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Preface

Survey sampling, with its own theory and methodology, has been considered as a
small niche within standard statistics. This situation has produced a disconnect
between theory and practice. For example, nonresponse is one of the most important
challenges facing survey sampling theory; however, most textbooks dedicate only a
few pages to this problem. As noted by Tillé (2006), a concept as common as simple
random sampling is often not defined, although it can be described mathematically as

adiscrete random vector with a probability density mass and a characteristic function.

In this dissertation, we call for a change of perspective in the current approach to
estimation in survey sampling. We extend Till€'s idea and postulate that sample
designs are uniquely defined as a multivariate discrete random variable with an
expected value and a variance-covariance matrix with specific properties that
determine the type of design. The observed sample is also a multivariate discrete
distribution with a probability mass function that inherits the properties from the
random vector that describes the sample selection. Furthermore, al estimators are
functions of these random variables. Since there are no differences between a sample
design and design-based estimators and other random variables and functions of
random variables, we can use standard statistical analysis for studying design-based
estimators. This approach justifies the use of tools from standard statistics and other

fields such as engineering and physics. The introduction of matrix notation and



matrix operations provides new insights into the performance of estimators without

the use of simulations.

As shown in this research, the proposed methodology, called Parametric (PA)
Approach, has been useful for the design of algorithmic estimators that address the
problem of working model building and variable selection for calibration. The
algorithm was engineered based on the observations of the mathematical relationship
between the outcome variable and the probability of inclusion using orthogonal
components, a tool commonly used in other fields. Under this approach, we have a
better understanding of when estimators are efficient or when they underperform.
These ideas also provide a methodol ogy to develop new design-based estimators from
any model that is capable of reproducing the classical design-based estimators. Using
the same tools, we revisit the survey sampling asymptotic theory and provide a more
intuitive way to study the large sample properties of estimators. We also revisited

some unreproducible results reported in the literature.

The main consequence of this change in perspective is the rethinking of concepts
such as the role of models within the design-based paradigm while questioning
engrained concepts in the current theory. However, developing a new unifying
framework is not the goal of this endeavor. The main goal is to provide tools for

addressing the current problems facing the field.
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Chapter 1 The Parametric Approach to Survey Sampling
Estimation

1.1 Introduction

This dissertation extends the model-assisted theory for estimating enumerative finite
population characteristics such as totals and means from complex survey data in the
presence of full response. In the model-assisted approach, the working model for the
outcome variable guides the form of the estimator, and the inferences are design-
based (Sandal, Swensson, & Wretman, 1992). This approach alows for
incorporating auxiliary information to improve the efficiency of the estimators.
Although the working model does not need to be true for design-consistency, the gain

in efficiency depends on how well the model fits the observed data.

We propose a new framework for developing design-based estimators of finite
population characteristics called a Parametric (PA) approach in the presence of full
response. The PA framework is a data-driven methodology for (1) developing the
working model (i.e., choosing the auxiliary variables and functional form of the
model) given the realized sample, and (2) incorporating the auxiliary variable
population totals directly into the model. Unlike most design-based estimators, the
PA estimator is not a single estimator, but a class of estimators called agorithmic
estimators that result from applying an unambiguous set of steps or procedures to the

observed sample. The PA framework is similar to, and motivated in part by, the data-



driven methods from statistical learning theory (Hastie, Tibshirani, &

Friedman, 2009).

As an agorithmic-based methodology, the PA framework has these key steps.

1. Postulate a collection of well-defined parametric working models based on the
available auxiliary variables. Two models are considered. The first is the standard
model of the outcome variable(s). The second is a model of the probabilities of
inclusion, even though these may be known. This second modeling activity differs
from the mode-assisted paradigm. The rationale for modeling inclusion
probabilities is three-fold. First, the estimated probabilities may produce more
efficient estimators than those using the known probabilities (Lumley, Shaw, &
Dai, 2011). Second, the modeled probabilities of selection can stabilize estimators
such as the Horvitz-Thompson (HT) estimator (Horvitz & Thompson, 1952) in
some designs (Rao, 1966); for example, estimators with poststratified weight to
the total population size. Third, this modeling step is essential when uncontrolled

nonresponse is present, although this topic is not addressed here.

2. Evauate the goodness of fit for both models and then identify the common
variables that explain both the outcome variable and the inclusion probabilities in

both models.

3. Refit amodel of the inclusion probabilities using only the common variables that

explain the outcome variable and inclusion probabilities. Using this model,



predict the fitted mean of the inclusion probabilities and adjust the original sample

design weights.

4. Using the adjusted weights from the previous step, evaluate the goodness of fit of
the models of the outcome variable to identify the auxiliary or predictor variables

of the model that give the best fit.

5. Fit a model for the outcome variable using the predictors identified in the
previous step using the original sampling weights and then adjust the regression
coefficients of the parameters of this model using population totals of the selected

auxiliary variables.

6. Construct the PA estimator as the weighted sum of the adjusted pseudo-
maximum-likelihood (PML) estimates of the mean of the selected working model

and estimate its variance.

Although the PA estimators are solutions of the likelihood of parametric models, we
show that they are design-consistent irrespective of the fit of the working model, and
the inference depends only on how the sample is drawn. Since the algorithm measures
the goodness of fit of the models, the resulting PA estimator is likely to be one of the
most efficient estimators among those from the evaluated working models. Because
the algorithm defines the PA estimator, the asymptotic properties such as design
consistency under suitable regularity conditions are given using the generic form of

the PA estimator.



The PA framework uncovers interesting relationships between some PA estimators
under specific models and well-known, design-based estimators. Most classical
design-based estimators are shown to be weighted sums of adjusted PML estimates of
parameters of the assumed working model. This relationship between the estimators
and their parametric working models justifies the use of standard statistical modeling

techniques within the design-based context in the PA framework.

The PA framework is applied in this paper to address three estimation problems
reported in the literature. The first problem is the identification of the functional form
of a design-based estimator based on the observed data. The second problem is the
identification of the variables that should be used in calibration. This problem is also
known as working or assisting model development. The third problem is the
methodology to develop new design-based estimators. The PA algorithm provides a
recipe for deriving new estimators. Since the PA framework provides a guide to
“engineer” new estimators, we propose an aternative estimator for Poisson sampling
designs, and two new classes of estimators called algebraic PA estimators and non-
linear PA agorithmic estimators. All these PA estimators only require the auxiliary
variable population totals. We evaluate and compare the PA estimator to aternative
estimators described in the literature using simulations by varying factors such as

sample design, working model misspecification, and sample size.



1.2 Background and the Need for Change

The survey sampling literature describes numerous estimators for finite population
characteristics that rely on auxiliary information to improve the efficiency of the HT
estimator. These estimators are constructed by assuming that the underlying working
model is known and correctly specified. Frequently, the estimators are evaluated
under optimal conditions (e.g., the working model is correctly specified) through
simplistic simulations. Little guidance is available for identifying the auxiliary
variables in the model, nor are diagnostics given to determine if the underlying
assumptions hold. As a result, it is difficult to assess the efficiency of the proposed
estimators in practical situations. For example, calibration estimators have been
shown to be efficient compared to estimators based on PML estimators (Kott, 2006;
Kim & Riddles, 2012). However, in practice, some calibration estimators may not be
feasible, the auxiliary variables may have low predictive power, or the auxiliary
variables may have to be selected from a large pool of variables without any

guidance. It isunclear if the calibration estimators would be better in these situations.

Most current research searches for the functional form of the best estimator in a
particular situation, often leading to a single functional form or expression of the
estimator. However, this approach does not recognize that no single estimator works
well for al conditions and sampling strategies (Rao, 2008). Another issue is that
survey statisticians do not have a predetermined set of auxiliary variables for their

working models and must rely on some form of data dredging to identify these



variables. Addressing these issues requires a new approach that can adapt the

estimation process to what the sample or observed data reveal s about the population.

The PA framework does not assume that the working model is known; instead, it
focuses on the methodology for model development or model building based on the
observed data. The PA estimators are the result of an algorithmic process where a
single form of the estimator may not even exist under repeated sampling. In this
regard, the PA methodology is similar to the Targeted Maximum Likelihood
Estimation (TMLE) for observationa studies (van der Laan & Rose, 2011), and the
Double Machine Learning (DML) for treatment and causal parameters
(Chernozhukov et al., 2017). The PA approach, the TMLE, and DML methodologies
only target model parameters related to the outcome. The PA approach differs from
the TMLE and DML because it uses these parameter estimates to produce design-

based estimators of finite population characteristics.

1.3 Example of an Algorithmic PA Estimator

The PA framework for estimation with full response provides tools to determine the
best functional form of an estimator from the single realization of the sample and the

set of auxiliary variables that should be used in the estimator. To illustrate the use of

1 The best functional form of an estimator and the set of auxiliary variables are related because the auxiliary
variables determine the form of the estimator. See Section 3.1.



the PA methodology, we use the example from Section 14.3.2 in Valiant, Dever, &

Kreuter (2013) denoted as VDK to compute two different algorithmic PA estimators.

EXAMPLE 1.1. VDK discusses the selection of covariates as control totals
for generalized linear regression estimators (GREG) (see Cassel, Sarndal, &
Wretman, 1977). VDK illustrates the differences in efficiency of GREG estimators
using different sets of auxiliary variables by computing two estimators using the
1998 Survey of Mental Health Organizations data set smho. N874 from the R
package PracTool s (Valiant, Dever, & Kreuter, 2018). The renamed variables
with renumbered levels and their description from the file smho. N874 used in this

examplearelistedin Table 1.1.

