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ABSTRACT

Title of Dissertation:  Burst Reduction Properties Of The Leaky Bucket And
The Calculus Of Burstiness

Lei Kuang, Doctor of Philosophy, 1992

Dissertation directed by: Armand M. Makowski, Professor
Department of Electrical Engineering

This dissertation considers an important issue in high-speed networks — the under-
standing of the interaction between the network and the bursty traffic it handles.

The first part of the dissertation analyzes the leaky bucket (LB), a proposed
congestion control scheme for ATM networks. There are many preliminary results
in the literature on the LB. Most of them, however, are numerical ones under some
Markovian assumptions. In this dissertation, it is shown that under very mild
assumptions, the LB is burst reducing. More importantly, this burst reduction
property obeys some monotonicity properties in all the parameters of the LB. This
property is then used to the design of the LB. Bounds and approximations for some
other performance measures of the LB are also derived to facilitate the design. The
mathematical tool developed in this part can also be used to study a large class of
non-stationary stochastic processes.

In the second part of the dissertation, some general results on the calculus of
burstiness are obtained for renewal processes. These results are useful in understand-
ing the effects on the burstiness of the traffic in some systems through multiplexing,
splitting, rate control, and scheduling. The burstiness is characterized by both the
peakedness functional of the traffic and the squared coefficient of variation of its
asymptotic version. As examples, problems in network scheduling and in the design

of multiplexer with rate control mechanism are discussed.
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CHAPTER 1

BACKGROUND AND SUMMARY

1.1 Background

Along with the advances in high-capacity optical fiber and VLSI techniques, the next
generation of LANs (local area networks) and WANs (wide area networks) are expect
to be able to handle data at Gbps (Gigabits per second) rates. Such high-speed
networks will give rise to a number of new services in addition to the conventional
voice service. These new services will include: high-speed data exchange, high-
resolution still picture transfer, mixed-mode document exchange and retrieval, high-
quality interactive videotex and, in particular, videophone, video conference, and
distributed TV. Most of these services show very specific characteristics with respect
to bit rate (constant or variable) or to the required quality of service (QOS) in terms
of information loss, information delay, etc [51]. Many new QOS objectives exceed the
capabilities of the recently introduced ISDN (integrated services digital network),
which does not seem adequate to integrate all of those services [51]. Therefore, the
CCITT has recommended that the new broadband ISDN (B-ISDN) be based on a
new technique, the asynchronous transfer mode (ATM) [51].

The ATM is a fast packet switching technique based on virtual connection using
small fixed-sized packets called cells. A cell consists of 53 octets, five of which are
reserved for the cell header and 48 for user information. The ATM bearer service
is capable of integrating any connection-oriented service. These include circuit-
switched type services with constant bit rates, as well as those with highly variable
bit rates, as are found in computer, video, and packetized voice communications.

This promising integration technique, however, raises a number of new problems

due to the higher degree of resource sharing compared to that of the conventional



synchronous transfer mode (STM). Some of these problems are highly dependent
on the characteristics of the user or traffic source. For example, the coincidence
of peak bit rate of many connections sharing the same transmission, switching, or
buffer resources may cause excessive delay or even information losses which must be
kept within strict limits to meet the overall QOS objective in a B-ISDN.

Therefore it is of vital importance to have a good grasp of traffic behavior in high-
speed networks. There have been many attempts in studying this traffic, although its
characteristics are still not well known. The interaction between network operations
and the traffic inside the network is even less understood. Due to the complexity of
the problems studied, most of the existing results are of the numerical type under
very restrictive assumptions which are not satisfied in many cases. The purpose of
this thesis is to study the structural properties of the traffic and the effect of network
operations (such as the leaky bucket input rate regulation) on these properties. The
results we get are much less restrictive, and can be applied to a large range of traffic

models.

1.2 Summary

In this thesis, we develop tools for studying the traffic in a high-speed network
and the effect of some network operations (such as the leaky bucket, multiplexing,
routing, and rate control) on the “burstiness” of the traffic.

The thesis contains two parts.

The first part of the thesis focuses on the study of an important network opera-
tion in high-speed networks - the leaky bucket (LB). Due to its importance, the LB
has been studied by many researchers. However, most of these results are numerical
ones under some Markovian assumptions. The contribution in this part of the thesis
lies in new tools for studying the LB and for obtaining stochastic comparison results
under very mild assumptions. This part has two chapters. In Chapter 2, we study
the burst reduction property of the LB, which is a very important feature of this

input rate regulation scheme. In particular, we show that under very mild assump-



tions, the output traffic from a LB will be less bursty than the input traflic. This
property has been shown previously through numerical examples under Markovian
assumptions. More importantly, we show that the burst reduction property of the
LB obeys some monotonicity properties in all the parameters describing the LB. In
Chapter 3, we study some other performance measures of the LB based on approx-
imations. Together with the results obtained in Chapter 2, we discuss design issues
of the LB.

In the second part of the thesis, we establish some general results on the calculus
of burstiness. Via two measures of burstiness (the coefficient of variation and the
peakedness functional), we study the effects of thinning and superposition on the
burstiness of renewal processes. These results are useful in understanding certain
network operations such as multiplexing, routing, and rate control. In Chapter 4, we
discuss this issue with respect to the criterion of the squared coefficient of variation,
while in Chapter 5, we discuss this issue again with respect to the peakedness
functional. We conclude the second part by studying two examples in Chapter 6.
The first example is to design a thinning scheme for a trunk formed by multiplexing
a number of independent sources. The other example is to compare policies in traffic

scheduling.
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THE LEAKY BUCKET



CHAPTER 2

BURST REDUCTION PROPERTIES

2.1 Introduction

In order to guarantee a given QOS to the user, the network has to control the traffic
flow according to the nature of the service. In high-speed networks like B-ISDN,
a whole set of control schemes will be applied to the various levels of activity —
connection, burst, and cell levels. Congestion control at burst and cell levels in
high-speed networks presents a new challenge [3, 60]. In the first part of the thesis,
we discuss a commonly recognized congestion control scheme at burst and cell levels
in high-speed networks, the leaky bucket (LB).

There are two kinds of congestion control schemes in general: reactive congestion
control (RCC) and preventive congestion control (PCC) [61]. In RCC, congestion
is detected after it has occured and appropriate measures are taken in reaction
to congestion conditions inside the network. PCC, on the other hand, seeks to
prevent congestion from arising before it can adversely affect the QOS of the network
connection. A survey of congestion controls is given by Jain [37].

In traditional X.25 packet switching networks, congestion control is based on end-
to-end exchange of control messages called window flow control. After successfully
receiving a packet, the destination node sends an ACK message back to the source
node. A packet at the source node will enter the network only if the number of
unacknowledged packets is less than the window size W. Otherwise it waits in a
buffer outside the network. This scheme guarantees that at most W packets are
in the network for a particular source-destination pair. Window flow control is an
example of RCC which regulates the traffic flow at the access point based on current

traffic levels within the network. A typical window flow control scheme is depicted
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Figure 2.1: Window flow control in X.25 packet switching networks

in Fig. 2.1 [62].

This scheme, however, will not work in high-speed networks, where the prop-
agation delay across the network typically dominates the switching and buffering
delays. The reason for this is that while the transmission speeds in high-speed net-
works scale up, the propagation delay does not. Therefore the feedback from the
destination is usually outdated, and the action that the source takes is too late to
resolve congestion at the switching elements or at the buffers. For example [23], the
transmission time for an ATM cell is approximately 2.8 ps at 150 Mbps, and the
resulting time-constant in a cell queue will be in the order of 10 ps for moderate
utilization, while end-to-end signal propagation delay though fiber for a 1000 km
connection is approximately 5 ms. It can be seen that in order to make efficient
use of network resources, the window size for high bit rate services would be in the
order of thousands; this in turn requires a big processing burden and huge buffers,
and results in large network delays. Furthermore, this scheme cannot guarantee
user throughput. The nature of the traffic also affects the design of the congestion
control. In high-speed networks, some real-time traffic cannot be slowed down to
cope with network congestion, so that some level of bandwidth guarantee is required
[60]. Finally, the high speed nature of the network requires that the control opera-
tion works at the speed of the communication link. Therefore, simple mechanisms

which do not rely heavily on network feedback are desirable as they are suitable for



implementation in high speed hardware.

It is widely agreed that the most effective approach to congestion control in
ATM networks is to use PCC rather than RCC [35, 60]. One feasible solution is to
break the feedback loop of the window flow control scheme, which leads to an open-
loop input rate regulation. A source policing control monitors the user data flow of
each connection with respect to its negotiated traffic parameters. If a violation is
detected, an appropriate action has to be taken, such as immediate dropping [11]
or marking of excessive cells for loss in case of congestion [21, 26]. The best-known
source policing function is the LB algorithm [57], which we study in this and in the
next chapters. Other algorithms operate on cell counts within sliding or jumping
time windows [17, 50], and are studied in [24, 25, 39, 47] among others.

The LB has been studied by many authors, existing results are first reviewed
in the next section. For more information on LB, the reader can also refer to

[4, 5, 18, 21, 23, 26, 27, 33, 41].



2.2 Literature Review

The performance measures which have been mostly discussed in the literature on
the LB include the probability of cell loss, cell delay at the LB (or the queue length
of the LB), throughput from the LB, and burst reduction properties of the LB.

Numerical results on cell delay and the probability of cell loss were obtained
under some Markovian assumptions on the source, e.g., the two-state on/off arrival
process [50], the Markovian arrival process (MAP [45]) [6], and the discrete-time
Markovian arrival process (DMAP) [9]. Under similar assumptions, the queue length
distribution of the input buffer at the access point was calculated in [1, 54] using
the matrix-analytic technique [48, 49]. Numerical studies of the burst reduction
properties of the LB were done for the Poisson arrival process [53], the two-state
Markov modulated Poisson process (MMPP) [22], and the two-state Markov mod-
ulated Bernoulli process (MMBP) [34].

Although the LB appears to be a very simple mechanism (see the next section
for detail), its analysis under general assumptions turns out to be quite difficult.
The burst reduction property of the LB was established in a purely deterministic
context in [44] by introducing the concept of a “burstiness curve”. Independently of
the work in this thesis, [2] proved recently the burst reduction property of the LB.
The approach used in [2] combines a sample path construction with ideas from the
theory of stationary processes. It is shown there that the burstiness (expressed as the
steady-state queue lengths at a down-stream single-server queue with deterministic
service time less than the token generation period of the LB) of the output traffic
from the LB increases as the token buffer size increases. An LB with token pool size
of one was studied with the help of majorization [13]. There the author showed that
the throughput from the LB increases as the variability of the input traffic decreases.
The throughput from LB is also shown to be increasing and stochastically concave
in the token pool size [10]. Therefore, the cell loss at the LB is decreasing and
stochastically convex in the token pool size. It was also shown that if the token pool

size is larger and the token generation rate is larger for an un-buffered LB, then the



queue length of a down-stream single-server queue is stochastically larger. For a
buffered LB, it was shown that the number of cells lost at any time is stochastically
convex in the token pool size and in the input buffer size.

Another approach in the study of the LB is to use approximations. Fluid ap-

proximation was used by several authors [11, 28, 29, 31].
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Figure 2.2: The leaky bucket

2.3 The Leaky Bucket

The original LB was proposed as a simple algorithm for monitoring and policing
sources in an ATM environment [57]. It consists of a token pool of finite capacity
and of a mechanism for generating tokens into the token pool at a constant rate. If
the token pool happens to be full when a token is generated, the newly generated
token is discarded. In the case where a token is generated exactly at an arrival epoch,
we assume that the token is generated after the arrival of the cell. At each cell arrival
epoch, the LB algorithm checks whether or not there are tokens in the token pool. If
at least one token is found, the cell is passed to the network and a token is removed
from the token pool; otherwise, the cell is lost. In this way the LB ensures that the
departure rate from the LB will not exceed a certain value. However, cells may be
lost from time to time due to lack of available tokens. In order to maintain a low
probability of cell loss on conforming sources (i.e., sources which do not exceed the
preset parémeters such as average rate, peak rate, and burstiness), the LB must be so
dimensioned that the token generation rate is relatively large, with the consequence
that the (unbuffered) LB cannot effectively restrict non-conforming sources [34].
There are many variations of the original LB. The one discussed here is the
buffered LB proposed in [14, 53]. In order to reduce the probability of cell loss, an
input buffer is added to the original LB (Fig. 2.2). Cells which cannot obtain tokens

upon their arrival will wait in the input buffer. Only when the input buffer is full,

10



is the arriving cell lost. Newly generated tokens are distributed to cells in the input
buffer (if any) in a FCFS manner.

A LB of this kind has two basic functions: (i) reduce the rate of the traffic
(i.e., police the traffic) and (ii) reduce the burstiness of the traffic (i.e., smooth the
traffic). In this chapter, we focus on the burst reduction properties of the LB. The

first function will be discussed in Chapter 3.
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2.4 The Model

Since all cells are admitted into the LB except those which are policed, cells which
enter the LB see a virtually infinite input buffer. Therefore, except where explicitly
stated, we assume that the input buffer has infinite capacity. If we assume the input
buffer to have infinite capacity, a LB can be characterized by two parameters, say
M and D, where M is the size of the token pool, and D is the token generation
period which is assumed constant. Tokens are assumed to be generated at times
{kD,k = 0,1,---}. Cells are tagged upon arrival in the order of their arrival. We
also assume that the input buffer operates as a FCFS queue. These assumptions are
made only for notational convenience and do not affect the results we shall obtain.
A LB with parameters D and M is denoted by LB(D, M).

Sometimes it is easier to describe the evolution of the LB through its states. To

this end, we define

P(t): the number of tokens available in the token pool at time ¢ > 0
and

@(t): the number of cells waiting in the input buffer at time ¢ > 0.

By convention, the processes P and () are taken to be right continuous. By the
assumptions made in Section 2.3, if a cell arrives exactly at token generation epoch
t, P(t) and Q(t) remain unchanged. This convention removes the ambiguity when
the token pool happens to be full when a cell arrives at a token generation epoch.
Although different conventions lead to different sample path realizations, they will
not affect the results of this chapter. From the definition of the LB, we see that for
all t > 0, at least one of the quantities Q(t) or P(t) must be zero, (i.e., Q(t)P(t) = 0),
and both quantities Q(¢) and P(t) can be uniquely recovered from their difference
S(t) defined by

S(t) = Q(t) — P(t), t>0. (2.1)

12



- If S(t) > 0, then Q(t) = S(¢) and P(¢t) = 0; and if S(¢) < 0, then Q(¢) = 0 and
P(t) = —S(t). We assume that the first cell arriving at time ¢ = 0 finds the LB
in state s. In order to emphasize the role of the initial state, we sometimes write
LB,(D,M) to denote LB(D, M) with initial state s.

The evolution of the LB can also be described by two sequences of IR, -valued
random variables (rvs) @ = {aoyn,n = 1,2,---} and § = {6,,n = 1,2,---} with
a; = 6, = 0. We interpret oy (resp. é;) as the first arrival (resp. departure) epoch
as they should be under our assumptions. For n = 1,2,---, we interpret a,1;
(resp. 6,41) as the inter-arrival (resp. inter-departure) time between the n'* and
the (n + 1)* cells. The inter-arrival (resp. inter-departure) times may be zero to
represent batch arrivals (resp. departures).

Our analysis will be done in both the transient and steady-state regimes. Al-
though we impose no assumptions on a and 8 for the transient analysis, we need

the following notion of convex stability for the steady-state analysis.

Definition 2.1 For any R, -valued sequence of rvs ¢ = {(,,n = 1,2,---}, we say
that { is convezly stable if there exists an integrable R -valued rv { (i.e., E[(] < 00)
such that

lim ~ 3°6(¢) = B[4(C)] (2.2

n—rco 13 4
1=1
for any convex function ¢ : Ry — IR provided the expectation exists, in which case

we call { the asymptotic version of ¢.

The asymptotic version ¢ of a convexly stable sequence { is unique as stated in

the following theorem.

Theorem 2.1 The asymptotic version of a convezly stable sequence  is unique,

i.e., if ( and & are two asymptotic versions of {, then

=Y; (2.3)

where £ denotes equality in distribution.

