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The Serengeti-Mara savanna environment in East Africa is characterized by changing 

levels of woody cover and a dynamic fire regime. The relative proportion of 

woodland to grassland savanna affects animal habitat, biodiversity, and carbon 

storage, and is regulated by factors such as the fire regime (frequency, intensity, 

seasonality), and precipitation. The main objectives of this dissertation are to 

determine recent changes in woody cover at a regional scale and identify fire regimes 

and climate associated with these changes. Understanding these relationships is 

important for the assessment of future trajectories of woody cover under changing 



 

 

 

climate. Required spatially coherent data layers can only be obtained at the regional 

scale through the analysis of remote sensing data. 

Woody cover changes between 2000 and 2005 were derived from field data and a 

time series of MODIS satellite imagery at 500 m spatial resolution. Data layers on the 

controlling variables (fire frequency, seasonality, intensity and rainfall) were 

developed using a combination of remote sensing and model-based approaches. 

Burned areas were mapped using daily MODIS imagery at 250 m resolution. Outputs 

were used to make the requisite layers depicting fire frequency and seasonality. Fire 

intensity was derived using a model based on empirical relationships, mainly 

estimating fire fuel load as a function of rainfall and grazing.  

The combined data layers were analyzed using regression and decision tree 

techniques. Results suggest woody cover in central and northern Serengeti National 

Park continued to increase after 2000. Woody cover decreases were strongest in the 

wider Maswa Game Reserve area (MSW) under low precipitation conditions and late 

season burning. Woody cover losses in burned areas were also higher in the low fire 

frequency region of the Maasai Mara National Reserve (MNR). Fire seasonality was 

the most important fire regime parameter controlling woody cover in burned 

woodland savanna areas while fire intensity was most relevant for grassland savanna 

areas. Continued late season burning in drought years might cause further decrease of 

woody cover in MSW. MNR is expected to continue to be dominated by grassland 

savanna at similar fire frequency and browsing levels.  
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Chapter 1: Introduction 

1.1. Background 

Savannas constitute approximately 12% of the world’s surface (Scholes and 

Hall 1996) and are the dominant vegetation of Africa, covering 60% of the continent 

south of the Sahara (Scholes and Walker 1993). Savannas are tropical vegetation 

types co-dominated by woody plants and grasses. A defining characteristic of 

savannas is a high frequency of grass-layer fires (Scholes 1997). Fire has long been 

recognized as an important factor for the development and maintenance of savanna 

structure, particularly in combination with climate and the grazing effects of great 

herds of herbivores (Trollope 1984; Bond 1997).  

The Serengeti-Mara savanna environment in East Africa provides a 

representative example for the interaction between factors controlling the balance of 

woodland and grassland savanna. The Serengeti-Mara ecosystem was historically 

subject to dramatic changes of the landscape and the fire regime. Fire has been used 

in the region since decades as a management tool. The current main objectives 

associated with fire management in the Serengeti National Park (SNP) in Tanzania 

are the control of woody cover to create suitable conditions for tourism and poaching 

patrols, preserve vegetation communities and improve forage quality for animals 

(Trollope et al. 2005). The area of SNP and its northern extension, the Maasai Mara 

National Reserve (MNR) in Kenya are important tourist hot spots and generate 

millions of dollars of revenue every year (Lamprey and Reid 2004; Emerton and 
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Mfunda 1999). SNP is a world heritage site best known for its spectacular annual 

wildebeest migration, which regularly extends into MNR (UNEP 2003).  

Woody cover in the Serengeti-Mara region has been changing significantly 

over the last 100 years. Those who traveled through the region in the early 1900s 

found open grassland with occasional Acacia trees throughout the Serengeti-Mara 

region (Dublin 1995). In the last decade of the 19th century a rinderpest epidemic 

reduced wildebeest and domestic cattle in the entire region by more than 95% 

(Sinclair 1979a). Human population decreased dramatically through famine and 

emigration and as a result anthropogenic burning declined and fires became 

infrequent. Elephant numbers were greatly reduced by ivory poaching (Dublin 1986). 

Probably due to the low fire frequency and low browsing pressure the region had by 

the mid 20th century developed into a dense woodland savanna infested by tsetse fly. 

Tsetse flies are vectors for the deadly sleeping sickness, preventing humans from 

returning to the area and potentially changing the landscape (Waller 1990). During 

this time the Serengeti and Mara were set aside as protected areas. In the mid 20th 

century the Maasai returned with their animals vaccinated against rinderpest. In the 

early 1960s rainfall was unusually high and increased grass biomass production 

throughout the region. Fires set by hunters, park authorities and the Maasai 

population burned with very high intensity due to the large accumulation of fire fuel, 

clearing large areas of bush and thickets. At the same time elephant numbers 

increased, most likely through immigration from surrounding areas. As a result by the 

mid 1960s the woodlands began to decline (Dublin 1986). In the mid 1980s woody 

cover in most of the region had reached a minimum. The migrating wildebeest 
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(Connochaetes taurinus), unimpeded by rinderpest, had increased dramatically and 

numbers have remained stable at approximately 1.3 million ever since (Mduma et al. 

1999). Since the early 1990s woody cover has been steadily increasing again in 

central and northern Serengeti (Sinclair and Arcese 1995), but not so in the Masai 

Mara which continued to be dominated by grassland savanna (Dublin 1995).  

Woody cover changes, the fire regime, and climate are important factors for 

ecosystem functioning of savannas. Changes of the balance between woodland and 

grassland savanna have ecological implications for vegetation and animal distribution 

and, within a larger framework, for carbon stocks and climate change (Pacala et al. 

2001). An improved understanding of the interaction between the fire regime, 

precipitation and woody cover changes in the Serengeti-Mara ecosystem can 

potentially be applied to other savanna areas with similar ecological characteristics.  

Woody canopy cover in the Serengeti-Mara region can change substantially 

over a period of one or two decades (Dublin 1991; Sinclair and Arcese 1995), but it is 

only recently that remote sensing data has become available with which to monitor 

these changes. Reliable, high resolution, daily remote sensing imagery from the 

MODerate Resolution Imaging Spectroradiometer (MODIS) sensor has been 

available at no cost since 2000. At the time of this study the MODIS record covered a 

time period of six years. The MODIS time series at 250 m resolution (red and near-

infrared band) and 500 m resolution (mid and longer wave infrared bands) constitutes 

a fundamental resource for the type of analysis used in this study. The data allow a 

spatially coherent analysis of woody cover changes and the fire regime over the entire 
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region which has not been possible before at a similar level of detail and spatial 

extent. 

To evaluate how woody cover is being altered requires an understanding of 

the role of fire and precipitation as factors driving this changes; specifically it 

requires characterization of the fire regime, defined here as fire frequency, 

seasonality, and intensity. Fire seasonality and frequency can be determined with high 

confidence and spatial accuracy through near-daily burned area mapping. Burned area 

maps at high temporal and spatial resolution are also essential for many fire related 

research questions in the ecosystem. The outcomes of this study are of potential use 

for other researchers and management.  

1.2. Research Objectives 

A regional scale analysis was made across the Serengeti-Mara ecosystem to 

determine relationships between two factors that affect woody cover density: fire 

regime and precipitation. The principal objectives of this research were: (1) 

characterize spatial patterns of woody cover change between 2000 and 2005; (2) 

analyze the role of fire regime parameters as potential drivers of these changes. 

Addressing the above objectives required the development of spatially comprehensive 

data layers extending over the entire region. Additional objectives to address these 

requirements were: (3) map burned areas at high spatial and temporal resolution; (4) 

detect changes of woody canopy cover at regional scales; (5) estimate fire intensity. 

To reach these objectives remote sensing and model-based methods were developed 

using recently available time series of high resolution satellite imagery and field data 

as inputs.  
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1.3. Outline of the Dissertation 

The dissertation is structured in six chapters. The four main chapters are self-

contained and structured in the format of journal articles. Chapter 2 has been accepted 

for publication in a peer-reviewed journal. Each chapter uses results of the previous 

ones and the chapters are ordered accordingly. The division into subregions is not the 

same for all chapters and therefore a description of the study area is provided in each. 

Literature specific to each chapter is reviewed in the corresponding introduction 

sections. Chapters 2 to 4 introduce novel remote-sensing based techniques and 

models developed for this research to derive respectively fire frequency and 

seasonality (Chapter 2), changes in woody cover (Chapter 3), and fire intensity 

(Chapter 4). The results provide an unprecedented, spatially coherent view of both the 

fire regime and woody cover changes between 2000 and 2005. Chapter 5 brings 

together these results in a combined analysis of the interaction between the fire 

regime and woody cover changes. Chapter 6 summarizes the dissertation and 

discusses implications of the results. The following paragraphs introduce each chapter 

in more detail. 

Chapter 2 provides fire frequency and seasonality by generating a series of 

burned area maps using a newly developed automated algorithm. The algorithm 

processes daily MODIS imagery at a spatial resolution of 250 m; this necessitates the 

use of only two bands, red and near infrared (NIR). The exclusive and successful use 

of these two bands in an automated algorithm for near-daily burned area mapping at a 

regional scale sets the methodology apart from previous work.  
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Chapter 3 detects woody cover changes using a MODIS time series of 16-day 

composites at 500 m resolution and field measurements of vegetation structure. The 

methodology converts yearly data sets of red, NIR, and mid infrared (MIR) spectral 

bands and NDVI to annual metrics. The approach uses field data and a random forest 

statistical approach to estimate percent woody cover for each year, taking advantage 

of the different phenological characteristics of woody and herbaceous plants.  

Particular attention was given to the potential contamination of the MODIS 

data with burned area spectral effects. This was addressed by eliminating all annual 

metrics significantly correlated with burned areas detected in the previous chapter. 

The combination of the annual results for all six years allows the detection of 

prolonged changes in woody cover as they are typical for savanna environments. 

Chapter 4 estimates fire intensity at a spatial resolution of 250 m using a novel 

application of published empirical equations derived for southern African and 

Australian savannas. Fire intensity largely depends on fire fuel load or grass biomass. 

Input data layers to the spatially explicit model are results from the previous two 

chapters (fire dates and locations, percent woody canopy cover), amount and 

distribution of rainfall based on Meteosat and microwave satellite observations, and 

census counts of grazing animals which reduce grass biomass through grazing.  

Chapter 5 analyzes the interaction between the fire regime, precipitation and 

woody cover changes using the results and datasets generated or used in the chapters 

2-4. The chapter focuses on the wider area of the Maswa Game Reserve, which has 

experienced larger decreases in woody cover than other areas and on the Maasai Mara 



 7

National Reserve where woody cover shows significantly stronger reactions to fire 

events than in SNP. 

Chapter 6 provides a comprehensive summary of the dissertation and the 

developed methodologies and results. It discusses implications for the future 

development of the Serengeti-Mara ecosystem. It further discusses potential 

applications and extensions of the developed algorithms and future research 

directions.  
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Chapter 2: Burned Area Mapping of the Serengeti-Mara 

Region Using MODIS Reflectance Data 

2.1. Abstract 

Fire is a key factor for vegetation structure and ecosystem functioning in the 

Serengeti-Mara region in East Africa. However, there is a lack of accurate and 

consistent information on fires. We developed an algorithm for mapping burned areas 

in the wider Serengeti-Mara region from remote sensing data. The algorithm is 

automated and once trained for one year, runs independently for all years. It uses 

daily measurements of red and near-infrared (NIR) reflectance acquired by the 

Moderate-Resolution Imaging Spectroradiometer (MODIS) sensor at a spatial 

resolution of 250 m. The MODIS time series was first converted to 10-day minimum 

NIR composites. Each composite was then classified into new and old burned areas, 

by thresholding Burned Area Index (BAI) and temporal difference of NIR 

reflectances. The algorithm adjusts detection thresholds dynamically using measures 

related to atmospheric and vegetation conditions. Having trained the algorithm once 

on 2003 data it was applied to MODIS data from April 21, 2000 to November 10, 

2005. Accuracy was improved by size and location sensitive filters. Overall accuracy 

was 90.3% as determined from Advanced Spaceborne Thermal Emission and 

Reflection Radiometer (ASTER) satellite imagery from 2005, and 87.1% as 

determined using field data from 2005. The algorithm holds the potential to be 

applied to other savanna areas. This study provides a reliable product useful for future 

investigations of fire ecology and fire management. 
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2.2. Introduction 

Fire is a major factor in determining savanna structure and impacts above-

ground net primary productivity (Oesterheld et al. 1999). In savannas, fire is thought 

to control the balance between grasses and woody plants (Higgins et al. 2000). The 

combined effects of fires and elephants have altered levels of woody vegetation in the 

Maasai Mara National Reserve (MMNR) and Mara Group Ranges (MGRs) in Kenya 

and Serengeti National Park (SNP) in Tanzania (Dublin 1995). Norton-Griffiths 

(1979) suggested that fire in combination with grazing, browsing and climatic effects 

is the main controlling factor for vegetation structure in SNP. 

Burned area maps are needed to provide a quantitative description of the 

seasonality and frequency of burning in different ecological zones of the SNP-

MMNR region (Trollope et al. 2005). An automated algorithm that maps burned areas 

at a relatively high spatial resolution would provide researchers and park authorities a 

new tool with which to monitor and analyze fire dynamics and fire regimes. 

We mapped burned areas in the Serengeti-Mara region using a novel 

automated algorithm, which runs, once trained for one year, independently for all 

years. The algorithm uses daily red and near infrared (NIR) spectral reflectances from 

the Moderate-Resolution Imaging Spectroradiometer (MODIS) sensor at the spatial 

resolution of 250 m. Other automated algorithms have been developed, but only at 

larger spatial scales between 0.5 km and 1 km and including spectral bands beyond 

the Red/NIR domain. They were designed for continental or global estimations of 

burned areas but were not optimized for highly accurate estimates at small spatial 

scales for local applications. Existing algorithms include Barbosa et al. (1999) using 
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Advanced Very High Resolution Radiometer (AVHRR) data, Roy et al. (2005) 

(MODIS), Tansey et al. (2004) (SPOT VEGETATION), and Simon et al. (2004) 

Along Track Scanning Radiometer (ATSR-2). 

The MODIS sensor provides necessary characteristics for consistent burned 

area mapping. MODIS has an almost daily return interval, high spatial resolution of 

250 m for the red and NIR bands, and high geolocation accuracy. Although MODIS 

data are well-adapted to detecting burned areas, designing an algorithm to detect them 

in an automatic manner faces many challenges, including inherent variations of 

surface reflectance caused by varying geometry of viewing and illumination, 

atmospheric conditions and imperfect cloud screening (Roy et al. 2005). The 

confounding effects of these problems can be reduced by compositing methods that 

retain the burned area signal (Stroppiana et al. 2002; Chuvieco et al. 2005). For 

example, Stroppiana et al. (2003a) classified 10-day SPOT-VGT minimum NIR 

composites of the Australian continent for burned and unburned pixels. Here, spectral 

indices were derived from the red, NIR and short-wave NIR bands and applied a 

series of fixed thresholds selected by a decision tree algorithm over one year, though 

did not automate over several years (Stroppiana et al. 2003b). 

A number of indices defined in the red-near-infrared bi-spectral space have 

been tested previously for burned area detection, including the Normalized Difference 

Vegetation Index (NDVI), Second Modified Soil Adjusted Vegetation Index 

(MSAVI2), the Global Environmental Monitoring Index (GEMI) and the Burned 

Area Index (BAI). Compared to using spectral reflectances alone, spectral indices 
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have the advantage of reducing some anisotropic and atmospheric effects (Chuvieco 

et al. 2002). 

In this study, 10-day minimum NIR composites were derived for both the red 

and NIR bands of a MODIS time series. The composites were used to map burned 

areas with high accuracy using dynamically adjusted BAI and temporal difference 

NIR thresholds as a function of average spectral characteristics for each composite. 

The threshold adjustment algorithm was trained for one year using a decision tree 

method. Problems resulting from varying viewing and illumination angles are 

reduced, but not eliminated, by compositing and the use of a spectral index (Trigg et 

al. 2005). However, although compositing and bi-directional effects may remain, they 

did not reduce the reported validation metrics to an unacceptably low level. Residual 

cloud shadows were reduced using temporal persistence criteria and time, location, 

and area sensitive filters. The developed methodology holds the potential to be 

applied to other savanna areas of similar ecological characteristics.  

2.3. Methodology 

2.3.1. Study Area 

The core of the study area comprises SNP and MMNR. It is bounded by the 

coordinates (degrees): upper left: -0.8 latitude, 33.8 longitude, lower right -3.8 

latitude, 36.1 longitude. Its climate is characterized by distinct rainy and dry seasons 

with the main rainy season during March-May and short rains in November-

December. Dominant vegetation types are tree-, shrub- and grass savannas (Dublin 
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1995; Norton-Griffiths 1979). The study area supports large herds of migrating 

ungulates, dominated by wildebeest. 

2.3.2. Dataset 

This research created a burned area product from MODIS/Terra Surface 

Reflectance Daily L2G 250 m data (MODIS product MOD09GQK, version v004). 

The dataset provides atmospherically corrected red surface reflectance, centered at 

the spectral wavelength of 0.648 µm, and NIR surface reflectance, centered at 0.858 

µm (Vermote and Vermeulen 1999). The dataset also includes quality assurance (QA) 

flags for each pixel. The MODIS time series covered April 21, 2000 to November 10, 

2005.  

Two further datasets were used to develop reference data for accuracy 

assessment of the MODIS burned area product. The first reference dataset comprised 

a pair of Advanced Spaceborne Thermal Emission and Reflection Radiometer 

(ASTER) satellite imagery from July 3 and 10, 2005, covering parts of southern SNP 

and the Maswa Game Reserve (MGR). The ASTER scenes were acquired in 

partnership with the Global Land Cover Facility (GLCF) at the University of 

Maryland. The second dataset comprised field data collected between June 13 and 

July 11, 2005 along 10 transects in central SNP (total length = 182.9 km). 

2.3.3. MODIS Algorithm to Detect Burned Areas 

The method used to map burned areas extends the work of (Stroppiana et al. 

2002, Stroppiana et al. 2003a, Stroppiana et al. 2003b). We use higher resolution data 

at 250 m in the red-NIR spectral domain, apply a new procedure to remove 
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misclassified cloud shadows, improve accuracy by relaxing detection thresholds for 

pixels with high burning probability, and apply the algorithm in a new ecosystem. 

Crucially, we solve the problem of automation over several years by adjusting 

detection thresholds dynamically to detect burns automatically and accurately despite 

changing environmental conditions. Our method consists of five distinct phases: 

preprocessing, creating spectral indices, training, automating, and applying the 

algorithm. These stages are described below: 

1) Preprocessing: This stage included first filtering the MODIS time series for 

low quality pixels, then applying minimum value compositing.  The MODIS time 

series was filtered for low quality pixels using the QA flags. Pixels were replaced by 

a no-data value if their QA bits flagged them as any of the following: not produced or 

processed, missing input, cloudy, dead detector, solar zenith angle > 85 degrees, 

correction out of bounds, or L1B data faulty. 

The filtered time series was converted into 10-day minimum NIR composites 

using a method designed after (Stroppiana et al. 2002). The method attempts to 

minimize the unwanted selection of shadow contaminated pixels It selects the four 

pixels with the lowest NIR reflectance. The pixel with the minimum NIR reflectance 

within the four selected pixels is set aside. For the remaining three pixels, both the 

mean and range are calculated. If the minimum NIR reflectance pixel, set aside 

earlier, is within the interval mean +/- range, it is selected as the composite value. If 

not, the pixel with the minimum NIR value of the remaining three pixels is selected 

for the composite. For the selected pixel the red and NIR values and the acquisition 

date is saved. 
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MODIS data was unavailable for some dates. Any 10-day composite missing 

three days of input data or more was disregarded, due to quality concerns. As a result, 

burned area was not mapped for the following time periods: August 1 to 20, 2000; 

June 11 to June 30, 2001; March 21 to 31, 2002; and December 11 to 31, 2003. 

