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Current wildfire spread simulators lack the ability to provide accurate predic-

tion of the active flame burning areas at regional scales due to two main challenges:

a modeling challenge associated with providing accurate mathematical representa-

tions of the multi-physics multi-scale processes that induce the fire dynamics, and

a data challenge associated with providing accurate estimates of the initial fire po-

sition and the physical parameters that are required by the fire spread models. A

promising approach to overcome these limitations is data assimilation: data assimi-

lation aims at integrating available observations into the fire spread simulator, while

accounting for their respective uncertainties, in order to infer a more accurate esti-

mate of the fire front position and to produce a more reliable forecast of the wildfire

behavior.

The main objective of the present study is to design and evaluate suitable

algorithms for regional-scale wildfire spread simulations, which are able to properly

handle the variations in wildfire spread due to the significant spatial heterogeneity



in the model inputs and to the temporal changes in the wildfire behavior. First we

developed a grid-based spatialized parameter estimation approach where the esti-

mation targets are the spatially-varying input model parameters. Then we proposed

an efficient and robust method to compute the discrepancy between the observed

and simulated fire fronts, which is based on a front shape similarity measure inspired

from image processing theory. The new method is demonstrated in the context of

Luenberger observer-based state estimation strategy. Finally we developed a dual

state-parameter estimation method where we estimate both model state and model

parameters simultaneously in order to retrieve more accurate physical values of

model parameters and achieve a better forecast performance in terms of fire front

positions. All these efforts aim at designing algorithmic solutions to overcome the

difficulties associated with spatially-varying environmental conditions and poten-

tially complex fireline shapes and topologies. It paves the way towards real-time

monitoring and forecasting of wildfire dynamics at regional scales.
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for his continuous support throughout my PhD study. His patient guidance and

broad knowledge helped me in all the time of exploring this interdisciplinary project.

I would also like to thank my co-advisor Dr. Mélanie Rochoux, who contributed
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Chapter 1: Introduction

1.1 Wildfire, a Burning Global Issue

Wildland fire has been prevalent on a global scale in recent years, due to

the increasing drought and extreme weather conditions [1]. Figure 1.1 shows the

active fire detections at global scale in June, 2009, using MODIS data from the Terra

satellite. Whether it is ignited by the natural forces (mostly by lightning), or human

beings (both intentionally or unintentionally), wildfires continue to threaten our

home and communities around the world. In June, 2017, a series of deadly wildfires

across central Portugal have caused at least 66 deaths and 204 injured people. The

Tomas fire, largest wildfire on record in California happened in December 2017,

destroyed more than 1000 buildings, including many homes. Thousands of people

were forced to flee and over 8500 firefighters were mobilized to fight it. In addition

to these tremendous losses, future climate changes are likely to enhance increases

in mean temperature (about 2-4◦ globally) with significant drying in some regions,

with the consequences of favoring the occurrence of wildfires and lengthening the

fire season (by about twenty days per year) [2–4].

Narrow down to North America area, Fig. 1.2 presents the number of wildfires

that occurred in the United States, together with the total burnt area from year 1985

1



Figure 1.1: MODIS rapid response active fire detections in June, 2009.
Source: NASA, http://rapidfire.sci.gsfc.nasa.gov/

to year 2017. The total number of wildfires has gradually decreased in recent years,

possibly due to human factors such as fire suppression and fire exclusion policies,

increased firefighting efficiency, improved fire prevention. However, the burnt areas

have been multiplied by a factor of three, implying that there are more wildfires

affecting a larger area in recent years; these large wildfires (sometimes referred to as

megafires) feature higher fire intensity and fire severity with important consequences

for public safety and ecosystem [1].

Since the early 1950s, formal research initiatives by federal and state govern-

ment forestry agencies started concerted efforts to build fire danger rating systems,

which embodied a fire behavior prediction component in order to better prepare for

wildfire hazards. These efforts include:

• The Canadian Forest Fire Danger Rating System (CFFDRS) is a globally

2
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Figure 1.2: Five-year moving averages of wildfire data from the National
Interagency Fire Center: solid black line indicates the number of wild-
fires; red bar indicates the total burnt area (acres).

known wildland fire risk assessment system, which has been developed through

60 years of research and field study efforts by the Canadian Forest Service [5].

It has two major components: the fire weather index (FWI) system and the

fire behavior prediction (FBP) system. It is widely used today to predict the

potential risk for daily fire ignition across the landscape as well as to assess the

behavior of a specific wildfire in a particular forest type. The CFFDRS system

has also been introduced and adapted into the Fire Danger Rating Systems

(FDRS) in southeast Asia countries such as Indonesia and Malaysia [6].

• The US National Fire Danger Rating System (NFDRS) has been developed

to provide local indices of fire occurrence or behavior based on daily mea-

surements of vegetation, terrain topography, weather and risk of ignition

(i.e. human-caused and lightning) [7]. More recently, the Wildland Fire Deci-
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sion Support web-based System (WFDSS) emerged to provide state-of-the-art

risk analysis for individual fires, including national weather forecast data, fire

behavior prediction, economic assessment, smoke management assessment and

landscape databases. In particular, this analysis produces a fire spread proba-

bility map and an inventory of the assets (for instance critical infrastructure)

most likely to be at risk [8].

• In Australia, the McArthur grassland and forest Fire Danger Rating Systems

(FDRS) [9] along with the CSIRO Grassland Fire Spread Meter (GSFM) [10]

serve as the two main tools for fire danger forecasting. The Fire Danger Rating

Systems are used by rural fire authorities to forecast fire danger in Australian

forest and grassland areas. The Fire Spread Meter is used to predict how

quickly the grassland wildfire will spread.

• Across european countries, the European Forest Fire Information System

(EFFIS) has been established by the Joint Research Centre and the Direc-

torate General for Environment of the European Commission to provide up-

to-date, reliable information on forest fire risk assessments during both pre-fire

and post-fire phases [11]. The EFFIS serves as a complementary system in

addtion to national and regional systems in european countries, and provides

harmonized information for the sake of international collaboration on large

scale wildfire fighting.

These systems serve as the main components for wildfire danger prediction

and prevention across the world, but they feature some limitations in operational

4



context. Fire danger rating systems such as the FWI mostly rely on meteorolog-

ical information and only partially account for various vegetation properties, for

instance they usually do not differentiate between different vegetation fuel types.

When it comes to wildfire spread modeling, fire prediction systems are subject to

significant uncertainties due to modeling simplifications and knowledge gaps in the

environmental and meteorological conditions as detailed in Sec. 1.2.

1.2 Modeling of Wildfire Spread

Alongside numerous efforts to predict the probability of wildfire occurence,

there is a great need for accurate predictions of wildfire spread after ignition, which

can benefit both fire risk management and fire emergency response, for instance to

design efficient firefighting strategies and thereby avoid the development of large-

scale highly-destructive fires. Computer-aided modeling approach has been a pop-

ular choice to analyze the behavior of wildfire spread, especially the impact of a

number of environmental factors on the wildfire behavior. In recent years, advances

in computational power and spatial data analysis (GIS, remote sensing, etc) has led

to an increase in wildfire spread modeling efforts.

1.2.1 Multi-scale Multi-physics Problem

Wildfire spread can be regarded as a succession of ignitions towards the un-

burnt vegetation fuel region. Once a certain area of vegetation fuel is ignited

(human-induced ignition, thunderstorm lightning, etc), heat will be released from

5



chemical reactions (broadly categorized as an oxidation reaction) in the process of

combustion; then transferred to surrounding unburnt vegetation through convection,

radiation and conduction heat transfer mechanisms, leading to the thermal degra-

dation of the vegetation, to the release of flammable gases and to their subsequent

ignition. The former is the domain of chemistry (e.g. chemical kinetics) and occurs

on the scale of mean free paths, and the latter is the domain of physics (e.g. heat

transfer and fluid mechanics) and occurs on scales ranging from millimetres up to

kilometres (Table 1.1) [12].

Table 1.1: Major biological, physical and chemical components and processes oc-
curing in a wildfire and relevant temporal and spatial scales [12].

Type Time scale (s) Vertical scale (m) Horizontal scale (m)

Combustion reactions 0.0001 - 0.01 0.0001 - 0.01 0.0001 - 0.01

Fuel particles - 0.001 - 0.01 0.001 - 0.01

Fuel complex - 1 - 20 1 - 100

Flame 0.1 - 30 0.1 - 10 0.1 - 2

Radiation 0.1 - 30 0.1 - 10 0.1 - 50

Conduction 0.01 - 10 0.01 - 0.1 0.01 - 0.1

Convection 1 - 100 0.1 - 100 0.1 - 10

Turbulence 0.1 - 1,000 1 - 1,000 1 - 1,000

Spotting 1 - 100 1 - 3,000 1 - 10,000

Plume 1 - 100,000 1 - 10,000 1 - 100

The interactions of these processes occur over a wide range of temporal and

spatial scales (Fig. 1.3): vegetation scales that characterize biomass fuels at cen-

timeter scale or less; flame scales that characterize combustion and heat transfer
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processes at meter scale; topographical scales and landcover scales that characterize

terrain and vegetation boundary layer at hundred-meter scale; and meteorological

micro-/meso-scales that characterize atmospheric conditions at hundred-kilometer

scale [13]. Due to these complicated interactions at multiple temporal and spatial

scales, understanding the key mechanisms driving a wildfire and their interactions

is still an active research area [14]. Modeling wildland fire behavior is therefore a

challenging problem.

Figure 1.3: The different spatial scales invoved with wildfire behav-
ior: vegetation scale, flame scale, topographical scale and meteorological
scale [15].

In general we differentiate between three main types of wildfires depending on

the fuel being consumed: ground fire, surface fire and crown fire. Ground fire is a

slow mode of combustion occurring beneath the surface layers of the forest ground,
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at low temperatures and usually without any flame; a typical example is a peat

fire [16]. Surface fire consumes fine particles in the surface litter and undergrowth

(tree leaves, conifer needs, bark, branches, shrubs, etc); usually surface fuels are less

compact than ground fuels and provide conditions more favorable for propagation.

Crown fire only occurs when surface fire spreads vertically up to the canopy and tree

crowns under extreme dry and windy conditions. It barely happens due to the higher

moisture content of live vegetation crown fuels, but when it does, it corresponds to a

drastic increase in the heat release rate and the fire size. Crown fire often enhances

the production of embers, and these embers could be transported a long distance by

the strong wind. They can potentially initiate new fire sources called spotting fires

and therefore, drastically enhance the fire spread. In the present work, we focus on

surface fires since this is the main mode of wildfire spread and also the most studied

one.

1.2.2 Wide Range of Modeling Approaches

There are different length scales involved in wildfire spread as seen from Ta-

ble 1.1. Depending on the scale(s) of interest and the purpose of the study (opera-

tional or research), several types of models are reported in the literature [12,17,18].

On the one hand, research-level models aim at a better understanding of the

fundamental physical and chemical processes involved in the combustion of vege-

tation fuel and driving the fire behavior. For this purpose, high fidelity numerical

simulations are performed at flame scale (1 m) to resolve interactions between the
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vegetation and the flame as well as between the flame and the atmosphere. These

physical models explicitly solve for mass, momentum and energy balance equations

using computational fluid dynamics (CFD) tools, see for instance WFDS [19] and

FIRETEC [20]. Figure 1.4 shows an example of a coupled modeling system, where

an atmospheric hydrodynamics model, HIGRAD, is coupled to a wildfire behavior

model, FIRETEC, to produce a coupled atmosphere/wildfire behavior model based

on conservation of mass, momentum, species, and energy. It is used to study the

physical processes of the interactions between heterogeneous vegetation, topography,

and atmospheric conditions during a wildfire event [21].

Figure 1.4: HIGRAD/FIRETEC coupled simulation of wildfire burning
upslope into a saddle. This simulation is used to illustrate the effects of
transient wind conditions, the effects of nonhomogeneous terrain and the
effects of nonuniform fuels. Source: Los Alamos National Laboratory,
http://www.lanl.gov/.
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While the physics-based CFD approach has the potential to accurately de-

scribe flame-scale processes and provides us a better understanding of the physical

and chemical processes controlling fire propagation, this approach is currently re-

stricted to academic research projects due to its high computational cost and high-

resolution input data requirement [13]. It is not suitable for real-time forecast of

wildfire spread which supports an operational decision-making process. On the other

hand, operational-level models adopt empirical or semi-empirical models to predict

the growth of a wildfire at regional scales (i.e. at scales ranging from a few hundreds

of meters up to several kilometers). They generally treat a wildfire as a propagating

interface from the burnt to the unburnt vegetation that self propagates in the normal

direction. This propagating interface is referred to as the fire front or fireline, whose

local propagation speed is called the rate of spread (ROS). In this context, work

on wildfire spread modeling aims at predicting the ROS of the fire front for a given

set of environmental conditions. The ROS is usually modeled using an empirical or

quasi-empirical function with respect to a reduced number of factors characterizing

environmental conditions such as fuel moisture content, local wind conditions and

terrain topography. Empirical modeling is based on phenomenological descriptions

or statistical correlations of observed fire behaviors such as wind-tunnel experiments

and field-scale controlled burning experiments [10]. Semi-empirical modeling relies

on a physical framework in combination with statistical modeling. In particular, it

formulates the ROS using the energy balance equation and the resulting model pa-

rameters are calibrated using experimental data. Both empirical and semi-empirical

approaches are simple and computationally efficient compared with physics-based
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modeling approach, making them consistent with an operational framework. The

semi-empirical approach has the additional advantage of including some relevant

physical aspects of wildfire spread through the energy balance equation. The most

widely-used semi-empirical model is Rothermel’s model [22,23].

Current operational wildfire growth simulators such as FARSITE [24], PHOENIX

RapidFire [25] or PROMETHEUS [26] adopt a regional-scale perspective and use

semi-empirical ROS models to propagate the fire front, providing a quick model re-

sponse for real-time forecasting purposes. However, their accuracy is limited due to

the simplified representation of wildfire behavior. First, these models have a domain

of validity that is limited to the domain of experimental conditions used during their

original development and calibration. Their extension to study regional-scale wild-

fire spread problem is thus questionable. For instance, they do not include extreme

fire behavior conditions due to high wind conditions and/or steep slopes. Besides,

these models do not explicitly account for fire-atmosphere interactions, which are

important to account for the fire feedbacks on the near-surface winds [27–30]. And

third, they rely on uncertain input parameters that may not be known or may only

be known with limited spatial and temporal resolution [14, 31]. Therefore, cur-

rent operational models suffer from these simplifications and uncertainties; when

operated in real time forecasting mode, their performance is often found to be dis-

satisfactory compared with observations. A new approach to this problem is to

couple existing operational models and real-time observations, with the objective

of reducing the uncertainties in model fidelity and input data in order to achieve

better forecast performance. This approach belongs to the large category called
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data-driven modeling and is detailed in Sec. 1.3.

1.3 Data-driven Wildfire Spread Modeling

Data-driven modeling is meant to dynamically incorporate additional data into

an executing application for model optimization purpose. And data assimilation is

one popular statistical method to integrate available observations into the modeling

application, which accounts for the modeling and observation uncertainties. Dating

back to the application of steering the Apollo moon spaceships in the 1960s, data

assimilation methodologies have proven successful over the past decades for a wide

range of applications in geosciences and engineering sciences, e.g. numerical weather

forecasting, oceanography, atmospheric chemistry, biomechanics, reservoir engineer-

ing [32,33]. This is a promising approach to overcome the limitations in operational

wildfire spread modeling. The objective is to deploy an inverse modeling procedure

taking advantage of available sensor observation data to provide the best possible

prediction of the future fire front position simulated by operational-level models.

1.3.1 Data Assimilation

Data assimilation provides an optimized description of the state of a given

system by including all sources of information, i.e. from numerical models and obser-

vations, and their estimated uncertainties. A data assimilation framework typically

features the following main components (see Fig. 1.5 corresponding to sequential

Kalman filtering): a forward model that simulates the state of a physical system
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Figure 1.5: Data assimilation flowchart for a typical data-driven model
based on sequential Kalman filtering; the ensemble Kalman filter (EnKF)
that is part of this family of methods and that is an ensemble-based data
assimilation method will be detailed in Chapter 2.

(with some modeling uncertainty) given a set of physical and numerical parameters

as well as initial and boundary conditions; a series of observations yo (with some

measurement and processing uncertainty); and an inverse model that

1. defines the estimation targets (or control variables) included in the control

vector x. For wildfire spread modeling, the control variables could be the

model state (fire front positions) in a state estimation operation mode, and

the model parameters (physical parameters controlling fire propagation) in a

parameter estimation operation mode;

2. computes the distance between the observation yo and the simulated prediction

yf = G(xf ) corresponding to a priori (or forecast) determined by the control

variables xf (this is the forecast step): G is referred to as the observation
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operator mapping the control vector onto the observation space;

3. computes the posterior (or analysis) values xa according to some algorithm

that minimizes the distance (yo−yf ) given some weight K (or confidence) to

the available information (this is the update step): the updated state ya can

be obtained by applying the observation operator to xa such that ya = G(xa)

is a more accurate estimate of the (unknown) true state of the system than

the observations yo or the forecast yf taken separately.

This two-step procedure (forecast and update) is performed sequentially as obser-

vations become available; the next forecast is initialized by considering the previous

analysis and so on. The resulting updated state of the system is referred to as the

data-driven run. The performance of the data assimilation algorithm over a given

time period is usually evaluated by its ability to reduce the distance between the

simulated state of the system and the observations, i.e. by comparing the differences

between the free run (i.e. the simulation provided by the forward model without data

assimilation over the whole time period) and the data-driven run.

Formulating the weight K in adequation with the uncertainties in the obser-

vations and in the forward model is a key feature of any data assimilation algorithm

to make it successful [32]. The uncertainties inherent in geosciences and engineering

sciences generally go beyond the limitations of deterministic model capabilities. The

error is unquantifiable when considering a single deterministic run of the forward

model. Thus, the uncertainties suggest the use of ensembles to consider multiple

scenarios of the system behavior and to thereby better represent its potential vari-

14



ability over a time period given sources of uncertainties in the input parameters and

in the model. In this framework, the estimation targets are considered as random

variables and are therefore characterized by a probability density function (PDF).

Thus, each scenario corresponds to a different realization of the estimation targets

and to a different realization of the model state by integrating the forward model.

Ensemble-based data assimilation algorithms such as the ensemble Kalman filter

(EnKF) [33] therefore produce an ensemble of deterministic model state predictions

to have a better representation of the errors. EnKF is essentially a Monte-Carlo im-

plementation of the Bayesian update problem, and the weight K is then formulated

in a statistical sense using the ensemble of estimation targets and the ensemble of

model states.

As stated before, the control variables can include the model state; this is

useful to retrieve a more accurate initial condition from which the forward model

can restart to produce forecasts (this is referred to as “state estimation”). They

can also include physical parameters required as inputs to the problem; this is in

general useful to reduce the bias in the model predictions and to extend the forecast

quality over time (this is referred to as “parameter estimation”). The state and

the parameters can be estimated separately or simultaneously depending on the

problem [34–36].
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1.3.2 Wildfire Applications

While still at an early stage of development, the idea of data assimilation has

been considered over the last decade for possible applications to wildfire behavior

problems [37]. While there are some variations in the literature, the forward model

is typically a wildfire growth simulator that uses a Rothermel-type ROS descrip-

tion; observations are generally fireline positions; the inverse model is either some

ensemble-based algorithms accounting for both modeling and observation errors, or

deterministic optimization techniques to minimize a certain cost function; and con-

trol variables are generally the parameters of the ROS model or the fireline positions.

This discussion on the wildfire applications, as well as the following discussion on

the available observed fire data, provide a brief summary of all relevant researches,

and they are adapted from the NSF-WIFIRE technical report [15].

Table 1.2 provides an overview of the recent data assimilation methods de-

signed for wildfire applications. In particular, Mandel et al. [37] pioneered the idea

of combining a data assimilation method with a forward model for wildland fire to se-

quentially update model simulations using ensemble-based Kalman filter algorithms.

Towards the ultimate objective of building a real-time coupled atmospheric-wildland

fire modeling system, their work has shown promising results while raising some con-

cerns about performing data assimilation for wildfire applications. In Ref. [38] they

used a morphing EnKF technique to assimilate measured temperatures into running

fire growth models. The wildfire problem is found to be challenging for usual data

assimilation methods since the PDF of the temperature is assumed to be Gaussian
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while it is actually bimodal (burnt region or unburnt vegetation). This is typically

the case for the EnKF algorithms. The idea of morphing was derived from image

processing to map all fronts in the same reference frame and to thereby avoid hav-

ing bimodal PDF. However, this led to technical difficulties for implementation in

practice. Denham et al. [39] adopted a dynamic data-driven genetic algorithm to

automatically adjust input parameters of the ROS model, thus enhancing forecast

quality. However, genetic algorithms usually require many realizations (also referred

to as “members” or “particles”) in the ensemble and so many integrations of the

forward model, which can become prohibitive in practice. Rochoux et al. [40–42]

designed an EnKF with a Lagrangian representation of the fire front; the transfor-

mation of the observed quantities from the burning area (or temperature) field like

in [37] onto a set of marker positions avoids the problem of bimodal PDF (the PDF

on each front marker along the fireline features a Gaussian PDF) and formulates

the discrepancies between the observed and the simulated fronts as an Euclidean

distance, hereby allowing the application of a standard EnKF. This strategy was

found promising to apply both parameter estimation [41] and state estimation [42]

on controlled burn trials and to increase forecast performance. Rios et al. [43] also

demonstrated the reliability of inverse modelling-based algorithm to improve short-

term fire spread forecast using a Lagrangian front-tracking solver.

In the present study, we continue developing a dynamic data-driven applica-

tion system for wildfire spread prediction based on previous work by Rochoux et

al [40–42]. The main challenge is now to extend this work to regional-scale wildfires

and in particular to be able to address the heterogeneities in the environmental
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Table 1.2: Literature review of data assimilation methods for wildfire applications
over the last decades - adapted from NSF-WIFIRE report [15].

References Control variables Forward model Inverse model

Bianchini et al. [44, 45] fire/no fire field cell automata particle filter

Wendt et al. [46]
ROS parameters cell automata genetic algorithm

Denham et al. [39]

Gu and Hu [47,48] fire/no fire field cell automata particle filter

Mandel et al. [37] temperature field PDE-based model EnKF

Mandel et al. [38] temperature field
coupled WRF

EnKF
/level-set

Vejmelka et al. [49, 50] fuel moisture fuel moisture model∗ EKF/UKF∗∗

Mandel et al. [51] fire arrival time coupled WRF-SFIRE least squares

da Silva et al. [52] ROS parameters Eulerian level-set particle filter

Lautenberger [53] ROS parameters Eulerian level-set genetic algorithm

Rochoux et al. [41] ROS parameters Eulerian level-set EnKF

Rochoux et al. [42] fire front position Eulerian level-set EnKF

Rios et al. [43] ROS parameters Lagrangian model
gradient-based
optimization

* Fuel moisture model is used to advance moisture content in time, not fire propagation.
** EKF/UKF stands for Extended Kalman filter and Unscented Kalman filter, respec-
tively. Both are variants of Kalman filter to address nonlinear problems.

conditions and the nonlinear wildfire behavior. These heterogeneities induce signif-

icant uncertainties in the simulated fire front by operational-level models, make the
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topology of the fire front quite complex and require the data assimilation algorithm

to properly address position and topological errors.

1.3.3 Available Observed Fire Data

The challenge in real-time modeling is to provide access to useful real-time

data. Whether collected from prescribed burns or uncontrolled wildfires, the types

as well as the spatial and temporal resolution of the available data are paramount to

the development and use of data-driven wildfire spread models. On the one hand,

wildfire data have primarily been collected via prescribed burn experiments. These

experiments are typically less intense than an accidental wildfire but they are suffi-

cient to provide a basis for model validation. They still require significant time and

resources. Early data collection efforts began with single goals in mind (e.g. FIRE-

FLUX I to evaluate coupled fire/atmosphere models [54]). However, more recent

data collection efforts have tried to collect data on prescribed burns that serve multi-

ple user groups (e.g. RxCADRE [55]); Table 1.3 lists in-situ measurements available

during RxCADRE experiments. The RxCADRE prescribed burn experiments yield

a comprehensive dataset of fire behavior, fire effects, smoke chemistry and dynamics,

with measurements taken systematically at multiple scales ranging from centimeter

to kilometer. The objective is to help fire modelers and scientists to validate and

refine physics-based fire behavior models, as well as provide insights to improve em-

pirical and semi-empirical models given a well-founded understanding of fire physics

from the experimental dataset.
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Table 1.3: In-situ measurements available during the RxCADRE experiments [55].