13



Proof. From (2.2) we have immediately that

E[¢(0)] = E[$(0)] (2.4)

for any convex function ¢ : R, — R such that the expectations exist. For s > 0,
taking ¢(z) = e™**, = > 0, we conclude that the Laplace-Stieltjes transforms of {
and ¢ coincide, and (2.3) follows from the fact that the Laplace-Stieltjes transform

of a rv uniquely determines its distribution [8, Theorem 26.2]. [ |

The convex stability of ¢ implies
1}5&%2(’ =E[(] a.s. . (2.5)
=1

In particular if the sequence of inter-arrival times a is convexly stable, then the

(long-run) cell arrival rate A is well defined by

-1
1 "

A= lim — o5 . 2.6

(Jim 3% ) 26)

In this chapter, we always assume that the sequence of inter-arrival times o« is

convexly stable, although the transient results hold without this assumption.. We

shall say that the LB is stable for input traffic rate A if

AD < 1. (2.7)

The convex stability condition (2.2) is not too restrictive; it holds for many

arrival processes of interest as we now indicate.

Example 1 — Renewal processes. By the strong law of large numbers, the convex

stability condition is satisfied for renewal processes with finite first moment.

Example 2 — Stationary processes. By [38, Theorem 5.6, p. 487], a stationary
processes is convexly stable if it is ergodic.

The convex stability condition holds for many non-stationary processes as well.
For example, deterministic periodic arrival processes with finite period are non-

stationary in general, yet they are convexly stable.

14



It is not easy to show directly that a departure process from a LB is convexly
stable. However, if the inter-departure times have a stationary version, then they are

convexly stable, and the asymptotic version coincides with the stationary version.

15



2.5 Burst Reduction Properties

In this section, we present the burst reduction property of the LB. More importantly,
we shall show that this property is monotone with respect to various parameters of
the LB. The proofs of the theorems will be postponed to Section 2.8. In this section,
we use the convex ordering of rvs to capture the burstiness of the inter-departure
times from the LB. For the definitions and basic properties of stochastic orderings,
the reader is referred to Appendix B and [52, 55].

From now on we assume that all the LBs start with the same initial condition
(except in Theorem 2.6) and are fed by the same but arbitrary input sequence a
with rate A. Since the output traffic from the LB tends to be more evenly spaced,
it would be expected to be less “bursty” than the input traffic. Moreover, since
the output traffic is governed by various parameters of the LB, it is desirable to
find the relationship between these parameters and the burst reduction property of
the LB. This leads to the following monotonicity properties with respect to various

parameters of the LB.

2.5.1 Monotonicity in M

We first consider the monotonicity of the inter-departure times with respect to the
token pool size M. Consider two LBs LB(D, M) and LB(D, M) with D > 0 and
1<M<M , and let § and 5 be sequences of inter-departure times from LB(D, M)
and LB(D, M ), respectively. Our first result says that the burstiness of the output

traffic decreases as the size of the token pool decreases.

Theorem 2.2 (Monotonicity in M) Assuming & and & to be convezly stable and
AD < 1, we have
§ <. b, (2.8)

where § and & are the asymptotic versions of § and 5, respectively, and therefore,

2(8) < A(6).

16



An intuitive explanation of Theorem 2.2 is as follows. For any bursty sources,
there will be periods in which only a few cells arrive (i.e., periods of silence) and
periods in which cells arrive in large batches (i.e., periods of burst). During any
silence period, the LB with a larger token pool is more likely to accumulate more
tokens than the LB with a smaller token pool. During the next burst period, the
LB with more available tokens will let more cells enter the network instantaneously,
and the output traffic will thus tend to be more bursty. This intuition can be used

in understanding other results in this section.

2.5.2 Monotonicity in D

The monotonicity of the inter-departure times with respect to D is considered next.
We first assume M = oo so that no token is lost in this situation. Consider the
two LBs LB(D, ) and LB(D,00) with 0 < D < D. Let & and 8 be sequences of
inter-departure times from LB(D,o0) and LB (D, 00), respectively. Paralleling the

monotonicity result in M, we have the following result.

Theorem 2.3 (Monotonicity in D) Assuming § and & to be convexly stable and
AD < 1, we have
§<i 6

—_ ?

(2.9)

where § and & are the asymptotic versions of § and 8, respectively, and therefore,

c2(6) < 2(¢).

So in the case where no token will be lost, the slower the token generation rate is,
the less bursty the output traffic from the LB will be.

The assumption M = oo is really not necessary. In fact, we only need to require
that the token pool size of the faster LB be strictly larger than that of the slower

one. This is shown in the next subsection.

2.5.3 Joint Monotonicity in M and D

Consider two LBs LB(D, M) and LB(D,M) with 0 < D < Dand 1 < M < M,
and let § and & be the sequences of inter-departure times from LB(D,M) and
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LB(D, M), respectively.

Theorem 2.4 (Monotonicity in D and M) Assuming § and b to be convezly stable

and A\D < 1, we have
6 <, (2.10)

where § and & are the asymptotic versions of § and 8, respectively, and therefore,

c*(6) < c*(é).

2.5.4 Burst Reduction Property

An important property of the LB is its ability of reducing the burstiness of the
traffic. This can be derived directly from Theorem 2.4. Take D = 0 in Theorem
2.4 so that no cell will be delayed. As a consequence 8 is just the sequence of inter-
arrival times a. Since in this case, the token pool does not play any role, we may

choose any M > M, and apply Theorem 2.4 to conclude

Theorem 2.5 Assume o to be convexly stable and AD < 1. If § is also convexly

stable, then we have

6 < @, (2.11)

where o and 6 are the asymptotic versions of a and 8, respectively, and therefore,

c(6) < ¥a).

2.5.5 Monotonicity in the Initial Condition

Another factor which affects the token availability and consequently the burstiness
of the output traffic is the initial state of the LB. We now turn to the monotonicity
with respect to the initial state of the LB.

Consider two LBs differing only in their initial states. Let § and § be the inter-
departure times from LB;(D, M) and LB;(D, M), respectively, with —M <3 <s.

We have the following results.
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Theorem 2.6 (Monotonicity in the initial state) Assuming § and 6 to be convezly
stable and AD < 1, we have
§<., 8 (2.12)

7

where § and & are the asymptotic versions of § and 8, respectively, and therefore,

2(8) < &(%).

From Theorem 2.6 we conclude that the fewer tokens initially in the token pool
(resp. the more cells initially waiting in the input buffer), the less bursty the out-
put traffic of the LB. It may be asked whether Theorem 2.6 is really meaningful
in that if both & and & are convexly stable, should we not get equality between
their asymptotic versions. To answer this question, we consider the following ex-
ample. Let a = (0,0.5,1.5,0.5,1.5,---) be a deterministic sequence. The output
sequence from LBy(1,1) is then &, = (0,1,1,1,1,---), while the output sequence
from LB_;(1,1)is 6_; = (0,0.5,1.5,0.5,1.5, - - -). It is plain that &y has a stationary
version which coincides with its asymptotic version and which is equal to 1 with
probability 1, while § _; does not have any stationary version but its asymptotic
version is equal to 0.5 or 1.5 with probability 0.5. Therefore, if both sequences do

not have stationary versions, strict inequality may hold in Theorem 2.6.
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2.6 The Burst Structure

It will soon become clear that the results presented in Section 2.5 are direct con-
sequences of the sample path behavior of the LB. To this end, we first explore the
burst structure of the sample paths of the LB. For n = 1,2, .-, the arrival epoch
a, (resp. departure epoch d,,) of the n®* cell can be expressed as
n n
an =Y o ( resp. d, = Z&) , n=1,2--. (2.13)
i=1 i=1

With lgl) = 1, we recursively define

1 = min{i > (" : $(a;) > 0}, k=12, (2.14)
and
(), = min{i > 1P : §(a;) < 0}, k=1,2,--. (2.15)

Forn =1,2,---, we say that the n'* cell is of the first kind if l,gl) <n< l,(f), for some
k=1,2,---. A cell which is not of the first kind is said to be of the second kind.
Cells of the first kind do not need to wait in the input buffer as they pass through
the LB without any delay, so that their arrival epochs and departure epochs are the

same, i.e.,

a, = d, if the n* cell is of the first kind. (2.16)

Cells of the second kind, however, have to wait for tokens to be generated in order

to leave the LB, in which case we have
a, < dp, if the n* cell is of the second kind. (2.17)

With the help of (2.13) - (2.15), we now define the burst cycles of the LB.

Definition 2.2 We call
B = [aw,a) ), k=1,2,-- (2.18)
k k41

the k** burst cycle of the LB.
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Figure 2.3: The burst cycles

For each k =1,2,--- we see that l,(cl) is the tag of the first cell (of the first kind) in
the k* burst cycle, and I{?) is the tag of the first cell of the second kind in the kt*
burst cycle. A typical realization of the burst cycles is shown in Fig. 2.3. Let Z(
denote the collection of tags of all cells of the first kind, i.e.,

ZW0 ={n=12---: l,(cl) <n< l,(cz) for some k=1,2,---}. (2.19)

We see that the burst cycles of the LB are uniquely determined by Z(), It is easily
seen that each burst cycle begins with a group of cells of the first kind and is
followed by a group of cells of the second kind. This pattern repeats itself upon
forming successive burst cycles.

The concept of burst cycles reveals the simple structure of the sample paths of
the LB. From Fig. 2.3 we see that the inter-departure time between two consecutive
arrivals of the second kind is constant and equal to the token generation period D.
The inter-departure times between consecutive arrivals of the first kind are compli-
cated. However, as we shall see later, this contributes no difficulty to the analysis.
It is this simple structure that makes our transient analysis possible.

We now conclude this section by proving two technical lemmas. Let LB and
LB be two LBs with the same input sequence a and output sequences § and &,

respectively.
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Lemma 2.1 If the departure epochs of LB and LB satisfy
d, > d,, n=1,2--, (2.20)

then we have

ASKIACH (2.21)

Proof. Suppose (2.21) not to hold. Then there is an arrival epoch, say a,, with
n in Z® but not in ZW, in which case d, = a, < d, by (2.16) and (2.17), thus
contradicting (2.20). n

Sometimes the condition (2.20) can be more easily verified by a condition on the

states of the LBs as it is now shown in the following lemma.

Lemma 2.2 If the states of LB and LB satisfy
0> 5(0) > 5(0) (2.22)

and

S(t) > S(t), t>0, (2.23)

then (2.20) holds.

Proof. Conditions (2.22) and (2.23) readily imply
S(d,) > S(d,), n=1,2---. (2.24)

Since the arrival processes to the two LBs are the same, (2.24) in turn implies that
fewer arrivals are waiting in the input buffer of LB at these epochs. Since the input
buffer operates according to the FCFS discipline, (2.24) implies that the n'* arrival
in LB has also left by time d,, n =1,2,---, and (2.20) therefore holds. |

The condition S(0) < 0 in (2.22) is necessary, as can be seen from the following

counter-example. Suppose S(0) = 5 and S(0) = 0. So (2.22) holds without S(0) < 0.
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Suppose there are K arrivals during [0,d,) with S(d,) = 1 and S(d,) = 0. A closer
look reveals that there were K + 4 departures from LB by time d,, and only K

departures from LB by the same time. Therefore, dg+4 > dg4s which contradicts

(2.20).
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2.7 Sample Paths Comparison Via Majorization

For the notion of majorization and its properties, the reader is referred to Appendix
A and [46].

Now we state and prove a general result which gives a sufficient condition for
the comparability of two LBs in some suitable sense. To simplify the notation, we
use the following convention. For any sequence § = {£,,n = 1,2,---} of R-valued

rvs, we define the R™ "*1.valued rvs &nmm<n,n=12.--by

sm,n = (£m3 e ,é.n) (225)

Theorem 2.7 Let LB,(D, M) and LB;(ﬁ, ]\7[), be any two LBs with the same input

sequence o and output sequences 8 and 8, respectively. If their departure epochs

satisfy
dyp > d,, n=12--, (2.26)
then we have
810 <Y b1, n=12--- (2.27)
and
81, < 1.0, neZW. (2.28)

Proof. By Lemma 2.1, (2.26) implies
ASKADN (2.29)

Consider the burst cycles determined by Z(V). For any burst cycle By, k= 1,2, - -,
we have from (2.16) that

d,=d, = an, lfcl) <n< l,(f) (2.30)
and therefore,
6,&1),711 = slil),'n’ ll(‘;l) S n S ll(<;2) (231)
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If for all k = 1,2,---, we can prove
é @ =< 5 (2) l(2) <n< l(l) (2 32)
Lm L 7l ko= k+1 )

and
6 2.
S, <8, (2:33)
then Theorem 2.7 follows from the closure property of majorization under concate-
nation (Lemma A.2). Upon examming Fig. 2.3, we conclude that without loss of

generality, it suffices to prove (2.32) and (2.33) in the first burst cycle, as is done in

the following lemma. [ ]

Lemma 2.3 Under the assumptions of Theorem 2.7, we have
(51(12),n <" 5,(12)’7}, l§2) <n< lgl) (2.34)

and

51(12),151) ~ 31(12),151)‘ (2.35)

Proof. From Fig. 2.3 we observe that
Sl(z) < 51(2) <D< 5,(1) < 51(1), (2.36)
1 1 2 2

§ =D, B <i<t, (2.37)

and
i) O
2 2

Sosi= 3 b (2.38)

i=1{® i=1{»)
Condition (2.26) also implies

k k
Y &< Y5, P <k <), (2.39)
/2 (@

Now (2.35) follows from Lemma 2.4 below which mimics the structure of the burst

cycles of the two LBs.
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To prove (2.34), fix n with l?) <n< lgl) and define an auxiliary sequence of rvs

¢ by

8, 1=1,2,--+, and 17 +# n;

G=1 . 7 (2.40)
Oon +d, —a,, 1=n.

We can interprate ¢ as a modification of § which coincides with & except that the

nt* departure is forced to delay an amount of time d, — a,, so that the second burst

cycle begins earlier at the n** departure epoch. Using (2.35), we get

81, < G, (2.41)
It is also clear that

¢, 2 5,(1»’” (2.42)
and (2.34) now follows from Lemma A.1. n

Lemma 2.4 If vectors € = (21,...,2,) and y = (y1,...,yn) in R} satisfy the

conditions
(a) @<y <D, (2.43)
(B)  y=ys=+=yu1=D, (2.44)
() D<yn<an, (2.45)
(d) Ek:wi < }iji, k=1, ,n—1, (2.46)
1=1 i=1

(e) ixi = En:yi, (2.47)

i=1 i=1

then the following ordering
y<z (2.48)

s true.

Proof. From the definition of majorization, by taking into account (e), we only

need to show that

2V 2 2T, k=2, ,n. (2.49)
i=k 1=k
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From (a)—(c), we have

ylS?ﬁS"'Syn—l Sym

so that
n n—k+1
Zy[i]= Eyi, k=1,---,n.
1=k i=1
From (d), we conclude
n—k+1 n—k+1

SNvi> D 2> wy k=2,---,n

1=1 =1 =

where the last inequality results from (A.1), and (2.48) follows.

Combining Theorem 2.7 and Lemma 2.2, we have the following corollary.

(2.50)

(2.51)

(2.52)

Corollary 2.1 Let LB,(D,M) and LB;(D,M), be any two LBs with the same

input sequence o and output sequences & and 5, respectively. If their states satisfy

0>s2>38
and
S(t) > 5(t), t>0,
then we have
61,n <Y gl,m n = 1)27
and
61,,1 ~ sl,n, n < Z(l)
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2.8 Proofs of the Main Results

In this section, we first establish relations between the transient result (Theorem
2.7 or Corollary 2.1) and our main results (the steady-state results of Section 2.4).
Then we verify that the conditions in Corollary 2.1 are satisfied in each of the
Theorems 2.2 — 2.6. The notion of convex stability introduced in Section 2.4 serves
as a bridge between the transient result and the steady-state results. The following

lemma formalizes this relationship.

Lemma 2.5 Let { and 1 be two sequences of R,-valued rvs, and suppose that
there exists a sequence of (possibly random) integers {ny : k = 1,2,---} such that

limn; = oo and
k—o00

Crime = My k=1,2,---. (2.57)

If ¢ and m are both convexly stable, then their asymptotic versions ( and n are

ordered as

( < M, (2.58)

and therefore, ¢*(¢) < c*(n).