2) Creating spectral indices: We provided a selection of six promising indices 

for the decision tree algorithm to select as the basis of burned area detection. The 

subsequently applied decision tree algorithm then statistically selected those indices 

that discriminate most strongly between burned and unburned areas (Stroppiana et al. 

2003a). 

The six spectral indices used were calculated for each composite, BAI 

(Equation 1), delta NIR reflectance (dNIR), ratio of red to NIR reflectance (RNIR), 

GEMI (Equation 2), MSAVI2 (Equation 3) (Qi et al. 1994) and NDVI (Equation 4), 

as follows: 

( ) ( )( )221 NIRNIRredred ccBAI ρρρρ −+−=    (1) 

( ) ( ) ( )redredGEMI ρρηη −−−−= 1125.025.01   (2) 

where 

( )( ) ( )5.05.05.12 22 ++++−= redNIRredNIRredNIR ρρρρρρη  

( ) ( )⎟
⎠
⎞⎜

⎝
⎛ −−+−+= dNIRNIRNIRMSAVI Re

2 81212
2
12 ρρρρ  (3) 

( ) ( )dNIRdNIRNDVI ReRe ρρρρ +−=     (4) 

where ρred and ρNIR are the red and NIR surface reflectances and ρcred and ρcNIR are 

red and NIR reference reflectances. The first of these indices, the BAI, is nonlinear 

and based on the spectral distance to a reference spectral point, around which recently 
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burned areas tend to concentrate. Empirically determined values for ρcred = 0.1 and 

ρcNIR = 0.6 were designed for BAI to emphasize the charcoal signal (Chuvieco et al. 

2002). dNIR is calculated as the NIR reflectance of the current composite minus the 

NIR reflectance of the previous composite. The RNIR is calculated as ρred divided by 

ρNIR. GEMI is an improved vegetation index, claimed to be less sensitive to 

atmospheric effects and the soil background than NDVI (Pinty and Verstraete 1992). 

The above indices were chosen because they all can be calculated from the 

MODIS 250 m red and NIR bands and have all been used previously to detect burned 

areas.  The only one of these indices that was developed specifically to detect burned 

areas is the BAI (Chuvieco et al. 2002). 

3) Training the algorithm: The above indices were supplied to a decision tree 

classifier, as well as the red and NIR reflectances and all corresponding difference 

values between reflectances and indices of the current composite and the previous 

composite. This was carried out for between 1500 and 12000 training pixels from 

each of 14 different dry-season composites from the year 2003. Training data for 

unburned, newly burned, and previously burned areas were derived by visual 

interpretation of image pairs; in this way, burned areas can be identified confidently 

as distinct areas of reduced reflectance that appear from one image date to the next. 

The algorithm was trained using the S-Plus 7.0 for Windows software package. 

Decision trees recursively split the training data into subsets, or nodes, which 

minimize the overall residual sum of squares (Breiman et al. 1984). The decision tree 

classifier consistently showed high classification accuracy of 94.4 to 99.8% after the 
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first 2 splits, selecting BAI for the root node separating burned areas from unburned 

areas and dNIR for the succeeding node separating new from old burns. 

4) Automating the algorithm: The resulting BAI and dNIR thresholds varied 

between composites depending on atmospheric and vegetation conditions. This 

necessitated a novel adaptation of the basic algorithm to automate it in the context of 

the varying environmental conditions. Threshold selection for each composite was 

automated by deriving a generally applicable regression equation in dependence of an 

average index value of the composite. The adjusted threshold value was selected by 

correlating the threshold index values determined by the decision tree algorithm for 

the 14 training composites with the average and median of the index values of all 

pixels in the study area, as well as the mean and median of the first, second, third, and 

fourth quartiles of all pixels. This method was applied to both the BAI threshold for 

separating burned from unburned areas, and the dNIR threshold for separating old 

from new burns. 

The highest correlation was found between the BAI thresholds (BAIthresh) and 

the mean values of the fourth (uppermost) quartiles of RNIR images (RNIRmn(q4)). 

The second order polynomial regression (5) showed a significantly higher coefficient 

of determination (r2 = 0.62) than the corresponding linear or higher order regressions. 

2
)4()4( 5477.06731.02137.0 qmnqmnthresh RNIRRNIRBAI +−=  (5) 

To ensure that the chosen BAI thresholds would not result in large 

commission errors (i.e. false detection of burned areas), the resulting BAI threshold 

was compared with the BAI values of a small region in the southeastern Serengeti 

short grass plains which is known to not burn, due to high grazing pressure and low 
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fuel loads. No burns were detected in this area by visual interpretation of successive 

10-day composites for all years 2000 through 2005. The bounding coordinates are 

latitude / longitude: -2.96 / 35.09; -2.84 / 35.36; -2.89 / 35.49; -3.05 / 35.38; -3.06 / 

35.16. A minimum BAI value was calculated as the median plus three times the 

standard deviation of the BAI values within this area. If the BAI threshold established 

by the regression equation was lower than the minimum BAI, the threshold was set to 

this minimum value. This adjustment came into effect almost exclusively during the 

wet season months. 

The highest correlation for the dNIR threshold (dNIRthresh), separating new 

burns from old burns, was found with the median of the first (lower most) quartiles of 

the temporal difference GEMI values (dGEMImd(q1)), calculated over the entire study 

area for each of the 14 training composites. The linear regression equation (6) had the 

highest determination coefficient with r2 = 0.67. Equations (5) and (6) allow the 

automation of the algorithm over different seasons and years. 

)1(2976.00273.0 qmdthresh dGEMIdNIR +−=    (6) 

5) Applying the algorithm: Having trained and automated the algorithm using 

training data from 2003, it was applied to the full April 2000 to November 2005 time 

series and ran automatically. It was programmed and executed in IDL 6.1 for 

Windows. The algorithm classified each 10-day composite for unburned, old and new 

burns, using dynamically adjusted thresholds as described above. It then combined 

the classified composites into final, yearly products, showing the date and location of 

burned areas. New burns were only accepted as burned, if they were classified as old 

burns in the subsequent composite. A similar persistence criterion was used by 
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(Stroppiana et al. 2003b). In the final product, small burned area patches of less than 

48 ha (9 pixels) were removed as being residual cloud shadows if isolated in time and 

space. They were maintained when contingent with areas burned up to 10 days before 

or 10 days after and thus part of a larger, spreading fire front. The accuracy was 

further improved by relaxing the BAI thresholds for pixels adjacent to groups of 

burned pixels, thus extending the size of burned areas. It was applied by identifying 

all unburned pixels with at least four neighboring pixels, which have burned in the 

present, previous or subsequent compositing period. These pixels were reprocessed 

using a 20% lower BAI threshold. The same threshold was used in a similar approach 

by (Kasischke and French 1995). The algorithm created a final product for each 12 

month period from May 1 to April 30 of the subsequent year. Maps from all years 

were combined into a final map showing fire return interval. 

Validation: An accuracy analysis was carried out based on both ASTER and 

field data. Spatially overlapping ASTER scenes, acquired in short time sequence, 

were only available for July 3 and 10, 2005, for the southern parts of SNP and MGR. 

ASTER data were selected for data availability and the high spatial resolution of 15 

m, allowing visual interpretation of burned areas with high confidence. The ASTER 

scenes were co-registered and areas newly burned between the first and second date 

detected visually. Pixels in the MODIS burned area product at 250 m resolution were 

counted as correctly classified, if the ASTER data showed at least half of it as burned, 

and the MODIS burn date was between July 3 and July 20 (thus allowing the 

algorithm 10 days, or one compositing period, to detect the most recent burns) 
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Field data were collected between June 13 and July 11, 2005 in central SNP, 

along transects of total length 182.9 km. Along each transect geographic coordinates 

were recorded at 250 m intervals, using a Global Positioning System (GPS) receiver. 

The state of the vegetation, burned or unburned, was recorded. Areas were classified 

as burned if at least 50% of the vegetation was burned. Pixels were counted as 

correctly classified, if the field and MODIS data agreed within 20 days before and 10 

days after the date of ground truthing. 

2.4. Results and Discussion 

The results of applying the burned area algorithm to the 2000-2005 time series 

of 250m MODIS data are expressed as a map of fire return interval in Figure 2-1. The 

spatial pattern and sharp edges of burned areas seen in the map accurately reflect how 

burns tend to terminate at boundaries caused by distinct land cover changes. E.g., 

burned areas are truncated as one moves from the woodlands to agricultural areas 

along the western border of the MGR and northwestern border of SNP. 
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Figure 2-1 : Based on five year time series May 1, 2000 to April 30, 2005. Zones are 

the Serengeti National Park (SNP), Maswa Game Reserve (MGR), Ngorongoro 

Conservation Area (NCA), Loliondo Game Controlled Area (LGCA), the western 

buffer zones (WBZs) encompassing the Grumeti and Ikorongo Reserves and adjacent 

Tanzanian wards, the Maasai Mara National Reserve (MMNR), and Mara group 

ranches (MGRs). 
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Burned areas appearing during the existing time gaps in the MODIS time 

series might have been missed. The effect is limited by the briefness of the time gaps 

and the likeliness of subsequent detection. Our analysis of pre- and post burn BAI 

values showed that 30 days after the fire the BAI values of 96.6% of all burned pixels 

in 2003 remained above their pre-burn level. During the field campaign S. Eby 

observed, but not explicitly measured, black char visibly covering burned areas at 

least two weeks after the fire. The burned area algorithm itself provides further 

evidence for the lasting detectability of the burned areas. It only accepts areas as 

burned if they are detectable in two subsequent 10-day composites. 

Producer’s and user’s accuracies determined from an ASTER satellite image 

pair and field data are given in Table 2-1. The Kappa coefficient is shown to test 

whether the classification results are significantly better than if the map had been 

generated by assigning classes randomly (Congalton 1991). Kappa for the accuracy 

assessment with ASTER data was κASTER = 0.81, and for the accuracy assessment 

with field data Kappa was κField = 0.74, in both cases representing strong agreement. 

Overall accuracies are high for both the ASTER (90.3%) and field (87.1%) 

assessments, with no individual accuracy less than 74.4%, thus the maps exceed 

accuracy requirements for thematic products as recommended by (Thomlinson et al. 

1999). The validation datasets and the data used for training the algorithm originate 

from different years. This is a vindication of the accurate performance of the 

algorithm over several years. 
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Table 2-1: Error Matrix. B: burned pixels; UB: unburned pixels; PA: producer’s 

accuracy; UA: user’s accuracy; Italic ciphers: overall accuracy. 

 

Class B 
ASTER 

UB 
ASTER 

UA 
% 

B 
Field

UB 
Field

UA 
% 

B MODIS 870 15 98.2 166 1 99.4
UB MODIS 190 1045 81.6 57 224 79.7
PA % 82.1 98.6 90.3 74.4 99.6 87.1

 

The algorithm’s ability to detect burns accurately can be explained in three 

ways. The first is that in the study area, burned areas are generally large enough to be 

well resolved at a resolution of 250 m. Second, the spectral index used to detect 

burned areas (the BAI) was designed to maximize its sensitivity to char, which 

presents >50% of a burned area. Third, char visibly persists for more than 10 days 

after burning, allowing the detection of burned pixels even using 10-day composites. 

The algorithm was trained using data from one dry season. It is therefore 

optimized for burned area detection during the dry season months and less so for the 

wet season. However, the dry season shows by far the greatest amount of burning. 

Lower accuracies for burned than for unburned areas indicate that the 

algorithm is underestimating burned areas. In particular, some small, isolated burned 

areas are excluded erroneously as misclassified cloud shadows. Other burns are 

missed in cases of persistent cloud cover or data gaps. Fractional burns are likely not 

detected by either the algorithm or the accuracy assessment methods. The algorithm 

was trained using visually interpreted MODIS imagery and the accuracy assessment 

was carried out using visually interpreted ASTER imagery, both of which require 

clearly visible and non-patchy burns. Data collected in the field for accuracy 

assessment only included areas at least 50% burned.  
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2.5. Conclusion 

The described burned area algorithm holds the potential for further 

improvement and advancement to an operational status. We expect that the algorithm 

will be applicable to other savannas that also exhibit a dominant and temporally 

persistent char layer. Future research could test the feasibility of extending the 

methods geographical validity by incorporating training data from areas without a 

temporally persistent char layer (if so, we expect that the decision tree procedure 

would select a band or index other than the BAI). We anticipate the high resolution 

burned area data produced by this study to be of great value for fire management and 

future investigations of fire ecology in the Serengeti-Mara region.  
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Chapter 3: Woody Cover Changes in the Serengeti-Mara 

Savanna Environment from 2000 to 2005 - A Remote 

Sensing Approach 

3.1. Abstract 

Woody plants are important for savanna ecosystem functioning and habitat 

characteristics. Changes of woody canopy cover on regional scales can only be 

realistically determined with analysis of remotely sensed data. We determine woody 

cover changes in the Serengeti-Mara-Narok (SMNR) savanna environment in East 

Africa using for the first time a spatially comprehensive, consistent methodology over 

the entire SMNR region. Percent woody cover (PWC) ground truthing data were 

collected at 157 field plots throughout the Serengeti – Mara region in East Africa. 

The field data were used as training to derive PWC estimates from two Landsat ETM 

scenes using a random forest approach. The Landsat derived PWC served as training 

data for estimating yearly PWC from a time series of MODerate-Resolution Imaging 

Spectroradiometer (MODIS) 16-day composites at 500 m resolution. Annual metrics 

were calculated from the MODIS time series. Metrics significantly correlated with 

burned areas were disregarded to avoid false detection of woody cover change. 

Locations of training areas with minimal woody cover change through time were 

identified by selecting pixels with no statistically significant temporal trends in any of 

the metrics. The most important metrics were based on the near-infrared and mid-

infrared bands (MIR), MODIS bands 2 and 7. MIR throughout the year showed high 
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separability of woodlands and grasslands except during the wet season. The results 

indicate overall increases in the Serengeti central and northern woodlands, decreases 

in the Maswa Game Reserve and less intense decreases in the Serengeti western 

corridor, Maasai Mara National Reserve and Mara pastoral areas. Results agree well 

with tree and shrub counts determined from 24 time series of ground-based 

photographs at 10 locations in Serengeti. This study provides a basis for the analysis 

of potential drivers of woody cover change, such as fire regime and browsing 

pressure. 

3.2. Introduction 

The balance between woody and herbaceous plants in savannas is dynamic. 

Woody cover in the Serengeti-Mara-Narok region (SMNR) in Kenya and Tanzania 

has a documented history of change over the last 120 years as a result of fire, 

herbivory, and climate variations (Dublin 1991). The objectives of this study are to 

determine recent (2000 to 2005) trends in woody cover over the entire SMNR region 

and to develop a methodology to do so.  

Woody cover plays a critical role for ecosystem functioning (Scholes and 

Archer 1997). The woodland to grassland ratio defines savanna structure. Changes in 

woody cover affect the habitat characteristics of grazers, browsers, predators, and 

birds. Wildebeest (Connochaetes taurinus) are the dominant grazing animal in SMNR 

and depend on abundant grass food resources (Mduma et al. 1999). Wildebeest prefer 

open savanna habitat and avoid woodlands with greater predation risk (Darling 1960). 

They tend to enter thick brush only under conditions of high ground-level visibility, 

e.g. after fire (Talbot and Talbot 1963). Woody plant material is a major food source 
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for elephants, which consume large quantities in the Maasai Mara National Reserve 

(MMNR) (Dublin 1986). Acacia woodlands are the primary food resource for giraffes 

in Serengeti National Park (SNP) (Pellew 1983). Lions and other predators in SNP 

use shrubs as cover behind which they can stalk their prey (Schaller 1972). 

Vegetation structure in SNP is a causal factor for the distribution of individual bird 

species (Folse 1982). Changes of woody cover in savannas have a potential impact on 

carbon stocks (Asner et al. 2004). Woody cover levels in African savannas might 

change considerably in response to changing precipitation regimes as a consequence 

of climate change (Sankaran et al. 2005).  

Our literature review has revealed no previous study producing a spatially 

comprehensive estimate of woody cover change over the entire SMNR region and 

none after 1991. Norton-Griffiths (1979) found decreasing woody cover in SNP 

between 1962 and 1972. He measured woody cover density representatively in 

confined areas around the photocenters of a series of 1:60,000 scale aerial 

photographs. Sinclair and Arcese (1995) determined tree and shrub coverage by use 

of ground-based photographs taken at fixed photopoint locations in the SNP 

woodlands. They found an upward trend from 1980 at least until 1991. Lamprey 

(1984) detected decreasing canopy coverage of trees and large shrubs between 1950 

and 1983 in the Mara pastoral areas (MPA) by analyzing a time series of aerial 

photographs. Dublin et al. (1990) likewise found in a similar analysis decreasing 

woody cover for MMNR between 1950 and 1982. 

Existing large scale continental and global percent tree cover products were 

generated from Advanced Very High Resolution Radiometer (AVHRR) data for 1992 
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at a spatial resolution of 1 km (DeFries et al. 1999; DeFries et al. 2000b), and from 

MODIS data for 2000 at 500 m resolution (Hansen 2003). DeFries et al. (2002) 

derived percent tree cover of tropical forests from an AVHRR time series at 8 km 

resolution for three 5-year intervals (1982–87, 1988–92, and 1992–99). Continental 

and global products are useful to provide large scale estimates and can help to 

determine locations of dramatic changes through time, e.g. forest clear cuts or rapid 

forest regrowth. These products are designed to work well at large regional and 

continental scales over a wide range of conditions and land cover types. They are less 

accurate at small regional or local scales and are not suited to assess prolonged 

changes in areas of low woody cover densities, such as savannas.  

In light of the ecological importance of woody cover in savanna ecosystems 

and the lack of information on recent trends, we developed a method to determine 

woody cover changes for the entire SMNR savanna region in Kenya and Tanzania. 

The methodology uses satellite data from the Landsat Enhanced Thematic Mapper 

(ETM) and Moderate-Resolution Imaging Spectroradiometer (MODIS) sensor and 

field data. A MODIS time series from 2000 to 2005 was converted to annual metrics, 

which are related to the phenological behavior of vegetation. The use of multi-

temporal remotely sensed data for vegetation classification based on derived 

phenological properties of vegetation has been described by a number of authors 

(Tucker et al. 1985; Townshend et al. 1987; Hansen et al. 2000; Hansen et al. 2002; 

DeFries et al. 2000a; Mayaux et al. 2004). 
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3.3. Study Area 

The study area is defined by the range of the world’s largest herds of 

migrating ungulates, the Serengeti and Maasai Mara wildebeest. The area extends 

across the Kenyan-Tanzanian border in East Africa. The geographic bounding 

coordinates are -0.8 to -3.8 degrees latitude and 33.8 to 36.1 degrees longitude. The 

core area is comprised of the Maasai Mara National Reserve (MMNR) and Serengeti 

National Park (SNP), excluding the short grass plains in the southeast (Figure 3-1). 

The study area includes the surrounding protected areas Maswa Game Reserve 

(MGR), Grumeti Game Reserve (GGR), Ikorongo Game Reserve (IGR), and the 

unprotected areas of the Kenyan MPA north of MMNR. Industrial agricultural areas 

have been excluded using ground truth data and visual interpretation of the Landsat 

ETM scenes described below. The study area totals 19,905 km2. 
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Figure 3-1: Serengeti-Mara-Narok region in East Africa. In Kenya: Mara pastoral 

areas (MPA); Maasai Mara National Reserve (MMNR). In Tanzania: Serengeti 

National Park (SNP); Maswa, Ikorongo, and Grumeti Game Reserves (GR). 