In the VDK example, the population consists of N = 725 hospitals* and a systematic
sample of n= 80 hospitals is selected with a probability proportiona to size (PPS)

from the frame randomly ordered before sample selection. The measure of size

(MOS) of a hospital is my :\/5+1{x2k>5}(X2k —5) for keU where 1 is the

X2k >5}

indicator function for x, >5 where 1{X2k>5} =1if xy >5 or 1{X2k>5} =0 if X <5,

and X is the number of inpatient beds in hospital k for keU. The inclusion

2 The origina frame is the file smho. N874 with 874 hospitals but 149 records coded as hosp. t ype=4 for

outpatient and partial cases hospitals are removed before the analysis. The variable x, contains the renumbered
levels of hosp.type and x, is the vector of dummy variables for each hospital type as indicated in
Table 1.1.



Table1.1

Variablesin the frame from the 1988 Survey of Mental Health

Organizations
Variable Type Description Levels/values
A Dependent | Hogpital total 99,000 to 197,210,630
/continuous | expendituresin
1998
A Dependent | Indicator for y, =1: Hospita received
/b| nary Whetha the f| nanci ng
hospital received |y —(: Hospital did not receive
financing from the financin
state mentdl health g
agency in 1998
X1=(X111X12’X131X14) }Auxiliar_yal Hospital type X, =1: Psychiatric,
categoric %, =0: Otherwise
%, =1: Residential/ veterans,
%, =0: Otherwise
% 3 =1: General,
% 3 =0: Otherwise
% 4 =1: Multiservice/ substance
abuse
X% 4, =1: Otherwise
X, Auxiliary Total inpatient 0to 1,357
[/discrete beds
(assumed
continuous)
X, Auxiliary Unduplicated 0to 28,993
/discrete client/ patient seen
(assumed during the year
continuous)
X, Auxiliary End of year count | Oto 14,239
/discrete of patients on the
(assumed roll
continuous)




my

> me

keU

probability is 7, =n where n is the sample size. We use the same random

seed for the sample selection to reproduce the results from VDK for the comparison

with the algorithmic PA estimators.

Thefirst VDK estimator is \?VDK,l, the estimator of the total expendituresin 1998 for

al hospitals in the frame, Y;, based on the variable y;, which is the individual

hospital expenditures. The second estimator is YLVDK 2, the estimator of the proportion

of hospitals that received financing from the state mental health agency in 1998,

Ys :T\l—z, based on the variable y,, which is the indicator of whether or not the

hospital recelved financing from the state agency. The population totals of the
auxiliary variables of the estimators YAVDK,l and YLVDK,Z are (N, Xy, X3, X4,Xs5) and
(N, X1, X5,X3,Xy4), respectively, where Xg=X;* X, represents the population
totals of the interaction between the variables x; and Xx,; that is, the total number of

beds by hospital type shown in Table 1.2. (See Section 1.5.2 for notation of models

and variables).

VDK selected the auxiliary variables for \?VDK,l using the results of an analysis of the
dependent variable y; based on the full population. After fitting a generalized linear
model (GLM) to the outcome y; and examining the slope of the variable x, (number

of beds) by x; (hospital type), they decided to include these variables as main effects



in the working mode! of \?VDK,l. Their population analysis for y, showed different
slopes by hospital type so x; (hospital type) was selected as the main effects and the

interaction terms between x; and x, were excluded from the working model of

YLVDK,Z . These analyses are not possible in practice since the dependent variables are
only observable for the sampled cases after sample selection.
Table1.2 Auxiliary variable for the number of inpatient beds by hospital type,

X5 =X, *X, Where x; is hospital type and x, is the total inpatient
beds in the hospital in the 1988 Survey of Menta Health

Organizations data
Variable Levelsivalues
Xs = Xig * Ko X =X, . If hospital k ispsychiatric,

= (Xes1 ez s Xesa ) [Xes = 0 Otherwise.

X, = %, - If hospital k isresidential/ veterans,
X, =0 Otherwise.

X3 = X - If hospital k isgeneral,
X, =0 Otherwise.

X, = X, - If hospital k is multiservice/ substance abuse,
X, =0 Otherwise.

The goa of the PA agorithm is to identify the relevant variables that explain the
outcome variable from the observed sample considering the sample selection. After
these variables are identified, the algorithm incorporates the population totals of these
variables into the pseudo-log-likelihood (PLL) of the data for an assumed working

model with these variables. This information is currently ignored in the regular PML
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approach (Binder & Roberts, 2009). Then the PA estimator is derived as the sum of

the expanded adjusted fitted means of the working model.

We describe how to compute two separate algorithmic estimates of the total Y,

\?pa,l, and the proportion Y5, Yipa,Z’ using the PA approach. Asin the VDK example,

we expect to use different sets auxiliary variables in the PA working models of Y,

and Y,. The PA estimators \?pa,l and \?pa,z are derived following the steps of

Algorithm 1.1 on page 61. The algorithm consists of 10 steps classified into four

separate groups with specific goals:

A. Identification of the best-fit Maximum Likelihood/ Pseudo-M aximum
Likelihood working models of the outcome variable and probabilities of

inclusion (Steps 1to 4).

The PA agorithm starts by fitting separate models for the sample membership

indicator S, in Steps 1 and 2, and the outcome variable y, in Steps3 and 4 to

identify a working model with the auxiliary variables that are predictors of both the

probability of inclusion 7 and the outcome variable y .

11



STEP 1. Propose the collection of working models M . for the sample membership

indicator S, for keU .

In the first step, we define the distribution function of the working model for S;. In
this example, we assume that the population is available (see Section 1.6 for

alternatives for modeling S, when only the ssmple is available). Let S, €{0,1} bea
discrete random variable for the sample membership indicator and s, be the

redization of S (e.g., S =) that takes the value of oneif the unit K is selected in

Nx1

the sample or zero if the unit k is not selected for keU . Let S=[S]<(0,1) " be

the discrete random vector with the sample membership indicator S, for al the

elements in the population. We assume that the observed sample (e.g., al cases with

sc=1) is aredization of S, for keU, which is assumed to follow a Bernoulli

distribution S, Be(ry) where 7y =logit 1 (xB), X e R¥P, x=(x,..xp) is
the vector of auxiliary variables associated with the element keU, BeRPXl,

B=(Brs ﬂp)T Is the vector of the regression coefficients, and T is the transpose

operator.

Let M, be the true model for S and M, the set or collection of working models
for S generated by the linear combinations of the auxiliary variables x =(x,...,Xp)
and any values of f e R™P (see Definitions 1.1 and 1.3). In this example, the vector

of auxiliary variables is x =(1,Xq, X, X3, %4, X5 ) . The population totals for the models

12



in M, are the combination of the totals X =(N, Xy, X, X3.X4,X5). There are an
infinite number of models in M and none of the models in M is correctly

specified since the true model of S is a nonlinear function of X,,. However, the

algorithm does not require the correct working model of S because the model is only
used to identify the relevant auxiliary variables that explain the sample selection.

Since the modelsin M . are defined at the population level, the parameters of these

models are estimated using Maximum Likelihood (ML) where the sampling weights

do not play any rolein the estimation (Casella & Berger, 2002).

The key outcome of Step 1is M., the collection of working models for the sample

membership indicator S .

STEP 2. Identify the ML model M, e M, for S that minimizes the loss function

L(S).

The expression for the log likelihood (LL) of the models for S=s in M, fitted to

the complete population is

log £(B;S,x)= > (SkaB—Iog(lJr exp(xks))) , (1.1)

keU

where B:(,Bl ..... ﬂP)T are the regression coefficients for the auxiliary variables

13



likelihood estimates (MLE) of the regression coefficients, ﬁmleej/\\dﬂ are the

solutions to

Brrie =argmax log £(P) . (1.2)
peM

Let //\\/17r e.//\\/ur be the ML model for S among the models in .//\\/17r with the lowest
value of the loss function L(S). In the PA algorithm, we do not fit all ML models
.//\\/17r c M, toidentify the model /\A/lﬂ ; instead, we use aforward stepwise variable
selection where L, isthe AIC, the Akaike information criterion (Akaike, 1981) to
generate and fit a subset of ML models .//\\/I,T from M (see details of the variable
selection and the AIC in Section 1.7). In this example, the same ML model /\A/l,, IS
fitted for y; and y, since /\A/l,, does not depend on the dependent variable. The ML
working model for S with the best fit is M =(1 %41, %12, %4) With a loss value of

L(S)=—48146.

The key outcome of Step 2 is /\A/l,f , the ML model with the specification of the

auxiliary variables of the best-fit working model of the sample membership

indicator S, for keU .

14



STEP 3. Propose the collection of working models A, for the outcome vy .

Similar to Step 1, we first assume distribution functions for the models for the

outcomes variables y; and y,.

Let M, be the true model for y and M, be the set or collection of working

models for y where y, |xk”~g/\/(xk|5,02). The models in M., are generated by
the linear combinations of the auxiliary variables x =(xg,... xp) and any values of

BERIXP. We also use this collection of models for y, even though they are
misspecified because y, is a binary variable. For the PA estimators, we define the

collection of models Myl and My2 for y; and y, using the same set of auxiliary
variables (1,X1,%,X3,X4,Xs5) and population totals (N, Xy, X5, X3.X4,Xs5) in M,

from Step 1. The modelsin M, and M, include those for YAl,VDK and YLZ,VDK ,in

addition to the H§ ek (HJ) estimator, among others.