Proof. From Lemma A.3, (2.57) implies

Y HG) <Sem), k=L (2:59)
=1 =1

for any convex function ¢ : Ry — IR. Taking limit as £ — oo, the convex stability
assumption implies

E [¢(¢)] < E[¢(n)], (2.60)

provided the expectations in (2.60) exist, whence (2.58) follows from the definition

of convex ordering. [ |

Now we begin to prove Theorems 2.2 — 2.4, and Theorem 2.6. The stability

condition AD < 1 ensures that all LBs in the theorems are stable for the input rate
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Figure 2.4: Output traffic from LBs of different token pool sizes
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Figure 2.5: Output traffic from LBs of different token generation periods

A, which in turn guarantees that the set Z() of indices of arrivals of the first kind
has infinite cardinality. In the proofs of Theorems 2.2 — 2.4, we follow the convention
made in Section 2.3 for simplicity. For the more general case, one observes that the
only difficulty arises in the first burst cycle. However, by the stability condition,
the first burst cycle is necessarily finite, and therefore contributes none to the limit.
From Corollary 2.1 and Lemma 2.5, we only need to show that the states of the
LBs in each theorem are properly ordered. As illustrations, the sample paths of the
LBs with different token generation periods or LBs with different token pool size

are shown in Figures 2.4 — 2.5.
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Proof of Theorem 2.2. We shall show that
S(t) > S(), t>0. (2.61)

Let {t,, n =0,1,---} be the sequence of arrival and token generation epochs (the
first arrival and the first token generation epochs are by convention zero, i.e., o =
0). We observe that {S(t), ¢t > 0} and {S(t), ¢t > 0} are (by convention right-
continuous) piecewise constant with jumps at ¢;, ¢ = 0,1,---, so that (2.61) need
to be verified only at these epochs. We proceed by induction. Clearly we have
S(to) = 8(to) = 0. Assume that S(t;) > S(t;) for some i = 0,1, - - . It is easy to see
that

S(tiy1) = max{S(t;)) + A, -M} (2.62)
and
S(tip1) = max{S(t:) + A, — M} (2.63)
where
Ao 1 if t;41 is an arrival epoch, (2.64)
~1  if ¢;4, is a token generation epoch.
Since - M > -M , we have S(ti11) > S (ti+1) by the induction hypothesis. [

Proof of Theorem 2.3. As in the proof of Theorem 2.2, we need to show that
S(t) > 8(t), t>0. (2.65)

Since we have assumed M = oo, no token can be lost in either systems. The numbers

1
of tokens generated up to time ¢t > 0 in both systems are therefore given by [BJ

t
and [BJ , respectively, where|z| is the largest integer less than or equal to z. If
N(t), t > 0, denotes the number of arrivals in (0,], then the states of the two LBs

are given by

S(t) = N(t) - B—J , £>0 (2.66)
and
S(t) = N(t) - [—EJ : t>0, (2.67)

30



respectively. Since D < D, (2.65) follows from (2.66) and (2.67). [ |

Proof of Theorem 2.4. As in the proof of Theorem 2.2, wemeed to show
S(t) > S(t), t>0. (2.68)

Let L(t) denote the number of tokens discarded during the interval (0,¢] due to a
full token pool at LB(D, M), and define

T =inf{t > 0: L(t) = k + 1}, k=0,1,---. (2.69)
We observe that
S(re) =~M and S(m) > —M, k=0,1,---, (2.70)

so that
S() = 8(m) 2 —M + M > 1, k=01, (2.71)

For t in (7, 7k+1), k = 0,1,:--, there are exactly lTTkJ tokens generated by

o ¢ —
LB(D,M) and at most l DTk

terval (7%, t]. Furthermore, no token is discarded from LB(D, M) during the interval

J + 1 tokens generated by LB(D, M) during the in-

(Tky Tk41), £ =0,1,---. If N(s,t) denotes the number of arrivals during the interval

(s,t], then we have

s@ 2 Mo, - |5,
50 =N0.0 - 5],
and

S(6) 2 S(n) + N, t) ~ ( [t —%| +1),

t e (Tk,Tk+1), k‘=0,1,-'-.

5(t) = §(r) + N(re, ) — [t ‘_T’“J ,

b (2.73)
As a result, we get
S(t) - §(t) > HS j - [%J >0, t €0, 7) (2.74)

31



and

S(t)=5() > S(re)—S(re)+ [t })T’“J - [t o120, te(onn). (279)

Thus (2.68) holds for all £ > 0. [ ]

Proof of Theorem 2.6. In order to use Corollary 2.1, we first assume that 0 >
s > 8, and define {t,, n = 0,1,---} as in the proof of Theorem 2.2. We want to
show that

S(t:) > S(t), i=0,1,---. (2.76)

By assumption, (2.76) holds for : = 0. With A defined by (2:64), we have
S(tiy1) = max{S(t;) + A, —M}, i=1,2,--- (2.77)

and

v

S(tiy1) = max{S(t;)) + A, —M}, i=1,2,---, (2.78)

so that (2.76) follows by induction.

In general, if s > 0, then by the stability assumption, there exists T' = kD for
some k < oo such that S(T") = 0 for the first time. Since the arrivals up to time T
are all delayed at LB, while the same arrivals may or may not be delayed at LB,
we have 0 = S(T) > S(T). Taking T as the new time origin, and since the finite

time interval [0, T') has no contribution to the limits, we are done. [ |
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Figure 2.6: LB without token buffering increases burstiness

2.9 Comments and Extensions

2.9.1 No Token Buffering

The results in this chapter cannot be applied to LBs without buffering for tokens.
In the case of no token buffering, the burst cycles become infinite so the transient
analysis may fail. Fig. 2.6 illustrates a case where the output traffic is more bursty

than the input traffic for a LB without token buffering.

2.9.2 Monotonicity in D

The monotonicity in D is not true in general. The following is a counterexample
for two LBs with token pool size one and different token generation rates (D; < D,

and M; = M; = 1). We see that the output traffic from the LB with the smaller

token generation rate is in fact more bursty.

2.9.83 The Unstable Case

If the stability condition (2.7) does not hold, it is readily seen that the input queue
will eventually build up, and the inter-departure times will become deterministic of
length D; a formal proof of this fact can be found in [2]. In that case, the departure
process will be the least bursty, but the cell delay at the LB will become infinite

which is not acceptable in practice.
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Figure 2.7: Two LBs with the same token pool size and different token generation
rates

In the unstable case, we may no longer be able to take limits along the sub-
sequence Z() as we did in the proof of Theorem 2.7, since Z() may contain only
finitely many elements. So without the stability assumption Theorems 2.2-2.6 may
not hold. Weaker results, however, can be obtained by taking advantage of the
notion of weak majorization. From the first part of Theorem 2.7 and Lemma A .4,

we conclude to the following result.

Theorem 2.8 Without the stability assumption of (2.7), Theorems 2.2-2.6 still

hold by replacing <., with <j. .

It is worth pointing out that § <4, a does not imply c?(6) < c?().
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CHAPTER 3

BOUNDS, APPROXIMATIONS, AND DESIGN ISSUES

In Chapter 2, we studied the burst reduction properties of the LB. In order to
make the output traffic from the LB as smooth as possible, it is desirable to choose
the token generation period D as large as possible and the token pool size M as
small as possible. However, the side-effect of doing so is to impose extra cell delay
at the LB which must also be taken into consideration. In this chapter, we shall
establish bounds and approximations for the cell delay at the LB and for some other
parameters of interest, e.g., the mean and peak cell rates of the output traffic. Based
on these results, we shall discuss the design issues of the LB.

We shall derive the bounds and approximations in Section 3.2. The bounds
for the mean and peak cell rates are obtained trivially. Our basic approach to
approximate the cell delay is to first bound it by the waiting time in a suitable
G/D/1 queue, and then to derive approximations of the waiting time of the G/D/1
queue. To justify the approximation, we first show in the next section that in heavy
traffic the LB and the G/D/1 queue become the same in that they have the same

heavy traffic diffusion limits.

3.1 Heavy Traffic Diffusion Limits

In this section, we shall prove some heavy traffic limit theorems for the LB. These
results are useful in justifying the approximation result for the cell delay we shall
derive in Section 3.2; they are also of independent interest.

We observe that whenever the input buffer of a LB is non-empty, the LB behaves
just like a G/D/1 queue with service time equal to the token generation period.

Therefore, we expect that the two systems will have the same heavy traffic diffusion
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limits. This will be made rigorous in the following subsections.

References [15], [43], and [58] provide good surveys of heavy traffic limit theo-
rems. In Appendix C we collect some of the important results needed in our proof,
and in Appendix D, we summarize some heavy traffic results for GI/GI/1 queues.

We first present a lemma which serves as a bridge between the LB and the
corresponding G/D/1 queue. Let {NY(t), t > 0} be the queue size process of a
G/D/1 queue with service time D; and let {NLB(t), t > 0} the queue size process
of a LB with token pool size M and token generation period D. Comparing the
definition of {S(t), ¢ > 0} in Section 2.4, we see that

NEB(1) = (S(t))*, t>0. (3.1)

Lemma 3.1 If the LB and the G/D/1 queue have the same input sequence, then

NE(0) = N*B(0) (3.2)
implies
0 < NO(t)— NEB(t) < M +1, t>0. (3.3)
Proof. First we show that
NC(t) - NEB(t) > 0, t>0. (3.4)

Consider the LB as a G/G/1 queue with service being the generation of a token for
each arrival. Since the G/G/1 queue can provide service even before the arrival of
the customer (generate tokens and store them in the token pool), and it has the

same service time as the G/D/1 queue, the real service rate in the G/G/1 queue

1s faster than the service rate of the G/D/1 queue. Therefore the G/G/1 queue
(i.e., the LB) has a shorter queue length than at the G/D/1 queue. Next we use

induction to show that

NE(@t) = S(t) < M +1, t>0. (3.5)
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By assumption (3.2), we have
N%(0) - S(0) < M, (3.6)

and therefore, (3.5) holds for ¢ = 0. Let {s;, ¢ =0,1,---} be the token generation

epochs (i.e., s; =t¢D,1=0,1,.-), we now show that
NE(s7)—S(s7) < M, i=0,1,---. (3.7)

and

NE(t)—S(t) < M +1, $i <t < Siy1, 1=0,1,---. (3.8)

For 0 < s < t, we denote by N(s,t) the number of arrivals in the interval [s, ).

Fixing i = 0,1,---, we have
S(siyy) = max{—M, S(s;) — 1} + N(si,siy1) (3.9)

and

NC(s7,) = max{0, N9(s]) — 1} + N(si, 8i41)- (3.10)
From (3.9) and (3.10) we get
NS(s7,,) — S(s71) = max{0,N%(s7) — 1} —max{-M,S(s7) —1}.  (3.11)
If N%(s;) > 0, then by the induction hypothesis we have,

NG(3;+1) - S(Si_+1) = NG(Si_) —1—max{—M,S(s;) — 1}

IN

NE(s7)—1—(S(s7) = 1)

IA

M. (3.12)
If N%(s7) =0, then

NG(Si_H) —8(sip1) = 0—max{-M,S(s;) -1}
< 0—(—M)=M. (3.13)

Since there is at most one departure from both systems during the interval [s;, si41),

we have

NE(t)—=S(t) < M +1, 5i <t < Siq1 (3.14)
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Combining (3.1) and (3.5), we finally get

NC(t) — N*B(t) < NC(t) = S(t) < M +1, t>0. (3.15)

To study the heavy traffic diffusion limits, we consider a sequence of arrival
processes {af, ¢ = 1,2,---} with intensity A, indexed by r = 1,2,..-. We assume
that this sequence satisfies Assumption (Al) defined in Appendix D so that as
r — 00, we have

Var (ay) — o (3.16)
with 0 < o < o0.

For r = 1,2,---, we denote by LB, the LB with token pool size M, and token
generation period D,. Since we expect the heavy traffic limit theorems for the LB
to be the same as those of a G/D/1 queue, we define a sequence of G/D/1 queues
G, with service time D,, r =1,2,---, accordingly. Quantities which are related to
the LB (resp. the GI/D/1 queue) are superscribed by LB (resp. G).

To get the appropriate heavy traffic results, we impose some additional assump-

tiomns.

Assumption (A2): The quantities D, and A, change in r in such a way that as

r — oo,
D, — D (3.17)
with
Vr(D, = X1 = C, —00 < C < 0. (3.18)
It is easy to see that Assumption (A2) implies \;! — D.

Assumption (A3): The token pool size does not grow too fast, i.e., we assume

as r — 00,

— 0. (3.19)

In the following subsections, f : D[0,1] — D[0,1] is a reflection mapping and W
is the Wiener process on [0,1] as defined in Appendix D.
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3.1.1 The Queue Size Process

For r = 1,2,---, we define the D[0,1]-valued rv nL?", the normalized queue size

process of the LB, by

NLB'(rt)
LB, ¢ AN \"Y
0=—7
Theorem 3.1 Under Assumptions (A1), (A2), and (A8), we have

0<t< 1. (3.20)

ntBr = f( W +d) (3.21)

D3/2

where

d(t) = Ct, 0<t<1 (3.22)

with o and C being defined by (3.16) and (3.18), respectively.

Proof. Let G",r =1,2,---, be a sequence of GI/D/1 queues. It is well known
(see Appendix D) that under Assumptions (A1) and (A2), we have

N = fs5zW +4d), (3.23)

D3/2

where
NGr (rt)
\/7_‘ )

is the normalized queue size process of the GI/D/1 queues. By the converging

% (t) & 0<t<1, r=1,2-- (3.24)

together theorem (Theorem C.1), it suffices to show that as r — oo,

m(n"®r,n%) <0, (3.25)
and this follows from the next lemma. |
Lemma 3.2 Under Assumption (A3), we have

m(n°,ntP) =0 a.s. (3.26)

asr —r O0.
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Proof. From [36], for r = 1,2, -+, we have

m(n%, ") < sup [n%(t) — P (1)|

0<t<1
| NG (rt) — NEBr(rt)|
T oua Jr
(M, +1)

< a.s.. (3.27)

\/F
The second inequality follows from Lemma 3.1. Under Assumption (A3), (3.26)
then follows from (3.27). u

3.1.2 The Waiting Time Process

The normalized waiting time process is defined as follows.

WLB,
whBr(t) & —ltl 0<t<1, r=1,2,- (3.28)
VT
where for each r = 1,2, -, W/Br is the waiting time of the i* (; = 1,2, - - -} arrival

at LB,. Then we have the following theorem.
Theorem 3.2 Under Assumptions (A1), (A2), and (A3), as r — oo, we have
wlBr — f(oW + d), (3.29)

where o and d are defined by (3.16) and (8.22), respectively.

Proof. Define the corresponding normalized waiting time process for the GI/D/1
queue by

w (t) 0<t<1, r=1,2,---. (3.30)

H>
Sk

It is well known (see Appendix D) that under Assumptions (A1) and (A?2),
w% = f(oW + d). (3.31)
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By the converging together theorem (Theorem C.1), it suffices to show that
m(w, whBr) 250 (3.32)

as r — 0o. This follows from Lemma 3.3. |

Lemma 3.3 Under Assumption (A3), if D, — D asr — oo, then we have
m(w,wlBr) =0 a.s. (3.33)

asr — oo.

Proof. Observe that if the difference between the queue lengths of the LB and
of the GI/D/1 queue is m, then the difference between the two waiting times is at

most (m + 1)D,. The rest of the proof is very similar to that of Lemma 3.2. ]
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3.2 Bounds and Approximations

3.2.1 The Mean Cell Waiting Time

In Section 3.1, we showed that the LB and the corresponding GI/D/1 queue have
the same heavy traffic diffusion limits. Therefore, by a well-known result [40], the

steady-state mean waiting time W of cells in the input buffer is approximately

< Ao?
W i 30 (3.34)
where o2 is the variance of the inter-arrival time, A is the arrival rate, and D is the
token generation period. This approximation becomes accurate, in fact exact, in
heavy traflic.

