
Semantics of Multithreaded JavaJeremy Manson and William PughInstitute for Advanced Computer Science and Dept. of Computer ScienceUniv. of Maryland, College Parkfjmanson,pughg@cs.umd.eduMarch 29, 2001AbstractJava has integrated multithreading to a far greaterextent than most programming languages. It is alsoone of the only languages that speci�es and requiressafety guarantees for improperly synchronized pro-grams. It turns out that understanding these issuesis far more subtle and di�cult than was previouslythought. The existing speci�cation makes guaranteesthat prohibit standard and proposed compiler opti-mizations; it also omits guarantees that are necessaryfor safe execution of much existing code. Some guar-antees that are made (e.g., type safety) raise trickyimplementation issues when running unsynchronizedcode on SMPs with weak memory models.This paper reviews those issues. It proposes a newsemantics for Java that allows for aggressive com-piler optimization and addresses the safety and mul-tithreading issues.1 IntroductionJava has integrated multithreading to a far greaterextent than most programming languages. One de-sired goal of Java is to be able to execute untrustedprograms safely. To do this, we need to make safetyguarantees for unsynchronized as well as synchro-nized programs. Even potentially malicious programsmust have safety guarantees.Pugh [Pug99, Pug00b] showed that the existingspeci�cation of the semantics of Java's memorymodel[GJS96, x17] has serious problems. However, the so-lutions proposed in the �rst paper [Pug99] were na��veand incomplete. The issue is far more subtle thananyone had anticipated.This work was supported by National Science Foundationgrants ACI9720199 and CCR9619808, and a gift from Sun Mi-crosystems.

Many of the issues raised in this paper have beendiscussed on a mailing list dedicated to the JavaMemory Model [JMM]. There is a rough consensuson the solutions to these issues, and the answers pro-posed here are similar to those proposed in anotherpaper [MS00] (by other authors) that arose out ofthose discussions. However, the details and the wayin which those solutions are formalized are di�erent.The authors published a somewhat condensed ver-sion of this paper [MP01]. Some of the issues dealtwith in this paper, such as improperly synchronizedaccess to longs and doubles, were elided in that pa-per.2 Memory ModelsAlmost all of the work on memory models area hasbeen done on processor memory models. Program-ming language memory models di�er in some impor-tant ways.First, most programming languages o�er somesafety guarantees, such as type safety. These guar-antees must be absolute: there must not be a way fora programmer to circumvent them.Second, the run-time environment for a high levellanguage contains many hidden data structures and�elds that are not directly visible to a programmer(for example, the pointer to a virtual method table).A data race resulting in the reading of an unexpectedvalue for one of these hidden �elds could be impossi-ble to debug and lead to substantial violations of thesemantics of the high level language.Third, some processors have special instructions forperforming synchronization and memory barriers. Ina programming language, some variables have specialproperties (e.g., volatile or �nal), but there is usuallyno way to indicate that a particular write should havespecial memory semantics.Finally, it is impossible to ignore the impact ofcompilers and the transformations they perform.Many standard compiler transformations violate the1

rules of existing memory models [Pug00b].2.1 Terms and De�nitionsIn this paper, we concern ourselves with the seman-tics of the Java virtual machine [LY99]. While de�n-ing a semantics for Java source programs is impor-tant, there are many issues that arise only in theJVM that also need to be resolved. Informally, thesemantics of Java source programs is understood tobe de�ned by their straightforward translation intoclass�les, and then by interpreting the class�les us-ing the JVM semantics.A variable refers to a static variable of a loadedclass, a �eld of an allocated object, or element ofan allocated array. The system must maintain thefollowing properties with regards to variables and thememory manager:� It must be impossible for any thread to see a vari-able before it has been initialized to the defaultvalue for the type of the variable.� The fact that a garbage collection may relocate avariable to a new memory location is immaterialand invisible to the semantics.� The fact that two variables may be stored in ad-jacent bytes (e.g., in a byte array) is immaterial.Two variables can be simultaneously updated bydi�erent threads without needing to use synchro-nization to account for the fact that they are\adjacent".3 Proposed Informal SemanticsThe proposed informal semantics are very similar tolazy release consistency [CZ92, GLL+90]. A formaloperational semantics is provided in Section 7.All Java objects act as monitors that support reen-trant locks. For simplicity, we treat the monitor as-sociated with each Java object as a separate variable.The only actions that can be performed on the moni-tor are Lock and Unlock actions. A Lock action by athread blocks until the thread can obtain an exclusivelock on the monitor.The actions on monitors and volatile �elds are exe-cuted in a sequentially consistent manner (i.e., theremust exist a single, global, total execution order overthese actions that is consistent with the order inwhich the actions occur in their original threads). Ac-tions on volatile �elds are always immediately visibleto other threads, and do not need to be guarded bysynchronization.

If two threads access a normal variable, and oneof those accesses is a write, then the program shouldbe synchronized so that the �rst access is visible tothe second access. When a thread T1 acquires a lockon/enters a monitor m that was previously held byanother thread T2, all actions that were visible to T2at the time it released the lock on m become visibleto T1.If thread T1 starts thread T2, then all actions visibleto T1 at the time it starts T2 become visible to T2before T2 starts. Similarly, if T1 joins with T2 (waitsfor T2 to terminate), then all accesses visible to T2when T2 terminates are visible to T1 after the joincompletes.When a thread T1 reads a volatile �eld v that waspreviously written by a thread T2, all actions thatwere visible to T2 at the time T2 wrote to v be-come visible to T1. This is a strengthening of volatileover the existing semantics. The existing semanticsmake it very di�cult to use volatile �elds to com-municate between threads, because you cannot use asignal received via a read of a volatile �eld to guar-antee that writes to non-volatile �elds are visible.With this change, many broken synchronization id-ioms (e.g., double-checked locking [Pug00a]) can be�xed by declaring a single �eld volatile.There are two reasons that a value written to avariable might not be available to be read after itbecomes visible to a thread. First, another write tothat variable in the same thread can overwrite the�rst value. Second, additional synchronization canprovide a new value for the variable in the ways de-scribed above. Between the time the write becomesvisible and the time the thread no longer can readthat value from that variable, the write is said to beeligible to be read.When programs are not properly synchronized,very surprising behaviors are allowed.There are additional rules associated with �nal�elds (Section 5) and �nalizers (Section 6)4 Safety guaranteesJava allows untrusted code to be executed in a sand-box with limited access rights. The set of actionsallowed in a sandbox can be customized and dependsupon interaction with a security manager, but theability to execute code in this manner is essential. Ina language that allows casts between pointers and in-tegers, or in a language without garbage collection,any such guarantee is impossible. Even for code thatis written by someone you trust not to act maliciously,2