The key outcome of Step 3is M., the collection of models of the outcome(s).
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STEP 4. Identify the PML model .//\\/ly G./A/\ty for y that minimizes the loss function

Ly using the sampling weights d, :i.
Tk

The expression of the PLL of the models of ., in M, fitted to the observed sample

is

logL(B.c;S.d,x|F)==> S(dk(log(()')-i- log(27) +é(yk —ka)zj , (L3

keU 2

variables Xy =(Xy1,... %p) and dy :7r|21 are the sampling weights for keU . Let
M y bethe collection of all PML modelsin M, where the PMLE of the regression

coefficients p pmie € M y arethe solutions to

ﬁpm|e:argmax logL(B|F). (1.4)
peMy

Let .//\\/ly E.//\\/ty be the PML model for y among the modelsin .//\\A.y with the lowest
value of the loss function L(y) . Asin Step 1, we do not fit all PML modelsin ./\//\ty

to identify M y. We use a forward stepwise variable selection based on the dAIC, a
sample-based estimator of the AIC, to generate and fit a subset of the PML models

./A/\ty from M, (see details of dAIC in Section 1.7 and Section A.4 in

Appendix A).
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In this example, the PML working model for y; with the best fit is

—~

My (V1) =(L X1, %, X3, X5p) With a loss value of L(y;)=-28432. The ML
working model of y; includes the variables x, (number of hospital beds), X3
(unduplicated number of client/ patients seen during the year), the indicator x;q
(indicator for psychiatric hospitals) and X5, (number of beds in residential/veterans

hospitals, see Table1.2). The PML working model for y, with the best fit is

—~

My(Y2)=(L %02, %5, X4, %) With a loss value of L(y,)=-58.40. The working
model of y, includes the indicators x, and X4 (indicators for residential/veterans
and multiservice/substance abuse hospitals), the variable x, (end of year count of
patients on the hospital roll), and the variable x5, (number of beds in
residential/veterans hospitals). The PML working model for vy, is reasonable since

substance abuse hospitals and large residential/veteran hospitals (measured by the

number of beds) tend to receive funding from the state agency.

The key outcome of Step 4 is .//\\/ly with the specification of the variables of the

working model of the outcome(s) with the best fit.

B. Targeting of relevant variablesfor y and S (Steps5, 6, and 7)

The second group of steps of the PA agorithm (Steps 5, 6, and 7) identifies the
explanatory auxiliary variables for both the outcome and the sample membership

indicators. This step is done by examining the auxiliary variables in the working
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models //\\/ly and M . Once the common auxiliary variables in both models are
identified, a new collection of working models with these variables, M, for Sis
proposed. The best fit ML model working //\\/l,[y €M, is used to produce
estimates of 7, 7, that are used to produce estimates of the sampling weights as
c]k:ﬁlzl. The estimated sampling weights ak are used to adjust the origina
sampling weights d, to produce the adjusted weights W, . The adjusted weights, W

ensure that the predictors of both the outcome variable and inclusion probabilities are

retained in the models produced in the subsequent steps of the algorithm.

STEP 5. Identify the set of models M, ,, for S using the auxiliary variables that

explainboth y and S as M, = M N My.

Let M, , be the set of models generated by common auxiliary variables that
explain both y and S. The common auxiliary variables are the variables that appear
in both /\A/lﬂ and /\A/ly models from steps 2 and 4. In the case of simple random
sampling (SRS), the common variable may be the intercept term, M, =1.

In this example, the modelsin M, ,, for y; are

M, (Y1) = (L X1, %12, %) N (L340, %2, Xg, %52 ) = (1, %41 ) -

18



Note that all working models for S in M, (y;) have a distribution Be(z ) with

= exp(Bo + PrrXar)
1+exp(Bo + PraXar)

where So=0 and pBy1#0. The relevant predictors for

both 7 and y; arethe auxiliary variables (1,x;).

Themodelsin M, , for y, are

My (¥2) = (131, %2, % ) N (1 %02, X150 X4, %52 ) = (L %12, %4 )
where al working models for S in M, ,(y,) have a distribution Be(zy) with

_— exp(Bo + Br2Xiaz + Ba¥ka)
1+ exp(Bo + ProXiaz + BaXka)

where Bo#0, P1,#0, and B4 #0. The

relevant predictors for both S and y, are the auxiliary variables (1,x5,%,). Note
that relevant predictors for S and y; are not the same as the relevant predictors for S

and ys.

The key outcome of Step 5is M, ,, the ‘reduced’ set of working models with the

specification of the auxiliary variables that explain both the sample membership

indicators and the outcome(s).

STEP 6. Fit the ML working /\A/l,ry for S using the auxiliary variables from the

collection of models M, ,, identified in Step 5. Using the model /\A/l,r y» compute the

fitted probability of selection 7|, to produce the estimated weights ak :Ai for the
Tk
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sampled units. Use these estimated weights &k to adjust the sampling weights as

k
— . The adjusted weight W is the expanded estimated weight

dkak poststratified to the total z dy . In the case of SRS, the estimated probability
keU

of selection is 7 = ¢ where ¢ isaconstant, then the adjusted weight W, =d, which

is the design weight without adjustment. In other words, for noninformative designs

with respect to y and S, thereis no need to follow steps 1 to 6 of the algorithm.

We implement this step in the same way as in Step 2 but considering only the models

in M, . This step is important for informative designs where the auxiliary

variables used to estimate 7 are at the same time predictors of the outcome. The

function of the adjusted weights is to ensure that the variables that explain both y

and S are retained in the model in the following steps of the algorithm.

The key outcome of Step 6 is the adjusted sampling weight, W .

STEP 7. Identify the PML model /\A/ly,\;v for y that minimizes the loss function

L ( y) among modelsin M, using the adjusted weights W, computed in Step 6.

We repeat the same procedure from Step 4 but using the adjusted weight W, when

fitting the modelsin M, . The expressions of the PLL and B pmle € //\\/ly,\fv are given
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in (1.3) and (1.4) after replacing M, by /\7;,\;\, and d by W, respectively. In this
example, the PML model /\A/l;,w for vy, is /\A4y,w(y1)=(lx2,x3,x51) with a loss

vaue of L(y;)=- 28124 The PML mode Myw for y, s

~*

My, (Y2)=(1 %2, %4, Xs, %51) With alossvalueof L(y,)=- 58.4.

The key outcome of this step is the model /\A/l;,\;\, with the specification of the

variables of the working model with the best fit of both the sample membership

indicator and the outcome variables(s) using the weight W .

C. Creation of the PA estimator and inference (Steps 8 to 10)

In Step 8, the final PLL model for vy, .//\\/l*y, is fitted using the sampling weights dj

and the auxiliary variables from the model //\\/l:,,\;v identified in Step 7. In Step 9, the

vector of the PMLE of the regression coefficients of the parameters of the final model

~*

My are adjusted by a matrix T'x with the PA adjustments (see Section 1.5 for the

definition of the PA adjustment). In Step 10, the PA adjusted model M y pa is used
to produce the PA adjusted fitted means, 1 pak - for the sample. In the last step, the

fitted means are substituted into the generic form of the PA estimator, and the

estimates of variance are computed using the appropriate formula.
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STEP 8. Fit the PML model /\A/l*y for y using the auxiliary variables from the model
//\Zy,\fv identified in Step 7 using the sampling weight dy :i.

Tk
The expressions of the PLL and ﬁpm|e€.//\\/ly are given in (1.3) and (1.4) after
replacing M, by /\A/l*y. In this example, the PMLEs of the regression coefficients

B pmie OF the models My(y1) and My(y,) for the observed sample are shown in

the second column of Table 1.3.

The key outcomes of Step 8 are the auxiliary variables associated with the regression

coefficients p pmie Of theworking model of the outcome with the best fit.

STEP 9. Create the PA model M pa,y Dy adjusting the PMLE of the regression

coefficients B e Of the model My by the PA agjustment 'y .

In this example, because the distribution only includes linear regression coefficients
for the location parameter, then the PA adjustment T'y e R™* is a square matrix
where the entries of the main diagona contain the ratios of the auxiliary variable

population total X, and the HT estimate of the auxiliary population total )ZHT,p for

the auxiliary variables (g,...,Xp ) inthe model /\A/lz, as
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[y = dlag( % Xe ]
Xura Xyt

where X1 p = dXpx for pe{l..,P}. The PA adjusted regression coefficients
keA

BpacR™ are

X1

ﬁpmlel
Xpr 1

Xp

Xutp

ﬁpmle P

A - A T
where Bpmle:(ﬂpmle,l’"-’ﬁpmle,P) eRPY are the PMLE estimates of the

regression coefficients g of the model M y. Note that the PA adjustment fx isnot a
calibration adjustment since it does not benchmark the regression coefficients ﬁpm|e

to a population total. This step incorporates the information of the population totals

into the PLL and the PMLE estimates of the regression coefficients.

The key outcomes of Step 9 are the values of the PA adjusted regression coefficients

B pa Of the model M, .

The values of ﬁpm|e, and the PA adjusted regression coefficient p pa for the PA

pa’

models j\\/l*y of y; and y, in this example are shown in the last two columns of

Table 1.3.
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STEP 10. Estimate the PA adjusted fitted means :[‘pa,k for the sample cases using the

PA model M pa,y from Step 9, and substitute the values /i, into the generic form

of the PA estimator for the total Y, Ypa = > dys pak » OF the generic form for the
keA

A

mean or proportion Y, \?PA :YLNA. Then compute the variance estimate of the PA

estimator using the appropriate expression (see Section 1.7).
The key outcomes of Step 10 are \?pA and @(?pA) or \?pA and WA/(\?F,A) :

Table1.3 Estimates of the regression coefficient of the model M y and the PA
adjustment of two PA algorithmic estimatesin Example 1.1

