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 In recent years, about 40% of the total energy is devoted to the cooling 

infrastructures in data centers. One way to save energy is free air cooling (FAC), 

which utilizes the outside air as the primary cooling medium, instead of air 

conditioning, to reduce the energy consumption to cool the data centers. Despite the 

energy saving, the implementation of free air cooling will change the operating 

environment, which may adversely affect the performance and reliability of telecom 

equipment.  

This dissertation reviews the challenges and risks posed by free air cooling. The 

increased temperature, uncontrolled humidity, and possible contamination may cause 

some failure mechanisms, e.g., conductive anodic filament (CAF) and corrosion, to 



be more active. If the local temperatures of some hot spots go beyond their 

recommended operating conditions (RoC), the performances of the equipment may be 

affected. 

In this dissertation, a methodology is proposed to identify the impact of free air 

cooling on telecom equipment performance. It uses the performance variations under 

traditional air condition (A/C) to create a baseline, and compares the performance 

variation under variable temperature and humidity representing FAC with the 

baseline. This method can help data centers determine an appropriate operating 

environment based on the service requirements, when FAC is implemented.  In 

addition, a statistics-based approach is also developed to identify the appropriate 

metric for the performance variations comparison. It is the first study focusing on the 

impact of FAC on the telecom equipment performance. 

This dissertation also proposes a multi-stage (design, test, and operation) 

approach to mitigate the reliability risks of telecom equipment under free air cooling 

conditions. Specifically, a prognostics-based approach is proposed to mitigate the 

reliability risks at operation stage, and a case study is presented to show the 

implementation process. This approach needn’t interrupt data center services and 

doesn’t consume additional useful life of telecom equipment. It allows the 

implementation of FAC in data centers which were not originally designed for this 

cooling method.  
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Chapter 1. Introduction  

The telecommunication industry is concerned about the energy costs of its 

operating infrastructure, i.e., data centers. Data centers include the buildings, 

facilities, and rooms that contain enterprise servers, communication equipment, 

cooling equipment, and power equipment, and they generally provide the computing 

backbone of the telecommunication infrastructure [1].  

1.1 Energy Consumption in Data centers 

Approximately 1.5% to 3.0% of the energy produced in industrialized countries 

is consumed by data centers. A single data center can house hundreds or thousands of 

servers, storage devices, and network devices, and continued growth in the number of 

servers is expected as industries expand data center capabilities. Data centers are forty 

times more energy-intensive than conventional office buildings  [2].  

In 2007, the Environmental Protection Agency (EPA) published its report to the 

Congress on Server Data Center Energy Efficiency [3] to evaluate the energy 

consumption of government and commercial data centers in the US. This EPA report 

projects the near-term growth of energy consumption based on current trends and 

evaluates potential savings related to improving energy efficiency. 

U.S data centers roughly doubled their energy consumption between 2001 and 

2006, using 61 TWh1 in 2006, at a costing of USD 4.5 billion [3]. The electricity 

                                                 
1 Tera is equal to 1012 
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consumed by data centers is equivalent to the amount consumed by 5.8 million 

average U.S. households and is similar to the volume used by the entire U.S. 

transportation manufacturing industry  [3]. 

In the European Union (EU), the electricity consumed by data centers is also 

expected to contribute significantly to total electricity consumption in the near future. 

The electricity consumed by data centers in Western Europe was about 56 TWh in 

2007, and is projected to increase to 104 TWh per year by 2020 [1]  . Furthermore, the 

data centers of online giants such as Google, Amazon and eBay can consume more 

energy than manufacturing companies. For example, the Google data center in 

Oregon is estimated to consume 103MW (Megawatts)2 of energy in 2011 [4].  

Data centers generally exhibit high power intensities, with increased density of 

servers. A survey of power consumption in more than twenty data centers in 2006 

found that a data center’s IT equipment, including servers, storage devices, telecom 

equipment and other associated equipment, can use from about 10 to almost 100 

watt/sq.ft3, over forty times more than is used by a conventional office building [3]. 

The energy consumption of a single rack of servers can reach up to 20 - 25kW, which 

is equivalent to the peak electricity demand of about fifteen typical California homes 

[3]. Moreover, about 50 percent of the energy consumed by data centers is devoted to 

the power and cooling infrastructure that supports electronic equipment  [3][5], as 

shown in Figure 1.  

                                                 
2 MW is Megawatts, 106watts 
3 watt/sq.ft is watts per square foot 
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Utility transmission and 
distribution loss, 7%
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Figure 1: About 50% of the Energy Consumed by Data Centers is Used for 
Power and Cooling [5]. 

The public commitments of several leading companies on energy reduction are 

listed in Table 1. Besides the consideration for cost, energy reduction also can help 

increase the reputation of companies being socially responsible. 
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Table 1: Company Public Commitments to Energy Reduction [6] 

Company Commitment 

Intel 
Reduce normalized energy use in operations by 4% pa of 
2002 level by 2010, and by annual 5% of the 2007 level by 
2012. 

Hewlett-Packard Reduce energy consumption of desktop and notebook PC 
families by 25% (per unit) of 2005 level by 2010. 

Nokia Siemens 
Networks 

Reduce energy use of office facility by 6% of the 2007 
level by 2012. 

France Telecom Reduce energy consumption by 15% below 2006 level to 
2020. 

Nokia Reduce energy consumption of office facility to 6% of the 
2006 level, by 2012. 

1.2 Environmental Concerns 

The telecom industry accounts for nearly 2% of global greenhouse gas 

emissions  [6]. The “Smart 2020 Report”  [6], published in 2008 by the Global e-

Sustainability Initiative, a partnership of technology firms and industry associations, 

and the Climate Group, a non-profit environmental club, predict that the rapidly 

growing amount of carbon dioxide generated by information and telecommunication 

technologies could make them among the biggest greenhouse gas emitters by 2020.  

In 2007, the gas emission of telecom industry was 830 Mt (megatons, 106 ton) 

CO2e (CO2 equivalent), about 2% of the global emissions from human activity in the 

world. Even if efficient technology is developed to reduce the energy consumption, 

the gas emission by telecom industry will increase at an annual rate of 6% until 2020, 

which will reach 1.43 Gt (gigatons, 109 tons) of CO2. About one quarter of the gas 
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emission comes from the telecom equipment materials and manufacturing processes, 

and the rest is generated during their operation.  

Generally, there are three subsectors in the telecom industry: PC and 

peripherals (workstations, laptops, desktops and peripherals such as monitors and 

printers), data centers and Telecoms devices (fixed line, mobile phones, chargers, 

internet protocol TV (IPTV) boxes and home broadband routers). PCs are already 

widely used in developed countries, however, they are experiencing an explosive 

growth in some developing countries. The emerging middle classes in China and 

India are purchasing PCs in a manner similar to how their counterparts in developed 

countries did before, and as a result, this will substantially increase the gas emission 

due to the large population. The carbon footprint of PCs and monitors is expected to 

be 643 MtCO2e in 2020, with an annual growth of 5% based on 200 MtCO2e in 2002 

(the peripherals gas emission will be about 172 MtCO2e in 2020). Another main 

contributing factor would be the growth in the number and size of data centers. The 

“information age” requires a great amount of servers to store data and make them 

instantly available upon request. The carbon footprint of data centers is projected to 

reach 259 MtCO2 emissions by 2020, compared with 76 Mt CO2 emissions in 2002. 

The telecom device gas emission is also expected to increase to 349 MtCO2 in 2020. 

The growths of the three subsectors in telecom industry are shown in Figure 2. 
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Figure 2: the Gas Emission Growth of Global Telecom Industry Subsectors [6] 

The public environmental commitments of several prominent companies are 

listed in Table 2 [6]. These commitments show how corporations are seeking to 

improve their environmental impact. 
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Table 2: Public Environmental Commitments of Companies [6] 

Company Commitment 

British  

Telecommunications 

Reduce the worldwide CO2 emissions per unit of BT’s 
contribution to GDP by 80% from 1996 levels by 2020, and 
reduce UK CO2 emissions in absolute terms by 80% below 
1996 levels by Dec 2016. 

Microsoft Every two years through 2012, halve the difference between 
annual average data centre PUE4 and the ideal PUE (1.0). 

Sun Reduce US CO2 emissions 20% from 2002 levels by 2012.  

Alcatel–Lucent Reach a 10% reduction in total CO2 emissions from facilities 
from the 2007 baseline by the end of 2010.  

Dell Reduce operational carbon intensity5 by 15% from 2007 
levels by 2012.  

 

1.3 Cooling Methods to Improve Energy Efficiency 

The pressures of energy costs and environmental concerns are forcing the 

telecom industry to find ways to improve energy efficiency in data centers’ electrical 

equipment in general. Several cooling methods already are in use: air conditioning 

with new power-management technologies, liquid cooling, tower free cooling and 

free air cooling. This chapter introduces and compares the various applicable cooling 

methods to assist in the appropriate selection under different environment situations. 

                                                 
4 PUE is defined as the ratio of the total power drawn by a data center facility to the power used by the 
IT equipment in that facility. It is a key metric of energy efficiency advocated by Green Grid, a global 
consortium dedicated to advancing energy efficiency in data centers and business computing 
ecosystems. 
5 Carbon intensity is the total carbon dioxide emissions from the consumption of energy per dollar of gross domestic product 
(GDP).  
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1.3.1 Air-Condition with New Power Management Technologies 

Air conditioning is currently the dominant cooling method in data centers, with 

room temperature usually set at a fixed temperature. However, new power 

measurement and management technologies have been developed to monitor, 

manage, and improve the energy efficiency of air conditioning unit. One example is 

IBM’s Measurement and Management Technologies (MMT) [7]. 

MMT is a tool set that helps visualize and understand the thermal profile of an 

existing data center and its power and cooling systems. MMT provides a detailed 

assessment of the heat distribution throughout the center by creating a three-

dimensional chart that pinpoints power and cooling inefficiencies. MMT also 

provides a real-time solution for monitoring and managing the cooling and energy 

efficiency of the center. After a measurement survey, sensors are installed and 

coupled to a software system encoded with the survey results to provide ongoing 

reporting and analysis of the room conditions. This facilitates setting optimal energy 

and cooling system levels and reduces over-provisioning and over-cooling. This in 

turn can allow an increase of data center densities and delay capital expenditures on 

power and cooling improvements. The key benefits include reducing data center costs 

by improving cooling efficiency and the availability and reliability of new and 

existing IT systems [7]. 

Under collaboration with IBM, a five-month test of MMT was implemented in 

Toyota Motor Sales and Southern California Edison, one of the largest electric 

utilities in U.S.[8] The test was executed in Toyota’s 20,000-square-foot Torrance 
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data center. MMT showed Toyota where to make quick, inexpensive changes to air 

flow and temperature set points in the room. It allowed Toyota to safely shut down 

two computer room air conditioners, resulting in significant energy and cost savings. 

The test results showed that air conditioning was reduced by thirty percent, including 

an overall reduction in hot spots and a cooler consistent ambient temperature 

throughout the center. Southern California Edison, Toyota Motor Sales’ energy 

provider, quantified the company’s energy savings as a demand reduction of more 

than ten percent, and recommended MMT for broad application by its clients for 

energy and demand reductions [8].  

1.3.2 Liquid Cooling 

Liquid cooling is a traditional cooling method with an extensive history in data 

centers. The liquid can be water, Freon or another coolant.  Some variants of liquid 

cooling, such as heat pipes or vapor chambers, are increasingly used in data centers, 

but they are considered as air cooling methods, since it is server airflow to remove the 

heat instead of liquid [9].  

Liquid usually has large heat transfer coefficient and can carry great heat during 

the heat exchange process, and then liquid cooling is an appropriate solution for high-

density components, such as CPU. However, the implementation of liquid cooling 

increases the overall cost of data centers significantly, and as well as the complexity 

of the operational use models of IT equipment. Some companies suggest that the use 

of liquid cooling is limited to special high-density equipment/components [9]. 
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There are several implementation methods of liquid cooling to the rack. One 

involves a liquid-cooled door, which is usually located on the back of the rack and 

cools the air flowing from the rack to (or near) ambient room temperature, and then 

remove the heat. Another implementation method is a closed-liquid rack that is 

sealed; which uses a heat exchange to remove the heat from the airflow fully 

contained within the rack. The heat exchange is connected with a liquid cooling 

system and transfer the heat to liquid. This design is thermally and airflow neutral to 

the room, and usually also quiet. However, when the closed-liquid system fails 

(although it is a rare event), the rack would need to be opened manually to prevent 

overheating [9]. 

Another implementation method of the related rack-cooling strategy are in-row 

liquid coolers and overhead liquid coolers, which are similar as the liquid-cooled 

door. These two methods remove the heat very near the heat sources and the room-

level air-cooling system are not stressed by heat load, although there is local room 

airflow.  The advantage is that they are rack-independent, and not limited to some 

specific server or rack manufacturers.  However, a disadvantage of both the methods 

is that they occupy a lot of racks or overhead real estate. The trade-off need be 

considered in their implementation [9].  

Another liquid cooling technology is offered by Iceotope [10], a manufacturer 

of liquid cooling equipment. In this method, the server motherboard is completely 

immersed in an individually sealed bath of an inert liquid coolant. The generated heat 

is removed by the coolant from the sensitive electronics to a heat exchanger, which is 



11 

formed by the wall of the bath. The coolant is continuously re-circulated and cooled 

in the bath. Icetope claims this cooling technology can dramatically reduce data 

center energy costs if IT managers can get comfortable with the idea of liquids in 

their centers. 

A great potential risks is the leaking of the liquid pipes close to the IT 

equipment, and it usually can cause the system failures even if the liquid may 

evaporate, which should be taken into consideration when the cooling method is 

decided. One possible solution is using a leak detection system with the liquid cooling 

implementation although it needs additional cost [9]. 

1.3.3 Free Air Cooling 

Free air cooling bypasses the traditional air conditioner by pulling in cold air 

from the outside, cycling it through the server racks, and flushing it back outside. 

This is usually implemented by an airside economizer, which brigs outside air into the 

building and distributes it using a series of dampers and fans.  

Intel conducted a ten-month test to evaluate the impact of using only outside air 

via air-side economization to cool a high-density data center in New Mexico in 

October 2007 [11]. The center had nine hundred heavily utilized production servers. 

In this test, the system provided one hundred percent air exchange, a temperature 

variation in the supply air from 18oC to more than 32oC, with no humidity control 

(4% RH to more than 90% RH) and minimal air filtration. The result showed that 

about USD 2.87 million (a 67% savings of total energy) was saved by the new 

cooling method. Internet giants, such as Google and Microsoft, have used free air 
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cooling in their data centers. Google operates such a data center in Belgium and the 

room temperature can be maintained above 27oC [12], which can allow the 

application of free air cooling during most of a year. Microsoft operates a data center 

with free air cooling in Dublin, Ireland, in which the room temperature can reach 

35oC [13]. Vodafone runs its base stations at a standard temperature of 35ºC now, 

rather than the previous norm of 25-30ºC, in order to save energy for cooling. It 

claims that the higher temperature did not reduce the equipment’s reliability or life 

expectancy. Vodafone plans to replace air-conditioning with free air cooling in the 

majority of its base stations between 2008 and 2011 as part of a plan to reduce its 

carbon footprint by fifty percent between 2006 and 2020 [14].  