Discipline Measurement data

Fuel characteristics Mass, cover,depth, moisture

Fire effects
Thermal radiometry, HD visual imagery,

stem temperatures

Local event-scale Plume properties, fine-scale wind
meterology and thermodynamic fields

Fire behavior

Fire intensity, ROS,
convective/radiative power and energy,

soil heating, IR imagery,
wind/flame velocity

Event-scale fire mapping
Fire radiative power and energy,

flame front development,
Satellite imagery of fire and effects

Emissions and event-scale CO, CO2, H2O, PM2.5

plume behavior black carbon, plume height

For developing and validating a prototype data-driven wildfire spread simula-

tor, we will primarily focus on the measurement data of fire behavior and spread

rather than fire emissions, even though the latter database is also important for

many other user groups [56, 57]. In the perspective of tracking wildfire behavior

at regional scale, there is a great need to take advantage of remote sensing tech-

nologies [58, 59], aboard airplanes [60], satellites [61] or unmanned aerial vehicles

(UAV) [62]. They provide overhead measurements of infrared (IR) images or fire

radiative power (FRP) estimates, which are useful to detect active fire location and

estimate fire intensity for each pixel. They can be processed to track the fireline for

use with real-time wildfire spread modeling.

Firelines with spatial resolution of approximately 10 m and temporal resolution
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of approximately 10 minutes are ultimately desired to achieve a reliable forecasting

tool with accurate-enough predictions for fire behavior. These requirements can

theoretically be met with current satellite technology; however, these requirements

may also be cost-prohibitive at the moment. While polar orbiting satellites such as

Terra, Aqua, and S-NPP (with MODIS and VIIRS sensors, respectively), provide

autonomous, synoptic observations of fire activity, both day and night, nominally

twice a day from each sensor, their temporal resolution, and the corresponding

spatial resolution, may not be adequate for real-time fire modeling. Figure 1.6

(top) shows one example of active fire detections by VIIRS sensor on the Suomi

National Polar-orbiting Partnership (S-NPP) satellite. While the majority of the

burning area is detected, this dataset is not sufficient to be fed into current data-

driven fire spread modeling system due to the limited spatial resolution. NOAAs

Geostationary Operational Environmental Satellite system (GOES) offers greater

temporal resolution, but still suffers from limited spatial resolution. One way to

alleviate the resolution problem is to fuse data with various sources of remotely

sensed data, to fill gaps and then improve remotely sensed data resolution. GeoMAC

(Geospatial Multi-Agency Coordination) provides fire perimeter data based upon

multiple data sources, including incident intelligence sources (onsite crew, apparatus

measurements), GPS data, infrared imagery from fixed wing and satellite platforms.

Figure 1.6 (bottom) shows that the spatial resolution of GeoMAC dataset is good

enough for current data-driven modeling system. However, it is worth noting that

the data uncertainties associated with data fusion should be properly addressed

and quantified, which remains a challenging task so far. NIROPS (USDA Forest
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Service National Infrared Operations) have also shown that it is possible to produce

firelines at good spatial resolution using an airborne infrared sensor. However,

the low frequency of the fireline mapping (maps are made only once per night)

is a limitation, and part of the problem is that the process is not automated. In

addition, the use of drones, for instance the use of an MQ-1 Predator Remotely

Piloted Aircraft (RPA) on the Rim fire in California, was successful in observing

particular fires, but no permanent program has been established, most likely because

of the high cost and because of UAV safety concerns.

While numerous challenges are present at the route to develop an operational

data-driven application system for wildfire forecasting, new technologies are under

development. Emerging advances in remote sensing (such as UAVs and commercial

satellites) are foreseen to meet the high spatial and temporal resolution require-

ments of data assimilation. The increasing capability of computational power and

intelligent algorithms will make real-time wildfire spread prediction a reality in the

near future [63].

1.4 Thesis Overview

This thesis work is carried out as part of the NSF-WIFIRE project [15]. The

goal is to design and evaluate a data-driven wildland fire spread modeling strategy

that is applicable at regional scale and that is able to address the heterogeneities in

the environmental conditions and the nonlinear wildfire behavior, which induce sig-

nificant uncertainties in the simulated fire front by operational-level models, make
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Figure 1.6: Illustration of the available observation data for the Rim
fire, a massive wildfire occurred in California in August 2013. Top figure
shows the active fires on 23 August 2013 (20:35 UTC) detected by S-
NPP VIIRS. Bottom figure shows the fire perimeter data on 23 August
2013 (21:00 UTC) derived from GeoMAC dataset.
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the topology of the fire front quite complex and require the data assimilation algo-

rithm to properly address position and topological errors.

There exists a variety of data assimilation schemes featuring different inverse

modeling procedures in the literature. The present work builds on past studies

(based on an EnKF algorithm, see Sec. 1.3.2) by Rochoux et al. [41, 42] and on

the data-driven wildfire spread prototype simulator jointly developed by UMD and

CERFACS: This data-driven wildfire spread modeling sytem will be presented in

more details in Chapter 2. The main challenges that are addressed in the present

work are summarized as follows:

• The first challenge being addressed is to cope with heterogeneous environmen-

tal conditions. A new grid-based spatialized parameter estimation approach

is developed where the estimation targets are the spatially-varying input pa-

rameters of the ROS model. This approach changes the sensitivity of the

simulated fire front location with respect to the input parameters along the

fire front, especially between the head fire and the flank fires. This gives model

simulations more degrees of freedom to find a physically consistent solution.

A dynamic distance-based localization scheme is developed to restrict the cor-

rection of the control parameters in the vicinity of the propagating fire front

and to avoid spurious corrections far away from the fire.

• The second challenge being addressed is to provide is a more efficient and ro-

bust method to compute the distance between the observed and simulated fire

fronts. The evaluation of such a distance is required by any data assimilation
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algorithm in order to give weights to the forecast ensemble simulations and

nudge them toward the observations. In past work, we treated the observed

fire front as a discretized contour with a finite set of markers. The discrepancy

between these simulated and observed fronts was then computed by pairing

observed front markers with the same number of simulated markers. How-

ever, such pairing may become difficult to operate for regional-scale wildfires

that feature strong heterogeneities in the land surface conditions. This issue

is addressed by introducing a new front shape comparison method where the

burning area is treated as a moving object that can feature both position and

topological errors. This method borrowed from object detection in image pro-

cessing theory formulates a shape similarity measure based on the Chan-Vese

contour fitting functional.

• The third challenge being addressed is to develop a new dual state-parameter

estimation method to retrieve more physical values of control parameters and

therefore improve short-term forecast performance. The state estimation part

is achieved with a Luenberger observer (LO) where the simulation counterpart

is gradually nudged to the observation as controlled by a weighting factor. The

parameter estimation part is done in a similar fashion to grid-based spatial-

ized parameter estimation using EnKF framework. The dual state-parameter

estimation method is found to produce more physical posterior parameters

compared with standalone parameter estimation method, making it a promis-

ing approach in real world wildfire scenarios where both model state and model
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parameters suffer inevitable bias and uncertainties.

• Futhermore, the enhanced data-driven wildfire spread simulator is evaluated

with these new algorithmic features against large-scale controlled burn exper-

iments and an accidental wildfire event. The validation test against the Fire-

Flux I field-scale burn experiment (30 ha) shows that a spatially-distributed

parameter estimation can successfully reconstruct a more realistic set of the

control parameters and thereby better capture the anisotropy in the observed

fire front. The validation test against the RxCADRE S5 burning experiment

(4 ha) and the Rim Fire hazard (1041 km2) show that the global shape com-

parison method is a promising method that can accurately track observed fire

front location and shape. Dual state-parameter estimation method is validated

against the RxCADRE S5 experimental dataset and is shown to be a better

algorithm candidate to improve short-term forecast performance.

The thesis is organized as follows. First the data-driven wildfire spread model-

ing system is presented in Chapter 2. Then we proceed to a presentation of the new

parameter estimation method intended to address spatial variations of the parame-

ters in large domains (Chapter 3). Next, the new global shape comparison method is

introduced in the context of a LO-based state estimation approach, which is able to

handle any complex fire front topology (Chapter 4). Next, the dual state-parameter

estimation method is detailed in Chapter 5. Finally, in Chapter 6, a summary of

the current work and the author’s contributions are detailed, with some discussion

of future work.
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Chapter 2: Data-driven Wildfire Spread Modeling System

Introduction

The present study is a continuation of previous work on data-driven wildfire

spread modeling that has led to the development of a prototype wildland fire spread

simulator called FIREFLY1 [40–42, 64]. The past version of FIREFLY features the

following main components: a forward model using an Eulerian-based front-tracking

solver and a description of the ROS based on Rothermel’s formulation; a series of

observations of the fire perimeter location; and an inverse model based on an en-

semble Kalman filter (EnKF) and a Lagrangian representation of the fire front to

compute discrepancies between observations and simulated counterparts. The EnKF

algorithm is a statistical data assimilation algorithm in the sense that a statistical

sample (or “ensemble”) of the inputs is obtained using a Monte Carlo random sam-

pling and results into multiple predictions of the fire front positions through multiple

forward model integrations. The differences between the observed and the simulated

fire fronts are then translated into a correction of the inputs to the Rothermel-based

ROS model or directly of the fire front location. Thus, the inverse model featured a

choice between a parameter estimation approach and a state estimation approach.

1http://firefly.cerfacs.fr/
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FIREFLY has been previously evaluated in a wide series of verification tests using

synthetic observations (these tests are called Observing System Simulation Experi-

ments or OSSE). The simulator has also been evaluated in a preliminary validation

study corresponding to a small-scale (4 m × 4 m) controlled grassland fire experi-

ment in which environmental conditions were treated as uniformly-distributed and

the predicted fireline positions were compared with observation data [40–42,64].

Present work aims at improving the components and expanding the function-

alities of FIREFLY to build a data-driven wildfire spread modeling system which

is capable of real-time wildfire spread predictions at regional scales. The data-

driven modeling system is built upon the previous simulator and it has the main

components presented in Fig. 2.1. Given the inputs of the fire initial location and

environmental conditions (biomass fuel, local meterology, topographical conditions,

etc) at time t0, the forward model, typically a wildfire spread simulator, yields a

series of fire front locations at different leading times. These locations could be

represented either using Lagrangian front-tracking markers or a two-dimensional

progress variable field showing burnt/unburnt area. At a certain time t1, the ob-

servation data become available and is fed into the modeling system, the inverse

model computes the difference between the simulation and observed counterpart,

and infer the corrections of either model input parameters, or model state. Using

the optimized model parameters and model state, the forward model is integrated

until a later time t2 with a better forecast of wildfire spread and behavior. Once new

observation data becomes available, the inverse model can perform either parame-

ter estimation or state estimation again by assimilating the observation data and
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update the forecast. It is done in a typical sequential data assimilation framework.

In terms of the forward model, a Lagrangian front-tracking model is incor-

porated into the data-driven modeling system in addition to the original Eulerian

level-set front-tracking model. This Lagrangian solver is based on Huygens’ princi-

ple, which is similar to the fire propagation model adopted in FARSITE [24]. Both

Eulerian and Lagrangian forward models use Rothermel’s formulation to calculate

the ROS in the head fire direction (i.e., the mainstream wind direction), but they

differ when calculating the ROS in the flank fire and rear fire directions. The per-

spective is to have an ensemble that is as rich as possible in terms of simulated fire

front shapes. Better performance is expected with multiple fire propagation solvers,

especially when using EnKF algorithms, since ensemble members can benefit from

the different model components in the spectrum of fire spread models.

For the parameter estimation problem, we adopted a new grid-based spatially-

distributed parameter estimation approach to treat heterogeneous environmental

conditions. The control variables are the spatially-varying input parameters of the

ROS model; they correspond to parameter fields defined at a resolution that is usu-

ally coarser than that used by the front-tracking simulator. This approach changes

the sensitivity of the simulated fire front location with respect to the input param-

eters along the fire front, especially between the heading part of the fire and its

flanks. This gives model simulations more degrees of freedom to match observa-

tions. A dynamic distance-based localization is required to restrict the correction

of the control parameters to the vicinity of the propagating fire front and to avoid

spurious corrections far away from the fire.
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For the state estimation problem, a new deterministic data assimilation al-

gorithm based on Luenberger Observer is developed and tested in the context of

regional-scale wildfire spread simulations. The central idea of the LO algorithm is

to nudge between simulation and observation based on the confidence level of obser-

vation data. We introduced a new shape comparison method in the LO algorithm

where we directly consider the burning area as a moving object that can deform

under heterogeneous conditions and thus represents the discrepancies between sim-

ulated and observed fire state. This method is expected to be more robust when

comparing simulated and observed fire fronts, and thus to be better able to handle

arbitrary fire front topology.

A new dual state-parameter estimation method is also developed and validated

where we combine the EnKF-based parameter estimation and the LO-based state

estimation approaches. The objective is to distribute the correction inferred from

observations to model parameters and model state properly in order to retrieve more

physical model parameters and gain a better forecast at large leading times. This

dual state-parameter estimation method alleviates the problem of overcorrecting

the model parameters when both the model initial state and model parameters are

known with biased information.

2.1 Forward Model

The forward model in our data-driven modeling system is a wildland fire spread

solver which takes the fire initial location and a number of environmental factors as
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inputs, and produces a series of fire front locations at different leading times. For

real-time forecasting purposes, wildland fire spread solvers adopt a regional-scale

perspective since they should run faster than real time. These solvers simulate a

wildland fire as a two-dimensional interface that self-propagates normal to itself into

unburnt vegetation. This interface is usually referred to as a fireline. The depth of

the fire front is often neglected; meaning that the fire is treated as an infinitesimally

thin front. In this representation, the main quantities of interest are the rates of

spread of the fireline (the propagation speed of the fireline, m/s). These quantities

are described using empirical or semi-empirical functions related to meteorological

and environmental conditions, i.e. information characterizing the fuel (moisture

content, surface loading, etc.), weather (wind speed, direction), and terrain (slope,

aspect ratio). In present work, the Rothermel’s model [22] is used to describe the

ROS at the head of the fire with respect to local meteorological and environmental

conditions, which is the most widely used model in the United States.

ROS Model

The Rothermel’s model is a one-dimensional model that computes the fire

propagation rate ROS during wind-aided or up-slope fire propagation scenarios [22].

It assumes that wind-aided and slope-aided ROS is additive and proportional to the

default no-wind no-slope ROS. For the default no-wind no-slope ROS computation,

it follows the work done by Frandsen [65] and improves the formulation as follows:

ROS0 =
ξIr

ρbεQig

(2.1)
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where ξ is the dimensionless propagating flux ratio, which describes the proportion

of the flame heat release transferred to the vegetation in the non-flaming zone. Ir

[kJ/(min m2)] is the energy release rate of the combustion. ρb [kg/m3] is the ovendry

bulk density, ε is the dimensionless effective heating number. (ρbε) describes the

effective fuel density, i.e., the amount of vegetation per unit volume of the fuel bed

raised to ignition ahead of the advancing fire. Qig [kJ/kg] is the heat of pre-ignition,

i.e., the heat required to bring a unit weight of fuel to ignition.

For wind-aided and slope-aided fire propagation (Fig. 2.2), Rothermel assumes

two additional terms: Φw and Φsl representing the additive wind and slope effects

on the default fire propagation rate, respectively.

ROS1D = ROS0(1 + Φw + Φsl) (2.2)

where ROS0 represents the no-wind no-slope ROS value represented in Eq. 2.1.

This one-dimensional formulation of the ROS model from Rothermel requires

11 input parameters. The physical quantities involved in Eqs. 2.1 and 2.2 such

as the combustion-induced energy release rate Ir, the wind and slope correction

coefficients Φw and Φsl were parameterized with respect to these input parameters

using the experimental dataset from s series of wind-tunnel experiments. Thus, the

one-dimensional ROS model can be expressed as follows:

ROS1D ≡ ROS1D ([Mv,Mv,ext, δv,m
′′
v, ρv,Σv,∆hv, st, se], αsl,uw) , (2.3)

with Mv [%] the fuel moisture (mass of water divided by mass of dry vegetation),

Mv,ext [%] the fuel moisture content at extinction, δv [m] the fuel depth (vertical

thickness of the vegetation layer), m′′v [kg/m2] the fuel surface loading, ρv [kg/m3]
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(a)

(b)

(c)

Figure 2.2: Illustration of the wildfire spread for different environmental
conditions. (a) no-wind no-slope fire propagation. (b) wind-aided fire
propagation. (c) slope-aided fire propagation. [22]
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the fuel mass density, Σv [m−1] the fuel particle surface-to-volume ratio, ∆hv [J/kg]

the fuel heat of combustion, st [%] the fuel particle total mineral content, se [%] the

fuel particle effective mineral content, αsl [rad] the terrain slope angle and uw [m/s]

the wind velocity (at mid-flame height). In this list of input parameters, the moisture

content at extinction Mv,ext, the fuel particle total mineral content st and the fuel

particle effective mineral content se are usually assumed to be independent of the

biomass fuel type. Other input parameters can be customized by the user to compute

the fuel-dependent ROS values.

Rothermel’s model is used for one-dimensional surface fire propagation calcu-

lation, it cannot be applied to represent fire spread through a tree canopy (crown

fire). For such purposes, models for transition between the surface to the canopy

should be used, such as Van Wagner’s model [66], followed by adjustments to sur-

face models to account for the drastically different fire spread regimes in crown

fuels. In the present work, we mainly focus on the surface fire propagation prob-

lem. In the following sections, an extension of the one-dimensional ROS model to

a two-dimensional ROS model will be detailed for two different forward modeling

approaches (Eulerian and Lagrangian forward models).

2.1.1 Eulerian Front-tracking Solver

The Rothermel’s model is used to compute the fire propagation rate in the

head fire direction, i.e., the up-wind up-slope direction. There is a need to extend

the originial one-dimensional (1D) ROS formulation to two-dimensional (2D) surface
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propagation scenario, considering the fire propagation rate in the flank fire and rear

fire directions. The 2D extension for Eulerian model is implemented in the same

manner as in previous work [67], so here we only provide a brief summary.

To illustrate the extension of the 1D ROS formulation to two dimensions in an

Eulerian modeling framework, a geometrical reference frame is defined in Fig. 2.3.

First of all, any terrain topography can be locally characterized by the pair of

aspect angle and slope angle noted (θa, θsl) in a point-wise manner: θa represents

the downhill direction, defined in a clockwise representation, where 0◦ indicates the

North direction; θsl takes values between 0◦ (flat terrain) and 90◦ (vertical wall). It

is worth noting that even though the terrain topography can be complex in a three-

dimensional configuration, the front-tracking problem remains two-dimensional by

projecting the ROS onto the two-dimensional horizontal plane. The wind angle θw

represents the direction from which the wind blows, and is defined on the horizontal

plane, starting from the North direction (0◦) and in the clockwise direction.

In the context of fire front propagation, the front angle θfr indicates the

outward-pointing normal direction to the fire front. Thus the following equation

is used to formulate a two-dimensional ROS [67]

ROS2D =
ROS0 max(1, 1 + cos[θfr − (θw + π)]Φw + cos[θfr − (θa + π)]Φsl)√

1 + tan2 θsl cos2 (θa − θfr)
(2.4)

Assuming the terrain is flat and we only consider the wind effect, this 2D ROS

formulation implies that:

• when the fire propagates in the upwind direction (meaning θfr = θw + π), the
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Figure 2.3: Representation of the aspect angle θa and the wind angle
θw on the two-dimensional horizontal plane (x, y). Credit: Mélanie Ro-
choux.

wind contribution to the ROS is maximal;

• when the fire propagates in the normal direction to the wind direction (mean-

ing θfr = θw + π/2), the wind does not affect the fire propagation: the fire

propagates at the no-wind ROS;

• when the fire propagates in the opposite direction to the wind (meaning θfr =

θw), the wind correction coefficient is negative and the fire propagates at the

no-wind ROS.

Similarly to the wind effect, assuming now that there is no wind and we only

consider the terrain slope effect, this ROS formulation implies that:

• when the fire propagates in the uphill direction (meaning θfr = θa + π), the
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terrain slope contribution to the ROS is maximal;

• when the fire propagation occurs in the normal direction to the uphill direction

(meaning θfr = θa + π/2), the slope does not affect the propagation: the fire

propagates at the no-slope ROS;

• when the fire propagates in the downhill direction (meaning θfr = θa), the

slope correction coefficient is negative and the fire propagates at the no-slope

ROS.

Burnt area (c = 1)

Unburnt area (c = 0)

Fire front (c = 0.5)

𝒏"# = −
𝛻𝑐
𝛻𝑐

Figure 2.4: Eulerian front representation: the front is represented as the
2-D contour line Γc(t) corresponding to φc(x, y, t) = c(x, y, t)− cfr = 0.

The Eulerian fire spread model in our data-driven modeling system adopts

a classical approach taken from the premixed combustion literature, in which a
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progress variable c ≡ c(x, y, t) is used as the prognostic variable over the compu-

tational domain Ω and is introduced as the front marker: c = 0 in the unburnt

vegetation, c = 1 in the burnt vegetation, and the fire front is identified at a given

time as the contour line cfr = 0.5 [40–42, 64]. Using this formalism, the active

burning areas Bc are defined as Bc = {(x, y) ∈ Ω | c(x, y, t) > cfr} (Fig. 2.4). The

progress variable c ≡ c(x, y, t) is used as the prognostic variable and is calculated as

a solution of the propagation equation:

∂c

∂t
= ROS2D |∇c| , c(x, y, t0) = c0(x, y), (x, y) ∈ Ω, t ≥ t0, (2.5)

with c0(x, y) the initial condition at time t0 and with ROS2D the local value of

the Rothermel-based ROS (Eq. 2.4) defined along the normal direction to the fire

front satisfying nfr = −∇c/ |∇c|. Using this formalism, the fire front propagation

can be represented by a level-set function φc(x, y, t) = c(x, y, t) − cfr, which also

satisfies Eq. 2.5. The fire front is represented by the surface φc(x, y, t) = 0 denoted

by Γc(t) = {(x, y) ∈ Ω |φc(x, y, t) = 0}. To solve Eq. 2.5, we follow the choices

made by [68] using a second-order Runge-Kutta scheme for time-integration and a

second-order total variation diminishing scheme with a Superbee slope limiter for

spatial discretization (more details on the numerical solver can be found in [67]).

2.1.2 Lagrangian Front-tracking Solver

Another Lagrangian fire spread solver has also been implemented in the data-

driven modeling system, which represents the fire front at a given time, as a finite

set of markers (or vertices) located through their coordinates {xfr(t), yfr(t)} on the
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two-dimensional horizontal plane. We simulate the evolution of the interface as

the trajectory of the markers without an underlying grid to represent the state of

the system. In the present work, we still use Rothermel’s model to determine the

ROS, and compute two-dimensional fire propagation using Huygens’ principle. This

approach is also used in FARSITE [24]: all these Lagrangian fire growth models

are inspired by the work done by Gwynfor Richards [69, 70] where we consider the

two-dimensional fire shape as ellipsoidal under uniform environmental conditions.

In this approach, a two-dimensional fire is assumed to feature an elliptical

shape under uniform conditions (conditions that are rarely found in reality); the

ellipse is distorted by the near-surface wind conditions and terrain topography. The

fire perimeter is propagated from each marker assuming Huygens’ principle and

thus orienting an elliptical shape at each time step (any marker on the fire front is

considered as an independent source of a new fire of elliptical shape). The shape

and direction of the ellipse are determined by a wind-slope vector, while its size is

determined by the ROS and the time step length. Thus, the Rothermel-based ROS

model is used to predict the spread of the heading portion of the fire, while the

spread in all other directions are inferred from the mathematical properties of the

ellipse. The fire front is expanded over each time step and can be represented as an

envelope of all such individual ellipses around the previous fire front.