safety guarantees are important: they limit the pos-sible e�ects of an error.Safety guarantees need to be enforced regardless ofwhether a program contains a synchronization erroror data race.In this section, we go over the implementation is-sues involved in enforcing certain virtual machinesafety guarantees, and in the issues in writing li-braries that promise higher level safety guarantees.4.1 VM Safety guaranteesConsider execution of the code on the left of Figure1a on a multiprocessor with a weak memory model(all of the ri variables are intended to be registersthat do not require memory references). Can thisresult in r2 = -1? For this to happen, the write to pmust precede the read of p, and the read of *r1 mustprecede the write to y.It is easy to see how this could happen if the MemBar(Memory Barrier) instruction were not present. AMemBar instruction usually requires that actions thathave been initiated are completed before any furtheractions can be taken. If a compiler or the processortries to reorder the statements in Thread 1 (lead-ing to r2 = -1), then a MemBar would prevent thatreordering. Given that the instructions in thread 1cannot be reordered, you might think that the datadependence in thread 2 would prohibit seeing r2 =-1. You'd be wrong. The Alpha memory model al-lows the result r2 = -1. Existing implementations ofthe Alpha wouldn't actually reorder the instructions.However, existing Alpha implements could ful�ll ther2 = *r1 instruction out of a stale cache line, whichhas the same e�ect. Future implementations may usevalue prediction to actually allow the instructions tobe executed out of order.Stronger memory orders, such as TSO (Total StoreOrder), PSO (Partial Store Order) and RMO (Re-laxed Memory Order) would not allow this reorder-ing. Sun's SPARC chip typically runs in TSO mode,and Sun's new MAJC chip implements RMO. Intel'sIA-64 memory model does not allow r2 = -1; theIA-32 has no memory barrier instructions or formalmemory model (the implementation changes fromchip to chip), but many knowledgeable experts haveclaimed that no IA-32 implementation would allowthe result r2=-1 (assuming an appropriate orderinginstruction was used instead of the memory barrier).Now consider Figure 1b. This is very similar toFigure 1a, except that y is replaced by heap allocatedmemory for a new instance of Point. What happensif, when Thread 2 reads Foo.p, it sees the address

written by Thread 1, but it doesn't see the writesperformed by Thread 1 to initialize the instance?When thread 2 reads r2.x, it could see whateverwas in that memory location before it was allocatedfrom the heap. If that memory was uninitialized be-fore allocation, an arbitrary value could be read. Thiswould obviously be a violation of Java semantics. Ifr2.x were a reference/pointer, then seeing a garbagevalue would violate type safety and make any kind ofsecurity/safety guarantee impossible.One solution to this problem is allocate objects outof memory that all threads know to have been zeroed(perhaps at GC time). This would mean that if wesee an early/stale value for r2.x, we see a zero ornull value. This is typesafe, and happens to be thedefault value the �eld is initialized with before theconstructor is executed.Now consider Figure 1c. When thread 2 dispatcheshashCode(), it needs to read the virtual method tableof the object referenced by r2. If we use the ideasuggested previously of allocating objects out of pre-zeroed memory, then the repercussions of seeing astale value for the vptr is limited to a segmentationfault when attempting to load a method address outof the virtual method table. Other operations suchas arraylength, instanceOf and checkCast could alsoload header �elds and behave anomalously.But consider what happens if the creation of theBar object by Thread 1 is the very �rst time Bar hasbeen referenced, and this forces the loading and ini-tialization of class Bar. Then not only might thread2 see a stale value in the instance of Bar, thread 2could see a stale value in any of the data structuresor code loaded for class Bar. What makes this partic-ularly tricky is that thread 2 has no indication thatit might be about to execute code of a class that hasjust been loaded.4.1.1 Proposed VM Safety GuaranteesSynchronization errors can only cause surprising orunexpected values to be returned from a read action(i.e., a read of a �eld or array element). Other ac-tions, such as getting the length of an array, per-forming a checked cast or invoking a virtual methodbehave normally. They cannot throw any exceptionsor errors because of a data race, cause the VM tocrash or be corrupted, or behave in any other waynot allowed by the semantics.Values returned by read actions must be both type-safe and \not out of thin air". To say that a valuemust be \not out of thin air" means that it must bea value written previously to that variable by somethread. For example, Figure 7 must not be able to3

Initiallyp = &x; x = 1; y = -1Thread 1 Thread 2y = 2 r1 = pMemBar r2 = *r1p = &yCould result inr2 = -1 InitiallyFoo.p = new Point(1,2)Thread 1 Thread 2r1 = new Point(3,4) r2 = Foo.pMemBar r3 = r2.xFoo.p = r1Could result inr3 = 0 or garbage InitiallyFoo.o = \Hello"Thread 1 Thread 2r1 = new Bar(3,4) r2 = Foo.oMemBar r3 = r2.hashCode()Foo.o = r1 Could result inalmost anything(a) (b) (c)Figure 1: Surprising results from weak memory modelsproduce any result other than i == j == 0. The ex-ception to this is that incorrectly synchronized readsof non-volatile longs and doubles are not required torespect the \not out of thin air" rule (see Section 7.7for details).4.2 Library Safety guaranteesMany programmers assume that immutable objects(objects that do not change once they are con-structed) do not need to be synchronized. This is onlytrue for programs that are otherwise correctly syn-chronized. However, if a reference to an immutableobject is passed between threads without correct syn-chronization, then synchronization within the meth-ods of the object is needed to ensure that the objectactually appears to be immutable.The motivating example is the java.lang.Stringclass. This class is typically implemented using alength, o�set, and reference to an array of characters.All of these are immutable (including the contents ofthe array), although in existing implementations arenot declared �nal.The problem occurs if thread 1 creates a String ob-ject S, and then passes a reference to S to thread 2without using synchronization. When thread 2 readsthe �elds of S, those reads are improperly synchro-nized and could see the default values for the �elds ofS, then later reads by thread 2 could see the valuesset by thread 1.As an example of how this can a�ect a pro-gram, it is possible to show that a String that issupposed to be immutable can appear to changefrom \/tmp" to \/usr". Consider an implementa-tion of StringBu�er whose substring method cre-ates a string using the StringBu�er's character ar-ray. It only creates a new array for the newString if the StringBu�er is changed. We cre-ate a String using new StringBuffer ("/usr/tmp").substring(4);. This will produce a string with ano�set �eld of 4 and a length of 4. If thread 2 in-