Ecological subregions of SNP, aggregated from Gerresheim (1974): Serengeti 

northern woodlands (SNW), includes northern Ikorongo GR; Serengeti central 

woodlands (SCW), includes southern Ikorongo GR; Western Serengeti and corridor 

(WSC), includes Grumeti GR; Serengeti short grass plains (SGP); Maswa (MSW). 

Percent woody cover shows MODIS derived PWC estimates averaged over all years 

2000-2005. 

 
For this study the combined areas of SNP, IGR, GGR, and MGR were 

subdivided into ecologically meaningful subregions. Gerresheim (1974) identified 

more than twenty land regions based on differences in topography, geology, soil, and 

vegetation. Pennycuick (1975) aggregated these land regions in her analysis of 
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seasonal wildebeest movements to a smaller number of more manageable units. For 

purposes of this study the Gerresheim regions were combined in the same way to 

represent the northern woodlands: SNW (Gerresheim regions 3, 4, 7, 8); central 

woodlands: SCW (10, 11); western Serengeti and corridor: WSC (9, 12, 13); and the 

woodlands of the Maswa Game Reserve including southwesternmost SNP: MSW (17, 

19).  

The climate is characterized by a distinct rainy and dry season. In most years 

the precipitation pattern is bimodal with the main rainy season from March to May 

and short rains in November and December. Precipitation increases from 500 mm per 

year in the southeastern plains of SNP to 1,200 mm in northwestern MPA (Sinclair 

1995). Dominating vegetation types are tree-, shrub- and grass savannas. Open 

grasslands occur predominantly in southern SNP, MMNR and northern MPA and are 

often combined with dwarf shrubs. Continuous tall shrublands are most common in 

MSW, and otherwise appear in mixed land cover types, along drainage lines and on 

hilltops. Woodlands occupy large parts of northern and western SNP, MSW and parts 

of MPA and are often associated with hilly or dissected topography. Dense forests 

can be found along the Mara and Grumeti Rivers and in some hilly regions (Stelfox et 

al. 1986; Sinclair 1975; Serneels and Lambin 2001b; Reed et al. 2004).  

The Serengeti short grass plains (SGP) were excluded from this study for both 

methodological and ecological reasons. The area was delineated as described in 

Gerresheim (1974) (region 14). It receives the lowest amount of precipitation within 

SMNR and has high grazing pressure. As a consequence its grass cover is 

exceptionally low during the dry season, exposing bare soil. Bare soil surfaces can 
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significantly affect the spectral reflectance of a landscape, which is a common 

problem for remote sensing of vegetation (Huete and Tucker 1991). None of the 

training areas in this study are located in the plains area and do not reflect their 

unique spectral characteristics. The second reason for excluding SGP is the principal 

lack of shrubs and trees due to its subsurface calcium carbonate hard pan. The hard 

pan is impermeable for roots and in combination with highly saline and alkaline soils 

prevents the establishment of significant, lasting woody cover (Sinclair 1979b). 

3.4. Methods 

Field measurements of percent woody cover (PWC) were collected in the 

study area. The field data were used to derive PWC from two Landsat ETM scenes 

from 2000, using a random forest approach. The Landsat derived PWC served as 

training data to derive woody cover changes from 2000 to 2005 using a MODIS time 

series (Figure 3-2). Each of these steps is described in detail below. 

 

Figure 3-2: Flow chart outlining the main methodological steps used in this study.  

3.4.1. Field Data 

Field data was collected throughout the study area as described in Reed et al. 

(2004). For this study a total of 157 field plots were collected between 1998 and 

2003. Percent tree and shrub canopy coverage was visually estimated in 30m x 30m 

plots, separately for trees and shrubs. Trees were defined as woody plants taller than 



 32

2m, and shrubs were defined as woody plants less than 2m tall. Shrubs also included 

dwarf shrubs, which in many areas were only 20 cm tall. Initial plots were placed in 

part at random and later stratified after using Landsat satellite imagery and field 

observations in order to capture the full range of vegetation structural types present in 

the study area. For this study tree and shrub coverage was combined into a single 

PWC measure. The conversion was based on the assumption that tree and shrub 

canopies overlap by half of their extent, e.g. a vegetation plot with 30% tree cover 

and 50% shrub cover would have 50% + 0.5 * 30% = 65% woody cover.  

3.4.2. Landsat Data 

PWC was derived from two Landsat ETM scenes and field measurements. 

The two scenes are part of the same swath and hence no radiometric normalization 

was necessary. The scenes were acquired on February 12, 2000, WRS path/row 

169/61 and 169/62. The Landsat data covered 77% of the study area except the 

western part of WSC. The two scenes were mosaicked together and georeferenced 

using road locations collected in the field. Landsat bands 1-6 were converted from 

digital numbers (DN) to radiance and Normalized Difference Vegetation Index 

(NDVI) values were calculated. NDVI is a ratio calculated from red and near infrared 

(NIR) spectral reflectance as NDVI = (NIR-Red) / (NIR+Red). The index is a 

measure of vegetation properties related to photosynthesis and biomass production. It 

can be used to study phenological and biophysical characteristics of the vegetated 

land surface.  

Training areas for estimating PWC from the Landsat scenes were derived 

from field measurements. Each field measurement was taken within a homogeneous 
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area of the same vegetation type covering at least the area of one 30x30 m Landsat 

pixel. The PWC field value was assigned to the corresponding Landsat pixel at that 

location. Additional training pixels were selected for each plot by region growing in 

the ERDAS Imagine (v. 8.7) software package. Spectral euclidean region growing 

thresholds were selected interactively. For every 10th training pixel the PWC value, 

the radiance values for all six Landsat bands and the NDVI value were exported, 

resulting in a total number of 4025 training records. PWC was estimated from the 

Landsat scenes using a random forest approach. The resulting PWC layer was 

aggregated to MODIS resolution by calculating the mean for each corresponding 500 

m MODIS pixel. 

3.4.3. Random forest analysis 

Random forests are based on the concept of regression trees. Morgan and 

Sonquist (1963) introduced the statistical concept of classification trees as a way to 

efficiently analyze and reduce large numbers of independent qualitative data 

variables. The idea was further developed by Breiman et al. (1984) and in the form of 

classification and regression trees applied to quantitative data. The method, also 

known as recursive partitioning regression, is a binary tree structured classifier. It 

repeatedly splits the supplied data into two subsets, by using the independent 

predictor variable values to define the splitting rules. Predictor variable and critical 

value for the split rules are chosen so that the homogeneity of each subset is 

maximized based on the residual sum of squares of the dependent variable, in this 

case PWC. This process is repeated until all subsets are pure or there are not enough 

data left to split further. Accuracy of the classification result can further be improved 
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by generating not one but several trees, each based on a different random sample of 

the training data, a technique called “bagging” (Breiman 1996). Regression trees have 

been used successfully to predict vegetation characteristics from remotely sensed 

data, but only at coarser spatial resolutions of 500 m to 8 km (Hansen et al. 1996; 

Friedl and Brodley 1997; DeFries et al. 1998; Hansen et al. 2000; Lawrence and 

Wright 2001; Moisen and Frescino 2002; Hansen 2003; and others).  

Breiman (2001) advanced the concept of regression trees by introducing 

random forests. Random forests use a higher level of randomness and grow a larger 

number of trees. This method can achieve higher prediction accuracies than either 

standard regression trees or bagging. Each tree in the random forest is grown using a 

different random subset of the training data records. At each node in the tree a 

random subset of the independent predictor variables is used to find the optimal split, 

rather than using all the predictor variables as is the case for regular regression trees. 

The trees are always grown to the maximum depth. The predicted value for 

classification is the average of the classification results of all trees. Ham et al. (2005) 

found that random forest techniques improve the classification accuracy of Hyperion 

spaceborne hyperspectral remote sensing data. The importance of each independent 

variable at a certain node can be determined by analyzing by how much the purity of 

a child node decreases when the training data for that variable is permuted while all 

others are left unchanged. The purity of the child nodes are determined by calculating 

the mean squared error (MSE). 

In this study 4025 training records were imported into the R 2.2.1 statistical 

software and a total number of 1000 random forest trees were generated using the R 
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randomForest 4.5-16 package. Each random forest tree was applied to the Landsat 

mosaic. The resulting 1000 different PWC estimates were averaged to arrive at the 

final Landsat PWC product. 

3.4.4. MODIS Data 

Changes in PWC from 2000 to 2005 were derived by using the Landsat PWC 

data to drive the classification of a MODIS time series. The MODIS instrument 

aboard the Terra satellite platform began collecting data at the end of February 2000. 

For this study we used the MODIS/Terra Vegetation Indices 16-Day L3 Global 

product version 4 at 500 m resolution (MOD13A1). Woody cover was estimated for 

six 12-month periods starting on March 5, 2000 and ending on March 4, 2006. In the 

following text one year corresponds to a 12-month time period starting March 5. This 

time period was chosen to cover the maximum available MODIS record. 

The MODIS time series was filtered for clouds. Pixels were replaced with a 

no-data value if the MOD13A1 quality assessment (QA) bits 0 and 1 indicated cloud 

contamination (bit combination 10) or no data due to bad quality (bit combination 

11). For each year annual phenological metrics were calculated. The metrics served as 

independent variables to predict PWC. Initially, a total of 180 metrics were calculated 

for each pixel, based on basic descriptive statistical parameters for each band and on 

interrelations between the bands (Table 3-1). Hansen et al. (2002) used a similar 

selection of metrics. 
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Table 3-1: 180 metrics calculated for each pixel and 12-month period. Red: red 

reflectance (MODIS band 1, centered at 645 nm); NIR: near infrared (band 2, 858.5 

nm); MIR: mid infrared (band 7, 2130 nm); NDVI: Normalized Difference 

Vegetation Index. 

 
1) Minimum, maximum, mean, median Red, NIR, MIR, and NDVI (16 values) 
2) Minimum, maximum, mean, median of the four darkest and four brightest values 
of Red, NIR, MIR, and NDVI (32 values) 
3) The corresponding Red, NIR, MIR, and NDVI value at the annual minimum, 
maximum, and median Red, NIR, MIR, and NDVI (36 values) 
4) The corresponding minimum, maximum, mean, median Red, NIR, MIR, and 
NDVI at the four brightest and four darkest values of Red, NIR, MIR, and NDVI (96 
values) 

 

Remote sensing analyses of savanna environments often suffer from the 

presence of burned areas. Burned areas manifest themselves in many metrics, 

resulting in spectral contamination and a potential source of error. We address this 

problem by excluding metrics significantly correlated with the presence of burned 

areas. Burned areas were mapped from 2000 to 2004 throughout the study region  

using MODIS daily observations at 250 m resolution (Chapter 2). The burned area 

product provided burned and unburned areas throughout each year. All 180 metrics 

layers of each year were sampled using 15 circular areas of 12.5 km radius. Each 

sample area had a distance of 25 km from neighboring circles. The separation 

distance of 25 km was chosen to minimize spatial autocorrelation between individual 

measurements. The separation distance was determined by calculating empirical 

variograms for all 180 metrics of the year 2003. The variograms were calculated 
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using the S-PLUS SpatialStats 1.5.7 module of the statistical software package S-

PLUS 7.0 for Windows. The derived variograms showed a typical range of 25 km or 

less. For each circular sample area the overall mean values for burned and unburned 

pixels were calculated. This was done for all 15 circles for each year and for all 

metrics. This resulted in a maximum number of 75 spatially independent 

measurements of burned and unburned areas per metric. Circles containing less than 

10% of either burned or unburned pixels were disregarded. For each metric the 

overall means of burned and unburned areas were calculated. The two means were 

tested for significant differences using Student's t-test. 56 of the 180 original metrics 

showed a statistically significant difference between burned and unburned areas at 

p=0.05. These metrics were disregarded and only the remaining 124 metrics were 

used for the woody cover analysis. Figure 3-3 shows burned areas in 2003 and 

examples of a strongly burned area related metric (minimum NIR of the four darkest 

NDVI) and not significantly burned area related metric (annual mean NDVI). 

 

Figure 3-3: Left: burned areas in 2003; Middle: burned area related metric (minimum 

NIR of the four darkest NDVI); Right: not significantly burned area related metric 

(annual mean NDVI). 
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3.4.5. MODIS time series analysis 

Annual PWC was calculated for the available MODIS time record from 2000 

to 2005. Training data for all years were derived from the Landsat PWC estimates for 

2000. The selection of Landsat training data is based on two assumptions. First it is 

assumed that parts of the study area do not show any or minimal changes in PWC. 

Secondly it is assumed that these areas are characterized by showing no statistically 

significant trend through time in any metric. For each of the 124 metrics a linear 

regression was fitted, separately for each pixel. The significance of the regression 

coefficient was determined using a t-test. A total of 1,968 pixels of the MODIS time 

series showed no significant trend from 2000 to 2005 in any of the metrics at 

p=0.025. From these pixels 5% were set aside for later validation. The validation 

pixels were chosen using stratified random sampling, ensuring a better distribution 

over the existing PWC range. The remaining pixels served as training areas with 

stable woody cover. 

The Landsat derived PWC values were aggregated to MODIS resolution by 

calculating the mean PWC value for each MODIS pixel. At the location of each 

training pixel the Landsat PWC value and the corresponding 124 metric values were 

exported, separately for each year. From each set of exported values 1000 random 

forest trees were generated. The trees were applied to the metrics data sets and 

averaged, resulting in annual woody cover estimates. The processing was done in IDL 

Version 6.2 for Linux using code developed for this project. Processing time for one 

year of MODIS data was ~3.5 hours on a i686 PentiumII processor at 3.00GHz.  
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Changes of PWC between consecutive years varied substantially. These 

variations are most likely due to irregularities in the remote sensing data introduced 

by atmospheric disturbances and variations in sun- and view angles. Rather than 

assessing annual changes, we estimated woody cover changes over the entire six-year 

time period by predicting PWC for 2000 and 2005 using linear regression 

individually for each pixel. Relative change was calculated as the ratio of predicted 

PWC for 2005 over predicted PWC for 2000 (Figure 3-5). 

3.4.6. Validation 

The Landsat PWC product was validated against 36,220 unused training 

pixels set aside before the random forest analysis. For each percentage value present 

in the training data (whole numbers 0 to 100) the mean PWC value of the 

corresponding pixels was calculated. Pearson’s correlation coefficient between the 

training data and the corresponding mean values of the PWC estimates was r = 0.947 

(Figure 3-4). 
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Figure 3-4: PWC of Landsat validation pixels versus mean PWC and standard 

deviation of corresponding pixels with PWC estimates. 

 
The data allowed to determine error ranges of the MODIS woody cover 

change product in two ways. The first estimate is based on the predicted PWC values 

for the training areas with stable woody cover. Ideally the 2005 to 2000 PWC ratio 

for these stable areas would be 1.000. The observed mean over all training pixels was 

1.007 and the standard error 0.100.  

The second estimate is based on the standard errors for the predicted PWC 

values for 2000 and 2005, derived from the MODIS time series. The standard error 

was calculated as shown in Equation (1). 
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where 

ws ˆ  Standard error  2
tws ⋅  Standard deviation 

W  PWC  n  Number of years 
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ws ˆ  Standard error  2
tws ⋅  Standard deviation 

t Time in years  ∑ 2w  Sum of squares of deviations for PWC 

 

The minimum and maximum values within the standard error range were 

determined for the 2000 and 2005 predicted PWC values (Figure 3-5). The extreme 

values within the error range for the two years were used to calculate error limits. The 

error limits are the smallest and largest of the two ratios (Equations 2.1; 2.2; 2.3; 2.4; 

2.5). 
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Figure 3-5: Yearly PWC estimates (filled circles) for one pixel in western SNW 

(latitude -1.690; longitude 34.751). The graph also shows the regression line, 

predicted values for 2000 and 2005 (squares) and associated error ranges (triangles). 

 
)00()05()00/05( ˆ/ˆ wwr =  (2.1) 

sww tt −= )(min)( ˆˆ  (2.2) 

sww tt += )(max)( ˆˆ  (2.3) 

)ˆ/ˆ,ˆ/ˆmin( max)00(max)05(min)00(min)05(min)00/05( wwwwr =  (2.4) 

)ˆ/ˆ,ˆ/ˆmax( max)00(max)05(min)00(min)05(max)00/05( wwwwr =  (2.5) 
  
where 
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)00/05(r  Predicted PWC ratio 2005 to 
2000  

 )00()05( ˆ,ˆ ww Predicted PWC for 
2005, 2000 

min)(ˆ Tw  Minimum predicted PWC at 
time t 

 max)(ˆ tw  Maximum predicted 
PWC at time t 

s  Standard deviation  minr  Minimum predicted 
PWC ratio 

maxr  Maximum predicted PWC 
ratio 

   

 

The yearly MODIS PWC estimates were validated using the 5% unused 

training pixels, set aside before the PWC estimation. For these validation pixels the 

Pearson’s correlation coefficients r were calculated between the PWC aggregated 

from Landsat and a) the resulting MODIS PWC classification result for each year and 

b) the average MODIS PWC classification results over all years (Table 3-2). 

The correlation coefficients for individual years were between r = 0.843 and r 

= 0.892. The correlation coefficient was highest with r = 0.921 for MODIS PWC 

averaged over all years (Figure 3-6). This increased correlation underlines the validity 

and benefit of our approach of analyzing data combined over all years, rather than 

PWC estimates for individual years. 

 

 

 

 

 

 

 



 43

Table 3-2: Correlation coefficient R between Landsat PWC and MODIS PWC 

estimates for the 94 MODIS validation pixels. R is shown for each individual year 

and for PWC results averaged over all years. 

 
Year R 
2000 0.883 
2001 0.843 
2002 0.867 
2003 0.863 
2004 0.852 
2005 0.892 
All 0.921 
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Figure 3-6: Correlation between Landsat PWC and MODIS PWC estimates averaged 

over all years 2000 to 2005 for the 94 MODIS validation pixels. Correlation 

coefficient r=0.921. 

 
Further validation of the MODIS woody cover change product was conducted 

using field data. Sinclair and Arcese (1995) collected a time series of oblique 

photographs taken from elevated locations in the Serengeti woodlands. The photo 
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time series was continued at 10 locations in SNW and SCW until 2003 (Sinclair, 

A.R.E., unpublished; locations shown in Figure 9). His analysis identified 

overlapping spatial areas on photo pairs and counted large (adult) and small (juvenile) 

trees, but no low or dwarf shrubs. For this study the tree counts were converted to 

average yearly rates of change c (Equation 3). 

)/)(( 00

0

tNNN
Nc

t−−
=   (3) 

where t  is the time in years, N0 the number of trees at time 0, and Nt the number of 

trees at time t. At some locations multiple frames were taken in different compass 

directions. For these locations the annual rate of change was calculated separately for 

each frame and then averaged over all frames. The average annual rate of change of 

MODIS derived PWC was also calculated according to Equation (2) with Nt and N0 

replaced by the predicted PWC estimates for 2005 and 2000. A 3x3 low pass filter 

was applied to the MODIS rate of change product, a standard technique for validation 

of remote sensing products to minimize geolocation errors (Jensen 2005).  

The photo point and MODIS PWC time series measure slightly different 

parameters and the magnitude of the change rates are not directly comparable. 

However, at 9 of 10 locations both the photo point and MODIS time series agree in 

increasing woody cover (Table 3-3). The one location of disagreement also has the 

least temporal overlap between the two time series. 
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Table 3-3: Woody cover change at 10 locations in SCW and SNW derived from 

ground based photographs and from the MODIS time series. Explanation of column 

headings: Year: latest year of photo collection before 2003; Frames: number of 

photos taken in different compass directions; Lat/Long: latitude and longitude of 

photo point locations; Photo: Average annual rate of change of tree counts in the 

photo point time series; MODIS: Average annual rate of change of PWC in the 

MODIS product. 