From Lemma 3.1 we see that the number of cells in the LB is bounded above by
the number of cells in the corresponding GI/D/1 queue, so that the waiting time at
the LB is bounded above by the waiting time at the GI/D/1 queue. It is also well
known [40] that the quantity at the right-hand side of (3.34) is actually an upper

bound of the mean waiting time in the GI/D/1 queue. Therefore, we have

W< —2(1—A_"}—55, (3.35)
and the bound is tight in heavy traffic.

However, the bound (3.35) is very loose in light traffic. In fact, when D goes
to zero, this bound does not go to zero. So tighter approximations are needed.
Consider an M/D/1 queue. It is well known [40] that in this case the mean waiting

time is given by

- A\D?

= — .36

W=s0a ) (3:36)

Motivated by the form of (3.35) and (3.36), we propose the following approximation.
- AWhg2ph

Wt ——— h>0. 3.37

2(1 - AD)’ - (3:37)

We see that the right-hand side of (3.37) is an decreasing function of & > 0. If b = 0,
then (3.37) reduces to the upper bound (3.34), while since A\?6% = 1 for Poisson
arrivals, if A = 2, then the right-hand side of (3.37) is just the mean waiting time of
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Figure 3.1: Mean cell delay (Erlang distribution)

an M/D/1 queue given by (3.36). So (3.37) provides an reasonable approximation
to the mean waiting time, the accuracy of which can be adjusted by proper choice
of the parameter h. For a conservative estimation, the value of & should be chosen
relatively small (A < 1, as is in the case of heavy traffic) to make an over-estimate
rather than an under-estimate. Figs. 3.1-3.3 show the approximate cell delays for
some typical distributions of the inter-arrival times and the corresponding simulation

results. If we choose h = 1, then we get the following approximation

- Ao?D
W ~s m- (3-38)

This approximation has a very simple form, and from Figs. 3.1-3.3, we see that it is

very good. Therefore, we shall use (3.38) as our approximation of cell delay in the

design.

3.2.2 The Mean and Peak Cell Rates

As recommended by the CCITT, the traffic for variable bit rate services can be
characterized by the mean cell rate (R,,) and the peak cell rate (R,) [12]. The mean

cell rate is measured over a long period T}, and the peak cell rate is measured over
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a short period Tj. Since for any interval of length T, the maximum number of cells

that can leave the LB is bounded by M + 1 + z, the mean cell rate is bounded by

M+1
Rn < D'+ —%— (3.39)

while the peak cell rate is bounded by

M+l (3.40)

R,<D'+ T
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3.3 Design Issues

3.3.1 Parameter Design

We now discuss some design issues of the LB from an engineering point of view.
Our objective is to choose the parameters of the LB (the size of the token pool
(M), the token generation period (D), and the size of the input buffer (B)) so as to
meet some design criteria. These criteria usually include the mean cell rate (R,,),
the peak cell rate (R,), the cell delay at the LB (D..ut), and the probability of cell
loss at the LB (Py,ss). Here we add another criterion, the burstiness of the output
traffic (measured by the squared coefficient of variation of the inter-departure times
in steady-state, and denoted by ¢(D, M, B) to emphasize its dependency on the
parameters of the LB). Although this last criterion somewhat overlaps with the
mean and peak rates, and is difficult to specify, it has some very good monotonicity
properties as we have already seen in Chapter 2. By choosing this criterion as our
objective function, it is easy to formulate the design problem as an optimization
problem. With 0 < r,, < r,, w > 0, and 0 < p < 1, this optimization problem (P1)

can be stated as follows:

minimize c(D,M,B) (3.41)

subject to R, < rp, (3.42)

(P1) R, <1y, (3.43)
Deenn < w, (3.44)

Piyss < p, (3.45)

(D,M,B) € R} xN. (3.46)

Let ¥ C R2 x IN denote the feasible set of (P1), i.e., ¥ consists of all triples
(D, M, B) in ]Ri X IN such that (3.42)-(3.45) hold. To solve this constrained prob-
lem, we first need to determine the feasible set ¥. To determine ¥ exactly is very
difficult. In the following, we shall derive a heuristic approach to estimate this set

and to find a sub-optimal solution. Our method consists of three steps.
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Step 1: To approximate the conditions.

We approximate R,, and R, by their bounds derived in Section 3.2.2, so that (3.42)
and (3.43) become

M+1
pr+ 21 <Tm (3.47)
l
and
D™+ MT+ ! <r, (3.48)

s

respectively. We next approximate D..; by (3.38) to write (3.44) as

A20?D
—_— < 3.49
51— D) =" (3.49)
or equivalently,
2w
< —-—7. .
b= AQ2w + Ao?) (3:50)

We denote by ¥ the set of points in R2 x IN which satisfy (3.45), (3.47), (3.48),
and (3.50). It can be seen that ¥ is an approximation of the feasible set, and it is
usually smaller than the feasible set ¥. So, using ¥ instead of the feasible set, we

shall get a sub-optimal solution. We then go on to the estimation of the set .
Step 2: To separate the problem.

The idea is to separate the choices of B from D and M. It is clear that B = oo
satisfies (3.45). In fact, this choice of B is very conservative. The quantities D and
M can then be determined from (3.47), (3.48), and (3.50). We denote the set of D
and M which satisfies (3.47), (3.48), and (3.50) by ® (Fig. 3.4).

Step 3: To find the “optimal” value of D, M, and B.

If @ is non-empty, then we choose, invoking Theorem 2.4, the smallest possible M
and the largest possible D in ® to minimize ¢(D, M, c0), in which case, they are
given by

2w

D= e (3.51)
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Figure 3.4: The set ®

and

M=1. (3.52)

It is clear that with B = oo, and with D and M being chosen according to (3.51)
and (3.52), we get a feasible solution to (P1) although it may not be the optimal
solution. It is also clear that if we replace B by any other finite value that satisfies
(3.46), we get another feasible solution. By doing so, the probability of cell loss will
no longer be zero, however, the cell delay and the mean and peak cell rates will all
decrease. The choice of B can be done by means of dimensioning [34], and we shall
not discuss it here.

From the discussion in this subsection, we make the following observations.

First, the set ¥ may be empty. In this case, it does not necessarily mean that
the feasible set is empty, because most of the conditions (3.47), (3.48), and (3.50)
are derived from upper bounds of the corresponding quantities. Therefore we may

relax some of the conditions and try again.
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Figure 3.5: Multiplexer with LBs.

Secondly, if T} is chosen to be very large and T, to be very small compared to
the token generation period D, then we see from (3.47) and (3.48) that the mean
cell rate r,, will be determined mainly by the token generation period D and the

peak cell rate r, will be determined mainly by the token pool size M.

3.3.2 Deployment of LBs in the Network

In this subsection, we consider the use of LBs to reduce the burstiness of the traffic
in a network. Suppose we have n sources which are multiplexed in a trunk. Our task
is to apply LB technique to reduce the burstiness of the traffic on the trunk. We
consider the two configurations shown in Fig. 3.5. The first configuration (SYSTEM
I) is to apply a single LB at the trunk, and we call it the centralized implementa-
tion. The second configuration is to apply to each source a LB and we call it the
distributed implementation. In the distributed implementation, we further consider
two cases (SYSTEM II and III). In SYSTEM 1II all LBs generate tokens at the same
time, while in SYSTEM III the token generation epochs among all LBs are equally
spaced. To compare the two configurations, we assume that the total token gener-
ation rate in the second configuration is equal to the token generation rate of the
single LB in the first configuration. However, we assume all LBs have token pool
size of one. Our analysis is based on simulation, the results of which are depicted
in Fig. 3.6.

From Fig. 3.6 we see that for smooth arrival processes (Erlang for example),
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Figure 3.6: Comparison of systems I, II and III with LB rate control
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centralized implementation (SYSTEM I) is better than distributed implementation.
However, as the arrival process becomes more bursty (Hyperexponential for exam-
ple), SYSTEM III is the best.

The reason SYSTEM II is not as good as system III is obvious, since it has a
tendency to produce batch arrivals at the token generation epochs (especially when
the LBs are designed to work in heavy traffic).

To see that SYSTEM 111 is preferred to SYSTEM I when the sources are bursty,
we provide the following intuitive explanation. We can view the centralized LB in
SYSTEM I as a variation of the distributed LBs by sharing a common token pool.
Thus in the centralized implementation, each source can use tokens generated by all
the n LBs. Therefore, during any burst, the sources are less regulated, resulting in
more bursty traffic.

Since the traffic in high-speed networks are bursty, our conclusion is that the
distributed implementation is preferred. Another advantage of distributed imple-

mentation is that it guarantees the fairness among sources.

51



PART II

CALCULUS OF BURSTINESS
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CHAPTER 4

THE SQUARED COEFFICIENT OF VARIATION

4.1 Thinning of Point Processes

In Chapter 2, we have succeeded in using the squared coefficient of variation to mea-
sure burstiness. In this chapter, we shall continue to explore the use of this measure
in characterizing the burst reduction properties of thinning. Roughly speaking, to
thin a process is to delete a portion of its arrivals to form a new process. The
rate control of an arrival process (such as the un-buffered LB), or the splitting of a
process are examples of thinning. In the following, we formally define two kinds of
thinning, random thinning and its deterministic realizations, which we shall study
in this chapter.

Let A = {a,,n = 1,2,---} be a point process with arrival epochs {a,,n =

1,2,---}. With ag = 0, define the inter-arrival times of A by
Xn = ay — ay_y, n=12---. (4.1)

Throughout this chapter, we assume that the rvs {X,,n = 1,2,---} are i.i.d. 1vs
which have the same distribution as the R, -valued rv X, i.e., we assume that this

process is a renewal process. We also assume that X is integrable, i.e., E [X] < oo.

4.1.1 Random Thinning

For 0 < p < 1, the p-thinning of a point process A is another point process, denoted
by A,, resulting from independently deleting each arrival from A with probability
1 — p. Since the original process is a renewal process, the resulting process is also a

renewal process, and the inter-arrival times {Y,?, n = 1,2,---} of A, are i.i.d. rvs
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distributed according to some generic IR;-valued rv Y, defined by

M
Y, <Y X, (4.2)
n=1

where M is a geometric rv with parameter p independent of A. It is well known
that
P{M =m} = p(l —p)™?, m=12--. (4.3)

4.1.2 Deterministic Realizations of Random Thinning

If p is a rational, then it can be expressed as

v

u+v

p= (4.4)

with v and v being mutually prime nonnegative integers. In this case, the p-thinning
defined in the subsection 4.1.1 can be implemented deterministically. A determin-
istic realization of the p-thinning with p defined by (4.4) is to periodically delete u

arrivals out of every u + v arrivals in a deterministic fashion. By choosing different

(u+v)!
ulv!

analyze the process that results from a deterministic realization of the p-thinning,

arrivals to delete, we have ways to deterministically realize a p-thinning. To
we first seek a good characterization of such process. To this end, for each pair of

positive integers (u,v) we define the set

?

(I),“,:={wz(wl,---,wu)elN”:w,-Zl, 1=1,---,v; Zwizu—l—v}. (4.5)
=1

The elements of ®,,, are in one-to-one correspondence with each of the deterministic
realizations discussed above. The inter-arrival times {V;¥, k = 1,2,---} of the
process that corresponds to w in ®,,, are independent rvs distributed according to

YWLSX;, if k=lvti, i=1,---,v, [=0,1,---. (4.6)

Jj=1

We call such a realization the w-thinning of A with resulting process denoted by
Aq. It is plain that {V;%¥ k= 1,2,---} is no longer a renewal process unless w, is
constant for all n = 1,---,v. However, the following lemma tells us that {V;*' k =

1,2,---} is convexly stable.
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Lemma 4.1 The inter-arrival times {Y¥, k = 1,2,---} of the w-thinning of a
renewal process A is convezly stable. Furthermore, the asymptotic version YW of
{Y¥,k=1,2,---} is given by
w;
YYL3°X;, wp. l, i=1,--,v. (4.7)
j=1 v
Note that the sequence {Y;¥¥, k = 1,2, --} is a periodic i.i.d. sequence with period v
as will be defined later. Therefore the convex stability of {V;¥, k =1,2,---} follows
from the strong law of large numbers for such sequences (Lemma 4.2), while the
form of the asymptotic version can be obtained by inspection via the uniqueness
theorem of Theorem 2.1.
Let {X;;, :=0,1,--+; §=1,2,---} be a double sequence of R-valued rvs such
that for each y = 1,2, - -, the sequence {X;;, : =0,1,---} is a sequence of i.i.d. rvs.

Fix k =1,2,.-., and define the sequence of R-valued rvs {Y,,,n =1,2,---} by
Yier; = Xij, 1=0,1,---55=1,---,k (4.8)

We say that the rvs {Y,,n = 1,2,...} form a periodic i.i.d. sequence with period
k (k=1,2,--+). We see that periodic i.i.d. sequences form a natural generalization
of the notion of i.i.d. sequence. Now we establish a strong law of large numbers for

periodic i.1.d. sequences in the following lemma.

Lemma 4.2 (Strong Law of Large Numbers for Periodic I.I.D. Sequences)
If{Y,,n=1,2,---} is an integrable periodic i.i.d. sequence of R-valued rvs with

period k, then we have

. 1
lim —
m-—+00o M

S V=1 E] as.. (4.9)

n=1 n=1

Proof. We prove the case where {Y,,n =1,2,-..} are R,-valued rvs. A sharper

argument shows that rvs can be taken to be IR-valued, too. Let

Z; =) Xij, 1 =0,1,---. (4.10)
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Then the rvs {Z;, : =0,1,---} form an i.i.d. sequence of R -valued rvs, and by the

strong law of large numbers, we have

IILIgTZZ = E[Z] a.s.
k
= Z_:IIE[XO,,,] a.s.
= Xk: E[Y,] a.s. . (4.11)

From (4.10), we have

1.m k(m)-—l 1 m
—Z Z Zz‘f“" Z Y;n m:1)2>"' (412)
mo=1 i=0 M =k(m)k+1
where k(m) = l%J , m=1,2 ... is the number of periods in the first m rvs. Since
0 <m—k(m)k <k, m=1,2,---, (4.13)

the second term in the right-hand side of (4.12) satisfies

0< Y. Yu< Zym), m=1,2,---. (4.14)
n=k(m)k+1
The rvs {Y,,n = 1,2,---} being nonnegative, we see from (4.12) and (4.14) that
k 1 k(m)-1 m k 1 k(m)
=0 me=1 m m) +1 1=0
(4.15)
and (4.9) now follows from (4.11) and (4.15) by noting that
. k(m) 1
—t = — 4.1
Alm = = (4.16)
|
As a special case of p-thinning with v =1 and u = m for some m = 0,1, -- -, the

deterministic realization always delete the first m arrivals and keep the (m+1)** one.
Under these assumptions, the resulting process is a renewal process with inter-arrival

times being distributed according to the rv Y™ defined by
m+1

Y™ L3 X, | (4.17)

1=1
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We shall discuss this case in the next chapter.
With the notation introduced so far, we shall proceed to the discussion of the
burst reduction properties of random thinning and of its deterministic realizations

via the squared coefficient of variation.
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4.2 p-Thinning

Let A be a renewal process and let A, be its p-thinning for 0 < p < 1 as defined
in Section 4.1.1. Recall that the inter-arrival times of A, are i.i.d. rvs {Y?, n =

1,2,---} distributed as the rv Y, defined in (4.2). By conditioning on M, we get

B[] = EPME(X] - - B[ (4.18)

and
Var (Y,) = IE[M] Var(X)+ Var (M) (E[X])? (4.19)
- %Var (X) + 1p‘2” (E[X]). (4.20)

The following is an easy consequence of these facts.

Lemma 4.3 The squared coefficient of variation of the p-thinning of a renewal

Process is
_ 0(X)
- E[M]

where M is a geometric rv with parameter p.