PA
A adjustment A
Modl B pmie Iy P pa
Yy, : Total hospital expenditures
Regression coefficient | Auxiliary variable
fo*x103 1 1,116.04 1.03 1,154.25
f1, %10 X1 -5,753.23 0.96 -5,515.55
f,%103 Xy 51.44 1.07 55.05
f3%x103 Xg 166.94 0.79 131.80
Bs,*x10°3 X5 114.94 122 140.18
Y, : Indicator of whether hospital received state
agency funding
Regression coefficient | Auxiliary variable
Bo*10° 1 34.93 1.03 36.13
B, x10° X 204.82 0.93 189.58
B15 x10° X5 965.07 1.08 1,041.57
B5px10° X2 1.85 1.22 2.25
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Since the assumed distribution of y; isnormal with and identity link function, the PA

adjusted fitted mean of vy, ﬁpa,yl,k , for the observed sampleis

Hpa,y k =Bpao+ Bpaii X1+ Bpa2 X2+ Bpa3 X3+ Bpas2 %52

Similarly, the PA adjusted fitted mean for y,, ﬁpa’ka IS

l2 pa,yp.k = ﬁ pa,0 + ﬁ pal2 Xe12 + ﬁ pal5 Xk15 + ﬂpa,52 Xy 52

The algorithmic PA estimates YAPA,]_ and YLPA’Z for the selected sample listed in
Table 1.4 are computed by substituting the PA means ﬁpa,yl,k and ﬁpa,yz,k in the
appropriate generic formula for population total or proportion. The table includes the
VDK GREG estimates YAVDK,l and YLVDK,Z' the estimates of the canonical forms of
the HT estimators Yy, and YLHT,Z’ and the Hgjek (HJ) estimates Y, and \?HJ,Z

for reference (see Definition 1.2). The results in Table1.4 show that for this

realization of the sample, for the total Y;, the relative bias (difference between the
estimate and the population value as a percent of the population value) of \?pA,l is
17 percent larger than the relative bias of X,pk 1. The standard error of Ypa; is
14 percent larger than \?VDK,l. For the proportion Y,, the relative bias of the PA
estimate YAPA,2 is dightly larger than the VDK GREG estimate YAVDK,Z; however, the

standard error is 63 percent smaller than the standard error of X/pk 2. Although these

results are interesting, comparing estimates, bias, and standard errors for one

realization is not appropriate for evauating the performance of the estimators. An
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aternative is to compute the same summary statistics under repeated sampling. The
empirical statistics for samples of size 80 drawn 100,000 times according to the
sample design are summarized in Table 1.5. The table shows the relative bias (RB),
relative root mean sgquared error (RRMSE), the empirical coverage of the 95 percent
confidence interval assuming normality, the Kish’s design effect (deff) (assuming that
system of weights are created using the identified working models) and the relative
efficiency (RE) with respect to the HT estimator (see the definitions of these

empirical summary measuresin Section A.4 in Appendix A on page 302).

Table1.4 Estimates of total Y; and proportion Y, based on asingle observed
samplein Example 1.1

Kish's Relative
Popul ation characteristic design effect bias
/Estimator Estimate Standard error (deff) (%)
Total Y, : 8,774,651,373
Y:HT,l 9,322,853,858 915,126,365 131 6.25
THJ 1 9,642,021,099 | 1,241,508,671 131 9.88
YAVDK 1 9,563,682,688 748,596,001 1.30 8.99
Year 9,697,094,833 852,327,681 141 10.51
Proportion Y,:0.337
THT,Z 0.313 0.058 131 -7.08
THJ 2 0.323 0.059 131 -3.90
YS/DK,Z 0.340 0.051 141 1.07
VPA,Z 0.340 0.032 1.27 1.09

Table 1.5 shows that al estimators have very small empirical biases as expected even

though the working model is misspecified for the binary outcome y,. The
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algorithmic PA estimators \?PA,l and YLPA,Z are slightly more efficient than the VDK
estimators YAVDK,l and YLVDK,Z despite the uncertainty of the model selection in the
PA approach. The differences in efficiency between the estimators of ¥; and Y, are
0.5 and 3.0 percentage points; that is, the PA estimators YAPA,]_ and YLPA,Z ae 7.3

percent and 4.0 percent more efficient than the estimators \?VDK,l and V\/DK,Z’

respectively. Furthermore, the expected Kish's design effects of the weights based on

the PA estimators are smaller than the design effect of the weights based VDK

estimators.
Table 1.5 Empirical summary results” for 100,000 draws for Example 1.1
Relative Empirical
Relative Root Mean | Coverage of Kish's Relative
Population Bias (RB) Squared 95% Design efficiency
characteristic Error Confidence effect (RE)
/Estimator (%) (RRMSE) Interval (deff) (%)
Tota Y,
Yur1 -0.03 9.28 0.946 1.463 0.00
You1 0.60 12.49 0.956 1.463 -44.81
YooK 1 0.58 8.97 0.919 1.502 7.04
9 0.59 8.95 0.911 1.494 7.56
Proportion Y,
Vit s -0.08 19.21 0.935 1.463 0.00
Vi 0.01 18.04 0.943 1.463 13.40
YiVDK 2 -0.82 14.53 0.923 1535 74.75
YiP A2 0.13 14.41 0.924 1.486 77.76

*See Section A.4 in Appendix A for the definitions of the summary measures.
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The observed reduction of variance of the GREG and algorithmic PA estimators of Y;

in Tablel.4 for a single sample is not typical under repeated sampling. In
expectation, these estimators are around 7 percent more efficient than the

HT estimator. The HT estimator for the total Y, is very efficient is due to the high
correlation between 7, and y;. The HJ estimator for the total Y;, which is aso a

GREG/PA estimator, is much more inefficient than the HT estimator. Using the

population size reduces the efficiency of the HJ estimator of Y; considerably.

In contrast, the GREG and PA estimators for the proportion Y, achieve substantial

gains of efficiency over the HT estimator, with gains close to 80 percent. The

HJ estimator for Y, isaround 13 percent more efficient than the HT estimator.

This example shows how the agorithmic PA estimators are developed, and further
shows that the algorithmic PA estimators can be more efficient than the VDK GREG

estimators based on an in-depth analysis of the full population.

1.4 Principles of the PA Framework

There are four principles of the PA framework that define the roles of working

models, auxiliary variable selection, and sample selection.
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1. All PA estimators are weighted sums of fitted means of well-defined working

models. The fitted mean is a function of linear regressions of auxiliary variables®
of the parameters of a working model. Different functional models and sets of
auxiliary variables yield different PA estimators. Section 3.1 shows that most of

the well-known design-based estimators are a subclass of PA estimators.

2. The working models are well defined, but either the functiona form or the

auxiliary variables of the models (or both) are not known. Most estimators in the

survey sampling literature assume the opposite, that is, the functional form is
known and the working model is correctly specified (See Deville & Sarndal,
1992; Rao, 1994, Lehtonen & Vejanen, 1998; Montanari, 1998; Chen & Sitter,
1999; Wu & Sitter, 2001; Montanari & Ranalli, 2005; Kim, 2009, 2010; Kott,
2016; and Breidt & Opsomer, 2017). Assuming that the working model is correct
does not guarantee that the estimator is efficient when the working model is

misspecified.

3. Theidentification of the working model is based on the observed sample. The PA

framework produces an estimator that is likely to be efficient based on the sample,
but because both the generation of the finite population and the sample selection
from it are stochastic processes, there is no guarantee that either the identified

working model is the best or that the form of the estimator is unique.

3 The technical definition of this principle is that all estimators are functions of the inverse link function of the
linear predictors of the parameters for the location, scale, and shape of the working model. See Definition 1.1 in
Section 1.5 for more details.
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4. |nferences using the PA estimator are based on the random vector of the sample

membership indicator of the element of the population to be selected in the

sample. All PA estimators, their variances, and estimates of variances are
functions of this random vector; i.e., they are design based. The sequence of a PA
estimators for a sequence of increasing population and sample size are model-
assisted, so they are asymptotically unbiased and design-consistent under suitable

regularity conditions described in Section 5.9.

1.5 Concepts, Definitions, and Notation

The PA framework for estimation with full response assumes two stochastic
processes; one is an unobservable process that generates the finite population from a
superpopulation model, and the other is based on random sampling from the finite
population. Inferences, however, are based only on the random sampling process. In
this section, we define the models for these stochastic processes and introduce the
notation to facilitate the description of these models in the PA framework. Since a
large number of models are defined and evaluated in this approach, we propose a
precise notation to describe the working models in the PA framework. We aso
introduce concepts related to the framework such as the canonical form of an
estimator, model misspecification, and valid PA models that are used to describe the

PA estimators.
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151 Superpopulation Models

DEFINITION 1.1 Working or assisting model M, for the outcome y. Let
M, be the working model for an outcome y that describes a stochastic process that
generates a finite population F of size N (i.e, |F|=N) as N independent
identically distributed (iid) realizations from a assumed distribution function fy

defined as

Vi "ty (01x ), (15)
T
for keU, where 0|x =(05.0,.0,) is the vector of the parameters for location,

scale, and shape, O,

o !

and 6, , respectively. We assume that the model

parameters are functions of linear predictors of auxiliary variables, then the vector

0|x, can be expressed as

0lxi =g () =| & (o ) | (L6)

where g'l:R3—>R3 is a vector-to-vector function with the inverse of the link

functions where gg, g, and g, are the link functions of the parameters for

location, scale, and shape, respectively, ny is the vector of the linear predictions

-
Nk = (77/; ko kly ,k) with elements defined as
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Bk =”ﬁ(xﬁ,k’5)zxﬁ.kl5. (1.7)
Mo k =Mo (Xo-,kyc) =X5 kO » and

My k =Ny (Xy,k77) =Xk7

where 1y :RP >R is the function mg(u,v)= Y upv, for 0{B,0,7} where
peP

Xg K © Xk € R™P are the subset vectors of the auxiliary variable vector X, and the

parameters , ¢, and y are the coefficients of the linear regressions 174, 175 «» and

1y k » respectively.

REMARK 1.1. In al models, we are interested in the expected value of y, defined as
Hy ZE(Yk)ZIRY Y fy (Vi )dyk . (1.8)

where Ry ={yi € R|fy (i) >0} . If the population is available, then the estimate of
uy 1s computed by plugging the MLEs of B, o, and y into the expression of
uk:E(yk). If only the sample is available, then the estimate of 1 is computed by

plugging the PMLEs of g, ¢, and y into the expression of p, .