1.3.4 Tower Free Cooling 

Beside free air cooling with airside economizer systems, there is another 

cooling method tower free cooling (or simply free cooling) for data centers. This 

cooling method is usually implemented by waterside economizers, which conjunct 

with a cooling tower evaporative cooler or a dry cooler remove the heat from the 

rooms.  A waterside economizer system has cooling coils to cool the room air and 

then carry the heat to the heat exchanger, which is connected with a cooling tower 

outside the room with cool water. This process is shown in Figure 3.  
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Figure 3: Typical Waterside Economizer [17] 

Airside economizers are typically used for more hours than waterside 

economizers since free air cooling is used in mild conditions, whereas tower free 

cooling can only be used in cold conditions. Airside economizers are also easier to 

design, operate, and maintain than waterside economizers, which are complicated and 

include cooling towers and heat exchangers. However, there are still some reasons to 

choose tower free cooling over free air cooling. For example, waterside economizers 

(WSE) do not require large outside air and relief air ducts and associated louvers. 

This makes them a prime candidate for, say, a large historic building where the 

building envelope cannot be altered. Tower free cooling can be also used where it 

may not be practical to create large floor openings in some facilities to accommodate 

the outside air and relief ducts. 
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Wells Fargo's bank introduced tower free cooling for its data center in 

Minneapolis, Minnesota, in 2005, and achieved significant energy savings. The added 

investment was $1 million, due to the implementation of tower free cooling, about 

one percent of the total construction costs. The waterside economizer was used when 

the outside air temperature dropped to about 2oC, and can be operated about four 

months a year. The energy savings amounted to $150,000 in 2006 and up to $450,000 

a year subsequently as the bank continued to expand operations [15].  

1.3.5 Comparison 

An appropriate cooling method must be selected to maximize energy efficiency. 

To assist with this decision, this subchapter compares these methods and identifies 

their advantages and disadvantages. 

Energy Efficiency 

The energy efficiency of air conditioning with the new power management 

technologies is only moderate, since the efficiency is better than with traditional A/C, 

but it doesn’t utilize the cool air outside the room which means more energy saving. 

IBM claims liquid cooling is very efficient for high-power density subsystems (e.g., 

CPUs) due to the high heat transfer coefficients [16], but Intel doubts its efficiency 

for entire data centers with many low-density units [9]. Intel [11], Google [12], and 

Microsoft [13] consider that the energy reduction with free air cooling is highly 

efficient, and Google and Microsoft have operated new data centers with free air 

cooling. For the Fargo bank, tower free cooling has also proved very energy-efficient.  

Flexibility of Equipment Location 
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Air conditioning with new power management technologies is very flexible and 

the equipment can be put almost anywhere in the room. However, liquid cooling is 

not flexible, since the equipment can only be installed near access to the liquid pipes. 

Free air cooling and tower free cooling have high flexibility, much like air 

conditioning with new power management technologies.  

Retrofit Cost 

The cost of retrofitting air conditioning with new power management 

technologies is moderate. Generally, the retrofit costs for liquid cooling are higher 

than for other cooling methods, because the pipes for liquid recirculation must be 

installed, and sometimes re-installed. For example, when Icetope is installed, 

motherboards need be removed from the servers and then completely immersed in a 

sealed bath of coolant, which results in high costs in existing data centers with 

traditional A/C. Retrofitting free air cooling and tower free cooling entails moderate 

costs, since airside economizers, waterside economizers and associated pumping 

equipment and filtration equipment are needed. 

Weather Dependence 

Air conditioning and liquid cooling with new power management technologies 

are not weather-dependent, but both free air cooling and tower free cooling have high 

weather dependence. Mild weather conditions can maximize the operating hours of 

airside economizers and cold weather conditions can maximize the operating hours of 

waterside economizers. This comparison is summarized in Table 3.  
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Table 3: Comparison of Cooling Methods 

 A/C Liquid Cooling Free Air 
Cooling 

Tower Free 
Cooling 

Energy 
efficiency Medium 

High for high power density 
subsystem but medium for 

whole data centers 
High High 

Flexibility High Low High High 

Retrofit cost Medium High Medium Medium 

Weather 
dependence Low Low High (mild) High  (cold) 

1.4 Summary: 

The telecom industry has become more concerned with its energy consumption 

and the associated environmental effects. Since about half of the total energy 

consumption in the telecom industry is devoted to power and cooling equipment in 

data centers, there is a great opportunity to modify cooling methods to improve the 

energy efficiency of telecom industry. This can have the benefit of not only meeting 

environmental requirements, but can also help lower operating cost. 

Cooling equipment provides great opportunities to improve the energy 

efficiency by modifying the cooling methods. Free air cooling is one of the most 

promising cooling methods for data centers and has been adopted by some leading 

companies, although it has a high dependence on the local weather. In order to 

maximize the energy efficiency, data centers may implement several cooling methods 

in various seasons in a year.  
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Chapter 2. Free Air Cooling  

Free air cooling (chiller-less cooling) is one of the best options for significantly 

cutting cooling costs in data centers, and is increasingly being used to improve energy 

efficiency. Free air cooling is usually implemented using air economizers. With an 

economizer, when the outside air is cooler than the return air, the hot return air is 

exhausted and replaced with cooler, filtered outside air, essentially "opening the 

windows" for free cooling. This chapter introduces the implementation of free air 

cooling.   

2.1 Introduction of Airside Economizer 

There are slight differences between airside economizers designed by different 

companies[1][2][3]. This chapter introduces a typical air economizer in detail and 

describes its method of operation. An airside economizer system regulates the use of 

outside air for cooling the equipment in a data center, as shown in Figure 4. It takes 

advantage of the time in the year when the ambient conditions are favorable and 

provides a free air cooling cycle to meet the cooling requirements. Generally, it 

consists of sensors, ducts, dampers and containers that supply the appropriate volume 

and temperature of air to satisfy cooling demands. Before airside economizers are 

used, a temperature range for the supply air temperature must be set; this can be 

controlled by the airside economizer [1]. The outside air is brought into the containers 

and then distributed to cool the equipment in data centers via a series of dampers and 

fans. The supply air cools the equipment, transfers heat, and then returns to the 

containers of the air economizers. Instead of being recirculated and cooled, the 
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exhaust air is simply directed outside. The sensors measure the outside and inside air 

conditions. If the outside air is particularly cold and beyond the set temperature range 

of the supply air, the economizer will mix the inlet and exhaust air, ensuring that the 

temperature of the supply air is within the set range. But if the outside air is far 

outside the set range, the airside economizers cannot work and air conditioning is 

needed. Thus, the set temperature range of the supply air determines the operating 

hours of airside economizers in a year. 

 

Figure 4: Schematic of Airside Economizer with Airflow Path [12] 

The dampers used for closing and opening the economizer windows, improved 

filters, fans, actuators, logic modules, and sensors add to the cost of an airside 

economizer. Though the costs of the logic controller and sensors are for the most part 
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independent of the economizer size, the cost of all other components depends on the 

size of the data center and the amount of outside air it brings in.  The implementation 

of free air cooling also incurs the cost of installation. An example of the costs for an 

airside economizer is shown in Table 4. 

Table 4: Example: Costs of Airside Economizer [8] 

Components Cost 

Dampers USD 2000 

Honeywell Actuator ML8185 USD 500 

Honeywell W7215 Logic Module USD 500 

Honeywell C7400A1004 Enthalpy sensors USD 272 

Honeywell C7835A Discharge Sensors USD 300 

Air Inlet fan USD 400 

Total USD 3972 

2.2 Operating Environment Setting 

The operating environment setting is the key factor in the implementation of 

free air cooling. The operating environment affects not only the reliability of telecom 

equipment, but also the operating hours per year of the airside economizers. An 

appropriate operating environment setting should consider a survey of the climate, 

equipment specifications, standards, and identified hotspots.  

Weather Survey 

Surveying the weather is necessary for determining the operating environment. 

Obviously, the weather varies greatly throughout the year from place to place. 
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Generally, once the operating environment has been set, the local weather conditions 

determine the operating hours per year of airside economizers. When the ambient air 

conditions exceed the range of the set operating environment, the heating or cooling 

coils of the economizers adjust the air to meet the set temperature. However, some 

alternatives have been implemented. For example, one Google data center in Belgium 

doesn’t use chillers or heating coils at all [5]. When the weather gets hot, it redirects 

the workload, turning off equipment as needed and shifting the computing load to 

other data centers. The weather information for some cities can be found from 

Climatetemp.info (http://www.climatetemp.info/), and the examples of four different 

cities (Seattle, New York, Beijing, Shanghai) are shown in Table 5~6. Notice that 

New York and Beijing have lower temperatures than the others, and that Seattle and 

Shanghai have higher humidity levels than the other two.  
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Table 5: New York Weather Average [13] 

Month Temperature (oC) Humidity (RH) 

 Avg Min Avg Max Avg  

Jan -3 4 0.5 61 

Feb -2 4 1 58 

Mar 1 9 5 56 

Apr 6 15 11 55 

May 12 21 17 56 

Jun 17 26 22 58 

Jul 20 28 24 57 

Aug 19 27 23 60 

Sep 16 24 20 60 

Oct 10 18 14 59 

Nov 4 12 8 60 

Dec -1 6 2.5 60 
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Table 6: Beijing Weather Average [13] 

Month Temperature (oC) Humidity (RH) 

 Avg Min Avg Max Avg  

Jan -10 1 -4.5 50 

Feb -1 8 3.5 50 

Mar 2 12 7 48 

Apr 7 21 14 46 

May 13 27 20 49 

Jun 18 31 25 56 

Jul 21 31 26 72 

Aug 20 30 25 74 

Sep 14 26 20 67 

Oct 6 20 13 59 

Nov -2 10 4 56 

Dec -8 3 -2.5 51 

 
Standards Requirements 

Standards are an important reference for determining the operating environment 

setting. Generally, the recommended temperature range in the standards is 18~27oC, 

and the allowable temperature is 5~40oC. The allowable humidity range is 5%~80% 

(The details will be introduced in chapter 4). The purpose of the recommended 

envelope is to give guidance to data center operators on maintaining high reliability 

and energy efficiency.  Telecom equipment manufacturers test their equipment within 

the allowable range to verify that it will function within those boundaries. Typically, 
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manufacturers will perform a number of tests prior to announcing a product to be sure 

it meets all the functionality requirements within the range. This is not a certification 

of reliability,) but the recommended range is a statement on reliability. The IT 

manufacturers recommend that data centers maintain their environments within the 

recommended envelope for extended periods of operation. Exceeding the 

recommended limits for short periods of time should not cause a problem, but running 

near the allowable limits for months could increase reliability issues [6]. 

Equipment Specifications 

The specifications for the equipment in data centers are important references for 

setting the operating environment ranges. The specifications can usually be found in 

the datasheets for individual equipment items. For example, the operating temperature 

of Cisco 3600 Series routers is specified as 0~40oC, and the humidity range is 5~95% 

[7]. Note that the operating environment requirements in datasheets refer to the local 

operating environments, rather than the inlet temperature of supply air. In addition, it 

may be that the specifications are higher than the standard limits. When this happens, 

comprehensive consideration is needed in order to make the determination. Generally, 

standard operating environment limits are assumed to be the foundational 

specifications by both equipment manufacturers and customers. However, the 

manufacturer and customer may agree on additional specifications that may allow the 

equipment to be operated at higher specifications than normal. 

Identification of Hotspots 
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Hotspots are among the most dangerous points in data centers. When the 

operating environment is being set, it is important to consider the effect of free air 

cooling on hotspots. The operating temperatures at those places must be anticipated, 

and be reflected in the datasheet specifications. The temperatures at hotspots should 

be continually monitored during operation.  

2.3 Operation of Airside Economizers 

Figure 5 shows the logic used by the controller for deciding the opening and 

closing of the airside economizer dampers. Heat and enthalpy sensors are located 

outside as well as inside the data center. The control logic looks at the differential of 

the sensible heat of the return air and the outside air, as shown in Figure 5 [8]. 

Supply

Return

Outdoor

Exhaust
RD

OD

ED  
Figure 5: Control logic of the airside economizer for damper actuation [8] 

Figure 6, 7, and 8 show when the outside air can be used. For example, when 

the outside air temperature (OAT) is higher than the return air temperature (RAT), no 

outside air is brought into the data center space, as shown in Figure 6. In this case, the 

outside air damper (OD) is completely closed, resulting in no economization. The 

cooling coils inside airside economizers are used to cool the return air [8]. 
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Supply

Return

Outdoor

Exhaust
RD

OD

ED

OAT>RAT

OAT: outside air temperature
RAT: return air temperature  

Figure 6: Case for which no outside air cooling is available from the economizer 
[8] 

Figure 7 illustrates when the outside air temperature (OAT) is sufficiently lower 

than the return air temperature (RAT). In this case, the return air damper (RD) is 

completely closed, allowing no return air to mix with the outside air. This results in 

partial economization and additional cooling should be provided with the chillers. 

Supply

Return

Outdoor

Exhaust
RD

OD

ED

SAT<OAT< RAT

 
Figure 7: Case for which partial outside air cooling is available from the 

economizer [8] 

Figure 8 shows the case when the outside air temperature (OAT) is lower than 

the supply air temperature (SAT) requirement, thus outside air is brought into the data 

center space. In this case the return air is mixed with the outside air so that the 

temperature falls within the set operating environment range. If the outside air 

temperature is extremely cold and the air mixed with return air is still lower than the 
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SAT requirement, the heat coils inside the airside economizers are used to warm the 

mixed air [8].  