As we see in Fig. 2.5, the marker locations at time t represent ignition points

that expand ignition over the time step ∆t as a small ellipse. The new marker loca-

tions at time (t+∆t) are obtained from a nonlinear system of first-order differential

equations with parameters directly computed from meteorological and environmen-

40



𝑏∆𝑡

c∆𝑡

a∆𝑡

Ignition points at time t

Forwarded points at time 𝑡 + ∆𝑡

Figure 2.5: The envelope of ellipses forming the fire front at time (t+∆t)
from ignition points at time t. The parameters a, b and c are model pa-
rameters calculated from meteorological and environmental conditions.

tal conditions. Assuming that the model inputs of the environmental conditions are

available, first we can calculate the Rothermel-based ROS0 using Eq. 2.1 and also

the dimensionless coefficients representing both local wind effect and slope effect,

Φw and Φsl. Following the same techniques implemented in FARSITE, three vec-

torized quantities can be achieved: the effective mid-flame wind speed U [m/s], the

resultant wind-slope vector θ [rad] and the vectorized fire spread rate ROS [m/min]

(details can be found in Ref. [24]). The effective mid-flame wind speed U represents

the virtual windspeed that by itself would produce the combined effect of slope and

wind on the fire spread rate. θ represents the angle of the resultant wind-slope

vector for the direction of maximum fire spread on the local slope at a given vertex.

Based on the Huygens’ expansion method, the length to breadth ratio (LB), the
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head to back ratio (HB) of a single ellipse can be computed as:

LB = 0.936e0.2566U + 0.461e−0.1548U − 0.397 (2.6)

HB =
LB + (LB2 − 1)0.5

LB − (LB2 − 1)0.5
(2.7)

Using these expressions, the geometrical parameters a, b, c can be computed as:

a =
ROS + ROS

HB

2LB
(2.8)

b =
ROS + ROS

HB

2
(2.9)

c = b− ROS

HB
(2.10)

The elliptical curve is updated using the angle differentials xs and ys which deter-

mines the direction normal to the fire front for each vertex {xfr(t), yfr(t)}:

∂x

∂t
=
a2 cos θ(xs sin θ + ys cos θ)− b2 sin θ(xs cos θ − ys sin θ)

(b2(xs cos θ − ys sin θ)2 + a2(xs sin θ + ys cos θ)2)0.5 + c sin θ (2.11)

∂y

∂t
=
−a2 sin θ(xs sin θ + ys cos θ)− b2 cos θ(xs cos θ − ys sin θ)

(b2(xs cos θ − ys sin θ)2 + a2(xs sin θ + ys cos θ)2)0.5 + c cos θ (2.12)

Equation 2.11 and 2.12 are initially derived by Gwynfor Richards and solved

in a predictor-corrector manner [69, 70]. Thus the Lagrangian forward model can

output a set of fire front markers {xfr(t), yfr(t)} at different leading time. It is

worth noting that as the fire front grows and spreads, the distance between two

front markers increases and there is a need to add more front markers in between

in order to obtain a realistic front shape. In the current model, we define a critical

distance based on the initial distance between two successive front markers at the

ignition time, then we gradually add more front markers during the simulation once

the distance between two successive front markers is larger than the critical distance.
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In addition, it is possible that the ellipitical curve crosses over itself and creates some

small loops. A loop-clipping filter algorithm has also been implemented to remove

these loops.

Despite the sophisticated techniques required to deal with markers interpola-

tion and loop clipping, the Lagrangian model is considered to be computationally

more efficient since it does not rely on a 2D grid system, compared with the Eu-

lerian level-set model. However, the level-set model is a very good candidate to

model merging fronts process due to the underlying mathematics and thus does not

require special treatment as in the Lagrangian model [71]. This feature is important

for wildfire spread modeling since often, there are massive spotting fires generated

seperately from the main fire.These spotting fires will grow and merge with others.

With an Eulerian level-set model, it is natural to model this process.

We incorporated both Eulerian and Lagrangian front-tracking solvers in our

forward model. It is of great interest to compare these two modeling approaches

when it comes to fire propagation on a two-dimensional terrain. Figure 2.6 shows

a comparison between Eulerian and Lagrangian front-tracking simulators in a fire

simulation case with moderate southern wind (0.5 m/s). While both simulators

provide the same fire propagation in the head fire region, the Lagrangian simulator

yields a faster ROS on the flanks, making the shape of the burning area significantly

different from the Eulerian simulator. This is due to the modeling assumptions

that while both simulators rely on Rothermel’s model to compute the ROS in the

head fire direction, they use different formulations to propagate the fire in the flank

and rear directions. The Lagrangian modeling approach uses a Huygens’ wavelet
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model which assumes an ellipsoidal fireline shape and correlations for the width

of the fireline are used to spread the fire on the flanks [24, 69, 70]. In contrast, in

the Eulerian level-set simulator, we modified the formulation of the Rothermel’s

model for 2-D propagation following choices made by Chris Lautenberger [53]. This

formulation involves the wind direction angle and is applied locally according to the

local normal vector to the front. Since both models are empirically formulated, we

cannot assess which simulator should be prefered in terms of forecast performance.

One objective of implementing multiple forward models is to have an ensemble that is

as rich as possible in terms of simulated fire front topologies, especially when using

ensemble-based modeling procedure. since ensemble members can be built using

different simulators and thereby represent a wider spectrum of fire front shapes and

positions that are useful to have a representative ensemble.

2.2 Inverse Model

Inverse model aims at finding the model parameters (the “cause”) given a

set of the observation data, it is the “inverse” to the forward problem. In our

current data-driven modeling system, the forward model yields successive fire front

locations given an initial fire location and Rothermel-based ROS parameters. The

inverse modeling procedure estimates either a selection of these ROS parameters

or the initial fire location given the observed fire front locations at the observation

time. The discrepancies between the observed and the simulated fire fronts are

translated into a correction of the inputs to the Rothermel-based ROS parameters
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Figure 2.6: Comparison of fire front propagation between Eulerian
(EUL) and Lagrangian (LAG) front-tracking simulators. Red solid line
represents the fire front line location where c = 0.5 in the Eulerian
model; blue symbols represents the fire front markers’ location in the
Lagrangian model.

(parameter estimation) or directly of the fire front location (state estimation), or

both (dual state-parameter estimation). A list of model inputs to be corrected forms

the control vector, the control vector will be optimized in light of the discrepancy

between simulation and observation. It is worth mentioning that the objective of the

current data-driven wildfire spread modeling system is to improve wildfire spread

forecast using the optimized model inputs, so we rely on the forecast performance

to evaluate the effectiveness and goodness of the inverse modeling approach.

Data assimilation is considered as a probabilistic formulation of an inverse

model problem, where the uncertainties associated with both the model and the
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observation are taken into account. Neither the numerical model or observations

can provide a complete and accurate discription of the physical process when used

alone, data assimilation can combine these two information, assign weights to them

using their individual uncertainties, and infer a more accurate estimate of the model

state or parameters. Data assimilation methods were largely developed for opera-

tional numerical weather prediction, but they have been applied to an increasing

range of earth science disciplines in recent years [32]. There are two main data as-

similation methods: variational and sequential methods. The variational methods

(3D-Var, 4D-Var) are a mature and experienced technique in atmospheric applica-

tions, where such approaches try to find the optimal value of the control vector by

minimizing a cost function measuring its distance to the prior simulations and to

the observations. The sequential data assimilation methods are mainly based on

a Kalman filter algorithm which allows for dynamic error covariances, where new

observations are sequentially assimilated into the model when they become avail-

able. For nonlinear problems, the extended Kalman filter (EKF) and the ensemble

Kalman filter (EnKF) algorithms are developed to deal with such conditions which

are very common in most data-driven application systems. In recent decades there

is a special focus on the ensemble-based data assimilation methods (EnKF and sim-

ilar variants). These methods have become very popular, both due to their simple

implementation and interpretation and their properties with nonlinear models [33].

In this thesis work, we use the ensemble approaches as the main data assimilation

technique applied to wildfire spread modeling.
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2.2.1 Front Distance Measure

The evaluation of the distance between observed fire fronts and simulated fire

fronts is required by any data assimilation algorithm in order to give weights to

the forecast simulations and nudge them toward the observations according to the

modeling and observation uncertainties. Our current data-driven modeling system

adopts two ways to compute the simulation-observation discrepancy.

On the one hand, we use a discretization of both the simulated and observed

fire fronts. The discrepancy between these simulated and observed fronts is then

computed by pairing observed front markers with the same number of simulated

markers. Notice that usually the numerical model resolution is much higher than

observation data, thus the number of simulated front markers is much more than

the number of observed front markers. A selection operator is required to select

the same number of simulated markers in order to pair them with observed markers

one by one. In the current model, we use a simple treatment (taking one out of

several points as seen in Fig. 2.7); and it provided reasonable results in previous

tests [41, 42,72].

After applying the selection operator, we have a set of Nfr simulated markers

which are characterized by the following two-dimensional coordinates:

ys = [(xs1, y
s
1), (xs2, y

s
2), ..., (xsNfr , y

s
Nfr

)]

Similarly, the observation data is discretized as a set of Nfr observed markers; the

observation vector xo is defined as:

yo = [(xo1, y
o
1), (xo2, y

o
2), ..., (xoNfr , y

o
Nfr

)]
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Simulated front 

Observed front

(𝒙𝟏𝒐, 𝒚𝟏𝒐)

(𝒙𝟏𝒔 , 𝒚𝟏𝒔)

Figure 2.7: Front marker pairing method to quantify the differences
between simulated and observed fire fronts.

The distance between simulated and observed fire fronts gives the discrepancy

vector D of dimension 2Nfr and is simply defined as the vector formed by the direct

distance between the paired markers:

D = yo − ys =




xo1 − xs1
xo2 − xs2

.

.

.
xoNfr − xsNfr
yo1 − ys1
yo2 − ys2

.

.

.
yoNfr − ysNfr




(2.13)

This distance vector based on the Euclidean distance and the marker-pairing

method is then used in inverse modeling to infer the corrections of the control

parameters.

The marker pairing method has shown to be effective in relatively simple front
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topology scenarios [41, 42, 72]. However, such method may become difficult to use

for regional-scale wildfires that feature strong heterogeneities in the land surface

conditions. Figure 2.8 shows a case where this marker-pairing method becomes

questionable when the observed fire front features a complex front topology com-

pared with the simulated fire front. In this case, it is difficult to correctly represent

the Euclidean-type distance error by a marker-pairing method, thus the distance

measure may become unsuitable when moving to realistic real-world wildfire events.

Sim

Obs

("#$, &#$)

Sim

Obs

?

("#( , &#()

("#$, &#$)

("#( , &#()

(a) (b)

Figure 2.8: Sketch of the marker-pairing method limitations for a case
where observed fire front features a simple front geometry (a) and inef-
fectiveness where observation features complex front geometry (b).

On the other hand, in collaboration with researchers from INRIA and CER-

FACS though the 2016 CERMACS summer school, we have developed an alterna-

tive called global shape similarity measure to represent the observation-simulation

discrepancy vector in the data assimilation framework [73,74]. This new shape com-

parison method directly considers the burning area Bc as a moving object that can

deform under heterogeneous conditions and thus represents the match (or mismatch)
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between simulated and observed fire burning states. It is derived from image seg-

mentation theory and was already adapted in the context of electrophysiology data

assimilation [75–77]. The idea of assimilating the observation by comparing two

images essentially belongs to the research category of “image assimilation”, which

has also been a popular topic for atmospheric prediction applications [78,79].

We now define a shape similarity measure between an observed front and a

simulated front using the Chan-Vese contour fitting functional [80,81]. In a level-set

formalism, this measure can be written as

J (yo, φc) =
∫

Ω
Hv(φc) [yo − Cmax(yo, φc)]

2 + (1−Hv(φc)) [yo − Cmin(yo, φc)]
2 dx dy

(2.14)

where yo is the observation data (for current wildfire application it is a binary field

seperating burnt and unburnt area), φc the level-set function (φc = c− cfr), Hv the

Heaviside function (Hv(φc) = 0 if φc < 0; Hv(φc) = 1 if φc > 0); and where Cmin and

Cmax are scalar coefficients defined by Cmin = min(C0, C1) and Cmax = max(C0, C1)

with

C0(yo, φc) =

∫

Ω
(1−Hv(φc)) yo dx dy
∫

Ω
(1−Hv(φc)) dx dy

, 0 ≤ C0 ≤ 1 (2.15)

C1(yo, φc) =

∫

Ω
Hv(φc) yo dx dy

∫

Ω
Hv(φc) dx dy

, 0 ≤ C1 ≤ 1 (2.16)

C1 corresponds to the mean of yo across the simulated burnt region (Hv = 1)

and measures the match between the observed and simulated burnt areas. C0 corre-

sponds to the mean of yo across the simulated unburnt region (Hv = 0) and measures

the mismatch between the observed and simulated unburnt areas. If the observed
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and simulated fronts coincide, C1 = 1 and C0 = 0.

Having defined the discrepancy functional J , our objective is now to propose

a distance vector of least square type associated with our front shape similarity

measure. The Chan-Vese functional in Eq. 2.14 involves a Heaviside distribution

that cannot be multiplied univocally, so it is not a least square criterion [73]. Thus

we adopt a pseudo least square strategy by decomposing the Chan-Vese functional

into two parts and approximating them by the least square functionals following the

choice made in [82]:

Jdata(yo, φc) = J +
data(yo, φc) + J −data(yo, φc) (2.17)

J +
data =

1

2

∫

Ω

{[
1 +

2

π
arctan

(φc

ε

)][
yo − Cmax(yo, φc)

]}2
dx dy (2.18)

J −data =
1

2

∫

Ω

{[
1− 2

π
arctan

(φc

ε

)][
yo − Cmin(yo, φc)

]}2
dx dy (2.19)

where ε is a parameter defined with respect to the contour sharpness [83]. Hence a

distance vector can be defined as D = (D+,D−)T with D+ and D− as follows:

D+ =
[
1 +

2

π
arctan

(φc
ε

)][
yo − Cmax(yo, φc)

]
(2.20)

D− =
[
1− 2

π
arctan

(φc
ε

)][
yo − Cmin(yo, φc)

]
(2.21)

Here we present the formulation of the discrepancy vector derived from the shape

similarity measure that we will integrate in the EnKF algorithm. The advantage

of this discrepancy term is that it does not rely on the discretized front markers

and is thus suitable for any type of heterogeneous environment and fire behavior.

In addition, this distance vector using the new front shape similarity measure can

differentiate between “hits”, “false alarms” and “misses”: the term D+ highlights

the “hits” area where the simulated burnt area matches the observed burnt area,
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and penalizes the “false alarms” area where the simulated burnt area is outside the

observed burnt area; the term D− highlights the “misses” area where the observed

burnt area is missed by the simulated burnt area [73]. In Chapter 4, the robustness

of this shape similarity measure is demonstrated with a deterministic state estimator

based on a Luenberger Observer. In Chapter 5, more verification and validation tests

of the shape similarity measure are shown in the context of the dual state-parameter

estimation.

2.2.2 EnKF Algorithm

In current data-driven modeling systems, we rely on the ensemble methods to

do the estimation work when using parameter estimation (whether in standalone

parameter estimation mode or in dual state-parameter estimation mode). Ensemble

methods belong to a general class of particle methods where a Monte Carlo ensemble

is used to represent the probability density function (PDF) of the control variables.

Then the time integration of every ensemble member is processed with the forward

model until the observation time. There are different schemes to update the en-

semble and describe their PDFs given the observation data. In the present study

we rely on ensemble Kalman filter method. EnKF assumes that all PDFs involved

are Gaussian, while in practice the Gaussian assumption may not be satisfied well,

especially when they are used for highly nonlinear problems. There exist multi-

ple solutions towards non-Gaussianity problems including Gaussian mixture model,

multiple Gaussian kernels and other variants of particle filter method [84,85].
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Figure 2.9: Flowchart of the EnKF algorithm applied to two successive
assimilation windows [t− 1, t] and [t, t+ 1]. For clarity purpose, only 4
model trajectories are represented (instead of a large ensemble).

The control vector includes the uncertain parameters to be estimated over

one assimilation cycle. A prior estimates of these control parameters referred to

as the forecast xf is generated through a Monte Carlo random sampling based on

an assumed Gaussian PDF. The EnKF algorithm is sequentially applied over each

assimilation window, each sequence corresponding to a two-step procedure (the fore-

cast and analysis steps) triggered by new observation data. Figure 2.9 shows the

EnKF flowchart for two successive assimilation windows [t− 1, t] and [t, t+ 1]. As-

sume that we have Ne ensemble members at time (t− 1), each member carries one

realization of the initial guess of the control parameters x = xf (the forecast en-

semble). During [t− 1, t], the forward model produces an ensemble of predictions
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of the fire front position at time t, designated as yf
t = G

(
xf
)
, where G is the obser-

vation operator Gt and describes the mapping from the control parameters to the

fire front position at the observed time t. These predictions are then compared to

the observed fire front position at time t, designated as yo
t . Thus, the discrepancy

Dt = D
[
yo

t ,G
(
xf
)]

provides an estimate of the distance between observations and

model predictions. This distance can then be used to update the control variables:

xa = xf + KtD
[
yo

t ,G(xf)
]

(2.22)

Kt = Pf
t G

T
t

(
GtP

f
t G

T
t + R

)−1
(2.23)

Pa
t =

(
In −Kt Gt

)
Pf

t (2.24)

where Pf
t is the forecast error covariance matrix representing errors in the control

variables, and R is the observation error covariance matrix representing observation

errors. Thus the new estimates of the control parameters x = xa (the analysis) are

defined as a correction to the forecast vector xf and the magnitude of the correction

is controlled by the Kalman gain matrix Kt. The updated control vector xa and

ensemble predictions ya
t = G (xa) can then be used to initialize the forecast over the

next time period [t, t+ 1].

The EnKF algorithm does not require the explicit use of an error covariance

matrix Pt and an observation operator Gt. Instead, these matrices can be estimated

using the finite number of members in the ensemble:

Pf
tG

T
t =

Ne∑

k=1

(
x

f,(k)
t − xf

t

) (
y

f,(k)
t − yf

t

)T

Ne − 1
(2.25)

GtP
f
tG

T
t =

Ne∑

k=1

(
y

f,(k)
t − yf

t

) (
y

f,(k)
t − yf

t

)T

Ne − 1
(2.26)
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where xf
t is the forecast ensemble of the control variables at time t, and x

f,(k)
t repre-

sents one of the Ne ensembles (k = 1, ..., Ne). The overline denotes the mean value

over the ensemble. After updating all ensemble members, the posterior (analysis)

error covariance matrix Pa
t can also be estimated from the analysis ensemble xa

t :

Pa
t =

Ne∑

k=1

(
x

a,(k)
t − xa

t

) (
x

a,(k)
t − xa

t

)T

Ne − 1
(2.27)

In Eq. 2.22 the observation data yo
t are used to compute the discrepancy between the

simulations and the observations. It is known that if the same observations are used

to update every ensemble member, the ensemble will systematically underestimate

the analysis error covariance [86, 87]. In the standard EnKF formulation, random

perturbations were added to the observation data:

y
o,(k)
t = yo

t + eo,(k) (2.28)

where eo,(k) is drawn from N (0,R).

This method can be classified as perturbed observations (or stochastic) EnKF,

and has been widely used in the early stages of the EnKF methodology [86,88–90].

An alternative which avoids the perturbations of the observation is a class of square

root (or deterministic) filters [87,91,92]. The central idea is to update the ensemble

mean and spread instead of updating directly each individual ensemble member. In

this formulation, the ensemble mean (single analysis) denoted by xa
t reflects an esti-

mate of the true control parameters, while the ensemble spread denoted by x̂a
t reflects

the uncertainty of this estimate, and calculated as x̂
a,(k)
t = x

a,(k)
t −xa

t (k = 1, ..., Ne).

Once the analysis ensemble mean and spread are calculated, the analysis ensem-

ble can be easily constructed from these two quantities. In our current data-driven
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modeling system, an Ensemble Transform Kalman filter (ETKF) algorithm has been

implemented, in order to avoid observation perturbations and accompanying sam-

pling error introduced in the perturbation process. In the following, we provide a

summary of ETKF algorithm adapted from Ref. [93]. We have left out the subscript

t since they are all computed at the same analysis time step.

In the ETKF algorithm, we seek ensemble spreads which satisfy

Pf =
1

Ne − 1
x̂f(x̂f)T (2.29)

Pa =
1

Ne − 1
x̂a(x̂a)T =

1

Ne − 1
x̂fW(x̂fW)T (2.30)

Let Zf =
1√

Ne − 1
x̂f , and then we try to find Za = ZfW so that

Pf = Zf(Zf)T (2.31)

Pa = Za(Za)T = ZfWWT(Zf)T (2.32)

where W is the transform matrix. From the classical Kalman filter algorithm, we

know the analysis error covariance Pa should satisfy

Pa = (I−KG)Pf (2.33)

Meanwhile, K can be written as

K = PaGTR−1 (2.34)

where R is the observation error covariance. Combining Eqs. 2.31, 2.32, 2.33

and 2.34 we have

Za(Za)T = Zf
[
I−WWT(Zf)TGTR−1GZf

]
(Zf)T (2.35)
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Compare Eqs. 2.32 and 2.35 we know that one solution is

WWT = I−WWT(Zf)TGTR−1GZf (2.36)

Since GZf =
1√

Ne − 1
ŷf , we can re-arrange Eq. 2.36 and get

WWT =
[
I +

1

Ne − 1
(ŷf)TR−1ŷf

]−1

= (Ne − 1)
[
(Ne − 1)I + (ŷf)TR−1ŷf

]−1

(2.37)

Therefore we can take

W =
√
Ne − 1

[
(Ne − 1)I + (ŷf)TR−1ŷf

]− 1
2 (2.38)

Thus we are able to compute the analysis ensemble spread x̂a = x̂fW. The anal-

ysis ensemble mean xa is computed via the traditional Kalman gain update using

Eq. 2.32, 2.34 and 2.37

xa = xf +
[
(Ne − 1)I + (ŷf)TR−1ŷf

]−1
(ŷf)TR−1D(yo,yf) (2.39)

where D(yo,yf) denotes the innovation term evaluating the discrepancy between

simulated front shape and observed front shape.

EnKF methods rely on an ensemble of model simulations to characterize the

mean and covariance of its probability distribution. The accuracy of the sampled

mean and covariances are ensured when using an optimal ensemble size. In the

present study, we have examined the optimal ensemble size for spatialized parameter

estimation method in Chapter 3 and dual state-parameter estimation method in

Chapter 5. It is worth noting that the optimal ensemble size is case-specific, whether

the selected ensemble size is directly applicable to other cases is unknown.
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Besides, in order to compensate for the covariance underestimation issue due

to the limited ensemble size, a covariance inflation scheme should be used in practice.

This problem occurs in all EnKF algorithms and can lead to filter divergence if not

taken care of. There are various inflation schemes in literature, here we adopt the

relaxation to background method to inflate the analysis ensemble spread, which also

inflate analysis error covariance matrix. To be specific, we use the relaxation-to-prior

perturbations (RTPP) scheme which can be found in [94]:

x̂a
t = (1− α)x̂a

t + αx̂f
t (2.40)

where α ranges from 0 to 1 featuring a small to large relaxation-to-prior perturba-

tions.

Another important aspect of any EnKF algorithm is the treatment of the

spurious correlations that appear between the variables that are known to be un-

correlated, or from the sampling error introduced by the finite ensemble size [33].