correctly sees an o�set with the default value of 0,it will think the string represents \/usr" rather than\/tmp". This behavior can only occur on systemswith weak memory models, such as an Alpha SMP.Under the existing semantics, the only way to pro-hibit this behavior is to make all of the methodsand constructors of the String class synchronized.This solution would incur a substantial performancepenalty. The impact of this is compounded by thefact that the synchronization is not necessary on allplatforms, and even then is only required when thecode contains a data race.5 Guarantees for Final �eldsIf an object contains mutable �elds, then synchro-nization is required to protect the class against attackvia data race. Therefore, we propose allowing im-mutable objects to be defended by use of �nal �elds.Final �elds must be assigned exactly once in theconstructor for the class that de�nes them. The ex-isting Java memory model contains no discussion of�nal �elds. In fact, at each synchronization point,�nal �elds need to be reloaded from memory just likenormal �elds.We propose additional semantics for �nal �elds.These semantics will allow more aggressive optimiza-tions of �nal �elds, and allow them to be used toguard against attack via data race.5.1 When these semantics matterThe semantics de�ned here are only signi�cant forprograms that either:� Allow objects to be made visible to other threadsbefore the object is fully constructed� Have data racesWe strongly recommend against allowing objects toescape during construction. Since this is simply a4

class ReloadFinal extends Thread {final int x;ReloadFinal() {synchronized(this) {start();sleep(10);x = 42;}};public void run() {int i,j;i = x;synchronized(this) {j = x;}System.out.println(i + ", " + j);// j must be 42, even if i is 0}}Figure 2: Final �elds must be reloaded under existingsemanticsmatter of writing constructors correctly, it is not toodi�cult a task. While we also recommend againstdata races, defensive programming may require con-sidering that a user of your code may deliberately in-troduce a data race, and that there is little or nothingyou can do to prevent it.5.2 Final �elds of object that escapetheir constructorsFigure 2 shows an example of where the existing spec-i�cation requires �nal �elds to be reloaded. In thisexample, the object being constructed is made visi-ble to another thread before the �nal �eld is assigned.That thread reads the �nal �eld, waits to be signaledthat the constructor has assigned the �nal �eld, andthen reads the �nal �eld again. The current speci�-cation guarantees that even if the �rst read of tmp1.xin foo sees 0, the second read will see 42.It is di�cult to give a useful semantics of �nal �eldsthat can be seen to change. So we don't. The (in-formal) rule for �nal �elds is that you must ensurethat the constructor for a object has completed be-fore another thread is allowed to load a reference tothat object.5.3 Informal semantics of �nal �eldsThe formal detailed semantics for �nal �elds are givenin Section 7.6. For now, we just describe the informalsemantics of �nal �elds that are constructed properly.

The �rst part of the semantics of �nal �elds is:F1 When a �nal �eld is read, the value read is thevalue assigned in the constructor.Consider the scenario postulated at the bottom ofFigure 3. The question is, which of the variables i1- i7 are guaranteed to see the value 42?F1 alone guarantees that i1 is 42. However, thatrule isn't su�cient to make Strings absolutely im-mutable. Strings contain a reference to an array ofcharacters; the contents of that array must be seento be immutable in order for the String to be im-mutable. Unfortunately, there is no way to declarethe contents of an array as �nal in Java. Even ifyou could, it would mean that you couldn't reuse themutable character bu�er from a StringBu�er in con-structing a String.To use �nal �elds to make Strings immutable re-quires that when we read a �nal reference to an array,we see both the correct reference to the array and thecorrect contents of the array. Enforcing this shouldguarantee that i2 is 42. For i3, the relevant ques-tion is: do the contents of the array need to be setbefore the �nal �eld is set (i.e, i3 might not be 42),or merely before the constructor completes (i3 mustbe 42)?Although this point is debatable, we believe thata requirement for objects to be completely initializedbefore they are assigned to �nal �elds would often beignored or incorrectly performed. Thus, we recom-mend that the semantics only require that such ob-jects be initialized before the constructor completes.Since i4 is very similar to i2, it should clearly be42. What about i5? It is reading the same locationas i4. However, simple compiler optimizations wouldsimply reuse the value loaded for j as the value of i5.Similarly, a processor using the Sparc RMO memorymodel would only require a memory barrier at theend of the constructor to guarantee that i4 is 42.However, ensuring that i5 is 42 under RMO wouldrequire a memory barrier by the reading thread. Forthese reasons, we recommend that the semantics notrequire that i5 be 42.All of the examples to this point have dealt withreferences to arrays. However, it would be very con-fusing if these semantics applied only to array ele-ments and not to object �elds. Thus, the semanticsshould require that i6 is 42.We need to decide if these special semantics ap-ply only to the �elds/elements of the object/arraydirectly referenced, or if it applies to those referencedindirectly. If the semantics apply to indirectly refer-enced �elds/elements, then i7 must be 42. We be-5

class FinalTest {public static FinalTest ft;public static int [] x = new int[1];public final int a;public final int [] b,c,d;public final Point p;public final int [][] e;public FinalTest(int i) {a = i;int [] tmp = new int[1];tmp[0] = i;b = tmp;c = new int[1];c[0] = i;FinalTest.x[0] = i;d = FinalTest.x;p = new Point();p.x = i;e = new int[1][1];e[0][0] = i;}
static void foo() {int [] myX = FinalTest.x;int j = myX[0];FinalTest f1 = ft;if (f1 != null || j == -1) return;// Guaranteed to see value// set in constructor?int i1 = f1.a; // yesint i2 = f1.b[0]; // yesint i3 = f1.c[0]; // yesint i4 = f1.d[0]; // yesint i5 = myX[0]; // noint i6 = f1.p.x; // yesint i7 = f1.e[0][0]; // yes// use i1 ... i7}}// Thread 1:// FinalTest.ft = new FinalTest(42);// Thread 2;// FinalTest.foo();Figure 3: Subtle points of the revised semantics of �nal

6

lieve making the semantics apply only to directly ref-erenced �elds would be di�cult to program correctly,so we recommend that i7 be required to be 42.To formalize this idea, we say that a read r2 isderived from a read r1 if� r2 is a read of a �eld or element of an addressthat was returned by r1, or� there exists a read r3 such that r3 is derived fromr1 and r2 is derived from r3.Thus, the additional semantics for �nal �elds are:F2 Assume thread T1 assigns a value to a �nal �eldf of object X de�ned in class C. Assume thatT1 does not allow any other thread to load areference to X until after the C constructor forX has terminated. Thread T2 then reads �eldf of X. Any writes done by T1 before the classC constructor for object X terminates are guar-anteed to be ordered before and visible to anyreads done by T2 that are derived from the readof f.5.4 Final Static FieldsFinal static �elds must be initialized by the class ini-tializer for the class in which they are de�ned. Thesemantics for class initialization guarantee that anythread that reads a static �eld sees all the results ofthe execution of the class initialization.Note that �nal static �elds do not have to bereloaded at synchronization points.Under certain complicated circumstances involvingcircularities in class initialization, it is possible for athread to access the static variables of a class beforethe static initializer for that class has started. Undersuch situations, a thread which accesses a �nal static�eld before it has been set sees the default value forthe �eld. This does not otherwise a�ect the natureor property of the �eld (any other threads that readthe static �eld will see the �nal value set in the classinitializer). No special semantics or memory barriersare required to observe this behavior; the standardmemory barriers required for class initialization en-sure it.5.5 Native code changing �nal �eldsJNI allows native code to change �nal �elds. To allowoptimization (and sane understanding) of �nal �elds,that ability will be prohibited. Attempting to useJNI to change a �nal �eld should throw an immediateexception.

