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Abstract

This paper presents a comparative investigation of friction-compensating control strate-
gies designed to improve low-velocity position tracking performance in the presence of
velocity reversals for servomechanisms. The methods considered include adaptive control
and estimation-based control. Additionally, the various controller designs incorporate
different friction models ranging from classical friction and Stribeck friction to the less
popular Dahl friction model. This investigation of friction models is motivated by the
fact that there is little consensus in the literature on how best to model friction for dy-
namic friction compensation. The control strategies are compared in an extensive test
program invoiving sinusoidal position trajectory tracking experiments on a direct-drive
dc motor. We focus attention on comparative experimental results of friction compen-
sation especially with repeated velocity reversals. The results show that the adaptive

and estimation-based controllers outperform more traditional linear controllers. The
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experiments also yield insight into the appropriateness of the different iriction models
under the tested operating conditions. In particular, the Dahl model, typicclly ignored

in the literature, proves to be significant for the friction-compensating control problem

with repeated zero-velocity crossings.

1 Introduction

Recent growth in the number and variety of robotics applications has led to a demand for
increased precision in robotic manipulation. For example, robots that perform exacting
industrial assembly tasks or manipulators employed in delicate surgical procedures must
be capable of precisely controlled maneuvering. However, robotic manipulators must
contend with friction which poses a serious challenge to precise manipulator control.
Specifically, failing to compensate for friction can lead to tracking errors when velocity
reversals are demanded and oscillations when very small motions are required. To
compensate for friction it is best to have some knowledge of the structure of friction,
yet there is little overall agreement in the literature on how best to model friction.
Further, friction compensation is complicated by the fact that friction parameters vary

with temperature and age.

Traditionally, control engineers have used open-loop smoothing techniques, such as
dither and pulse-width modulation, to compensate for friction in mechanical systems.
However, these techniques have disadvantages, for example, dither can cause mechanical

problems such as fatigue by exciting vibrations in manipulators.

As an alternative to these techniques, recent work has brought to the forefront adap-
tive and estimation-based control techniques for compensation of friction in mechanical
systems [1, 2, 3, 4]. Among the compensators proposed in the literature, a variety of
friction models are assumed. Much of this work shows experimental evidence that a par-

ticular friction model together with a suitable compensation technique improves system
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performance. However, since each research team performed different experiments, there
is no easy way to compare the relative effectiveness of the different control-technique
and friction-model combinations. It should be noted that because there are still uncer-
tainties as to how friction affects dynamic behavior, it is necessary that the true test of

control strategies be experimental.

Additionally, much of tke recent work in the literature has emphasized friction com-
pensation during uni-directional servomechanism tasks [5]. However, robotic manipu-
lators are often required to perform repetitive tasks, e.g., in welding procedures and in
assembly operations, and such bi-directional tasks force the servomechanism to regu-
larly pass through zero velocity where friction behavior is most difficult to control. As a

result, there is a need for investigation of friction compensation during velocity reversals.

This paper presents experimental results that exhibit the relative effectiveness of five
different friction-compensating controllers. The experiments involve position trajectory
tracking with velocity reversals to exercise the problems associated with friction at
near-zero velocities and the discontinuous nature of friction at zero velocity. Of the five
controllers tested, two are modified versions of adaptive controllers designed in {1] and [3],
respectively. Each assumes the classical model of friction. However, in the present study
both adaptive controllers have been upgraded to include more detailed friction elements

such as asymmetries and Stribeck friction.

The third controller tested is a modified version of the estimation-based friction-
compensating controller of Walrath [2]. This controller design is based on the Dahl
friction model which predicts a first-order dynamic model of friction as a function of
displacement with a time constant that is a linear function of velocity. Whereas Walrath
was unable to experimentally derive this linear time constant function, the experiments
described in this paper successfully verify Dahl’s prediction. Additionally, an original
stability proof for the estimation-based controller that uses the passivity formalism is
discussed in this paper. The verification of the Dahl model and the success of this

control strategy in our work is noteworthy because the Dahl model is often ignored in



robotic control problems with high force actuators.

The fourth controller tested is a linear controller with dither. This controller is
included as a prototype smoothing controller. The benchmark for the test program is
a conventional linear controller with optimized proportional, integral, and derivative

(PID) gains and a feedforward acceleration term.

The experimental program, designed for the hardware available in the laboratory,
provides a realistic servomechanism control problem. The subject of the program is a
direct-drive brush-type dc motor, digitally controlled by means of an IBM AT personal
computer (PC). The same series of sinusoidal position trajectory tracking experiments
are performed on the motor with each of the five controllers. Tracking performance
is measured by root-mean-square (RMS) position error which pfovides some averaging
of external effects. Nonetheless, unmodelled effects such as torque ripple and digital

sampling rate are addressed with additional experimentation.