Covariance localization is primarily used to remove such spurious correlations in

practice. In parameter estimation mode, spurious correlations imply that control

parameters that are supposed to be uncorrelated with an observation, will experi-

ence a small unphysical update. In Chapter 3, a dynamic distance-based localization

scheme is implemented to restrict the correction of the control parameters in the

vicinity of the front and to avoid spurious corrections far away from the front. Note

that this is our first step to implement a localization scheme in fire spread simula-

tion scenario, while future work is needed towards better addressing the spurious

correlations.
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An important aspect of the EnKF method is that the “analysis” solution relies

on the ratio of model error over observation error. Assume the observation error

is very large, then the posterior solution after EnKF update will still remain close

to the prior (free forecast). In contrast, if the observation error is very small, then

the posterior solution will move quite close to the observation data. In the present

study, we always assume the observation error is small, thus our objective is to

check whether the data assimilation algorithms are able to nudge the simulation

to match the observation data after EnKF update. As a premilinary test, we also

assume the observation error covariance matrix is diagonal. While such assumption

of using a diagonal error covariance matrix may not be entirely representative of

the true error structure, future work should consider the spatial correlations of the

error characteristics [95, 96].

2.3 Technical Implementations

Our data-driven wildfire spread modeling system has two main components:

the forward model and the inverse model. The forward model consists of an Eule-

rian front-tracking simulator and a Lagrangian front-tracking simulator. The inverse

modeling procedure consists of three components: a standalone parameter estima-

tion algorithm, a standalone state estimation algorithm and a dual state-parameter

estimation algorithm. The present thesis work is a continuation of previous work

that has led to the development of a prototype wildland fire spread simulator called

FIREFLY through a collaboration work between UMD and CERFACS. Initially
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FIREFLY was implemented in Fortran using the OpenPALM dynamic code cou-

pler2, so the following spatially-distributed parameter estimation algorithm, which

is an extension of the previous FIREFLY system, is also developed in Fortran with

the OpenPALM code coupler. Later through the collaboration with researchers

from INRIA and CERFACS, we started building a toy model of the current data-

driven modeling system in Matlab using the VerdandinMatlab library. The state

estimation and dual state-parameter estimation work presented in Chapter 4 and 5

is thus done in a Matlab coding environment. Code implementation in Matlab with

the VerdandinMatlab library offers great efficiency in coordinating with other re-

searchers on this project, however we will unify the spatially-distributed parameter

estimation based on the OpenPLAM environment and state estimation (as well as

dual estimation) based on the VerdandinMatlab library in future.

OpenPALM Coding Environment

The OpenPALM dynamic code coupler has been implemented on the Univer-

sity of Maryland Deepthought2 high performance computing cluster3. OpenPALM,

developed at CERFACS since 1998, allows for data parallelism as well as for the in-

tercommunication of several programs through the message passing interface (MPI)

technology. A coupled component can be launched and release resources upon ter-

mination at any moment during the simulation. Computing resources (such as the

required memory and the number of concurrent processors) are handled by the

2http://www.cerfacs.fr/globc/PALM_WEB/

3https://www.glue.umd.edu/hpcc/
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OpenPALM driver.

An OpenPALM application can be described as a set of computational units

arranged in a coupling algorithm. The different units are controlled by conditional

and iterative constructs and belong to algorithmic sequences called computational

branches. A branch is structured like a program in a high-level programming lan-

guage: it allows the definition of sequential algorithms. Inside a branch, the cou-

pled independent programs, the units, are invoked as if they were subroutines of the

branch program. It is then possible to define communication points between units

from different branches to exchange, send and receive data. OpenPALM applica-

tions are implemented via a graphical user interface called PrePALM (Fig. 2.10). In

this interface, the programmer initially defines the coupling algorithm: number of

components (units), sequential (units within the same branch) and parallel (sepa-

rated branches) sections, resources management. Then, the actual communications

are materialized by points at the top of the unit box (corresponding to received

data) or at the bottom (corresponding to sent data); these variables are provided

by/to other program units through MPI communications (dashed lines).

In the FIREFLY system, OpenPALM is helpful to exchange data between the

fire spread model, the routines processing geophysical data and the mathematical

units required for data assimilation. Figure 2.10 presents the PrePALM interface

related to a deterministic run of the fire spread model in the data-driven modeling

system. There are five branches in total: four branches correspond to the pre-

processing of the input parameters, the generation of the terrain topography in

yellow, the near-surface wind velocity in blue, the biomass fuel distribution and
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properties in green, as well as the fire initial condition in orange. The final branch

in red corresponds to the spatial and temporal integration of the fire spread model

itself, receiving data from the four other branches. Besides, an important component

of the current modeling system is PARASOL, which is written in Tcl language,

used to run multiple instances of the same code (task parallelism). In the EnKF

framework, this is used to manage the ensemble running of the fire spread solver.

Figure 2.10: PrePALM interface corresponding to the deterministic ver-
sion of the data-driven modeling system (only forward model, without
data assimilation).
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Chapter 3: Spatially-distributed Parameter Estimation

Introduction

In a data-driven modeling system, the parameter estimation approach is a way

to correct and optimize physical parameters required as inputs to the forward model,

in order to account for a significant part of the model bias and uncertainties with a

positive effect on the short-to-medium range prediction performance [36]. In wildfire

applications, the ROS formulation (Eq. 2.3) requires terrain topography (slope and

aspect), vegetation properties (moisture content, fuel type, fuel layer depth, etc) and

near-surface wind conditions. These inputs are introduced as a set of parameteri-

zations that correspond to simplifications of the fire dynamics. The optimal value

of some of these input parameters is thus intrinsically uncertain. While the terrain

topography and the biomass fuel property data could be relatively easy to measure

and access, the effect of the local wind on fire propagation remains challenging:

a wildfire will create its own meteorological condition near the active flame area,

these local wind profiles continue changing the fireline propagation [97]. Current

fire spread models do not explicitly account for these interactions. Therefore, it is

of significant interest to rely on parameter estimation to retrieve the realistic local

wind conditions in order to overcome (at least partially) the lack of fire-atmosphere

63



interaction representation.

This chapter is dedicated to designing and evaluating a stochastic EnKF strat-

egy to estimate the near-surface wind direction and speed; the evaluation is carried

out for the 30-hectare controlled grassland burn trial, FireFlux I. This work has

been published in Fire Safety Journal [72].

3.1 Towards Large Scale Problems

Initially FIREFLY adopted a parameter estimation approach using the EnKF

algorithm, in which the control parameters were assumed to be uniformly dis-

tributed [41, 42]. This assumption is reasonable for small-scale fires. The data

assimilation methodology was first evaluated against a 16 m2, flat, controlled grass-

land burn experiment (personal communication of the data by King’s College Lon-

don – Ronan Paugam, Martin Wooster). The observations of the fire front positions

were derived at a high temporal frequency from thermal infrared imaging; the obser-

vation error was supposed to be very low [58]. The estimation targets (i.e. the wind

speed and direction, the vegetation moisture content, the vegetation fuel surface-

to-volume ratio) were considered uniform; their sequential estimation at 14-s time

intervals was found to increase the model forecast performance over several assim-

ilation cycles with a time persistence that was longer than for a state estimation

approach (in which the estimation targets are directly the front marker positions).

Figure 3.1 shows the performance of the data-driven run. The accuracy of the fore-

cast, while still significantly better than that obtained in the free run simulation
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(without EnKF update over the fire duration), rapidly decreases over time. The

correction remains valid longer for the parameter estimation approach than for the

state estimation approach. However, the variations we see in the heading portion

of the observed fire cannot be accounted for when estimating uniform parameters,

while the state estimation approach provides enough degrees of freedom to modify

the shape of the simulated fire front and to match that of the observed fire front at

the update time. These results demonstrate that parameter estimation is required to

increase forecast performance; and the parameters need to be spatially distributed

to represent the anisotropy in wildfire behavior.

While the initial focus on a small-scale experiment offered the benefits of con-

trolled quasi-uniform environmental conditions, there is an obvious need to extend

the FIREFLY validation effort to the case of field-scale experiments and scenarios

that are more representative of accidental wildfires, for which we have to deal with

highly heterogeneous biomass fuel and winds and with fire behavior that may not

be isotropic (the wildfire behavior may significantly change between the head of the

fire and its flanks).

To overcome these limitations, we have developed a grid-based spatially dis-

tributed parameter estimation approach, whose objective is to control the values of

the near-surface wind speed and direction at different spatial locations. Note that

this feasibility study focuses on the wind parameters but could easily be extended

to biomass fuel parameters such as the fuel moisture content. Note also that the

extension of FIREFLY to regional-scale simulation is far from trivial because this

extension requires an increase in the number of unknown parameters to treat het-
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Figure 3.1: Uniformly-distributed parameter estimation approach ap-
plied to a small-scale experiment: comparison between simulated (lines)
and observed (symbols) front positions at 106 s. The simulated front
position is the mean position calculated as the average of the EnKF
ensemble; dashed lines (solid lines) correspond to parameter estimation
(state estimation). (top) Forecast (with an EnKF update at 92 s and
model integration until 106 s) (bottom) Analysis (with an EnKF update
at 106 s). Credit: Mélanie Rochoux [42].

erogeneous conditions (i.e. spatial variations in biomass fuel and wind), which in

turn results in new challenges in the EnKF algorithm as well as an increase in the

computational cost. The present chapter shows the results of this new approach on

the 30-hectare field-scale controlled burn experiment named FireFlux I and referred
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to as FireFlux in the following [54]. Synthetic test cases representative of FireFlux

(OSSE), where the ROS is approximately 1 m/s in the wind direction and where the

wind parameter estimation is sequentially performed at 100-s time intervals, were

carried out in a preliminary study to verify the newly implemented features.

3.2 Control Vector Definition

The control vector denoted by x gathers all the variables (here the wind speed

and direction parameters at different spatial locations) that are corrected by the

EnKF. A priori estimate of these control parameters referred to as the forecast xf is

generated through a Monte Carlo random sampling based on an assumed Gaussian

PDF; specific details on the sampling are provided in Sec. 3.3.1. An ensemble of

wind direction and speed values is then obtained. Each member of the ensemble is

corrected through the EnKF update equation (Eq. 2.22) to formulate the posterior

estimate of the control parameters referred to as the analysis xa as we discussed

previously in Chapter 2.

The control parameters are typically estimated at a much coarser resolution

than the computational grid used in the front-tracking solver. First, because all

inputs such as meteorological data are usually provided at much coarser resolution.

For instance, the finest resolution used by the fire-atmosphere coupled system Fore-

Fire/MesoNH is 50 m [28]. Second, if the input parameters were independently

estimated at each grid point of the computational domain, the correction would

only have an impact where the prior fire fronts propagate during the assimilation
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time window (i.e. in-between two successive observation times). Such an approach

would limit the persistence of the correction over time and the impact on the fore-

cast quality. Third, if the number of control parameters is much larger than the

number of possible fire front topologies, the problem would probably become highly

under-determined and computationally heavy.

In the present application to FireFlux, vegetation and terrain topography pa-

rameters are still treated as uniform, but wind parameters (magnitude and direction)

are now treated as functions of space. These wind spatial variations are described

on a uniform rectangular Cartesian grid. In the following, we will present results

obtained with a grid featuring 1-m resolution and a wind grid featuring 76-m res-

olution in the x-direction and 79-m resolution in the y-direction; both wind speed

and direction are linearly interpolated between the wind grid nodes. The maximum

size of the control vector x is thus equal to the total number of wind grid nodes (66

nodes) multiplied by two (66 values for the wind speed magnitude and direction);

further details on the size of x are provided in Sec. 3.3.2. The control vector is

assumed constant in time over an assimilation window and is only modified when

a new observation is available and the algorithm proceeds to the next assimilation

cycle.

Note that the wind information manipulated in FIREFLY corresponds to near-

surface wind defined at mid-flame height (here at 2-m elevation). Note also that

numerical tests with wind grids featuring from 1 to 231 nodes have shown that

while the FIREFLY solution is sensitive to the wind grid at resolutions coarser than

100 m, it becomes grid-converged (i.e. independent of the wind grid) at resolutions
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finer than 100 m. Our baseline configuration with 66 nodes is thus grid-converged.

3.3 Adaptation of the EnKF Algorithm

3.3.1 Constraints on the Monte Carlo Random Sampling

The generation of an ensemble is an essential part of the EnKF algorithm.

It shall include a variety of fire front shapes, positions and topologies to represent

all possible scenarios over the fire duration. The ensemble is generated based on

perturbations of the control parameters; no perturbation is added to the fire ignition

state since we only perform parameter estimation in this case.

There are two main requirements in this perturbation procedure for making

it effective [41]: these control parameters need to be uncertain; and the fire front

characteristics need to be sensitive to the perturbations in the control parameters.

Stated differently, the EnKF algorithm becomes ill-posed when perturbations in the

control parameters do not result in observable changes of the system state. A solu-

tion to this problem consists in introducing bounds in the search space for the wind

parameters. The EnKF algorithm was therefore modified to use truncated Gaussian

PDF when generating these ensemble members. In the FireFlux experiment, the

surface wind blew mainly from North to South (where we define wind from North as

0◦). The bounds introduced in the wind direction are due to a lack of sensitivity of

the ROS model to this parameter when the wind blows against the direction of fire

propagation (see Fig. 3.2a where wind-opposed spread corresponds to wind angles

smaller than -90◦ or greater than +90◦). For the FireFlux case, the search space for
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the wind direction was restricted to the South-West/South and South/South-East

quadrants. Similarly, the bounds introduced in the magnitude of the wind speed

are due to a lack of sensitivity of the ROS model to the wind speed and direction

when the ROS takes low values. For the FireFlux case, the ROS of the head fire was

close to 1 m/s, which corresponds to a wind speed close to 2 m/s (see Fig. 3.2b);

the search space for the wind speed was therefore restricted to values above 1 m/s.
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Figure 3.2: Sensitivity of the Rothermel-based ROS model implemented
in FIREFLY to the wind angle (angle between the wind direction and the
fire spread direction) (a) and wind speed (b). (b) The wind direction is
0◦. (a) The wind speed is 2 m/s. In wind-assisted directions, FIREFLY
uses a correction to Rothermel’s ROS expression based on the cosine of
the wind angle; in wind-opposed directions, FIREFLY uses Rothermel’s
ROS value without wind.

3.3.2 Localization Adapted to Front-tracking Problem

An ill-posed problem is also found when the EnKF algorithm tries to optimize

the values of wind speed and direction at wind grid nodes that are remote from
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the fire region. In a front-tracking problem, the information is localized in the

vicinity of the fire front. Thus, to avoid this problem, we adopt a simple localization

methodology in which only the wind grid nodes that are sufficiently close to the

fireline (i.e. within a user-specified threshold distance) are included in the control

vector x. Thus, the size of the control vector is not constant in time and changes

dynamically over successive assimilation cycles. For the FireFlux case, we use a wind

grid resolution of 76 m × 79 m, and a threshold distance approximately equal to

twice the wind grid spacing (140 m). Figure 3.3 shows the activated wind points with

a threshold distance to the observed fire front equal to 140 m for several observations.

Thus, in addition to filtering out noise in the Kalman gain estimation, localization

allows a significant reduction in the problem size (starting from a wind grid with

66 nodes, the number of nodes included in the control vector x remains below 32

during the full FireFlux case).

3.3.3 Cold Start Issue

In FireFlux simulations, at ignition time, the initial guess of the wind pa-

rameters (the first forecast) corresponds to a uniform wind field. This initial guess

leads to predictions of the fire front position at the first analysis time (100 s) that

are far from the observations and that cannot be totally corrected by the analysis

step, even when increasing the size of the ensemble Ne. To obtain more optimal

fire front positions and overcome this cold start, the EnKF (forecast and analy-

sis) is applied iteratively during the first assimilation cycle. When applying the
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Figure 3.3: Activated nodes (that are part of the wind grid – dashed
lines) with a threshold distance to the observed fire front equal to 140 m;
several observed fire fronts are represented as black line.

next EnKF iteration, we use the analysis of the previous iteration as initial guess

for the next iteration. To be specific, we use the posterior mean value of control

wind parameters as the prior mean value for a second EnKF iteration; note that

the standard deviation (STD) of control wind parameters is kept unchanged in the

second iteration in order to have a robust ensemble spread. We found that only two

iterations are sufficient to retrieve a consistent analysis in this case. For the present

test cases, this iterative procedure is only applied to the first assimilation cycle and

is implemented following the simplified quasi-outer-loop (QOL) algorithm, which

is a simplified version of “running in place” (RIP) algorithm proposed by Yang et

al [98]. This is a way to address model nonlinearities.
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3.4 Verification Test: Observing System Simulation Experiment

We first evaluate the EnKF strategy presented in Sec. 3.3 on a synthetic

test (OSSE) that is representative of the FireFlux conditions and that controls

the spatially-varying wind speed and direction.

3.4.1 Numerical Settings

In the OSSE framework, synthetic observations are generated using the Eu-

lerian front-tracking solver in FIREFLY and user-prescribed values of the control

parameters. This corresponds to a data assimilation case in which the “true” value

of the control vector x exists and is known. The observations are therefore obtained

by integrating the forward model using the “truth” xt and by perturbing the true

fire front positions. The prior estimate of the control vector xf is given by directly

perturbing the truth xt. These perturbations are introduced as errors that follow a

Gaussian PDF (fully characterized by their mean and STD). In this case, the per-

formance of FIREFLY is simply evaluated by examining its ability to re-construct

the true fire behavior and the corresponding prescribed wind field. We focus here

on the accuracy of the EnKF analysis with respect to the truth.

In this test, the computational domain size is 380 m × 790 m, with a spatial

resolution of 1 m. Observations are available at time 100 s to be consistent with the

FireFlux case presented in Sec. 3.5. Since we focus on the analysis performance, the

total simulation time is 100 s, with a time step of 0.02 s. Each simulated fire front

is discretized using 100 markers. The EnKF ensemble has 200 members. Synthetic
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observations are generated using a spatially-varying wind field created on a (76 m

× 79 m) wind grid, the same wind grid resolution as the FireFlux case. Figure 3.4a

shows the true wind field which we use to generate the observations. The threshold

value for activating wind grid nodes is 140 m. The prior values of the control

parameters are selected using (truncated) Gaussian PDF with an assumed STD of

1 m s−1 for wind speed and 30◦ for wind direction; recall that we consider a uniform

wind to initialize the EnKF (see Fig. 3.4b).

Since the observation error STD is small (1 m), a successful EnKF would

reduce the spread (i.e. the level of uncertainty) in the analysis ensemble and provide

an analysis estimate of the control parameters that corresponds to a mean fire front

position that is “closer” to reality (in terms of shape and position). We consider the

following performance metrics: the PDF of the wind speed and direction values at

the activated wind grid nodes; the PDF of the fire front marker positions at different

simulation times; and the distance to the observed fire front. These metrics are

calculated for the free run simulation (without data assimilation) as well as for the

analysis for the data-driven simulation over the 100-s time window.

3.4.2 Performance of the Two-iteration EnKF Algorithm

Figure 3.5 presents a comparison, at time t = 100 s, between the true fire front

position (the observation since the observation error STD is small) and different

predictions based on FIREFLY: the mean (i.e. average over the EnKF ensemble at

a given front marker position) fire front position produced without any analysis,
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Figure 3.4: Wind field comparison between (a) truth which we use to
generate observations and (b) uniform wind field we use to initialize the
EnKF.

called the free run or free forecast; the mean fire front position based on an analysis

but produced without the two-iteration procedure, called analysis-1; and the mean

fire front position based on an analysis with the two-iteration procedure, called
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analysis-2. The free forecast features a wrong direction of the head fire. In contrast,

the analysis-1 and analysis-2 predictions correctly capture the South-East spread

direction. Still, the analysis-1 prediction underestimates the ROS at the head of the

fire and overestimates the spread on the eastern flank of the fire. This is further

corrected in the second iteration. The analysis-2 prediction is indeed located very

close to the true fireline position, thereby demonstrating the benefits of the proposed

two-iteration procedure. The first iteration primarily addresses the spread direction

error when this is significant, while the second iteration reduces the error in the

ROS amplitude.

The differences in fire perimeters observed in Fig. 3.5 are due to differences

in the predicted wind field. We examine these differences in Fig. 3.6 in terms of

estimates of the wind direction at one particular point located near the head fire,

(x, y) = (228 m, 711 m) (marked as point w in Fig. 3.5). This point w is selected

since the wind direction at this particular location has the most significant impact

on the heading part of the fire front. Figure 3.6 shows at the analysis time 100 s,

the PDF of the wind angle at point w, before (top panel) and after (bottom panel)

the EnKF analysis. In both plots, the mean estimate of the wind direction is

indicated and compared to the true value (-30◦ – black cross) used to generate

the synthetic observations. The prior PDF features an incorrect ensemble mean

(8.5◦ – black circle) and a large scatter (STD of 32◦) in which the true value is

included. In contrast, the posterior PDF features a reduced scatter by a factor of

two (STD of 14.5◦) and an ensemble mean (-31◦) much closer to the true value.

Similar conclusions could be drawn for the wind speed and for other locations in
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Figure 3.5: Verification OSSE test with synthetic observations and a
prescribed spatially-varying wind field. Comparison of fire front posi-
tions at time t = 100 s: true fireline (cross symbols); mean free forecast
(dashed blue line); mean analysis with one iteration, analysis-1 (dashed
red line); mean analysis with two iterations, analysis-2 (solid red line).
The location of the wind point indexed by w and of the front marker
indexed by m are indicated.

the vicinity of the fire front (not shown here).

We also examine how the PDF of the fire front marker positions is changed

according to the variations in the wind speed and direction. We focus here on the

analysis of the front marker m that is located near the head fire (see Fig. 3.5).

Figure 3.7 shows the PDF of the marker m position in terms of x-coordinate (left
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Figure 3.6: PDF of the wind direction at the grid point w over the
time window [0; 100 s], associated with the free forecast (without data
assimilation – top panel) and with the analysis (after the EnKF update
at time 100 s – bottom panel). The wind grid node w is located at
(228 m, 711 m), see Fig. 3.5. Histograms are reconstructed from the
ensemble; circles correspond to the mean estimate of the ensemble; and
crosses correspond to the reference (true value of the wind direction).

panels) and y-coordinate (right panels) at time 100 s. Consistently with Fig. 3.6,

Fig. 3.7 shows that the correction of the front marker m is able to correctly track

the true front marker with a significantly reduced scatter and reduced bias on the

marker position x-coordinate (the mean value of the marker position y-coordinate
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is already accurate in the prior ensemble since there are no significant uncertainties

in the North-South direction).

In summary, these good results obtained in a synthetic case representative of

FireFlux confirm that the new features of the EnKF-based parameter estimation

approach (truncated PDF, localization, iterative EnKF) are correctly implemented

and valuable. They demonstrate the ability of FIREFLY to match the observed fire

front position at the analysis time in a case where observations are assumed to have

a very small error.

3.5 Validation Test: Application to the FireFlux Experiment

We now turn to the evaluation of our EnKF strategy presented in Sec. 3.3

on the FireFlux experiment (30-ha) that is more representative of large-scale wild-

fires and is useful to validate our new spatially-distributed parameter estimation

approach. In the present study, the observations are produced by a reference

ForeFire/Meso-NH simulation that is assumed to be physically consistent with re-

ality [30].

3.5.1 Overview of the FireFlux Experiment

The FireFlux experiment corresponds to a 30-hectare fire burn [54]. The main

biomass fuel was tall grass, which in the modeling, is assumed to be homogeneous.

During the experiment, the surface wind blew mainly from North to South (ap-

proximately 10◦ into the South-West direction). The ROS is approximately 1 m/s
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Figure 3.7: PDF of the front marker m (see Fig. 3.5) at time 100 s,
associated with the free forecast (without data assimilation – top panels)
and with the analysis-2 (after the EnKF update at time 100 s – bottom
panels). Left (right) panels correspond to the x-(y-)coordinate of the
front marker m. Histograms are reconstructed from the ensemble; circles
correspond to the mean estimate of the ensemble; and crosses correspond
to the reference (true value of the front marker location).

in the upwind direction; and the fire duration is approximately 15 min. The fire

was ignited on the North side of the lot and propagated into the southern direction

(see Fig. 3.8). Details on the environmental conditions required to set up the ROS
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model in FIREFLY can be found in Table 3.1. FireFlux represents a typical case of

wind-driven fire propagation over a flat terrain.

Table 3.1: Input parameters of Rothermel’s ROS model corresponding to the Fire-
Flux conditions. These parameters are treated as invariant (in space and time)
except for Uw and αw that are the control variables.