C*(Y;) + (M) = pC*(X) +1—p (4.21)

From (4.21) we see that the mapping p — C*(Y,) is a linear mapping. It is
strictly increasing if C?(X) < 1 or strictly decreasing if C?(X) > 1. Recall that the
squared coefficient of variation of a Poisson process is one and is independent of the

rate of the process. Combining this last comment with (4.21), we get

Theorem 4.1 The p-thinning of a renewal process is burst reducing if and only if

the original process is more bursty than a Poisson process, i.e.,
C*(Y,) < C¥(X) (4.22)

if and only if
C}X)>1 (4.23)

with equality holding if and only if C*(X) = 1.
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The effects of thinning are two-folds. On the one hand, thinning reduces bursti-
ness through merging adjacent intervals. On the other hand, the irregularity of the
thinning scheme introduces extra burstiness. From Theorem 4.1, we see that if the
original process is Poisson, the two opposite effects cancel out. If the original pro-
cess is smooth enough (less bursty than the Poisson process), then the latter effect
dominates the former, and the burstiness therefore increases. If the original process
is more bursty than the Poisson process, then the former effect dominates the latter,

and the burstiness therefore decreases.
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4.3 w-Thinning

Let u and v be fixed (not necessarily mutually prime) integers such that © > 0 and
v > 0. For w in ®,,,, (defined in (4.5)), let Aqp be the w-thinning of a renewal process
A as defined in Section 4.1.2. From Lemma 4.1 we know that the inter-arrival times
{Y ¥, k=1,2,---} of Aw are convexly stable and the asymptotic version is given
by (4.7). As different choices of w in ®,, lead to different realizations of the p-
thinning with p given by (4.4), we provide in the following lemma a comparison of

these realizations.

Lemma 4.4 For w and w’ in ®,,, if w < w', then
E [Esﬁ(Yf")] <E [E¢(Yf‘”>] (4.24)
i=1 1=1

for any convez function ¢ : Ry — R such that the expectations are well defined.
This lemma is a direct consequence of the following lemma.

Lemma 4.5 Let m = (my,---,mg) and n = (n1,---,ng) be two elements of
INK. Let {X;j,4,5 = 1,2,---} be a collection of i.i.d. integrable R -valued rvs, and
define the ]Rf-valued ros Y =(Y,,---,Yg) and Z = (Zy,---,ZKk) by
Yi=) Xi and Zi=) X, i=1,---,K. (4.25)
=1 7=1

Then m < n implies

E [éqB(Y})J <E liqﬁ(Zi)] (4.26)

i=1

for all convex function ¢ : Ry — R.

- Proof. Without loss of generality, we may assume that n; < m; < my < ny and
n; = mg,1 = 3,---, K [46, Lemma 2.B.1, p.21]. For any convex function ¢ : Ry —
R, we find
K K
B[5-0(2)] - B[S 600] = Bloz) + 62 - ov) - s (20

i=1 i=1

60



Denoting

n2
) U= Y Xy, (4.28)

j=mz+1

and observing that

myp — Ny = Ny — Mgy, (429)

we see that

Vi2Z,4U and Z, =Y, +U. (4.30)

Thus (4.27) yields

B [30(2)] - B[ 30000

E[¢(Ys +U) — ¢(Y2) + ¢(Z1) — ¢(Z1 + U)]
> 0 (4.31)

by the convexity of ¢. [ |

By the closure property of majorization under concatenation (Lemma A.2), Lemma
4.4 can be easily extended to any number of periods of the realization. Invoking

Lemma 4.1, we conclude to the following theorem.

Theorem 4.2 For w and w' in ®,,, let Yap and Yy be the asymptotic versions

of the inter-arrival times of Aw and Aqy, respectively. If w < w', then
Y’UJ <ex Y’lD'a (432)

and therefore,

C*(Yaw) < C*(Yay!). (4.33)

We next calculate the squared coefficient of variation of Yap for an arbitrary w

in ¢, ,. With

= %Z - and w? = ——Zw weo,,, (4.34)

1=1 z"'l

we observe from (4.7) that

J=1

]E[Yw] = %ZU:IE |:§':XJ:| = %i’th[X] = Tlf]E[X] (4.35)
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and

E[v3| = —E]E (ixj)
= wVar(X)+ w?(E[X])%. (4.36)

Combining (4.35) and (4.36), we finally see that

2 E[YE]
Clw) = vy !
_ Var(X) 1
w(IE [X])? ()2
- %CZ(X)+%—)(-;—U—)— (4.37)

Lemma 4.6 For each w € ®,,, the squared coefficient of variation of the asymp-

totic version of the inter-arrival times of the w-thinning is given by

CAX
C*(Yaw) = t(v ) + c*(w) (4.38)
with L
= 4.39
fw) =2 (4.39)
denoting the squared coefficient of variation of w = (w1, -+, w,).

By a routine calculation, we conclude to the following theorem.

Theorem 4.3 For any w in @, ,, w-thinning of a renewal process is burst reducing,

i.e.,

C*(Yw) < C*(X) (4.40)
if and only if
Fw)< (1 - —%)C”(X) (4.41)

with equality holding if and only if

2 _ _1__ 2
H(w) = (1 - Z)CHX). (4.42)

62



From Theorem 4.3, we see that like p-thinning, w-thinning is not always burst
reducing. It is the burstiness introduced by the variation of the vector w that
prevents it from reducing the burstiness of the original process. This issue will be
revisited in the next section.

The question is now whether or not there is an element w in ®,, such that
the condition (4.41) is satisfied. Before answering this question, we first show that
the quantity C*(Yap) can be minimized by properly choosing w in @, ,. Define the

element w* in IN” by

w! = =L (4.43)

' a, t=m+1,---,0v
where
u+v
a=l ” J and m =u+v—av. (4.44)

It is clear that 0 < m < v, so that w* is indeed well defined. Moreover we have
a>1 and

dYwi=mla+1l)+(v—mla=m+av=u+v. (4.45)

=1

In other words, w* is indeed an element of ®,, ,. We claim that w* minimizes C*(Yayp)

over @, ,.

Theorem 4.4 The vector w* defined by (4.43)-(4.44) minimizes C*(Yaw) over @, ,.
Furthermore, w* is unique in the sense that any w in ®,,,, that minimizes C*(Ya)

is a permutation of w*.

u+4v

Proof. For w in ®,,, we see that w = , and minimizing C?(Ya) over ®,,

is thus equivalent to minimizing ¢*(w) over ®,,. It is well known that ¢*(w) is

(strictly) Schur-convex [46, 3.D.2.], therefore,
A(w*) £ H(w) if w* < w, (4.46)

with equality in (4.46) only if w is obtained from w* by permutation. This can also

be seen from Theorem 4.2.
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Now it suffices to show that w* < w for all w in ®,,. From the definition of
majorization, it suffices to show that for each w in ®,,,, the inequalities
k
> wyy = k(a +1), k=1,---,m (4.47)
1=1
and

k
d_wy 2 m(a+1) + (k —m)a, k=m+1,--,0—1. (4.48)

i=1

hold. We show this by contradiction upon making use of the non-increasing property
of {wy, ¢ =1,---,v}. If (4.47) fails, then we have

ko
> wp) < ko(a +1) for some ko =1,---,m, (4.49)

1=1
in which case, we necessarily have wp,) < a + 1 for otherwise (4.49) cannot be true.
Therefore

w[,] S a, 1= k‘o, re, v, (450)

and inequalities (4.49) and (4.50) lead to the following contradiction

VW = Zwi < ko(a+ 1)+ (v —ko)a = ko + va < m + va = vw. (4.51)

i=1

If (4.48) fails, then we have

ky
> w <m(a+1)+ (ki —m)a for some ky =m+1,---,v. (4.52)

=1

And this in turn implies (as shown below) that wy,; < @, whence
wy < a, t=ky, 0. (4.53)
From (4.52) and (4.53) we then get the following contradiction

v =Y w; < m(a+1)+ (ky —m)a+ (v—ki)a=m+va = v (4.54)
i=1
To see that (4.52) implies (4.53), we assume that (4.53) is not true. Therefore we
have wy;) > a+1foralli=1,---,k, whence,
k1
Ywg = kifa+1)=mla+1)+ (ks —m)(a+1) >m(a+1)+ (ky —m)a, (4.55)

=1
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in contradiction with (4.52).

Finally we show the uniqueness of w* (up to a permutation). We have already
shown that w* < w for any w in @, ,. If w is not a permutation of w*, then we have
(w*) < c*(w) by the strict Schur-convexity of ¢?(w) [46, 3.A.1], and w cannot be

a minimizer of ¢?(w). ]

The squared coefficient of variation of w* can be obtained through some algebra,
and is given by
m(v —m)
(u+v)?
with m being defined in (4.44). Therefore, we have the following result.

F(w*) =

(4.56)

Lemma 4.7 The smallest squared coefficient of variation which can be achieved

v

u+v

through deterministic realization of the p-thinning is
m(v —m)

C*(X) + it o

In general, it is very difficult to express (4.57) as a function of p. However, we can

bound the value of C?(Yqp+) as

C*(Yaw+) = (4.57)

2
pC?(X) < C*(Yap-) < pC*(X) + %—. (4.58)
This bound is tight in the sense that the lower bound is achieved when m = 0 (i.e., u
is a multiple of v) and the upper bound is achieved when m = 32)_ (i.e., the remainder

of u/v is v/2). The lower bound is obvious while the upper bound can be obtained

as follows: Fix u and v with p = j_ . The function f : R — R defined by
u+v
_ z(v—x)
f(z) = ————————-——(u o) reR (4.59)

. . . v .
is concave with maximum value at z = 5 given by
v 02 ?
— == =—. 4.60
1(5) = T = (400
From (4.58) we see that we can make the squared coefficient of variation of the
asymptotic version of the inter-arrival times of w-thinning arbitrarily small by let-

ting p goes to zero. This is in sharp contrast to the case of p-thinning, where the
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squared coefficient of variation of the asymptotic version of the inter-arrival times

goes to one as p goes to zero.

Now we come back to our earlier question — whether there exists w in @, , such
that the w-thinning is burst reducing (or that condition (4.41) is satisfied). The

following theorem gives a sufficient condition for this to happen.

Theorem 4.5 A sufficient condition for the existence of w in ¥, such that the

w-thinning is burst reducing is

C¥(X) > 4——3_——. (4.61)

Proof. If (4.61) is satisfied, then from (4.58) we have
e
C*(Yw.) < pC*(X) + T < C*(X). (4.62)

2

p

4(1-p)
may still be burst reducing even if the original process is less bursty than a Poisson

Observe that if p < 2v/2 — 2 ~ 0.828, then < 1. Therefore, w-thinning
process.
Our discussion so far focuses on the assumption that p has the form of (4.4) with

u and v mutually prime. One natural extension is to allow p to be expressed as

kv
- = 4.
p k(u + v)? k 17 2) ( 63)

The question is whether the optimal deterministic realization over ®y, x, has some

monotonicity properties in k. This is explored in the following theorem.

Theorem 4.6 For p defined by (4.68) with u and v mutually prime, we have

Pl CYw)= min C*(Vw) k=12 (464

Proof. Our discussion so far has made no use of the fact that v and v are mutually

prime. Therefore all the results we obtained can be directly used for v’ = ku and
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v’ = kv for some fixed k = 1,2,---. By Theorem 4.4, w’ which minimizes C?(Ya)

over &,/ .+ is given by

d+1, 1=1,---,m
w={th ’ T (4.65)
a, i=m'+1,---,0
where
! !
o =% tv and m' =u + v —d'v'. 4.66
,Ul

Simple calculation now yields

' =a and m' = km, (4.67)

so that
w =w and w?=w*?, (4.68)
and (4.64) thus holds by virtue of Lemma 4.6. ]

From Theorem 4.6, it is sufficient to consider only the simplest case with u and v

mutually prime.
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4.4 Comparison of p-Thinning and w-Thinning

Using the notation of Sections 4.2 and 4.3, we note that

T=E[M] =, w € B, (4.69)
P

and this leads via (4.21) and (4.38) to the following theorem.

Theorem 4.7 For any p = " andw in ., with u and v mutually prime, we
u

v
have

O(Yaw) < C(Yy) iff (w) < CH(M) (4.70)
with equality holding if and only if *(w) = C*(M), where M is a geometric rv with

parameter p.

Theorem 4.7 tells us that deterministic realization may not always be better than
random thinning. It is better only when the variability, measured by the squared
coeflicient of variation, of w is less than that of a geometric rv with the same mean.
For example, let ¥ = 2 and v = 5, i.e.,, p = 5/7. For w = (1,1,1,1,3) in @55, we
get W= 1.4, w? = 2.6, and therefore ¢*(w) = 0.3265 > 0.2857 = C*(M). Thus by
Theorem 4.7, we have C*(Ya) > C*(Y,).

However, the following theorem says that the deterministic realization defined

via (4.43)—(4.44) is always better than random thinning.

Theorem 4.8 If w* is defined by (4.43)-(4.44), then we have

C*(Yap~) < C¥(Y,). (4.71)

Proof. By Theorem 4.7, we need to show that ¢?(w*) < 1 — p. Upon using (4.56)

this is equivalent to showing

)= (1—p) = ™ ‘(’;’)4__0’;2(” v o, (4.72)

where m is defined by (4.44). With ¢ : R — R defined by

g(z) = —2® + vz — u(u + v), z €R, (4.73)
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we see that (4.72) is equivalent to
g(m) < 0. (4.74)

Case 1: If v? — 4u(u + v) < 0, then g(z) = 0 has no real solution. Since g is a
concave function, we have g(z) < 0 for all z in R, and in particularly, g(m) < 0.

Case 2: If v — 4u(u + v) > 0, then it is easy to see that v > (2 + 2¢/2)u, in

which case
1ga=[“+”J§ ut @+ Voul (4.75)
v (2 + v2)u
Therefore we have a = 1, whence m = u. And we finally get
g(m) = —u? +vu —u(u +v) = -2u® < 0. (4.76)
The proof is now completed. | |
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4.5 Minimum Variance Thinning

It is not difficult to see that the asymptotic versions of the inter-arrival times of both
random thinning and its deterministic realizations are special cases of the general
rv Y defined as follows: Let Z be an IN-valued rv with probability mass distribution

(pmd)
P{Z =n} = p,, n=12---, (4.77)

and let {X,,n = 1,2,---} be a sequence of i.i.d. R;-valued rvs independent of Z.
The R;-valued rv Y is then defined by

Y= X,. (4.78)

It is readily seen that if Z is a geometric rv with parameter p, then Y is the asymp-
totic version of the inter-arrival times under p-thinning; and if Z is uniformly dis-

tributed among (wq,---,w,), then Y is the asymptotic version of the inter-arrival
v—m

times under w-thinning. In particular, if Z = a+1 w.p. % and Z = a w.p. -
as defined in (4.44), then Y is the asymptotic version of the inter-arrival times under
w*-thinning.

As a generalization of Lemma 4.3, we get

C(Y) = ]-Eﬁc%)() +CY2) (4.79)

where X is a R-valued rv with the same distribution as the rvs {X,,,n = 1,2,---}.

Thus we can view Y as the asymptotic version of the inter-arrival times of some
sort of thinning. We see from (4.79) that summation of i.i.d. rvs reduces the squared
coeflicient of variation by a factor of IE [Z], but on the other hand, the randomness
of Z introduces additional variability to the squared coefficient of variation by an
amount of C?(Z). Based on this observation, we ask whether there is a pmd which
minimizes the variability of Z while achieving the same amount of thinning.

For a given thinning requirement, the problem of minimum variance thinning is

thus to find an optimal pmd so as to minimize C*(Y’) over all possible pmds subject

to IE[Z] being constant. From (4.77) and (4.79), this is equivalent to solving the
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following minimization problem (P) where.

minimize Zn2pn (4.80)
n=1

(P) subject to Y np, =c>1, (4.81)
n=1

Yo =1, (4.82)
n=1

The following lemma gives a necessary condition to the solution to (P).

Lemma 4.8 Let {q,,n = 1,2,---} be any feasible solution to (P). If there exists

1 < J < k such that ¢; > 0 and ¢ > 0, then {g,,n =1,2,---} is not optimal.

Proof. Let
k—j
= . 4.84
T (4.84)
It is easy to see that 0 < r < 1. With A being given by
0<A§min{-‘-’—", I } (4.85)
r'l—r
we define the pmd {p,, n =1,2,---} by
[ pi=gq—rA
C=q; + A
A (4.86)
pr=q—(1-r)A
\ Pn = (n, n;éz,],k

It is easy to check that {p,,n = 1,2,---} is indeed a valid pmd satisfying (4.81).