Section 2 of this paper describes a selection of different models of friction found in
the literature with a discussion of how each feature of friction influences servomechanism
dynamics. Section 3 discusses friction-compensating control strategies and presents the
design of the adaptive and estimation-based controllers tested experimentally and the
new stability proof of the latter controller. Section 4 provides the details of the experi-
mental program and the experimental results. Conclusions along with some suggestions

for future work are given in Section 5.

2 Friction Structure and Dynamics

Using both theory and experimentation, researchers in a number of fields have devel-
oped several different models of the structure and dynamics of friction. In selecting a
friction model for our dynamic friction-compensating control problem, it is important

to consider how the various identified features of friction influence the dynamics of a
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Figure 1: (a) Classical Model of Static, Kinetic and Viscous Friction and (b) Stribeck
Friction

servomechanism.

Although rolling friction is a physically different phenomenon from rubbing or sliding
friction, the models discussed below attempt to describe the dynamics of a system
with rolling or sliding friction. Pure rolling friction conditions occur when the contact
between two surfaces is a point. However, according to [6], the contact region between
two surfaces is typically of larger area than a point because of elastic (and possibly
plastic) deformation on one or both of the surfaces. The resulting “rolling” friction in
this case involves a combination of sliding and pure rolling friction. In fact, although the
sliding velocity is usually small compared to the rolling velocity, sliding friction often
provides the major component of the total friction. Consequently, in is appropriate to

consider the same models for sliding friction and “rolling” friction.

Classical friction is the earliest and most widely used model of friction. The three
components of classical friction: kinetic friction, viscous friction, and static friction, are
illustrated on the friction versus velocity graph of Figure 1(a). Although kinetic friction
simply provides a constant retarding force to rubbing surfaces, it also introduces a dis-

continuity at zero velocity. As a result, servomechanisms performing bi-directional tasks



will be subject to the discontinuity during every velocity reversal. The discontinuous
behavior of kinetic friction can be classified as a “hard nonlinearity”. It is well-known
that a closed loop system with a hard nonlinearity can produce a limit cycle, i.e., self-

sustained oscillations, that would lead to poor control accuracy.

Viscous friction results from the viscous behavior of a fluid lubricant layer between
two rubbing surfaces. As shown in Figure 1(a), viscous friction is represented as a linear

function of velocity.

Static friction is the force required to initiate motion from rest. Typically, the
magnitude of static friction is greater than the magnitude of kinetic friction which
can lead to intermittent motion known as “stick-slip”. Stick-slip manifests itself as
repeated sequences of sticking between two surfaces with static friction followed by
sliding or slipping of the two surfaces with kinetic friction. For the servomechanism
control problem, stick-slip can diminish control accuracy. The stick-slip limit cycling

can be avoided if damping and stiffness are sufficiently high.

The classical lumped friction model F of static friction Fj, kinetic friction F, and
viscous friction, which depend on the applied tangential force F, velocity V, and coeffi-

cient of viscous friction g, is as follows:

Fisgn(V V iV #0
Fysgn( F) ifV=0

Some experimentalists have noted that in machines with rubbing parts more complicated
and numerous than a single body sliding over a second body, the magnitudes of kinetic,
viscous, and static friction are not the same in the positive and negative directions
(4, 5,7]. A more general model of friction that accounts for this asymmetry uses different

friction coefficients in the positive and negative directions.

Contrary to the predictions derived from the classical friction model, researchers
including Courtney-Pratt and Eisner [8] and others have found experimentally that

small relative displacements between two bodies in contact do occur when the applied
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Figure 2: Pre-Sliding Displacement Phenomenon (Dahl Effect)

relative tangential force is less than the static friction. Although the magnitude of this
pre-sliding displacement is small, with sufficient gain, as in a robot with a fairly long link,
small displacements at the rubbing surface can translate into significant displacements
elsewhere in the mechanism [5]. Further, the nature of pre-sliding displacements provides
insight into the most difficult part of the control problem, the transition between sticking

and sliding.

Courtney-Pratt and Eisner interpreted the pre-sliding phenomenon within the frame-
work of the theory of asperity junction adhesion, asperity junctions being the load bear-
ing interfaces between rubbing surfaces. Specifically, as the shear force at the contact
surfaces increases, the asperity junctions deform elastically and then plastically. When
the applied force finally reaches the static friction level, the asperity junctions break and
sliding begins. Because of the plastic deformation, alternate increases and decreases in
applied tangential force result in friction hysteresis loops. The pre-sliding displacement
phenomenon is illustrated in Figure 2 which shows friction Fy as a function of displace-

ment z based on experimental results.
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In [9] the author provided a model of the pre-sliding displacement phenomenon,
known as the “Dahl model”, that assumes friction F; is a function of displacement z

and time t such that

dFy(z,t)  OFs(z,t) .  OF(z,t)
PP P L T (2)

with 9F/0t = 0, and
o = all 7 ngn(:c)| ) (3)

o and FYy, are as shown in Figure 2, and ¢ is an exponent that Dahl empirically derived

to be 1 =~ 1.5.