Parameter name (unit) Symbol Value

Fuel depth (m) δv 1.5

Fuel loading (kg/m2) m′′v 1.08

Fuel moisture content (dead fuel) (%) Mv 9

Fuel heat of combustion (J/kg) ∆hc 1.543e+7

Fuel particle surface-to-volume ratio (m−1) Σv 5000

Fuel particle mass density (kg/m3) ρp 400

Fuel moisture content at extinction (%) Mv,ext 30

Wind speed (at mid-flame height) (m/s) Uw 2.0

Wind direction (at mid-flame height) (◦) αw 10

3.5.2 Observation Data

The FireFlux experiment was originally proposed as a validation experiment

for coupled fire-atmosphere models and it has been used by a number of research

groups as a benchmark test for Computational Fluid Dynamics (CFD) model val-

idation. One limitation is that the instrumentation was mainly dedicated to the

analysis of the smoke plume rather than the fire spread: for instance, the time evo-

lution of the fireline was not tracked. Still, the arrival time of the fire front was

recorded at two instrumented towers; this information was used by Filippi et al. [30]

to establish the accuracy of ForeFire/Meso-NH simulations when configured in a
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two-way coupling mode (ForeFire is a 2-D front-tracking solver used to represent

the fire propagation at the land surface and Meso-NH is a 3-D meso-scale atmo-

spheric solver used to account for the vertical and horizontal wind patterns of the

turbulent atmospheric flow). The two-way coupling mode accounts for the effects of

the fire-induced micrometeorology and was shown in [30] to be an important factor

in providing good agreement between numerical results and experimental data. As

mentioned in the introduction, we use the ForeFire/Meso-NH fire perimeters pro-

duced by Filippi et al. [30] as a surrogate for experimental observations. In the

ForeFire/Meso-NH simulations, the horizontal resolution is 10 m and the vertical

resolution at ground level is 3 m. We consider observations at 100-s time intervals

over a period of 800 s. Figure 3.8 shows the full series of available observations;

we can notice an acceleration of the fire spread between 200 and 400 s due to the

interactions between the fire and the near-surface wind.

3.5.3 Numerical Settings

The Eulerian front-tracking solver in FIREFLY uses a computational domain

that covers the size of the grass area burnt during the experiment, and is 380-m

long in the x-direction (the West-East direction) and 790-m long in the y-direction

(the South-North direction); the total size of the computational domain is therefore

380 × 790 m2 or 30 hectares (ha). The spatial resolution used by the solver is

1 m. Initial conditions for the fireline are treated in an approximate way using the

observed fireline shortly after ignition time (14-m wide in the x-direction and 4-m
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Figure 3.8: Available observation data (solid lines) produced by a refer-
ence ForeFire/Meso-NH simulation at 100-s time intervals between 100
and 800 s. The fire spreads from top to bottom (North to South). The
dashed lines correspond to the wind grid (76 m × 79 m).

deep in the y-direction) and without accounting for the fact that in the experiment,

fire ignition was set by two walking fire crews [30]. The total simulation time is

800 s. The temporal resolution of the fire propagation solver is 0.02 s.

As in the previous OSSE test case, the control vector is made of the wind direc-

tion and speed at selected grid nodes on the 76 m × 79 m wind grid (the threshold
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distance for activation is 140 m). We start with a wind field of uniform values at all

wind grid nodes. The initial wind speed has a mean value of 2 m s−1 with a STD

value of 1 m s−1; the initial wind direction has a mean value of about 10◦ with a STD

value of 30◦. These values are selected based on rough estimates of uncertainties as

well as with the intent to avoid the classical problem of ensemble collapse [99]. The

EnKF ensemble has 200 members. The wind values for all ensemble members are

then generated using (truncated) Gaussian PDFs corresponding to these mean and

STD properties. These settings are identical to the OSSE test case (see Sec. 3.4.1).

For the observation data, we discretize the observed fireline using 100 equally

spaced markers. We adopt the previously discussed Lagrangian treatment to eval-

uate the discrepancy between simulated and observed fire fronts by calculating the

Euclidean distance between the 100 observed markers and the 100 simulated mark-

ers that are paired one by one (see Sec. 2.2.1). The observation error is assumed

small (1 m) and independent for each fire front marker.

The 800-s simulation time is divided into eight 100-s-long data assimilation

cycles: the cycles are characterized by seven analysis events, called A1–A7 with Ai

designating an analysis performed at time (i × 100 s) based on an observation made

at the same time, and by seven forecast events, called F1–F7 with Fi corresponding

to a forecast performed at time ((i+1) × 100 s) based on the analysis Ai. The quality

of the analysis is evaluated through comparisons between predicted and observed

fireline positions at time (i × 100 s); the quality of the forecast is evaluated through

similar comparisons at time ((i+1) × 100 s). For each assimilation cycle, we evaluate

FIREFLY’s performance first by comparing the ensemble average of the fire front
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positions (mean values of each front marker over the 200 members) to the observed

fire front and second by calculating a measure of the “distance error”.

3.5.4 Performance of Spatially-distributed Parameter Estimation

Figure 3.9 presents a comparison between model predictions and observations

at analysis and forecast times and in terms of the mean fireline position. Figure 3.9a

presents the mean free forecast estimate, i.e. without data assimilation; Fig. 3.9b

and Fig. 3.9c present the mean analysis and forecast estimates, respectively, based

on data assimilation. The results in Fig. 3.9a illustrate the poor accuracy of the

forward model in FIREFLY, primarily due to an incorrect description of the fire

spread on the flanks. Also, while the observations indicate that the fire accelerates

between 200 and 300 s, the model incorrectly predicts a constant ROS in the wind

direction.

The results are much improved with data assimilation. The results in Fig. 3.9b

evaluate the quality of the EnKF: they demonstrate the ability of FIREFLY to match

observed fireline positions at analysis times and thereby confirm the general ability

of data assimilation to steer an inaccurate model towards observations. The results

in Fig. 3.9c evaluate the quality of the forecast (performed 100 s after the EnKF

analysis). Due to both model inaccuracies and input parameter uncertainties, the

predicted fire fronts are found to deviate from the observations and to under-estimate

the observed ROS at the head of the fire. The magnitude of these deviations,

however, remains moderate and is much smaller than that observed without data
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assimilation (Fig. 3.9a). We will show below that the magnitude of the deviations

increases in time, and remains acceptable in Fig. 3.9 because of the availability of

observations at relatively short time intervals (100 s). In other words, the quality of

the forecast depends on the frequency of the observations and of the corresponding

updates of the model.

As mentioned above, the data-driven predictions (forecast and analysis) are

based on an EnKF statistical ensemble of 200 members and while we choose in

Fig. 3.9 to demonstrate the quality of these predictions by plotting a single fire

perimeter (the mean perimeter), it is also worth considering the entire PDF of 200

perimeters and the associated deviations from the mean. Figure 3.10 presents a rep-

resentative sample of 10 fire fronts plotted with the observed fire front at analysis

time A1 (t = 100 s), corresponding to the free forecast in Fig. 3.10a and to the anal-

ysis in Fig. 3.10b. In Fig. 3.10a, the predicted fire perimeters deviate significantly

from the observations and feature a large scatter. In contrast, in Fig. 3.10b, the

analyzed fire perimeters are close to the observations and feature a much reduced

scatter. Because of this reduced scatter, we adopt in the following the viewpoint of

Fig. 3.9 and use the mean fire perimeter to quantify the performance of FIREFLY.

Figure 3.11a shows the time variations of the FIREFLY error defined as the

average distance between the predicted and observed fireline positions. This aver-

age distance is evaluated through an approximate treatment in which at any given

time, the predicted and observed fronts are first discretized by the same number of

markers, called P- and O-markers, the P- and O-markers are then paired together,

and the FIREFLY error is finally calculated as the average distance between paired
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Figure 3.10: Comparison of predicted (dashed lines) and observed (sym-
bols) fire front positions at t = 100 s. The predictions correspond to a
representative sample of 10 EnKF ensemble members (corresponding to
different possible values of the wind parameters) for (a) a free forecast
and (b) an analysis.
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P- and O-markers. Figure 3.11a compares the evolution of the distance error in the

free forecast and data-driven modes. The evolution of the error in the free fore-

cast mode is a smooth, continuously increasing function of time. Consistent with

the observed fire propagation acceleration between 200 and 300 s (Fig. 3.9), the

error grows at a faster rate (twice faster) during that period. This error takes very

large values (more than 150 m at time t = 600 s) primarily due to the incorrect

description of the fire spread on the flanks. In contrast, the evolution of the error in

the data-driven mode is a discontinuous function: deviations of model predictions

from observations are periodically reduced (to less than 10 m) during the analysis

events A1–A7. After each analysis event, the error increases but remains bounded

and takes small-to-moderate values: the error features a peak value of 40 m at time

t = 300 s (due to changes in the fire dynamics) and decreases to less than 10 m (after

600 s, the fire can be considered as a flank fire and is therefore easier to track).

Figure 3.11b presents a slightly different perspective that illustrates the effect

of the assimilation frequency by comparing the evolution of the distance error be-

tween the following variations: the free forecast; a first (second; third) data-driven

curve, called DD1 (DD2; DD3), with analysis at time t = 100 s (t = 100 and 200 s;

t = 100, 200 and 300 s) and a free forecast thereafter; and a fourth data-driven

curve, called DDB, corresponding to our baseline case with model updates at all

analysis events A1–A4. The growth of the forecast error is slower for DD3 and DDB

than for DD1 and DD2, confirming that the fire intensity decreases after its peak

around 300 s and that the forecast is becoming more reliable at late times. At time

t = 500 s, the distance error of the free forecast is approximately 140 m; the error
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decreases to 115 m, 75 m, 30 m and 10 m, in cases DD1, DD2, DD3 and DDB,

respectively.

The information in Fig. 3.11b is particularly valuable for the design of a data-

driven model. Let us assume for instance that the design objective is to predict the

fire location with a 50-m accuracy: the results in Fig. 3.11b suggest that the model

requires data assimilation and that the assimilation frequency should correspond to

observations made at least every 200 s. Lower assimilation frequencies will result

in less accurate predictions of the fireline location. We conclude here that a 50-

m accuracy on the fireline location requires relatively frequent observations made

(approximately) every 3 min. Note that this conclusion is specific to the FireFlux

experiment: it will be further examined in the future for other burns. Note also that

in addition to being decreased by increasing the assimilation frequency, the forecast

error can also be decreased by providing a more accurate fire spread model.

While the previous results demonstrate that the FIREFLY manipulation of

the wind field allows for a successful reconstruction of the observed fireline po-

sitions, there is an open question about the exact meaning of the inferred wind

parameters and whether these parameters can be used to provide information on

the near-flame wind dynamics. To answer this question, we present in Fig. 3.12 a

comparison between the “true” values of the wind field produced by the reference

ForeFire/Meso-NH simulation and the predicted values produced by the baseline

data-driven FIREFLY simulation. The comparison is made through instantaneous

snapshots of the spatial variations of horizontal wind velocity, at 2-m elevation and

at time t = 300 s. In Fig. 3.12, the near-surface ForeFire/Meso-NH data, initially
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Figure 3.11: Time variations of the mean distance between the predicted
and observed fire front positions for FireFlux. (a) Comparison between
the free forecast (dashed line) and baseline data-driven run (solid line),
0 ≤ t ≤ 700 s. (b) Comparison between the free forecast (dashed line)
and different variations of the data-driven run, 0 ≤ t ≤ 500 s: DD1
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dotted horizontal line at 50 m indicates a possible target value for the
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estimated at 3-m elevation, are linearly interpolated to 2-m elevation; in addition,

the FIREFLY data, initially estimated at 1-m horizontal resolution, are plotted

on the 10-m resolution ForeFire/Meso-NH grid. The “true” and predicted wind

fields are found to be quite different, especially near the fire front: the wind field

in the ForeFire/Meso-NH simulation features turbulent-like small-scale variations

(Fig. 3.12a) that are absent in the FIREFLY simulation (Fig. 3.12b). The pres-

ence of small-scale variations in Fig. 3.12a may be explained by the fire-atmosphere

interactions that are captured in ForeFire/Meso-NH when configured in two-way

coupling mode. FIREFLY cannot represent those small-scale variations, partly due

to the coarse resolution of the wind grid and partly due to the limited modeling

components (there is no description of the atmospheric boundary layer flow and of

the fire plume in FIREFLY).

The discrepancies between ForeFire/Meso-NH and FIREFLY results are fur-

ther characterized in Fig. 3.13 through scatter plots of the wind magnitude and

direction: a perfect correlation between ForeFire/Meso-NH and FIREFLY results

would correspond in these plots to a cluster of points near the 45-degree line; by

the same token, large deviations from this line indicate a lack of correlation between

the “true” and predicted values of the wind parameters. Note that the points near

the 2 m s−1 vertical line in Fig. 3.13a and near the 10◦ vertical line in Fig. 3.13b

correspond to data at inactive wind nodes (i.e. points located at a distance greater

than the threshold distance from the fireline). The results in Fig. 3.13 suggest that

the inferred wind parameters in FIREFLY are not accurate and should be inter-

preted as effective values that incorporate multiple sources of uncertainties that are
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Figure 3.12: Instantaneous spatial variations of the horizontal wind
velocity vector at 2-m elevation and at time t = 300 s. Comparison
between (a)“observations (reference ForeFire/Meso-NH simulation) and
(b) predictions produced by the baseline data-driven FIREFLY simu-
lation (ensemble-averaged field). The solid line indicates the fire front
location.

not identified here. More realistic values of the wind parameters may be obtained

if the control vector x is extended to include additional parameters (e.g. vegetation

parameters) and/or if the accuracy of the ROS model is increased (in particular to

better describe the fire spread on the flanks).

Scalability Study

In this section, firstly we present scalability test results regarding to the ensem-

ble size and the control vector size. The purpose of the scalability test is to estimate

the computational cost when goes to large-scale wildland fire spread simulations,
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Figure 3.13: Scatter plots comparing FIREFLY (x-axis) and
ForeFire/Meso-NH (y-axis) results for: (a) wind magnitude; (b) wind
direction. The points correspond to the wind data presented in Fig. 3.12.
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which is typically on the order of kilometers. For this test, first we run the simula-

tion of first assimilation cycle with different ensemble size. Figure 3.14 presents the

computational cost (evaluated as CPU time) and estimation accuracy (evaluated as

mean distance error bewteen simulated and observed fronts) with different ensemble

size ranging from 50 to 250. The CPU time is calculated as Tcpu = T × n, where

T is the simulation running time (hr), and n is the number of processors per node

(20 in this case). It shows that the CPU hours will increase gradually as ensemble

size increases. For this specific simulation case, the CPU hours generally increase 33

hours as 50 more ensemble members added each time. The distance error between

simulation and observation decreases as ensemble size increases initially, but it will

reach to a stable value when ensemble size is large enough. For current test, we

could state that 100-150 members is the minimum requirement of the ensemble size

(previous simulation results are obtained with 200 ensemble members).
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Figure 3.14: Variations of computational cost (CPU time) and esti-
mation accuracy (mean distance error bewteen simulated and observed
fronts) with different ensemble size.
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As to the size of control vector, it is equal to the number of controlled wind

grid nodes multiplied by two, since both wind speed and wind direction are included.

Figure 3.15 presents the computational cost (CPU time) against different number

of controlled wind grid nodes. In the present study, the CPU time does not increase

as control vector size increases. Indeed, for parameter estimation purpose: the size

of control parameter is relatively small; even if the control parameters go to several

thousand for large-scale wildfire spread simulations, there is no need for special

treatments on the computational cost. In contrast, when going to state estimation

such as Numerical Weather Prediction (NWP) applications, the control vector (state

variable) size is at least on the order of 107 [32]. Such large control vector makes both

the storage and the computation of the matrices unfeasible, thus special techniques

are needed for NWP applications.
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Figure 3.15: Variations of CPU time with different number of controlled
wind grid nodes.

96



There is also of interest to check the computational cost regarding to the spa-

tial and temporal resolution of the simulations. The spatial resolution is usually

chosen in order to have a complete representation of fire front topologies, and we

use 1 m spatial resolution for the FireFlux simulation case. After that the tempo-

ral resolution is set according to the Courant-Friedrichs-Lewy (CFL) condition to

ensure the accuracy of the numerical scheme. In the present study, we test four

different time step values which satisfying the CFL condition. Figure 3.16 presents

the computational cost (evaluated as CPU time) and estimation accuracy (evalu-

ated as mean distance error bewteen simulated and observed fronts) with different

time step values ranging from 0.02 to 0.2. It is clear that the CPU time decreases

proportionally as the time step value increases. As the distance error remains low

throughout the test, we choose 0.02 s to simply ensure a convergent solution is met

for results presented in this chapter.
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Figure 3.16: Variations of computational cost (CPU time) and esti-
mation accuracy (mean distance error bewteen simulated and observed
fronts) with different temporal resolution.

97



Conclusion

The results demonstrate the ability of FIREFLY to steer an inaccurate fire

spread model towards observed fireline positions and to provide an improved fore-

cast of the fire behavior compared to the standalone fire spread model. The quality

of the forecast depends on the frequency of the observations. In the present study,

the performance of the FIREFLY forecast is quantified for the first time: it is found

that a 50-m accuracy on the fireline location requires a frequency of observation of

3 min or better. While this figure of merit is not general and is specific to the Fire-

Flux experiment, it provides a valuable benchmark for future studies. The results

also show that the inferred wind parameters should be viewed as effective values that

incorporate multiple sources of uncertainties that are not identified here. While the

objective of the parameter estimation method is not to provide a detailed repre-

sentation of fire-wind interactions, these interactions play a role in the FIREFLY

forecast capability and therefore should be captured with some level of accuracy.
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Chapter 4: Shape Similarity Measure-based State Estimation

The inverse problem in a typical data-driven model relies on the measure of

the discrepancies between the observations and simulated fire front locations to infer

the magnitude of the corrections to the control vector. For wildfire spread applica-

tion, it is thus of paramount importance to have an adequate representation of the

observation-simulation discrepancies. In Chapter 3, observed fire fronts are treated

as discretized contours with a finite set of markers when applied to the FireFlux I

experimental dataset. The simulated fire front line is treated as discretized front

markers in the same way. The Euclidean distance between these simulated and

observed fronts is then computed by pairing each observed marker with its closest

neighbor along the simulated front. The innovation involved in the EnKF algorithm

corresponds to a difference in terms of x and y coordinates for the set of observed

markers, which is consistent with Gaussian-type position errors (see Eq. 2.13). How-

ever, such pairing may become difficult to handle for regional scale wildfires induced

by strong heterogeneity in the surface conditions (Fig. 2.8). In this case, it is dif-

ficult to correctly represent the Euclidean-type distance error by a marker-pairing

method, thus this type of distance measure may become unsuitable when moving

to realistic real-world wildfire events.
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This chapter is dedicated to designing a front shape similarity measure to

address position errors rather than amplitude errors in the fire problem, since the

observed quantity is the fireline position. This Chapter is also dedicated to illus-

trating how this measure applies through a state estimation approach based on a

Luenberger observer. We apply it to the three-hectare RxCADRE S5 field-scale

experiment and results show that the front shape similarity measure is able to accu-

rately track fire fronts and improve short-term fire spread forecast performance. We

also demonstrate that this front shape similarity measure is suitable for both Eule-

rian and Lagrangian-type front-tracking solvers and thereby can provide a unified

framework to track moving structures such as flame front position and topology in

combustion problems. This work has been accepted for presentation at the Interna-

tional Symposium of Combustion and is currently under review for publication in

Proceedings of the Combustion Institute [74].

4.1 Front Shape Similarity Measure

In Chapter 2 we have introduced how to compute the distance vector in the

context of Kalman-type filter algorithm using the shape similarity measure. The

similarity measure J between a target front and a simulated front reads as Eq. 2.14,

it can be treated as a data-fitting term with two components:

J0(yo, φc) =
∫

Ω
(1−Hv(φc)) [yo − Cmin(yo, φc)]

2 dx dy (4.1)

J1(yo, φc) =
∫

Ω
Hv(φc) [yo − Cmax(yo, φc)]

2 dx dy (4.2)
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where yo represents the observation data (binarized field where yo = 1 in the burnt

area and yo = 0 in the unburnt area), φc is the level-set associated with the progress

variable c field.

This data-fitting term will reach minimum value if the simulated contour

(φc = 0) matches the observed contour. It is illustrated through the various ex-

amples in Fig. 4.1 [73]: different scenarios of the comparisons between simulation

and observation, and it clearly shows that J is minimum when the observed and

simulated contours coincide. In the following sections, we show that a state estima-

tor is derived using the gradient of the shape similarity measure.

4.1.1 Luenberger State Observer

We now present Eulerian- and Lagrangian-type state estimators, which are

derived from the data fitting functional presented in Eq. 2.14 and introduce new

relaxation terms in the propagation equation used in the forward modeling compo-

nent. This type of state estimator is known as a Luenberger observer. The gradient

of the shape similarity measure in Eq. 2.14 reads

∇J = δ(φc)D(yo, c) (4.3)

where δ is the Dirac delta-function, and where D(yo, c) is the discrepancy term

defined as

D(yo, c) = [yo − Cmax(yo, φc)]
2 − [yo − Cmin(yo, φc)]

2 (4.4)

The function δ plays the role of a localization operator (the correction associated

with state estimators is only active along the simulated fire front) [76].
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towards the minimization of the functional J [73].
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For the Eulerian fire spread model, Eq. 2.5 is modified as follows:

∂c

∂t
= ROS2D |∇c| − λδ(φc)

{
[yo − Cmax(yo, φc)]

2 − [yo − Cmin(yo, φc)]
2
}

(4.5)

where the feedback term is expressed as −λ∇J , and where λ ≡ λ(x, y) is the gain

that describes confidence in the observations (λ can be intepreted as the inverse

of the observation error variance). Starting from given (possibly incorrect) initial

conditions c0 at time t0, λ controls the rate at which the simulated progress variable

c converges towards the observations yo, it provides a balance between simulated

model state and observations: a larger value of λ means more weight on the observa-

tion data. The LO-based state estimator allows a fast modification of the model state

without requiring much additional computational efforts. This method is perfectly

suitable for level-set forward modeling system since the fire front is represented by

the surface contour (φc = 0). For the Lagrangian-type state estimator, since we only

represent the fire frontline using a finite number of markers, it requires additional

techniques to implement this state estimator which will be discussed later.

Note that there exists various numerical schemes to describe the Dirac delta-

function [100], in the present study, the Dirac delta-function is numerically approx-

imated as δ(φc) = |∇c| since the initial fire front is thin. Equation 4.5 is referred to

as the “Eulerian Luenberger observer” (LO–EUL).

The “Lagrangian Luenberger observer” (LO–LAG) can be derived by analogy

to the LO–EUL. In Chapter 2 we presented the Lagrangian front-tracking solver

implemented in the current data-driven modeling system, where we assume that the

fire front features a local elliptical shape. The front could be parameterized by the
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closed curve (x(s, t), y(s, t)) with 0 < s < 2π. The Lagrangian equations are for

(x, y) ∈ Ω and t ≥ t0





∂tx = F (s, t, ∂sx, ∂sy)

∂ty = G (s, t, ∂sx, ∂sy)

,





x(s, t0) = x0(s)

y(s, t0) = y0(s)

(4.6)

where (x0(s), y0(s)) is the initial condition at time t0, and where F and G are

functions of the local topography, biomass and meteorological conditions (the shape

and orientation of the local ellipse are determined by the wind and slope conditions,

while its size is determined by the ROS).

If X(s, t) = (x(s, t), y(s, t))T denotes the front parameterization and V =

(F,G)T the associated velocity vector, then Eq. 4.6 is modified as follows:

∂X

∂t
= V (s, t,X(s, t))− λ

{
[yo − Cmax(yo, c)]2 − [yo − Cmin(yo, c)]2

}
nfr (4.7)

where nfr is the normal vector to the fire front and λ ≡ λ(s). Equation 4.7 is referred

to as the “Lagrangian Luenberger observer” (LO–LAG). Notice that the Dirac delta-

function is no longer necessary since the Lagrangian formulation only acts on the

fire front by definition. Also notice that we use a ray casting algorithm [101] to

construct the binary burnt/unburnt fields from the front marker positions given by

Eq. 4.7; these fields are required in the evaluation of the discrepancy term D(yo, c).