Supply

Return

Outdoor

Exhaust
RD

OD

ED

OAT< SAT

 

Figure 8: Case for which 100% cooling is available from the economizer [8] 

2.4 Benefits of Free Air Cooling 

The energy saving of free air cooling depends on the local climate of data 

centers and the design characteristics. In 2008, the Department of Civil and 

Environmental Engineering in University of California Berkeley and Lawrence 

Berkeley National Laboratory Berkeley published a report to estimate the energy 

saving in several climate zones of California [10]. In order to identify quantitatively 

the energy saving, the report compared free air cooling (with airside economizers 

cooling) with tower free cooling (with waterside economizers cooling) and baseline 

(with traditional air conditioning unit cooling) based on energy models and 

simulations. This subchapter introduces the energy saving benefits of free air cooling 

in California as an example. 
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2.4.1 Data Center Design Scenarios 

In this paper, the baseline considers the traditional “computer room air 

conditioning” (CRAC) units. In this case, CRAC units are placed on the server room 

floor. The air is cooled by entering the top of CRAC and passing over the cooling 

coils, and then is discharged into the underfloor plenum. The cold air in the 

underfloor plenum goes through the perforations in the floor tiles located in front of 

the server racks, and pass across the server racks to remove their heat with the help of 

the servers. The exhausted air exits the backside of the server racks and becomes 

warm, which will rise to the intake of the CRAC unit. In the baseline scenario, the air 

circulation is usually internal to the data center. A rooftop air handling unit (AHU) 

provides a small amount of air to positively pressurize the room and supply outside 

air for occupants. Refrigerant in water-cooled chiller plant use heat exchangers to 

cool water from the CRAC units of the data center. The chiller refrigerant uses heat 

exchangers to transfer the waste heat to the condenser water piped from the cooling 

towers, in which the warm water can be cooled by the outside air. This baseline 

design is widely used in most mid-size and large-size data centers [10].  

In the water-side economizer (WSE) scenario, it includes a CRAC unit similar 

to that of the baseline scenario, except that additional heat exchangers are installed 

between the chilled water supplied to the CRAC units and the condenser water in the 

cooling towers. If the local climate is cold enough, the chiller plant can be not used, 

and the condenser water in the cooling towers can is cold enough to cool directly the 

chilled water supplied to the CRAC. The CRAC units and chiller plant are the same 

as those in the baseline scenario. The energy saving is, therefore, through replacement 
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of compressor-driven chilling with fan-driven evaporation cooling [10]. The 

schematic is shown in Figure 9. 

 
Figure 9: Schematic of waterside economizer scenario [10]  

In the air-side economizer (ASE) scenario, there are some differences of air 

delivery from the traditional CRAC units in typical data centers. AHUs are usually 

placed on the rooftop which is outside of the data center room, and some ducts are 

used to deliver air to and from the server racks. The ducted system design can prevent 

the cold air and warm air from unintentionally mixing in the data center, but it has 

greater air resistance other that in a traditional CRAC unit. When the outside air 

temperature is inside the set range, the AHU directly supply the outside air into the 

data center, pass over the servers, and move the return air with heat removal to the 

outside of the room. In this process of 100% outside air cooling, fans consume more 

energy than that in the baseline case. However, the economizer design saves the 

energy for operating the chiller, chilled water pumps, and the cooling tower fans. If 
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the outside air temperature is higher than the set range, the chiller needs be operated 

like the baseline case [10].  

 
Figure 10: Schematic of airside economizer scenario [10] 

2.4.2 Energy Modeling Protocol 

The model calculations assume that each design is implemented in (2800 m2) 

data center with a size of a 30,000 ft2. The heat density of the data center is assumed 

to about 80 W/ft2 (0.86 kW/m2, 2.4 MW total), which is currently considered to be of 

low-range to mid-range. Table 7 shows the data center basic properties in the all three 

scenarios. Total Energy demand is calculated as the sum of energy consumption by 

servers, chiller use, fan operation, transformer and uninterruptible power supply 

(UPS) losses, and building lighting [10]. 
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Table 7: Data center characteristics common to all design scenarios [10] 

Data Center Parameters  

Floor Area  30000 ft2 

UPS Waste Heat 326 kW 

Data Center Lights 30 kW 

Total Rack Load 2000 kW 

Total Internal Load 2,356 kW 

Average Internal Load Density 79 W/ft2 

Minimum Ventilation 4,500 ft3/min 

Supply Air Temperature 13oC 

Return Air Temperature 22oC 

Chiller Capacity 1750 kW 

Number of Chillers 3 

The chiller system includes coolant compressor, chilled water pumps, 

condensing water pumps, humidification pumps, and cooling-tower fans. Energy 

consumption of servers, UPS, and lighting are considered as constant in the three 

design scenarios. The humidity is conventionally restricted by ASHRAE 2005 

(40%~55%) in the baseline case and WSE scenarios, and is typically not restricted in 

the ASE scenario. Air-side economizer scenario also has a different fan parameters 

listed in Table 8.  
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Table 8: Data center fan properties [10] 

Fan System 
Parameters Baseline and WSE ASE 

 MUAH Exhaust CRACs Supply Relief 

Total Air Flow (cfm) 4500 4500 49500 437758 437758 

Fan Motor Size, 
Nominal (hp) 7.5 3 10 30 50 

Number of Fans 1 1 30 10 5 

Fan Efficiency 53.3% 44.0% 55.6% 63.8% 67.5% 

Fan Drive Efficiency 95% 95% 95% 95% 95% 

Fan Motor Efficiency 89.6% 86.2% 90.1% 92.5% 93.2% 

VFD Efficiency n/a n/a n/a 98% 98% 

Total Static Pressure 
Drop  3.5 1 1.6 2 1 

2.4.3 Result 

This model considers five cities in California (Sacramento, San Francisco, San 

Jose, Fresno, Los Angeles) and assumes that a data center is located in each city. The 

annual energy consumption of each data center is calculated based on the three design 

scenarios, and the ratio of total data center energy to server energy consumption is 

also calculated as in Table 9. In the baseline scenario, the performance ratio of 

building energy consumption over server energy consumption is 1.55, which is the 

same for all of the five data centers, since the operation under this design is 

practically independent of outdoor weather conditions. The performance ratios of the 

ASE scenario show air-side economizers can reduce the energy consumption 

compared with the baseline case. The WSE scenario can save energy compared with 



34 

the baseline, but the saving is less than that of the ASE scenario. In a data center with 

a large amount of energy consumption, a small change in the performance ratio 

represents a significant saving. For example, the performance ratio change from 1.55 

to 1.44 in San Jose data center can save energy of about 1.9 million kWh/y, 

equivalent to about $130,000/y (assuming $0.07/kWh) [10].  

Table 9: Ratio of total building energy to computer server energy (PUE) [10] 

 San Jose San 
Francisco Sacramento Fresno Los 

Angeles 

Baseline 1.55 1.55 1.55 1.55 1.55 

ASE 1.44 1.42 1.44 1.46 1.46 

WSE 1.53 1.54 1.53 1.53 1.54 

The energy consumption of the five data centers under the three design scenario 

is shown in Figure 11. The result shows that the ASE scenario savings in San 

Francisco provides the greatest energy saving while that in Fresno provides the least 

energy savings. Under the WSE scenario, the data center in Sacramento obtains the 

greatest benefits while those in Los Angeles and San Francisco gain the minimal 

energy savings. The San Francisco WSE scenario would be expected to gain 

significant savings due to the cool climate, but the chiller part-load inefficiencies 

reduced the saving. The San Francisco air contains a relatively higher moisture 

content which increases the latent cooling load in the model and often reaches the 

capacity limit of the first chiller plant, and a second chiller needs be activated. Since 

the cooling load is equally shared by the two chillers and the cooling is transferred 

from the first chiller to the second chiller, both chillers have cooling loads slightly 
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above half their capacity limits, which results in inefficiencies of the chillers. So the 

data center with the WSE scenario in San Francisco requires modeling the hour-by-

hour load of the chiller instead of the peak load, and then operates the appropriate 

number of the chillers to maintain the chillers near their most efficient operating point 

at any moment [10].  

 
Figure 11: Energy consumption under economizer scenarios [10] 

Figure 12: shows the annual energy consumption with the different humidity 

restrictions in the five data centers. Among the three design scenarios, the baseline 

and WSE scenario are generally independent with the humidity restrictions, however, 

the ASE energy consumption will increase sharply and it may exceed even those in 

the other scenarios when the relative humidity (RH) restriction ranged is narrowed.  

The humidity range for data centers recommended by ASHRAE thermal guidelines 

2004 version is 40%-55% (The humidity ranges in 2008 and 2011 version are 

represented by both relative humidity and dew point, and the detail will be introduced 

in chapter 4). In order to gain the maximum energy saving, the humidity level in the 
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ASE scenario may go far beyond the recommended range. It may cause some 

reliability risks to the equipment, which will be discussed in the following chapter. 
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Figure 12: Chiller and fan energy resulting from humidity restrictions [10] 

2.5 Implementations of Free Air Cooling 

Free air cooling is being increasingly accepted and implemented in companies, 

shown in Table 10.  It has been widely used in data centers located from U.S.A, 

Europe, Asia to Australia. Due to the climate diversity of the data center locations and 

designs, the annual days of free air cooling are different with various energy saving 

benefits. This subchapter introduces the implementations of free air cooling in two 

example cases of commercial company.  
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Table 10: Implementation of free air cooling in companies [9]  

Company Location Description 

Facebook Oregon, 
U.S.A 

The Facebook’s first company-built facility, 
147,000 sq ft, with Power Usage Effectiveness 
(PUE) of 1.15. 

Microsoft Chicago, 
U.S.A One of the largest data centers, 700,000 sq ft. 

Citigroup Frankfurt, 
Germany 230,000 sq ft, 65% of a year with free air cooling. 

Digital 
Realty Trust 

California, 
U.S.A 

More than 65% of a year with free air cooling, 
annual 3.5M KWH energy saving ($250,000), with 
a PUE of 1.31. 

VMWARE Washington, 
U.S.A 

The mechanical system uses hot air/cold air 
physical separation to extend the operation hours of 
air-side economizers  

Microsoft Dublin, 
Ireland 

303,000 sq ft, Microsoft’s fist Mega data center in 
Europe. 

Internet 
Initiative 
Japan 

Japan 
It is expected to reduce the cost of cloud service by 
40%, reducing annual CO2 output by about 4,000 
tonnes. 

Equinix 
Sydney 

Sydney, 
Australia 

The $32M data center is one of the first centers 
with free air cooling in Sydney. 

Advanced 
Data Centers 

California, 
U.S.A 

237,000 sq ft, use of air-side economizers and 
recycled grey water as a redundant water supply.  

Google Brussels, 
Belgium 

Operated above 80oF, with temperatures above the 
acceptable range only about seven days per year on 
average. 

Weta Digital 
Wellington,  

New Zealand 
10,000 sq ft, running full time and often at full 
capacity, with no air-conditioning. 

IBM Cloud N Carolina, 
U.S.A 

More than 100,000 sq ft, with $362M, annual use 
of free air cooling for half year. 

Fujitsu Perth, Span about 8,000 sq ft, and potentially decreasing 
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Australia the cooling load by up to 50%.  

HP Wynyard 
Newcastle, 
United 

Kingdom 
300,000 sq ft, Data center Leaders’ award 2008. 

Verne Global Keflavik, 
Iceland 

100% free cooling utilizing the low ambient 
temperature. 

 

Case Example: The Implementation of Intel  

In a typical Intel data center, more than 60% of the energy consumption is spent 

on the power and cooling equipment. The design of increasingly complex 

semiconductors requires the support of computing capacity in data centers, which 

results in the rapid growth of energy consumption. Intel implemented free air cooling 

to minimize the energy consumption for a given computing capacity in data centers.  

As a proof of concept (PoC) test, the free air cooling was implemented in one 

of Intel data centers in New Mexico with a high performance and high density 

standard for ten months. These blade servers in the data center are highly utilized to 

deliver great computing capacity, however they also generate a lot of heat. With air 

conditioning unit, the supply air to cool the severs is 20oC. After the air passes across 

the servers, its temperature increases by 32oC and reaches 52oC. If Intel wants to re-

circulate the air, it needs to be cooled by 32oC, which will consume substantial energy 

to do it with air conditioning units [1]. 

The implementation method of free air cooling is shown in Figure 13. In order 

to avoid the equipment downtime due to the severe operating environment, free air 

cooling was implemented in a trailer originally designed to provide temporary 
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additional computing capacity. The trailer was 1,000-square-foot (SF) and divided 

into two approximately 500 SF compartments. One compartment with 448 high 

utilized blade servers was cooled by airside economizers, which were modified from 

low-cost, warehouse-grade direct expansion (DX) air conditioning equipment. The air 

economizers expel the hot and exhausted air from the servers to outdoors and supply 

the cold outside air to cool the servers. The other compartment with another 448 

blade servers was cooled by the traditional air conditioning units in order to identify 

the impact of free air cooling on reliability. The sensors installed in the two 

compartments were used to monitor the temperature and humidity [1]. 

 
Figure 13: Implementation of free air cooling in Intel [1] 

In order to maximize the energy saving, the outside supply air temperature was 

set to have a wide range of 18oC to 32oC, since the servers can work under the 
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temperature as high as 37oC according to the manufacturer ratings.  This temperature 

range of the supply air was maintained by the air conditioning units inside the airside 

economizers. When the outside air exceeded 32oC, the air conditioning units would 

start to cool the supply air to 32oC. If the temperature of the supply air was below 

18oC, the hot return air from the servers would be mixed with the supply air into the 

set range. There are no controls on the humidity in this case. For the contamination, 

minimal filtering was applied to remove only large particles in the supply air but 

permit fine dust into the room. During the PoC test, the servers were used to run large 

workload to maintain a very high utilization rate of about 90% [1].  

The PoC test started in October 2007 and ended in August 2008. The average 

temperature at the data center location is shown in Table 11. The servers with free air 

cooling were subjected to wide operating condition variations. Due to the slow 

response of the low cost air conditioning units inside the airside economizers, the 

temperature of the supply air exceeded slightly beyond the set range. The records 

showed that the supply air temperature varied from 17.7oC to 33.3oC. The relative 

humidity varied from 4% to more than 90% with rapid changes at times. The 

compartment and the servers with free air cooling were covered with dust. 
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Table 11: Average temperatures at Intel free air cooling location [1] 

Month Ave high (oC) Ave low (oC) 

Jan 9 -5 

Feb 13 -2 

Mar 17 1 

Apr 21 5 

May 23 9 

Jun 32 15 

Jul 33 18 

Aug 31 17 

Sep 28 13 

Oct 22 7 

Nov 14 0 

Dec 9 -5 

If both the compartments were cooled by air conditioning units, the total energy 

consumption in the trailer was about 500 kilowatts (KW). When the economizer was 

used, the cooling load of the DX air conditioning units was reduced from 111.78 KW 

to 28.6 KW in the economizer compartment, which saved the energy consumption as 

high as 74%. It was estimated that 67% energy consumption could be saved with 91% 

use of airside economizers, which potentially could reduce the annual energy cost by 

up to USD 2.87 million in a 10-megawatt (MW) data center. The failure rate in the 

compartment with DX air conditioning units cooling was 2.45%, and the failure rate 
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in the economizer compartment was 4.46%, which almost doubled due to the dust and 

wider ranges of temperature and humidity [1].  

Case Example: The Implementation of Dell 

Free air cooling was also implemented in one of Dell’s data center with 50000 

ft2 in Austin, TX.  This implementation realized $179k (about 15% reduction in 

overall energy cost in the data center) by free air cooling in the first four months of 

2010, although the climate in Austin is not ideal for the implementation of this 

cooling method. This power consumption is shown in Figure 14. 