The definitions presented above are for the general case. In practice, not al
distribution functions have all these parameters defined, asillustrated in the following

examples.
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EXAMPLE 1.2. Let y be an outcome variable with a distribution

yk“~OI N (xk[i,ag). This distribution can be described by the vector

9|xk:(9ﬁ,00 )T with only two parameters. location and scale. The location
parameter is 64 | Xy =np i, the linear predictor is 14 =X, the vector of auxiliary
variables is x, e R*P, and the link function is the identity function. The scale
parameter is 6, |xk:exp(n61k), the linear predictor is n, \ =ocg, the auxiliary
variable is the one vector 1e RN, and the link function is 9, (t)=log(t). Since for

thismodel, 11 = E( Yy ) = XB, then fpyex = XBe

EXAMPLE 1.3. Define the outcome y as a log-normal random variable
Yk iiglog/\/(xkﬂ,xﬁaz). For this distribution, the vector 0 |x =(¢9ﬁ O )T contains
only the location and scale parameters. The location parameter is 0z |Xy =ng i, the
linear predictor is 14 =Xp, the link function is the identity function, and the
auxiliary variables are x). The scale parameter is 6, |x, =exp(n, x ), the linear

predictor is 7, x»=Xko, the link function is g, (t)=log(t), and the auxiliary

2
variables are x, . Since for the lognormal distribution ¢y :exp{eﬁ +%J then

(Xk&mle)zj_

/jmle,k eXp{XkBrﬂe"' >
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EXAMPLE 1.4. In the example in Section 2.4 on page 152, the outcome vy is

assumed to be normally distributed yj | X, d N(Bﬁ,k ,Hg,k) where

Op k =tk =Po+ PL7k + B2 d¢ and (19

Qoz.,k :(exp(00+(717[k +05 dk))2|‘uk|y0.

The model of vy, is appropriate for normally distributed regression models where the

variance of the response variable is proportional to a power of the mean. The

auxiliary variables are x, =(L7y,dg). The elements of the vector
0|xy =(05.05.0, )T are the location parameter 6 |xy =774  With alinear predictor
np k =Bo+ P17k + B2 di, the link function is the identity; the scale parameter is
0, | Xk :exp(nayk) with a linear predictor 7, =0 +0q 7y +0, dg with the link
function g, (t)=log(t), the shape parameter 6, |xy =1, x with a linear predictor
M,k =Yo, ad the link function is the identity. Since for this model

py =PBo+ P+ B2 A, then ek =Bmieo +Bmier Tk +Prie2 Yk -

REMARK 1.2. The parametric models described in the expressions (1.5),
(1.6), and (1.7) are a subset of the models known as generalized additive models for
location, scale, and shape (GAMLSS) proposed by Stasinopoulos et a. (2017). The

GAMLSS is an extension of the GLM proposed by McCullagh & Nelder (1989)%. In

4A similar extension of the GLM isthe Vector generalized linear model (VGLM) proposed by Y ee (2015).
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the GLMs, only the location parameter 6 is afunction of the linear regression of the
auxiliary variables, but in GAMLSS, the location, scale, and shape parameters are

also modeled using linear combinations of auxiliary variables and link functions. The
GAMLSS allows distributions where E(y)=u# g_l(xB) such as the lognormal and

zero-inflated Poisson. Although the GAMLS includes alarge number of models, most
models we study include just a location parameter and, in a few instances, a scale

parameter.

DEFINITION 1.2 Working model M for the sample membership indicator

S=s. In the PA framework for estimation with full response, we assume working
modelsfor S that do not need to be correctly specified because these models are only
used to identify explanatory auxiliary variables of S. These models are

approximations of the sample design in Definition 1.5. The definition of M, is
similar to the definition of the outcome working model M, described above. The
model M, may have simpler distributions without separate scale and location
parameters. The probability mass function of M, for arandom vector of the sample
membership indicator S, =s, (eg., s =1 if the element k was selected in the
sample or s, =0 otherwise) is generally modeled using the Bernoulli distribution
Be(ry) where Pr(S =s¢=1|xy)=ry and Pr(S,=s=0]|xy)=1-7) with link
functions such as the logit mode!, logit(rry )=x,p or the linear probability model,

7 =XB, (Cox, 1970). Finding the MLE of the parameters of the working
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model M requires access to the entire population. If thisis the case, the parameters
p are estimated using logistic regression with s, € {O,l} as the dependent variable.
Then 7, is computed by plugging the estimates ﬁ into the formula for E(&) If
only the sample is available, then the model M, isfitted using PL logistic regression

using the sampling weight d, .

REMARK 1.3. An dternative for modeling S, the random variable with the
membership sample indicator, is directly modeling the inclusion probability assuming

that 7z, for keU are the redizations of arandom variable from the superpopulation

model 7y ~f (0]xy). Some distributions for the working models for 7 €(0,1) are:

1. The beta distribution Beta(e,f3) with location parameter 0, = and scale

a+p

1

parameter 06 :m,

Cribari-Neto, 2004). The regression coefficients ﬁm|e in 7, :Iogit_l(xkfirﬂe)

where ﬂk:E(Hﬁ |xk):Iogit_1(ka) (Ferrar &

are computed using GLM beta regression using the entire population

(Stasinopoulos, Rigby, Heller, Voudouris, & De Bastiani, 2017).

2. The “fractional logit” model for fractional response variables 7| €(0,1) (Papke
& Wooldridge, 1996). The parameters f} in 7 :Iogit_l(xkﬁ) are computed

using quasi-maximum likelihood (QL) with 7 as the dependent variable

36



(Wedderburn, 1974). The QL estimators are used when the form of distribution is
unknown but can be approximated by the mean and variance. Although the QL is
related to the likelihood, it is not the same since the exact distribution is not
known. A quasi-maximum likelihood estimator (QMLE) of the parameter 6 of a
model is computed by maximizing the QL. Finite sample properties of QMLE
and QL have not been fully studied in survey sampling although they are

currently used in practice (see Lumley, 2010).

A misspecified Bernoulli distribution with the dependent variable 7 €(0,1)
computed as 7y = Iogit_l(xkfiqrﬂe) . Strictly speaking, the Bernoulli distribution

for 7 is misspecified because the support of the distribution is {0,1} while 7

takes fractional values between zero and one. However, Gourieroux, Monfort, &
Trognon (1984) show that the MLEs of the parameters of misspecified models
with a distribution from the linear exponential family are consistent estimates of
the MLE parameters of any other linear exponential family distribution including
the parameters of the correct model. These results justify the use of both the

logistic regression and the linear probability model for the fractional values of 7.

The linear probability model N(@B 902) for 7, where E(zy)=605 =xB and

6, =o (Greene, 2008). The estimated MLE parameters ﬁm|e in 7 :xkfim|e are

computed using linear regression. This model is misspecified since the values of

7 may be outside the support of 7.
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5. Any other distribution that fits the shape of 7, for example, the logistic

distribution

i el
et

where E(zy)=6z =xB and 6, =o (Johnson, Kotz, & Balakrishnan, 1994).

The MLE parameters ﬁm|e in ﬁk:xkﬁMG are computed using GAMLSS

regression (Stasinopoulos, Rigby, Voudouris, Akantziliotou, Enea, Kiose, 2017).

REMARK 1.4. If only the sample is available and 7z for ke A are known,
then the model M, is fitted using PLL and the sampling weights d,. See

Section 1.6 for the empirical properties of algorithmic PA estimators that directly
model the probabilities of selection z for the population and sample design in the

examplein Section 1.3 on page 6.

REMARK 1.5. Beaumont (2008) proposes a method to improve the
efficiency of the estimators by smoothing design or calibration weights using an

appropriate model. His method produces a single set of smoothed weights for

multipurpose surveys with estimators \?B = Z v:vkyk where v:vk is the estimated
keA

smoothed weight. This approach differs from the PA agorithm that models the

sample membership indicators and uses the fitted means of the working model of the
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probabilities of inclusion to produce adjusted weights, but these adjusted weights are

not used in to create the PA estimator Yp, = deﬁpa,k in Step 10. The PA
keA

estimator can be seen as an estimator with improved efficiency that results from

smoothing the outcome variable y .

There are other differences between the two approaches. For example, Beaumont
(2008) states that any classical model selection and validation techniques can be used
to determine an appropriate model and does not use the design weights in the
modeling. Furthermore, the smoothed-weight estimators can be biased as shown in
his ssimulation study, while the PA estimators are design consistent with small bias,

even in relatively small samples.

DEFINITION 1.3 The collection of working models At for the outcome
variable y . Let M be the collection of, at most, three sets of working models for
the scale, location, and shape of the distribution of y denoted as

My =My (05 ) UM, (0,)UM,(0,), (1.10)

where each set of models M (0) for 6 6{95 O ,Qy} is defined as

P

My(é?)span(x){ZOp){gp|PeN,)§9peX,0pe®pA}, (2.11)
p=1

where Xy cR" such as X9 < X isthe set of auxiliary variables associated with the

parameter 6 . Each My(e) is a spanned subspace with al linear combinations of
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the auxiliary variables x, and the parameters 0, for pe{l,.,R,} that produce a

valid PA model in the set ®p, . In other words, by definition, the vector space with

all models generated by the vector x excludes the invalid PA models (see Definition
1.19). Note that despite the finite number of linear combinations, there is an infinite

number of modelsin M, because the parameters can take any valid value in their

support depending on the distribution fy of y and link functions.

The collection of working models M. for sample membership indicator S or for

theinclusion probability 7 is defined the same way as My.