5.5.1 Write Protected FieldsSystem.in, System.out, and System.err are �nalstatic �elds that are changed by the methods System.setIn, System.setOut and System.setErr. This isdone by having the methods call native code thatmodi�es the �nal �elds. We need to create a specialrule to handle this situation.These �elds should have been accessed via gettermethods (e.g., System.getIn()). However, it wouldbe impossible to make that change now. If we sim-ply made the �elds non-�nal, then untrusted codecould change the �elds, which would also be a seriousproblem (functions such as System.setIn have to getpermission from the security manager).The (ugly) solution for this is to create a new kindof �eld, write protected, and declare these three �elds(and only these �elds) as write protected. Theywould be treated as normal variables, except thatthe JVM would reject any bytecode that attempts tomodify them. In particular, they need to be reloadedat synchronization points.6 Guarantees for FinalizersWhen an object is no longer reachable, thefinalize() method (i.e., the �nalizer) for the ob-ject may be invoked. The �nalizer is typically runin a separate �nalizer thread, although there may bemore than one such thread.The loss of the last reference to an object acts asan asynchronous signal to another thread to invokethe �nalizer. In many cases, �nalizers should be syn-chronized, because the �nalizers of an unreachablebut connected set of objects can be invoked simul-taneously by di�erent threads. However, in practice�nalizers are often not synchronized. To na��ve users,it seems counter-intuitive to synchronize �nalizers.Why is it hard to make guarantees? Consider thecode in Figure 4. If foo() is invoked, an object iscreated and then made unreachable. What is guar-anteed about the reads in the �nalizer?An aggressive compiler and garbage collector mayrealize that after the assignment to ft.y, all ref-erences to the object are dead and thus the ob-ject is unreachable. If garbage collection and �-nalization were performed immediately, the write toFinalizerTest.z would not have been performedand would not be visible.But if the compiler reorders the assignments toFinalizerTest.x and ft.y, the same would hold forFinalizerTest.x. However, the object referenced7

class FinalizerTest {static int x = 0;int y = 0;static int z = 0;protected void finalize() {int i = FinalizerTest.x;int j = y;int k = FinalizerTest.z;// use i, j and k}public static void foo() {FinalizerTest ft = new FinalizerTest();FinalizerTest.x = 1;ft.y = 1;FinalizerTest.z = 1;ft = null;}} Figure 4: Subtle issues involving �nalizationby ft is clearly reachable at least until the assign-ment to ft.y is performed.So the guarantee that can be reasonably made isthat all memory accesses to the �elds of an object Xduring normal execution are ordered before all mem-ory accesses to the �elds of X performed during theinvocation of the �nalizer for X. Furthermore, allmemory accesses visible to the constructing thread atthe time it completes the construction of X are visi-ble to the �nalizer for X. For a uniprocessor garbagecollector, or a multiprocessor garbage collector thatperforms a global memory barrier (a memory barrieron all processors) as part of garbage collection, thisguarantee should be free.For a garbage collector that doesn't \stop theworld", things are a little trickier. When an objectwith a �nalizer becomes unreachable, it must be putinto special queue of unreachable objects. The nexttime a global memory barrier is performed, all of theobjects in the unreachable queue get moved to a �-nalizable queue, and it now becomes safe to run their�nalizer. There are a number of situations that willcause global memory barriers (such as class initial-ization), and they can also be performed periodicallyor when the queue of unreachable objects grows toolarge.

7 Formal Speci�cationThe following is a formal, operational semantics formultithreaded Java. It isn't intended as a methodanybody would use to implement Java. A JVM im-plementation is legal i� for any execution observed onthe JVM, there is a execution under these semanticsthat is observationally equivalent.The model is a global system that atomically ex-ecutes one operation from one thread in each step.This creates a total order over the execution of alloperations. Within each thread, operations are usu-ally done in their original order. The exception isthat writes and stores may be done presciently, i.e.,executed early (x7.5). Even without prescient writes,the process that decides what value is seen by a readis complicated and nondeterministic; the end resultis not sequential consistency.7.1 OperationsAn operation corresponds to one JVM opcode. Aget�eld, getstatic or array load opcode correspondsto a Read. A put�eld, putstatic or array store op-code corresponds to a Write. A monitorenter opcodecorresponds to a Lock, and a monitorexit opcode cor-responds to an Unlock.7.2 Types and Domainsvalue A primitive value (e.g., int) or a reference toa object.variable Static variable of a loaded class, a �eld ofan allocated object, or element of an allocatedarray.GUID A globally unique identi�er assigned to eachdynamic occurrence of write. This allows, forexample, two writes of 42 to a variable v to bedistinguished.write A tuple of a variable, a value (the value writ-ten to the variable), and a GUID (to distinguishthis write from other writes of the same value tothe same variable).7.3 Simple Semantics, excluding FinalFields and Prescient WritesEstablishing adequate rules for �nal �elds and pre-scient writes is di�cult, and substantially complicatesthe semantics. We will �rst present a version of thesemantics that does not allow for either of these.8

There is a set allWrites that denotes the set of allwrites performed by any thread to any variable. Forany set S of writes, S(v) � S is the set of writes to vin S.For each thread t, at any given step, overwrittent isthe set of writes that thread t knows are overwrittenand previoust is the set of all writes that thread tknows occurred previously. It is an invariant that forall t, overwrittent � previoust � allWritesFurthermore, all of these sets are monotonic: theycan only grow.When each variable v is created, there is a writew of the default value to v s.t. allWrites(v) = fwgand for all t, overwrittent(v) = fg and previoust(v) =fwg.When thread t reads a variable v, the value re-turned is that of an arbitrary write from the setallWrites(v) � overwrittentThis is the set of writes that are eligible to beread by thread t for variable v. Every monitor andvolatile variable x has an associated overwrittenx andpreviousx set. Synchronization actions cause infor-mation to be exchanged between a thread's previousand overwritten sets and those of a monitor orvolatile. For example, when thread t locks mon-itor m, it performs previoust[= previousm andoverwrittent[= overwrittenm. The semantics ofRead, Write, Lock and Unlock actions are given inFigure 5.If your program is properly synchronized, thenwhenever thread t reads or writes a variable v, youmust have done synchronization in a way that ensuresthat all previous writes of that variable are known tobe in previoust. In other words,previoust(v) = allWrites(v)From that, you can do an induction proof that ini-tially and before and after thread t reads or writes avariable v,j allWrites(v) � overwrittent j= 1Thus, the value of v read by thread t is always themost recent write of v: allWrites(v) � overwrittent.In a correctly synchronized program, there will there-fore only be one eligible value for any variable in anythread at a given time. This results in sequentialconsistency.