 
Year Frames Lat / Long Photo MODIS 
1999 2 -1.78 / 35.02 1.023 1.040 
1999 1 -1.71 / 34.90 1.022 1.018 
1992 4 -2.32 / 34.84 1.043 1.024 
1991 6 -2.31 / 34.69 1.023 1.016 
1991 3 -1.77 / 34.86 1.051 1.025 
1991 3 -2.38 / 34.79 1.037 1.002 
1991 2 -2.32 / 34.84 1.017 1.021 
1991 1 -2.36 / 34.76 1.050 1.008 
1991 1 -1.65 / 34.92 1.040 1.028 
1988 1 -1.85 / 35.24 1.044 0.986 

 

3.5. Results and Discussion 

3.5.1. Metrics 

The methodology used in this study performs a subpixel classification 

resulting in a percentage estimate of woody plants versus other land cover types, i.e. 

herbaceous vegetation and bare soil. Woody plant and grass vegetation types are 

distinguishable within a single pixel, based on their spectral reflectance. Other 

authors have attempted subpixel classification based on spectral mixture analysis, 

which assumes a linear mixing process of endmember spectral reflectances, each 



 46

endmember representing a pure land cover type (Roberts et al. 1993). Linear mixture 

models do not account for complex nonlinearities in the spectral mixing process 

resulting from vegetation structural characteristics and the orientation of photon 

scatterers (plant parts) in three-dimensional space. Random forest analysis on the 

other hand is non-parametric and not confined by the assumption of linearity. 

However, the spectral metrics selected by the random forest algorithm similarly 

exploit unique differences in reflectance characteristics between woody plant and 

grass vegetation types.  

Figure 3-7 shows the importance of the metrics used in the random forest 

analysis for the year 2000 in form of their MSE values. Table 3-4 lists the 9 most 

important metrics, their MSE values, and the mean rank of each metric according to 

their MSE values averaged over all six years 2000-2005. 
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Figure 3-7: Average mean squared error (MSE) of all metrics for the year 2000 used 

in the random forest algorithm. The metrics have been ordered in decreasing 
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importance. The 9 most important metrics (left of dashed line) are discussed in the 

text. 

 

Table 3-4: Metrics for 2000 ranked in order of their importance. MSE: mean squared 

error, indicating importance; Mean Rank: average rank of the listed metrics over all 

years 2000-2005. 

 
Metric MSE Mean 

Rank 
Annual median of NIR 40.63 1 
Annual mean of MIR 25.26 2 
Mean MIR at four darkest 
NDVI 

24.11 3 

Mean of four brightest MIR 22.73 8 
NIR at median NDVI 20.70 59 
Maximum MIR at four 
darkest NIR 

20.47 5 

Annual median of MIR 20.23 9 
Maximum of four darkest 
NDVI 

19.41 10 

Median NIR at four 
brightest Red 

18.55 11 

 

The most important metric is the annual median of NIR for both 2000 and on 

average for all years. Figure 3-8 shows the temporal development of mean red, MIR, 

and MIR spectral reflectances and NDVI, for low (0-20) PWC and high (60-80) PWC 

areas within the study region for the 12-month time period starting on March 5, 2000. 

In the NIR band low and high density woody areas show the least overlap during the 

dry season, for which the annual median NIR metric is selecting. 
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Figure 3-8: Mean +/- 1 standard deviation of spectral reflectances and NDVI for areas 

of high (0-20) and low (60-80) PWC. The 12-month time period starts on March 5, 

2000. Pixels of high and low PWC were selected from the Landsat PWC product and 

reflectance values averaged over each PWC range. 

 

Our analysis showed that throughout the year MIR showed the highest 

consistent separability of low and high density woody areas except during the height 

of the wet season (day count 310-350 of the 12-month period). Five of the nine most 

relevant metrics for both 2000 and on average over all years use MIR. The annual 

mean of MIR ranks second of all metrics. Mean MIR at four darkest NDVI, mean of 

four brightest MIR, maximum MIR at four darkest NIR, and annual median of MIR 

all select for the dry season months August through November. This can be explained 

by the distinct phenological characteristics of grass and herbaceous cover, which is 
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most apparent in the dry season. Woody plants have better access to moisture in 

deeper soil layers because of their extended root systems and thus remain green 

longer into the dry season than the grasses (Walter and Breckle 2002). Woody 

vegetation in the Serengeti ecosystem is dominated by Acacia and Commiphora 

species. Timing and degree of leaf loss vary during the dry season. Many Acacia 

species may not experience any leaf loss at all or retain their leaves long into the dry 

season (Herlocker 1976).  

Asner et al. (1998) found that throughout the NIR, 700-1300 nm, green leaves 

of woody species in grasslands, shrublands, savannas, and tropical woodlands had 

higher reflectance values than grass species (t-test, p<0.05). No significant reflectance 

differences were observed over the shortwave infrared range (SWIR), 1500-2450 nm, 

although the narrower MODIS MIR spectral range, 2105-2155 nm, still showed the 

largest difference within the SWIR range. However, their study focused on the 

spectral separability of green leaves prevalent during the wet season, while the 

MODIS time series analysis presented here takes advantage of phenological 

differences apparent during the dry season. 

3.5.2. Woody Cover Changes 

Figure 3-9 illustrates the spatial distribution of relative changes in woody 

cover between 2005 and 2000. Increases in MPA concentrate in the wider area along 

the Narok – Sekenani road, which runs from Narok in north-central MPA south, then 

continues southwest parallel to the southern border of MPA. These observations are 

supported for the area along the road south of Narok by anecdotal evidence about 

expanding whistling thorn (Acacia drepanolobium) bush lands since the late 1990s. 
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This information was received from local residents during our field campaign in 

March 2003. Further increases occur in MMNR south of the border to MPA, in 

central SNW and north-central SCW, and in the hilly areas west of Seronera (eastern-

central WSC). Decreases in MPA are most prominent in the larger area north of Talek 

just north of the central border between MPA and MMNR. This area is under high 

grazing and browsing pressure from cattle and goats, which could result in declining 

woody cover. Further decreases occur in confined areas of easternmost MMNR, 

western GGR (northwestern border of WSC), and throughout MSW, all of which 

have been subject to frequent burning events over the time period of this study 

(Chapter 2). 
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Figure 3-9: Ratio of PWC 2005 to 2000. Squares represent photo point locations for 

ground truthing. 

 
On a regional level the results indicate that overall woody cover in the 

Serengeti woodlands (SNW, SCW) is increasing, while woody cover in MMNR, 

MPA, and WSC is decreasing, with MSW showing the strongest decrease (Figure 

3-10). Regional averages provide a generalized picture of overall changes, however 

the frequency histograms (Figure 3-11) show that among the subregions regional 

differences are most distinct for MSW and otherwise largely overlap. 
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Average Woody Cover Ratios 2005 to 2000
and Percent Woody Cover in 2000
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Figure 3-10: Average of woody cover ratios 2005 / 2000 per administrative region 

(black squares), ordered from north to south. Box plots (plain gray boxes and lines) 

show quartiles and extreme values within 1.5 interquartile ranges of the box top and 

bottom. Error ranges for the regional mean values were calculated from the standard 

error of the predicted PWC values. The upper and lower error limits are the 

corresponding regional means of the minimum and maximum ratios. PWC (line-

pattern filled bars) was averaged for each region from the Landsat derived PWC 

product for the year 2000. 
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Figure 3-11: Frequency histograms of PWC ratios 2005 / 2000 per region. 

 

Regional woody cover changes observed in our analysis generally agree with 

previous long-term trends reported in the literature. Lamprey (1984) found decreasing 

canopy coverage of trees and large shrubs in MPA between 1950 and 1983 by 

analyzing a time series of aerial photographs. Dublin (1991) documented declining 

woody cover in MMNR since the 1950s, continuing into the 1980s. Serneels and 

Lambin (2001a) reported pronounced loss of vegetative cover in MPA unlike other 

parts of the SMNR ecosystem, based on her analysis of a time series of Landsat data 

covering the period 1975-95. Walpole et al. (2004) found in 1999 MMNR largely 

dominated by grasslands and expects a continued decline of woody resources in the 

face of increasing browsing pressure. Sinclair and Arcese (1995) found increasing 

woody cover in the woodlands of SNP since the 1980s using a time series of ground 

based, oblique photographs at 22 permanent locations. We have found no references 
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in the literature to observations of woody cover trends in MSW. The habitats, plants 

and animal assemblages of MSW have received little attention by scientists in the 

past and are rarely known (Sinclair 1995). The results of this study underline the need 

to focus more attention on the Maswa area and investigate potential driving factors 

for woody cover changes which might be related to the fire regime and browsing 

pressure.  

Important factors controlling woody cover in African savannas are thought to 

include climate, nutrient availability, fire and herbivory (Scholes and Archer 1997). 

Decreasing PWC in MPA and MMNR in comparison to increasing PWC in SNW and 

SCW has been linked to a combination of variations in fire regimes and elephant 

numbers (Dublin 1995). The fire regime and different levels of browsing pressure 

might be relevant factors explaining observed trends in MMNR, SNP and MSW. 

3.6. Conclusion 

The methodology described in this paper maps changes of woody cover in the 

SMNR savanna environment. The effectiveness of the algorithm can be explained on 

three grounds. Firstly the large number of observations obtained by MODIS reduces 

cloud problems by selecting pixels with minimum cloud coverage. Secondly the high 

temporal frequency of the MODIS time series exploits differences in phenological 

characteristics of woody and herbaceous plant cover. Woody plants stay green longer 

into the dry season while grasses and herbs become senescent earlier. Thirdly the 

exclusion of burned area related metrics minimizes unwanted contamination of the 

spectral reflectance of vegetation by char coal. Cloudiness, precipitation and other 

environmental conditions affecting vegetation and remote sensing observations 
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change between years. Our algorithm adjusts to changing conditions by being trained 

separately for each year.  

While NIR reflectance during the dry season provided the single most 

important metric for the separation of woody cover from grasslands, the majority of 

the most important metrics were based on MIR reflectance. Our analysis showed MIR 

to provide superior separability of woody cover from grasslands throughout the year, 

except during the height of the wet season. The results of this study show the 

importance and benefit of selecting the best season for distinguishing woody and 

herbaceous cover and taking advantage of differences in phenology. 

Limitations of the methodology result from the quality of the remote sensing 

data. Adjacent pixels in a MODIS 16-day composite might have different acquisition 

dates resulting in varying atmospheric conditions, sun illumination and view angles. 

These effects are mitigated, but not eliminated, by the MOD13 compositing algorithm 

(Huete et al. 1999). The heterogeneity of the MODIS data manifests itself in 

considerable variations between annual PWC estimates of subsequent years. For this 

reason estimation of year-to-year changes in woody cover has proven difficult. As a 

consequence we analyzed medium-term changes over a six-year time period using 

linear regression to arrive at a more reliable product. This approach assumes linear 

changes in woody cover between the first and last year of observation. It does not 

capture irregular patterns of woody cover change through time, resulting in a 

potential negative impact on the detectability of such changes by the type of time 

series analysis used in this study.  



 56

The results of this study provide the first spatially coherent data layer of 

woody cover changes over the entire Serengeti-Mara region. This study succeeds 

previous work focusing on smaller subregions, or using spatially limited samples 

representative for a larger area. The algorithm developed in this study works well for 

the study region and is likely to be superior to regional or global algorithms aiming to 

work well everywhere.  

Further research will be undertaken using these data to investigate the 

importance of the fire regime and related factors on woody cover changes. Fire 

regime is characterized by fire frequency and intensity. Fire intensity is related to fuel 

load, which in turn is controlled by precipitation, grazing pressure and decomposition. 

Spatially explicit data layers of woody cover changes and controlling factors allow 

investigating their importance at different spatial scales.  

The spatially explicit woody cover change product can be useful for analyzing 

changing habitat characteristics and potential impacts on wildlife distribution. 

Wildebeest prefer open grasslands. Lions and other predators use larger shrubs to 

stalk their prey and changes in woody cover might impact the number of kills. Woody 

cover also characterizes bird habitat. 

Most savannas are dynamic systems and experience woody cover changes 

over time as part of natural cycles. The methodology described in this paper can be 

applied to other savanna areas to study such changes over longer time periods as the 

data archive of high resolution remote sensing imagery expands. 
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Chapter 4: Estimation of Fire Intensity in the Serengeti-

Mara Region 

4.1. Abstract 

Fire plays an important role in the Serengeti-Mara ecosystem in East Africa. 

Fire intensity is a key factor of the fire regime and has a potential impact on 

vegetation structure. Fire intensity in the Serengeti-Mara region has not been 

estimated before over larger areas or extended time periods. In this study we use a 

model to estimate fire intensity between May 1, 2000 and April 30, 2006. This is 

done in a spatially coherent manner over the entire region. Fire intensity was 

estimated as a function of fuel load, fuel moisture, air relative humidity, wind speed, 

slope, and combustion completeness. Fuel load was calculated from grass production 

as a function of rainfall, while accounting for competitive effects from woody plants 

and herbivores. Fire events were derived using burned area maps from a previous 

analysis. Results indicate similar levels of fire intensity throughout the ecosystem 

despite significant differences in rainfall, mainly due to the leveling effect on fuel 

load levels by abundant large grazers.  

4.2. Introduction 

The Serengeti-Mara region in East Africa is subject frequent fires (Chapter 2). 

Fire is thought to control both the structure and composition of vegetation in the 

Serengeti National Park; particularly when considered in combination with grazing, 

browsing and climate (Norton-Griffiths 1979).  
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A key characteristic of the fire regime is fire intensity. It can have a 

significant impact on the level of fire damage to woody plants (Frost and Robertson 

1987). Higgins et al. (2000) suggested that fire events and variations in fire intensity 

are driving factors for generating heterogeneity in woody plant distribution in 

savannas. The objective of this study is to estimate fire intensity in a spatially explicit 

manner in order to support subsequent analysis of fire impact on woody cover levels.  

The most common index of fire intensity is fire line intensity, introduced by 

(Byram 1959). Fire line intensity is strongly related to damage of above-ground 

woody plant parts (Higgins et al. 2000). It is calculated as (Equation 1): 

RWHI ××=   (1) 

where I is the rate of heat release per unit time and unit of spread of the fire front (kJ 

s-1 m-1); H: heat yield per unit of fire fuel consumed (kJ kg-1); W: fuel consumed (kg); 

R: rate of spread of the fire front (m s-1).  

Fire intensity within the study area has only been analyzed during single fire 

events at point locations and not over larger spatial extents or longer time periods. 

Field measurements of fire intensity are labor and resource intensive and not feasible 

over large regions. Stronach and McNaughton (1989) made point measurements of 

fire temperature and combustion completeness (CC) at several locations in Serengeti 

in June 1986. Both CC and fire temperature can be used as indicators of fire intensity, 

however, the measurements were not repeated or expanded over larger areas. The 

same authors also determined ash color-lightness and found that ash shades were 

correlated with CC and fire temperature. Gray-white ash indicated very-high-energy 

fires, while black ash indicated very-low-energy fires. McNaughton et al. (1998) 
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proposed to use these observations to derive fire intensity from albedo measurements 

by satellites. Sa et al. (2005) did so by relating ground based measurements of pre- 

and post fire spectral reflectance to CC. The data was collected during the SAFARI 

2000 Third Intensive Field Campaign in the Western Province of Zambia. The 

relationship found between the change in spectral reflectance and CC was reversed 

from the findings of Stronach and McNaughton (1989). Darker surfaces indicated 

higher-intensity fires and were related to higher CC than lighter surfaces. The authors 

did not provide a calibrated method to use spaceborne remote sensing data to derive 

CC. The authors also expected post-fire spectral reflectance to be dependent on 

vegetation type. They suggest determining CC from spectral reflectance might not be 

feasible or severely limited for understory burns in woodland savannas. The non-

constant relationship between ash color and fire intensity suggests a need to consider 

alternative approaches for estimating fire intensity over large areas. 

Fire intensity or combustion rates might also be derived from fire radiative 

energy which can be measured by means of remote sensing (Kaufman et al. 1996; 

Wooster 2002). Spaceborne remote sensors however only provide near-instantaneous 

views of the fire front at the time of the satellite over pass. Such views are unlikely to 

provide reliable estimates of fire intensity across a fire’s full spatial extent as they 

spread across the landscape. Airborne sensors could theoretically hover over a 

burning area and measure fire radiative energy on a more continuous basis. This 

approach is not practical though and has not been attempted in the study area. 

This study estimates fire intensity in order to provide a basis for analyzing 

impacts on woody cover. The impact of fire on vegetation can also be estimated using 



 60

approaches that measure the qualitative variable of fire severity.  Fire severity is often 

estimated using the normalized burn ratio (NBR) (van Wagtendonk et al. 2004; 

Epting et al. 2005, Cocke et al. 2005). NBR is a spectral index, computed from 

satellite or airborne remote sensing data as the difference between near-infrared 

(NIR) and middle-infrared (MIR) reflectance divided by their sum (Key and Benson 

2006). NBR provides a relative measure of burn effects on vegetation by comparing 

pre- and postfire index values and needs to be calibrated using field data. It has been 

shown, however that the use of NBR in savanna using satellite data can be 

problematic. NBR is often insensitive to changes due to burning, as spectral change in 

NIR and MIR reflectance can often occur parallel to the NBR isolines (Roy et al. 

2006). Therefore NBR does not seem an appropriate choice for the objectives of this 

paper. 

Given the limitations of existing approaches, this study estimates fire intensity 

using an alternative approach based on a spatially explicit model.  The model is 

applied over the entire Serengeti-Mara region between May 1, 2000 and April 30, 

2006 and estimates fire intensity for areas burned twice or more. Fire intensity is 

derived using an empirical equation formulated by Higgins (2006) as a function of 

fire fuel load, fuel moisture, air humidity and wind speed. The empirical model is 

further adjusted for slope effects and combustion completeness. Fire fuel load is 

derived from grass biomass production as a function of rainfall, grazing and woody 

canopy effects.  
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4.2.1. Study Region 

The study area encompasses the Serengeti National Park (SNP), the Maswa, 

Grumeti, and Ikorongo Game Reserves in Tanzania, as well as the northerly adjacent 

Maasai Mara National Reserve (MNR) in Kenya (Figure 4-1). The Serengeti short 

grass plains, as delineated by Gerresheim (1974) (Region 14), were excluded from the 

study area due to its extremely low fire frequency (Chapter 2). The study area has 

been subdivided into ecologically meaningful subregions after the Serengeti 

Landscape Classification by Gerresheim (1974). The classification delineates 

landscape units of uniform and distinct geomorphologic, hydrologic, soil, vegetation 

and microclimatic characteristics. Pennycuick (1975) combined these land regions 

into larger, ecologically meaningful units, corresponding to the seasonal occupancy 

by wildebeest. Gerresheim regions 17 and 19 were combined to the Maswa sub 

region (MSW); 9, 12, and 13 to the western Serengeti and Corridor sub region 

(WSC); 10 and 11 to Central Serengeti (CSG); and 3, 4, 7, and 8 to the Maasai Mara 

and Northern Serengeti sub region (MNS). MNS was further separated into northern 

Serengeti (NSG) and the Maasai Mara National Reserve (MNR). MNR is separated 

from SNP by the Kenyan-Tanzanian international border and is under different 

management. All subregions were restricted to the protected areas.  

The dominant vegetation types are woodland and grassland savanna. Mean 

annual precipitation (MAP) in the study area increases along a southeast-northwest 

gradient from ca. 700 mm in the Southeast to 1100 mm in the Northwest (Sinclair 

1979b). The dominant grazing animal in the ecosystem is the migrating wildebeest 
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(Connochaetes taurinus) with a total number of ca. 1.3 million (Campbell and Borner 

1995).  

 

 

Figure 4-1: Shaded relief of the Serengeti-Mara region, lighted from the Southeast. 