Now simple calculation yields

o0 o0
> n'pn— 3 on’gn
n=1 n=1

= A2 —ri? — (1 —r)kY

I ) B ) B )
k—1
= —A(k- )i - i)
< 0. (4.87)
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From (4.87) we see that the pmd {p,,n =1,2,---} strictly improves the cost func-

tion. [

From the proof we see that the larger the value of A, the greater the improvement,

so that the value of A should be chosen to be min {ﬁ, ] L
r’l—r

} which makes one of
P; OT py Zero.

The following theorem gives the solution to (P).

Theorem 4.9 Ifl < c< 1+ 1 for some integer |, then the optimal solution to (P)

is given by
p=1—(c—1)
Py =c—1 (4.88)
pn =0, n#l1+1.

Proof. We first show that any solution to (P) cannot have positive components
with indices smaller than / or greater than {+1. Let {g,,n = 1,2,-- -} be any feasible
solution to (P). We observe that if ¢; > 0 for some ¢ < [, then there must be some
k > [ such that ¢ > 0, for otherwise (4.81) cannot be satisfied. Thus we can pick
any 7 such that : < j < k and apply Lemma 4.8 to conclude that {g,,n = 1,2,---}
is not optimal. Similarly, we can show that the solution to (P) cannot have positive
components with indices greater than ! + 1. Therefore, the solution to (P) must be

of the form

20, py1 20, and p, =0, n# L1+ 1. (4.89)
Together with the feasibility conditions, the optimality of (4.88) is automatic. m

It is easy to extend Theorem 4.9 to conclude that the pmd given by (4.88) not
only minimizes (4.80) under the constraints (4.81) — (4.83) but also minimizes the

following quantity under the same constraints

[o o]

> ¢(n)pa, (4.90)

n=1
with ¢ : R, — IR being any convex function. Thus the minimum variance thinning

is actually the minimum variability thinning under much broader sense.
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Compare (4.88) with the asymptotic version of the inter-arrival times of the
w*-thinning, it is not surprising to find that the w*-thinning is just the minimum

variance thinning.
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CHAPTER 5

THE PEAKEDNESS FUNCTIONALS

5.1 The Peakedness Functionals

The squared coefficient of variation is a simple and useful measure of burstiness as
we have seen from Chapters 2 and 4. It has, however, a drawback — it cannot reflect
the correlations between successive inter-arrival times. To overcome this drawback,
the squared coefficient of variation can be generalized to involve more than one inter-
arrival time in the definition as in the case of the index of dispersion for intervals
(IDI) [16, 32]. However, the analysis involving IDI becomes more complicated.
Eckberg [19, 20] proposed another measure for burstiness by generalizing the
notion of peakedness factor [59] to the peakedness functional. The peakedness func-
tional of a point process is defined as follows: Consider an infinite server queue with
arrivals from a point process. All servers in the infinite server group are indepen-
dent with the same service time distribution G; let G' denote the complementary
distribution of G, i.e., G = 1 — G. Denote by K(t) the number of busy servers in

the infinite server group at time ¢ > 0.

Definition 5.1 The peakedness functional of a point process is given by

N Var (K (t))
(@) = i He )

provided the limit exists.

It is intuitive that the more bursty the arrival process is, the more variable the
number of busy servers in the infinite server group will be, and the more busy
servers there will be. This is the basic idea behind the definition of the peakedness
functionals which can be viewed as the limit of the product of the squared coefficient

of variation of K(t) and the mean of K(t). We see from this definition that the
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peakedness functional implicitly reflects the correlation between arrivals through the
effect on the infinite server group. From Definition 5.1, The so-called peakedness
factor is now obtained from (5.1) by taking G to be an exponential service time
distribution, i.e.,

Gt)y=1-e*, t>0. (5.2)

As a result, we can refer to peakedness factor as the exponential peakedness, and
write z(x) to denote 2(G) with G being given by (5.2), to emphasize that it is a
function of y. Exponential peakedness arises in the equivalent random method which
is well known in teletraffic engineering [59]. The peakedness functionals of stationary
processes were derived in [19]. In the sequel, we shall only study the peakedness
functionals of renewal processes. In appendix E, we give another derivation of the
peakedness functional for renewal processes using a renewal argument. For easy

reference, we provide the formula in the following lemma.

Lemma 5.1 The peakedness functional of a renewal process with arrival epochs

{an,n=1,2,---} is given by

2(G) 1— % + i_o:l E [H(ay)] (5.3)
A o
= 1-2+ /0 H(z)dM(z) (5.4)

where X and p are the arrival and service rates, respectively, M is the renewal

function of the renewal process, and H : Ry — Ry is given by
H(t) =2 /0 " Gt +y)Gly)dy, t>0. (5.5)
If G is given by (5.2), then
H(t) =e™, t>0, (5.6)
and (5.4) simplifies to yield an explicit formula for the exponential peakedness
Corollary 5.1 The exponential peakedness for renewal process is given by
1 A

2(p) = =40 & (5.7)
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where A*(-) is the Laplace-Stieltjes transform of the inter-arrival time of the renewal

process.

We now state a property of the peakedness functional. Let X and X’ be the generic
rvs of the inter-arrival times of two renewal processes, and let z and z’ be their

peakedness functionals.

Theorem 5.1 If H is a conver function, then

X <o X' implies 2(G) < Z'(G). (5.8)

Proof. If X <. X', then by Theorem 2.2.4 or Proposition 2.2.5 in [55] we see that
am Ler al, for all m=1,2,--, and therefore (5.1) follows from (5.3) and from the

definition of convex ordering. ]

Since E [X] <. X, Theorem 5.1 is readily translated to the following corollary which

validates the intuition that the deterministic arrival process is the least bursty.

Corollary 5.2 If H is a convez function, then the deterministic arrival process has

the smallest z(G) value among all renewal processes with the same mean.

There are many examples of cdfs for which H is a convex function, e.g., the expo-
nential distribution and the degenerated deterministic distribution. However, there

are cdfs for which the convexity of H fails. For instance, if G has the form
G(z) = (1 - zH)*, z >0, (5.9)

then H is neither convex nor concave. In fact, it can be seen that H can never be

a concave function.
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5.2 Superposition of Point Processes

In this section, we shall derive the peakedness functional for the superposition of
point processes. Let {A(i), i =1,---,n} be n mutually independent point processes.
The superposition of the n point processes is a point process A which counts the
arrivals from all the n point processes. It is well known that A is in general not a
renewal process [42].

For any distribution function G, let z(G) denote the peakedness functional of A,
and let z;(G) denote the peakedness functional of A® § =1 ... n, respectively.
Consider an infinite server group which serves A. Fori =1,---,n, let K()(t) be the
number of busy servers in the infinite server group at time ¢ > 0 serving arrivals
from A®). The total number of busy servers in the infinite server group is then given
by

K=Y K9  t>o. (5.10)

=1

Because all servers in the infinite server group are independent and identical, and
the n point processes are mutually independent, the processes {K®(t), t > 0},
¢t = 1,---,n are mutually independent. Therefore, we can view the whole infinite
server group as n independent infinite subgroups, each serving arrivals from one of

the n point processes.

Let _
E [KO(1)]
a;i(t) = 54—, t>0,i=1,---,n, (5.11)
Y E[KO()]
J=1
and denote
a; =tlim a;(t), 1=1,---,n (5.12)

whenever it exists. In particular, if the n processes are renewal processes, then by

Little’s law we get

lim B [KO(t)] = \m(G), i=1,---,n (5.13)

t—ro0
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where m(G) is the mean of a rv with distribution G. Therefore, we have

a = —, i=1,---,n (5.14)
2N
j=1
where ); is the arrival rate of A®, ¢ =1,--. n. Clearly we have o; > 0,5 =1,---,n,
and Eai =1.
=1

Using the independence of the rvs { K()(t),i = 1,---,n}, we conclude from (5.10)

that
E[K(t) = f: E [K9(1)], t>0 (5.15)
Var (K(t)) = Y Var (K9 (1)), t>0, (5.16)
so that - ] ,

Taking limit in (5.17) as t — oo, we conclude to the following fact.

Lemma 5.2 The peakedness functional of the superposition of n mutually indepen-
dent point processes is given by

n

2(G) =Y aizi(G). (5.18)

i=1
So, the peakedness functional of superposition of point processes is the weighted
average of the peakedness functional of each of the individual point processes. It
worths noting that the weight for each individual contribution to the overall peaked-
ness functional is proportional to the mean number of busy servers serving each
point process. In the renewal case, the weight is simply the ratio of the arrival rate
independent of the infinite server group.

The following corollaries are immediate consequences of Lemma 5.2.

Corollary 5.3 The peakedness functional of the superposition of n mutually inde-

pendent point processes satisfies the bounds
min{z(G), i =1,--+,n} < 2(G) < max{z(G), i =1,---,n}. (5.19)
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In particular, if the n point processes are identically distributed, then we have

Corollary 5.4 Superposition of independent and identically distributed point pro-

cesses preserves the peakedness functional, i.e.,

2(G) = z(G), i=1,-,n. (5.20)

If the n 1.i.d. processes are Poisson processes, then the superposition is still a Poisson
process with different rate, and Corollary 5.4 is clear. If the n i.i.d. processes are
non-Poisson processes, the resulting superposition process will usually have different
distribution. In this case, Corollary 5.4 implies that although superposition might
have changed the “variability” of the process, this effect cannot be seen by the servers
in the infinite server group. In this sense, the peakedness functional is insensitive
to superposition.

Now we consider the effect of correlation between the n point processes on the
peakedness functional of the superposition process. To this end, we assume that
the n point processes have the same marginal distributions as in the case discussed
before but that they may be correlated. For simplicity, we take n = 2. This time,
the two infinite server subgroups are no longer independent, with the rvs K()(t)

and K@(t) possibly correlated for all ¢ > 0. Calculations yield

Var (K(t) & Var (KO@®)  Con(KM(t), KO(1))
t

=3 : : > 0. (5.21
Bk - & O EERoE TBERO@+EROQ) 2" G2
Assume the existence of appropriate limits, with
. Cov(KW(t), KA(1))
= ML BRO@)] + E KO0)] (5:22)
By taking limit in (5.21) we get
Z(é) = alzl(é) + CYzZz(G’) + Y125 (523)
or equivalently
AG) = HC) + 7z (5.24)

where 7(G) is the peakedness functional of the superposition process assuming the

two processes to be independent.
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Another measure which have very similar behavior as the peakedness functional
in characterizing the superposition process is the index of dispersion for counts (IDC)

[16, 32]. We shall not discuss IDC further in this thesis.

80



5.3 p-Thinning

Let 2(G) be the peakedness functional of the original point process A, and for
0 < p < 1, let 2,(G) be the peakedness functional of the p-thinning A, of A.

Assume that the original point process is a renewal process. To find the peakedness

functional z,(G) of the p-thinning, we observe the following. The effect of p-thinning
on the number of busy servers in the infinite server group is equivalent to forcing
the arrivals which are thinned out to have zero service time in the original system.

Thus the following relationship holds
2(@) = 2(G,), 0<p<l1 (5.25)
with G, denoting the distribution function of the modified sérvice time o, given by
op =Uyo (5.26)

where o is the original service time with distribution function G' and U, is a Bernoulli

rv with parameter p independent of o. Simple calculations yield
G,(z) = pG(z), z > 0. (5.27)

For this modified system, we find that

1 N P
= /0 Gylw)da =& (5.28)

and
Hyt) = 2up [ Golo+1)Gy(s)da
= —zf/ooop2é(:c+t)@(x)dm
= pH(t), t>0. (5.29)

Therefore, substituting (5.28) and (5.29) into (5.3) we get

“Gp) = 1=+ 3 Bl (a)
p m=1
= (=D +p=p5 +23 B[], (5:30)

By defining zo(G) = 1, and after simplifying, we have
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Lemma 5.3 The peakedness functional of p-thinning is given by

2(G) =1 = p+pz(G) 0<p<L (5.31)
It is then readily seen that
Lemma 5.4 The function p — z,(G) is monotone and continuous on [0,1].

For p =1, we find

21(G) = 2(G) (5.32)

as expected. For p = 0, the resulting process is an empty process with no arrivals.
However, if we view 2o(G) as the limit of the peakedness functionals resulting from
repeatedly random thinning, this limit is one. This fact suggests that after repeat-
edly random thinning, the resulting process behaves more and more like a Poisson
process.

From (5.31), it is easy to conclude to the following theorem.

Theorem 5.2 For 0 < p <1, we have
5(G) < 2(G) iff 2(G)=1, (5.33)
with equality holding if and only if 2(G) = 1.

Note also from (5.31) that 2(G) > 1 implies z,(G) > 1, and 2(G) < 1 implies
2,(G) < 1. This fact will be used later. Theorem 5.2 can be interpreted in the
following way. Random thinning of point process can reduce peakedness if and only
if the original point process is burstier than the Poisson process, otherwise, it can

only increase peakedness. If the original process is a Poisson process, then z(G) = 1

and the p-thinning is still a Poisson process, whence 2,(G) =1 for all 0 < p < 1.

This result parallels our previous result (Theorem 4.1) in Chapter 4.
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5.4 w-Thinning

We have not found a way to characterize the peakedness for general w-thinnings as

defined in Chapter 4. In this section, we only consider the case where p = 1
U v

with v =1 and v = m for some m = 1,2,---. In this case, w is a scalar given by
w=m+1, (5.34)

and we write z,, for the peakedness functional of the w-thinning instead of zqy. We
already know from (4.17) that the resulting w-thinning is a renewal process with

arrival epochs {a;, = a(m41)n, n =1,2,---}. For this renewal process, we find

p
= b 5.35
=] (5.35)

and

Hy(ay,) = H(agms1)n), n=12---. (5.36)
Substituting (5.35) and (5.36) into (5.3), we find

Lemma 5.5 The peakedness functiohal 2m(G) of the w-thinning with w defined by
(5.34) is given by

(@) =1-—L ém [H(agmsnyn)] - (5.37)

The exponential peakedness is then easily evaluated.

Corollary 5.5 The ezponential peakedness zy (1) of the w-thinning with w defined
by (5.34) is given by

1
m() = T gy mi - (5.38)

Unlike 2,(G), it is not true in general that z,,(G) is monotonic in m. In fact, for
A*(p) not too small, z,, () is first decreasing in m, and then increasing in m for m
large enough. And

lim z,(p)=1. (5.39)

m—00
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Now we look at how the deterministic realization (5.34) of random thinning
affects the peakedness functional. We consider only the exponential peakedness.

From (5.7) and (5.38), we observe that

1 1 p
=200 = (=5 2) - (g - w57)
( Ap) (A )_ mp
T=Ap) 1= (A()™T) " mt 1
A = (A )™  mp
11— A1 - (A()™")  m+1 (5.40)

in preparation to the following theorem.

Theorem 5.3 Form =1,2,---, and p > 0, there is a unique a,, in (0,1) such that

A*(u) = am implies z(p) = zm(1t). Furthermore,

z(p) < zm(p) iff 0< A(p) < am (5.41)

and

z2(p) > zm(p) ff am < A*(p) < L. (5.42)

Proof. Fixm =1,2,--- and define

) = 7 _O‘S(-l-f";lm), 0<a<l (5.43)

Lemma 5.6 below shows that a — h.,,(a) is a strictly monotone increasing mapping

[0,1) — [0,00). Invoking the strict monotonicity of k,,, we see that for any fixed

p > 0, the equation hn,(a) = ™2 as a unique solution «,, so that
m

+1
mp
< .
hm(oz)<m+1 if 0<a<an (5.44)
and
b (o) > — iff o, <a<l. (5.45)
Theorem 5.3 then follows by setting a = A*(u). [ |
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Lemma 5.6 The mapping & — hy,(o) defined in (5.43) is a strictly monotone

increasing mapping [0,1) — [0, c0).