7.4 Explicit Thread CommunicationStarting, interrupting or detecting that a thread hasterminated all have special synchronization seman-tics, as does initializing a class. Although we couldadd special rules to Figure 5 for these operations, itis easier to describe them in terms of the semanticsof hidden volatile �elds.1. Associated with each thread T1 is a hiddenvolatile start �eld. When thread T2 starts T1,it is as though T2 writes to the start �eld, andthe very �rst action taken by T1 is to read that�eld.2. When a thread T1 terminates, as its very lastaction it writes to a hidden volatile terminated�eld. Any action that allows a thread T2 to de-tect that T1 has terminated is treated as a readof this �eld. These actions include:� Calling join() on T1 and having it returndue to thread termination.� Calling isAlive() on T1 and having it returnfalse because T1 has terminated.� Being in a shutdownHook thread after ter-mination of T1, where T1 is a non-daemonthread that terminated before virtual ma-chine shutdown was initiated.3. When thread T2 interrupts or stops T1, it is asthough T2 writes to a hidden volatile interrupted�eld of T1, that is read by T1 when it detects orreceives the interrupt/threadDeath.4. After a thread T1 initializes a class C, but be-fore releasing the lock on C, it writes \true" toa hidden volatile static �eld initialized of C.If another thread T2 needs to check that C hasbeen initialized, it can just check that the ini-tialized �eld has been set to true (which wouldbe a read of the volatile �eld). T2 does not needto obtain a lock on the class object for C if itdetects that C is already initialized.7.5 Need for Prescient WritesConsider the example in Figure 6. If the actionsmust be executed in their original order, then oneof the reads must happen �rst, making it impossibleto get the result i == j == 1. However, a com-piler might decide to reorder the statements in eachthread, which would allow this result.9

writeNormal(Write hv; w; gi)overwrittent[= previoust(v)previoust+ = hv; w; giallWrites+ = hv; w; gireadNormal(Variable v)Choose hv; w; gi fromallWrites(v) � overwrittentreturn wlock(Monitor m)Acquire/increment lock on mprevioust[= previousm;overwrittent[= overwrittenm;unlock(Monitor m)previousm[= previoust;overwrittenm[= overwrittent;Release/decrement lock on mreadVolatile(Variable v)previoust[= previousv;overwrittent[= overwrittenv;return volatileValuevwriteVolatile(Write hv; w; gi)volatileValuev = wpreviousv[= previoust;overwrittenv[= overwrittent;Figure 5: Formal semantics without �nal �elds orprescient writesIn order to allow standard compiler optimizationsto be performed, we need to allow Prescient Writes.A compiler may move a write earlier than it wouldbe executed by the original program if the followingconditions are absolutely guaranteed:1. The write will happen (with the variable andvalue written guaranteed as well).2. The prescient write can not be seen in the samethread before the write would normally occur.3. Any premature reads of the prescient write mustnot be observable as a previousRead via synchro-nization.When we say that something is guaranteed, thisincludes the fact that it must be guaranteed over allpossible results from improperly synchronized reads(which are non-deterministic, because jallWrites(v)�overWritestj > 1). Figure 7 shows an example of a

Initially:a = b = 0Thread 1:j = b;a = 1; Thread 2:i = a;b = 1;Can this result in i == j == 1?Figure 6: Motivation for Prescient WritesInitially:a = 0Thread 1:j = a;a = j; Thread 2:i = a;a = i;Must not result in i == j == 42Figure 7: Prescient Writes must be Guaranteedbehavior that could be considered \consistent" (ina very perverted sense) if prescient writes were notrequired to be guaranteed across non-deterministicreads (the value of 42 appears out of thin air in thisexample).7.6 Full semanticsIn this section, we give the full semantics, including�nal �elds and prescient writes.7.6.1 New Types and Domainslocal A value stored in a stack location or local (e.g.,not in a �eld or array element). A local is rep-resented by a tuple ha; oFi, where a is a value (areference to an object or a primitive value) andoF is a set of writes known to be overwritten dueto the special semantics of �nal �elds.7.6.2 OverviewThe semantics of each of the actions is given in Figure8. The write actions take one parameter: the writeto be performed. The freeze actions take one param-eter: the �nal variable to be frozen. The read actionstake two parameters: a local that references an ob-ject to be read, and an element of that object (�eldor array element). The lock and unlock actions takeone parameter: the monitor to be locked or unlocked.We use infox[= infoy10

initWrite(Write hv;w; gi)allWrites+ = hv;w; giuncommittedt+ = hv;w;giperformWrite(Write hv;w; gi)Assert hv;w;gi 62 previousReadstoverwrittent[= previoust(v)previoust+ = hv;w;giuncommittedt� = hv;w;gireadNormal(Local ha; oFi, Element e)Let v be the variable referenced by a:eChoose hv;w; gi from allWrites(v)� oF�uncommittedt � overwrittentpreviousReadst+ = hv;w;gireturn hw; oFireadStatic(Variable v)Choose hv;w; gi from allWrites(v)�uncommittedt � overwrittentpreviousReadst+ = hv;w;gireturn hw; ;ilock(Monitor m)Acquire/increment lock on minfot[= infom;unlock(Monitor m)infom[= infot;Release/decrement lock on mreadVolatile(Local ha; oFi, Element e)Let v be the volatile referenced by a:einfot[= infovreturn hvolatileValuev; oFiwriteVolatile(Write hv;w; gi)volatileValuev = winfov[= infot;writeFinal(Write hv;w; gi)�nalValuev = wfreezeFinal(Variable v)overwrittenv = overwrittentreadFinal(Local ha; oFi, Element e)Let v be the �nal variable referenced by a:ereturn h�nalValuev; oF [overwrittenviFigure 8: Semantics of Program Actions