The feedback term features a similar formulation in the Lagrangian and Eu-

lerian models. In principle, ROS = (V · nfr) provides the equivalence between the

Eulerian and Lagrangian formulations of a front propagation problem. However, we

adopt here the usual formulations of the wildland fire research field so that the way

to handle fire propagation on the flanks and at the rear of the fire is different in the
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present Eulerian and Lagrangian models [24,68] (see discussion in Chapter 2 related

to Fig. 2.6).

The “Eulerian Luenberger observer” (LO–EUL) features additional benefits

to be able to detect the spot fire. Inspired by previous work in [77], a topological

gradient, can be computed as:

∇top Jdata =
{

[yo − Cmax(yo, φ)]2 − [yo − Cmin(yo, φ)]2
}

(4.8)

This term typically computes the sensitivity of the discrepancy measure to new ap-

pearing fronts [102]. From this sensitivity measure, we add an additional correction

term to be able to detect new appearing fronts [77] to the Eq 4.5:

∂c

∂t
= ROS2D |∇c| − λδ(φc)

{
[yo − Cmax(yo, φc)]

2 − [yo − Cmin(yo, φc)]
2
}

−λtopHv(∇topJdata × (c− cfr))
{

[yo − Cmax(yo, φc)]
2 − [yo − Cmin(yo, φc)]

2
}
(4.9)

where λ ≡ λ(x, y) is the gain associated with the shape gradient and where λtop ≡

λtop(x, y) is the gain associated with the topological gradient. The impact of this

additional topological feedback can be illustrated through case E in Figure 4.1.

Without this topological gradient, the simulated front (also the simulated burnt

area) will decrease until it disappears. However, the topological gradient-based esti-

mator can create a new front which corresponds to the observation data in this case.

Unlike the shape gradient, the topological gradient correction term is only active

once at the time when the new observation data becomes available. In contrast, the

shape gradient correction term is applied at successive time steps during the whole

assimilation window. In the following discussions, unless mentioned specifically, we

focus on the shape gradient correction with λ referring to the gain associated with
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the shape gradient.

4.1.2 Illustration of the Effect of Luenberger Observer Corrections

We illustrate the behavior of the front shape similarity measure by considering

the Eulerian framework (LO–EUL) and a case for which the simulated fireline is

enclosed by, and initially quite different from the observed fireline (see Fig. 4.2).

We consider a computational domain of 200 m × 200 m; the grid resolu-

tion is ∆x = ∆y = 1 m and the temporal resolution is ∆t = 0.1 s. The gain

is λ = 4. For illustration purposes, the propagation equation in Eq 4.5 is solved

without the ROS term, implying that the λ parameter only features the speed

of the correction process; a smaller λ value would provide the same correction

but at a slower rate. As we discussed before, the coefficient C1 corresponds to

a perfect match for the simulated burnt area, therefore C1 = 1; the coefficient C0

corresponds to some level of mismatch for the simulated unburnt area, therefore

0 ≤ C0 ≤ 1; thus, Cmin = C0, which gives 0 ≤ Cmin ≤ 1, and Cmax = C1 = 1. In

the vicinity of the simulated fireline (at c ≈ cfr), the discrepancy term is negative,

D(yo, cfr) =
{

[yo − Cmax]2 − [yo − Cmin]2
}

= − [1− Cmin]2 < 0, which corresponds

to a positive term on the right-hand-side of Eq 4.5 and as seen in Fig. 4.2, to outward

propagation of the simulated fireline. Figure 4.2 (top) shows how the simulated fire-

line is progressively modified to match the observed front shape; Fig. 4.2 (bottom)

presents the discrepancy term D(yo, c) at time t = 5 s; negative (positive) values

of D(yo, c) correspond to outward (inward) propagation; this term is multiplied by
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δ(φc) so that the correction in Eq 4.5 is only active at c ≈ cfr.
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Figure 4.2: Simulation of a representative test case. (a) Comparison of
simulated (lines) and observed (symbols) firelines at t = 0, 5, 10 and 15 s.
(b) Discrepancy term D(yo, c) (Eq 4.4) at t = 5 s.

4.2 Diagnostic of Front Distance

In Chapter 3, we evaluate the performance of data-driven model by calculating

the average distance error between the same number of simulated front markers and

observed markers. The formulation of the global shape comparison has the drawback

of not providing a direct diagnostic in terms of Euclidean distance. To overcome this

problem of interpretation, we need to introduce a diagnostic that has the dimension

of a metric distance. In this chapter, we introduce a performance matrix based on

the Hausdorff distance to determine the similarity of two objects (i.e., simulated

fire front and observed fire front). One advantage of the Hausdorff distance is that

it has practical meaning in physical space: its unit is meter (or kilometer), which
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makes it consistent with the Euclidean distance concept.

The Hausdorff distance is widely used in computer vision to find a given tem-

plate in an arbitrary target image [103–105]. In wildfire spread applications, this

idea can be applied similarly to evaluate the match (or mismatch) between the ob-

served and simulated fire fronts. It can be defined as follows: it is the greatest of

all the distances from a point in one set representing the observed fire front to the

closest point in the other set representing the simulated fire front. This distance

has the meaning of maximum distance error between observation and simulation,

which is a more conservative estimate than the mean distance error. To calculate

the Hausdorff distance, first we discretize both the observed fireline Γo and the simu-

lated fireline Γφ with a large enough number of points (O and P points respectively)

to represent the fire front topology, then we apply the following algorithms to find

the Hausdorff distance HD

hd(Γo,Γφ) = {max
O∈Γo
{min
P∈Γφ

d(O,P )}} (4.10)

hd(Γφ,Γo) = {max
P∈Γφ
{min
O∈Γo

d(P,O)}} (4.11)

HD(Γo,Γφ) = max{hd(Γo,Γφ), hd(Γφ,Γo)} (4.12)

For verification purposes, we first apply the Hausdorff distance calculation to

the previous parameter estimation work against FireFlux experimental data, and

compare it with the marker-pairing distance. Figure 4.3 plots the time variations

of the Hausdorff distance for each assimilation cycle (left panel), showing the same

trend of error growth as previously seen in Fig. 3.11. The quasi-linear correla-
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tion between the Hausdorff distance and the marker-pairing distance (right panel)

demonstrates the suitability of the Hausdorff distance. In addition, all the points

on the right plot of Fig. 4.3 are above the 45-degree line meaning that the Hausdorff

distance always yields a larger value than the marker-pairing distance, we consider

it acceptable since a conservative estimate of the distance error (considering a worst

case scenario and thus overestimating the distance error) is always better than un-

derestimating it for fire risk management purposes.
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Figure 4.3: Hausdorff distance applied to the FireFlux experiment case.
Left figure shows the time variations of the Hausdorff distance between
the predicted and observed fire fronts. Right figure shows the compar-
ison between the Hausdorff distance and the distance error adopted in
Fig. 3.11.

4.3 Verification Test: Observing System Simulation Experiment

We first present in this section results from an OSSE case study in which

synthetic observations are generated using the in-house Eulerian and Lagrangian
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front-tracking solver. The purpose of these tests is to verify that the LO-based

state estimation can nudge the simulation towards observation when imposing an

appropriate gain value λ. Figure 4.4 and 4.5 show a test case in a computational

domain of size 100 m × 100 m, and with a spatial resolution of 1 m. The total

simulation time is 60 s and the time step is 0.02 s for the Eulerian model, 0.05 s

for the Lagrangian model. In this case, we assume homogeneous fuel (tall grass

in Rothermel’s fuel database [22]) with a moisture content of 5% and uniformly-

distributed wind (1 m/s, 225◦) across a flat terrain. Observation data are generated

with a known fire initial location (the fire is represented as a circle of radius 10-m,

and whose center corresponds to the center of the computational domain). These

observation data are provided every 20 s. We start our simulation with a shifted

and deformed fire initial condition (the fire is represented as a circle of radius 6-m,

and whose center is located at (60 m, 40 m)) and impose a medium nudging level

(λ = 1) using Luenberger state observer through Eq. 4.5. During each assimilation

cycle [t, t+ 1] (whose duration is 20 s in the present case), the simulated model

state is constantly modified at each time step ∆t based on a linear combination

of two observations at times t and (t + 1). As we can see in Figs. 4.4 and 4.5, at

simulation time 20 s, the data-driven run (red dashed line) already matches part

of the observation, and the small residual discrepancy is totally removed at time

40 s for the LO-LAG data-driven model, 60 s for the LO-EUL data-driven model.

The difference between LO-EUL and LO-LAG is because the forward model yields

different shapes of fire front, thus the discrepancy term D(yo, c) is different, resulting

in a different magnitude of correction at each time step. This test case demonstrates
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the effectiveness of both LO-EUL and LO-LAG state estimation methods, they

correctly drive the simulations towards observations given the user-specified value

of the gain λ without adding much additional computational time.
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Figure 4.4: LO-EUL state estimation based on the shape gradient correc-
tion: black line represent the observed fire front, blue line represents the
free run without data assimilation, red line represents the data-driven
run with state estimation.

Another advantage of the LO-EUL state estimation method is that it is able

to detect the appearance of multiple fires using the additional topological gradient

correction. This will be particularly convenient to address spot fires. As we dis-
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Figure 4.5: LO-LAG state estimation based on the shape gradient cor-
rection: black line represent the observed fire front, blue line represents
the free run without data assimilation, red line represents the data-driven
run with state estimation.

cussed before, a spot fire is a fire ignited outside the perimeter of the main fire by

flying sparks or embers. It is very common in wildland fire propagation scenarios,

and it remains one of the major challenges when using Langrangian front-tracking

method. Figure 4.6 demonstrates that the topological gradient-based state estima-

tion approach can detect a second fire contour present in the observed image but not

included initially in the simulation. Here we use a numerical configuration similar
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to that used in Fig. 4.4 except that a spot fire (modified configuration with a radius

of roughly 5 m on the right side of the main fire location) is observed at time 20 s.

As we can see, the data-driven simulation can consider the main fire at time 20 s,

but is unable to detect the spot fire at that time. At time 40 s, the data-driven run

is able to retrieve both the main fire and the spot fire with a topological gradient

gain value λtop = 1.

It is worth noting that so far we only consider a scalar λ. In the future we plan

to implement a spatially-distributed λ, to better address incomplete observation

data, the plan is to impose a larger value of λ in the areas where we have high

fidelity observations and smaller values of λ in the areas where we have low fidelity

observation or no observation, thus allowing a flexible spatially distributed state

estimation approach [73].

4.4 Validation Test: Application to the RxCADRE Experiment

For validating the new front shape comparison method, we first apply the

LO-based state estimation approach to a 4-hectare field-scale controlled burn from

the RxCADRE S5 dataset. We will then show its potential on the Rim accidental

wildfire.

4.4.1 Overview of the RxCADRE Experiment

We use the RxCADRE field-scale dataset from the Prescribed Fire Combustion

and Atmospheric Dynamics Research Experiment (RxCADRE). RxCADRE yielded
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Figure 4.6: LO-EUL state estimation using the same Luenberger state
observer but with additional topological gradient correction: black line
represents the observed fire front, blue line represents the free run with-
out data assimilation, red line represents the data-driven run with state
estimation.

a comprehensive dataset of fire behavior, fire effects, and smoke chemistry and

dynamics (see Table 1.3). These data were collected in 2008, 2011 and 2012, on

small replicate and large operational prescribed fire burn blocks.

In the present work, we focus our attention on the 2012 S5 prescribed fire

(4 ha), which took place at Eglin Air Force Base, Florida [106]. The S5 experiment
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was a 15-minute-long prescribed fire conducted on a flat terrain characterized by a

surface area of approximately 180 m × 180 m and a mixed grass and shrub vegeta-

tion. During the fire, the surface wind blew mainly from the North direction. In the

simulations, we assume uniformly-distributed vegetation fuel as well as uniform and

constant wind. The input parameters to the Rothermel model are based on experi-

mental measurements: the fuel depth is 0.2 m; the fuel surface loading is 0.28 kg/m2;

the fuel particle surface-to-volume ratio is 9000 m−1; the fuel moisture content is

10%; the wind velocity at mid-flame height is 2 m/s and the wind direction is 345◦

(corresponding to a northwest wind).

4.4.2 Observation Data

During the S5 experiment, the fire was ignited on the North side of the lot

and propagated into the southern direction. Fire propagation was recorded through

a series of temperature maps starting at time t = 34 s after ignition and recorded

at 1-Hz frequency using a long-wave thermal infrared imaging system [106]. Since

the initial fire only covers a very small area, our initial condition for fire spread

simulations is used to mimic the observed fire spread at time t = 60 s. So in the

following, time t = 0 s corresponds to time t = 60 s in the RxCADRE dataset.

Figure 4.7 shows the moving fire front indicated by the temperature record by the

IR imaging system. Based on these temperature measurements, we are able to

generate a map showing the time at which the flame front arrives at a given pixel of

the S5 burn lot (see Fig. 4.8), the left figure shows the arrival time map from 0 s to
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480 s, which corresponds to the time interval [60 s; 540 s] in the RxCADRE dataset.

In this chapter, we use the first 480 s fire data and assume that observations are

available at 60-s time intervals. For example, Fig. 4.8 (right) shows the observed

unburnt/burnt binary field that is assimilated at time t = 480 s. This binary field

is obtained using the corresponding map of flame arrival times and after filtering to

remove small-scale holes and outliers.
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Figure 4.7: RxCADRE S5 fire temperature (unit: ◦C ) distribution mea-
surements at time 2 min (top left), 4 min (top right), 6 min (bottom
left) and 8 min (bottom right).
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Figure 4.8: Dataset of the RxCADRE S5 fire. (a) Map of flame arrival
times (0-480 s). (b) Binary image showing unburnt (white) and burnt
(black) vegetation at time t = 480 s.

4.4.3 Numerical Settings

Model input parameters are selected using available experimental data. The

computational domain is 180 m × 180 m; the total simulation time is 480 s with

a fixed temporal resolution ∆t. For LO–EUL, ∆x = ∆y = 1 m and ∆t = 0.05 s.

For LO–LAG, ∆t = 0.5 s and the initial number of front markers is 40 (the number

of front markers increases during the simulation due to the increasing length of the

fireline). The initial condition c0 (indicating the location of the fireline at ignition

time) is supposed to be unknown. The objective is to demonstrate that our state

estimation algorithm is able to overcome an imperfect knowledge of the fire situa-

tion at initial time. To initialize the fire spread model, we thus consider a simple,

approximate fireline location, i.e. a semi-circular front with a 15-m radius and a

center located at (x, y) = (90 m, 180 m). Observations are assimilated at 60-s time
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intervals. Between two observations made at time t = tn and t = tn+1 (i.e. during

an analysis), the model state is continuously steered towards the observations made

at time tn+1. The intensity of the steering process is controlled by the gain λ (the

higher the value of λ, the higher the level of confidence in the observations and

the lower the value of the observation error standard deviation). Beyond the last

observation (i.e. during a forecast), the relaxation terms are de-activated and the

model solves the original propagation equation.

4.4.4 Performance of State Estimation

We first consider simulations with a large prescribed value of λ for both LO–

EUL and LO–LAG models, in order to push the data-driven strategy to its limits

in a situation where observations are considered accurate, the standalone model

prediction (or “free run”) is far away from the observations and thus where the

correction is significant. In practice, the λ-value should be set according to the

available information on the observations. Here we set λ = 1, which corresponds to

a very large weight on the observation data in this case. Figure 4.9 compares the

observed and simulated firelines during the first 8-minutes of the S5 experiment. The

simulated firelines include free runs (that are not informed by the observations) and

data-driven simulations using LO–EUL in Fig. 4.9 (left) and LO–LAG in Fig. 4.9

(right). It is seen that the free runs underestimate the ROS in both the head fire and

flank regions indicating the presence of significant model errors for both Eulerian and

Lagrangian models. In contrast, the data-driven simulations successfully reproduce
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the location and shape of the fire perimeters. This shows the capability of the

data-driven model to accurately retrieve the shape of the observed firelines.
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Figure 4.9: Comparison of simulated (lines) and observed (symbols) fire-
lines at 120-s time intervals during 0 ≤ t ≤ 480 s; λ = 1. Blue (red) lines
correspond to free runs (data-driven runs) using the Eulerian model and
the Lagrangian model, respectively.

The previous results are obtained with a prescribed constant value of the gain

λ. As λ measures the level of confidence between the observed and predicted fronts,

it should typically be proportional to the ratio of the observation error covariance

over the prediction error covariance in terms of mean distance between fronts. A

very illustrative justification of the impact of λ can be produced by treating λ as a

stochastic parameter in an ensemble of test simulations. As we see from Fig. 4.9,

λ = 1 is a very large value meaning high fidelity of the observations over simulation.

In the following test, we generate an ensemble of simulations with different small-

to-moderate λ values to consider a more realistic situation, in which uncertainties in
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the observations are not negligible. Figure 4.10 illustrates the sensitivity of the data-

driven solution to the value of λ for the LO–EUL model. In these test simulations,

λ features a Gaussian statistical distribution characterized by a mean value µ =

0.2 and a standard deviation σ = 0.08. We use a statistical ensemble with 40

members and Monte-Carlo-based random sampling. Figure 4.10 (left) presents the

corresponding discrete probability density function. Figure 4.10 (right) presents the

ensemble of simulated fireline positions at time t = 60 s. When the λ-value increases,

the simulated fireline is closer to the observation, implying a higher confidence in

the observation and thus a faster rate of convergence towards the observed fireline.

This figure shows that we can use an ensemble of LO-state estimations to represent

uncertainties. Similar results can be obtained with LO–LAG.
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Figure 4.10: LO–EUL simulations using a statistical distribution for the
gain λ. (a) Prescribed PDF of λ. (b) Comparison of simulated (lines)
and observed (symbols) firelines at t = 60 s (the figure displays a subset
of 15 simulations for clarity purpose; each line corresponds to a given
value of λ).

We now examine the forecast performance at 60-s lead time of the LO–EUL

and LO–LAG data-driven runs with λ = 1. Figure 4.11 shows the time variations

of the distance error between the predicted and observed fireline positions. The
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distance error is evaluated using the Hausdorff distance (in meter). Note that we

choose the Hausdorff distance as a diagnostic tool since it is easier to interpret for an

end-user than the front shape similarity measure (the latter is still used in the data

assimilation algorithm to calculate the simulation-observation discrepancies, from

which the new estimation is derived) and since it is a more conservative estimate

than the mean distance error. Figure 4.11 compares the evolution of the Hausdorff

distance in the free runs (blue lines) and data-driven runs (red lines). The evolution

of the error in free forecast mode is a continuously increasing function of time. This

error takes moderate values (approximately 25 m at time t = 480 s) primarily due to

the limited scale and duration of the S5 experiment but the error is unbounded and

keeps increasing in time. In contrast, the evolution of the error in data-driven mode

is a discontinuous function: deviations of model predictions from observations are

periodically reduced (to less than 5 m) during the analysis events (when integrat-

ing new observations). After each analysis event, the error increases but remains

bounded and takes small-to-moderate values (on the order of 10 m). LO–EUL and

LO–LAG models provide similar results. During a forecast, the LO feedback terms

are de-activated and the model solves the original propagation equation; the rapid

increase of the error seen in Fig. 4.11 after each analysis indicates that the ROS

model has limited accuracy and that the benefits of assimilating new observations

have limited persistence. Assimilation at 60-s frequency results in a distance error

of 10 m; assimilation at lower (higher) frequencies would result in larger (lower)

errors. Thus the forecast error can be decreased by providing higher assimilation

frequencies or a more accurate fire spread model. In any case, Fig. 4.11 clearly
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shows the ability of data assimilation to steer inaccurate fire spread models towards

observed firelines and to provide an improved forecast of the fire behavior compared

to a standalone fire spread model.
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Figure 4.11: Time variations of the Hausdorff distance between the sim-
ulated and observed firelines. Blue (red) lines correspond to free runs
(data-driven runs) using LO–EUL (solid line type) and LO–LAG (dashed
line type).

4.5 Validation Test: Application to the Rim Fire

4.5.1 Overview of the Rim Fire

We continue our validation work and now consider a real accidental fire, the

Rim Fire. The Rim Fire occurred during the 2013 California wildfire season on the

edge of Yosemite National Park. It started on August 17 from an illegal campfire in
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a remote canyon in central Sierra Nevada and extended up to 1040 km2 (the third

largest wildfire in California’s history). It was fully contained on October 24 after

a 9-week firefighting battle. The Rim Fire occurred under extreme drought and

weather conditions, with notably unstable weather occurring soon after ignition,

leading to two days of extreme fire growth in its early stage. By August 23, 400 km2

were already burnt. So as a preliminary test, we focus here on the time period August

20-23 when the fire was moving at the fastest rates during its early development.

It is worth noting that the Rim Fire occurred in forest vegetation types (chaparral,

ponderosa and Jeffrey pines, white and red fir, etc), involving crown fire under

severe environmental conditions which favor faster fire propagation and stronger fire

intensities [107]. Thus a crown fire model is needed for more accurate calculations

of fire propagation. This is beyond the scope of the present work. The current

propagation model in our data-driven modeling system is used for surface fire spread,

which include grasses, shrubs and other low-lying vegetation. This simplification of

the ROS model is part of a modeling error addressed when estimating the model

state. In other words, we should give more weights to observations over simulations

due to the absence of a crown fire model.

4.5.2 Observation Data

For the Rim Fire, the Geospatial Multi-Agency Coordination (GeoMAC) data

provide complete fire perimeter on a daily basis. GeoMAC provides fire perimeter

data based upon multiple data source: incident intelligence sources (onsite crew,
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apparatus measurements), GPS data, infrared (IR) imagery from fixed wing and

satellite platforms. It is manually updated by interpreters located at a duty sta-

tion everyday. We also have the National Infrared Operations (NIROPs) nighttime

airborne data available for the Rim Fire. Like the GeoMAC dataset, the NIROPS

dataset is postprocessed by an interpreter after raw data received. These raw data

come from the Phoenix imaging system with a dual IR line scanner installed on an

airplane.

In our preliminary test, we decided to use the GeoMAC dataset for Rim Fire

over August 20-23 as our observation data. While their uncertainty are difficult

to evaluate since the GeoMAC dataset combines multiple inputs which may have

high or low fidelity individually, it offers complete fire perimeter information, which

facilitates the construction of a binary field of burnt area, suitable for data-driven

simulations using a LO-based state estimation. Figure 4.12 shows the 6 observation

snapshots available over August 20-23 from the GeoMAC data source. The fire was

ignited in the southwestern area, and propagated mainly towards the northeast and

northwest directions over this time period.

4.5.3 Numerical Settings

The vegetation fuel map was downloaded from Google Maps and we adopted

three spatially-distributed vegetation fuel types (forest fuel, bare soil and lake water)

based on the fuel map. The terrain topography properties were set up using slope

and aspect values at all cells extracted from Google image by QGIS tool, with a
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Figure 4.12: 6 observations available from GeoMAC data source for Rim
Fire over August 20-23. Credit: Dr. Evan Ellicott, UMD.

cell size 70 m × 70 m. Although several weather stations nearby recorded the

meteorological data during the Rim Fire event, we assume that the wind is uniformly

distributed (average middle flame wind speed is 0.8 m/s, wind direction is 225◦) in

our preliminary test. This simplification will be removed in future work by coupling

with WindNinja tool to have a specially-distributed wind field input.

In the present study, we tested the Rim fire data with the LO–EUL framework,

LO–LAG work can be carried out in a similar fashion. The computational domain

size is 69 km × 49 km (33800 ha), the spatial resolution is 70 m. The total simulation

time is 100 hours, and the temporal resolution is 1 min. We consider a simplified

representation of the fireline and we initialize the fire as a circular front (radius
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3600 m) at location (27 km, 15 km). The purpose of this ignition configuration is to

have a good approximation of the first observation. We will test whether our state

estimation method is able to track the observed fire propagation if start with biased

information. This is a good representation of a real world case where usually the

initial fire location cannot be accessed.