Proof. Set

1—a™ a

gi(a) = > and go(a) = T ot

0<a<l. (5.46)

On the range (0,1), g1(a) > 0, g2(a) > 0 and simple calculations show that

i) = (1 — am)’ = (ia")’ = iio/"l >0 (5.47)

l -« i=1 1=1
and
Vo a ' 1—ao™'4a(m41)e™ 1+ mao™
ga(e) = (1 _amﬂ) = = a2 =T —arriy >0 (5.48)
In conclusion, we get
hm (@) = g1(a)g2(@) + g1(@)g3(e) > 0, 0<a<l (5.49)

So, @ = hy(a) is strictly increasing with hy,,(0) = 0 and limy »; Ap(a) = 400. H

In terms of z(u), (5.41) and (5.42) are equivalent to

2(p) < zm(p) M 2(p) <1—p+ ) (5.50)

and

2(p) > zm(p) it 2(p) >1-p+ ) (5.51)

respectively

Recall Theorem 5.2 and the remark immediately after it. Random thinning
can reduce peakedness only if the original process has peakedness greater than one.
Furthermore, the resulting peakedness can never be less than one. However, as we
now show, the deterministic realization of random thinning can reduce peakedness
even if the original peakedness is already less than one. This is seen from (5.51) and

the following lemma.
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Lemma 5.7 With the notation of Theorem 5.3, we always have

Xm

< p. (5.52)

1—a,

1
Proof. Since p = &hm(am) by the definition of a,, we find
m
am _ . om
1 (1 p+1—am) = °f 1-qa
m+1 an(l —a™) o7

It

m (1=—an)(l—art) 1—ap,
(m+ Dan(l — a™) — may, (1 — ottt

- m(l — a,)(1 — artt) e (5:53)

We observe that

(m+1)(1-an)—m(l—al*) =1-(m+ap+man*
=1 —ap)—man(l —ay)
m—1
=(1—an) [Eain - mo/m”l
1=0
m-—1

= (1~ am) ) (ay, — o)

i=

>0, (5.54)

and the lemma follows from (5.53). |

We have seen from Theorem 5.3 that if A*(4) > am, then the peakedness can be
reduced through w-thinning. Combining with the comment made after Corollary

5.5, we see that it is possible to reduce the peakedness to less than one. We shall soon
Uy

see that if the original process is already smooth enough (i.e., z(z) < 1— p+1 > <
1), then the peakedness after w-thinning will remain less than one.
Lemma 5.8 If A*(p) < am, then we always have z,,(p) < 1.
Proof. From (5.38), we want to show that
A* m+1
(A1) ) (5.55)

L— (A (W)™ m+1
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m+1

Since A*(u) < am by Theorem 5.3 and p = Thm(am), we have

(A*(u))" !

P

T— (4™

m+1

azﬂ B p
1—amtl  m41

amtl 1
W - 'nj;hm(am)

amtl 1 ap(l—aomtt)
1—amtl m(l = ay)(l—ant!)

Oy, m = i
iR - e
0. (5.56)
|
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5.5 Comparison of p-Thinning and w-Thinning

Now we compare random thinning with its deterministic realization. There is no
general result for z,(G) and z,(G) for all G. Comparison, however, is available
in some cases when H is a convex function. We have already shown that the
inter-arrival times of the processes resulting from random thinning and from its
deterministic realization are distributed according to the rvs Y, and Y,, defined by
(4.2) and (4.17), respectively. Let {Y,), ¢ = 1,2,---} and (Y i=1,2,---} be
two sequences of i.i.d. rvs distributed according to Y, and Y;,, respectively. Then
the n®* arrival epoch after random thinning (resp. its deterministic realization) are

given according to the rv

ZYP(’) (resp. Y Y1), n=12-.--. (5.57)

=1 =1

A similar argument as in the proof of Lemma 8.6.7 in [52] shows that
Lemma 5.9 We have

i=1 1=1
Lemma 5.9 establishes relations between the arrival epochs in the two processes and

leads to the following theorem.

Theorem 5.4 If H is convez, then we have

2p(G) > 2 (G). (5.59)

Proof. By the convexity of H and Lemma 5.9, with p = —:_—1, we find that
m

5(@) = 1=~ 4 SE [H(;;y;(i))]

> 1——mi1+gm[ﬂ(gyg>)]
= zn(@). (5.60)
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Thus, in the case where H is a convex function, the deterministic realization of

is always better than the random thinning.

random thinning with p = L
m+1
As an example, we consider the exponential peakedness. From (5.7), (5.31), and

(5.38), we compute the difference

_ (1 A*(p) (A(m))m
ZAM_me)_<m+l)(1—A%M)_1~4A%mywl (5.61)

with the consequence that

o (L) (A o )
Az 1 (25) (F) > T o

Since 0 < A*(u) < 1, this condition is always true as we now show. Define

n

1l « o

(@) == - <a<l, n=1,2-. 63
For n = 1, we have fi(a) = 0, while for n = 2,3, .-, we can rewrite f,(a) as
o 1 o™t
fn(a) - _a[;_1+a+...+an_1

1
_ ( o >1+a+--~+a”“1—na"‘1

> 0. .64
n(1+a+_,_+an—1) 0 (56)

l—a
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CHAPTER 6

APPLICATIONS OF THE PEAKEDNESS FUNCTIONALS

6.1 When to Perform Rate Control? — The Random Case

With the tools developed in Chapter 5, we now study a problem which arises in
network design. It is widely accepted that in high-speed networks rate control
should be employed to avoid congestion from occurring. The question is whether
we should perform rate control to each individual source, or to perform rate control
at the trunk level [30]. This problem was discussed earlier in Chapter 3 in the
context of leaky bucket. In this chapter, we consider the same systems, system I
and system II, with rate control being performed by thinning (see Fig. 3.5). In
system I, we multiplex individual sources on a trunk and then perform rate control
on the resulting traffic. In system II, we perform rate control on each individual
source before multiplex them.

Multiplexing can be modeled by superposition. In this section, we model the rate
control by random thinning. There are many considerations about this problem,
e.g., implementation costs, fairness, and the burstiness of the resulting traffic. We
shall consider only the burstiness of the resulting traffic. We assume that the n
sources being considered are mutually independent, each modelied by a renewal
process. Throughout this chapter, we use the notation of Chapter 5 without further
explanation.

We now fix 0 < p < 1. Denote the peakedness functional for each individual
source by z;, ¢+ = 1,.--,n. For system I, the peakedness functional for the traffic on
the trunk, denoted by zr, is given by Lemma 5.2 in the form

22(G) = Y iz(G) (6.1)
i=1

where a;, ¢+ = 1,---,n, are given by (5.14). After rate control, the peakedness
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functional of system I, denoted by z, is then given via Lemma 5.3 by

z21(G) = 1-p+pzr(G)
= 1-p+p) aiz(G)

i=1

= Zn:a,-[l —p + pz(G)] (6.2)

i=1
On the other hand, in system II, we perform rate control before multiplexing. By
Lemma 5.3, the peakedness functionals, Z;, ¢ = 1,---,n, after applying rate control

on each of the n sources are given by
#(G) =1-p+pz(G), i=1,---,n. (6.3)

After multiplexing, we use Lemma 5.2 to conclude that the peakedness functional

of system II, denoted by zjy, is

n

Z[[(G) = 61,‘5,'(@)
1=1
= Y&l —p+pu(O), (6.4)
=1
where o
. E[EO@)]
d,‘ = tEIgT—T—-’ 1= 1, e, N, (65)
S E [KO(t)]
i=1

with K (@)(t) denoting the number of busy servers at time ¢ serving the i source
after rate control. Fix z = 1,---,n, we are going to find &;. Let {u,,m =1,2,---}
be a sequence of i.i.d. Bernoulli rvs with parameter p, which are independent of the
i** point process and of the service times of the infinite server group. Therefore, we

can write

m=1

Thus

E [f((t)(t)] = E [i E [I{O‘m >t am}|a17a27 ° ] E [um|a1,a27 - ]:l

m=1

= E i E[1{on >t — am}as, az,- | p
| |

m=1
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1=1

= pE [il{a >t ai}]
= pE[KO@)], t>0. (6.7)

Substituting in the definition of &; we conclude that
. E[kO)]
im ———~
e I K (t)]
pE [KO(1)]

lim——t—— .
t~oo pIE [K(t)]
= a, i=1,--,n. (6.8)

Finally, combining (6.2), (6.4) and (6.8), we have the following result.

Proposition 6.1 If the rate control is performed through random thinning, then

systems I and II are equivalent in that we have
Z[(é) = ZII(G’). (69)

This result is not surprising, since everything here being totally random, the order
of doing things does not matter. However, things will be different if we want to
discriminate some users.

To that end, we consider the following situation. The n sources are identical
with rate 2— and peakedness functional z. Suppose we want to thin each source in
system II with a different probability {p;, ¢ = 1,---,n}. To get the same amount of
thinning in system I, we must choose {p;, ¢ =1,---,n} so that

1.
p= ;;Pi- | (6.10)
By applying the results in Chapter 5, we find that
zi(G) =1 - p + pz(G) (6.11)
and
(@) =1— L3P 4 (121’—2) Q). (6.12)

n.p n,ap
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Therefore, we get from (6.11) and (6.12) that

per@) - @) = -0 ((3302) -#). o)

i=1

By Jensen’s inequality, we have

1 n
(;zpz) _pi >0 (6.14)
=1

Therefore, if the source is smooth enough (no more bursty than a Poisson source),
then z7(G) > z11(G), and it is advantageous to discriminate some of the sources to
benefit the others. However, if the sources are very bursty, there is no reason to

discriminate any sources. We conclude to the following proposition.

Proposition 6.2 If the rate controls for systems I and II are performed through
random thinning with parameters {p;, i = 1,---,n} for system I and p (defined by
(6.10)) for system II, respectively, then we have

21(G) > 211(G) iff 2(G) < 1. (6.15)
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6.2 When to Perform Rate Control? — The Deterministic Case

In this section, we use the setup of Section 6.1 except that the rate control is
now assumed to be the deterministic realization of random thinning. We assume
that each source produces a Poisson process with rate A;, + = 1,---,n, and we

for some m = 1,2,---. Under these

L 1
et A = ) \;. Also we assume that p =
s g S0 we a; e that p = ———
assumptions, we have w = m+1, so to allow us to use results obtained in Chapter 5.

In system I, the trunk is seen to be a Poisson process with rate A, and by Corollary

5.5, we have
At+p™  _p

= . 6.16
ZI(I‘I’) (p+ 1)m+1 _ pm+1 m _|_1 ( )
In system II, we further assume \; = A, i =1, --,n, the so-called balanced case.
n
By Corollaries 5.4 and 5.5, we have
(n+p)™* p
= — . 6.17
ZII(:U’) (n+p)m+1 _pm+1 (m+ 1)n ( )

From (6.16) and (6.17), we have the following result.

Proposition 6.3 Forn independent and identical Poisson sources, system I outper-
forms system II if the rate control is performed through the deterministic realization

m=1,2,---, i.e., we have

z1(p) < z1r(p)- (6.18)

of p-thinning with p = ——g
m

Proof. From (6.16) and (6.17), we have

z1(p) — z11(p) (6.19)
_(n=1)p P (p + )™ — (p + 1)
n(m+1)  [(p+ )™ — pm ] [(p + n)m+ — pmt1]
(n—1)p { pra(m+1) [(p+n)™ —(p+ )™ 1}
n(m+1) | (n —1)[(p + n)™*t — pm 1] [(p + 1)t1 — p7t]

(6.20)
Therefore to show zr(p) < zr7(p), it suffices to show that By, »(p) < 0 where
Bralp) £ p(m+1)[(p+n)"" = (p+1)™] -

(n=1)[(p+n)™+ = ™+ [(p+ D)™ =+ (6.21)
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Upon using the binomial expansion, as the terms in p™*! cancelled out, we get

m+1 m-+1 ‘
Bm,n(P) = n(m+1)p {Ecm+l i m+l—i Ecim+1pm+l—z:|

=1 i=1
m-1 +1 + m~+1 + e
n — 1 Cm i m -1 Cr:n m+1—i
o [Eorim] [ernie
m+1 m+1
— n(m + 1)Pm [Z CZn+1nipm+1—i _ }: C,'m+lpm+1_i:|
=1 =1
m+1m+1
_(n _ 1) Z Z Cm+lcvm+1 i 2m+2 (i+3)
i=1 j=1
m+1 m+1 .
— Z Cm+1(m + 1) z+1p2m+2 —(¢41) _ E C}n+1(m 4+ 1)np2m+2—(]+1)
i=1 i=1
m+1m+1 m+1m+1
_E Zcm+lcm+1 1+1p2m+2 (1+7) + Z Zcm+10m+l z 2m+42—(i+5)
=1 j=1 =1 j=1
m+1m+1 m+1m+1
— __Z Zcm+lcm+1 z+1 2m+2 (i+4) + E Zcm+lcm+l z 2m+2—(i+3)
i=1 j=2 =2 j=1
2m+2 I ‘ .
— E p2m+2—-k E Ci7n+10;'n+1(n] _ nz+1):|
k=3 Li+j=k,l§i§m+l,2§j§m+l
2m+2 [ min{k—2,m+1} . .
— Z P2m+2—k Z Cm+lcm+1( _ nz+1):l . (6.22)
k=3 | i=max{1,k—m—1}

Now we show that

min{k—2,m+1} .
Ck 2 E Cm+lcm+1(nk—1 _ nz+1) < 07 k= 3’ - ,Qm + 2. (623)
i=max{l,k-m-1}
For k = 3,
C3 = CMHICr+ (n? —n?) = 0. (6.24)
For4<k<m+3,
Ck — ZCm-Hcm-{-l : ni+1)
=1
u(k)
= 3 (ol 0 [optortt - cpthentY (6.25)
=1
where e 1
-g—-', if k is odd,

2 if k is even.
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Since k — 1> 1,1 =2,---,u(k), we find
n! — k1=l <0, (6.27)
and therefore Cy < 0 if we can show that
cpylertt > opdtort. (6.28)
This follows from the following general inequality

Crer > CRChy, 1<j<i<n, (6.29)

which can be easily verified by evaluating

Cre; @+ D(n—i-DIG-Dln—j+1)!
C?+1C]7'L—1 - i(n ~ o)yl (n — j)!
G+1)(n—j+1)
(n=3);
U Ul (Gt B
j(n—1)
> 1. (6.30)

Form+3 <k <2m+2,

m+1 . )
Cv= Y, Crticptl(n®~ —n'th). (6.31)
i=k—-m-1
k—3 "
There are 2m — k+ 3 terms. For [ =0,1,---, |m — | the sum of the I** term
and the (2m — k + 3 — )™ term is

CP o O (n™7 = b=m1) 4 O O (b i)

= O Ot (w0 4 k(1 )
< 0 (6.32)

If 2m — k + 3 is odd (whence k is even), the middle term is
Crop*i(nd — nf*l) = (CP*1)PnE(1 —n) <0, (6.33)
2 2 2

and we get Cy < 0. |
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6.3 Comparison of Scheduling Policies

Consider n sources which are independent of each other. Each source produces jobs
with the time between two successive jobs forming an i.i.d. sequence of R.-valued
rvs. All the jobs are identical. There are n identical servers to provide services to
the jobs. The problem is how to schedule the jobs produced by these sources to the
servers. Our goal is to make the job flow to each server as smooth as possible, where
we use the peakedness functional of the job flow to each server as the measure of

smoothness. We consider the following policies.
Policy I: Dedicated server (DS).

Under this policy, each source sends its jobs to a dedicated server.

Policy II: Distributed Bernoulli dispatching (DBD).

Under this policy, each source sends its jobs to each of the servers with equal prob-

ability.
Policy III: Centralized Bernoulli dispatching (CBD).

Under this policy, each source sends its jobs to a centralized dispatcher which then

sends the job to each of the servers with equal probability.
Policy IV: Distributed Round Robin (DRR).
Under this policy, each source sends its jobs to each of the servers cyclically.

Policy V: Centralizes Round Robin (CRR).

Under this policy, each source sends its jobs to a centralized dispatcher which then
sends the job to each of the servers cyclically.

It is easily seen that all the policies except DS have the property of balancing
the load between the servers. If in addition we assume the n sources to be identical,
policy DS has this property, too. Suppose each source has peakedness functional

zi(G), i =1, -+, n. for some distribution function G. We say that policy A is better
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than (resp. equivalent to) policy B with respect to G, and we write A < B (resp.
A =g B), if 24(G) < zp(G) (resp. 2z4(G) = zp(G)). We consider the following

conditions.
(A) All sources are identical;
(B) All sources are Poisson;
(C) G is the distribution function of an exponential rv; and
(D) G is such that H (defined by (5.5)) is a convex function.

Then we have the following results.

Proposition 6.4 We have
(1) DBD =¢ CBD.