as shorthand forpreviousReadsx [= previousReadsypreviousx [= previousyoverwrittenx [= overwritteny7.6.3 Static variablesBefore any reference to a static variable, the threadmust insure that the class is initialized. Issues relatedto class initialization are discussed in the full paper.Because of the semantics of class initialization, nospecial �nal semantics are needed for static variables.7.6.4 Freezing �nal �eldsWhen a constructor terminates normally, the threadperforms freeze actions on all �nal �elds de�ned inthat class. If a constructor A1 for A chains to anotherconstructor A2 for A, the �elds are only frozen at thecompletion of A1. If a constructor B1 for B chains toa constructor A1 for A (a superclass of B), then uponcompletion of A1, �nal �elds declared in A are frozen,and upon completion of B1, �nal �elds declared in Bare frozen.Associated with each �nal variable v are� �nalValuev (the value of v), and� overwrittenvEvery read of a �eld has to be done using a localha; oF i. A read performed through this local cannotreturn any of the writes in the set oF due to the spe-cial semantics of �nal �elds. For each v, overwrittenvis the overwrittent set of the thread that performedthe freeze on v, at the time that the freeze was per-formed. overwrittenv is assigned when the freeze on vis performed. Whenever a read of v is performed, thetuple returned contains the value of v and the unionof overwrittenv with the local's oF set. This impliesthat the writes in overwrittenv cannot be returned byany read derived from a read of v (condition F2).The this parameter to the run method of a threadhas an empty oF set, as done the local generated bya NEW operation.7.6.5 Semantics of Prescient writesEach write action is broken into two parts: initWriteand performWrite. The performWrite is always per-formed at the point where the write existed in theoriginal program. Each performWrite has a corre-sponding initWrite that occurs before it and is per-formed on a write tuple with the same GUID. The11

initWrite can always be performed immediately be-fore the performWrite. The initWrite may be per-formed prior to that (i.e., presciently) if the writeis guaranteed to occur. This guarantee extends overnon-deterministic choices for the values of reads.We must guarantee that no properly synchronizedread of the variable being written can be observedbetween the prescient write and the execution of thewrite by the original program. To accomplish this,we create a set previousReads(t) for every thread twhich contains the set of values of variables that tknows have been read. A read can be added to thisset in two ways: if t performed the read, or t hassynchronized with a thread that contained the readin its previousReads(t) set.If a properly synchronized read of the variable wereto occur between the initWrite and the performWrite,the read would be placed in the previousReads set ofthe thread performing the write. We assert that thiscannot happen; this maintains the necessary condi-tions for prescient writes.The set uncommittedt contains the set of pre-sciently performed writes by a thread whose per-formWrite action has not occurred. Writes containedin a thread's uncommittedt set are invisible to thatthread. This set exists to reinforce the fact that theprescient write is invisible to the thread that executedit until the performWrite action. This would be han-dled by the assertion in performWrite, but making itclear that this is not a choice clari�es what it meansfor a prescient write to be guaranteed.Final �elds and Prescient writes An initWriteof a reference a must not be reordered with an earlierfreeze of a �eld of the object o referenced by a. Thisprevents a prescient write from allowing a referenceto o to escape the thread before o's �nal �elds havebeen frozen.7.6.6 Prescient Reads?The semantics we have described does not need anyexplicit form of prescient reads to re
ect ordering thatmight be done by a compiler or processor. The e�ectsof prescient reads are produced by other parts of thesemantics.If a Read action were done early, the set of valuesthat could be returned by the read would just be asubset of the values that could be done at the originallocation of the Read. So the fact that a compiler orprocessor might perform a read early, or ful�ll a readout of a local cache, cannot be detected and is allowedby the semantics, without any explicit provisions forprescient reads.

7.6.7 Other reorderingsThe legality of many other compiler reorderings canbe inferred from the semantics. These compiler re-orderings could include speculative reads or the delayof a memory reference. For example, in the absenceof synchronization operations, constructors and �nal�elds, all memory references can be freely reorderedsubject to the usual constraints arising in transform-ing single-threaded code (e.g., you can't reorder twowrites to the same variable).7.6.8 Pseudo-�nal �eldsIf a reference to an object with a �nal �eld is loadedby a thread that did not construct that object, oneof two things should be true:� That reference was written after the appropriateconstructor terminated, or� synchronization is used to guarantee that the ref-erence could not be loaded until after the appro-priate constructor terminated.If neither of these conditions hold, then the �nal�eld of the object immediately becomes a pseudo-�nal �eld. A read of a pseudo-�nal �eld non-deterministically returns either the default value forthe type of that �eld, or the value written to that�eld in the constructor (if that write has occurred).Objects can have multiple constructors (e.g., ifclass B extends A, then a B object has a B con-structor and an A constructor). In such a case, ifa B object becomes visible to other threads after theA constructor has terminated, but before the B con-structor has terminated, then the �nal �elds de�nedin B become pseudo-�nal, but the �nal �elds of Aremain �nal.7.7 Non-atomic longs and doublesA read of a long or double variable v can return acombination of the �rst and second half of any twoof the eligible values for v. If access to v is properlysynchronized, then there will only be one write inthe set of eligible values for v. In this case, the newvalue of v will not be a combination of two or morevalues (more precisely, it will be a combination of the�rst half and the second half of the same value). Thespeci�cation for reads of longs and doubles is shownin Figure 9. The way in which these values might becombined is implementation dependent. This allowsmachines that do not have e�cient 64-bit load/storeinstructions to implement loads/stores of longs anddoubles as two 32-bit load/stores.12

readNormalLongOrDouble(Value ha; oFi, element e)Let v be the variable referenced by a:eLet v0 and v00 be arbitrary values from allWrites(v)� overwrittent � oFreturn h combine(�rstPart(v0), secondPart(v00)), oFiFigure 9: Formal semantics for longs and doublesNote that reads and writes of volatile and �nal longand double variables are required to be atomic.7.8 FinalizersFinalizers are executed in an arbitrary thread t thatholds no locks at the time the �nalizer begins execu-tion. For a �nalizer on an object o, overwrittent is theunion of all writes to any �eld/element of o known tobe overwritten by any thread at the time o is deter-mined to be unreachable, along with the overwrittenset of the thread that constructed o as of the momentthe constructor terminated. The set previoust is theunion of all writes to any �eld/element of o knownto be previous by any thread at the time o is deter-mined to be unreachable, along with the previous setof the thread that constructed o as of the momentthe constructor terminated.It is strongly recommended that objects with non-trivial �nalizers be synchronized. The semanticsgiven here for unsynchronized �nalization are veryweak, but it isn't clear that a stronger semanticscould be enforced.7.9 Related WorkThe simple semantics is closely related to LocationConsistency [GS98]; the major di�erence is that inlocation consistency, an acquire or release a�ects onlya single memory location. However, location consis-tency is more of an architectural level memorymodel,and does not directly support abstractions such asmonitors, �nal �elds or �nalizers. Also, location con-sistency allows actions to be reordered \in ways thatrespect dependencies". We feel that our rules forprescient writes are more precise, particularly withregard to compiler transformations.To underscore the similarity to Location Consis-tency, the previoust(v) can be seen to be the sameas the set fe j t 2 processorset(e)g and everythingreachable from that set by following edges backwardsin the poset for v. Furthermore, the MRPW set isequal to previoust(v) � overwrittent.