Subregions: Maasai Mara and Northern Serengeti (MNS); Central Serengeti (CSG); 

Western Serengeti and Corridor (WSC); Maswa Game Reserve including 

southeastern most Serengeti (MSW). Source of digital elevation model: (CIAT 2004). 
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4.3. Methods 

Fire intensity was calculated fore each 250 m x 250 m pixel using empirical 

relationships. The relationships were derived using multiple regression and data from 

200 monitored fires in South African savannas by (Trollope 1998; Higgins 2006), (P 

< 0.01, d.f. = 196, R2 = 0.60). The empirical fire intensity relationship was further 

refined in this study by including a slope factor A, and a combustion factor C 

(Equation 2; Figure 4-2).  

)20066.137948087262939( ),(),(),(),(),(),(),( jitjitjitjitjitjijit WHMGCAI +−−+=  (2) 

where It is fire intensity (kJ s-1 m-1); t: time of fire occurrence; (i,j): pixel coordinates 

of fire location; A: the average slope factor; C: combustion factor; G: grass biomass 

(kg ha-1); M: fuel moisture (proportion of oven-dry grass weight); H: relative air 

humidity (%); W: wind speed (m s-1). Data sources and all parameters in Equation (2) 

are described in sequence below. The fire intensity model was implemented in the 

ENVI/IDL version 4.2 software package. 
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Figure 4-2: Flow chart of the fire intensity model used in this study. Block arrows 

represent input data sets; ovals contain derived data sets; letters in parenthesis 

correspond to Equation (2); tall parentheses embrace parameters for which constant 

values were used. 

4.3.1. Data Sources 

Spatially explicit data layers used to estimate fire intensity are listed in Table 

4-1. Daily rainfall was derived from the Famine Early Warning System (FEWS) 

Dekadal Rainfall Estimates (RFE) version 2.0. RFE data are produced by an 

automated algorithm using observations from the Meteosat satellite in the infrared 

band, rain gauge reports, and microwave satellite observations (Xie and Arkin 1997). 

One dekad refers to a 10-day time period.  

Slope was derived from the hole-filled version of the Shuttle Radar 

Topography Mission (SRTM) digital elevation model (Farr and Kobrick 2000; CIAT 
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2004). Slope values were aggregated from 90 m to 500 m horizontal resolution by 

calculating the mean slope value for each 500 m pixel.  

Table 4-1: List of data sources.  

 
Parameter Spatial 

Resolution 
Data Source 

Rainfall (2000-2006) 0.1 deg  
(ca. 10 km) 

Famine Early Warning System (FEWS) 
Rainfall Estimates (RFE 2.0) (Xie and 
Arkin 1997) 

Woody Canopy Cover 30 m Chapter 3 
   
Burned Area 250 m Chapter 2 
   
Slope 90 m Shuttle Radar Topography Mission 

(SRTM), (Farr and Kobrick 2000; CIAT 
2004) 

 

The following sections describe and justify the approaches used to develop 

each term in the fire intensity equation (equation 2) and figure 4.2. 

4.3.2. Average Slope Factor A (Equation 2) 

The average slope factor (A) is based on empirical relationships derived from 

experimental fires in Australian savannas, which are in close agreement with 

relationships developed elsewhere in the world (McArthur 1967; Luke and McArthur 

1978; Cheney and Sullivan 1997). A fire burning up a 10° slope burns with twice the 

fire intensity than a fire on level ground, doubling again when burning up a 20° slope. 

A fire burning down a 20° slope will only burn with a quarter of the fire intensity on 

level ground. From these data and the associated diagram in Luke and McArthur 

(1978) three equations were derived (Table 4-2).  
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Table 4-2: Equations for calculating the slope factor. Equations were derived from 

empirical relationships and diagram in McArthur (1967). 

 
Slope s (degrees) Slope Factor a 

10−<s  sa /5−=  
1010 <<− s  )0693.0exp( sa =  

10<s  sa 2.0=  

 

For the purpose of this study it was assumed 50% of the fires burn up and 

50% down slope. The average slope factor A was calculated accordingly as the mean 

of these two effects (Table 4-3). 

Table 4-3: Equations for calculating the average slope factor A as the average of up 

and down slope burning fires. 

 
Slope s Average Slope Factor A 

10>s  ssA 1.0/5.2 +=  

10<s  )(5.0 0693.00693.0 ss eeA −+×=  
 

4.3.3. Combustion Completeness C (Equation 2) 

Based on experimental burning of tropical grasses in the laboratory 

combustion in tropical savannas is typically assumed to be almost complete, with 

fires consuming 90-95% of available fuel (Lobert et al. 1990; McNaughton et al. 

1998). In contrast, fuel consumption in all of 18 experimental fires in Serengeti was 

considerably lower (Stronach and McNaughton 1989). However, these fire 

experiments were carried out in the early dry season, June 16-19, 1986. It has been 

shown, that fires later in the dry season generally do burn the fuel almost completely. 
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Shea et al. (1996) found mean grass consumption by fire generally exceeding 95% 

over a range of semi-arid to moist savannas in South Africa and Zambia (MAP 600-

1170 mm). Hoffa et al. (1999) reported a CC of 98% at the end of the dry season in 

dambo grassland savannas in Zambia and Sa et al. (2005) measured a CC of 93% in 

the same savanna type in Zambia during the late dry season of 2000. In order to 

account for the effect of seasonally changing levels of CC, we used in this study an 

empirical equation described by Hoffa et al. (1999). The equation calculates the 

combustion factor C as a function of the proportion of green grass contained in the 

fire fuel load (Equation 3).  

3821.11309.2 +×−= pC    (3) 

where C is the combustion factor, and p is the green grass dry matter fraction of total 

dry matter. In this study green grass is defined as the fraction of newly grown grass, 

before the start of the curing process. 

4.3.4. Grass biomass G (Equation 2) 

Fire fuel load was assumed to be equivalent to above ground grass biomass 

(G). G was estimated over three stages, namely: grass production, grass consumption 

by grazers, and burning events. G accumulates through time. Meaningful estimates of 

G require a starting point at which the baseline of G is known. Such a baseline is 

provided by burning events. After the first burning event (determined using the 

MODIS-based method described in Chapter 2), G was set to a baseline of zero, 

assuming a complete burn. In this study G and fire intensity was therefore only 

analyzed for pixels after the first burning event. G since the last burning event was 

calculated as (Equation 4): 
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where Gt is grass fuel load (kg ha-1); t: time after the last burning event at time t0; (i,j): 

pixel coordinates; Gp: grass production (kg ha-1); Gg: grass consumption by grazers 

(kg ha-1). Grass production Gp and grass consumption Gg are discussed in the 

following two subsections.  

Grass Production Gp (Equation 4) 

Grass production Gp was estimated using an empirical linear relationship with 

rainfall, adjusted for competitive effects with woody plants and for the stimulating 

effect of grazing (Equation 5).  

RglfGp ×××=   (5)  

where Gp is the predicted above-ground grass production (kg ha-1); f: woody 

canopy factor; l: grazing stimulating factor; g: growth coefficient (kg ha-1 mm-1), and 

R rainfall (mm). The derivation of the terms for f, l and g are described in turn below. 

a) The woody canopy factor (f) in Equation 5 was derived as a function of 

percent woody canopy cover. Woody plants can inhibit grass production as a result of 

light, nutrient and water competition. The effect of woody plants on grass production 

can be positive or negative. Belsky et al. (1989) compared grass productivity beneath 

and between canopies of Acacia tortilis and Adansonia digitata (Baobab) trees in 

semi-arid Tsavo National Park in Kenya (MAP 490 mm). Tree neighborhoods there 

had an increasing effect on grass production. Weltzin and Coughenour (1990) 

likewise found a positive impact of trees on herbaceous biomass production under 

tree canopies in the savanna environment in Turkana District, northwestern Kenya 

(MAP 395 mm). Grunow et al. (1980) on the other hand found a 38.6% reduction of 
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peak green grass biomass beneath tree canopies in the Nylsvley savanna in South 

Africa (MAP 610 mm). Mordelet and Menaut (1995) found in humid savanna in Côte 

d'Ivoire (MAP 1200 mm) a 26% lower grass production underneath tree canopies 

than between trees. Increased grassland productivity is most often associated with 

low-tree-density, drier savannas and decreased productivity with higher-tree-density, 

more humid savannas (Belsky et al. 1989). The Serengeti-Mara environment has an 

overall MAP of ca. 700 mm and corresponds to the higher-tree-density, more humid 

savanna type (Herlocker 1976; Chapter 3). We therefore assume an overall decreasing 

effect of woody cover on grass production in the study area. 

A relationship was derived describing the effect of woody canopy cover on 

grass production. Grunow et al. (1980) reported peak live above-ground grass 

biomass for three levels of woody cover density in the Nylsvley savanna. These 

measurements were used to calculate the relative effect of tree canopy cover on peak 

above-ground grass biomass (Table 4-4). 

 

Table 4-4: Relative effect (Factor) of percent tree canopy cover on peak live green 

grass biomass in the Nylsvley savanna in South Africa (Data source: Grunow et al. 

1980). 

 
Tree Canopy 
Cover (%) 

Grass Bio- 
mass (g/m2) 

Factor 

         0.0 88 1.000 
       27.5 78 0.886 
     100.0 54 0.614 
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Here we assume that the effect of woody canopy cover on peak green biomass 

is the same as the effect on grass production. Jameson (1967) presented a 

mathematical relationship to fit percent tree canopy cover and understory herbage 

production (Equation 6). 

mbXeahy )1( −−=   (6) 

where y is herbage production; x: percent tree canopy coverage; b: regulates 

curvature; m: inflection point, h: y-intercept; a: lower asymptote. Values for b and m 

were approximated iteratively using data from 14 locations in pinyon-juniper (Pinus 

edulis, Juniperus spp.) woodland in northern and central Arizona. We use the same 

approximated values for b and m, set h to 1, replace herbage production values with 

the factor values from Table 1 and solve for a using least squares fitting. Equation 7 

and Figure 4-3 describe the fitted equation for calculating the relative effect of woody 

canopy cover on grass production.  

5.0036.0 )1(432.01 Pef −−−=   (7) 

where f is the woody canopy factor and P percent woody cover. 
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Figure 4-3: Function describing the relative effect of percent woody canopy cover on 

grass production (woody canopy factor f). Dotted squares represent measurements 

from the Nylsvley savanna (Grunow et al. 1980). 

 

b) The grazing stimulation factor (l) in Equation 5 was derived from 

aboveground primary grass productivity (APP) data for SNP. McNaughton (1985) 

found substantially greater (APP) of forage in areas exposed to grazing compared to 

fenced control areas. Annual APP in fenced areas with no grazing was 357 g m-2 yr-1, 

while APP in unfenced, grazed areas averaged 664 g m-2 yr-1. The grazing stimulating 

factor l was calculated as the ratio between APP (grazed) over APP (fenced), l = 

1.860. 

c) The growth coefficient (g) in Equation 5 was estimated by Higgins et al. 

(2000) as g = 3.369 kg ha-1 mm-1 using data from southern African savannas (P < 

0.0001, d.f. = 71).  
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Grass Consumption by Grazers Gg (Equation 4) 

Grass consumption by grazers was estimated from animal numbers and their 

seasonal distribution. The main grazing animals in the Serengeti ecosystem are 

wildebeest (Connochaetes taurinus), zebra (Equus burchelli), buffalo (Syncerus 

caffer), Thomson's gazelle (Gazella thomsonii), topi (Damaliscus korrigum), and 

impala (Aepyceros melampus) (McNaughton 1985; Campbell and Borner 1995). The 

daily amount of grass consumed by grazers was calculated using animal census 

counts and daily food requirements (Sinclair 1975; FAO 1991; Bourn and Wint 1994) 

(Table 4-5). 

Table 4-5: Census counts for main grazing animals per sub region. Grazing species in 

italic are migrating between subregions. Th. Gazelles: Thomson Gazelles; SNPR: 

Serengeti National Park Region, includes SNP, Grumeti Game Reserve, and Ikorongo 

Game Reserve; MSWG: Maswa Game Reserve. x: missing data. Census count for 

1988, 1989, and 1990 were merged if no significant changes occurred. (*) Sum of 

census counts for SNP, and Ikorongo / Grumeti Game Reserves. The reported error is 

the larger of the individual census counts. (**) Animal census data for MNR were 

compiled from aerial censuses conducted by the Kenyan Department of Resource 

Surveys and Remote Sensing (DRSRS). Food Rq: daily food requirement per animal 

(kg grass dry matter per individual and day) (Sinclair 1975; FAO 1991; Bourn and 

Wint 1994). 

 
Grazing 
Species 

Sub-
Region 

Census 
Count 

Standard 
Error 

Census Year Reference Food 
Rq 

Wildebeest SNPR 1,300,000 x 2000 Thirgood et al. 2004) 4.23 

Zebra SNPR 191,028 11,550 1989/91 Campbell and Borner 
(1995) 

4.78 

Buffalo SNPR 36,562 x 1992 Campbell and Borner 
(1995) (*) 

8.41 

Th. Gazelles SNPR 355,493 21,576 1989/91 Campbell and Borner 
(1995) 

0.72 
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Grazing 
Species 

Sub-
Region 

Census 
Count 

Standard 
Error 

Census Year Reference Food 
Rq 

Topi SNPR 93,925 23,875 1991 Campbell and Borner 
(1995) (*) 

2.85 

Impala SNPR 65,386 5,687 1988/89/91 Campbell and Borner 
(1995) (*) 

1.69 

Buffalo MSWG 4,262 x 1988/89/91 Campbell and Borner 
(1995) 

8.41 

Impala MSWG 3,204 42 1988/89/91 Campbell and Borner 
(1995) 

1.69 

Topi MSWG 899 211 1988/89/91 Campbell and Borner 
(1995) 

2.85 

Buffalo MNR 4,354 x 2000 DRSRS (**) 7.15 

Th. Gazelles MNR 11,623 x 2000 DRSRS (**) 0.72 

Topi MNR 2609 x 2000 DRSRS (**) 2.85 

Impala MNR 3580 x 2000 DRSRS (**) 1.69 
 

Resident species were assumed to be ubiquitously distributed throughout their 

subregions. The migratory wildebeest and zebra follow similar circular migration 

routes every year. They typically occupy the Serengeti short grass plains from 

November to April, move northwest through WSC in May and June, pass through 

SCW in July, occupy MNS from August to October before returning to SGP 

(Pennycuick 1975; Campbell 1989; Mduma 1996; Thirgood et al. 2004). The 

northern, substantially smaller Mara-Narok migratory wildebeest and zebra herds 

mostly occupy areas north of MNR Serneels and Lambin (2001a) and were not 

included in the census counts. Table 4-6 shows the total amount of grass dry matter 

consumed per subregion in each season. Newly grown green grass is preferred by 

grazers and consumed first (McNaughton 1985). The model was adjusted to 

reproduce the same behavior. Any remaining food requirement is then satisfied by 

grazing a percentage of the remaining grass in the sub region. 



 74

Table 4-6: Total amount of grass dry matter (in t/day) consumed by the main resident 

and migratory herbivores in each subregion. Seasonal occupancy by migratory 

wildebeest and zebra changes between regions. 

 
Region Nov-Apr May-June July Aug-Oct 
SGP 6578 166 166 166 
WSC 308 6720 308 308 
SCW 221 221 6633 221 
MNS 306 306 306 6718 
MSW 44 44 44 44 

 

4.3.5. Fuel Moisture M (Equation 2) 

Fuel moisture is calculated by applying a drying factor. The drying factor is 

applied to newly grown grass starting after the first dekad with no rain. Once the 

drying process starts, subsequent rainfall has only a limited impact on curing (Cheney 

and Sullivan 1997). Fuel moisture of the curing grass is calculated using Equation 7 

(Higgins et al. 2000). 

 

)exp( ,1, tdtcc tcMM ××= −   (7) 

 

where Mc is moisture content of curing grass (proportion of oven-dry weight); Mc,t-1: 

moisture content of curing grass in the previous time step; c: drying rate; td,t: number 

of drying days since the previous time step. Grass moisture content at the beginning 

of the curing process is around 200% of oven-dry weight. Perennial grasses, which 

are predominant in the study region, become fully cured after 9 weeks with a 

remaining moisture content of about 30% (Luke and McArthur 1978; Cheney and 

Sullivan 1997). A drying rate of c = -0.03 was chosen to reproduce these values. 
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Total fuel moisture Mt was calculated from the moisture content of green and 

curing grass as in Equation 8: 

 

CCGG

cg
t MGMG

GG
M

×+×

+
=   (8) 

 

where Mt is the moisture content (proportion of oven-dry weight); Gg: oven-dry 

weight of green grass; Gc: oven-dry weight of curing grass; Mg: grass moisture 

content at the start of curing; Mc: moisture content of curing grass.  

4.3.6. Relative Humidity H and Wind Speed W (Equation 2) 

Relative air humidity and wind speed were not available for the study area. 

Instead we applied the mean values found by (Trollope et al. 1991 in prep.) at the 200 

fire locations used for the development of the fire intensity model. Average wind 

speed was W= 2.6 m s-1 and average relative humidity H = 36.6%. 

4.3.7. Field Validation 

Fire fuel load is the most important factor controlling fire intensity (Cheney 

and Sullivan 1997). Field validation was performed by the author for the grass 

biomass term G in Equation 2, representing fire fuel load. Grass biomass was 

measured in MNR during a field campaign in November 2003. Grass samples were 

collected at the center of seven relatively homogeneous grassland savanna areas 

extending at least 500 x 500 m. At each site grass biomass was clipped within 25 cm 

x 25 cm frames along a 100 m linear transect. Collection frames were placed along 
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the transect every 20 meters and in addition at locations where grass biomass visibly 

changed, i.e. at the start of each comparatively denser or less dense grass patch. The 

grass was clipped manually as close to the ground as possible, oven-dried at 120°C 

for 8 hours, and weighed. The average grass biomass of the sampled grassland area 

was interpolated from the grass weights in combination with their location along the 

transect. Table 4-7 shows the collection date, grass biomass collected in the field, and 

the model result of grass biomass. The correlation coefficient is r = 0.85.  

Table 4-7: Date, latitude, longitude, grass biomass measured in the field (kg ha-1), 

modeled grass biomass (kg ha-1) and the difference between the two. Values are in 

increasing order of absolute deviation. 

 
Date of 

Field Visit 
Lat Lon Field Grass 

Biomass 
Model Grass 

Biomass 
Deviation 

30 Nov 2003 -1.581 35.293 252 205 -47 
30 Nov 2003 -1.577 35.303 113 191 77 
30 Nov 2003 -1.571 35.292 408 225 -183 
27 Nov 2003 -1.402 34.898 5,993 5,351 -642 
26 Nov 2003 -1.579 35.170 876 2,468 1,592 
22 Nov 2003 -1.459 35.097 649 2,499 1,850 
21 Nov 2003 -1.579 35.170 467 2,468 2,001 

 

The error range was estimated from the deviations between field data and 

model results (Equation 10). 

1
)( 2

−

−
±= ∑

n
GG

e fm
G   (10) 

where eG is the error (g m-2); Gm: the calculated grass biomass; Gf: field measurement 

of grass biomass, and n the number of observations. Using the values from Table 4 

the error is then eG = +/- 1,318 kg/ha. From eG we can derive an approximate error 
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estimate for fire intensity by supplying eG to Equation (2), assuming M, H, and W to 

be constant (Equation 11). 

)8726.0( max GI eCAe =          (11) 

where Ā = 1.026651 is the mean average slope factor over the entire study area and 

Cmax = 1.0 is the combustion completeness factor for complete combustion. The 

resulting error estimate for fire intensity is then eI = +/- 1,180 kJ s-1 m-1. 