 
Figure 14: Energy consumption of Dell data center with free air cooling [11] 

2.6 Summary 

Free air cooling is increasingly accepted in data centers and is usually 

implemented with airside economizers. During the implementations, the data center 
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operators need set operating environment ranges of the supply air. The energy saving 

benefits from free air cooling depends on the set operating environment and the local 

climate in data centers. The potential hotspots should be considered and removed by 

local cooling or other methods during the implementation. Researches show that the 

humidity restrictions have great impacts on the energy saving. In order to maximize 

the energy saving of free air cooling, the humidity of the supply air is usually 

uncontrolled under free air cooling conditions. 
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Chapter 3. Risks of Free Air Cooling 

Application of free air cooling modifies the operating environment in data 

centers. Normally, most data centers need to refer to the operation conditions required 

in the industry standards such as “ASHRAE Thermal Guidelines for Data Center and 

Other Data Processing Environments”. But under free air cooling, operating 

environments usually go beyond those in current data centers and standards. This 

modification may result in some reliability issues. This chapter reviews the required 

operation condition in data centers and summarizes the risks arising from free air 

cooling, and discusses their impact on the reliability of telecom equipment in data 

centers. 

3.1 Operating Environment in Standards  

Operating environment settings directly affect cooling energy efficiency. It is 

estimated that data centers can save four to five percent of energy costs for every one 

degree increase in server inlet temperature by the traditional A/C cooling method. In 

most data centers, the operating environment is maintained at fixed air inlet 

temperatures and narrow humidity ranges. Some standards have expanded their 

requirements for operating environment to improve energy efficiency.  

There are several standards recommending operating conditions for telecom 

equipment. The American Society of Heating, Refrigerating, and Air-Conditioning 

Engineers, Inc. (ASHRAE) published its “Thermal Guidelines for Data Centers and 

Other Data Processing Environments” in 2004 [1], which provide allowable and 
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recommended operating condition limits for data centers, including temperature and 

humidity. The recommended condition is “to give guidance to data center operators 

on maintaining high reliability and also operating their data centers in the most 

energy efficient manner”, and the allowable condition is “where the IT manufacturers 

test their equipment in order to verify that the equipment will function within those 

environmental boundaries” [1]. In 2008, ASHRAE expanded the limits to save energy 

[2]. The revision has increased both the temperature and moisture ranges 

recommended for data center equipment, as shown in Table 12 (The moisture range is 

expressed in term of dew points, since ASHRAE thinks equipment failure is not 

directly related to relative humidity but is strongly related to dew points.). ASHRAE 

specified four classes in 2008 version, and two of which (class 1 and 2) are applied 

into data centers. The detailed information of these classes will be introduced in the 

following.  
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Table 12: Operating environmental limits of class 1 and 2 per ASHRAE [2] 

 
Recommended Limits Allowable 

limits 2004 version 2008 version 

Low temperature 20oC 18oC 15oC 

High temperature 25oC 27oC 32oC 

Low moisture 40%RH 5.5oC DP6 20%RH 

High moisture 55%RH 60% and 15oC DP 80%RH 

ASHRAE revised the thermal guidelines in 2011 and the new version have 

more data center classes to “accommodate different applications and priorities of IT 

equipment operation” [3]. The specification of the classes are [3]: 

Class A1: Typically a data center with tightly controlled environmental 

parameters (dew point, temperature, and relative humidity) and mission critical 

operations; types of products typically designed for this environment are enterprise 

servers and storage products. 

Class A2: Typically an information technology space or office or lab 

environment with some control of environmental parameters (dew point, temperature, 

and relative humidity); types of products typically designed for this environment are 

volume servers, storage products, personal computers, and workstations. 

Class A3/A4: Typically an information technology space or office or lab 

environment with some control of environmental parameters (dew point, temperature, 

                                                 
6 Dew point is the temperature at which the air can no longer hold all of its water vapor, and some of the water vapor must 
condense into liquid water. 
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and relative humidity); types of products typically designed for this environment are 

volume servers, storage products, personal computers, and workstations. 

Class B: Typically an office, home, or transportable environment with minimal 

control of environmental parameters (temperature only); types of products typically 

designed for this environment are personal computers, workstations, laptops, and 

printers.  

Class C: Typically a point-of-sale or light industrial or factory environment 

with weather protection, sufficient winter heating and ventilation; types of products 

typically designed for this environment are point-of-sale equipment, ruggedized 

controllers, or computers and Personal Digital Assistants (PDA7)s. 

These classes are also shown in Table 13. The environmental specifications of 

the classes in 2011 version are shown in Table 14. The The purpose of the 

recommended envelope is to give guidance to data center operators on maintaining 

high reliability and also operating their data centers in the most energy efficient 

manner. The allowable envelope is where IT manufacturers test their equipment in 

order to verify that the equipment will function within those environmental 

boundaries. 

 

                                                 
7 PDA is a handheld computer for managing contacts, appointments and tasks. 

http://www.pcmag.com/encyclopedia_term/0%2C2542%2Ct=PDA&i=49021%2C00.asp
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Table 13: 2011 and 2008 ASHRAE Thermal Guideline classes [3] 

2011 2008 Application IT equipment Environmental 
Control 

A1 1 

Data Center 

Enterprise servers, 
storage product Tight Control 

A2 2 
Volume servers, storage 

product, personal 
computers, workstations 

Some control A3 N/A 

A4 N/A 

B 3 
Office, home, 
transportable 

environnent, etc. 

Personal computers, 
workstations, laptops, 

printers. 
Minimal control 

C 4 
Point-of-sale, 

factory, industry, 
etc. 

Point-of-sale equipment, 
ruggedized controllers, 
or computers and PDAs. 

No control 
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Table 14: Environmental limits 2011 ASHRAE Thermal Guideline classes [3] 

Class Product Operation Product Power Off 

 Temp. 
Humidity 

range 

Max 
dew 
point 

Temp. Humidity 
range 

Max 

dew  

point 

Recommended 

A1 to 
A4 18 to 27 

5.5oC DP to 
60% and 15oC 

DP 
 

Allowable 

A1 15oC to 
32oC 

20% to 
80%RH 17 5oC to 

45oC 
8% to 80% 

RH 27oC 

A2 10oC to 
35oC 

20% to 
80%RH 21 5oC to 

45oC 
8% to 80% 

RH 27oC 

A3 5oC to 40oC 

-12˚C DP & 
8% 

RH to 85% 
RH 

24 

5oC to 
45oC 8% to 85% 

RH 27oC 

A4 5oC to 45oC 

-12˚C DP & 
8% 

RH to 90% 
RH 

24 

5oC to 
45oC 8% to 90% 

RH 27oC 

B 5oC to 35oC 8% to 80% 
RH 28 5oC to 

45oC 
8% to 80% 

RH 29oC 

C 5oC to 40oC 8% to 80% 
RH 28 5oC to 

45oC 
8% to 80% 

RH 29oC 

The recommended and allowable operating environment limits for the data 

center classes are also expressed by ASHRAE Psychrometric Chart, shown in Figure 

15 [3]. 
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Figure 15: ASHRAE 2011 Psychrometric Chart [3] 

The Telcordia Generic Requirements GR-63-CORE [4] and GR-3028-CORE 

[5] also provide recommended operating environments for telecom equipment. The 

recommended temperature range is the same as that in the ASHRAE 2008 version 

(another reason for expanding the ASHRAE recommended temperature, since 

Telcordia GR-63-CORE is widely accepted and used in the industry). The humidity 

ranges are slightly different from those in the ASHRAE guidelines, as shown in Table 

15. 
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Table 15: Operating environmental limits in Telcordia Generic Requirements 
[4][5] 

 Recommended Limits Allowable limits 

Low temperature 18oC 5oC 

High temperature 27oC 40oC 

Low relative humidity 5%RH 5%RH 

High relative humidity 55%RH 85%RH 

ETSI 300 019 [6] was published by the European Telecommunications 

Standards Institute (ETSI) in 1994, and provides environmental requirements for 

telecom equipment under different conditions. It defines eight environmental 

conditions: storage, transportation, stationary use at weather-protected locations, 

stationary use at non-weather-protected locations, ground vehicle installations, ship 

environments, portable and non-stationary use, and stationary use at underground 

locations. There may be several classes within each condition. As an example, 

stationary use at weather-protected locations includes six classes:  

Temperature-controlled locations (class 3.1): a permanently temperature-

controlled, enclosed location with usually uncontrolled humidity, a combination of 

classes 3K3/3Z2/3Z4/3B1/3C2(3C1)/3S2/3M1 in IEC standard 60721-3-3.  

• Partly temperature-controlled locations (class 3.2): an enclosed location 

having neither temperature nor humidity control.  

• Non-temperature-controlled locations (class 3.3): a weather-protected 

location with neither temperature nor humidity control.  
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• Sites with a heat-trap (class 3.4): a weather-protected location with 

neither temperature nor humidity control, affected by direct solar 

radiation and heat trap conditions. 

• Sheltered locations (class 3.5): a shelter where direct solar radiation and 

heat-trap conditions do not exist. 

• Telecommunication control room locations (class 3.6): a permanently 

temperature-controlled, enclosed location, usually without controlled 

humidity, a combination of classes 

3K2/3Z2/3Z4/3B1/3C2(3C1)/3S2/3M1 in IEC standard 60721-3-3.  

The allowable environments for the classes of stationary use at weather-protected 
locations are shown in Table 16.  

Table 16: Allowable environments for stationary use at weather protected 
locations [6] 

Environment classes Unit 

Classes 

3.1 
3.2 3.3 3.4 3.5 3.6 

N8 E9 

Low temperature oC 5 -5 -5 -25 -40 -40 15 

High temperature oC 40 45 45 55 70 40 30 

Low relative humidity % 5 5 5 10 10 10 10 

High relative humidity % 85 90 95 100 100 100 75 

The purpose of the recommended operating range is to give guidance to data 

center operators for maintaining high reliability [2]. When the equipment is used 

                                                 
8 N: normal 
9 E: exceptional 
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beyond the recommended operating conditions, it may be less reliable. Currently, 

most data centers operate at temperatures between 20oC and 25oC. A survey of 

fourteen of Sun’s (now Oracle) data centers in 2007 showed that eight had the inlet 

temperature set at 20oC, five at 22oC, and one at 23oC [27].  

3.2 Failure Causes of Free Air Cooling 

Generally, the operating temperature in a free-air cooled data center is subjected 

to increased temperature variations, which may affect the lifetime of equipment and 

result in some reliability concerns. The humidity during free air cooling is usually 

uncontrolled in order to save the energy required by humidification and 

dehumidification, but this, too, may cause some failure mechanisms (such as 

electrostatic discharge (ESD) and conductive anodic filament (CAF) formation) to be 

more active. In addition, the contamination in free air cooling is a potential failure 

cause. 

3.2.1 Increased Temperature and Temperature Cycling 

When free air cooling is used in data centers, a major concern is that the 

operating temperatures may rise and exacerbate existing hotspots. Increases in 

operating temperatures, particularly in power infrastructures and cooling systems, 

may affect the performance of communication equipment. It is not clear whether the 

component junction temperatures increase linearly with the ambient temperature 

under a free air cooling environment. The thermal resistance may also change in the 

new environment. So it is possible that the local temperatures of the existing hotspots 

may increase rapidly and damage the equipment.  
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Changes in temperature can impact the electrical parameters of components and 

systems. As a result of these variations, particularly at hot spots, there is a risk of 

intermittent out-of-specification behavior. Free air cooling elevates the operating 

temperature. The temperature-dependence of equipment reliability is assessed by the 

effect of temperature stresses on dominant failure mechanisms. Failure mechanisms 

depend heavily on operational stresses and usually are more active in elevated 

temperature. Some failure mechanisms are sensitive to temperature and some 

equipment components will weaken under increased operating temperatures. 

Consequently, some components and systems may not be reliable for their expected 

lifetimes if operated under free air cooling. 

Some equipment is particularly sensitive to temperature increases. For example, 

the batteries in data centers and base stations may react to operating temperature 

changes. The recommended temperature for batteries is usually 25oC, and the 

allowable temperature range is 15oC to 30oC. A decrease in temperature may cause a 

drop in battery capacity; a one-degree decrease generally results in a one percent drop 

in battery capacity. A temperature increase may accelerate the corrosion of bipolar 

plates in batteries, with more water consumed, then affect the lifetimes of batteries. 

Generally, the lifetimes of batteries are maximized around 25oC, and it is estimated 

that the expected life may drop by fifty percent when the operating temperature 

increases fifty percent [7].  

Increases in operating temperatures also lead to increased failure rates of some 

components. For example, the failure rate for a typical switched mode power supply 
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(SMPS) doubles with every 10 to 15oC temperature rise above 25oC [8]. Increased 

operating temperatures also result in increased conduction and switching losses in 

switching transistors. With a temperature rise, the mobility of charge carriers also is 

reduced. In switching transistors such as power MOSFETs, reduced mobility leads to 

increased device resistance, and hence increased conduction loss [9]. Reverse bias 

leakage currents increase exponentially with increases in temperature, and this leads 

to greater power loss [10].  

High operating temperatures lead to an increase in switching turn-off time for 

power transistors, which in turn results in increased switching loss. Another result of 

higher operating temperatures is degradation in the gate oxide of switching 

transistors, which may result in time-dependent dielectric breakdown. High 

temperatures can lead to activation of the parasitic bipolar junction transistor in a 

power MOSFET and the parasitic thyristor in an IGBT, leading to destruction of the 

device due to latch-up. In aluminum electrolytic capacitors, increased operating 

temperature leads to the evaporation of the electrolyte. This will cause a reduction in 

the capacitance, an increase in the equivalent series resistance (ESR), and increased 

power dissipation. High operating temperatures cause structural overstress within the 

Schottky diode, causing cracks that can propagate into the Schottky contact region 

leading to catastrophic failure.  

The free air cooling application can increase the temperature variation and 

result in additional temperature cycles for the equipment. For example, during a 

proof-of-concept study performed by Intel, the average diurnal temperature variation 
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ranged from 13oC to 17oC [11]. For a piece of equipment with a lifetime of five years, 

this would result in an additional 1825 temperature cycles, which may well accelerate 

the wear-out of the equipment [11].  

Free air cooling may also accelerate wear-out in cooling equipment like fans. 

When the operating temperature is increased, the cooling algorithm may increase the 

fan speed to offset the temperature increase. This can affect the lifetime and reliability 

of the fans. 

3.2.2 Uncontrolled Humidity 

Data centers require continuous air conditioning to address the high internal 

heat loads generated by equipment and to maintain indoor temperatures below the 

maximum recommendation for operating computers. Air economizer cycles, which 

bring in large amounts of outside air to cool internal loads when weather conditions 

are favorable, could save substantial cooling energy. However, there is reluctance 

from many data center owners to take advantage of this common cooling technique 

due to concerns about airborne pollutants and the potential loss of humidity control. 