Thread 1:synchronized (new Object()) {x = 1;}synchronized (new Object()) {j = y;} Thread 2:synchronized (new Object()) {y = 1;}synchronized (new Object()) {i = x;}Figure 10: \Useless" synchronization8 OptimizationsA number of papers [WR99, ACS99, BH99, Bla99,CGS+99] have looked at determining when synchro-nization in Java programs is \useless", and removingthe synchronization. A \useless" synchronization isone whose e�ects cannot be observed. For example,synchronization on thread-local objects is \useless."The existing Java thread semantics [GJS96, x17]does not allow for complete removal of \useless" syn-chronization. For example, in Figure 10, the existingsemantics make it illegal to see 0 in both i and j,while under these proposed semantics, this outcomewould be legal. It is hard to imagine any reasonableprogramming style that depends on the ordering con-straints arising from this kind of \useless" synchro-nization.The semantics we have proposed make a numberof synchronization optimizations legal, including:1. Complete elimination of lock and unlock opera-tions on a monitor unless more than one threadperforms lock/unlock operations on that moni-tor. Since no other thread will see the informa-tion associated with the monitor, the operationshave no e�ect.2. Complete elimination of reentrant lock/unlockoperations (e.g., when a synchronized methodcalls another synchronized method on the sameobject). Since no other thread can touch the in-formation associated with the monitor while theouter lock is in e�ect, any inner lock/unlock ac-tions have no e�ect.13

Initially:p.next = nullThread 1:p.next = pThread 2:List tmp = p.next;if (tmp == p&& tmp.next == null) {// Can't happen under CRF}Figure 11: CRF is constrained by data dependences3. Lock coarsening. For example, given two succes-sive calls to synchronized methods on the samemonitor, it is legal simply to perform one Lock,before the �rst method call, and perform one Un-lock, after the second call. This is legal becauseif no other thread acquired the lock between thetwo calls, then the Unlock/Lock actions betweenthe two calls have no e�ect. Note: there areliveness issues associated with lock coarsening,which need to be addressed separately. The Javaspeci�cation should probably require that if alower priority thread gives up a lock and a higherpriority thread is waiting for a lock on the sameobject, the higher priority thread is given thelock. For equal priority threads, some fairnessguarantee should be made.4. Replacement of a thread local volatile �eld (i.e.,one accessed by only a single thread) with a nor-mal �eld. Since no other thread will see the infor-mation associated with the volatile, the overwrit-ten and previous information associated with thevolatile will not be seen by other threads; sincethe variable is thread local, all accesses are guar-anteed to be correctly synchronized.5. Forward substitution across lock acquires. Forexample, if a variable x is written, a lock is ac-quired, and x is then read, then it is possible touse the value written to x as the value read fromx. This is because the lock action does not guar-antee that any values written to x by anotherthread will be returned by a read in this threadif this thread performed an unsynchronized writeof x. In general, it is possible to move most op-erations to normal variables inside synchronizedblocks.

Initially:a = 0Thread 1:a = 1;i = a; Thread 2:a = 2;j = a;CRF does not allow i == 2 and j == 1Figure 12: Global memory constraints in CRF9 Related WorkMaessen et al. [MS00] present an operational seman-tics for Java threads based on the CRF model. At theuser level, the proposed semantics are very similar tothose proposed in this paper (due to the fact that wemet together to work out the semantics). However,we believe are some troublesome (although perhapsnot fatal) issues with that paper.Perhaps most seriously, the CRF model doesn'tdistinguish between �nal �elds and non-�nal �elds asfar as seeing the writes performed in a constructor.As discussed in [MS00, x6.1], they rely on memorybarriers at the end of constructors to order the writesand data dependences to order the reads. Thismeans that in Figure 1b, their semantics prohibit r3== 0, even though the x �eld is not �nal. Sincethis guarantee requires additional memory barrierson systems using the Alpha memory model, it is un-desirable to make it for non-�nal �elds.Another problem is that [MS00] does not allow asmuch elimination of \useless synchronization". TheCRF-based speci�cation provides a special rule toallow skipping coherence actions associated with amonitorenter if the thread that previously releasedthe lock is the same thread as the current thread.However, no such rule applies to monitorexit. As aresult, in Figure 10 it is illegal to see 0 in both i andj. Also, their model doesn't provide any \coherence-skipping" rule for volatiles, so memory barriers mustbe associated with thread-local volatile �elds. Also,while the CRF semantics allow skipping the memorybarrier instructions associated with monitorenter onthread local monitors, it isn't clear that it allows com-piler reordering past thread-local synchronization.In contrast, under our model most synchronizationoptimizations, such as removal of \useless synchro-nization", fall out naturally as a consequence of usinga lazy release consistency [CZ92] style semantics.Furthermore, the handling of control and data de-pendences is worrisome. Speculative reads are rep-resented by moving Load instructions earlier in exe-14

cution. However, for an operational semantics, it ishard to imagine executing a Load instruction beforeyou know the address that needs to be Loaded. Infact, they speci�cally prohibit it [MS00, x6.1] in orderto get the required semantics for �nal �elds.For example, the code in Figure 11 shows a behav-ior prohibited by CRF. Since the read of tmp.next isdata dependent on the read of p.next, it must followthe read of p.next.While it is hard to imagine a compiler transforma-tion or processor architecture in which this reorderingcould occur, it none the less imposes a proof burden:showing that any implementation does not allow thisreordering which is not allowed by CRF.Similarly, because CRF models a single globalmemory through which all communication is per-formed, certain behaviors are prohibited. For exam-ple, in Figure 12 it is prohibited that i = 2 and j = 1.This prohibition has nothing to do with safety guar-antees or execution of correctly synchronized pro-grams. Rather, it is just an artifact of the CRFmodel. An implementation of Java on an aggressiveSMP architecture that allowed this behavior wouldnot correctly adhere to these semantics.10 ConclusionWe have proposed both an informal and formal mem-ory model for multithreaded Java programs. Thismodel will both allow people to write reliable multi-threaded programs and give JVM implementors theability to create e�cient implementations.It is essential that a compiler writer understandwhat optimizations and transformations are allowedby a memory model. Ideally, in code that doesn'tcontain synchronization operations, all the standardcompiler optimizations would be legal. In fact, noproof of this could be forthcoming because there area very few standard optimizations that are not legal.In particular, in a single-threaded environment, if youprove there are no writes to a variable between tworeads, you can assume that both reads return thesame value, and possibly omit some bounds check-ing or null-pointer checks that would otherwise berequired. In a multithreaded setting, no such causalassumptions can be made.However, the process of understanding and docu-menting the interactions between the memory modeland optimizations is of vital importance and will bethe focus of continuing work.Now that a broad community has reached roughconsensus on an informal semantics for multithreadedJava, the important step now is to formalize that