A friction-compensating adaptive controller based on Dahl’s model was designed
and successfully used for the stabilization of an airborne pointing and tracking system
[2]. Walrath found from experimentation that friction responds continuously to velocity
reversals. Using the classical discontinuous static-kinetic friction model, Walrath noted
that he could not re-create this smooth behavior. Dahl’s model, on the other hand,

predicted the expected smooth behavior.

The classical friction model is difficult to use to model friction during velocity re-
versals because it predicts behavior more characteristic of a system that spends longer
periods of time at zero velocity. Specifically, the magnitude of static friction is dependent
on the length of time the surfaces are at rest, i.e., the “dwell time”. This dependence of
static friction on dwell time is, however, useful to explain why under stick-slip conditions

the amplitude of the stick-slip limit cycle is observed to decrease with increasing velocity

[10].

While the simple static plus kinetic friction model offers an intuitive explanation for
the possibility of stick-slip oscillations, it does not offer adequate justification for the
existence of these limit cycles in the wide range of conditions under which they have been
observed. However, several researchers, e.g., [5] have found a source for this discrepancy
in the Stribeck effect, an experimentally derived model of friction variation with velocity

as depicted in Figure 1(b). The implications of the Stribeck effect for servomechanism
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dynamics include an increased likelihood of stick-slip limit cycling at low velocities. Of
the many empirical models derived for friction incorporating the Stribeck effect, the

following is the most popular:
FiVY) = Frsgn(V) 4+ uV + (F, = F)e~ VTVl sqn(V) (4)
where Vy;, is the critical Stribeck velocity.

Frictional lag is one other feature of friction that may also have a significant impact on
dynamics. While we do not consider this in the present study, we note the considerable
empirical evidence that has recently become available indicating that friction does not
respond instantaneously to a change in velocity. The primary work here is due to
geophysicists [11] who use stick-slip for earthquake-related predictions. Hess and Soom
[12] also found strong evidence of frictional lag, in their experiments on a flat steel
button rubbing against a rotating steel disk. Frictional lag makes stick-slip instabilities
less likely. Because a decrease in friction occurs slowly when velocity is increased, stiff
systems will not experience stick-slip [5]. We hope to investigate these aspects in future

work.

3 Friction-Compensating Control

If a system with friction is linear and is to be operated only at relatively high velocities
without changing directions, i.e., without crossing zero velocity, friction can be modelled
as a linear function of velocity. Under these conditions, standard PID design techniques
can be applied to the dynamics of the linear system with viscous friction with reliable
results. On the other hand, if the system is to be operated at low velocities or with
direction reversals, then the standard PID design techniques may be unsuitable and
tracking accuracy may prove inadequ'ate. Additionally, to prevent limit cycling due to
the static-kinetic friction discontinuity at zero velocity or the Stribeck effect, a PID

controller must have sufficiently high “damping” K, and “stiffness” K,. However, high



gain control has its own practical disadvantages such as introducing instability in a

compliant drive train or saturating an actuator.

One common alternative is the use of a dither signal which averages the dynamics of
a system with a discontinuity into smooth dynamics that can be more easily controlled
by standard techniques. Dither is a high frequency signal added to the error signal in a
feedback loop before it is input to the system. If the frequency is chosen to be higher
than the cut-off frequency of the system, the high-frequency behavior is filtered out

leaving only the low-frequency “average” response.

Pulse-width modulation is another commonly used and effective smoothing technique
that also works on the principle of averaging. However, both dither and pulse-width
modulation have inherent disadvantages. For example, analysis and prediction of system
characteristics such as stability and robustness are difficult to perform when dither or
pulse-width modulation is applied. Additionally, dither can cause mechanical problems

in a system such as a robot by exciting higher structural modes.

Friction-compensating adaptive and estimation-based controllers are nonlinear con-

trollers that exploit the known structure of friction. Adaptive control strategies, in
particular, are naturally suited to the problem of friction compensation because they
generate a time-varying control law that tracks slowly varying system parameters, and
they provide system identification when an accurate system model is not available. Three

adaptive and estimation-based controllers are investigated in this paper.