4.4. Results and Discussion 

 The results indicate similar levels of fire intensity in the subregions (Figure 

4-4). At first this seems surprising:  it could be expected that fire intensity would 

increase significantly in higher rainfall areas; particularly because higher rainfall 

increases grass biomass production, which in turn exerts most control on fire 

intensity. However, the lack of regional scale variations in fire intensity with 

precipitation can be explained by the dominance of large, migrating grazers. The 

main driver behind the migration of the ca. 1.3 million wildebeest and large numbers 

of zebras is availability of the food supply, controlled by rainfall (Pennycuick 1975; 

Boone et al. 2006). Grazing animals concentrate in areas of high rainfall and high 

grass production, exerting a leveling effect on grass biomass.   
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Figure 4-4 : Average fire intensity 2000-2005 estimated from rainfall, grazing and 

other factors. The frequency histograms show the number of 250 m pixels per fire 

intensity class (bin size 100 kJ s-1 m-1) for each sub region. 

 
While variation of fire intensity is limited on a regional scale, levels do vary 

over relatively small patches. In the model fire intensity varies mainly as a result of 

the patchiness of fire. It also varies due to spatial variations in the distribution of 

rainfall and herbivory, although to a lesser degree than fire effects because of the 

coarser spatial resolution of the data sets: rainfall has 10 km resolution and herbivory 
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in the model is regional, although the selective grazing of newly grown grass is 

replicated. The actual variation of grass biomass on the ground is reflected in the 

variability of the field data. This variability is likely due to the patchiness of rainfall, 

herbivory, and fire. Rainfall in this region often varies at scales of less than 10 km 

(Prins and Loth 1988) and might therefore not always be captured accurately by the 

FEWS rainfall dataset which has a resolution of 10 km. The movement patterns of 

herbivores, such as wildebeest also affect the variability of grass biomass. Wildebeest 

movements mainly depend on green grass availability, but are also affected by other 

factors which are not addressed in the fire intensity model, e.g. forage quality or the 

detectability and accessibility of distant patches of green grass to the herds. The fire 

intensity model is spatially explicit but might not replicate all spatial patterns 

adequately. Therefore higher confidence can be placed on regional averages of the 

model outcomes than on pixel-by-pixel results. 

The distribution of fire intensity values shows a limited number of very low 

and even negative values (<1.5% negative). This indicates that the algorithm is 

underestimating fire intensity to some degree. A possible explanation could be that 

grass standing biomass is underestimated in areas with unrealistically low fire 

intensities. The combined effects of rainfall and grazing on grass production are also 

not well understood. This study uses an empirical relationship to derive grass 

production from rainfall. This relationship was derived using data from southern 

African savannas and is not adjusted to the local conditions in the study area. Soil 

type and nutrient availability affect both grass production and palatability to grazers. 

This affects the spatial distribution of grass biomass and grazing pressure and 
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consequently of grass biomass available as fire fuel load. This study also assumes the 

stimulating effect of grazing on grass production to be linear.  The fire intensity 

model likely oversimplifies these relationships. Despite these shortcomings available 

field data still suggest a reasonable accuracy of the model results for grass biomass. 

Since grazing is an important control on biomass and hence intensity, the 

model could be improved by developing a more sophisticated and spatially detailed 

model of animal migratory movements. In this study the large migrating wildebeest 

herds are assigned to subregions according to their historical occupancy of these areas 

at certain times of the year. It is likely that under changing rainfall conditions the 

migratory patterns change and the herds may occupy specific areas for variable 

lengths of time. Since grazing pressure has a major influence on grass biomass it will 

also affect fire intensity.  

The model could further be improved by collecting additional field data of 

grass biomass through time to adjust the relationship between rainfall and grass 

production to local conditions. Additional research is needed on the opposing effects 

of grazing on fire intensity. Grazing reduces grass biomass and at the same time 

stimulates grass production. Additional field data are also needed for verifying the 

results in different areas of the ecosystem and at different times.  

4.4.1. Conclusion 

Fire intensity was estimated using an empirical model with validation 

performed for the biomass term.  The results of this study are consistent with the 

dominant effect of the key species wildebeest on shaping the ecosystem.  Findings 
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suggest that by controlling grass biomass grazers also affect fire intensity with 

potential implications for the distribution of woody plants.  

Estimating fire intensity using satellite derived and spatially coherent data 

layers in combination with field data is a useful approach to help characterize the fire 

regime. Modeling fire intensity is a viable approach in the face of limited possibilities 

of measuring it over larger spatial areas and longer time periods. The results of this 

study are an important contribution to investigations of the fire regime and provide a 

basis for analyzing the effects of fire on the Serengeti-Mara ecosystem.  
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Chapter 5: The influence of fire and precipitation on woody 

cover changes in the Serengeti-Mara ecosystem 2000-2005 

5.1. Abstract 

This study analyzes the impact of precipitation and the fire regime on changes 

in woody cover between 2000 and 2005 in the Serengeti-Mara region in East Africa. 

We integrate three data layers provided by previous analyses (burned area, fire 

intensity, woody cover change) and precipitation. The datasets are used to assess the 

dynamics of woody cover changes and underlying causes. Virtually all of Serengeti 

National Park (SNP) and the Maswa Game Reserve (MSW) and one third of the 

Maasai Mara National Reserve (MNR) burned at least once during the study period. 

Burned woodland savanna of less than 600 mm mean annual precipitation showed 

significantly larger decreases in woody cover than any other part of the ecosystem 

despite similar fire frequency and lower levels of fire intensity. Woody cover within 

woodland savanna was more sensitive to variations in precipitation and fire intensity 

than within grassland savanna. Burned areas in MNR were subject to significantly 

larger woody cover decreases than comparable areas in SNP. Results suggest that 

significant losses of woody cover occur a) in areas burned during low rainfall 

conditions of less than 600 mm annual precipitation and after six weeks or more 

without rainfall and b) in areas burned infrequently with a fire return interval of 6 

years or more.  
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5.2. Introduction 

Fire is a common disturbance in African savannas. It plays an important role 

for the structure of savanna vegetation (Walter and Breckle 2002). Fire can reduce the 

density of woody plants in savannas (Bond and van Wilgen 1996). Fire has been 

recognized as an important ecosystem driver for generating spatial and temporal 

heterogeneity of savanna vegetation (Scholes and Archer 1997; van Wilgen et al. 

2003; Parr and Andersen in print), and others.  

Other important factors for regulating woody cover are thought to include 

climate, soil, and browsing effects. Walter (1971) linked the distribution of woodland 

and grassland savannas and woody cover density to rainfall levels and the water 

budget of the soil. Stony soils with low water-holding capacity which allow water to 

percolate to deeper soil horizons favor woody plants, while herbaceous plants have a 

competitive advantage on finely textured soil which store and absorb all the water 

received from precipitation. Browsing by elephants has been identified as an 

important factor for the distribution of woodlands by Bourliere and Hadley (1983), 

Leuthold (1977), Dublin et al. (1990), and others.  

Woody plants and grasses are antagonistic plant types, one usually excluding 

the other (Scholes and Archer 1997).  Higgins et al. (2000) suggested that the 

coexistence of trees and grasses is controlled by fire, whereby woody plant seedlings 

escape the flame zone within the grass layer during periods of low disturbance.  

Fire is a very dominant factor in the Serengeti-Mara ecosystem (Chapter 2). It 

was described as a major driver for changes of woody cover in this region (Norton-

Griffiths 1979). Fire is in combination with elephant browsing thought to be 
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responsible for major losses of woody cover in the northernmost part of the 

ecosystem (Dublin et al. 1990). Woody cover in the Serengeti-Mara region has 

changed markedly over the last 100 years. During several cycles open grassland 

savannas have been replaced by dense woodland savannas and vice versa (Dublin 

1991).  

Norton-Griffiths (1979) found that the average portion of area burned 

annually in the Serengeti National Park (SNP), excluding the short grass plains, 

between 1962 and 1972 was in the range of 50 to 75%. Over the same time period 

SNP experienced a decline in woody cover. The relative decrease of woody cover 

density during the same time period ranged from 10% in the South to 50% in the 

North. The paper concluded with the anticipation that woodlands were going to 

stabilize at low cover density due to an observed decrease in fire frequency, mainly as 

a result of increased grazing pressure by wildebeest, and stable elephant numbers. 

The decline of woodlands in SNP however, did not continue into the 1970s 

and 1980s. Sinclair and Arcese (1995) reported a marked increase in tree regeneration 

at the end of the 1970s, remaining high throughout the 1980s. Suggested reasons were 

a combination of decreased fuel load due to increasing wildebeest numbers, reduced 

burning due to unfavorable climatic conditions and reduced browsing due to the 

removal of up to 80% of the elephant population in SNP by poachers. 

By contrast in the northerly adjacent Maasai Mara National Reserve (MNR) 

there was little if any regeneration of woody vegetation during the same time period. 

Dublin et al. (1990) attributed the maintenance of open woodland and grassland 

savanna in MNR to the combined impact of fire and elephant browsing. 
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Salvatori et al. (2001) suggested high fire intensities as the primary cause for 

low or decreasing levels of woody cover in MNR. A total of 96 vegetation plots were 

investigated between 22 May and 13 June 1997, distributed at random, stratified over 

grass and woody dominated vegetation types. In 32% of the 42 burned plots, shrubs 

in the height class 1-4 m had been burned and were dead, as a result of fire. 

Precipitation is positively related to fire fuel load and thus potentially limits 

the establishment of woody plants through increased fire intensity. At the same time 

increased amounts of precipitation has a positive effect on the development of woody 

plants through increased water supply.  

There has been no spatially coherent analysis of woody cover changes over 

the entire Serengeti-Mara ecosystem in relation to precipitation, extent of burned 

areas, fire frequency, and fire intensity. Previous studies were limited spatially to 

subregions of the ecosystem and based on localized measurements and spatial and 

temporal sub samples. This study investigates the relative effects of precipitation, fire 

frequency (Chapter 2) and fire intensity (Chapter 4) on woody cover changes 

(Chapter 3).  

The specific objectives of this study are to a) determine the relative 

importance of fire frequency, seasonality, intensity and precipitation for woody cover 

changes in the study area, and b) investigate possible explanations for regional 

differences in woody cover changes. This study provides a novel analysis over the 

whole ecosystem using spatially continuous data layers of woody cover changes and 

fire characteristics at near-daily resolution. This type of analysis has only become 

possible in recent years with the advent of high return frequency and high resolution 
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satellite systems and distribution of the data at affordable prices or at no cost. The 

results of this study provide an improved understanding of the drivers of woody cover 

changes in the study area between 2000 and 2005 and allow suggestions for future 

developments. 

5.3. Methods 

5.3.1. Study Area 

The Serengeti-Mara region is located on the high interior plateau of East 

Africa (Sinclair 1995), straddling Kenyan-Tanzanian border (Figure 5-1). The study 

area encompasses the combined areas of Serengeti National Park and Grumeti and 

Ikoma Game Reserves (SNPGR), the wider Maswa Game Reserve area (MSW), and 

the Maasai Mara National Reserve (MNR). The study area was restricted to the same 

spatial extent as the fire intensity product (Chapter 4), covering regions 3, 4, 7, 8-13, 

17, and 19 of the Serengeti Landscape Classification (Gerresheim 1974). For 

purposes of this analysis MSW was defined as the extent of Gerresheim regions 17 

and 19, which combine the Maswa Game Reserve and the southwestern-most part of 

Serengeti National Park (SNP). The Serengeti Short Grass Plains area (Gerresheim 

region 14) was excluded in accordance with the woody cover change product used in 

this analysis (Chapter 3).  

Wildebeest are the key species in the Serengeti-Mara region. Large numbers 

migrate annually in a circular pattern between the North and South of the ecosystem 

and have an important impact on grass biomass through grazing. The vegetation in 
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the study area is characterized by woodland and grassland savanna (Herlocker 1976; 

Reed et al. 2004). 

 

 

Figure 5-1: Shaded relief of the study area in the Serengeti-Mara region in East 

Africa. MNR: Maasai Mara National Reserve; SNPGR: Serengeti National Park 

including Grumeti and Ikorongo Game Reserves; MSW: wider Maswa Game Reserve 

area. Source of digital elevation model: CIAT (2004). 
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5.3.2. Data Sets 

The datasets for describing woody cover changes, the fire regime, 

precipitation, and vegetation type are described in the following subsections. 

Data and Methods Used to Estimate Woody Cover Changes 

Woody cover changes for the Serengeti-Mara region between 2000 and 2005 

were derived in Chapter 3 from a time series of MODerate-resolution Imaging 

Spectroradiometer (MODIS) at 500 m resolution and field data (Figure 3-9). The 

definition of woody cover includes trees, shrubs, and dwarf shrubs. Percent woody 

cover estimates were derived for each year 2000 to 2005. Percent woody cover refers 

to the proportion of the area covered by woody plant canopies when projected 

vertically to the ground. For each 500 m pixel a regression line was fitted and used to 

predict a percent woody cover value for the first and the last year of the time series. 

Change of woody canopy cover is expressed as the ratio of the predicted percent 

woody cover value of the last year over the first year (woody ratio). Therefore a ratio 

of less than 1.0 indicates decreasing and greater than 1.0 increasing woody cover.   

Data and Methods Used to Characterize the Fire Regime 

The fire regime is characterized by fire frequency, seasonality, and intensity. 

Fire frequency and seasonality was derived from near-daily burned area maps 

(Chapter 2). The burned area product was generated using an automated algorithm to 

process daily MODIS imagery at 250 m resolution. Fire frequency was expressed as 

the ratio of years burned over all years. Fire intensity was estimated in Chapter 4 

using a fire intensity model, mainly based on fire fuel load, fuel moisture, slope, and 

combustion completeness. In the model fire fuel load was estimated from grass 
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production as a function of rainfall, while accounting for competitive effects from 

woody plants and grazing pressure.  

Data and Methods Used to Estimate Rainfall 

Rainfall data was required both for the 2000-2005 periods of the MODIS data 

and for a longer time period to obtain long-term averages. Rainfall between May 1, 

2000 and April 30, 2006 was derived from the Famine Early Warning System 

(FEWS) Dekadal Rainfall Estimates (RFE) version 2.0 dataset at 0.1 degrees 

resolution, approximately 10 km (Xie and Arkin 1997). One dekad refers to a time 

period of 10 days. Longer term precipitation from May 1996 to April 2000 was 

derived from the FEWS RFE version 1.0 time series at 0.1 degrees resolution. 

Rainfall estimates for the time period after 2000 were generated by an improved 

version of the FEWS RFE algorithm. Therefore absolute rainfall values might not be 

directly comparable but could still be useful to approximate general regional trends. 

Monthly precipitation data since 1979 at much coarser spatial resolution was 

provided by NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site 

at http://www.cdc.noaa.gov/. The NOAA CPC Merged Analysis of Precipitation 

Enhanced dataset (CMAP) has a spatial resolution of 2.5 degrees (ca. 280 km) and the 

study area is covered by subsections of three grid cells. Although the CMAP grid 

cells extend far beyond the boundary of the study area, the data can provide an 

approximation of longer-term trends over the larger region.  

Data and Methods to Determine Vegetation Types 

Two vegetation types, woodland and grassland savanna, were derived from 

the Serengeti-Mara 2000 vegetation map by (Reed et al. 2004). Grassland savannas 
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include treed and shrubbed grasslands, with tree and shrub canopy cover up to 20%, 

and grasslands mixed with emerging woody plants and dwarf shrubs. Woodland 

savannas represent vegetation with tall shrub and/or tree cover exceeding 20% 

canopy coverage (Figure 5-2).  

 

 

Figure 5-2: Distribution of woodland and grassland savannas in the Serengeti/Mara 

ecosystem. Data source: Reed et al. (2004).  
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5.3.3. Methods Used in the Statistical Analysis of the Relationships 

Between Woody Cover Changes, the Fire Regime and Rainfall 

This section describes the four main parts of the statistical analysis which are: 

a) addressing spatial autocorrelation, b) multiple regression analysis (MLR), c) 

splitting the data into subsets using regression tree analysis, and d) testing whether 

subsets of the data are different in terms of the relationship between fire parameters 

and precipitation. The latter statistical analysis was performed using the t-test and the 

Wilcoxon-Mann-Whitney test. Data processing was carried out in the R 2.2.1 

statistical software package.  

a) Addressing spatial autocorrelation: Linear regression analysis requires low 

or no correlation between data samples in order to produce reliable results. Counter to 

this ideal requirement spatial autocorrelation between samples is a common problem 

in spatially continuous data layers. In gridded data sets spatial autocorrelation can be 

alleviated by resampling to the spatial resolution corresponding to the range of the 

semivariogram (Curran 1988). Figure 5-3 shows the empirical semivariogram and the 

fitted exponential variogram model for the woody ratio product. The semivariogram 

was calculated using the “gstat” extension package in R.  
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Figure 5-3: Empirical semivariogram and fitted exponential variogram model for the 

woody ratio product. The dashed line indicates the distance at which variogram range 

occurs. 

 
The estimated range of the variogram model was 10 km. All data layers were 

aggregated to 10 km resolution. Data values were selected for aggregation within 

each 10 km pixel according to the majority occurrence of both the fire frequency class 

and vegetation type. This method of aggregation allowed to maintain precise fire 

frequency values and accurate woody cover change and precipitation values for the 

represented vegetation type. 

Fire frequency varied from 0 to 6 fire occurrences over the six year time 

period of this study. However fire intensity estimates were only available for areas 

burned twice or more. The MLR analysis was therefore restricted to areas with 2 or 

more fire occurrences. Within each 10 km pixel all 500 m pixels of the most frequent 

fire occurrence class were selected. Within those the pixels of the most frequent 

vegetation class, woodland or grassland savanna, were selected. The mean value of 
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the selected pixels for each variable was assigned to the aggregated pixel. No value 

was assigned if the selected 500 m pixels combined covered less than 5% of the area 

of the 10 km pixel. The total number of aggregated pixels was 118.  

b) Multiple Linear Regression analysis (MLR): The purpose of the MLR was 

to determine the relative importance of fire variables and rainfall on changes in 

woody cover. To perform this analysis woody cover change was expressed as the 

ratio of percent woody canopy cover in 2005 over 2000 (woody ratio). Areas with a 

woody ratio of less than 1.0 were decreasing, and greater than 1.0 increasing in 

woody canopy cover. Independent variables in the MLR were mean annual 

precipitation (MAP), fire frequency expressed as the ratio of the number of years 

burned over all years, and mean fire intensity. Correlations between all independent 

variables were low (r2 < 0.137). All variables were log transformed for the MLR 

analysis. Log transformation is a standard technique in regression and makes 

coefficients comparable for variables measured in different units. 

c) Splitting of the data into subsets using regression tree analysis: The 

explanatory power of MLR can be improved by splitting the data into meaningful 

subgroups. Low multiple r squared values and regression coefficients can be a result 

of subgroups in the dataset within which the relationship between independent and 

dependent variables is different or opposing. MLR analysis over the whole dataset 

would thus incorporate these different or opposing effects and weaken the 

explanatory power of the result. Separate analysis of subgroups of the data can also 

help to improve the understanding of underlying dynamics.  
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The data were divided into more homogeneous subgroups using regression 

trees. Regression trees were considered an appropriate basis for partitioning because 

they are less sensitive to spatial autocorrelation than linear regression methods and 

are able to effectively model correlative relationships despite autocorrelation in the 

data (Cablk et al. 2002). Regression trees divide data sets into more homogeneous 

subgroups. Regression trees are binary structured classifiers, also known as recursive 

partitioning regression. The data are repeatedly split into more homogeneous 

subgroups, minimizing the residual sum of squares of the dependent variable 

(Breiman et al. 1984). For the regression tree analysis the pixel data was used at the 

full resolution of 500 m in order to provide the maximum range of values and detail. 