4.5.4 Performance of State Estimation

Figure 4.13 shows the comparison of firelines between a free forecast (without

state estimation) and a data-driven run (with LO–EUL state estimation). Six avail-

able observations are displayed in black cross symbols, the blue solid lines represent

the free forecast at corresponding observation times, and red solid lines represent the

data-driven run. Given the significant differences between the free forecast and ob-

servation, we use a relatively large value of λ (λ = 0.5) that allows the posterior fire

front to accurately track the observations in this case. This test case demonstrates

the ability of the new front shape comparison method to retrieve the correct front

shape, even when this shape is complex due to highly heterogeneous environmental

conditions. One advantage of this approach is that it allows a fast modification of

the model state without requiring much additional computational resources. The

CPU running time is 30 min on a personal laptop for the simulation of the Rim Fire

case with a 100 hours simulation time. This computational cost is consistent with

an operational framework.

We tested the forecast performance using the same LO–EUL state estimation
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Figure 4.13: Comparison of fire fronts using LO-EUL state estimation for
the Rim Fire: blue line represents prior fire front without data assimila-
tion, red line represents posterior fire front with data assimilation, black
crosses correspond to the 6 observed fire fronts during August 20-23.

approach by examining the Hausdorff distance between simulations and observations

at different times. Figure 4.14 shows the time variations of the Hausdorff distance.

The blue line indicates how the prior Hausdorff distance increases during the free

run without data assimilation. The discrepancy between simulation and observa-

tion keeps increasing during the simulation time. In contrast, when applying data

assimilation, the posterior Hausdorff distance was significantly decreased to the low-

est value at all observation times. This is quite understandable since we impose a

relatively large gain value (λ = 0.5) to nudge the forward model simulation towards

observation, so that the simulated fire front is similar to the observed fire front over
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the whole fire duration. Based on these results, we examine the Hausdorff distance

at the forecast time; corresponding here to the next observation time. We found that

the Hausdorff distance computed for the data-driven run at the next observation

time is of the same order of magnitude or even larger than that corresponding to

the free run. This is due to the fact that the state estimation approach usually has

a limited time persistence and is only valuable at short forecast leading times. Here,

the observation time interval is very large (> 10 hours). In addition, it is hard to

keep track of accurate fire propagation by doing standalone state estimation, espe-

cially when there is a sudden change in the fire front topology due to changes in the

environmental conditions and/or firefighting actions. The input parameters need to

be modified to have a more consistent forecast, for instance we could act on the veg-

etation moisture content to account for firefighting actions. In the future, a better

forecast capability is foreseen by applying also a parameter estimation approach, as

was shown in Chapter 3 for the FireFlux case. In addition, a better representation

of the spatially-distributed fuel and wind parameters will certainly help to construct

a more realistic model simulation on a large scale wildfire event like the Rim Fire.

Conclusion

The results demonstrate the performance and robustness of the shape similar-

ity measure applied in the context of LO-based state estimation approach. In the

Lagrangian distance formulation implemented prior to this work, the observed fire

front is treated as a discretized contour with a finite set of markers, and calculates
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Figure 4.14: Time variations of the Hausdorff distance between simulated
and observed fire front postions for the Rim Fire. The blue dashed line
represents the free forecast and the red solid line represents the data-
driven run.

the distance error by pairing the observed markers with the simulated markers. This

method is not accurate for large scale wildfires that feature strong heterogeneity in

the surface conditions. With the new shape similarity measure derived from im-

age segmentation, we directly consider the burning area as a moving object that

can deform under heterogeneous conditions and thus represents the similarity (or

dissimilarity) in terms of topologies between the simulated and observed burning

areas.

The performance of the new front shape similarity measure combined with a

state estimation approach is evaluated in the three-hectare RxCADRE S5 controlled

burn, in both analysis (i.e. assimilation) and forecast modes, and using an Eulerian
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or Lagrangian fire spread model. The results demonstrate the ability of the proposed

models to reduce uncertainties and to provide an improved forecast. Our preliminary

test with the Rim fire data also shows the viability and robustness of this front

shape similarity based on a state estimation approach to deal with km-scale wildfire

hazards.

It is worth noting that including the forward model in the estimation is partic-

ularly useful when we only have partial observations of the fireline [42]. Although it

is not the case here, observed firelines are often incomplete in wildfire hazards due

to cloud cover or scale-inefficient detection techniques. Simple extrapolation of the

observation data will not work well in such scenarios, especially in the presence of

surface heterogeneity (e.g. lakes, roads) that induces changes in fire dynamics. The

state estimation approach uses the forward model to provide physical constraints and

define correlations of the errors along the fireline in order to reconstruct a complete

fireline during the analysis step. Note also that observation data may be subject

to uncertainties and that data assimilation also provides an efficient framework to

account for observation uncertainties, which would be a useful capability to monitor

wildfire hazards where observation uncertainties are large.

In this chapter we focus on state estimation and the proposed models are

shown to provide much improved short-term forecast performance. However, longer-

term forecast performance requires a correction of the fire spread model through

parameter estimation. Therefore in Chapter 5 we will show the development of a

dual state-parameter estimation approach where we distribute the corrections to

both model parameters and model state appropriately, in order to retrieve more
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physical values for the control parameters and gain a long-term forecast leading

time.
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Chapter 5: Dual State-parameter Estimation

In Chapter 3, our data-driven wildfire spread modeling system was successfully

evaluated against reduced-scale and field-scale (FireFlux I) experiment in spatially-

distributed parameter estimation mode. In that work, we use an EnKF algorithm to

find better estimates of the Rothermel-based model parameters (i.e., spatially dis-

tributed wind parameters), thereby improve forecast performance. However, we did

not find a good agreement between posterior wind values and analytical wind values

from which the observation data were generated. Thus we treated the posterior wind

values as effective values which incorporate multiple sources of uncertainties. In ad-

dition, the innovation term is calculated with discretized markers representation,

which suffers limitation when moving to regional-scale wildfire spread simulations.

In Chapter 4, we introduced a LO-based state estimation method to directly

update the fireline position and shape based on the front shape similarity measure

derived from image segmentation theory. This method allows a fast modification

of the model simulation towards the observed fire front location. But such state

estimation approach yields a good forecast only for a short leading time, since the

ROS parameters may be baised and uncertain.

Thus the objective in this chapter is to show the benefits of a dual state-
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parameter estimation approach in terms of analysis and forecast performance. The

key idea of this approach is to simultaneously control the model state and a subset

of significant parameters, in order to obtain more accurate physical values of the

estimated parameters by attributing uncertainties not only to the model parameters,

but also to the model state. The correction in both the model parameters and

the model state is expected to improve forecast performance due to the improved

knowledge in the rate-of-spread model. Parameter estimation is carried out using

an ETKF algorithm [92], which is a deterministic ensemble-based data assimilation

algorithm. State estimation is carried out using a Luenberger observer suitable for

front-tracking problems [73]. Both the state estimation and parameter estimation

approaches rely on a front shape similarity measure to represent the differences in

position between the observed and simulated firelines. The performance of the dual

state-parameter estimation approach is demonstrated for verification tests against

synthetic observations as well as for a validation test against the 2012 RxCADRE

S5 field-scale experiment [106]. This work is currently being written and will be

soon submitted for publication in an archival journal.

5.1 Dual Algorithm

In wildland fire applications, the discrepancy between simulated and observed

fire fronts could result from either the biased initial fire location, or unknown model

parameters. In Chapter 2 and 3, we use x to denote the control vector, which will

be corrected based on the discrepancy between simulation and observation. The
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control vector could include either model state or model parameters depending on

the application system, whether it is executed in state estimation mode or parameter

estimation mode. For the dual estimation method, for clarity purpose, we will use

θ to specifically denote the control variables (ROS parameters) for the parameter

estimation part, c to denote the model state (two-dimensional progress variable

field) for the state estimation part, x to denote the “extended state” (both model

parameters θ and model state c included). In the present study, the uncertain input

variables are the initial location of the fire (i.e. the initial condition c0) and some

ROS parameters θ entering the ROS model (i.e. the parameters underlying the ROS

model, in particular those that are associated with the near-surface wind Uw [41]).

Note that the model formulation itself (in particular the ROS model) is subject

to uncertainties; this can also be addressed by data assimilation algorithm [108],

however this is beyond the scope of the present study.

In the following, the front position uncertainties due to uncertainties in θ are

addressed through parameter estimation, meaning that the parameters included in

the vector θ are explicitly updated when observations become available. We assume

that the errors on the ROS model parameters vary slowly in time. Moreover, the

front position uncertainties due to the initial fire c0 are addressed through state

estimation, meaning that the state c(x, y, t) is updated when observations become

available to locally correct the shape of the fireline and restart the forward model

from a better-informed fire situation. This is consistent with the objective of fore-

casting the wildland fire behavior at future leading-times. This is in line with what

is usually done for numerical weather predictions. The objective of sequential data
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assimilation in this framework is to find the time-evolving dynamics of the “extended

state” x (also referred to as the “control vector”). The state and the parameters are

estimated using different data assimilation algorithms in this work for cost issues.

For the state estimation part, a cost-effective LO-based state estimator is imple-

mented during model integration stage (i.e., forecast stage), it continuously nudge

every simulation member towards the observation at a certain extent (see Chap-

ter 4). For the parameter estimation part, we still rely on an ensemble framework

since the dimension of model parameter θ is usually much lower than the dimension

of model state c. Each ensemble member of the control parameters is updated at

the analysis time when the observation data is compared with the “nudged” simula-

tion model state (see Chapter 3). The idea of this dual state-parameter estimation

is that: the discrepancy between the observation and simulation is partially dis-

tributed to state correction during the model integration stage, and the remaining

discrepancy is distributed to the ROS parameter correction during the parameter

update stage at analysis time.

The dual state-parameter estimation framework is similar to the framework

of the parameter estimation using EnKF (see Chapter 2 and 3). During the assim-

ilation window [t − 1, t], we start the simulation with a finite number of ensemble

member Ne. Each member starts with the same initial model state but with differ-

ent control parameter values generated from a Gaussian PDF at time (t− 1). The

main difference is that during the model integration [t−1, t], we use the propagation

equation 4.5 instead of the original equation 2.5 for each ensemble member. With an

appropriate choice of the gain value λ (typically based on the inverse of the observa-
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tion error covariance), the discrepancy between simulation and observation has been

decreased due to the “nudging” process introduced in the forecast stage; thus at the

analysis time t, the remaining discrepancy is used to update every model parame-

ters in the ensemble. Note that we use an ETKF to update control parameters, but

the corresponding model simulations at time t are already “contaminated” by the

observation due to the nudging process, while the Kalman-type filter assumes that

model errors and observation errors should be uncorrelated. Also the distribution of

the corrections to either model state or model parameters is controlled by the gain

factor λ, while it is a practical and direct method, the optimality of the solution

from a mathematical proof perspective is outside the scope of the present study.

5.1.1 First Stage State Estimation

In the present study, we correct the model state using a deterministic Lu-

enberger observer, i.e. by directly modifying the propagation Eq 2.5 through the

introduction of relaxation terms towards the observations yo. In the present front-

tracking problem, the front shape similarity measure-based LO implicitly propagates

the correction from one point of the fireline to the rest of the fireline and thus pre-

serves a coherent structure for the simulated front. Note that this is different from

the state estimation algorithm used in [42], where an EnKF was implemented and

tested against reduced-scale controlled burnings. Using a LO avoids the formulation

of high-dimensional matrices required to compute the Kalman gain matrix when the

model state is the two-dimensional progress variable c.

136



Assume Ne ensemble members are generated at initial time (t − 1), the k-th

member carries an “extent state” xk including model state ck and control parameters

θk (k = 1,...,Ne). During the forecast stage ([t − 1, t]), the model state of the k-th

ensemble member is forwarded in time:

∂ck

∂t
= ROS2D

∣∣∣∇ck
∣∣∣− λδ(φck)

{
[yo − Cmax(yo, φck)]2 − [yo − Cmin(yo, φck)]2

}
(5.1)

Since the model parameters θk varies for each ensemble member, the simulated

fire front shape will vary too. Thus in Eq 5.1 the nudging effect by the additional

correction term is different for every ensemble member. At analysis time t, the

model state ck varies among Ne ensemble members, although all of them are nudged

towards the observation somehow. In principle, the gain value λ should be chosen

wisely to eliminate the discrepancy between simulation and observation that is not

caused by the biased control parameters. It cannot be a very large value in dual

estimation approach, otherwise at the analysis time t, the model state are completely

nudged to match the observation, and the distance vector D will vanish, and will

not provide an update on the control parameter space.

5.1.2 Second Stage Parameter Estimation

At analysis time t, we update the Ne ensemble of the control parameters

(i.e., the ROS submodel parameters) using ETKF algorithm. The general update

equation is:

θa
t = θf

t + KtD
[
yo

t ,G
(
θf

t

)]
(5.2)
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where the distance vector D is computed based on the shape similarity measure

(see Eq 2.21). Kt stands for the generalized Kalman gain. In the ETKF algorithm,

the ensemble mean is updated using the traditional Kalman gain, and the ensemble

spread is updated using the a matrix square root form of that gain. The details of

these computation can be found in Chapter 2 .

After we update the control parameters θa
t we re-run the forward model from

time (t−1) to time t using the updated parameter values for all ensemble members,

so that we can also get the updated “extended state” vector xa
t . The new extended

state vector xa
t serves as the prior-known information for next assimilation window.

Note that for the validation test against the RxCADRE S5 experimental data, we

use the RTPP scheme presented in Chapter 2 to do covariance inflation work when

moving from one cycle to another. We use a α value of 0.5 featuring a medium

inflation process.

5.2 Verification Test: Observing System Simulation Experiment

In this framework, the true value of the uncertain variables (the input param-

eters θ and/or the initial condition c0) exists and is known. In the present study,

we choose the mid-flame wind parameters in the ROS submodel as our control pa-

rameters and we assume they are uniformly-distributed, so the control vector θ

includes both the wind speed uw and the wind direction dw that are uniform over

the computational domain Ω. Note also that the initial condition c0 is formulated

here in a parametric form with respect to the “center of mass” of the initial burning
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area, whose position is denoted by (xign, yign). So the parameters that can be per-

turbed in the following to generate observations or prior information are (uw, dw)

and (xign, yign).

The observations yo are synthetically generated by integrating the fire spread

model (Eq. 2.5) using the true values of the uncertain variables and by adding noise

to the observed fireline. In the present OSSE test case, the error in the observations

εo is assumed to be very small; the observation is thus considered as the “target”.

The performance of the dual state-parameter estimation is evaluated by ex-

amining its ability to retrieve the true value of the control parameters θ and the

true structure of the fire state c in a situation where observations are considered

accurate. This configuration aims at pushing the data-driven model to its limit in

a situation where the error in the prior is large and where the estimation involves

an important correction to match the observations.

Numerical Settings

The 2-D computational domain Ω is 180 m × 180 m (with a step size ∆x =

1 m); the time window is 100 s (with a constant time step ∆t = 0.1 s) with the anal-

ysis carried out at time 50 s. In this case, we assume flat terrain and heterogeneous

biomass moisture content, Mv = 5 % (yellow areas in Fig. 5.1) and Mv = 20 % (blue

areas in Fig. 5.1). The rest of the input parameters to the ROS model is assumed

uniform. The biomass fuel is characterized by δv = 0.2 m (layer thickness), ρv =

1 kg/m3 (layer mass density), Σv = 9000 m−1 (particle surface-to-volume ratio),
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∆hv = 18.6 × 106 J/kg (heat of combustion).

Figure 5.1: Heterogeneous biomass moisture content for OSSE test case.
Blue area represents 20 % moisture content, yellow area represents 5 %
moisture content.

Performance of Standalone Parameter Estimation

First, we verify the standalone parameter estimation algorithm based on the

ETKF works well. For this purpose, we assume uncertainties only come from the

near-surface wind; the wind speed uw and the wind direction dw are considered

constant over time so that x = (uw, dw).

The fire is ignited at time 0 s at (xign, yign) = (90 m, 90 m) as a circular

front with radius rign = 10 m. The true wind speed is ut
w = 3 m/s, the true wind

direction is dt
w = 180◦. Figure 5.2 shows the true trajectory of the fire in black

solid lines. The prior estimate of the fire propagation is ignited at the same position
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(xign, yign) = (90 m, 90 m) but with prior wind values that are subject to significant

error with ub
w = 4 m/s (25 % error) and db

w = 225◦ (20 % error). The corresponding

background trajectory of the fire is presented in Fig. 5.2 in blue lines (this is the mean

background trajectory). Heterogeneities in the biomass fuel moisture content induce

different front shapes between the true trajectory and the background trajectory.
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Figure 5.2: Time-evolving locations of the firelines at 10-s time intervals
from initial time t0 = 0 s until 100 s; OSSE test case – Comparison
between true firelines (black solid lines) and free run or background (blue
solid lines). The colormap corresponds to the biomass fuel moisture
content field in Fig. 5.1.

We model the uncertainties of the wind parameters using the following stan-

dard deviation σb: 0.5 m/s for the wind speed ub
w, and 25◦ for the wind direction

db
w. In this configuration, we analyze the sensitivity of the results to the ensem-

ble size Ne varying from 10 to 200. Figure 5.3 presents the mean and STD of the
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analysis wind speed and wind direction, which are empirically derived from the Ne-

ensemble. Figure 5.3 shows that the analysis mean values tend to converge towards

the true values for Ne > 30; the STD being relatively constant as the ensemble

size Ne increases. An ensemble of Ne = 40 members is thus enough for achieving

a good performance of the ETKF algorithm. Note that in Chapter 3 we used an

ensemble of 200 members for spatially-distributed parameter estimation; a higher

number of members was required due to the larger dimension of the control vector

that included multiple wind grid points in the vicinity of the fireline.

Figure 5.4 shows at time 50 s the ensemble of fireline positions before (left

panel) and after (right panel) ETKF-based parameter estimation when Ne = 40.

Before parameter estimation there is a wide scatter of the fireline positions due to

the uncertain wind speed and wind direction. Once parameter estimation is applied,

all members of the ensemble move towards the observed fireline at time 50 s. The

analysis ensemble features a much reduced spread compared to the background

ensemble. Note that we applied a medium RTPP inflation scheme (α = 0.5) to keep

a robust analysis ensemble spread, which is essential to avoid filter divergence issue.

So the analysis ensemble still features some variability at the headfire.

Performance of Dual Estimation

Now we move to the dual state-parameter estimation. In this configuration,

we assume uncertainties are due to both wind parameters and ignition location so

that x = (uw, dw, c). We keep the same configuration with ut
w = 3 m/s, dt

w = 180◦

142



20 40 60 80 100 120 140 160 180 200
160

180

200

220

W
in

d
 d

ir
e

c
ti
o

n
 (
°
)

20 40 60 80 100 120 140 160 180 200

Ensemble size

2.5

3

3.5

4

W
in

d
 s

p
e

e
d

 (
m

/s
)

Figure 5.3: Convergence test of the ETKF-based parameter estima-
tion algorithm for varying ensemble size Ne; OSSE test case with
x = (uw, dw)T – Red solid lines represent the mean analysis estimate
of the wind parameters (wind speed uw in top panel; wind direction
dw in bottom panel); error bars represent their associated STD. Top
dashed lines represent the mean background value of the wind param-
eters; bottom dashed lines represent their true value. Vertical dotted
lines represent the ensemble size (Ne = 40) used in the present work.

for the true value of the control parameters and ub
w = 4 m/s, db

w = 225◦ for the

background value of the control parameters. However, the background fire is also

subject to an uncertain initial condition: the background fire is ignited at time 0 s

at (xign, yign)b = (85 m, 85 m) as a circular front with radius rmathrmign = 10 m,

while the true fire is ignited at (xign, yign)t = (90 m, 90 m). For the state estimation

part, the parameter λ value is set to λ = 0.2 featuring a medium nudging effect in
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Figure 5.4: Comparison of fireline locations at time 50-s; OSSE test case
with Ne = 40. Black cross symbols correspond to the true trajectory;
gray lines correspond to the simulated firelines (left panel presents the
background ensemble; right panel presents the posterior ensemble after
parameter estimation–PE). For clarity purpose, only 20 members of the
ensemble are plotted.

this case.

We compare in Fig. 5.5 the fireline positions obtained at the analysis time 50 s

with different algorithms. The top left figure presents the free run obtained with

an incorrect initial location and incorrect wind parameters (there is the additional

uncertainty in the initial condition compared to Fig. 5.4 – left panel). Top right

figure shows the posterior fireline positions obtained if we only estimate the wind

parameters (uw, dw) using the ETKF algorithm. Due to the bias induced by the

uncertain initial condition, the ETKF algorithm is unable to retrieve the true fireline

position (i.e. to find values of the wind parameters that correspond to a simulated

fireline position matching the true position). There is still a significant difference

in the position of the head fire between the true fireline position and the analysis
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ensemble. Bottom figures show the posterior fireline positions when applying the

dual state-parameter estimation algorithm. The bottom left figure shows the results

after the first step of the algorithm, i.e. the state estimation procedure. The bottom

right figure shows the result after the second step of the algorithm, i.e. when both

state estimation and parameter estimation are applied. Compared with the free

run in the top left figure, we see that all ensemble members are already slightly

nudged towards the observed fireline. The bias in the fireline position induced by

the wrong ignition is decreased by state estimation (the magnitude of this correction

is controlled by the gain λ value). When combined with parameter estimation, the

algorithm is able to retrieve the observed fireline position with a small scatter among

the ensemble members. The head fire is correctly located. There are still some small

uncertainties at the rear fire due to the uncertainty in the initial condition. Figure 5.5

thus indicates that the dual state-parameter estimation algorithm achieves the best

performance among the algorithms tested and can overcome uncertainties in both

wind parameters and fire ignition position.

As a complement, we analyze the distribution of the posterior wind values

when using the dual state-parameter estimation method with respect to the true

wind values. Figure 5.6 shows the probability density function for both wind di-

rection (top panel) and wind speed (right panel) control variables; this probability

density function is derived empirically from the 40-member ensemble. This indi-

cates that the dual state-parameter estimation approach provides posterior values

that are closer to the truth than the standalone parameter estimation approach.

It also significantly reduces the spread of the ensemble around the mean posterior
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Figure 5.5: Comparison of fireline locations at time 50-s; OSSE test case
with Ne = 40. Black cross symbols correspond to the true trajectory;
gray lines correspond to the simulated firelines. Top left panel presents
the background ensemble. Top right panel presents the posterior en-
semble after standalone parameter estimation (PE). Bottom left panel
presents the posterior ensemble after the first step of the dual state-
estimation algorithm (state estimation). Bottom right panel presents
the posterior ensemble after the second step of the dual state-estimation
algorithm (both state estimation and parameter estimation). For clarity
purpose, only 20 members of the ensemble are plotted.

value. The standalone parameter estimation is unable to find the truth due to the

extra bias introduced by the wrong ignition location. This confirms the good perfor-

mance of the dual state-parameter estimation approach that is able to (1) retrieve a
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realistic fire behavior and (2) find more accurate estimates of the near-surface wind

(in terms of mean and standard deviation).
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Figure 5.6: Probability density function of the wind parameters; OSSE
test case with Ne = 40. Circle symbols represent the true value of the
wind parameters. Blue histogram indicates the distribution of the wind
parameters without data assimilation. Pink histogram indicates the pos-
terior distribution of the wind parameters under standalone parameter
estimation, Red histogram indicates the posterior distribution of the
wind parameters under dual state-parameter estimation.
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5.3 Validation Test: Application to the RxCADRE Experiment

5.3.1 Observation Data

For this validation work, we use the whole dataset from the RxCADRE exper-

iment (duration: 780 s). Figure 5.7 (left) presents the map of flame arrival times,

from t = 0 to 780 s (corresponding to the time interval [60 s; 840 s] in the RxCADRE

dataset), showing the time at which the fireline arrives at a given pixel of the S5

burn lot. In the assimilation procedure, we assume that observations are available

at 60-s time intervals. We generate the binary fields required at these observation

times, which are obtained using the corresponding map of flame arrival times af-

ter filtering to remove small-scale holes and outliers. Figure 5.7 (right) shows the

contour of these binary fields with a 60-s time interval.
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Figure 5.7: Dataset of the RxCADRE S5 fire. (left) Map of flame ar-
rival times (0-780 s). (right) Series of contours (or “fireline”) separating
unburnt and burnt vegetation over the time period (0-780 s) with a 60-s
time interval.
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5.3.2 Numerical Settings

We now apply our dual state-parameter estimation method to the RxCADRE

S5 experimental dataset with observations available at 60-s time intervals. The 780-s

simulation time is divided into thirteen 60-s-long data assimilation cycles: the cycles

are characterized by twelve analysis events, called A1 −A12 with Ai designating an

analysis performed at time (i× 60 s) based on an observation made at the same

time, and by twelve forecast events, called F1 − F12 with Fi corresponding to a

forecast performed at time ((i+1) × 60 s) based on the analysis Ai. The quality

of the analysis is evaluated through comparisons between predicted and observed

fire propagation positions at time (i× 60 s); the quality of the forecast is evaluated

through similar comparisons at time ((i+1) × 60 s).

