e+00
FC1 pit dec up -1.43e-01
FC2 pit dec lo 2.50e-01
FC3 1ol dec up -2.50e-01
FC4 1rol dec lo 8.64e-02
FC5 yaw decl u -4.26e+00
FC6 yaw decl 1 4.88e+00
FC7 p gust p u -2.21e+00
FC8 p gust pl 4.00e+00
FC9 p gust t u -3.92e-01
FC10 p gust t 1 2.61e-01
FCi1 r gust p u -1.03e+00
FC12 r gust p 1 3.90e+00
FC13 r gust t u -4.97e-01
FC14 r gust t 1 2.47e-01
FC15 y gust p u -3.09e+00
FC16 y gust p 1 3.97e+00
FC17 y gust t u -4.30e-01
FC18 y gust t 1 2.99%e-01
<1> run 1

<2> print

Name Value

Ktet 9.08983e+00
Kphi 9.55674e+00
Kpsi 7.35924e+00
Kq 7.24229e+00
Kp 2.12648e+00
Kr 4,52575e+00
Mtet 1.32703e+00
Mphi 4.77189e+00
Mpsi 8.13820e-01
Kr_p 2.21514e-01
Kp_r -3.83921e-01
Kc_y -7.57832e-02
<2> pcomb

Pcomb (Iter=

.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
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Variation

[ P N N Y s

2) (Phase 2)

.0e+00
.0e+00
.0e+00
.0e+00
.0e+00
.0e+00
.0e+00
.0e+00
.0e+00
.0e+00
.0e+00
.0e+00

wrt O
0%
0%
0%
0%
0%
0%
0%
6Y%
0%
0%
0%
0%

Prev
0%
0%
0%
0%
0%
0%
0%
0%
0%
0%
0%
0%

Iter=2
frozen
frozen
frozen
frozen
frozen
frozen
frozen

frozen
frozen
frozen
frozen

(MAX_COST_SOFT= 3.13266e-09)
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.00e+00
.00e+00
.00e+00
.00e~-03
.00e-03
.00e-04
.00e-03
.00e-04
.00e-03
.00e-04
.00e-03
.00e-03
.00e-03
.00e+05
.00e+05
.00e+05
.00e+05
.00e+05
.00e+05
.00e+05
.00e+05
.00e+05
.00e-03
.00e-02
.00e-02
.00e-02
.00e-02
.00e-01
.00e-01
.00e-01
.00e-01
.00e-02
.00e-02
.00e-01
.00e-01
.00e-02
.00e-02
.00e-01
.00e-01
.00e-02
.00e~-02



SPECIFICATION
01

02
03
C1
c2
C3

C19
C20
FC1
FC2
FC3
FC4
FC5
FC6
FC7
FC8
FC9
FC10
FC11
FC12
FC13
FC14
FC15
FC16
FC17
FC18

p.act_rate
r_act_rate
y-act_rate
stable all
pit bw pd
pit Td

rol bw pd
rol Td

yaw bw pd
yaw Td

pit damp
rol damp
yaw damp
pit quickl
pit quick2
pit quick3
rol quickl
rol quick2
rol quick3
yaw quickl
yaw quick2
yaw quick3
yaw dec2 d
pit dec up
pit dec lo
rol dec up
rol dec lo
yaw decl u
yaw decl
p gust p
p gust p
p gust
p gust
r gust
r gust
r gust
r gust
y gust
y gust
y gust
y gust

HE PE HE HE HE HEg W

ct 'O o V'O ct ot

PRESENT

-9.
.28e+01
.41e+01

=7
-8

-3.

0.
-2.

0.
-2.
.00e+00
.57e-01
.00e+00
.00e+00
.00e+00
.22e-02
.86e-01
.57e-01
.59e-01
.97e-01
.19e-10
.44e-03
.91e-01
.10e-01
.00e+00
.43e-01
.50e-01
.50e-01
.64e-02
.26e+00
.88e+00
.21e+00
.00e+00
.92e-01
.61e-01
.03e+00
.90e+00
.97e-01
.47e~-01
.09e+00
.97e+00
.30e-01
.9%e-01

1
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] 1 1 | ] 1 |
NPBWWNRWORNWRANPARONNR,OOWLANDWHLW

% OPTIMAL SOLUTION

% CONGRATULATIONS message)

<2> sim
Enter MATLAB, type ’back’ to leave
>> specs
>> prspecs
> Erint nomoptnew.ps
>> back

back

to SOLVE

82e+01

21e-02
00e+00
03e-01
00e+00
81e-01

GOOD
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00 ==========
.00e+00 <==
.00e+00 <
.00e+00 <
.00e+00 <
.00e+00 <
.00e+00 <
.00e+00 <
.00e+00 <
.00e+00 <
<
<
<
<
<
L <
<
<

[efeYeXoXeoloNoTololoNeloNoloXoloNoloNoNololaYoXoXoYoJodofoNoNooNaofo oo elo o olo)

.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00 <

P ——— .

* & ¥ H

3

-_— %

(note that we did not wait for the C-0

<2> store "adocs.dp.nomoptnew"
<2> quit

% The optimal dp’s were stored in adocs.dp.nomoptnew before we quit
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.00e+00
.00e+00
.00e+00
.00e-03
.00e-03
.00e-04
.00e-03
.00e-04
.00e-03
.00e~-04
.00e-03
.00e-03
.00e-03
.00e+05
.00e+05
.00e+05
.00e+05
.00e+05
.00e+05
.00e+05
.00e+05
.00e+05
.00e-03
.00e-02
.00e-02
.00e~02
.00e-02
.00e-01
.00e-01
.00e-01
.00e-01
.00e-02
.00e-02
.00e-01
.00e-01
.00e-02
.00e-02
.00e-01
.00e-01
.00e-02
.00e-02