In practice, the humidity is usually uncontrolled to maximize the energy efficiency 

(e.g., at Intel). This uncontrolled humidity may cause reliability risks. Typical 

humidity levels in data centers based on ASHRAE Guidelines are between 40% and 

60%RH. This range provides effective protection against a number of corrosive 

failure mechanisms, such as electrochemical migration and conductive anodic 

filament (CAF) formation. The introduction of free air from the outside could 

potentially cause significant swings in data center humidity. In the Intel case, the 
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humidity varied from 4%RH to more than 90%RH. Both overly high and overly low 

humidity can activate failure mechanisms. CAF can be caused by high humidity, and 

electrostatic discharge (ESD) is more common in low humidity environments. These 

failure mechanisms can result in equipment failure [12]. 

3.2.3 Contamination 

Contamination is another potential risk with the application of free air cooling. 

In some cases (e.g., the Intel test [11]), there is no control of dust and gas. There has 

been a recent increase in the rate of hardware failures in data centers high in sulfur-

bearing gases, especially in centers located near industrial operations and other 

sources of pollution. 

The effects of airborne contamination on datacenter equipment fall into three 

main categories: chemical effects, mechanical effects, and electrical effects. Two 

common chemical failure modes are copper creep corrosion on circuit boards and the 

corrosion of the silver metallization in miniature surface-mounted components. 

Mechanical effects include heat sink fouling, optical signal interference, increased 

friction, and so on. Electrical effects include changes in circuit impedance, arcing, 

and the like. It should be noted that the reduction of circuit board feature sizes and the 

miniaturization of components, necessary to improve hardware performance, also 

makes the hardware more prone to attack by contamination in the data center 

environment. Manufacturers constantly struggle to maintain the reliability of their 

hardware with ever-shrinking feature sizes, without taking the added costly measure 
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of hardening all their IT equipment, most of which is not installed in corrosive 

environments [14]. 

Extensive failures of telecommunications circuit boards can be caused by the 

combined effect of the deposition of hygroscopic dust and elevated relative humidity 

[15]. The presence of water-soluble materials in the dust leads to surface resistance 

degradation at high relative humidity [16]. Hygroscopic dust is always present in the 

atmospheric air but is particularly abundant in industrialized urban environments 

[17]. To prevent premature failure, the level of dust deposited on devices needs to be 

limited. More importantly, the physical (particle size) and chemical (PH value, 

solubility) properties of the dust should be characterized. For example, small amounts 

of magnesium chloride (MgCl2) in the dust can cause ion migration failure under low 

relative humidity conditions because of its low deliquescent relative humidity.  

Sulfur-bearing gases, such as sulfur dioxide (SO2) and hydrogen sulfide (H2S), 

can cause corrosion of silver metallization and board finishes by the formation of 

silver sulfide. There is an important synergistic effect between gases. For example, 

hydrogen sulfide alone is not very corrosive to silver, but the combination of 

hydrogen sulfide and nitrous oxide is highly so [18]. Similarly, neither sulfur dioxide 

nor nitrous oxide alone is corrosive to copper, but together they attack copper at a 

very fast rate [19]. The anion in the gas dissolved in the water is normally more 

corrosive than that of a water-soluble salt. For example, the corrosive effects of 

gaseous chlorine and hydrogen chloride in the presence of moisture tend to be 
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stronger than those of chloride salt anions, due to the acidic character of the former 

species [20].  

All metal components of telecom equipment are affected by corrosion reactions 

in a contaminated environment. External connectors, sockets, and wiring of electronic 

devices are problematic sections in telecom equipment. Pore corrosion is a concern 

for noble-plated contacts, and fretting corrosion can occur between two solid surfaces 

in contact. High density printed circuit boards with smaller feature size and spacing 

are vulnerable to ionic migration and creep corrosion. Fine particles can also lead to 

electrical shorts caused by corrosion [20]. If water layers are formed on critical 

surfaces and interfaces, they can result in resistance degradation, leading to soft 

and/or hard equipment failures [25]. The purpose of the case and frame structure is to 

protect the electronics device from external environmental conditions, but the outside 

of the case and frame structure may suffer from excessive atmospheric corrosion. The 

polymer material can swell due to moisture absorption. 

Most data centers are well designed and are in areas with relatively clean 

environments, and most contaminants are benign. Data centers generally should not 

experience hardware failures due to particulate or gaseous contamination. However, 

some data centers, particularly these located in highly populated municipal areas, may 

have harmful environments arising from the ingress of outdoor particulates and/or 

gases in free air cooling. This could be a reliability concern for equipment in the 

center. 
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3.3 Reliability Risks of Free Air Cooling: Failure Mechanisms 

Due to the failure causes implicit in the implementation of free air cooling, 

some potential failure mechanisms become more active under the new operating 

environment. Three main mechanisms (CAF, ESD and corrosion) are introduced in 

the following subchapters. 

3.3.1 Conductive Anodic Filament Formation (CAF) 

CAF occurs in substrates and printed circuit boards (PCBs) when a copper 

conductive filament forms in the laminate dielectric material between two adjacent 

conductors or in plated-through vias under an electrical bias [26]. CAF can be a 

significant and potentially dangerous source of electrical failures in IC packaging 

substrates, PCBs and the overall system (package, module) that they are part of. The 

increased board density that has being driven by the chip scale packaging (CSP) 

revolution of the early 90s, along with the increased input-output density on the chips, 

has forced the PCB industry to decrease via wall-to-wall distances and feature sizes.  

The trend in the electronics industry to place as many components as possible on a 

minimum of PCB real estate has increased the reliability requirements for bare PWBs 

and is raising possible reliability issues caused by CAF formation within the 

multilayer structure. 

The action of CAF is shown in Figure 16. The hydrolysis reaction at the anode 

creates hydronium ions, while the one at the cathode creates hydroxide ions. The 

acidic hydronium ions accumulate at the anode, while the basic hydroxide ions 

accumulate at the cathode. If there is a pH drop at the anode then the copper corrosion 
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products become soluble. These soluble products will try to travel from the anode to 

the cathode, due to the PH gradient, through any weak opening in the laminate. When 

these conductive filaments reach the cathode, CAF is formed and the insulation 

resistance between the cathode and anode drops significantly.  Eventually an 

electrical short is created.  

For the conductive salts to migrate from one end of the conductor or hole wall 

to the next, an easily accessible pathway, such as an area of poor adhesion of glass to 

resin or high ionic impurities in the resin, is needed. The pathway between these two 

conductors becomes an electrochemical cell with moisture from the laminate.  

 
Figure 16: Cross-sectional view of CAF pathways [26]. 

A combination of bias voltage (voltage applied during the test) and high 

relative humidity can cause a CAF failure. The electrical failure is caused when a 

filament grows from a copper anode to a copper cathode. It is postulated that the CAF 
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failure proceeds in two stages. The first stage involves the degradation of the resin-

glass interface, followed by an electrochemical migration process, which allows the 

filament growth. This first step is believed to be reversible; the material’s insulation 

resistance returns after baking and drying. The second step, actual CAF growth, is 

believed to be irreversible. The mean time to failure is a function of voltage bias, 

relative humidity, hole-to-hole and line-to-line spacings, temperature, and the resin 

system.  

The reaction process of CAF occurs due to moisture absorption. Most laminate 

materials absorb moisture through surface absorption and diffusion into the interior, 

especially when exposed to high temperature and humidity environments, which 

accelerate the absorption and can result in quicker degradation and path formation. 

The different moisture absorption rates of resin and glass fiber can also lead to 

interface stress. Resin swells due to the absorption of moisture, which can lead to 

debonding at the resin/glass fiber interface [13]. 

3.3.2 ESD 

If the humidity is too low, data centers can experience electrostatic discharge 

(ESD), akin to giving someone a shock after shuffling along a carpeted floor in 

stocking feet [25]. That sort of event can shut down electronic equipment and 

possibly damage it. Generally, ESD can be caused by humidity, temperature, 

pressure, airborne particles, and air recirculation, but the most significant 

environmental factor in ESD control is the relative humidity (RH). 
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In very dry areas, humidification is desirable because it makes antistatic 

materials with "sweat layers" function better, and reduces (but does not eliminate) 

triboelectric charging for all materials. A high relative humidity--over 30% RH--

reduces the resistance of most dielectrics, resulting in an increase in return current 

(which opposes a charge buildup). When an object is undergoing tribocharging in a 

high humidity environment, the object will reach an equilibrium point where the 

tribocharging current equals the return current. For objects that undergo charging to a 

high potential, the primary impact of humidity is to encourage or discourage corona, 

and affect the rise time of the discharge current. 

Normally, the moisture content in the air tends to lower the surface resistance 

of floors, carpets, table mats, and so on by letting wet particles create a vaguely 

conductive (less than 10-9 Ohms/square) film over an otherwise insulating surface. If 

the relative humidity decreases, this favorable phenomenon disappears. The air itself, 

being dry, becomes a part of the electrostatic build-up mechanism every time there is 

an air flow (wind, air conditioning, blower) passing over an insulated surface. 

3.3.3 Corrosion  

Corrosion is another failure mechanism affected by humidity. Corrosion occurs 

in the metalization in the presence of moisture and contaminants. Atmospheric 

corrosion is a ubiquitous phenomenon that affects materials of all sorts exposed to the 

open environment. Telecom components are also affected by other failure 

mechanisms under free air cooling conditions based on their specific structures, 

materials and applications. In this chapter, life models will be presented to provide 
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predictive times to failure for corrosion-related failure mechanisms. Acceleration 

testing needs to be carefully designed and implemented with respect to the specific 

failure mechanism. Corrosion control and knowledge of various protection methods 

have become a major subfield of design in order to ensure product reliability and 

competitiveness in a demanding market.  

3.4 Performance Risks of Free Air Cooling 

A traditional data center usually use multiple A/C units to “fine tune” data 

center temperature in addition to the use of air flow, however, in a free air cooled data 

center,  the temperature across the data center is controlled largely by air flow. Thus, 

additional designs and air flow simulations, as well as measurement and control 

during the operation must be considered for the proper implementation of free air 

cooling. When a data center accepts free air cooling, more air flow and temperature 

optimizations are required to eliminate unwanted hot spots compared with those in a 

traditional data center. This kind of optimizations may even have to be performed on 

selected rack configurations, which helps make sure that all the equipment within the 

rack are working within the required operating condition envelope. The temperature 

and air flow optimization also help identify the “weak link” hardware, i.e., that has a 

lower thermal margin than the other pieces of equipment and then limits the ability of 

the data center to function at its target maximum temperature.  

For data centers that are already in operation, the “weak link” hardware are 

limitation for the free air cooling implementation since major design modifications 

are no longer feasible. One solution is to modify the rack configuration or provide 
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more air flow to cool the equipment back into the required operating conditions. 

However, in some cases, the only option is to replace the “weak link” hardware with 

equipment that has a wider thermal margin. This can be very costly and time 

consuming and could interrupt the services of data centers. In these cases, data center 

operators will need to find the operating condition limits of the data centers based on 

that of each piece of equipment.  

Changes in temperature and humidity levels can impact the electrical 

parameters and life of components and systems. As a result, the equipment may 

intermittently fail to meet specifications, particularly if those are located at hot spots. 

Possible loss of performance will arise if it is necessary to apply uprating methods, 

such as stress balancing for components or equipment, which trade off temperature 

for performance (e.g., reduced operating frequency or speed with increases in 

operating temperature). This approach is common in computer systems (e.g., reduced 

access speed for memories or lower frequency of operation for microprocessors) and 

can be applied to telecommunication systems and data centers, but any decreased 

performance must be assessed against customer expectations regarding service 

quality and availability.  

With free air cooling, some system-level operational performance changes are 

expected, due to the dependence of the electrical parameters of the system 

components (parts and materials) on temperature and humidity. In general, good 

design practices that account for component performance based on their temperature 

dependence (e.g., worst case analysis), will ensure acceptable operation, as long as 
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the temperature and humidity levels are within those stated by the recommended 

operating conditions of the datasheets. However, if the free air cooling results in the 

operation of components at environmental conditions outside the datasheet 

recommended operating conditions (either on the low or high side), then additional 

analysis will be necessary to quantify the associated electrical operating parameters’ 

characteristics and assess their impact on the system-level performance.  

3.5 Summary 

This chapter introduces the possible risks for telecom equipment in data centers 

when free air cooling is implemented. The changes in temperature, humidity and 

contamination may make the failure mechanisms more active compared with those 

under traditional A/C conditions, and then affect the reliability of the telecom 

equipment. The effects may become significant when the data centers are located in 

the areas where the air is not clean enough. These risks need be analyzed when free 

air cooling is considered by data center staff. 
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Chapter 4. Assessment of Free Air Cooling on the Performance of 

Telecom Equipment 

Free air cooling usually changes the operating conditions in data centers 

compared with those in traditional A/C. The equipment and data center design rules, 

equipment test and acceptance conditions, and overall operating cost estimates for 

data center equipment are impacted by operating conditions. This chapter assesses the 

potential performance risks associated with the implementation of free air cooling. 

4.1 Assessment Method  

The network architecture in a data center consists of a set of routers and 

switches, and the main function is to channel incoming data from one or more input 

ports to a specific output port, which will take the data toward its intended 

destination. The main performances of network [1]: 

• Availability: whether the network is working.  

• Response time: The time that it takes a packet to travel between two points 

on the network.  

• Network utilization: it represents the percent of time that the network is in 

use over a given period.  
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• Network throughput: The throughput of a network represents the amount 

of network bandwidth available for a network application at any given 

moment, across the network links.  

• Network bandwidth capacity: the total amount of bandwidth available 

between two network endpoints. 

Among the five elements, network utilization and network bandwidth capacity 

depend on the workload and the network bandwidth design, and are not related with 

free air cooling implementation. The availability just shows whether the network is 

working and it is not sufficient to identify the completed impacts of free air cooling 

impacts on telecom equipment. In addition, it can be also indicated by the throughput. 

The responses time can be derived from the throughput. So, this dissertation focuses 

on the throughput of telecom equipment to represent its performance.  In order to 

identify the impact of free air cooling on telecom equipment performance, we 

conducted a performance monitoring and recording experiment on a typical switch 

under simulated free air cooling condition, and traditional air condition (A/C), 

respectively. Some metrics and baselines are required to compare and evaluate the 

performance variations of the switches under the different operating conditions. Since 

most data centers currently use A/C units as the cooling method, the performance of 

telecom equipment under A/C is used as the baseline for measuring the impact of free 

air cooling. In this case, the number/percentage of throughput off the baseline can be 

used as the possible metrics: 
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– 1% off baseline 

– 2% off baseline 

– 5% off baseline 

This chapter uses the experimental data to compare equipment performance 

under free air cooling to equipment performance under traditional A/C, based on the. 

