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QR Sometimes Beats JacobiG. W. StewartABSTRACTThis note exhibits a symmetricmatrix having a small eigenvalue that iscomputed accurately by the QR algorithm but not by Jacobi's method.In an important paper entitled \Jacobi's Method is More Accurate than QR"Demmel and Veseli�c [1] show that when Jacobi's method is used to �nd the eigen-values of a positive-de�nite matrix it computes the eigenvalues to nearly optimalrelative accuracy. They also give a counterexample to show that the QR algorithmcan fail to attain this accuracy.1 However, positive de�niteness is essential to theiranalysis. The purpose of this note is to show by a simple but informative examplethat for inde�nite problems QR can beat Jacobi.Let A = 0B@��2 a�3 b�2a�3 ��2 c�b�2 c� 1 1CA ;where � is very large and � , a, b, and c are of order unity. The dominant eigen-values of this matrix are to high relative accuracy �a�3. They are insensitive tosmall relative changes in the elements of the matrix.From perturbation theory for graded matrices [2], the smallest eigenvalue isgiven to high relative accuracy by the Schur complement of the leading 2�2 prin-ciple submatrix. This approximation is�min �= 1 � (�b2 � 2abc)�6 + �c2�4� 2�4 � a2�6 (1)Unless there is cancellation in this formula, �min is insensitive to perturbations in� , a, b, and c. For de�niteness, we will take � = a = b = 1, c = �1, and � = 1020,so that �min �= 4 to high accuracy. The matrix A then becomesA = 0B@1040 1060 10401060 1040 �10201040 �1020 1 1CA :1Actually, the failure is in the preliminary tridiagonalization.1



2 QR sometimes beats JacobiNow the �rst step in the serial Jacobi algorithm is to apply a rotation in the(1; 2)-plane to diagonalize the leading 2� 2 principle submatrix. The rotation isP = 1p2 0B@ 1 1 0�1 1 00 0 p21CA :If the transformation is carried out in standard double precision, the result willbe 
(PTAP ) �= 0BB@ �1060 0 1p210400 1060 1p210401p21040 1p21040 1 1CCA :If we now repeat the calculation of the Schur complement,we �nd that the smallesteigenvalue has become one. It has been completely altered by the �rst step of theJacobi algorithm.Turning now to the QR algorithm, the �rst step is to reduce A to tridiagonalform. This is accomplished by a single rotation in the (2; 3)-plane that annihilatesthe (1; 3) and (3; 1)-elements. To working accuracy the rotation isQ = 0B@1 0 00 1 �10�200 10�20 1 1CA :Then 
(QTAQ) �= 0B@1040 1060 01060 1040 �2 � 10200 �2 � 1020 4 1CA :The eigenvalue 4 is already present in the (3; 3)-element, and one step of explicitlyshifted QR algorithm reduces the (3; 2) and (2; 3)-elements to 8 � 10�80. Thus theQR algorithm �nds the eigenvalue, where Jacobi fails.There are four comments to be made about this example.� The plane rotation used in the Jacobi algorithm is balanced| i.e., its elementsare all of a size. Generally speaking, balanced rotations are the bane of compu-tations with graded matrices, since they can combine elements of unequal size insuch a way that information is lost. For example, the computed PTAP is just thematrix that would have been obtained by exact computations on a matrix with� = c = 0. For this case the formula (1) gives �min �= 1|which is what the Jacobialgorithm computes.



QR sometimes beats Jacobi 3� The transformation Q that tridiagonalizes A is nicely graded. Not only does itpreserve the information contained in the parameters de�ning A, but it folds theinformation into the (3; 3)-element to give a highly accurate approximation to theeigenvalue.� It should not be thought that balanced transformations are necessarily bad. Forexample, the Jacobi transformation remains balances as � increases. When � =2�2 (say), A is positive de�nite, and by the Demmel-Veseli�c theory the smallesteigenvalue (now �= 0:5) has to be computed accurately by Jacobi's method. Thecomputations still proceed as if c were zero; however, (1) shows that�min �= 1 � b22 ;so that the value of c is irrelevant.� Finally, just because the QR algorithm can compute the smallest eigenvalueaccurately it does not follow that a particular implementation will. When I triedto compute the eigenvalues of the original example using matlab, I got a value of0 for �min.References[1] J. Demmel and K. Veseli�c. Jacobi's method is more accurate than QR. SIAMJournal on Matrix Analysis and Applications, 13:1204{1245, 1992.[2] G. W. Stewart and G. Zhang. Eigenvalues of graded matrices and the conditionof numbers of a multiple eigenvalue. Numerische Mathematik, 58:703{712,1991.