The 2-D computational domain Ω is 180 m×180 m (with a step size ∆x = 1 m);

the time window is 780 s (with a constant time step ∆t = 0.05 s). In the simulations,

we assume uniformly-distributed vegetation fuel as well as uniform and constant

wind. The input fuel parameters to the Rothermel model are based on experimental

measurements: the fuel depth is 0.2 m; the fuel surface loading is 0.28 kg/m2; the

fuel particle surface-to-volume ratio is 9,000 m−1; the fuel moisture content is 10 %.

For the input wind parameters, we start with an initial guess wind speed value

2 m/s, wind direction value 360◦. Note that in Chapter 4 we use a wind direction

value of 345◦ during a state estimation mode with the RxCADRE S5 data. Here we

use a biased wind value from the measurement to check the performance of the dual

estimation method on retrieving this 345◦ wind direction value. The corresponding
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background STD is 0.5 m/s for wind speed and 25◦ for wind direction. The size

of the ETKF-ensemble is Ne = 40. The LO-gain value is λ = 0.2. Also during

the experiment, the fire is ignited near the northern boundary and propagated from

north to south direction. In the simulation, we set the ignition at time 0 s at (90

m, 180 m) as a semi-circular front with radius = 15 m.

5.3.3 Performance of Dual Estimation

Comparison of Estimation Algorithms

We consider observations are available at 60-s time intervals. Figure 5.8

presents a comparison between simulated firelines and observation over the first

assimilation cycle at analysis time 60 s. Top left figure corresponds to the free

run. Top right figure corresponds to the analysis fireline estimate obtained by stan-

dalone parameter estimation. The analysis mean values are ua
w = 2.36 m/s for wind

speed and da
w = 335◦ for wind direction; associated STD values are 0.30 m/s and

11.61◦, respectively. Bottom left figure corresponds to standalone state estimation.

Bottom right figure corresponds to the analysis fireline estimate obtained by dual

state-parameter estimation. The analysis mean values are ua
w = 2.09 m/s for wind

speed and da
w = 325◦ for wind direction; associated STD values are 0.27 m/s and

13.31◦, respectively. These results show that there is a significant change in the

wind parameters to track the observed fireline compared to the free run; the scatter

of the wind parameters is reduced by a factor of two with respect to the background

but is comparable for the analysis obtained with standalone parameter estimation
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and dual state-parameter estimation. Dual state-parameter estimation outperforms

standalone parameter estimation in terms of analysis performance by retrieving a

more accurate fireline shape thanks to state estimation.

Note that free run and standalone state estimation have a similar computa-

tional cost, meaning that computing the LO-feedback term does not increase the

computational cost required for the resolution of the propagation equation. When

running ensemble simulations, either in standalone parameter estimation mode or

in dual state-parameter estimation mode, the computational cost is approximately

multiplied by a factor of two per model simulation (due to the simulation of re-

analysis event). For a fixed number of processors, the total computational cost

linearly scales with the ensemble size Ne. However, an advantage of EnKF methods

is that model simulations during the forecast stage are independent and can be run

simultaneously according to available computing facilities.

We now evaluate the forecast performance at future leading terms. Figure 5.9

compares the fireline positions at times 60 s, 120 s and 180 s. The fire spread

model is run freely (without data assimilation) starting from the analysis fireline

estimates shown in Fig. 5.8 at time 60 s until times 120 s and 180 s. Observation

at time 60 s is assimilated; observations at times 120 s and 180 s are only used to

compute diagnostics. Top left figure presents the simulation-observation comparison

in free run mode. Top right figure presents the simulation-observation comparison in

standalone parameter estimation mode. Bottom left figure presents the comparison

in state estimation mode. Bottom right figure presents the comparison in dual state-

parameter estimation mode. Results show that standalone state estimation cannot
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Figure 5.8: Comparison of fireline locations at analysis time 60 s with
Ne = 40. Black cross symbols represent the observations, grey lines
reprensent simulated fronts. Top left panel presents the background en-
semble. Top right panel presents the posterior ensemble after standalone
parameter estimation (PE). Bottom left panel presents the posterior en-
semble after the first step of the dual state-estimation algorithm (state
estimation). Bottom right panel presents the posterior ensemble after
the second step of the dual state-estimation algorithm (both state esti-
mation and parameter estimation). For clarity purpose, only 20 members
of the ensemble are plotted.

capture the direction of fire spread unlike other approaches. Standalone parameter

estimation and dual state-parameter estimation are able to forecast fireline positions

that are consistent with the observations at times 120 s and 180 s. This implies that

the background wind direction is not realistic and needs to be updated. In addition,

combining state estimation with parameter estimation provides a better forecast of

the fireline geometry on the flanks and of its irregularities than standalone parameter

estimation. These results indicate the advantage of dual estimation method to

correctly track the fire front propagation and to update the input parameters of the

ROS model to retrieve the actual main wind conditions.
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Figure 5.9: Front comparison at analysis time 60 s and forecast time
120 s and 180 s. Black cross symbols represent observation data, gray
lines represent simulated fronts. Top left panel presents the free run. Top
right panel presents the posterior front driven by standalone parameter
estimation. Bottom left panel presents the posterior front driven by stan-
dalone state estimation, with the same λ value used in dual estimation
(λ=0.2). Bottom right panel presents the posterior front driven by dual
state-parameter estimation. For clarity purpose, only the mean fireline
location is plotted.

To quantitatively evaluate the forecast performance, we introduce the Haus-

dorff distance as in Chapter 4 to compute the difference between simulated front and

observed front in a unit of physical distance (meter or kilometer). While Hausdorff

distance is our perferred choice when we need a diagnostic metric with the Euclidean

distance concept, there are other various metrics to evaluate the discrepancy between

two shapes. One instinctive choice is the Chan-Vese data-fitting functional [80] (see
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Eq 2.14). Basically the smaller this similarity measure, the better match between

two objects being compared with each other. Chan-Vese data fitting functional is

not a normalized indice, so we choose another two similarity indices: Sorensen in-

dex and Jaccard index, which are normalized similarity indices [43]. Their score

ranges between 0 and 1, while 1 indicates identical shapes. In practice, there is

no rule to determine which indice should be used to best quantify the discrepancy

between simulation and observation [109], so here we adopt these four indices as our

diagnostic metrics.

Figure 5.10 presents the temporal variations of the diagnostics. For the free

run, the observation-simulation discrepancy is high at the analysis time 60 s and

increases with time over the forecast time period [120; 180 s]. State estimation

drastically reduces the discrepancy at the analysis time but the positive effects of

the analysis are rapidly lost during the forecast time period and the discrepancy

rapidly follows the same trend as the free run. This indicates that there is no long

persistence of the correction in the model state due to model bias (i.e. wrong near-

surface wind conditions). Parameter estimation scores better than state estimation

during the forecast time period, indicating the ability of the algorithm to retrieve

physical values for the wind parameters. For parameter estimation, the observation-

simulation discrepancy increases at a slower rate than the other approaches. So dual

state-parameter estimation provides a good compromise with a good-quality analysis

and a good-quality forecast over the time period [120; 180 s], with an observation-

simulation discrepancy that is similar to that of standalone parameter estimation

at time 180 s.
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Figure 5.10: Time variations of observation-simulation discrepancy us-
ing diagnostics for the first assimilation cycle (analysis time 60 s, fore-
cast time 120 s and 180 s). Dashed lines correspond to free runs; solid
lines correspond to data-driven runs. Circle symbols correspond to stan-
dalone state estimation (SE); plus sign symbols correspond to stan-
dalone parameter estimation (PE); cross symbols correspond to dual
state-parameter estimation (DE).
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Sequential Application of Dual State-parameter Estimation

In previous section, we show the results obtained for the first assimilation cycle

A1/F1. Here we also study assimilation cycles A2–A12/F2–F12 by performing dual

state-parameter estimation every 60 s, implying that the wind speed and wind direc-

tion are sequentially updated to track temporal changes in-between the assimilation

cycles.

Figure 5.11 presents the temporal variations of the analysis wind speed and

wind direction in terms of mean value and STD. Figures 5.12–5.13 present a compari-

son between the observed fireline and the mean model predictions for all assimilation

cycles at analysis time and at forecast time (60 s after analysis time), respectively.

Results show that the mean wind direction significantly changes over the first 180 s

but then stabilizes near 350◦ until 720 s. This indicates that the wind is modified

from northwestern wind to northern wind during the experiment. This is consistent

with the location of the headfire along the observed firelines. As for the mean wind

speed, it suddenly decreases over the time period [300; 360 s] due to possible wind

stagnancy; this is also seen in the observed firelines that propagate rather slowly

during the corresponding time period. Hence the analysis obtained at time 300 s and

used to forecast the fireline over the time period [300; 360 s] propagates too fast in

the headfire region compared to the observation (see panel at time 300 s in Fig. 5.12

and corresponding panel at time 360 s in Fig. 5.13). Also the analysis obtained at

time 420 s and used to forecast the fireline over the time period [420; 480 s] propa-

gates too slowly compared to the observation (see panel at time 420 s in Fig. 5.12
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and corresponding panel at time 480 s in Fig. 5.13). The correction in the wind

parameters that adequately tracks the observed fireline is thus obtained with a 60-s

temporal shift. This means that if the wind conditions significantly change over the

forecast time window, the forecast performance can degrade. Still, the error in the

predicted fireline position can be controlled by updating sequentially near-surface

wind parameters.

Figure 5.11: Time variations of wind speed (top) and wind direction
(bottom) for all assimilation cycle A1 − A12. Wind values are updated
every 60 s. Solid line corresponds to the mean value, light red area
corresponds to the STD value, the STD values determine the lengths of
each error bar above and below the mean value.
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Figure 5.12: Comparison of simulated (solid red lines) and observed
(cross symbols) fire front positions for RxCADRE S5 fire. The simulated
firelines correspond to the mean analysis performed at events A1 − A12

(60 ≤ t ≤ 720 s). The fire spreads from top to bottom (North to South).
The time interval between plotted perimeters is 60 s.
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Figure 5.13: Comparison of predicted (solid red lines) and observed
(cross symbols) fire front positions for RxCADRE S5 fire. The predic-
tions correspond to the mean forecast performed at events F1−F12 (120
≤ t ≤ 780 s). The fire spreads from top to bottom (North to South).
The time interval between plotted perimeters is 60 s.
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Figure 5.14 presents the temporal variations of the Chan-Vese data-fitting

functional and Hausdorff distance computed in free run mode and in data-driven

mode. The evolution of the error in the free run mode is a smooth, continuously

increasing function of time. In contrast, the evolution of the error in the data-driven

mode is a discontinuous function: deviations of model predictions from observations

are periodically reduced during the analysis events A1 − A12. After each analysis

event, the error increases but remains bounded. Notice that the Hausdorff distance

evaluates the maximum distance between simulated front and observed front in

a physical space, it does not reflect the overall similarity between simulation and

observation. When the observed front presents strong heterogeneities in a small

local area which differentiates from the data-driven simulation (see for instance at

time 180 s and 480 s), Hausdorff distance will capture this local discrepancy and

resulting in larger values at the corresponding time.

Conclusion

In the present work, our main objective was to demonstrate the added value of

dual state-parameter estimation to simultaneously reduce the main sources of uncer-

tainty in wildland fire spread modeling. Parameter estimation was achieved with an

ETKF algorithm that updates near-surface wind conditions as observations become

available. State estimation was achieved using a cost-effective Luenberger observer

adapted to the propagation equation to retrieve a more accurate shape and topology

of the fireline for model restart. The merits of the dual state-parameter estimation
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Figure 5.14: Time variations of the mean discrepancy (evaluated as
Chan-Vese data-fitting functional (left) and Hausdorff distance (right))
between the predicted and observed fire front positions. Dashed blue
line represents the comparison between the free forecast and observa-
tion, solid red line represents the comparison between data-driven run
and observation. Time period: 0 ≤ t ≤ 780 s.

algorithm were shown on OSSE verification test cases and on a validation test case

against the 2012 RxCADRE S5 experimental data. Results show that parameter

estimation is an essential component of data-driven wildfire spread modeling. This

is useful to retrieve the environmental conditions that enhance wildland fire spread

and to thereby produce more accurate forecasts of wildland fire spread. Results

also show that combining state estimation and parameter estimation is powerful to

address multiple sources of uncertainty, even those that are not part of the estima-

tion targets, to account for model bias and thus retrieve physically-consistent model

parameters. We believe these new methodological features are important to move

towards data-driven wildfire spread simulation at regional scales and to address

specificities of combustion applications more generally. This is useful to preserve a
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coherent structure of the flaming front over time.
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Chapter 6: Conclusions and Future Work

The objective of this research is to design and evaluate algorithmic solutions

towards a dynamic data-driven modeling system for wildland fire spread monitoring

and forecasting at regional scales. In the past, a data-driven wildfire spread pro-

totype simulator was developed and validated against a small-scale grassland burn

trial (4 m × 4 m) where the environmental conditions were considered uniform and

where the fire front shape presented a simple geometry over time. The original

prototype simulator suffers limited functionality when operated at regional scale,

the extension of the modeling strategy requires careful design of the algorithms to

deal with spatially-varying model inputs as well as highly heterogeneous fire front

topologies. The author’s contributions are therefore resolving some of the significant

challenges for regional scale wildfire spread simulations which are detailed below.

6.1 Author’s Contributions

The first contribution by the author is to extend the estimation system to

cope with heterogeneous environmental conditions. A new grid-based spatialized

parameter estimation approach is developed where the estimation targets are the

spatially-varying input parameters of the ROS model. This approach changes the

163



sensitivity of the simulated fire front location with respect to the input parame-

ters along the fire front, especially between the head fire and the flank fires. This

approach gives model simulations more degrees of freedom to find physically consis-

tent solutions. A dynamic distance-based localization scheme is also implemented

to restrict the correction of the control parameters in the vicinity of the propagating

fire front and to avoid spurious corrections far away from the fire. The effective-

ness of this spatialized parameter estimation strategy has been demonstrated in the

simulation case of FireFlux I controlled burning experimental data.

The second contribution by the author is to evaluate a more efficient and

robust method to compute the distance between the observed and the simulated

fire fronts. In past work, we treated the observed fire front as a discretized contour

with a finite set of markers. The discrepancy between these simulated and observed

fronts was then computed by pairing observed front markers with the same number

of simulated markers. Such pairing may become difficult to operate for regional-scale

wildfires that feature strong heterogeneities in the land surface conditions. This issue

is addressed by introducing a new front shape comparison method where the burning

area is treated as a moving object that can feature both position and topological

errors. This method borrowed from object detection in image processing theory

formulates a front shape similarity measure based on the Chan-Vese contour fitting

functional. The effectiveness and robustness of this method have been demonstrated

in the context of LO-based state estimation strategy against the RxCADRE S5

experiment, and also the Rim fire dataset.

The third contribution by the author is that a new dual state-parameter esti-
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mation method is developed to estimate model state and model parameters simulta-

neously, in order to retrieve more physical values of control parameters and therefore

improve short-time forecast performance. With test cases against the RxCADRE S5

experimental data, the proposed dual state-parameter estimation method is found

to retrieve physical values for model parameters and yield better forecast perfor-

mance compared with standalone state/parameter estimation method, making it a

promising approach for real world wildfire scenarios where both model state and

model parameters are known to suffer inevitable bias and uncertainties.

Futhermore, the enhanced data-driven modeling system has been evaluated

against large scale controlled burn experiments and an accidental wildfire event,

which is missing in previous work. In the present study, we have multiple datasets

from the FireFlux I field-scale burn experiment (30 ha), the RxCADRE S5 burning

experiment (4 ha) and the Rim Fire hazard (1041 km2) to validate our model and

algorithms. This is of paramount importance to quantitatively evaluate the new

features before applied to operational wildland fire spread simulations.

We also provide a summary of the features of our EnKF algorithm used to

either estimate model parameters or model state. Compared with the standard

EnKF algorithm [33], we made following adaptations to make it work for wildfire

spread simulations. First of all, we generally use a large ensemble size to aviod

the covariance underestimation issue; and then we limit the control parameters

within a certain range when generating the ensemble members. For instance, we

set the minimum wind speed value to be larger than 0 m/s to aviod the unphysical

values. Thirdly, we implement a dynamic distance-based localization scheme, and
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a covariance inflation scheme as required for all kinds of EnKF methods. In the

present study, we also assume that the observation error is very small, thus our

objective is to check whether the data assimilation algorithms are able to nudge

the simulation to match the observation data after EnKF update process. Note in

general data assimilation provides an efficient framework to account for observation

uncertainties, which will be a useful capability to monitor wildfire hazards where

observation uncertainties are large.

6.2 Future Work

Additional work is required towards an operational data-driven application

system for real-time wildfire spread monitoring and forecasting. At operation level,

model inputs such as the wind field and biomass fuel should be fed and corrected

in a more realistic way. It is known that the wind is one of the most influential

environmental factors affecting wildland fire behavior. And in Chapter 3 we have

discussed a grid-based spatially-distributed parameter estimation strategy to correct

a spatially varying wind field. Because the fire front propagation is not sensitive to

the wind values that are far away from the fire front, we adopted a dynamic distance-

based localization to restrict the correction to the vicinity of the propagating fire

front and to avoid spurious corrections far away from the fire. While this grid-based

strategy is successful in providing a wind field that mimics observations, whether

the posterior wind field has physical meaning is questionable. One way to improve

the parameter estimation on the wind field could be to rely on a surface wind
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model, such as WindNinja [110], WindNinja could be used to generate the required

spatially varying wind field for the fire forward model, and to control the inputs of

the surface wind model in parameter estimation mode. A more realistic posterior

wind field could be achieved in this way since the prior ensemble would be the results

of a model and not only of a Monte Carlo random sampling.

Besides, using now a long-term perspective, we could couple a cost-effective

wildfire propagation model with a CFD-based atmospheric model to better account

for time-varying weather conditions at regional scales [29, 30]. Thus a data-driven

model with a better description of the wind forcing and of the fire feedback could

contribute to reducing the model errors in the simulations. For instance, Filippi et

al. [30] demonstrated the effectiveness of the Meso-NH/ForeFire coupling model for

producing accurate atmospheric behavior simulations (such as plume size, transport

dispersion and smoke concentration). The meso-scale atmospheric solver Meso-NH is

a non-hydrostatic large eddy simulation solver [111] and is able to describe kilometer-

scale to meter-scale atmospheric dynamics. The front-tracking solver ForeFire is a

Lagrangian front-tracking solver applied to wildfire spread, evolving the location

and width of the flame front according to a ROS model. The Meso-NH model forces

wildfire behavior through the surface wind field, while ForeFire imposes heat and

species fluxes as surface boundary conditions to Meso-NH. It is expected that a data-

driven modeling strategy applied to a fire front-tracking model will have a beneficial

effect on calculations of heat and species fluxes injected into an atmopsheric model,

leading to a better representation of fire-atmospheric interactions.
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[64] Mélanie C. Rochoux, Charlotte Emery, Sophie Ricci, B Cuenot, and A Trouvé.
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Filippi, and Arnaud Trouvé. Evaluation of a data-driven wildland fire spread
forecast model with spatially-distributed parameter estimation in simulations
of the fireflux i field-scale experiment. Fire Safety Journal, 91:758–767, 2017.
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Marie Curie-Paris VI, France, 2014.

[76] Annabelle Collin, Dominique Chapelle, and Philippe Moireau. A Luenberger
observer for reaction–diffusion models with front position data. J Comput
Phys, 300(C):288–307, November 2015.

[77] Annabelle Collin, Dominique Chapelle, and Philippe Moireau. Sequential
State Estimation for Electrophysiology Models with Front Level-Set Data Us-
ing Topological Gradient Derivations. In Proceedings of the 8th International
Conference FIMH, volume LNCS 9126, pages 402–411, 2015.

174



[78] François-Xavier Le Dimet, Innocent Souopgui, Olivier Titaud, Victor
Shutyaev, and M Yussuf Hussaini. Toward the assimilation of images. Non-
linear Processes in Geophysics, 22:15–32, 2014.

[79] Olivier Titaud, Arthur Vidard, and Innocent Souopgui. Assimilation of image
sequences in numerical models. Tellus A: Dynamic Meteorology and Oceanog-
raphy, 62(1):30–47, 2010.

[80] Tony F. Chan and Luminita A. Vese. A level set algorithm for minimizing the
Mumford-Shah functional in image processing. 2001.

[81] Stanley Osher and Ronald Fedkiw. Level set methods and dynamic implicit
surfaces, volume 153. Applied Mathematical Sciences - Springer, 2003.

[82] Jung-ha An and Yunmei Chen. Region based image segmentation using a
modified mumford-shah algorithm. In International Conference on Scale Space
and Variational Methods in Computer Vision, pages 733–742. Springer, 2007.

[83] Björn Engquist, Anna-Karin Tornberg, and Richard Tsai. Discretization of
dirac delta functions in level set methods. Journal of Computational Physics,
207(1):28–51, 2005.

[84] Thomas Bengtsson, Chris Snyder, and Doug Nychka. Toward a nonlinear
ensemble filter for high-dimensional systems. Journal of Geophysical Research:
Atmospheres, 108(D24), 2003.

[85] Jeffrey L. Anderson and Stephen L. Anderson. A monte carlo implementa-
tion of the nonlinear filtering problem to produce ensemble assimilations and
forecasts. Monthly Weather Review, 127(12):2741–2758, 1999.

[86] Gerrit Burgers, Peter Jan van Leeuwen, and Geir Evensen. Analysis scheme in
the ensemble Kalman filter. Monthly Weather Review, 126:1719–1724, 1998.

[87] Jeffrey S Whitaker and Thomas M Hamill. Ensemble data assimilation without
perturbed observations. Monthly Weather Review, 130(7):1913–1924, 2002.

[88] Geir Evensen. Sequential data assimilation with a nonlinear quasi-geostrophic
model using Monte Carlo methods to forecast error statistics. Journal of
Geophysical Research, 99(C5):10143–10162, 1994.

[89] Geir Evensen and Peter Jan Van Leeuwen. Assimilation of geosat altimeter
data for the agulhas current using the ensemble kalman filter with a quasi-
geostrophic model. Monthly Weather Review, 124(1):85–96, 1996.

[90] Peter L. Houtekamer and Herschel L. Mitchell. Data assimilation using an
ensemble Kalman filter technique. Monthly Weather Review, 126:796–811,
1998.

175



[91] Jeffrey L. Anderson. An ensemble adjustment kalman filter for data assimila-
tion. Monthly weather review, 129(12):2884–2903, 2001.

[92] Craig H. Bishop, Brian J. Etherton, and Sharanya J. Majumdar. Adaptive
sampling with the ensemble transform kalman filter. part i: Theoretical as-
pects. Monthly weather review, 129(3):420–436, 2001.

[93] Cheng Da and Chu-chun Chang. Fortran-version maooam-das user guide.
Technical report, Department of Atmospheric and Oceanic Science, University
of Maryland, 2018.

[94] Fuqing Zhang, Chris Snyder, and Juanzhen Sun. Impacts of initial estimate
and observation availability on convective-scale data assimilation with an en-
semble kalman filter. Monthly Weather Review, 132(5):1238–1253, 2004.
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Véronique Ducrocq, Jacqueline Duron, Claude Fischer, Philippe Héreil,
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