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ABSTRACT

This note exhibits a symmetric matrix having a small eigenvalue that is
computed accurately by the QR algorithm but not by Jacobi’s method.

In an important paper entitled “Jacobi’s Method is More Accurate than QR”
Demmel and Veseli¢ [1] show that when Jacobi’s method is used to find the eigen-
values of a positive-definite matrix it computes the eigenvalues to nearly optimal
relative accuracy. They also give a counterexample to show that the QR algorithm
can fail to attain this accuracy.! However, positive definiteness is essential to their
analysis. The purpose of this note is to show by a simple but informative example
that for indefinite problems QR can beat Jacobi.

Let

r0? ac® bo?
A=lac® 710? co|,
bo* co 1

where o is very large and 7, a, b, and ¢ are of order unity. The dominant eigen-
values of this matrix are to high relative accuracy £ac®. They are insensitive to
small relative changes in the elements of the matrix.

From perturbation theory for graded matrices [2], the smallest eigenvalue is
given to high relative accuracy by the Schur complement of the leading 2x2 prin-
ciple submatrix. This approximation is

- (16* — 2abe)o® + 7ot
)\min =1 - 2 4 2.6 (1)
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Unless there is cancellation in this formula, A, is insensitive to perturbations in
7, a, b, and c. For definiteness, we will take 7 =a=b=1, ¢ = —1, and o0 = 10%°,
so that Ay =2 4 to high accuracy. The matrix A then becomes

1040 1060 1040
A=[10® 10% —10%
1010 —102° 1

! Actually, the failure is in the preliminary tridiagonalization.
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Now the first step in the serial Jacobi algorithm is to apply a rotation in the
(1,2)-plane to diagonalize the leading 2 x 2 principle submatrix. The rotation is

L[ L1
P=—|-11 o0].
\/500\/5

If the transformation is carried out in standard double precision, the result will
be
60 11040
T - 060 ?1040
(P AP) = 0 10 =10

11040 _1 1040
EIO EIO 1

If we now repeat the calculation of the Schur complement, we find that the smallest
eigenvalue has become one. It has been completely altered by the first step of the
Jacobi algorithm.

Turning now to the QR algorithm, the first step is to reduce A to tridiagonal
form. This is accomplished by a single rotation in the (2, 3)-plane that annihilates
the (1,3) and (3, 1)-elements. To working accuracy the rotation is

1 0 0
Q=10 1 —107%
0 10720 1
Then
10%° 106 0
QT AQ) = | 10 1040 —2.10%
0 —2-10% 4

The eigenvalue 4 is already present in the (3, 3)-element, and one step of explicitly
shifted QR algorithm reduces the (3,2) and (2, 3)-elements to 8- 107%°. Thus the
QR algorithm finds the eigenvalue, where Jacobi fails.

There are four comments to be made about this example.

® The plane rotation used in the Jacobi algorithm is balanced —i.e., its elements
are all of a size. Generally speaking, balanced rotations are the bane of compu-
tations with graded matrices, since they can combine elements of unequal size in
such a way that information is lost. For example, the computed PT AP is just the
matrix that would have been obtained by exact computations on a matrix with
7 = ¢ = 0. For this case the formula (1) gives Apin = 1 —which is what the Jacobi
algorithm computes.
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® The transformation () that tridiagonalizes A is nicely graded. Not only does it
preserve the information contained in the parameters defining A, but it folds the
information into the (3, 3)-element to give a highly accurate approximation to the
eigenvalue.

¢ [t should not be thought that balanced transformations are necessarily bad. For
example, the Jacobi transformation remains balances as 7 increases. When 7 =
207 (say), A is positive definite, and by the Demmel-Veseli¢ theory the smallest
eigenvalue (now = 0.5) has to be computed accurately by Jacobi’s method. The
computations still proceed as if ¢ were zero; however, (1) shows that

so that the value of ¢ is irrelevant.

e Finally, just because the QR algorithm can compute the smallest eigenvalue
accurately it does not follow that a particular implementation will. When 1 tried
to compute the eigenvalues of the original example using matlab, I got a value of

0 for Apin.
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