The performance variations is analyzed to identify the impact of free air cooling on 

the performance of telecom equipment 

4.2 Setup of Experiment 

The network equipment selected in this case was a Zonet zfs 3015P switch. It is 

widely used in offices and small enterprises, and its primary function is to send 

packets to their intended destinations. Its rated operating conditions are 0-40oC and 

10-90% RH, which are typical ranges for routers and switches. A photo of the switch 

is show in Figure 17. 
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Figure 17: Zonet zfs 3015P switch 
(1) IC+ IP 178C chip; (2) Magnetic components; 

(3) MC 34063A; (4) Capacitor; (5) Coil 

In the experiment, data packets were sent from one computer to another 

computer throughout the switch, which was put inside an environmental chamber 

shown in Figure 18. To monitor the performance of the switches in the experiment, 

we used NetIQ Chariot, a network testing software package. This software sent large 

files with sizes up to 108 bytes through the switch continuously and then calculates its 

performance parameters. In this experiment, the files are generated by the testing tool 

itself, rather than by the hard drive of computer; and so it is not dependent on the 

limitations of hard drive access speeds. 
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Figure 18: Overview of switch experiment system 

There were two test conditions in this experiment: variable temperature and 

humidity representing FAC and A/C. The operating conditions 

(temperature/humidity) of free air cooling are usually decided by data center 

operators based on the local climates, industry standard requirements, equipment 

specifications, hot spot identification, and other analyses. In this case, the variable 

temperature and humidity representing FAC was set to be between 10oC and 50oC, 

and 15% to 85% RH, with the following considerations: 

– The ASHRAE allowable ranges covering A1 and A210  data center 

class are 10oC to 35oC, 20% to 80%RH [3]. 

                                                 
10 In the ASHRAE data center classification, typically, the equipment selected for data centers is 
designed to meet either Class A1 or A2 requirements [3] 
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– The European Union (EU) is considering legislation for 2012 that 

would require data center hardware to be temperature excursion 

tolerant up to 45oC [4]. 

– The selected ranges give 5oC degree and 5%RH margin to the current 

temperature, and also provide information for the possible future inlet 

air temperature increase. 

 The profile shown in Figure 19 was used to mimic this condition. Based on the 

survey of data centers shown in chapter 3.1, the A/C in the experiment was set to be 

20oC and 50%RH. Three switches were exposed to each test condition. 
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Figure 19: Variable temperature and humidity representing FAC profile 

4.3 Test Result Analysis 

The experiment was conducted for four months. Three critical performance 

parameters of the switch were monitored in the experiment: throughput, response 
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time, and transaction rates. The three parameters are related and can be derived from 

each other, so only throughput was considered in this case. The monitored switch 

throughputs under A/C and free air cooling condition are shown in Figure 20 to 

Figure 25, respectively. Based on the monitored samples, the switch throughputs 

under free air cooling conditions have larger variations than those under A/C. 
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Figure 20: Monitored throughput of switch sample 1 under A/C condition 
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Figure 21: Monitored throughput of switch sample 2 under A/C condition 
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Figure 22: Monitored throughput of switch sample 3 under A/C condition 
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Figure 23: Monitored throughput of switch sample 1 under variable 
temperature and humidity representing FAC  
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Figure 24: Monitored throughput of switch sample 2 under variable 
temperature and humidity representing FAC 
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Figure 25: Monitored throughput of switch sample 3 under variable 
temperature and humidity representing FAC 

In order to evaluate the throughput variations of the switches, throughput 

baselines were created to compare them under the two conditions. In this case, the 

baseline of every switch was considered as its average throughput of the first 10000 

data packets (about one day). The throughput baselines of the six switches are shown 

in Table 17. Generally, the throughput baselines under the free air cooling condition 
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were a little lower than those under the A/C, since there were more variations 

decreasing the throughput ability. 

Table 17: Throughput baselines of switches 

Sample 
Baseline 

(Mbps) 

1% 

off 

2% 

off 

5% 

off 

10% 

off 

20% 

off 

A/C 

Switch 1 93.579 92.643 91.708 88.900 84.221 74.863 

Switch 2 93.736 92.798 91.861 89.049 84.362 74.989 

Switch 3 93.734 92.797 91.859 89.047 84.361 74.987 

Free Air 
Cooling 

Switch 1 92.969 92.040 91.110 88.321 83.672 74.376 

Switch 2 91.322 90.409 89.495 86.756 82.190 73.058 

Switch 3 92.783 91.855 90.927 88.144 83.505 74.226 

Some metrics are required to compare and evaluate the performance variations 

of the switches under the two conditions. The maximum throughput variation of 

every sample under the two conditions is shown in Table 18. 
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Table 18: Maximum samples throughput variations  

  Maximum throughput variation 
off the baseline 

Sample 1 under A/C condition 9.4% 

Sample 2 under A/C condition 7.9% 

Sample 3 under A/C condition 8.9% 

Sample 1 under variable 
temperature and humidity  48.1% 

Sample 2 under variable 
temperature and humidity 49.7% 

Sample 3 under variable 
temperature and humidity  51.0% 

As described in chapter 4.1, we consider the number/percentage of throughput 

off the baseline as the possible metrics: 1% off baseline, 2% off baseline, 5% off 

baseline. The throughput variation comparisons of the three samples under A/C 

condition with the three metrics are shown in Figure 26-28.  
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Figure 26: Throughput Variations Comparison under A/C Condition:  
1% Off Baseline 
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Figure 27: Throughput Variations Comparison under A/C Condition:  
2% Off Baseline 
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Figure 28: Throughput Variations Comparison under A/C Condition:  
5% Off Baseline 

The comparisons between the three sample throughput variations under the free 

air cooling condition and the throughput variations (average of the three samples) 

under the A/C condition with different metrics are shown in Figure 29-Figure 3111. 

Generally, The switch throughput variations frequencies under variable temperature 

and humidity representing FAC are significantly increased compared with those 

under A/C, but the increase rates are various with different samples. There are some 

jumps in the throughput variation frequency under variable temperature and humidity 

                                                 
11 FAC week 9 data is extrapolated based on four days test data. 
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representing FAC condition, which can be considered as the temporary throughput 

degradations: 

– Sample 2: jumps in week 2 with 1% and 2% off baseline, and jump in 

week 2 and 3 with 5% off baseline. 

– Sample 3: jump in week 8 with 2% off baseline. 

– Sample 1: is the most stable one and no significant jump is observed. 

In addition, there are no 10% off baseline, and 20% off baseline of throughput 

variations observed under A/C condition, but they occur under variable temperature 

and humidity representing FAC conditions.   
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Figure 29: Performance variations of 1% off baseline 
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Figure 30: Performance variations of 2% off baseline 
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Figure 31: Performance variations of 5% off baseline 

The increases over the eight weeks of the average throughput variation 

frequencies between the two conditions are shown in Table 19. Under simulated free 

air cooling conditions, the increases of throughput variation frequencies compared 

with those under air conditioning are various depending on the different metrics. The 
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table shows the variation frequencies of 1% off baseline, 2% off baseline, and 5% off 

baseline.   

Table 19: Increases of throughput variation frequencies 

 
A/C Free Air 

Cooling Increase 

1% off baseline 424 11170 2634% 

2% off baseline 40 5806 14515% 

5% off baseline 9 146 1622% 

 

4.4 Selection of Appropriate Metric 

An appropriate metric needs to be selected from the above-referenced three 

metrics to compare the performance (throughput) variations between the two 

conditions. The performances under the A/C condition are used to identify the 

appropriate metric, since they are the baselines for the comparisons to identify the 

impact of free air cooling on the performance variations of telecom equipment. Table 

20 shows the total throughput variation frequency under the A/C condition. Since 

there are no throughput variations beyond 10% off baseline and 20% off baseline, the 

table shows the variation frequencies of 1% off baseline, 2% off baseline, and 5% off 

baseline. 
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Table 20: Total throughput variation frequency under the A/C condition 

 Switch 1 Switch 2 Switch 3 

Week 1% 2% 5% 1% 2% 5% 1% 2% 5% 

1 476 60 16 713 34 14 660 39 13 

2 709 117 29 1182 55 26 1076 71 21 

3 1083 176 40 1697 85 35 1525 100 28 

4 1347 226 45 2069 115 40 1866 128 35 

5 1781 293 52 2677 145 46 2420 160 42 

6 2020 351 58 2987 177 55 2698 200 53 

7 2264 399 71 3313 203 62 3017 233 62 

8 2668 450 77 3865 242 73 3564 268 74 

Since the lifetime of a switch is usually expected to be more than three years, 

we assume that there are no significant degradations of the three switch samples in 

the two month test, and the performance variation of any of the three switches is 

expected to be more or less constant over the one week period. Therefore, the total 

performance variation frequency of each sample is expected to increase linearly with 

each week, and an appropriate metric is expected to represent this linear increase.    

For every metric, the expected performance variation frequency under the 

above assumption can be calculated by least square linear regression, which 

minimizes the sum of squared errors between the observed values and the expected 

values [4]. Figure 32 shows an example calculation of the expected total performance 
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variation frequency of 1% off baseline (sample 1) under the A/C condition by least 

square linear regression12, which is estimated as:  

337x y =                                                                        (5.1) 

Where y is the expected total performance variation and x is the number of 

weeks. For example, when x=1, y=337, which means that there are 337 expected 

variations of 1% off baseline (sample 1) occurring under the A/C condition every 

week. 
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Figure 32: Calculation of expected performance variation frequency of 1% off 
baseline under the A/C condition 

The goodness of linear curve fit represents the effectiveness of the metric to 

demonstrate the linear increase of the performance variation over time. The Residual 

Sum of Squares (RSS), the sum of every squared deviation between the observed 

                                                 
12 There is a boundary condition: there is no performance variation before the test starts, that is y=0 
when x=0. 
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(actual) value and the expected value, is widely used to evaluate the goodness of the 

linear curve fit, and it is expressed as [5]: 

2

1

^

)(∑
=

−=
n

i
ii yyRSS                                                     (5.2) 

Where iy is the observed value and iy
^

is the expected value.  

In this case, we propose a new feature normalizing RSS to evaluate the 

goodness of the linear curve fit and the effectiveness of the metric, which is defined 

as: 

                        
β

α RSS
=                                                         (5.3) 

Where α is the new feature and β  is the expected weekly performance 

variation frequency (that is the expected performance variation frequency in the first 

week).  For example, the RSS for 1% off baseline (sample 1) under the A/C condition 

is calculated as 44760, shown in Table 21, and then α is calculated as: 

63.0
337
44760

==α                                                       (5.4) 
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Table 21: RSS calculation for 1% off baseline (sample 1) under the A/C 
condition 

Week Observed 
value 

Expected 
Value 

Error 
square 

1 476 337 19321 

2 709 674 1225 

3 1083 1011 5184 

4 1347 1348 1 

5 1781 1685 9216 

6 2020 2022 4 

7 2264 2359 9025 

8 2668 2696 784 

RSS   44760 

Similar to the above process, α  is summarized in Table 22 for all the three 

metrics and samples. The low α  represents the high goodness of the linear curve fit, 

and as a result, effectively represents the linear increase of performance variation 

over time.  Therefore, an appropriate metric should have a low α  with the three 

samples. According to Table 22, 2% off baseline has the lowest α , so it can be 

considered an appropriate metric to identify the impact of free air cooling on the 

performance variations of telecom equipment in this case. 
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Table 22:α  calculation under the A/C condition 

Switch 1 Switch 2 Switch 3 

1% 2% 5% 1% 2% 5% 1% 2% 5% 

0.63 0.25 1.52 0.91 0.36 1.24 0.86 0.33 0.72 

 

4.5 Conclusions 

This chapter identifies the impacts of free air cooling on the performance of 

telecom equipment. When free air cooling is implemented in data centers, the 

operating conditions may increase beyond the recommended operating conditions 

(RoC) of telecom equipment to maximize the energy saving.  Furthermore, the hot 

spot equipment is more likely to run beyond its RoC than equipment cooled by A/C 

units. The performance variations may be one key concern of free air cooling 

implementation. 

The performance variations vary using different metrics, and thus an 

appropriate metric is critical to identify the impact of free air cooling on the 

performance of telecom equipment. Since the performance variations exist even 

under the A/C, and 2% off baseline was the most stable metric representing the 

assumption of constant throughput variations every week under A/C in our case, the 

2% off baseline was selected as the metric for this comparison of performance 

variations.  

The frequency of the performance variations increases under free air cooling 

compared with the variations under A/C. The performance variations under free air 
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cooling are also larger than those under the A/C. This kind of large performance 

variation decreases the quality of data center services and may be unacceptable to the 

customers of data centers. The future research may include identifying the impact of 

temperature and humidity on the performance of telecom equipment, respectively, 

which can help data center operators set proper operating condition ranges without 

affecting the equipment performance significantly during the implementation of free 

air cooling.  
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Chapter 5. A Multi-Stage Risk Mitigation Approach for Free Air 

Cooling  

This dissertation develops a multi-stage risks mitigation approach for the free 

air cooling, which considers three stages of the equipment life cycle (shown in Figure 

33): design, test, and operation. Design is the process of originating a plan for 

creating a product, structure, system, or part. Test is the process of using machines, 

tools, equipment, and experiments to assess the capability of a product to meet its 

requirements. Operation means that the equipment is already in place and is being 

used by the end users. The risk mitigation process starts with the identification of 

operating condition ranges with free air cooling for data centers. Identification of an 

operating condition range is fundamentally necessary for the assessment.  

http://en.wikipedia.org/wiki/Machine
http://en.wikipedia.org/wiki/Tool
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Figure 33: Schematic of the multi-stage risk mitigation process. 

The next step in the assessment process is the identification of the product’s life 

cycle stage. In the next three sections, the evaluation process is shown for the three 

identified product lifecycle stages. In each subsection, the available information and 

hardware are discussed first, and then the process is described within those 

constraints. 

5.1 Design Stage  

During the design stage, the functional requirements of the product are defined. 

However, the hardware is not yet finalized. Even though the product does not exist 

physically, the material and performance information regarding the potential parts can 

be used to assess the performance and reliability of the product. Prior experience with 

the use of similar parts and designs can also be used to augment existing information 
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for part assessment. When the equipment is assessed at this stage, an iterative process 

is followed to finalize the design and bill of material. 

In the design stage, the evaluation process includes the initial design, part 

selection, simulation and virtual qualification, and final design. The first step in the 

design stage is to design a product based on an understanding of the information 

about the new environment and the expected functional and reliability requirements. 

This paper deals with environmental conditions with wider ranges of temperature and 

humidity. The local operating temperatures of the parts in the system will need to be 

estimated for the new environmental range. Another issue that affects a part’s 

temperature is the cooling algorithm of its local cooling equipment (e.g., fan). When 

the fan speed is dynamic and varies based on the part’s temperature changes, the part 

temperature might not increase linearly with the ambient temperature changes, since 

the fan speed will increase [1]. Other information, such as data on part performance in 

similar operating conditions, can also be useful to estimate the part temperature. 