1.5.2 Notation for the Collection of Models am,,

Since the number of models described by M, or M, islarge, we need a precise

notation for describing the model. Since the spanned set of modelsin (1.11) includes

the models formed by linear combinations of the auxiliary variables for the

parameters 0 6{06 0, ,Hy}, then each model in the collection M (0) can be
uniquely identified by the auxiliary variables or parameters of linear predictions 774 ,
N, , and 17} . Based on this idea, we can use two notations for identifying these

models asillustrated in the following examples.
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EXAMPLE 1.5. The collection of models Ay, for the outcome y. Let yj

be a random variable assumed to follow a normal distribution y“~d N (%,0397)

where 0g = o+ P1Xa, O, =0g+02X, and 6, =yg+y4%4, With the vector of
auxiliary variables x =(1, Xy, 3, %4 ) . The first notation or full notation of all possible

models in the collection of models M., uses the matrix (0;,05.6] ) with model
membership indicators for the regression coefficients using the position of the
associated variable in the vector of the auxiliary variables x as shown in the fourth
column of Table 1.6. For this example, the full notation for the collection of modelsis
the matrix

M, = (1.12)

A
o O BB
o+ O
= O O

where the entries of the rows of the matrix with values of one indicate the variables
that appear in the linear predictors of the location parameter (first row), scale

parameter (second row), and shape parameter (third row) of the model M. . If the

auxiliary variable does not appear in the linear predictor, the entry has a value of zero.
The main disadvantage of the full notation is that the order of the auxiliary variables
in the vector x needs to be known. Furthermore, as the number of auxiliary variables
increases (e.g., including dummy indicators for each level of categorical variables or

variables for interaction terms), the matrix M, becomes difficult to read.
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We propose a simplified notation or short notation that only lists either the nonzero
regression coefficients or their associated auxiliary variables in each parameter

model, as shown in the last two columns of Table 1.6. Using the short notation, the

collection of models M, in Example 1.5 is either M, ={(1,x),(1%2),(1xg)} or

My ={(Bo.B1):(c0.:02).(70,73)} - We prefer to list the auxiliary variables of the

models because the values of the regression coefficients are not relevant except for

the models fitted in the last steps of the algorithm.

Table 1.6 Full and Simplified Notations for the collection of models M, for

Example 1.2
Model notation
Full Simplified
Membership
Li near indicators based
Collectionof | Model prediction on Regression | Auxiliary
models parameter (n) x=(1%.%.%) | coefficients | variables
My<06') Location Bo +B1Xa (11,0,0) (Bo.B1) (Lx)
My(gd) Scae O +02Xo (:LO,:LO) (0'0,0'2) (]"XZ)
My (6, ) Shape Y0 +73%3 (10,0.2) (ror2) (Lx3)

If we extend the short notation, then the auxiliary variables for categorical variables
are written in boldface since they represent a vector of membership indicators (e.g.,
dummy variables with one and zero values) for each categorical level. For interaction

terms, we write the product of the two variables. For example, suppose that there are

sampling stratum indicators hy =(hyq,....hgy,...hgy) for he{l..,H} where
hgy =1 if the element k belongs to stratum h' and zero otherwise, and H is the

number of strata. If we want to describe the collection of models where the linear
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predictor for the location parameter 75 includes the sampling stratum indicators hy
and the interaction between the X and hy, then the collection of models for y is
written as

My ={(Lx,h,h*x),(L%),(Lxs)}

where hy # Xq = (MeqXier o Py X - iy Xt ) for kel

The short notation can be further ssimplified by including only the auxiliary variables

of the model parameters used to compute /i, . Returning to the example, since y, is

assumed to be normally distributed, then the short notation of the model only includes

the auxiliary variables of location parameter as M = (1,x,h,h*x) .

EXAMPLE 1.6. Let S, be the random variable for the sample membership
indicator for a stratified design with two strata with indicators hy = (hyq,hy») and one

continuous auxiliary variable x,. We assume that the distribution of S is

Tk

S Be(r) with a link function Iogit(nk):log( J Using the simplified

1—ﬂk
notation, the collection of models for 7 is M, =(Lh,x,h*x) or
M, =(Lh,xp,x3) where x5 is the vector for the interaction terms between h and

Xy, defined as X3 =hy * X = (hyg X0, M2 X2 ) - In this case, since the distribution
of y does not have a shape parameter and the scale parameter is a function of the

location parameter, there is no need to include these parametersin M. .
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1.5.3 Finite Populations and Sample Designs

The following definitions are related to the finite population assumed to be N iid

realizations of a superpopulation model.

DEFINITION 1.4, Finite population F . We follow the Fuller (2009) notation.

Let U={1,...,N} be the labels identifying each element of a finite population of

known size N. Associated with the edement keU is a row data vector

Rle

(Vi Xk ) € R*PY) where Yy € R isthe study variable and x, e isthe vector of

the auxiliary variables xk:[xkp]:(xkl,...,xkp) with PeN, pe{1..,P}, and
P<«<N. The finite population is defined as the entire set
F={(Y1.X1):( ¥2:X2)----( Yn XN )} » Which is assumed to be generated by a working
model M,,. We assume that population totals denoted by X e R*P where

X=X =(Xy,...,Xp) of theauxiliary variables x are known.

DEFINITION 1.5. Model for the sample design p(A: a) (see Fuller, 2009).

Let A beasubset of U and let A be the collection of subsets of U that contains all

possible samples. Let Pr(A=a) denote the probability that a, ac.A, is selected.
A sampling design is the function that maps the event that a< A is selected to [0,1]

such that p(a)=Pr(A=a) for any ac.A. Let 7 be the first-order inclusion



probabilities for element keU where 7, =Pr(ke A) = Z p(a) and A(k) is the
aeA(

set of samples that contain the element k. In this dissertation, we consider only

single-stage, without replacement sample designs.

Let S=(S,....Sy) € {0, be avector of discreet random variables for the sample

membership indicators, S,={0,1}, for al elements of the frame where s, is the

realization of S, defined as

1 if unit k isselected in the sample
Sc=%= . . (1.13)

0 Othewise

The sample design determines the probability structure of S that determines the

probability behavior of functions of the sample for keU . Let 7, be the first order
inclusion probability of unit k defined as E(S|F)=my €(0,1). Weuse A asthe

set of indices subset of U that appear in the sample. The (observed) sample size is

definedas Ny = ) 5= -
keU keA

Using the Tillé (2006) notation, the sample design is defined by a random vector
Se{O,l}N with discrete random variables, S, that follows as a multinomia
distribution with an expected value E(S|F)=n=[r]e(0,)" where = is the
vector of the probabilities of inclusion 7 for keU and the variance-covariance

matrix of S, A defined as
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A=C(S|F)
:E(SST |J—")—]E(S|J—")]E(ST |]-"), (1.14)

—M-nn'
where I =7 | RNN is the matrix with the second-order probability of inclusion
mq of units k and | defined as the probability the 2-tuple (k,I) is selected in the
sample at the sametime, 7y =E(S,S | F) for k=l eU or 7y =m for k=IeU .

In matrix notation, the population F or frame is the matrix (y,x) , and the matrix of

auxiliary variables x is the design matrix. The observed data in the sample

correspond to the matrices (y © S,x) or (y ©S,x0S), the latter if the values of x
are only observed in the sample. The operator © is the Hadamard-Schur or element-
wise matrix product (Horn & Johnson, 2013). The expected sample sizeis n= 1",

and the variance of the sample sizeis V(n|F)=1TAl.

DEFINITION 1.6. Sample designs where the variance of the sample size

V(n|F)=0 arecalled fixed size or fixed sample size designs. Those designs that do

not meet this condition are called variable size, random size, or random sample size

designs.
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154 The Log-Likelihood and Pseudo-Likelihood

DEFINITION 1.7. The log-likelihood function and the maximum likelihood
estimators of the working model fitted to the full population. The expression of the

LL of the model M, for the variable y fitted to the finite population U (e,

censusfit) is

log£(8;y,x)= > logfy (yy.xk190). (1.15)
keU

The MLE of 0 iscomputed as

(A)Mee{argmaxlogﬁ(e)}. (1.16)
0e®

See Cheng (2017) for the regularity conditions for the asymptotic properties of the
MLEs. Under these regularity conditions, the MLE 6m|e exists and is unique. A

similar expression is available for the MLE of the sample membership indicator S

(see Section 1.6 for modelsfor 7 ).

DEFINITION 1.8. The collection of ML working models ./\A/lm|e,y for the
outcome variable y. Let /\A/lm|e,yg/\/ly be the collection of MLE models of y
defined as the subset of the models in M., where the estimates of the regression

coefficients of the parameters are MLEs. Using the simplified notation,

Mm'ﬂy:{ﬂmle,x(; '6mle,>% '?mle,x}, }' where Brnle,xB , &mle,xg , and '?n"le,xy are the

47



MLEs of the location parameters g, scale parameters ¢, and shape parameters y of
the models in M, and x, cx for 8 e{f,0,7| are the subsets of the auxiliary

variables x for the location, scale, and shape parameters. The auxiliary variables x,

are not necessarily the same for the location, scale, and shape parameters in M, .

See Section 1.6 for the method for generating the modelsin M, and computing the

models ./\A/tm|e,y. The collection of ML models for S, ./\//\tm|e,,r, has a similar

expression as ./\A/lm|e,y. For notation convenience, we drop the subscripts of the

auxiliary variables of the parameters with the understanding that different subsets of

auxiliary variables are associated with these parameters.

DEFINITION1.9.  The best-fit ML model My eAMy for y. All models in
./A/\ty are created using the MLE §m|e:(|§m|e,6m|e,?m|e)T; however, some ML
models have a better fit to the observed sample than others. The ML models in M y
can be ranked based on the values of aloss function L ( y) that measures goodness of
fit of the models. Let .7\\/‘y E.A//\ly be the ML model that achieves the lowest value of
the loss function L(/T/ly) (see Section 1.6 for the definition of the loss function and
how the model in //\\/ly is found among the models in //\\/ly). The MLE of
1 =E(yy) is obtained by plugging the ML estimates Bpje, Sme, and ¥ pmie iNtO

the expression of u) of the specific distribution of the working model. The

48



expressions of the collection of ML models M » and the best-fit model /\A/ur for S

issimilar to the expressions of ./A/\ty and //\\/ly for y.

DEFINITION 1.10. The pseudo-log-likelihood function and the pseudo-

maximum likelihood estimators fitted to the sample. The PL of the model M y, for y

of fitted to sample A isdefined as

log La(0;y,x,d|F)= > dylogfy (v, x,10), (1.17)
ke A

where d =[d, | arethe sampling weights for ke A. The PMLE of 8 is

éprﬂe € {arg max log EA(B)} : (1.18)
0O

See Binder (1983) for the regularity conditions for the asymptotic properties of the

PMLEs. Under these conditions, the PML estimate ép,ﬂe exists and is unique.