The regression tree was calculated using the “tree” extension package in R. The tree 

was grown until the within-node deviance in the end nodes was 0.01 times or less of 

the deviance of the root node. The tree was otherwise not pruned, due to our interest 

in the first, most important splits.  

d) Testing whether the data subsets are different: Data subsets were tested for 

statistically significant differences by testing the null hypothesis that the means were 

equal. The tests were performed using the two-sided t-test and Wilcoxon-Mann-

Whitney test. The t-test was used for log-transformed datasets, normally distributed 

with homogeneous variances and continuous variables. Normal distribution was 

tested using the Kolmogorov-Smirnov test. Homogeneity of variances was tested 

using the F-test. The Wilcoxon-Mann-Whitney (WMW) test was used in cases where 

parameters did not meet the requirements of the t-test, i.e. the variances were not 

homogenous or the variable not continuous. P-values for the WMW test were 
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calculated using the Streitberg and Röhmel Shift-Algorithm for both tied and untied 

samples. Unlike the t-test the non-parametric WMW test does not require 

homogeneity of variances and converts the data into ranks before the test is carried 

out. It is therefore also appropriate for fire frequency, which is not continuous, and 

for parameters with non-homogeneous variances between subgroups. The WMW test 

statistics were calculated using the “exactRankTests” extension package in R.  

e) Deriving the relative importance of potential woody cover change drivers: 

The relative importance of each potential driver for woody cover change was 

investigated using the random forest statistical technique. Unlike regression analysis 

random forests can produce meaningful results even if the variables are highly 

correlated. Random forests are based on regression trees but at each node instead of 

evaluating all possible splits a random subset of the training data and splitting 

variables is generated. A large number of trees are calculated, in this study 105, and 

the final results determined as the average of all tree outcomes Breiman (2001). The 

random forest technique allows to calculate the overall importance of each variable as 

the mean increase in node purity from the parent to the child nodes. The importance is 

measured as the residual sum of squares and calculated as the average increase over 

all parent nodes of all trees split by the specific variable. A relatively large value of 

mean increase in node purity indicates a relatively high importance and vice versa. It 

is this measure which is used here to determine the relative importance of the 

variables as potential drivers of woody cover change. Random forests statistics were 

calculated using the “randomForest” extension package in R.  
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5.4. Results and Discussion 

5.4.1. Fire Regime 

Fire frequency, seasonality, and fire intensity characterize the fire regime. 

This section describes findings for each of these three parameters for the study area. 

a) Fire frequency was high throughout central and southern SNPGR, lower in 

northern SNPGR and very low, in comparison, in MNR. Figure 5-4 shows the 

number of burn events within the study period and percent area burned. The overall 

area left unburned during the study period within SNPGR and MSW combined was 

14.6%, in MNR 65.6%. Areas mapped as unburned in SNPGR and MSW are mostly 

small and spatially disparate patches, many of which might have burned just the year 

before the beginning of the study period. Furthermore the algorithm is expected to 

under, rather than overestimate the extent of burned areas (Chapter 2) and individual 

burned pixels might have been misclassified as unburned. As a consequence the total 

area within SNPGR and MSW without significant short-term influence of fire might 

be even lower. 
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Figure 5-4: Number of burns between May 1, 2000 and April 30, 2006. Bar charts 

show percent area burned at each frequency per sub region. Average percent area 

burned per year is given in parenthesis. Data source: Chapter 2. 

 

b) The Seasonality of fires is here described as the number of days after the 

last rainfall event before the fire. Figure 5-5 shows histograms of the seasonal 

distribution of fire and rainfall for each sub region and a map of the average days 

since the last rainfall (no-rain days) before the fire. This representation of seasonality 
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shows the distribution of fire events in relation to rainfall distribution and seems to be 

more meaningful than absolute dates in areas where the local and seasonal 

distribution of rainfall can vary significantly. The number of no-rain days shows a 

similar southeast-northwest gradient as precipitation. Spatial patterns of no-rain days 

show a striking resemblance with woody cover changes in MSW (Chapter 3). MSW 

had the longest average time period of no-rain days (41.8) and the lowest MAP (580 

mm) during the study period. 

In the study area burning was largely restricted to the dry season June to 

August, peaking in June. Most fires in SNPGR are initiated by the park management, 

preferentially in the early dry season (Trollope et al. 2005). Fires also originate from 

poachers often near the western borders where poaching is more frequent (Campbell 

and Hofer 1995).  
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Figure 5-5: Seasonality of fires. The map shows the average number of days since the 

last rainfall before the fire (no-rain days). Contour lines represent MAP for 2000-

2005. Histograms for each sub region show the time of burning and precipitation 

levels, total area and the average number of pre-fire no-rain days ± the standard error. 
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c) Fire intensity levels were similar within each sub region (see Chapter 4, 

Figure 4-4). Note that fire intensity was only estimated for areas burned two times or 

more, due to requirements of the model algorithm. Almost all burned areas in MNR 

burned only once within the study period and fire intensity estimates were not 

available for these areas. Fire intensity results might therefore not be representative 

for fires in MNR.  

5.4.2. Statistical Analysis Results 

MLR Using the Complete Dataset 

MLR was used to test for significant relationships between changes in woody 

cover, the fire regime and rainfall. MLR was carried out using woody ratio as the 

dependent variable. Independent variables were mean annual precipitation (MAP), 

fire frequency, fire intensity, and vegetation type. Pre-fire no-rain days was highly 

correlated with MAP (correlation coefficient = -0.696) and was for this reason 

excluded from the MLR. Dominant vegetation types in the study area were woodland 

and grassland savanna (Figure 5-2). In the MLR vegetation type was represented by a 

dummy variable, assuming 1 for woodland and 0 for grassland savanna. The use of 

dummy variables is a common technique in MLR to incorporate categorical variables. 

The MLR model explained 11.9% of the variation. Vegetation type and fire intensity 

were significant (Table 5-1).  
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Table 5-1: MLR results for woody cover changes in the study area. MAP (mm); ffreq: 

fire frequency (ratio); fint: fire intensity (kJ s-1 m-1). All variable were log 

transformed. 

 
Variables Coefficient t-Value Signif. 
(Intercept) 0.7496 2.333     * 
MAP -0.0458 -1.005  
Ffreq -0.0153 -0.364  
Fint -0.0736 -2.159     * 
VEG 0.0534 2.352     * 
---    
Significance codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
Multiple R-Squared: 0.119, p-value: 0.0059 

 

Splitting the Data into Subsets Using Regression Tree Analysis 

Thresholds for dividing the dataset into meaningful subgroups were derived 

by a regression tree using the full 500 m resolution dataset (Figure 5-6). The tree first 

split off a small subgroup, 2.4 % of the total, which has very high precipitation and 

very low woody ratio values. This small number of pixels all appear along the 

northwestern fringe of northern SNPGR and MNR and were considered outliers and 

not representative for the study region in general. The first major split occurs at the 

second node, separating the data into groups of high and low precipitation, MAP 

threshold of 598.4 mm. The low precipitation group splits further into woodland and 

grassland savanna. Woodland savanna shows a much lower woody ratio than 

grassland savanna. 
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MAP

VEG

0.9624

0.9208

0.9944 0.8676

< 598 mm > 598 mm

< 0.5
(GSAV)

(97.6%)

(25.7%)

(10.77%) (14.9%)

0.9773
(71.9%)

MAP

0.9587< 1084 mm > 1084 mm
(100%)

0.8083
(2.4%)

> 0.5
(WSAV)

 

Figure 5-6: Regression tree using woody ratio as the dependent variable. The data set 

is split at the nodes (ovals) by applying thresholds of the specified variable. MAP: 

mean annual precipitation; VEG: vegetation type (0=grassland savanna (GSAV); 

1=woodland savanna (WSAV)). Values along the lines are splitting criteria. Numbers 

in boxes are average woody ratios of the pixels in each node. In parentheses is the 

percentage of the total number of pixels in each node. 

 
The aggregated 10 km dataset was split into four subgroups using the 

precipitation threshold of 598.4 mm determined by the regression tree. The four 

groups were low precipitation woodland (LP-WSAV) and grassland savanna (LP-

GSAV), and higher precipitation woodland (HP-WSAV) and grassland savanna (HP-

GSAV). MLR was carried out separately for each group.  

Testing Whether MLR of the Dataset Subgroups are Different 

Multiple r squared was highest for LP-WSAV, explaining 79.7% of the 

variation. Both precipitation and fire intensity coefficients were negative and 

significant (Table 5-2). HP-WSAV showed similar, but weaker relationships, 
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explaining 24.1% of the variation (d.f. = 29, p = 0.0436). The fire intensity coefficient 

was negative and very significant (b = -0.1800, p = 0.0075). MLR for LP-GSAV did 

not yield significant relationships for any of the variables (multiple r2 = 0.111, d.f. = 

16, p = 0.5866), nor did MLR for HP-GSAV (multiple r2 = 0.101, d.f. = 47, p = 

0.1698). 

Table 5-2: MLR results for dry woodland savannas, MAP < 598.4 mm. The 

independent variable was woody ratio. MAP (mm); ffreq: fire frequency (ratio); fint: 

fire intensity (kJ s-1 m-1). 

 
Variables Coefficient t-Value Signif. 
(Intercept) 3.32361 3.883    ** 
MAP -0.36665 -3.219     * 
Ffreq 0.18383 1.452   
Fint -0.15098 -2.203     . 
---    
Significance codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
Multiple R-Squared: 0.797, p-value: 0.0168 

 

Interpretation of the MLR Results 

The MLR results need to be interpreted in light of the overall rainfall 

conditions in the Serengeti-Mara region during the study period. Records indicate that 

MAP from 2000 to 2005 was lower than the long-term average of the preceding 20 

years. Precipitation in the southwestern CMAP grid cell indicates considerably lower 

levels than the long-term average 1979-1999 (Figure 5-7). The driest year on record 

since 1979 was 1999, the year immediately preceding the time period of this study. 

The northwestern and northeastern CMAP grid cells similarly indicate below average 

rainfall conditions after 1998, but to a lesser extent. However, these northern CMAP 

grid cells might be less representative for the study areas because the northwestern 
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cell is largely dominated by Lake Victoria and the northeastern grid cell is divided by 

the Great Rift Valley.  

The higher resolution precipitation time series provided by FEWS shows a 

similar trend as CMAP. Averages were calculated for 12-month time periods starting 

May 1, 1996. Note that the FEWS algorithm was improved in 2000 and the absolute 

precipitation values before and after this year might not be directly comparable.   

 

Figure 5-7: MAP for the three 280 km CMAP grid cells covering the study area. The 

map shows the study area in black, Lake Victoria and water surfaces in gray and the 

Rift Valley as dotted lines. Years start on May 1 and end on April 30 the following 

year. Horizontal lines are mean values 1979 to 1999. Gray lines represent MAP for 

the Serengeti-Mara region (SMR) provided by the FEWS RFE version 1.0 algorithm 

from 1996-1999 and RFE version 2.0 from 2000-2005. 

  
Precipitation can have opposing effects on woody plants. Higher rainfall 

levels increase the available water supply in the soil and favor the development of 

woody plants over grasses. At the same time higher precipitation also increases grass 

biomass and thus fire fuel load and fire intensity. MLR results for both LP-WSAV 
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and HP-WSAV show negative and significant precipitation coefficients. This 

indicates that during the study period higher precipitation levels had a negative effect 

on woody cover through increased fuel loads. This is supported by the fact that fire 

intensity coefficients were also negative and significant for both LP-WSAV and HP-

WSAV. Variations in rainfall may not have been sufficient to replenish the water 

supply in deeper soil layers to promote increased woody plant growth. Available rain 

water may have mostly been taken up by grasses in the top soil layer, fostering grass 

production and increasing the fire fuel load. This negative effect could be reversed 

under higher rainfall conditions.  

Low precipitation levels might also be responsible for the lack of significant 

relationships in burned grassland savanna areas between woody cover changes and 

both fire parameters and precipitation. Low rainfall conditions lasting one or several 

years have the potential to weaken or kill low shrubs and emerging woody plants. 

Any fire event under such conditions might have a maximum effect on low shrubs 

and dwarf shrubs beyond which any additional variations in the fire regime or 

precipitation are not relevant. In woodland savannas on the other hand woody plants 

are taller and their roots reach deeper into the soil. Low rainfall conditions will have a 

lower immediate impact and single fire events, especially at low fire intensity, are 

less likely to kill established trees and shrubs than high fire intensity events. This 

could explain why variations in fire intensity and precipitation levels are significant 

within burned areas of woodland savannas but not so within grassland savannas.  
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Relative Importance of Potential Drivers of Woody Cover Change 

The relative importance of each fire regime variable as potential driver for 

woody cover change was investigated for the entire study area and separately for 

woodland and grassland savanna regions. Only areas burned twice or more within the 

study period are considered here due to restrictions of the fire intensity modeling 

algorithm. Importance was assessed using the mean increase in node purity of 105 

random forest trees respectively for each area (Table 5-3). The relative importance of 

the variables for each region is discussed in turn below.  

Table 5-3: Variable importance for driving woody cover change calculated as the 

mean increase in random forest node purity. The highest importance values are shown 

in italic. All: entire study area; GSAV: grassland savanna areas; WSAV: woodland 

savanna areas; ffreq: fire frequency; fint: fire intensity; no-rain: number of days 

without rainfall before the fire.  

Variable All GSAV WSAV 
ffreq  0.4089 0.2257 0.1720 
fint 0.4014 0.2405 0.1501 
norain 0.5448 0.2306 0.2671 

 

The most important fire regime variable when considering the entire study 

area is the number of days without rainfall before the fire, representing fire 

seasonality. The same is true when considering only woodland savanna areas. This 

indicates late-season burning to have the highest effect for causing woody cover 

changes in woodland savanna areas.  

For woody cover change in burned grassland savanna areas fire intensity is 

more important than fire frequency or fire seasonality (no-rain days). Fire intensity is 

mainly controlled by fuel load which is highly affected by grazing pressure. This is 
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consistent with the notion that the large wildebeest herds exert an importance 

influence on the balance between woodland and grassland savannas through their 

grazing impact. Grazing levels cause heterogeneity of aboveground grass biomass or 

fire fuel load and thus affect fire intensity which in turn is important for woody cover 

changes in grassland savannas.  

5.4.3. Woody Cover Changes in Maswa Game Reserve Region 

The largest decrease in woody cover was observed in MSW. In the following 

we test whether these observations can be explained by the fire regime or 

precipitation. Virtually all of MSW burned at least once during the study period. All 

aggregated pixels of the LP-WSAV group fall within MSW. We can test the 

difference of mean parameter values of the LP-WSAV against the HP-WSAV group 

for statistical significance. The pre-fire no-rain days variable is highly correlated with 

precipitation and for this reason was excluded from the MLR analysis. For the 

comparison of means each variable is treated independently and the no-rain days 

variable was included here because of the striking similarity of spatial patterns in 

MSW between woody cover decreases and no-rain days. Statistical significance can 

be tested using a t-test, if the data has homogeneous variance, is normally distributed 

and continuous. These requirements were not fulfilled by all parameters. Fire 

frequency is not continuous and for MAP and pre-fire no-rain days the variance was 

not homogeneous when testing values for LP-WSAV and HP-WSAV (MAP: F=5.5, 

d.f. = 107, p = 0.0086; No-rain days: F=6.3, d.f. = 107, p < 0.00053). Therefore the 

WMW test was used.  
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The results show no-rain days in LP-WSAV significantly higher and MAP, 

woody ratio, and fire intensity significantly lower than in HP-WSAV (Table 5-4). 

Fire frequency was slightly higher in LP-WSAV, but both mean values were close to 

0.5 indicating the same average fire return interval of 2 years, and the difference was 

only slightly significant.  

Table 5-4: t-test results for differences between low precipitation woodland savannas 

(LP-WSAV, MAP < 598.4 mm) and higher precipitation woodland savannas (HP-

WSAV, MAP > 598.4 mm). W: Wilcoxon-Mann-Whitney statistic; no-rain: number 

of pre-fire no-rain days (days); MAP (mm); wratio: woody ratio; fint: fire intensity 

(kJ s-1 m-1); ffreq: fire frequency (ratio). Variables are sorted in decreasing 

significance (increasing p-value).  

 
 no-rain MAP wratio fint ffreq 
LP-WSAV 42.1 541 0.8483 1141 0.517 
HP-WSAV 24.0 723 0.9754 1571 0.457 
W 67 965 950 869 360 
p 4.865e-06 4.013e-05 7.440e-05 0.0015 0.0574 
Signif. *** *** *** ** . 
--- 
Significance codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 

The data describes a less aggressive fire regime in LP-WSAV in comparison 

to HP-WSAV. This should have a promoting effect on woody cover in LP-WSAV, 

however the data show significantly lower woody ratio in LP-WSAV than in HP-

WSAV. This leaves the low precipitation levels or long period of rainless pre-fire 

days as a more reasonable explanation for woody cover decreases in MSW, rather 

than differences in the fire regime. MAP and no-rain days are highly correlated. Both 

had very low p-values and were highly significant for the separation of LP-WSAV 

and HP-WSAV, but no-rain days even more so. The distribution of rainless days in 
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LP-WSAV, which corresponds to almost exactly to MSW, shows a very similar 

spatial pattern as woody cover decreases, particularly along its northern border with 

WSC (Chapter 3, Figure 5-5). These results indicate that for woody cover decreases 

both the annual sum of rainfall and its distribution throughout the year in relation to 

fire are important. Fire seems to have the strongest decreasing effect on woody cover 

in years of less than approximately 600 mm rainfall and after a dry spell of ca. six 

weeks (42 days) or more.   

Another potential factor causing woody cover decreases is browsing by 

elephants. Elephant numbers in SNPGR and MSW however have been low since at 

least the mid 1980s. They are only recovering very gradually (Campbell and Borner 

1995) and we are not aware of any information suggesting significantly increasing or 

high elephant numbers in MSW. 

5.4.4. Woody Cover Changes in the Maasai Mara National Reserve 

The results show that burned areas in the Maasai Mara National Reserve show 

a similarly large decrease in woody cover as in MSW, yet precipitation levels were 

much higher. Therefore low rainfall conditions might not explain woody cover 

decrease in MNR the same way as they do in MSW. This leads to the question 

whether differences in the fire regime could provide a better explanation.  

The vast majority of burned areas in MNR only burned once and for this 

reason the following analysis is focused on single-burned areas. We can compare 

woody ratio and precipitation of single burned areas in MNR with corresponding 

areas in SNPGR of the same grassland savanna vegetation type and the same 

minimum precipitation level of 687 mm. The data was log-transformed and 



 110

subgroups tested for normality using the Kolmogorov-Smirnov test. None of the 

subgroups deviated significantly from the normal distribution (D < 0.181; p > 0.176). 

Homogeneity of variances was tested using an F-test. All subgroups showed 

homogeneous variances (p > 0.05). Therefore the t-test is applicable for testing the 

subgroups for statistically significant differences (Table 5-5, Figure 5-8). 

Table 5-5: t-test results for comparing single burned and unburned areas in the MNR 

and SNPGR. B: burned; UB: unburned; wratio: woody ratio; MAP (mm). 

 
 wratio MAP Region wratio MAP Region wratio MAP 
MNR B 0.894 927.1 MNR B 0.894 927.1 SNPGR B 0.979 851.9 
SNPGR 
B  

0.979 851.9 MNR UB  1.017 895.2 SNPGR 
UB 

0.987 841.9 

t -3.318 1.696 t -3.422 0.608 t -0.300 0.340 
d.f. 25.1 12.4 d.f. 21.2 19.98 d.f. 47.3 56.2 
p .0043 .0115 p .0025 .55 p .7653 .7354 
sig. **  sig. **  sig.   
--- 
Significance codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 
 

 

Figure 5-8: Woody ratio and MAP in MNR and SNPGR for unburned areas and areas 

burned once. MAP corresponds to areas burned once.  
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The difference in woody cover decrease between single-burned areas in MNR 

and corresponding areas in SNPGR is large and significant. Differences in 

precipitation are small and not significant. Unburned areas in MNR show a 

significantly higher woody ratio than single-burned areas in MNR. In SNPGR there is 

no significant difference in woody ratio between unburned and single-burned areas. 