For reference, the dynamics of the dc motor used in this paper are described by

85(t) + c10,(t) = —c2Ts + c3u(t) (5)

where 8, ép, ép are plant angular position, velocity, and acceleration, T is the frictional
torque and may depend on 4, ép, etc., u is the control input, and ¢y, ¢2, ¢3 are constants

(c1 includes viscous friction).

The first of the adaptive and estimation-based controllers is an adaptive controller
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(referred to as AEC I) based on the Model Reference Adaptive Control (MRAC) ap-
proach proposed by [1] in their work on control of a satellite-tracking telescope. However,
while Gilbart and Winston considered velocity trajectory tracking in their design, the
controller in the present paper was required to handle position trajectory tracking. As
a result, AEC I is a modified version of the Gilbart and Winston design, incorporating

filters to reduce the order of the system.

Additionally, Gilbart and Winston assumed the classical, symmetrical kinetic plus
viscous friction model in the dynamic system equations. To accommodate the observed
asymmetrical nature of friction in the motor [7], kinetic friction is modelled in AEC I

as follows:

T = <__9n_<9_2>_+_1> o (29_74_92)__—_1> , (6)

where a; and o represent the magnitude of kinetic friction in the positive and negative

directions, respectively.

While Gilbart and Winston used only proportional feedback control in addition to
the adaptive control, our controller uses a control input based on the computed torque
method with integration in addition to the adaptive control. Figure 3 shows the block
diagram for AEC . A stability analysis of this controller which follows [1] and employs
Lyapunov’s direct method yields the result that (e, é) = (0,0) is an asymptotically stable
equilibrium point where é = ém - ép, e =0, — 0, and 9m and 8,, are the ideal model

velocity and position, respectively. Details are to be found in [13].

The second controller (referred to as AEC II) is based on the method developed by
[3] in his design of an adaptive robotic manipulator controller. As in the work of Gilbart
and Winston, Craig used an MRAC approach and assumed the classical, symmetrical
model of kinetic plus viscous friction. Four different versions of the AEC II controller
are developed, each with a different model of friction. For reference, we solve equation

5) for input u and rewrite as
p

u=(1/e3)8, + (e1/e3)8p + (c2/c3) Ty = (1/e3)b, + Q . (M)

11
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Friction model (a) is the simple kinetic plus viscous friction model used by Craig in
his design such that
Q") = p16, + pasgn(d,) , (8)

where p; and p; are the unknown viscous and kinetic friction parameters, respectively.

Model (b) assumes the asymmetric kinetic plus viscous friction model represented by

2 14-sgn(é Y 1—sgn(6 )
QB = plgp_*ﬂi.i_zl_*_ngp__%(_L ”

Sné Sné—
+p3 g (zp)"}'l +p4 g (2P) 1 ,

where p; and p, are the unknown viscous friction parameters in the positive and negative

directions, respectively and p3 and py are the unknown kinetic friction parameters in

the positive and negative directions, respectively.

Model (c) includes a linear model of Stribeck friction in addition to kinetic plus

viscous friction. Stribeck friction can be modelled according to (4) for V = 0, and Vi, =

12
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0,:r. However, AEC II requires dynamics that are linear in the unknown parameters.
To derive a linear-in-parameters model, the exponential in (4) is replaced by its Taylor

series approximation which yields

Q(c) = plép + pzSQn(ép> + P39.p239n(9.17) . (10)

For comparative purposes, Model (d) includes kinetic plus viscous plus Stribeck

friction terms according to the linearized model of [14] such that

QY = p1by + pasgn(8,) + pal6,]'/*sgn(6y) . (11)
The block diagram for AEC II is shown in Figure 4. A stability analysis that fol-
lows [3] and uses the Kalman-Yakubovich-Popov Lemma and Lyapunov’s direct method

shows that (e, ¢) = (0,0) where ¢ = 64 — ép and e = 83 — 0, (see [13]).
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The third controller, AEC III, is an estimation-based controller that follows the work
of {2] described in the previous section. From experimental results, Walrath postulated
the following first-order model of the bearing friction T}:

dT .
=L +T; = T.sgn(6,) (12)

where T. is the rolling bearing friction (i.e. kinetic friction) and 7 is a time constant.
Clearly (12) is a rewriting of the Dahl friction model of (3) with ¢ = 1 and replacing F}
with T, Fy, with T, and z with 6, where

(13)

Walrath incorporated the friction model (12) into his controller by using it to predict
friction torque. He added the friction torque term to a proportional feedback control
input to cancel the friction effect during tracking. The value of 7 was also updated by
the controller since 7 varies with operating conditions (in particular, ép) as indicated by
(13). Since the value of o from (13) is unknown, Walrath performed a special series of
experiments to empirically determine how t varies with operating conditions. He found
T to be a linear function of the inverse of the RMS system acceleration f.ms. This is
inconsistent with Dahl’s model which predicts that 7 is inversely proportional to velocity

(13).