Part selection is based on the part data sheets and local operating conditions. 

The data sheets contain information such as part type and category, electrical ratings, 

thermal ratings, mechanical ratings, electrical and thermal characteristics, and 

functional descriptions. In this case, two types of ratings are important for the 

selection: absolute maximum ratings (AMR) and recommended operating conditions 

(RoC). The IEC defines AMR as the “limiting values of operating and environmental 

conditions applicable to any electronic device of a specific type as defined by its 

published data, which should not be exceeded under the worst possible conditions” 
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[2]. Recommended operating conditions are the ratings on a part within which the 

electrical specifications are guaranteed [2]. The local operating conditions can be 

estimated based on historical data under similar operational conditions or calculated 

using computational fluid dynamics (CFD) and other simulation tools and data from 

similar products in the same technology family. Using the content of the datasheets 

and the local operating conditions, the parts can be initially selected. 

In the third step in this phase, the initial design with the initially selected parts 

is evaluated and improved by a virtual qualification process. Performance simulation 

and virtual qualification are used to evaluate the functional performance and the 

reliability of the product, respectively. During the performance evaluation, the system 

design is assessed to determine whether it can meet or exceed the expected functional 

requirements under the life cycle conditions. An example of a performance simulation 

tool for semiconductors is the Simulation Program with Integrated Circuit Emphasis 

(SPICE) [3]. This tool and its many commercial and academic variations are used to 

evaluate the performance of semiconductor parts. The virtual qualification process 

uses physics of failure (PoF) models of the critical failure mechanisms [4]. The 

failure mechanisms can be identified and their impact on the parts can be estimated 

through this process. To begin, stress analysis is performed to determine the local 

operating conditions of the parts. These stress analysis results are then used as input 

for the failure models. For example, some versions of SPICE, such as HSPICE and 

PSPICE, have functionalities that can help evaluate electronic parts for their 

susceptibility to several electrically-driven failure mechanisms, such as time 

http://en.wikipedia.org/wiki/PSPICE
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dependent dielectric breakdown (TDDB) and negative bias temperature instability 

(NBTI). When used in this manner, SPICE serves as a virtual qualification tool. 

Based on the results of virtual qualification, the design is improved and parts 

are re-selected, if necessary. Then, the improved design with the new parts is re-

evaluated by virtual qualification. This process is repeated until the results show that 

the design meets the expected requirements under the new environment. 

This phase closes with the creation and release of the final design to the product 

manufacturing stage. From this point on, additional testing will continue to assess the 

manufactured product. This process is described in the next section.  

5.2 Test Stage 

Typically, the manufacturing process of a product has been completed by the 

time the test stage is reached. If a product’s design is modified during its 

manufacturing process, the assessment should go back to the design stage and the 

evaluation should be re-started. Based on the identification of operating condition 

ranges under free air cooling conditions, it can be determined whether the operating 

conditions are within the standards’ requirements. If so, the equipment will be 

evaluated by the test methods provided by the standard. Otherwise, the equipment 

will be evaluated by an uprating method.  

5.2.1 Standards-based Assessment  

This paper applies a widely used standard, Telcordia Generic Requirements 

GR-63-CORE [5], for system-level and assembly-level assessment for free air 
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cooling conditions. The Telcordia GR-63-CORE provides a test method for 

equipment in a network equipment building system. Its operating condition 

requirements are shown in Table 15.  If the ambient temperature and relative 

humidity associated with free air cooling conditions are within the required ranges, 

the tests in Telcordia Generic Requirements GR-63-CORE are valid for the 

equipment.  

The operating temperature and humidity test in this standard can be used to 

assess the risks of free air cooling at the system level and the assembly level. The 

equipment operates during the test, which lasts about one week. The failure criteria 

are based on the ability of the equipment to operate throughout the test period. If a 

product can operate properly during the test, it can be considered satisfactorily 

functional. This test is performed for qualification, but cannot be used to predict 

reliability over the expected lifetime. In the test, the controlled conditions are 

temperature and relative humidity. The temperature range is from -5oC to 50oC, and 

the relative humidity range is from less than 15% to 90%. The temperature and 

humidity profiles are shown in Figure 34 (the test is operated for only one cycle with 

the temperature and humidity profiles in Figure 34). 
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Figure 34: Operating temperature and humidity test13 [5]. 

5.2.2 Uprating Assessment 

 If the operating conditions with free air cooling are outside the standards’ 

requirements, the standards-based method is no longer valid. In this case, some parts 

located at hot spots may be operated beyond their AMR or RoC. The parts with small 

thermal margins are also at risk when operating beyond their specific ranges under 

free air cooling conditions. A practical alternative way to evaluate the risks of free air 

cooling conditions is through uprating assessment of parts at risk.  

IEC Standard 62240 [6] provides uprating tests to ensure that products can meet 

the functionality requirements of applications outside manufacturer-specified 

temperature ranges. The first step in part-level testing is to identify whether the 

operating temperature for the part exceeds the manufacturer-specified temperature 

range. The operating temperature of the parts can be obtained from the system-level 
                                                 
13 There are some special humidity profiles in the test that are ranges of RH instead of exact RH 
values, such as any RH and any RH below 15%. In this figure, 100% represents any RH and 0% 
represents any RH below 15%.  
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and subsystem-level testing results and additional analysis. If the operating 

temperature increases beyond the manufacturer-specified ranges, the entire process in 

Figure 35 should be performed. If the increased operating temperature is still within 

the specified range, only the part functionality test over the application temperature 

range is required to ensure that the part can operate as expected within the higher 

operating temperature range. 

Quality
assurance

Package capability 
assessment

Assess assembly risk

Component reliability 
assurance

Capability 
assessment

 

Figure 35: Testing flowchart in IEC Standard 62240 [6]. 

The process in Figure 35 starts with a capability assessment, which consists of 

three steps: package capability assessment, subsystem risk assessment, and part 

reliability assurance. The package capability assessment ensures that the package and 

internal construction can withstand a higher temperature and will not cause any 

material properties to change based on analyzing the part’s qualification test data and 

other applicable data. A subsystem risk assessment estimates the ability of a device to 

perform under a higher temperature. Re-characterization is recommended because it 

uses processes similar to those used by part manufacturers for original part 
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characterization. Part reliability assurance qualifies a part based on the application 

requirements and performance requirements over the intended range of operating 

conditions.  

The flowchart of parameter re-characterization is shown in Figure 36. The re-

characterization process consists of three main parts: (1) choosing the statistical 

features of the parameters and calculating the sample size N; (2) executing the test 

and calculating the margins M; and (3) conducting the necessary assembly functional 

test. If the calculated margin is large enough and the functional test is passed, the 

component is considered to have passed the uprating test. 
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Figure 36: Flowchart of parameter re-characterization process [6]. 

Quality assurance secures the ongoing quality of successfully uprated parts by 

monitoring the part process change notices obtained from the manufacturers. In this 

assessment, parameter re-characterization testing can be used to assess incoming 
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parts, and change monitoring can be used to give warning of a part change that would 

affect its ability to operate under an increased operating temperature. 

It should be noted that uprating is a very expensive process, and the 

qualification of an uprated part has to be redone if anything about the part 

manufacturing process is changed. With good thermal design at the system level and 

careful component selection, uprating can usually be avoided. 

5.3 Operation Stage 

For data centers already in operation, it is usually not practical to re-qualify 

equipment and evaluate the risks when free air cooling is considered. Firstly, it is not 

practical to take equipment out of service for testing, especially in mission-critical 

data centers with 24/7 service requirements. Secondly, even if the test were 

attempted, the tested equipment would lose some of its useful life in the test process. 

This would offset the energy savings of free air cooling.  Thirdly, it seems impossible 

to gather an appropriate sample size of equipment already in operation for the test. In 

addition, accelerating the life-cycle conditions for an entire data center is impractical, 

prohibitively expensive, and unlikely to provide useful information on the reliability 

of a system. We propose using prognostics and health monitoring as a retrofitting 

technique to assess and mitigate the risks and enable the implementation of free air 

cooling in data centers that were not initially designed for this cooling method. 

5.3.1 Introduction of PHM 

Prognostics and health management (PHM) uses in situ system monitoring and 

data analysis to identify the onset of abnormal behavior that may lead to either 
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intermittent out-of-specification performance or permanent equipment failure. This 

novel method need not interrupt the service of data centers for the purpose of 

reliability assessment. PHM permits the assessment of the reliability of a product (or 

system) during operation [7]. Generally, PHM can be implemented using the physics-

of-failure (PoF) approach, the data-driven approach, or a combination of both (the 

fusion approach) [8]. 

The physics-of-failure method uses knowledge of a product’s life-cycle loading 

and failure mechanisms to perform reliability design and assessment 

[7][9][10][11][12]. The data-driven approach uses mathematical analysis of current 

and historical data to provide signals of abnormal behavior and estimate remaining 

useful life (RUL) [7]. The fusion model combines PoF and data-driven models for 

prognostics [8], overcoming some drawbacks of using either approach alone. The 

flowchart of the fusion model is shown in Figure 37. 
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Figure 37: Flowchart of the fusion approach [8] 

Each of the PHM approaches can potentially be implemented to assess the 

reliability risks under free air cooling in data centers. PHM can be applied to a 

collection of equipment such as servers, storage, and routers. It takes advantage of 

some unique features of data centers under free air conditions 

Because the air side economizers work within set points of temperature to 

supply untreated air, the input and outlet air temperatures are key indicators of 

cooling system effectiveness. Typical data centers also use thermal simulation results 

to identify hot spots and air flow patterns. Noise is also generated in data centers, 

such as the movement of internal air due to fans and blowers and the rotation of hard 

disk drives. There are also functional specifications for the data centers in terms of 
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access times, band width, and related performance features. The overall power 

consumption of the systems is a further operational consideration. These factors can 

all be monitored and recorded as inputs to a PHM system. 

Operating data center equipment can also be monitored for function and 

performance. Functional parameter for storage and communications systems are 

defined and monitored at both the system and the component levels. This ability to 

monitor environmental and operational data allows the use of data-driven PHM at the 

system level with only a limited need for additional sensing, monitoring, storage, and 

transmission tools.  

Critical subsystems must be identified through functional analysis. Based on in 

situ load monitoring of the parameters of critical subsystems (e.g., voltage, current, 

resistance, and thermal resistance), PoF can calculate the accumulated damage to 

these parts caused by known critical failure mechanisms, and predict the RUL of the 

subsystem.  

The data-driven method detects system anomalies based on system monitoring 

that covers performance (e.g., uptime, downtime, and quality of service) and other 

system parameters (e.g., voltage, current, resistance, temperature, humidity, vibration, 

and acoustic signal). The data-driven method identifies failure precursor parameters 

based on system performance and the collected data. When there are pre-defined 

failure criteria for the system, the trending of the failure precursor parameters is used 

to predict the RUL. Note that the main purpose of PHM is to predict wear-out 

failures, rather than intermittent failures. However, PHM can help identify impending 
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intermittent failures—that is, the loss of some performance characteristic for a limited 

period, with subsequent recovery of the function. This type of failure is usually not 

repeatable but can be disruptive. PHM can identify the possibility of intermittent 

failures by monitoring and analyzing the failure precursor parameter trending through 

the data-driven approach. The collected data is also useful for failure analysis.  

5.3.2 A Prognostics-based Approach for Risk Mitigation in Free Air Cooling 

A prognostics-based approach is implemented to assess and mitigate risks 

arising from free air cooling, as shown in Figure 38. The first step is identifying the 

operating condition range set by operators when free air cooling is implemented. 

Based on the identified operating condition range, a failure modes, mechanisms, and 

effects analysis (FMMEA) is conducted to identify the weakest 

subsystems/components because they are the ones most likely to fail first in a system. 

FMMEA is a methodology used to identify critical failure mechanisms, which is 

defined as “the process by which a specific combination of physical, electrical, 

chemical, and mechanical stresses induce failure” [13].  FMMEA uses a life cycle 

profile to identify active stresses and select the potential failure mechanisms. The 

failure mechanisms need to be prioritized based on knowledge of load type, level, and 

frequency, combined with the failure sites, severity, and likelihood of occurrence 

[13]. The failure sites associated with the critical failure mechanisms are identified as 

the weakest subsystems/components in a system, and the parameters of the system 

and its weakest subsystems/components (e.g., voltage, current, resistance, 

temperature, and impedance) will be selected to be monitored with consideration of 

measurement applicability. Based on the monitored data, the three PHM approaches 



112 

(PoF, data-driven, and fusion) can be used to detect anomalies and perform risk 

mitigation. 
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Figure 38: A prognostics-based approach to mitigate the risks at operation stage. 

5.3.3 Case Study of Network Equipment in a Data Center 

In addition to servers, the network equipment (e.g., routers and switches) are 

also key IT equipment in data centers. The network equipment selected for this study 

was the power adapter of a Zonet ZFS 3015P switch, which is widely used in offices 

and small enterprises. In this case study, we implemented a data-driven method to 

detect anomalies in the power adapter to provide early warning of failure, since a 

power adapter is necessary for the operation of telecom equipment. Also, a power 

adapter is an analog circuit, which makes the observation of parameter shifts and 

implementation of PHM to detect anomalies straightforward. A block diagram of a 
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power adapter is shown in Figure 39. For the power adapter, the performance 

parameter is the output voltage, which has a rated output of 9 V. It is considered to 

have failed when the output voltage drops more than 10% from the rated value (i.e., 

8.1 V). 
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#1—THX 202H IC; #2—aluminum electrolytic capacitor; #3—resistor;  

#4—power transformer; #5—output voltage supply.  

 

Figure 39: Power adapter of Zonet ZFS 3015p switches. 

5.3.3.1 Identification of Operating Condition  

The operating conditions are set by data centers and usually determined by the 

amount of energy savings expected from the implementation of free air cooling. In 

this case, we assumed that the operating conditions were 0–50oC and 5–95% RH in 
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order to maximize energy savings14  (the rated operating conditions of the power 

adapter are 0–40oC and 10–90% RH). We used conditions of 95oC and 70% RH in 

the experiment to increase the rate of degradation. The power adapter was placed 

inside an environmental chamber and was in operation for the duration of the 

experiment. An Agilent 34970A data acquisition monitor was used to monitor and 

record the parameter trends of the power adapter. 

5.3.3.2 FMMEA and Identification of Weak Subsystems 

The power adapter in this case is a kind of switched-mode power supply 

(SMPS). According to the FMMEA results of SMPS [15], the critical failure 

mechanisms are aging of the electrolyte, wire melt due to current overload, thermal 

fatigue, contact mitigation, time dependent dielectric breakdown, and solder joint 

fatigue. The components with a high risk due to critical failure mechanisms are the 

aluminum electrolytic capacitor, the diode, the power metal-oxide-semiconductor 

field-effect transistor (MOSFET), the transformer, and the integrated circuit (IC).  