Fire intensity estimates were not available, because the vast majority of burned areas 

in MNR only burned once during the study period.  

There are two possible explanations for these observations. Fire intensity 

could be higher in MNR during the early burning season before the arrival of the 

great wildebeest herds, which consume large amounts of grass biomass. Another 

explanation could be that due to much lower fire frequency in MNR woody plants are 

less adapted to fire events, in contrast to SNPGR, which has a much higher fire 

frequency and could be close to a fire climax state. Infrequent fire events, separated 

by 5 or more years, could therefore have a much larger impact on emerging fire-prone 

woody plants. This would only be true if the medium-term fire regime was fairly 

constant. Burning practices and policies have not changed significantly during the 

past 10 years or longer in either SNPGR or MNR (Trollope et al. 2005; Heath 2003). 

5.5. Conclusion 

The results of this study show that almost the entire area of SNPGR and MSW 

is affected by fire on average every 2-3 years. Within these areas woody cover is 

affected by fire differently depending on vegetation types and precipitation levels. 

The strongest effects occurred in woodland savannas under low rainfall conditions of 

600 mm mean annual precipitation or less and burned six weeks or more after the last 
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rainfall event. In higher rainfall areas fire seems to have a larger decreasing effect on 

woody cover with a fire return interval of six years or more.  

The analysis of fire regime variables as potential drivers of woody cover 

change has shown that fire frequency is less important than fire intensity and fire 

seasonality. The results indicate that for controlling woody cover using fire it is 

important to burn at the right time, i.e. late in the dry season and when fuel load 

accumulation is high, rather than burning indiscriminately at high frequency. 

However, the data available for this study only allowed the analysis of areas burned 

twice or more within the 6-year study period. For analyzing the long-term influence 

of fire frequency a much longer time series, e.g. 15 to 20 years, is necessary.  

This study provides an improved understanding of the dynamic relationship 

between the fire regime, precipitation and woody cover changes in the Serengeti-

Mara region. The results indicate that woody cover decreases between 2000 and 2005 

in the Maswa Game Reserve region occurred during dry years with less than 600 mm 

precipitation, in combination with fire after six or more weeks without rainfall. 

Changing precipitation patterns in the face of global climate change and extended 

droughts in the future could well spell similar consequences for African woodland 

savannas. Global climate could cause increased climate variability and more El Niño-

like conditions (Houghton et al. 2001), which are often associated with rainfall 

surpluses in Eastern Africa (Camberlin et al. 2001). The observed decrease of woody 

cover in the southern parts of the study area might therefore be temporary if the 

rainfall levels increase again. Woody cover could be promoted by frequent burning 

during high rainfall years and strict fire control during drought periods and vice versa. 
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On the other hand findings suggest infrequent burning at a fire return interval 

of five years or more might also lead to increased susceptibility of woody vegetation 

to fire and a consequently larger decrease of woody cover. It is not conclusive 

however whether the observed significant woody cover decrease within single burned 

areas in MNR are due to decreased fire tolerance of woody plants in MNR’s low fire 

frequency environment or are due to possibly higher levels of fire intensity in the 

early dry season. This question needs further investigation and field studies.  

This study considers only a comparatively brief time span of six years from 

2000 to 2005. A continuation of the analysis over a longer time period would be 

desirable to determine medium and long-term trends. The study provides a useful 

framework for the design of complementary field campaigns to investigate woody 

cover changes on the ground under different precipitation and fire conditions. The use 

of remote sensing tools in combination with field data is a powerful approach for 

continued regional analysis and monitoring over the long-term.  
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Chapter 6: Conclusion 

6.1. Summary of Research 

Review of Research Objectives 

This dissertation identified patterns of woody cover change in the Serengeti-

Mara savanna ecosystem from 2000 to 2005 and determined the role of fire regime 

parameters and precipitation for driving these changes on a regional basis. This was 

done by developing applied remote sensing and modeling tools in combination with 

field data. The research objectives listed in Chapter 1, Section 1.2 are divided into a 

set of three science objectives and three methodological objectives. The latter were a 

prerequisite to address the former and are reviewed here first.  

Chapter 2 addressed objective (3): production of a series of burned area maps 

at high spatial and temporal resolution. A new algorithm was developed to provide 

the first automatically derived maps of burned areas in the study region; furthermore 

this was achieved at relatively high spatial resolution of 250 m. The results provide 

near-daily time and location of individual fires. The burned area time series provides 

the foundation for the characterization of the fire regime and subsequent analysis of 

impacts on woody cover changes. The burned area product is also of potential value 

to other research groups. 

Objective (4) was to detect changes of woody canopy cover density as they 

are typical for savanna environments. In Chapter 3 woody cover changes were 

derived from remote sensing and field data. The methodology adapted and advanced 

the concept of vegetation continuous fields. It did so by employing a random forest 
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technique and made the process applicable to prolonged woody cover changes in the 

Serengeti-Mara savanna environment by combining data over a six year time period. 

The methodology provided results at 250 m resolution whereas corresponding 

continental or global products are at much coarser resolution of 500 m to 8 km. The 

results agreed well with field data and anecdotal observations.  

Chapter 4 estimated fire intensity in the study region, addressing objective (5). 

Fire intensity is the third essential component for characterization of the fire regime 

(the other two, fire frequency and seasonality were derived in Chapter 2). The 

methodology to derive fire intensity used the results of Chapters 2 and 3 to a limited 

extent, but is largely based on the amount and spatial distribution of fire fuel load, 

which was modeled from precipitation and grazing pressure by the large wildebeest 

herds and other dominating herbivores. The approximation of fire intensity in this 

study by means of modeling is a workable alternative to impractical or unfeasible 

field measurements over large areas. The parameters used in the model itself however 

would benefit from additional field data both for fine tuning and validation. Field 

measurements of the individual parameters in the fire intensity equation would also 

allow determining the error range of each parameter and how these contribute to the 

overall accuracy of the fire intensity estimate.  

Chapter 5 brought together the results of Chapters 2 to 4, addressing the 

science objectives: (1) characterization of spatial patterns of woody cover change; (2) 

analyzing the role of the fire regime and precipitation for woody cover changes. The 

chapter focused on areas which showed the relatively largest woody cover changes 

overall and in response to fire. Woody cover decrease was most severe a) in burned 
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areas with mean annual precipitation (MAP) below 600 mm and b) in areas above 

600 mm MAP burned infrequently after an average of six years or more.  

Woody Cover Changes 

This study provided for the first time a spatially comprehensive and conjoint 

view of both woody cover changes and the fire regime over the entire Serengeti-Mara 

region. Results indicated that the Serengeti-Mara region has been subject to 

continuing changes of woody cover between 2000 and 2005 partly in response to fire 

and climate conditions. Overall woody cover levels in central and northern SNP 

continued to increase, a trend which has been active since the early 1990s (Sinclair 

and Arcese 1995). At that time wildebeest numbers were stable at approximately 1.3 

million animals, up from less than 200,000 in the late 1950s (Mduma et al. 1999). A 

decrease in fire intensity due to the removal of grass biomass by increased numbers of 

grazers is thought to have initiated this trend. This dissertation confirmed both 

comparatively low levels of fire intensity and a continuing overall increase of woody 

cover in central and northern SNP.  

The woody cover change product revealed markedly larger woody cover 

decreases in the wider Maswa Game Reserve area than in any other similar-sized area 

within the study region. The MSW region has been much less studied or surveyed 

than Serengeti National Park (SNP) or the Maasai Mara National Reserve (MNR). 

These new observations might draw increased attention to this buffer zone of SNP.  

Late Burning Under Dry Conditions 

Results from Chapter 5 need to be interpreted in recognition that the time 

period of this study was discriminated by lower than normal levels of MAP compared 
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to long-term averages. This allowed the effects of fire to be observed only under 

relatively dry conditions. The driest sub region, i.e. the wider Maswa Game Reserve 

area is that in which woody cover decreases in burned areas were largest, despite 

significantly lower average levels of fire intensity. This and the considerably larger 

number of pre-fire days without rainfall underline the importance of fire seasonality, 

offsetting differences in fire intensity during the time period of this study. Woody 

cover decreases could be amplified by browsing elephants which are not considered 

in this study. Elephant levels in SNP and MSW have remained low since the 1980s 

but could recover in the future.   

Infrequent Burning  

The results of this research suggest that woody plant communities were more 

severely affected by fire in regions which burned comparatively infrequently with a 

fire return interval of six years or more. This effect was observed in the Masai Mara 

Game Reserve (MNR). MNR was the only region for which low fire frequency 

during an extended time period starting at least five to ten years before 2000 can be 

assumed. MNR has historically been subject to high grazing and browsing pressure 

and remained locked in a grassland state since the 1980s. The observed sensitivity of 

woody vegetation to infrequent fires could be explained in different ways: 1) higher 

fire intensity through accumulated fuel loads; 2) adaptations of vegetation to different 

fire regimes; 3) browsing effects. Each factor is discussed below. 

Fire intensity is mainly controlled by fire fuel load. Fuel load accumulation 

was limited in both MNR and SNP through the leveling effect of abundant grazers, 

mainly migrating wildebeest, which selectively concentrate in areas of high grass 
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biomass production. Therefore, sensitivity of woody vegetation to infrequent fire 

events might not have been due to higher fire intensities in MNR. However, fire 

intensity estimates for MNR were largely unavailable because the vast majority of 

burned areas in MNR only burned once and estimates could not be derived for single-

burned areas. A conclusive answer to the actual level of fire intensities in MNR can 

only be provided by analyzing a longer time series and by use of additional field data 

than was available here.  

Woody vegetation could also have adapted differently to low and high fire 

frequencies over the medium to long term. Adaptation could be reflected in either 

changing species composition or in physiognomic adaptations of woody plants, e.g. 

changes in bark thickness. Such adaptations would make woody plant communities 

and individuals respectively more or less sensitive to fire. To answer the question 

whether different levels of adaptation to fire exist in the study area more detailed field 

studies on the ground would be necessary. The results of this dissertation hold the 

potential to serve as a precursor for such field studies. 

Browsing effects by elephants play an important role in MNR due to high 

elephant numbers. Interactions between browsing and burning have been described 

by Dublin (1995) who found that elephants and other browsers showed a distinct 

preference for seedlings in burned areas. As a consequence browsing effects on 

seedlings were significantly higher in burned areas than in unburned areas. 

Findings from Chapter 5 are also valuable when we consider that the impact 

of historic fire frequency on the sensitivity of woody cover to fire has received little 

attention in the Serengeti-Mara research literature; indeed, it was rarely investigated 
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as part of a larger regional comparison. Such a large scale approach was possible in 

this study through the generation of spatially comprehensive, remote sensing based 

data layers.  

Future woody cover changes in MNR mainly depend on four factors: fire 

frequency and seasonality, browsing pressure, climate and fire intensity, as discussed 

in order below. Fire frequency and seasonality will likely remain the same presuming 

no major change in fire management takes place. This would maintain the possible 

decreasing effects of infrequent fires on woody cover. Browsing pressure by 

elephants and other browsers is expected to remain high or increase in the coming 

years (Dublin 1995; Walpole et al. 2004). This would maintain or increase the 

negative effect of browsing on woody plant seedlings in burned areas.  

Future climate might show overall higher MAP but could become more 

variable and increase the occurrence of severe drought years. Severe drought years 

can increase the vulnerability of woody plants to fire especially when burned late in 

the dry season. Years with exceptionally low rainfall can also cause significant drops 

in wildebeest numbers (Mduma et al. 1999). As a consequence grazing pressure 

would be reduced until the herds have recovered and fire fuel loads and fire intensity 

temporarily increased. All of these effects would have detrimental consequences for 

woody cover and it might be expected that MNR remains dominated by grassland 

savanna in the foreseeable future.  

Fire Regime Parameters as Potential Drivers of Woody Cover Change 

The data for the six-year time period of this study showed that fire seasonality 

is the most important fire regime parameter for controlling woody cover changes in 



 120

woodland savanna areas. In grassland savanna areas fire intensity was most 

important. Fire intensity is significantly affected by grazing pressure from the large 

migrating wildebeest herds.  

Fire seasonality or the seasonal timing of fire is dependent on management 

decisions since the majority of fires are of anthropogenic origin (Trollope 2005). The 

results of this study indicate that the timing of fire is more important than fire 

frequency, i.e. reduction of woody cover in woodland savanna areas might be 

achieved by late season burning rather than high frequency burning.  

A spatially and temporally detailed analysis of the long-term effects of fire 

regime parameters on woody cover will become feasible in the future as the archive 

of high resolution remote sensing data expands. The reliable identification of single 

drivers of woody cover change under varying conditions demands a significantly 

longer time series and ideally improved datasets for fuel load and fire intensity by 

inclusion of ground truthing data, as well as the incorporation of additional important 

factors not considered in the study. Further important factors are the distribution of 

soil nutrients, woody plant species distribution and grazing pressure by elephants. 

The latter has rarely been investigated in the MSW area and previous studies have 

often focused on the Kenyan part of the ecosystem due to generally low elephant 

numbers in Serengeti since the 1980s (Dublin 1995). 

Global Climate Change and Woody Cover Changes 

During the late 19th century significant environmental change occurred in the 

Serengeti-Mara region. A rinderpest epidemic wiped out over 95% of wildebeest and 

Maasai cattle (Sinclair 1979a). Grazing pressure and fire frequency was dramatically 
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reduced and over the following decades grassland savannas which had been 

dominating the region were converted to a denser woodland savanna type (Dublin 

1995). The rinderpest epidemic in the 1890s coincided with an extended period of 

severe drought with the rains failing completely in 1897 and 1898. Gillson (2006) 

identified this devastating time period as a large infrequent disturbance (LID) of the 

regional climate and ecosystem, capable to cause lasting effects on the environment. 

Similar extreme climate events are predicted to be a possible feature of global climate 

change.  

Global average surface temperature increased in the 20th century by 0.6 ± 0.2 

ºC and it is very likely that the warming trend will continue or accelerate during the 

21st century as predicted under all Intergovernmental Panel on Climate Change 

(IPCC) scenarios. Much more uncertain are projections of the future distribution of 

precipitation. In general the IPCC global multi-model ensemble of annual mean 

change of precipitation predicts increasing rainfall for East Africa (Houghton et al. 

2001). 

However Hulme et al. (2001) pointed out that future changes of rainfall in 

East Africa are not well defined and only little work has been published on climate 

change scenarios specifically for Africa. One of the more important controlling 

factors for interannual rainfall variability in Africa is the El Niño/Southern 

Oscillation (ENSO) with East Africa showing one of the most dominant levels of 

ENSO influences. It is not clear how ENSO events will develop under future climate, 

mainly because most climate models have not accounted for ENSO appropriately. 

Camberlin (2004) suggested that the teleconnections between ENSO in the Pacific 
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and climate in East Africa might weaken in the future due to rising global temperature 

and changing sea surface temperatures. Warm ENSO episodes have become more 

frequent, persistent and intense since the mid 1970s, however strong decadal-scale 

modulations in the ENSO teleconnections indicate that past observations of the 

magnitude of influence of ENSO on East Africa might not apply the same way in the 

coming decades.  

McHugh (2005) used coupled ocean-atmosphere general circulation models to 

analyze future rainfall in East Africa. Four out of nineteen models performed well 

when evaluated against observed rainfall in East Africa. Using these models 

projections of rainfall into the future under a scenario of CO2 increase of 1% per year 

indicate enhanced levels of annual and seasonal rainfall extending from the most 

significantly affected coastal areas to the East African plateau encompassing the 

Serengeti-Mara region. 

Despite the shortcomings and uncertainties of the model predictions for future 

precipitation in the wider region of the study area it increasing rainfall receipt is 

indicated by most studies as a likely scenario in the coming decades. This scenario 

would have two main implications: Firstly, it makes another LID event caused by a 

devastating lack of rainfall over several years less likely. Such an LID could cause a 

significant short term loss of woody cover as was indicated by the observations in 

MSW during the dry conditions of the study period. Increased rainfall would rather 

promote the recovery of woody plants in MSW due to reduced drought stress and 

improved water availability to trees and shrubs in the dry season. Secondly, increased 

rainfall would enhance grass production and potentially also aboveground grass 



 123

biomass accumulation of fire fuel load. However, increased grass biomass would in 

turn lead to an increased number of wildebeest and other herbivores. Greater numbers 

of herbivores exert higher grazing pressure thus largely offsetting the potentially 

higher accumulation of grass biomass and fire fuel load. Therefore fire intensity 

might remain comparatively stable and not become a limiting factor for woody plant 

establishment.  

6.2. Implications and Future Directions 

The burned area, fire intensity and woody cover change data layers produced 

in this dissertation and their analysis in combination with precipitation have advanced 

our knowledge about the fire regime and its links to changes in vegetation types of 

the Serengeti-Mara region. The developed methodologies and results have 

implications reaching beyond the immediate goals of this study. High resolution 

burned area maps have a large number of potential applications for research questions 

around fire, including animal movements in response to fire, changes in the 

composition of vegetation communities, and fire emissions in dependence of amount 

of fuel load burned and fire seasonality. The developed approach has the potential to 

be applied to other savanna areas of similar ecological characteristics, but in the 

described form is expected to work well only in areas with similar persistence of char 

after burning. The method might be extended to areas without a temporally persistent 

char layer by incorporating training data from these areas and adjusting the choice of 

indices in the algorithm. The algorithm also has the potential to be advanced to 

operational status and become a useful tool for management authorities.  



 124

The woody cover change product has been used in this study to investigate 

woody cover changes in burned areas under different rainfall and fire conditions. 

However, woody cover changes are also potentially affected by other important 

factors which might be more apparent in areas of low fire frequency. Such areas exist 

in the northern part of the study area in MNR and particularly outside of the protected 

areas in the northerly adjacent Narok region. The Narok region is inhabited by Maasai 

pastoralists. Human population density has increased substantially over the last 

decades together with the number of bomas (Maasai huts or households) (Lamprey 

and Reid 2004), increasing the pressure on natural resources and possibly affecting 

woody cover levels. The number of elephants is also substantially higher in the 

northern part of the ecosystem and it has been shown that elephant browsing in 

combination with fire can cause significant woody cover decreases (Dublin et al. 

1990). Soil type and nutrient availability can also impact maximum sustainable levels 

of woody cover density (Sankaran et al. 2005). The results of this dissertation provide 

a basis to evaluate the importance of these additional factors in relation to fire effects. 

It is important for continued monitoring of the fire regime and woody cover 

changes that future versions of the data products are validated in more depth. This is 

particularly true for the fire intensity and woody cover change products. Fire intensity 

is mainly dominated by fire fuel load or grass biomass. Frequent collection of grass 

biomass before burning on a continued basis would allow validating fire fuel load 

estimates in different parts of the ecosystem.  

The research presented in this thesis demonstrates that remote sensing data 

and methods in combination with field data can provide viable tools to investigate 
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questions about fire regimes and vegetation dynamics over longer time periods and at 

regional scales. This study provides the first spatially comprehensive regional view of 

these factors extending over both the Tanzanian and Kenyan part of the ecosystem. 

The results highlight the prevalence of fire in most of the ecosystem, particularly 

large woody cover decreases in the South in areas burned under drought conditions, 

and different sensitivity of woody cover to fire in the low fire frequency areas in the 

North compared to other areas. The algorithms developed in this study have the 

potential to be applied to other savanna areas and provide a basis for future research, 

monitoring and management. 
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