On the other hand, we found a consistent relationship for = for the electric motor of
the present study. Experiments similar to Walrath’s were performed on the motor to
determine 7 = 1/w as a function of operating conditions. Figure 5(a) shows the results
of one series of these experiments. In this series, approximately 56 sinusoidal position
trajectory tracking experiments were run, each 320 seconds long. For each of these 56
experiments, the frequency and amplitude of the demanded sinusoidal trajectory were
f =10.25 Hz and A = 0.25 rad, respectively. Tracking was performed with a controller
based on the computed torque method with integration plus a friction cancellation
term based on (12). However, we fixed the value of = for a single experiment and

incremented its value only between experiments. Thus, by measuring performance (RMS

14
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Figure 5: (a) Experimental Results Used to Determine Optimal w (f = 0.25 Hz) and
(b) Optimal Values of w as Function of Operating Conditions

error in motor position) for each experiment, we were able to find the optimal value of
7 for the given operating conditions, i.e., the value of 7 used in the experiment which
produced the lowest RMS position error. For this series of experiments, the “operating
conditions” were the measured RMS acceleration of 3.8 rad/s* and RMS velocity of 0.3

rad/s common to each experiment in the series.

In Figure 3(a) RMS error in motor position is plotted as a function of w = 1/7. Since
a single value of 7 is associated with each experiment in the series, each point on the
plot represents a single 320-second-long experiment. The optimal value of w = 3.5 s7!
(wopt) for the operating conditions associated with this series is read off the plot at the

point of lowest RMS position error.

The results of the above series of experiments as well as the results of four other

similar series of experiments run at different operating conditions (induced by different

15



demanded sinusoidal trajectory frequencies) are shown in Figure 5(b). Specifically, Fig-
ure 5(b) plots wyp: (1/7 optimal) as a function of the operating condition, RMS velocity.
FEach point on this plot corresponds to a single series of experiments. For example,
the point at 3.5 s7' (wopt) versus 0.3 rad/s (RMS velocity) corresponds to the result
of the series shown in Figure 5(a). Figure 5(b) shows wepy to be a linear function of
RMS velocity, i.e., the optimal 7 is approximately inversely proportional to lép[ which

is consistent with Dahl’s model (13).

AEC III uses the computed torque method with integration plus the predicted fric-
tion torque term updated according to (12). The constant 7 is adjusted on-line according
to the linear function of Figure 5(b). Note that in Walrath’s controller, only propor-

tional feedback control was used in conjunction with friction compensation. Figure 6

shows a block diagram of AEC III.

Since Walrath did not provide a stability analysis for his controller, an original
stability analysis has been developed based on the passivity formalism. The definitions
and theorems of the passivity formalism used below are taken from [13, 16].

Definition: A system of the form

t = f(z)+ G(z)u

y = hiz)+ J(z)u (14)

with supply rate (an abstraction of input power associated with the concept of stored

energy in a physical system)
w(u,y) =y Qy + 2yT Su + uT Ru (15)

is dissipative if

/“ w(t)dt > 0 (16)

to

along trajectories of the system (14), for all locally square integrable u(:), all t; > to,
and z(to) = 0. If

w(u,y) =u'y — ey’y (17)

16
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for € > 0 then the system is Y-strongly passive (YSP).

Consider AEC III with friction prediction and derivative feedback only as shown in
Figure 6(b). Let the forward part of the loop including the motor, friction prediction and
derivative gain Ky be represented by Hy. The feedback part of the loop is represented
by H; which implies that H; = 1. Then it follows from [16], that if both H; and H, are
Y-strongly passive (YSP), the feedback system is asymptotically stable. The fact that
H, =1 is SPR implies that H, is YSP. It remains to prove that H; is YSP.

System H; can be described by the following equations:
ép -+ Clép = *—Csz <+ CQTf -+ ng{dé s (18)
Ty = ~bl6,|T; + bT.0, (19)

17



T; = —~b0,\T; + bT.6, . (20)
where the " indicates a predicted value and we have assumed w = b|6,] and & = bld,.