A similar expression is available for the PL and PMLE of the sample membership

indicator S and the inclusion probability 7 .

DEFINITION 1.11.  Thecollection of PML models M y for y. The collection of

PML models, ./\/Zy is defined in the same way as the ML models for y, but

replacing the MLEs of B, o, and y by the corresponding PMLEs. Using the

simplified notation, M y :(Bpmle,xB ’&pmlep% 1?pmle,x}, ) where P pmiex; - &pmle,xg ,
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and ?pmgxy are the PMLEs of the location parameters B, scale parameters ¢, and
shape parameters y of the models in M, with the auxiliary variables x, < x for
Oe{B,o,y}. The auxiliary variables x, are not necessarily the same for the

location, scale, and shape parameters in M, . The collection of PML models for S

(or ), .//\\/t,[ , has an expression similar to the models ./\//\ty for y.

DEFINITION 1.12.  The best fit PML model MyeMy for y. The best fit

PML model //\\/lye.//\\/ty for y is defined in the same way as the ML model in

Definition 5.3 but using aloss function L(.//\\/ty) based on the sample estimate of the

goodness of fit of the PML model. In the current implementation of the PA approach,
we use the sample-based AIC as dAIC. See Section A.2 in Appendix A for details on

the dAIC.

REMARK 1.6. We assume that the finite population is a redlization of a

superpopulation model M, ; however, the parameters and their values are unknown

(See Principle 2 in Section 1.4). When identifying the superpopulation model, we
need to determine its functional form and the parameters (and their associated

auxiliary variables). See Definition 1.1 and Principle 1 in Section 1.4. When the
entire population is analyzed, multiple sets of MLEs {[Aim|e,&m6,,?n1e} E.//\\/ln'ie,y can

be fitted to the population data F since they are formed by the combinations of the
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parameters and auxiliary variables. These sets of MLE of the regression coefficients

are efficient and consistent estimators of their corresponding regression coefficients,

{B,c,y} eM, of the superpopulation models (assuming that each model is the true

model). To identify a single model among all ML models, we use the goodness of fit;
that is, we assume that the true superpopulation model has the lowest discrepancy

between the observed population values and the expected values from the fitted

model as measured by a loss function. We denote the best-fit ML model as //\\/ly
where the MLEs of the regression coefficients (EMe,&Me,?MG) E//\Zy are efficient

and consistent estimators of the regression coefficients (p,s,y) € M, and M, isthe

assumed true superpopul ation model.

In reality, neither the model //\\/ly nor any of the models ./\/Zy are unidentifiable

because the values of y are not observed for the entire population. Since we cannot

fit the ML models to the entire population, we fit the PML models .A/Zy to the

sample. The PMLEs of the regression coefficients (ﬁpm@&me,?pmm)e/\A/ly are

consistent estimators of the MLES of the regression coefficients (ﬁm@&mﬁ,{(rﬂe).

Inorder to identify the true model M, we use a sample-based loss function. This

function does not measure the goodness of fit of the model fitted to the sample.
Instead, itis an estimate of the goodness of fit of the model fitted to the entire

population. Fitting the PML models and examining the values of the sample-based
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loss function is intended to approximate fitting the ML models to the entire

population and measuring the model goodness of fit of the population model.

Since this estimate of the population model's goodness of fit depends on the selected
sample, there is uncertainty when using the models in M y toidentify the true model
/\/ly. However, we are not interested in measuring this uncertainty. Instead, we rank

the models based on the value of the loss function and select the model with the
smallest value (e.g., the best-fit model) as the sample-based estimate of the true
model. In most cases, the best-fit model is the most parsimonious among the models

with the lowest loss values.

155 PA Framework Definitions

DEFINITION 1.13. The PA adjustment factor is the sguare diagona matrix

I'y e RPP defined as

- 9

rX - DX DXW ) (119)
where Dx:diag(x)e]RPXP is a diagona matrix where the function

diag: RP —R™P isdefined as diag(X)= > ef Xeyep and g e R isthe k-basis
keP

vector of RP for ke{l,..,P} and X eR" isarow vector X =(Xy,....,Xp). The

function diag(X) transforms the vector X into a squared matrix in RPP in which
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the elements outside of the main diagonal are zero, and the elements on the main

diagonal are the elements the vector X =(Xy,....,Xp) as

X, 0 .. 0 0]
0 X, .. 0 0
diag(X)=| .. .. . ..
0 0 .. Xpgq O
0 0 .. 0 Xp]

XW:(WGX)TS: D wex S is the vector of the HT estimators of x using the
keU

weights W:[vvk]eRNXl (these may be the sampling weights d, =z;) and

D=~

K= diag()A(W) isthe diagona matrix with the elements of the main diagonal being
w

the elements of the vector X,,.

The large sample properties of the PA adjustment factor fx are given by the

following theorem.

THEOREM 1.1. Assume a sequence of finite populations {Fy }0|31=1 of

increasing size Uy ={l---,NN}O|3=

, and samples {ny }oNozl drawn according to a

sample design { py (Ay =ay )}ONozl satisfying the regularity conditions in Section 5.9
on page 252. Then the sequence of PA adjustment factors {lA“X,N}O:I_l converges to

the identity matrix | e R™P as
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lim E(fXN—Il}")zﬂ. (1.20)
N—o '
Nn—oo

See proof in Section A.3.1in Appendix A on page 292.

DEFINITION 1.14. The PA adjusted regression coefficients

N

- o T _ A .

epa:(ppa,&pa,ypa) . The adjustment factor I'y incorporates the population totals
A - R R T

into the PMLEs of the regression coefficients epm|e:([ipmle,cpm|e,ypm|e) .

A - T
Let 0, = ([ipa,&pa,?pa) be the PA adjusted PMLES of the regression coefficients

of the parameters of the working model M y computed as
0 pa = fXQ 0 pmles (1.21)

for épm|ee{ﬁpm@&pm€,«}pn16},WherethesubscriptSQ e{B.o.r} of fxe indicate
different subsets of auxiliary variables in the PA adjustment for the location, scale,

and shape parameters. Note that the model M pa,y With the adjusted parameters

N

~ AT . ) —~
epa:(ﬁpa’apa"Ypa) is a different model from My, except for the case when the

estimated totals of the auxiliary variables match exactly to their corresponding

A

population total for each parameter of the distribution. In this case, Bpazépm|e

~ ~ ~ T
because I'y, =1. The large sample properties of ﬂpa:(ﬂpa,&pa,?pa) aregivenin

the next theorem.



THEOREM 1.2. Assume a sequence of finite populations {Fy}_, of
increasing size Uy ={1,..,Ny },_, ad samples {ny},_, drawn according to a

sample design { py (Ay =ay )}ONozl satisfying the regularity conditions in Section 5.9

0

on page 252. The sequence of PA adjusted parameters {6pa’N}N—1 with

N

~ . . \T. . . A .
0 pa N Z(Bpa’ﬁpaﬂpa) is design-consistent for the MLE parameters 0\ in the

sense that &, N ~Brrie,n |17 = Op (2 . This result implies that

0 n -1/2
Bpa,N‘Bn*ie,N |~7:=Op(nN )

~ ~ _ -1/2

Gpa,N ~OmeN |]:—Op(nN ),and (1.22)
s . _1/2
Y pa,N ~VmeN |~7:=Op(nN )

The proof is in Section A.3.3 in Appendix A. Note that the sequence of the PA

adjusted parameters épa,N converges in probability to the MLEs of parameters

N

0 n Of the model fitted to the N -th population in the sequence.

DEFINITION 1.15.  The fitted mean (i p,) under the PA model My 5. In the

PA framework, we are only interested in (i p, i, the estimate of 1yye ) = E(yk |F),

~ T
computed by plugging the PA estimators (Bpa,&pa,?/pa) in the appropriate
expression of w), depending of the assumed model. The large sample properties of

U pak aregivenin the next theorem.
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THEOREM 1.3. Assume a sequence of finite populations {Fy}_, of
increasing size Uy :{J,...,N,\,}O,fl:1 and samples {n N} , drawn according to a
sample design { py (Ay =ay )}ONozl satisfying the regularity conditions in Section 5.9

on page 252. The sequence of PA fitted means { HpakN }0:1—1 is design consistent for

the MLE of the mean /i n 1N the sense that

lim Pr[ | pajen ~Amiekon| > &n | =0, (1.23)

N—

for every gy . Note that the sequence of PA estimators fip,y N CONvVerges in

probability to the MLE estimator of the mean iye ) n fitted to the N -th population

in the sequence.

1.5.6 Miscellaneous PA Framework Definitions

DEFINITION 1.16. The canonical form of an estimator T of a population

parameter T isthefunction f of & as
'I::f(n).

The canonical form is independent of the sample design. For example, the canonical

form of the HT estimator for thetotal is

YHT TC y ©) S Z yk
keA” k
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T
where f(n):(no_l) (yoS). The HT estimaor for a SRS design is

\?HT = N z Yk - The canonical form of the HJ estimator (Hgek J. , 1971) is

keA
T Yk
- (“O_l) (yos T

_ N keA”K

Yy =N = kAT
(nO—l) S _—
keATK

T
(°7) (vos) |
where f(m)=N . Notice that although the HJ and the HT estimators

=
(x°7) s
have different canonical forms, the estimators are identical for a SRS design. The

ne_l(yOS)

canonical forms of the HT and HJ estimators of the mean are \?HT = N

(x°7) (vos)

and \?HJ = (nO_l)TS

, respectively. Although the canonical forms of the HT

and HJ estimators of the population mean Y are different, the estimators have the
same expression in SRS designs. Note that this does not necessarily hold for other

designs.