(2) Under condition (A), we have DS <g DBD and DS <g CBD if and only if
2(G) < 1.

(3) Under conditions (A) and (C), we have DS <g DRR if and only if 0 <
A*(p) < an-1, where A* is the Laplace-Stieltjes transform of the inter-arrival

time of the job flow from the source, and a,_y is defined in Theorem 5.3.
(4) Under condition (D), we have DRR <¢ DBD and DRR < CBD.
(5) Under conditions (A) and (B), we have CRR <g DS.

(6) Under conditions (A), (B) and (D), we have CRR <z DBD and CRR <g
CBD.

(7) Under conditions (A), (B) and (C), we have CRR <z DRR.

Proof. To prove the proposition we observe the following. The job flow to each

server is under policy DS the job flow from each source. Under other policies, job
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flows from the sources undergo both superposition and thinning before they get to
the server. For the centralized policies, the superposition happens at the dispatcher,
while for the distributed policies, the superposition occurs at each server. To each
server, Bernoulli dispatching is equivalent to random thinning, and Round Robin
1s equivalent to deterministic thinning. Thus under policy DBD, the job flows
undergo first random thinning with probability %, and then superposition; under
policy CBD, the job flows undergo first superposition and then random thinning
with probability %; under policy DRR, the job flows undergo first deterministic
thinning with probability %, and then superposition; and under policy CRR, the
job flows undergo first superposition and then deterministic thinning with proba-
bility % Therefore, (1) follows from Proposition 6.1; (2) follows from Theorem 5.2
and Corollary 5.4; (3) follows from Theorem 5.3 and Corollary 5.4; (4) follows from
Theorem 5.4 and Lemma 5.2; (5) follows from (5.50) and Lemma 5.7; (6) follows

from Theorem 5.4; and (7) follows from Proposition 6.3. u
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APPENDIX A

MAJORIZATION

In this appendix, we list some of the definitions and properties of majorization used
in the thesis. For details on majorization and its applications, the reader is referred
to the monograph by Marshall and Olkin [46].
For any vector ® = (x;,...,2,) in R™ we denote by z[; the it* largest element
ofx,i=1,---,n,i.e., we have
Ty > T[g > 2 L) (A1)
Definition A.1 For vectors = (v1,...,2,) and y = (y1,-..,Yn) in R™ such that
n n
Zm,- = Zyi, (A.2)
i=1 i=1
we say that y is majorized by &, and write y < x, if
Yoy =Y T k=1,---,n. (A.3)
i=k i=k
Moreover, we say that y is weakly supermajorized by ®, and write y <* x, if only

(A.8) holds.

From this definition we see that majorization is a property of the order statistics
of two vectors, and is therefore invariant under permutations.
Majorization and weak majorization are related by the following lemma [46, p.

11].

Lemma A.1 For  and y in R", y <* @ iff there exists a vector z in R" such

that y < z and z > x, where z > @ means z; > z;, t=1,---,n.

The following lemma presents a closure property of majorization under concate-

nation [46, Proposition 5.A.7, p. 121].
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Lemma A.2 For vectors «, y in R", and b, ¢ in R™, define vectors w and v in
Y ) s

Rn+m by
U= (T1,..,Tn,b1, b)) and v = (Y1,..,Yn, €1, ", Cm), (A.4)

then
y<a and ¢<b imply v < u. (A.5)

The result remains true if < is replaced by <* .

An important characterization of majorization is contained in the following

lemma [46, Proposition 4.B.1, p. 108].

Lemma A.3 For vectors  and y in R"™, we have

z<y o S é(e) <Y 6, (A.6)

i=1 i=1

for all convex functions ¢: R — R.

For weak majorization, we have a similar characterization which is an immediate

consequence of [46, Theorem 3.A.8, p. 59].

Lemma A.4 For vectors ¢ and y in R", we have

2ty i3 Hm) < 36, (A)

=1 =1

for all decreasing convex functions ¢ : R — R.
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APPENDIX B

STOCHASTIC ORDERING

In this appendix, we review the definitions and properties of the stochastic order-
ings we use in the thesis. For more information, the reader is referred to [52, 55].

Throughout, X and Y denote two R-valued rvs.

Definition B.1 The rvs X and Y are equal stochastically or in distribution, and
we write X = Y, if

P{X <a}=P{Y <a}, a €R. (B.1)

Definition B.2 We say that X is smaller than Y in the convex ordering, and we
write X <. Y, if
E{¢(X)] < E[¢(Y)] (B.2)

for all convex functions ¢ : R — R whenever the expectations exist in (B.2).

Note that for any IR -valued rvs, X <. Y implies

E[X]=E[Y] (B.3)
and
E[X| <E[¥Y, k=12 (B.4)
As a result
A(X) < E&(Y) (B.5)

where for any R4-valued rv Z, ¢?(Z) is the squared coefficient of variation of Z,

defined by Var (2)
o Var

D= Emy

Similarly, we define the increasing (resp. decreasing) convex ordering as follows.

(B.6)
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Definition B.3 We say that X is smaller than Y in the increasing (resp. decreas-
ing) conver ordering, and we write X <;; Y (resp. X <4 Y), if

E[6(X)] < E[§(Y)] (B.7)

for all increasing (resp. decreasing) convezx functions ¢ : R — IR whenever the

expectations exist in (B.2).
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APPENDIX C

WEAK CONVERGENCE

This appendix is borrowed from Appendix A of [56]. In this Appendix, we collect the
weak convergence theorems used in the thesis. In the sequel, D[0,1] will denote the
space of all right continuous functions on [0,1] having left-hand limits. We denote
by m the Skorohod metric on D0, 1]. For a brief description of the space D[0,1] and
of the Skorohod metric, the reader is referred to [7]. Let W be a Wiener process
defined on [0,1]. We also denote = for weak éonvergence of probability measures
induced by random functions in D[0, 1] or by rvs in IR, and £, for convergence in

probability.

Theorem C.1 (Converging together) Let {X,,n=0,1,---} and {Y,,,n=10,1,---}
be two sequences of rvs taking values in a separable metric space S with metric p.
Suppose that for each n =1,2,---, the rvs X,, and Y, are defined on the probability
space so that p(X,,Y,) is a real-valued rv. If X, => X and p(X,,Y,) .0, then
Y, = X.
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APPENDIX D

HEAVY TRAFFIC FOR GI/GI/1 QUEUES

Most part of the appendix is from Section 2.2 of [56]. With the notations introduced
in Appendix C, we shall discuss waiting time, queue size, and virtual waiting time

processes in that order.

D.1 The Probabilistic Setting

Let (2, F, P) be a probability space rich enough to support a sequence {G",r =
1,2,---} of GI/GI/1 queues with FCFS service discipline. For each r = 1,2,---, G"
is represented by two independent sequences of i.i.d. nonnegative random variables,
{AT,n =0,1,---} and {B.,n =0,1,---}. For n = 0,1,---, we interpret B; as the
n'* service time and A”_, as the time between the n'* and the (n + 1)** arrivals
in G" with the understanding that Aj is the arrival time of the first customer. We
assume that for each r = 1,2, .-, the first customer in G" arrivals at time ¢ = 0,
i.e., Aj = 0, to an empty queue.

We now introduce assumption (A1) on any double sequence {Y,,n,r =1,2,---}

of R~ valued rvs defined on the probability space (2, F, P).
Assumption (A1l):

1. Foreachr =1,2,---,{Y",n=1,2,---} is an i.i.d. sequence of rvs with mean
arY" and standard deviation oy;

2. Asr—eoo,l?’—-)17<ooand0<o§,->ayWith0<0y<oo; and

3. For some € > 0, supIE []Y,”Hc] < 0.

The sequences {A",:z = 0,1,---} and {B.,n = 0,1,---} are both assumed to

n n

satisfy Assumption (Al) defined in Appendix C. If we define
X, =B, ,— A, n,r=12,---, (D.1)
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then clearly {X7,n,r = 1,2, -} also satisfies Assumption (Al).

We impose the following conditions
X"/r—=C with —c0o<C <0 as r— oo; (D.2)
0<A"— A and 0< B" — B with 0< A, B < co. (D.3)
We define the continuous reflection mapping f : D[0,1] — D[0, 1] by

JOO= swp® -y,  0<t<lLyeDpl.  (D4)

D.2 The Actual Waiting Time Process

For each r = 1,2,---,let {W7,n = 0,1,---} be the waiting time of the n*" customer

(n=0,1,---) in G, and let

() = —}W(HJ, 0<t<l. (D.5)
T
We have
W =5 floxW +d), (D.6)
where
d(t) = Ct, 0<t<1. (D.7)

D.3 The Queue Size Process

For each r = 1,2,---, let {Q"(t), t > 0} be the queue size process of G", and define

1

V()= —=Q(rt),  0<t<L (D.9)
r
Then it can be shown that
x" = f(AW +e), (D.9)
where
7% =0%/A® + 04/B® and e(t)=Ct, 0<t<1. (D.10)
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APPENDIX E

PEAKEDNESS FUNCTIONALS OF RENEWAL PROCESSES

In this appendix, we use notations in Sections 2 and 5. Denote by N(s,t) the
number of arrivals in the time interval [s, ). It is easily verified that the number of
busy servers in the GI/G /oo queue can be expressed by

N(t)

K(t) =Y 1{o; >t — a},

i=1

where {o,,n = 1,2,---} are i.i.d. rvs with common distribution function G.
Denote k;(t) = E[K(t)]. Following the basic renewal argument [38, p. 187], we

have

E[K(t)|X; = <]

0, if x>t
= N() (E.1)
E(l{o1>t—z}]+E | {oi >t—a}| Xy =2, if z <t
=2
Since
E[l{o;>t—z}]=P{oy >t—2} =Gt —2) (E.2)
and
N(t)
E [Zl{ai >t — ai}|X1 = .’I)]
1=2
[1+N(z,t) i
=E| > 1{0,—>t—x——ZXj.}|X1:x]
| =2 j=2
[N (t—z)
=E| ) 1{0‘1>t—x—a1}] = ki (t — z), (E.3)
| =1
we have
0, if >t
EKt)|X;=2z]=4 _ (E.4)
Gt —z)+ kit —=), if <t
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By the law of total probability, we get

ki) = Lhﬁnﬂo+ha—@wAu)
=‘[éu-wmA@y5[h@—xmA@y (E.5)
So, k;(t) satisfies the renewal equation
kﬂo=auyh[hu—xmA@) (E.6)
with

a@%i[GU—xMA@) (E.7)

Since a(t) is bounded, the solution to (E.5) is then by [38, Theorem 4.1] given by
i
h@:am+4a0—ﬂﬂﬂ@ (E.8)

where M(z) is the renewal function of the renewal process, i.e., M(z) = E[N(z)].

It 1s well known that

o0

M(z) =} _Ai(z) (E.9)

i==1

where A;(z) is the ¢** convolution of the inter-arrival time distribution by itself.

Next denote ky(t) = IE[K?(t)]. Simple calculations yield

N(#) 2
(Z 1{0‘,‘ >1— ai})

i=1

K*(t)
N(t) N(t)
= K@t)+2) Y 1{oi>t—a}1{o; >t —q;}. (E.10)

i=1 y=i4-1

Again by the renewal argument, we have

E [K*(£)|X; =«

E[K(t)|X; = 1]
N(t) N(t)
J +21E Z Z1{0i>t—ai}1{0'j>t—aj}|X1=:c y
= i=1 j=i+1 (E.11)
z < t,
{ 0, z >t.
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By the independence of o; and ¢; for ¢ # j, we get

N(t) N(#)
2E [Z > Yoi>t—a}l{o; >t —a;}| X1 = w}
i=1 j=i+1
N(t)
= 2E [El{al >t—z}l{o; >t —a;}| X = x}

=2

+2E ) Y 1{oi>t—a}l{o; >t—q;}| X1 =2

=2 j=i+1

N(t) N(¥) j|

1+N(t—x)
= 2]E[ Y. 1{o>t-=z}1{o; >t—:v——a]~_1}]
i=2
1+N(t—z)14+N(t-z) ]

+2]E|: E Z 1{0i>t—w—-ai_1}1{0'j>t—:v——aj_,~}

i=2 =i+l

N(t-=z)
= 2IE' 3 1{0i>t—:v——a,-}] P{o>t—z} - E[K(t —z))
i=1
N(t~z)N(t-z)

+2]E{ Y 1o > (t—2) —an}l{o. > (t—m)—an}} +E[K(t— )]

m=1 n=m+1

Together with (E.4), we get
E [K*(t)| Xy = o] = G(t — ) + ks(t — @) + 2k (t — 2)G(t - 2). (E.13)
Therefore, k,(t) also satisfies a renewal equation
¢
ko(t) = b(t) + /0 ko(t — z)dA(z) (E.14)

with
t _

b(t) = /0 G(t — 2)[1 + 2ki (¢ — 2)]dA(z). (E.15)

It is not difficult to verify that b(¢) is also bounded, the solution to (E.15) is then
given by
t
ka(t) = b(t) + / bt — o)dM (z). (E.16)
0

Invoking the Basic Renewal Theorem [38, Theorem 5.1], we get
1 £ lim k(1) = ) /0 ~ a(z)de (E.17)
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and

k2 £ lim ka(t) = A / (E.18)
with X being the arrival rate. Now we further calculate k; and k. Substituting (E.7)
into (E.17), we get
" [ G- y)dAw)da
/y ” Gz — y)dedA(y)
* [ /0 ” z))dz] dA(y)
G’(z)dz = - (E.19)

/ooo a(z)dr =

o

As is expected, we have
A

® >

Now substituting (E.15) into (E.18), we get
/ “ b(z)de = / - / G(z—y)dA(y)dz+ /°° / " 2G(z—y)ki(z—y)dA(y)dz. (E.21)
0 o Jo o Jo

1
From previous calculation, we know that the first term in (E.21) is —. For the second

term, we have g
/0 ” /0 " 90(c — y)ki(c — y)dA(y)de

- /0 = /0 " 2G(2)ky (2)d=d A(y)

= /oo 2G(2)ky(2)dz

:/0002 { (2) +/zaz—a:)dM(:c)}dz

=/0002 dz+/ / 2G(2)a(z — z)dM(z)dz=. (E.22)
By defining

H(t)=2u [~ G(t+y)Gly)dy, (E.23)
we have
/0 ”926(2)a(z)dz
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” /0 "9G(z — 2)G(2)dA(z)d=

- 2G(2)G(z — z)dzd A(z)

/0 H(z)dA(z)

E[H(X,)] = %E[H(al)l‘

8 s~

I

il
TIETRIF S~ 5~

and

/0 - /0 “9G(2)a(z — o)dM(z)dz

- /0 = / ” 26G(2)a(z — z)dzdM(z)

= [7 [7 26 + y)a(y)dyam (@)

- [ 266+ [ 6w - z)dA(z)dy] dM(z)
“UT 7 26+ v6 - 2dvdAz) ame)
” I { [ 266+ 2+ w)é(w)dw} dA(z)] dM (<)

” /0 ” %H(w + 2)dA(2)dM ()

I %H(:c + 2)dA(z)dA()

i
S—— S~ S—,

e

=1
=E§E[H(a,+l)1 _ iimﬂ(“’””'

Combining these results, we finally get

[ bedde ==+ 53 BlHan) = 5 {1 + 3 B[H(an)] }

#m:l B lu' m=1
and therefore,

ky = p{l Y IE[H(am)]}.

m=1

By the definition of peakedness functionals, we conclude

AG) = 1—p+ Y E[H(an)]

m=1

= 1-p+ /0  H(z)dM(z).

(E.24)

(E.25)

(E.26)

(E.27)

(E.28)

(E.29)

It is easy to verify that H(t) has the following properties which will be used

later.
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() 0< H() <2

(ii) H(t) is monoton decreasing in t;

(iii) H(t) may be a convex function, but it can never be a concave function.

Eckberg showed [19] that the peakedness function of a stationary point process
is given by

2AG) =1+ /0 ” H(z)dU(z) — p (E.30)

where U(z) is the expectation function of the point process, i.e.,

U(z) = E[ number of arrivals following, and no later than a time z from,

an arbitrarily chosen arrival |, z > 0.

If the point process is a renewal process, then U(z) = M(z). Thus the result we

have just proved is just a special case of (E.30).
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