Define the state (z1, 2, T3, Z4) = (Gp,ép,Tf, T;) and let u = é. Then system H, can

be presented in state-space form as

[ .’151 -1 i ) ] - 0 1
T2 _ —C1Tg — CaT3 T CaT4 n c3Ky u, (21)
32'3 —b‘$2l$3 —+ bTC.'EQ 0

L :154 ] L —?3':132]1‘4 + BTC$2 ] L 0 ]

Now define ¢ : R* — R as

$(e) = —Belie’ +za(zi—n/b) ~ IT.b(zy — 1 /b)* + [ bz1zslz|

. . . \ (23)
+z4(z1 — 72/b) — 5Teb(z1 — v2/0) + [ bz1z4|z2]]

where K, v1, and 7, are constants to be defined later. Differentiating (23) with respect

to time yields the supply rate

q5(a:) =uy — ey’ + [zoz3 — Kzo73 + ylz2lzs + Tozy + KToza + Yolzolza] (24)

C2
caK Ky
where € = ¢;/c3 K4 > 0. First consider the case when z7 = ép > (. Then (24) becomes

C2
631{1(4

$(z) = uy — ey’ + (1= K +)lealzs + (L+ K +)lelzd - (25)

So choose 7; > —1 and ¥, < —1 such that 1 +72 = —2,then K =147 = —1—-~v>0

and
$(z) =uy — ey’ . | (26)

If on the other hand z, = é,, < 0, then the parameters K, 71, and ~; can similarly be

chosen so that (26) holds.

According to [15] to show that H is dissipative with respect to the supply rate given
by (26), ¢(0) =0 and ¢(z) > 0 Ve must hold. These do not hold for the function ¢(-)

18



as defined by (23). However, for 2o = 8, > 0 (or z, = 0, < 0), zyz3 = T;0, > 0 and
ToTy = Tfﬂp > 0. Additionally, z, and 23 are both bounded since 0 < z; =46, < 27
and —T; £ z3 = Ty < T,. Therefore ¢(-) from (23) is bounded below. Define C as the
greatest lower bound of ¢(z). Then there exists some zo € R* such that ¢(zo) = C.
Next define gg : R* = R such that

o(y) = d(y +z0) — C . (27)

Then $(0) = 0 and ¢(y) > 0 Vy and q;(y) = ¢(y) given by (26). Thus, H; is YSP
and the feedback system of Figure 6(b) is input-output stable. This implies that 9;» will
follow 94.

4 Experimental Program and Results

The experimental system consisted of a direct-drive, brush-type dc motor, angular posi-
tion and velocity sensors, a power amplifier, an IBM AT PC, and supporting hardware
and software for communication and control. The IBM PC was used to control the
operation of the motor. A 50 Hz sampling rate was used throughout the experimental

prograimmn.

Angular position of the motor was measured by a 12 bit absolute optical shaft en-
coder. The position data was transmitted to the PC with a measurement resolution
of 0.00154 radians (0.088 degrees). A tachometer measured the angular velocity of the

motor with a resolution of 0.012 rad/s.

The motor system was modelled according to (5) where u is the input voltage to the
motor. For system simulations, friction was modelled as symmetric kinetic plus viscous
friction. The friction parameters, assumed to be constant, were measured in previous
work by [7]. The motor model was successfully verified by comparing results of voltage

pulse experiments on the motor to results of identical simulated experiments on the

motor model.

19



The motor model along with a simulation of a PID controller was then used to design
an optimized benchmark PID controller for position tracking. (The controller is actually
based on the computed torque method with integration but is equivalent to PID control
plus a feedforward acceleration term. It is referred to as PID conirol for convenience.)
The PID controller gains were selected to optimize the motor response to a 0.25 radian
step demand in angular position. CONSOLE, a numerical optimization tool described
in [17], was used to perform the optimization. Two functional objectives were specified,
one to minimize the overshoot of the step response and one to maximize the rise time of
the step response. The effectiveness of the optimized gains was verified by a 0.25 radian

step experiment on the motor.

The experimental program on the electric motor consisted of comparative position
trajectory tracking tests using five different controllers: AEC I, II, III, a controller with
dither and the optimized benchmark PID controller. The controller with dither was
implemented identically to the PID controller except that a dither signal was added to
the control input. The frequency of the dither signal was 25 Hz which is the maximum
acceptable given the 50 Hz sampling rate. The amplitude of the dither signal was more

than twice the magnitude of the static friction.

In each experiment the motor was required to track a sinusoidal position trajectory
such that:
04 = Asin(2x ft) (28)

where A is the amplitude and f the frequency of the demanded trajectory. This required
sinusoidal motion provided a useful means for investigating friction compensation since
the motor was forced to repeatedly pass through zero velocity where friction behavior
is most difficult to control. The sinusoidal motion also provided a reasonably realistic
scenario since manipulators are often required to perform repetitive tasks that demand

sinusoidal joint motions.