model. Doing so requires �guring out all of the cornercases, and providing a framework that would allowformal reasoning about the model. We believe thatthis proposal both provides the guarantees needed byJava programmers and the freedoms needed by JVMimplementors.AcknowledgmentsThanks to the many people who have participatedin the discussions of this topic, particularly SaritaAdve, Arvind, Joshua Bloch, Joseph Bowbeer, DavidDetlefs, Sanjay Ghemawat, Paul Haahr, Doug Lea,Tim Lindholm, Jan-Willem Maessen, Xiaowei Shen,Raymie Stata, Guy Steele and Dennis Sosnoski.References[ACS99] Jonathan Aldrich, Craig Chambers, andEmir Gun Sirer. Eliminating unnecessary syn-chronization from java programs. In OOPSLAposter session, October 1999.[BH99] Je� Bogda and Urs Hoelzle. Removing unnec-essary synchronization in java. In OOPSLA,October 1999.[Bla99] Bruno Blanchet. Escape analysis for objectoriented languages; application to Java. InOOPSLA, October 1999.[CGS+99] Jong-Deok Choi, Manish Gupta, Mauricio Ser-rano, Vugranam Sreedhar, and Sam Midki�.Escape analysis for Java. In OOPSLA, Octo-ber 1999.[CZ92] Pete Keleher Alan L. Cox and WillyZwaenepoel. Lazy release consistency for soft-ware distributed shared memory. In The Pro-ceedings of the 19 th International Symposiumof Computer Architecture, pages 13{21, May1992.[GJS96] James Gosling, Bill Joy, and Guy Steele. TheJava Language Speci�cation. Addison Wesley,1996.[GLL+90] K. Gharachorloo, D. Lenoski, J. Laudon,P. Gibbons, A. Gupta, , and J. L. Hennessy.Memory consistency and event ordering inscalable shared-memory multiprocessors. InProceedings of the Seventeenth InternationalSymposium on Computer Architecture, pages15{26, May 1990.[GS98] Guang Gao and Vivek Sarkar. Location consis-tency { a new memory model and cache consis-tency protocol. Technical Report 16, CAPSL,Univ. of Deleware, February 1998.15

[JMM] The Java memory model. Mailing list and webpage. http://www.cs.umd.edu/ �pugh/ java/memoryModel.[LY99] Tim Lindholm and Frank Yellin. The JavaVirtual Machine Speci�cation. Addison Wes-ley, 2nd edition, 1999.[MP01] Jeremy Manson and William Pugh. Core se-mantics of multithreaded Java. In ACM JavaGrande Conference, June 2001.[MS00] Arvind Jan-Willem Maessen and XiaoweiShen. Improving the Java memory model us-ing CRF. In OOPSLA, pages 1{12, October2000.[Pug99] William Pugh. Fixing the Java memory model.In ACM Java Grande Conference, June 1999.[Pug00a] William Pugh. The double checked locking isbroken declaration. http://www.cs.umd.edu/users/ pugh/ java/ memoryModel/ Dou-bleCheckedLocking.html, July 2000.[Pug00b] William Pugh. The Java memory model is fa-tally
awed. Concurrency: Practice and Expe-rience, 12(1):1{11, 2000.[WR99] John Whaley and Martin Rinard. Composi-tional pointer and escape analysis for Java pro-grams. In OOPSLA, October 1999.A Class InitializationThe JVM speci�cation requires [LY99, x5.5] thatbefore executing a GETSTATIC, PUTSTATIC, IN-VOKESTATIC or a NEW instruction on a class C,or initializing a subclass of C, class C must be ini-tialized. Furthermore, class C may not be initializedbefore it is required by the above rule.Although the JVM speci�cation does not spell itout, it is clear that any situation that requires thata thread T1 check to see that a class C has beeninitialized must also require that T1 see all of thememory actions resulting from the initialization ofclass C.This has a number of subtle and surprising im-plications for compilation, and interactions with thethreading model.Initializing a class invokes the static initializer forthe class, which can be arbitrary code. Thus, anyGETSTATIC, PUTSTATIC, INVOKESTATIC or aNEW instruction on a class C, which might be thevery �rst invocation of an instruction on class C,must be treated as a potential call of the initial-ization code. Thus, if A and B are classes, the ex-pression A.x+B.y+A.x cannot always be optimizedClasses can also be initialized due to use of re
ection orby being designated as the initial class of the JVM.

to A.x*2+B.y; the read of B.y may have side e�ectsthat change the value of A.x (because it might invokethe initialization code for B that could modify A.x).It would be possible to perform static analysis toverify that a particular instruction could not possiblybe the �rst time a thread was required to check thata class was initialized. Also, you could check that theresults of initializing a class were not visible outsidethe class. Either analysis would allow the instructionto be reordered with other instructions.A quick reading of the spec might suggest that athread can simply check a boolean
ag to see if theclass is initialized, and skip initialization code if theclass is already initialized. This is almost true. How-ever, the thread checking to see that the class is ini-tialized must see all updates caused by initializingthe class. This may require
ushing registers andperforming a memory barrier.Similarly, once a xxxSTATIC or NEW instructionhas been invoked, it is tempting to rewrite the codeto eliminate the initialization check. However, thisrewrite cannot be done until all threads have donethe barrier required to see the e�ects of initializingthe class.Another surprising result is that the existing specallows a thread to invoke methods and read/writeinstance �elds of an instance of a class C before see-ing all of the e�ects of the initialization of that class.How could this happen? Consider if thread T1 ini-tializes class C, creates an instance x of class C, andthen stores a reference to the instance into a globalvariable. Thread T2 could then, without synchro-nization, read the global variable, see the referenceto x, and invoke a virtual method on x. At thispoint, although C has been initialized, T2 hasn't donethe memory barrier or register
ushes that wouldbe required to see the updates performed by initial-izing class C. This means that even within virtualmethods of class C, we can't automatically elimi-nate/skip initialization checks associated with GET-STATIC, PUTSTATIC, INVOKESTATIC or NEWinstructions on a class C.
16

	Introduction
	Memory Models
	Terms and Definitions

	Proposed Informal Semantics
	Safety guarantees
	VM Safety guarantees
	Proposed VM Safety Guarantees

	Library Safety guarantees

	Guarantees for Final fields
	When these semantics matter
	Final fields of object that escape their constructors
	Informal semantics of final fields
	Final Static Fields
	Native code changing final fields
	Write Protected Fields

	Guarantees for Finalizers
	Formal Specification
	Operations
	Types and Domains
	Simple Semantics, excluding Final Fields and Prescient Writes
	Explicit Thread Communication
	Need for Prescient Writes
	Full semantics
	New Types and Domains
	Overview
	Static variables
	Freezing final fields
	Semantics of Prescient writes
	Prescient Reads?
	Other reorderings
	Pseudo-final fields

	Non-atomic longs and doubles
	Finalizers
	Related Work

	Optimizations
	Related Work
	Conclusion
	Class Initialization