5.3.3.3 System and Weak Subsystem Monitoring  

With consideration of measurement applicability, four parameters of capacitors 

and integrated circuits were monitored in this experiment: the voltages of the three 

capacitors (shown as #2 in Figure 39), and the output frequency of the THX 202H IC 

(shown as #1 in Figure 39). In addition, the output voltage across the power adapter 

was also monitored for the power adapter performance trends (shown as #5 in Figure 

39). The first step was to monitor the parameter shifts that indicate the degradation 

                                                 
14 A thermal analysis of the local component temperature based on the operating condition is not 
considered in this paper, since it is not a requirement for the implementation of the data-driven method 
used to detect anomalies and provide early warning of failure. 
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trend of the power adapter. In this case, there were three samples of switches in the 

experiment, and five parameters of every power adapter sample were monitored: the 

IC frequency, three capacitor voltage, and the output voltage (the supply voltage to 

the switch)15. The monitored results are shown in Figure 40 to Figure 48.  It is 

observed that the output voltage dropped from 9.3V to about 3V, which means that 

the power adapters could not supply the rated voltage to the switches for their normal 

functions, and the power adapters failed in other words. When the failures occurred, 

the IC frequency also had dramatic drops from about 150KHZ to about 10KHZ, 

which are slight differences among the samples. The voltages of capacitor 1 have 

generally gradual degradation processes in the experiment, and the voltages of 

capacitor 2 and 3 kept general constant even when the power adapters failed. 

The monitored parameters in these figures are explained as follows: 

• Frequency: IC chip frequency  

• V1: voltage of capacitor 1 

• V2: voltage of capacitor 2 

• V3: voltage of capacitor 3 

• Vout: output voltage of power adapter 

                                                 
15 In this case, the switches connected with the three power adapter samples were not required to 
transfer the data packets due to the safety concerns in the high temperature condition (95oC). That was, 
the switches had no workload. The parameter trends in this condition may be different from those that 
the switches have full workload to transfer the data packets.  
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Figure 40: The IC frequency of power adapter 1. 
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Figure 41: The voltages across capacitor 1 and 2 of power adapter 1 
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Figure 42: Output voltage and voltage across capacitor 3 of power adapter 1 
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Figure 43: The IC frequency of power adapter 2 
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Figure 44: The voltages across capacitor 1 and 2 of power adapter 2 
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Figure 45: Output voltage and voltage across capacitor 3 of power adapter 2 
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Figure 46: The IC frequency of power adapter 3 
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Figure 47: The voltages across capacitor 1 and 2 of power adapter 3 
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Figure 48: Output voltage and voltage across capacitor 3 of power adapter 3 
 

The detailed comparisons between the health baselines and the final values are 

shown in Table 23. It is noted that the health baseline of every monitored parameter is 

the average value of its first 20 data (10 min) in the experiment, which are considered 

as the health data. The final value of the every monitored parameter is the average 

value of its first 20 data (10 min) after the power adapter failed. It is observed that the 

IC frequency and the voltage of capacitor 1 have big shifts during the failure process 

in the experiment. 
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Table 23: Summary of the monitored parameters shifts 

 Failure time Parameter Baseline Final value Shift 

Sample 1 501 minutes 

V1 (V) 82.1 38.5 53.7% 

V2(V) 148.0 150.5 1.4% 

V3(V) 147.9 150.3 1.4% 

Vout (V) 9.34 2.74 70.7% 

Frequency 
(kHZ) 

159.0 10.4 93.7% 

Sample 2 444 minutes 

V1 (V) 82.9 37.8 54.2% 

V2(V) 149.8 152.1 1.3% 

V3(V) 149.8 151.6 1.3% 

Vout (V) 9.35 2.90 69.0% 

Frequency 
(kHZ) 

144.9 11.4 92.4% 

Sample 3 389 minutes 

V1 (V) 82.4 38.6 53.7% 

V2(V) 150.3 151.3 0.7% 

V3(V) 150.3 150.6 0.7% 

Vout (V) 9.35 3.28 65.8% 

Frequency 
(kHZ) 

143.8 11.0 92.4% 

 

5.3.3.4 Anomaly Detection 

Back propagation neural network is adaptive statistical models based on an 

analogy with the structure of the brain. The general idea is to generate the output of a 

neuron based on a function of the weighted sum of the inputs plus a bias, as shown in 

Figure 49. The main benefits of back propagation neural network to be implemented 

to detect anomaly in this case include: (1) applicability for nonlinear statistical 

modeling, (2) no need for distribution assumptions, (3) no need for degradation 
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models (4) supervise training with mapping input to desired output. These benefits 

exactly fit the data features in this case. 
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Figure 49: Back propagation neural network  

Back propagation neural network can take supervised training, which supplies 

the neural network with inputs and the desired outputs, and the weights are modified 

to reduce the difference between the actual and desired outputs. The learning 

procedure is: (1). randomly assign weights (between 0-1); (2). present inputs from 

training data, propagate to outputs; (3). compute outputs Y, adjust weights according 

to the delta rule, back propagating the errors, and the weights will be nudged closer so 

that the network learns to give the desired output; (4). Repeat; stop when no errors, or 

enough epochs completed [16][17][18]. 
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The implementation process is shown in Figure 50. The process starts with the 

pre-process of the experiment data. The experiment data is normalized as: 

std

mean
nrom A

AA
A

−
=                                          (5.1) 

Where A is V1, V2, V3, fFreq, A is the test data, Amean is the mean of the test 

data, Astd is the standard deviation of the test data. 

Data pre-process 
by normalization 

Selecting training data
(first 20 data)

Weight assignment/adjustment 

Calculating expected output  

Calculating error precision
between expected output 

and actual output

Error 
Precision 
< 10-8?

No

Yes
Detecting anomaly when 
five consecutive data error 

precision arrive 10-4

Stopping training and 
continuous error precision
calculation for test data  

Figure 50: Neural network based anomaly detection 

The first 20 data is considered as the health data and selected as the training 

data to train the neural network. The training purpose is to adjust the weights of the 

input parameters (IC frequency, V1, V2, and V3 in this case), which ensures that the 

expected output (Vout in this case) calculated by nerual network is close enough 
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(error within pre-set precision) to the actual output under equipment health condition. 

The weights are adjusted by minimizing the error between the expected Vout and the 

actual Vout in this case.  The preset error precision is 10-8 in this case, that is, the 

weight adjustment will stop when the error precision between the expected Vout and 

the actual Vout is equal or below 10-8. 

The error precision between the expected Vout and the actual Vout is selected 

to detect the anomaly. The expected Vout is calculated based on the relation between 

the input parameters (IC frequency, V1, V2, and V3) and the Vout, which was 

determined by the health data in the training phase. The error precision increase 

represents that the relation between the input parameters and the Vout determined in 

the training phase is not valid any more, that is, an anomaly occurs. 

There are no clear and detailed criteria for the anomaly detection. In this case, 

an anomaly is considered to be detected when the five consecutive data error 

precision arrive or go beyond 10-4, based on the error precision of 10-8 in the training 

phase.  

5.3.3.5 Prognostics 

When an anomaly is detected, the 30 minutes data before the anomaly detection 

point (including the anomaly detection point) are selected to predict the failure. This 

case uses the exponential model to predict the failure:  

dxbx ceaey +=                                               (5.2) 
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Where y is the error precision, and x is the time, and the least square curve 

fitting is used to determine the model parameter a, b, c, and d. 

There are no clear and detailed criteria for failure. In this case, an failure is 

considered to be predicted when the five consecutive data error precision arrive or go 

beyond 10-3, based on the error precision of 10-8 in the training phase. The process is 

shown in Figure 51. 

An anomaly is detected 

Selecting data for prognostics
(the 30 minutes data before 

anomaly detection)

Select exponential model 
for prognostics

Use selected data to determine 
model parameter by least 

square curve fitting

Predict failure when 
five consecutive data error 

precision arrive 10-3
 

Figure 51: Prognostics by exponential model 

5.3.3.6 Anomaly Detection and Prognostics Results 

Since V2 and V3 are almost constant (no shift to indicate the power adapter 

degradation) in the experiment, we primarily consider use V1 and Frequency for 

anomaly detection and prediction, respectively.  We also use all the parameters to 

detect the anomaly and predict the failures. The anomaly detections and failure 
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prediction with only the IC frequency, v1, and all the parameters of the three power 

adapter samples are shown in Figure 52~60. In this case, the error precision of data 

for training (the first 20 data) is equal or below 10-8. As mentioned in chapter 5.3.3.5 

and 5.3.3.6, it is considered as anomaly when the error precision of 5 consecutive data 

is below 10-4. When the anomaly is detected, the failure time is predicted, and it is 

considered as failure when the error precision of 5 consecutive data is below 10-3 

according to the error precision in the training phase. 
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Figure 52: Anomaly detection and prediction with IC frequency:  
power adapter 1 
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Figure 53: Anomaly detection and prediction with V1: power adapter 1 
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Figure 54: Anomaly detection and prediction with all the parameters:  
power adapter 1 
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Figure 55: Anomaly detection and prediction with IC frequency:  
power adapter 2 
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Figure 56: Anomaly detection and prediction with V1: power adapter 2 
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Figure 57: Anomaly detection and prediction with all the parameters:  
power adapter 2 
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Figure 58: Anomaly detection and prediction with IC frequency:  
power adapter 3 
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Figure 59: Anomaly detection and prediction with V1: power adapter 3 
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Figure 60: Anomaly detection and prediction with all the parameters:  
power adapter 3 

The results of anomaly detection and failure prediction are summarized in 

Table 24. It is observed that the anomaly detection times with different parameters 
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(Frequency, V1, and all the parameters) are almost the same.  The predicted failure 

times with different parameters are different, and no parameter has higher prediction 

accuracy than the others with all the three samples 

Table 24: Anomaly detection and prediction: v1&freq. vs all the parameters 

 Used 

Parameters 
Failure 

time (min) 

Anomaly 

detection time 
(min) 

Predicted 
failure time 

(min) 

Sample 1 

Frequency 

501 

169 446 

V1 169 509 

All parameters 169 637 

Sample 2 

Frequency 

444 

212 297 

V1 212 293 

All parameters 213 285 

Sample 3 

Frequency 

389 

246 329 

V1 246 329 

All parameters 246 346 

 

5.4 Conclusions 

This dissertation develops a multi-stage risk mitigation approach for free air 

cooling. Specifically, prognostics and health management is implemented to identify 

and mitigate the risks to data center equipment arising from free air cooling at 

operation stage. The case study presented in this dissertation showed that the 

monitoring of equipment parameters can provide early failure warnings in the form of 

an alarm. When the remaining useful life is estimated using a suitable algorithm, data 
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centers can schedule maintenance or replacement of equipment to avoid unplanned 

downtime. This method also helps identify whether the equipment failure is 

intermittent or permanent without having to interrupt data center service. 

The PHM approach can be also used to other operating conditions (e.g., free air 

cooling conditions). When the power adapter fails, the output voltage (Vout) will has 

a shift from rated 9V, and some other parameters are expected to also have shifts 

corresponding to the Vout shift. The parameter shifts can be utilized for anomaly 

detection and prognostics based on the data-driven approach. For other operating 

conditions, the neural network needs be re-trained using the health data under the new 

conditions, since the health may be slightly different under different operating 

conditions, and the weight adjustment is very sensitive to the slight differences.  

The PHM approaches can be also implemented on the system level, which 

starts with the identification of the weakest components. The following components 

may be the potentially weakest components which are the most likely to fail first in 

the system: (1).the components at risks with data center environment considerations 

(e.g., airflow designs) which may suffer from faster degradations than others under 

free air cooling conditions. Furthermore, the components on hot spots need get 

additional attentions; (2).the components with the local temperature beyond its 

manufactures’ specified temperature under free air cooling conditions; and (3).the 

components with the highest hazard rates according to the history data under similar 

operating conditions. When the weakest components are identified, the previous 

approach can be used to detect anomaly and predict failures. 
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With the requirement of economizers in the 2010 version of ASHRAE standard 

90.1, free air cooling will be increasingly implemented in existing and new data 

centers. The prognostics-based method can allow the implementation of free air 

cooling in data centers which were not originally designed for this cooling method.  

Furthermore, it also allows data centers to perform predictive maintenance 

(condition-based maintenance) instead of preventive maintenance (routine or time-

based maintenance) by providing early failure warnings, which can reduce both the 

costs of equipment replacement and service down time.  It is especially useful to 

mission-critical data centers.  

When the next generation of data center equipment is designed for free air 

cooling, the primary concern should be the local operating conditions of the electrical 

parts, since this will be the deciding factor in data center reliability and availability. 

Toward that goal, PHM can help by gathering valuable life-cycle data. The 

knowledge of the life cycle and the operating parameters gained by using PHM in 

data centers will also help risk mitigation at telecommunications base stations that 

operate unattended at remote locations and where variations in the outside 

environment are even greater. Implementing PHM at such installations is critical for 

improving global data and voice communication networks and delivering the benefits 

of technological advances to the far reaches of the globe. 
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Chapter 6. Contributions and Future Work 

This dissertation develops an approach to determine the impacts of variable 

temperature and humidity ranges representing free air cooling on the performance of 

telecom equipment. This is the first research about the impact of free air cooling on 

the performance of telecom equipment. In this research, the frequencies and ranges of 

the throughput variations are focused as the main attributes of performance. Several 

metrics (1%, 2%, 5% off baseline) are used to determine the impacts of free air 

cooling. It is found that both the frequency and the ranges of the performance 

variations are significantly increased under variable temperature and humidity ranges 

representing free air cooling compared with those under traditional A/C condition. 

This method determines the impacts of corresponding variable temperature and 

humidity representative of that encountered in some FAC systems on the throughput 

of telecom equipment, thus assist data center manufacturers determine an appropriate 

operating environment when free air cooling is considered. 

Another main contribution is the development of a multi-stage reliability risk 

mitigation approach for free air cooling. Specifically, a prognostics-based approach is 

developed to mitigate the risks at operation stage. This approach can mitigate the 

reliability risks by detecting anomaly and providing early warnings of failures. Data 

centers needn’t be interrupted for the assessment purpose, and no additional useful 

life of telecom equipment are consumed by the assessment. It allows that free air 

cooling is used in data centers which were not originally designed for this cooling 

method. Furthermore, it allows data centers to perform predictive maintenance 
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(condition-based maintenance) instead of preventive maintenance (routine or time-

based maintenance). 

Future work may include the investigation on additional humidity and 

temperature combinations (consistent with ASHRAE expanded envelops), and the 

identification of the effect of contamination on the reliability of telecom equipment in 

data center, when free air cooling is implemented. It also can include developing the 

physics-based degradation models of the weakest components to predict the 

remaining useful life of equipment.  
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