The sinusoidal trajectories tracked in the experimental program ranged in frequency



Type Trajectory | RMS Position | Time Elapsed | % Error
of Frequency f Error Before Error | Reduction

Controller (Hz) (rad) Calculated (s) | from PID
PID 1.0 0.0106 0 -
Dither 1.0 - - -
 AECI 1.0 0.0048 400 55
AEC 11 1.0 0.0079 12 25
AC III 1.0 0.0054 12 49
PID 0.5 0.0069 0 -
Dither 0.5 0.0066 0 4
AEC I 0.5 0.0033 400 52
AEC II 0.5 0.0041 12 41
AEC IIT 0.5 0.0028 12 59
PID 0.25 0.0063 0 -
Dither 0.25 0.0055 0 13
AEC I 0.25 0.0043 400 32
AEC II 0.25 0.0037 12 41
AEC I1I 0.25 0.0036 12 43
PID 0.1 0.0060 0 -
Dither 0.1 0.0045 0 25
AECI 0.1 - - -
AEC I 0.1 0.0044 12 27
AEC III 0.1 0.0040 12 33

Table 1: Results of Sinusoidal Tracking Experiments

f from 0.1 Hz to 1.0 Hz. The lower limit of this range was selected to minimize motor
velocity and to avoid large errors due to velocity measurement resolution. The upper
limit of this range was selected to maximize motor velocity without generating gross
errors due to the limitations of the 50 Hz sampling rate. A 0.25 radian amplitude A was

used for all sinusoidal trajectory tracking experiments.

The RMS position error for each of the controllers and each experiment is listed in
Table 1. Each RMS position error is calculated based on 16 seconds (800 samples) of
data. As indicated in Table 1, the controller with dither does not significantly improve
the tracking performance as compared to the benchmark PID controller. This is due to

the fact that the dither frequency is limited to 25 Hz. AEC I, II, and III, on the other
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hand, all effectively improved tracking performance for the range of sinusoidal trajectory
frequencies tested. The lower values of percent reduction in RMS error for the 0.1 Hz

experiment are most likely due to the limited resolution of the position measurements.

Figures 7, 8, and 9 show the absolute value of PID controller position error compared
to the position error from AEC [, II, and III, respectively. In each case the PID controller
result is shown as a solid line and the nonlinear controller result is shown as a dashed
line. Note that the two seconds (100 samples) shown correspond to the first two seconds

of the experimental results beginning at the time listed in the fourth column of Table

1.

A comparison of these plots and the performance results of Table 1 suggests that
AEC 1II is not as effective at friction compensation as AEC III. This can be explained
by noting that there are a couple of relatively large error peaks in Figure 8 for AEC 1L
These occur because AEC II overcompensates when friction changes instantaneously.

The large error peaks seen in Figure 8 correspond in time to the instantaneous friction

Q)
[ 3]
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changes. This overcompensation and corresponding large error suggests that the classical
friction model does not capture friction during transient velocity reversals as well as the

Dahl model.

The numbers listed in Table 1 are averages of results from experiments made over
a period of a few days. However, over the course of about six months during which
these experiments were performed, there was a great deal of repeatability in the percent
reduction in RMS position error achieved by the two adaptive controllers. The experi-
ments were run during different seasons and during different stages of motor “warm-up”
such. that friction parameters may have varied from experiment to experiment due to
temperature differences. Additionally, over the six month period the friction parameters
may have changed due to system aging. The fact that the adaptive controllers were con-
sistently effective under these varying conditions provides evidence for the effectiveness

of the adaptability of these controllers.

The results for AEC II provided in Table 1 correspond to experiments performed
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using Model (a) friction. The converged value of the adaptive parameter estimate p,
in these experiments indicates that the magnitude of kinetic friction is F} = 0.83 1bf-
in. This compares well with the expected value F, = 0.72 Ibf-in (average of values in
positive and negative directions) as measured in the constant velocity tests performed in
[7]. It seems reasonable that p, slightly overestimates the expected value since p, may
be accounting for static friction as well as kinetic friction. The converged value of p,
was not quite as close to the value expected from previous measurements, however, the
discrepancy may be due to inaccuracies in the previous measurements of motor voltage

constant (note that back emf is included in the term p;6, of (8)).

Experiments using Model (b) friction showed an insignificant change in performance.
This result indicates that for this set of experimental conditions, additional adaptive
terms to account for friction asymmetries are not necessary. Experiments using Models
(c) and (d) for friction showed only a slight improvement in performance as compared

to the Model (a) experiments. Since the additional friction terms in Model (c) and



Model (d) were intended to account for Stribeck friction, this result can be attributed to
the fact that Stribeck friction is probably not completely measured by the experimental
system since the critical Stribeck velocity may be approximately of the same or lower

order as the velocity measurement resolution.

The main disadvantage associated with AEC I was its excessively slow rate of adap-
tadon. Although tracking performance began to improve immediately, it was not until

400 seconds into the experiment that the best results were achieved.

AEC II had the disadvantage that for the implementation that yielded the best
results, the adaptive parameters tended to drift and performance deteriorated after a
while. This could be avoided by resetting the parameters when they went out of a
predefined range as suggested by [3] or by imposing dead-zones in the parameter update

law.

AEC III, on the other hand, was very reliable and performed best of all the con-
trollers. However, this controller is at a disadvantage in that it requires a lengthy
experiment up front to determine the constants in the relationship between the friction
time constant 7 and the RMS velocity. Additionally, since kinetic friction T is held con-
stant, AEC III is not best suited for adapting to changes in friction due to temperature

or aging. This could be fixed, however, by adding an adaptive component to update T..

Finally, torque ripple in the motor adds a position-dependent component to the
motor dynamics and could have affected how each of the controllers performed. All
of the data in Table 1 applies to experiments run such that the initial position was
0.0 radians. However, it was observed that the performance of the controllers varied
when different initial positions were used. To investigate this torque ripple effect, the
experiment with f = 0.5 Hz was run again on the PID controller and AEC II and III
at 15 different initial positions chosen randomly. The results of these experiments are
shown in Table 2. According to these results, neither AEC II nor III performed on

average as well as at an initial position of 0.0 radians. However, the greater effectiveness



Initial | RMS Position Error | % RMS Position Error
Position | with PID Controller | Reduction from PID
(rad) (rad) AECII L AEC III
-2.698 0.0086 16 23
-2.484 0.0082 26 33
-2.075 0.0091 21 23
-1.546 0.0081 30 35
-1.080 0.0079 30 39
-0.709 0.0079 28 29
-0.261 0.0072 33 36
-0.069 0.0071 32 41
0.000 0.0067 34 52
0.086 0.0068 34 46
0.689 0.0060 28 42
1.172 0.0061 15 56
1.758 0.0066 18 39
2.484 0.0076 32 37
2.720 0.0074 22 39
Average 0.0074 27 38
Std. Dev. 0.00087 6.4 3.9

Table 2: Experimental Results at Different Initial Positions (f = 0.3 Hz)

of AEC III relative to AEC II was observed at every initial position. From Table 2,
it can be concluded that while torque ripple does affect somewhat the performance of

these two adaptive controllers, it does not affect their relative effectiveness.

The effect of digital sampling rate on the performance of AEC II and III was also
investigated by repeating the experiments of the experimental program with a 100 Hz
sampling rate. Table 3 lists the results of these experiments. According to Table 3, the
increased sampling rate did not have a dramatic effect on the performance of AEC III.
However, AEC II performed significantly better with the 100 Hz sampling rate than
with the 50 Hz sampling rate, particularly for experiments with f = 0.5 Hz and f = 1.0
Hz. This improved performance may be explained by the fact that overcompensation
provided by AEC II for instantaneous changes in friction is not as prolonged with a 100

Hz sampling rate as it is with a 50 Hz sampling rate. Based on the results of Table 3,



Trajectory || % RMS Position Error Reduction from PID
frequency f AEC I AEC III

(Hz) 50 Hz | 100 Hz || 50 Hz | 100 Hz

1.0 25 64 49 42

0.5 41 60 59 56

0.25 41 45 43 56

0.1 27 35 33 29

Table 3: Comparison of Tracking Experiment Results with 50 Hz and 100 Hz Sampling
Rates
one can conclude that the relative effectiveness of AEC II and III is significantly affected

by the digital sampling rate.

5 Conclusions

We have presented a comprehensive investigation of control strategies for friction com-
pensation in servomechanisms performing low-velocity position tracking in the presence

of velocity reversals. The major conclusions of the investigation are as follows:

o AEC I, I, and III all provide improved servomechanism position control compared
to an optimized PID controller and controller with (limited frequency) dither for
low-frequency sinusoidal positibn trajectory tracking experiments on a direct-drive
dc motor. Additionally, the experimental results of this paper coupled with the
results of [1, 3, 2] provide evidence for the general applicability of these adaptive

and estimation-based controllers.

e The Dahl model provides a realistic and reliable model of friction, particularly
during sinusoidal motion of the mechanism. Evidence for this can be found (1)
in the fact that the empirically derived model of the friction time constant 7 as a
linear function of velocity is consistent with Dahl’s original model and (2) by the

relatively high effectiveness of AEC III which is based on the Dahl model. This
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conclusion is noteworthy since friction is typically considered to behave according

to the classical friction model.

e Mechanical considerations such as torque ripple and digital sampling rate play an

important role in the performance of the adaptive and estimation-based controllers.

Further research should be pursued to understand the relationship between the clas-
sical friction model and the Dahl friction model. A determination of how to link the
Dahl model of pre-sliding displacements with the classical model of sticking and slid-
ing would provide a more complete and cohesive understanding of friction that could

potentially be used to improve friction-compensating control strategies.
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