DEFINITION 1.17. There are different types of model misspecification (Rao,

1971), and we are only interested in two types. The first is when the working model

has the incorrect functiona form of the distribution of y . For example, let ye {0,1}

be the outcome with a Bernoulli distribution but the distribution of the working model
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is a normal distribution, and the predictions £ of this model may take values

different from zero or one. The second type of model misspecification includes
omitted and extraneous auxiliary variables. These model misspecifications have a
different impact on the efficiency of the estimators. The misspecification does not
affect the consistency of the estimator because all model-assisted estimators are
asymptotically unbiased and design consistent (Sérndal, Swensson, & Wretman,

1992).

DEFINITION 1.18. Oracle estimator is the estimator where the functional form

and auxiliary variables of the working model are not misspecified.

DEFINITION 1.19. Assuming that the same working model is fitted in the
population and the sample, valid PA models are those that meet the following

conditions. Both the sum of population ML residuals E=y —pye and the weighted

sum of the sample-based PML residuals E= y—1 pmie &€ asymptotically zero, that is
T 1
B(1 E):(’)(—j , and
N
- 1
E(1"(doSOE :o(—j.
(' (doseE))-o| -
This definition includes models where the sum of the residual in ML models and the
weighted sum of the residuals in PML models is zero. To ensure that the models are

valid, we require the intercept term to be kept in the linear regressions of all

parameters of the model.
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DEFINITION 1.20. A PA estimator with a working model with the vector of

auxiliary variables x =(xy,...,Xp) and population control totals X isincomplete if at

least one population total of an auxiliary variable X, is estimated as XHT,p rather

than being known. The PA adjustment for such auxiliary variable is

. X
Fxp = AHT'p :1.

XHT,p

DEFINITION 1.21. We describe the principles to assist estimation with full
response (adapted from the principles to assist estimation in the presence of
nonresponse by Sarndal & Lundstrém, 2005). Although the PA framework can create
models using many variables, it is advisable to reduce the number of candidate

auxiliary variables in the collection of models by selecting variables that

)] explain the main study variable y, and
i)  explain the inclusion probabilities 7 if the sampling design is informative

for vy.

If PA estimates by domain are needed, then the auxiliary variables should also

i) identify as closely as possible the most important domains.
Implementing the principles for estimation may require the help of subject matter
experts who can determine theinitial set of auxiliary variables since the PA agorithm

identifies those variables that meet both conditions (i) and (ii). Implementing (iii)

requires either forcing these variables in the collection of models even if they do not
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explain y and =, or including the domain related variables in the selected model at

the end of the PA algorithm.

REMARK 1.7. The PA framework uses matrix notation, matrix algebra, and
matrix calculus to express the form of the estimators and derive their variances and
estimates of variances. Dol, Steerneman, & Wansbeek (1996) show the convenience
of matrix-algebra for proving the asymptotic properties of the HT estimator. Our
notation emphasizes the random nature of the vector S that follows a discrete
multinomia distribution (Tillé, 2006). The estimators and their variances are

functions of S, and are treated as random variables in multivariate statistical analysis.

1.6 Computing Algorithmic PA Estimators

As an agorithmic framework, the agorithm is the core of the production of PA
estimators. The PA algorithm identifies the relevant variables that explain the

outcome, taking into account the variables that explain the sample selection.

When producing the PA estimator, the algorithm incorporates the population totals of
auxiliary variables into PLL of the data for an assumed working model. This
information is currently ignored in the regular PML approach (Binder, 1983). The

algorithm consists of 10 steps that are listed in Algorithm 1.1.
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Algorithm 1.1 Algorithm for the derivation of the PA estimator

Algorithmic PA estimators
1: Propose the collection of working models M, for theinclusion
- probabilities 7z .
o o~
§ 2. Identify the ML model M, € M of 7 that minimizestheloss
,\% function L, .
< T | 3: Propose the collection of working models M., for the outcome
g variable y .
= |4 Identify the PML model M y € M, of y that minimizesthe loss
function L, .
5. ldentify themodel M, with the set of auxiliary variables that
B explainboth y and 7 as M, =.//\\/ly m//\\/l,,.
) I
® |6 FitthePML modd M, yeM y for 7 using the auxiliary
< :
_ § variablesin M, , identified in Step (5). Use My to compute the
Q3 fitted values 7, and the adjusted weights
"'6 R ~ ~
g, Wi :dkdk(zkeu dk)/(zkeu dkdk)'
5 .
g | 7+ ldentify thePML model My, of y among all models M., that
= minimizes the loss function Ly, using the adjusted weights Wi
computed in Step (6).
8: Fitthe PML model M y Of y using the variables of the model
/\A/ly,\;\, identified in Step (7) using the sampling weight d, .
o ~
g 9: Create the PA model M pa y by adjusting the PMLE of the
= Q _*
B regression coefficients of M, from Step (8) by the PA adjustment
o) q') ~
o= "g Iy.
% "% 10: Estimate the adjusted PA fitted mean i, for ke A using the PA
§ model M pa,y from Step (9) and substitute a pak INnthegeneric form
)

of the PA estimator Yo, = Y dyti pa i - Make inferences for Ypa
keA

using %A’(VPA).
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The steps were explained in detail through the example in Section 1.3 for estimates of
atotal of a non-negative continuous outcome and a proportion for a binary outcome.
In this section, we provide additional information on computing algorithmic
estimators, such as the types of outcomes and distributions of working models,
aternatives for modeling the sample membership indicators such as modeling the
probabilities of inclusion directly when only the sample is available, and the

mathematical definition of the loss function used in the algorithm.

The agorithm is specially designed for informative sample designs, a feature not
addressed by previous approaches such as Nascimiento Silva & Skinner (1997) and
McConville, Breidt, Lee, & Moisen (2017). For noninformative designs, like SRS we
would expect the targeted relevant variables in Steps 5 to 7 to be null, and we could
skip directly to Step 8 for these designs. However, we recommend going through all
steps even with noninformative designs because any particular sample outcome may

be unbalanced. Going through all steps protects against unusual sample outcomes.

1.6.1 General Considerations before Computing
Algorithmic PA Estimators

Before executing the algorithm, we first define the target outcome variable y and the

characteristic to estimate such as a population total or population mean. The PA
framework permits al types of outcomes (e.g., categorical, ordinal, continuous) and

distributions of working models, athough current software may limit their
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computation for some distributions and variable types. The outcome variable can be a

single quantity or a vector with multiple outcomes.

The complexity of the models evaluated in the PA agorithm is a function of the
parameters of the working model. Although very complex models can be fitted, large
samples may be needed for the PA estimator to be well-behaved (e.g., converge to a
normal distribution). Since the regularity conditions for design consistency of the PA

estimator require that ny > P, where ng is the observed sample size and P is the

number of estimated parameters of the working model, working models with a large
number of parameters relative to the sample size are not recommended. We advise
following common sense rules for model building such as excluding highly correlated
variables (e.g., auxiliary variables that lie entirely within the column space of X ) and
variables that do not explain the outcome (e.g., the component of the candidate

auxiliary variable lying outside the column space of X isorthogona to y).

The standard error of the PA estimator is estimated using the variance formulas based
on Taylor series linearization (see Section 1.7). However, other methods such as
replication can be used. An important element of the PA framework is the
development of methods that account for the model uncertainty in the estimate of
variance. Specificaly, the methods should account for the effect on the variance when

the models have many parameters.

REMARK 1.8. In Step 2 of Algorithm 1.1, we assume a functional form of

the collection of models M, for the outcome variable 'y . In situations where more
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than one functional form is feasible, e.g., M, and M, , the PA algorithm can be

modified to select not only the auxiliary variables of the working model but aso the
functional form that best fits the observed sample. The AIC and dAIC, which are
used to compare the goodness of fit anong models, are based on likelihood/pseudo-
likelihood that can accommodate models with different distributions. However,
specia care is needed when comparing the AIC for these models because some
software packages compute the AIC ignoring the constant terms of likelihood. The
difference between the AIC values of two models with the same functional form is
not affected when the constant term is excluded. However, if the likelihoods of
different functional forms have different constants, then the selection of the functional

formislikely to be incorrect.

EXAMPLE 1.7. Returning to the estimators from Example 1.1 on page 7,

algorithmic PA estimates of both the total of Y; (total hospital expenditures in 1998)
and the proportion Y, (proportion of hospitals that received financing from the state

agency) that are likely to be efficient for both ¥; and Y, can be produced by

identifying the common predictors of the model for both outcome variables. For

example, we assume a bivariate working model M, with

Y ~N {nﬂlkj [0'12 o'122}
1812k O'122 U%
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where the outcome vector is yy =( Vi, Yok )T, Npk =XpKBy is the linear predictor
associated with y;, 1743,k = XpkB2 isthelinear predictor associated with y,, Xg is
the vector of auxiliary variables associated with y;, and Xg, is the vector of
auxiliary variables associated with y,. Note that the working models in the collection
of M, are misspecified because the support of the variable y; (total hospital
expenditures) is yy >0 while ¥y, e R, and the support of y, (indicator whether or
not the hospital received state agency funds) is {0,1} while y, € R. Since we want to
identify common variables that explain both y,, and S, we recommend using the
same vector of auxiliary variables for xg ., X, and X when defining the
collections M, and M, . If there are no common variables anong the models

except for the intercept term, then the PA estimator is the poststratified estimator to
the total population size. The models are fitted using multivariate regression

subroutines or by fitting the models for the outcome separately.

EXAMPLE 1.8. In Example 1.1 on page 7, the PA adjusted fitted means

ﬁpa,k for y; (hospital expenditures in 1998) can be negative because the assumed

working model is normal with a linear location parameter. The negative values may
be an issue for totals of some small domains. We discuss two ways to ensure that

u pak for yy is aways nonnegetive (assuming that the regularity conditions for the

MLE estimators for i p,  hold). The first is to use the same linear model but with a
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different link function; for example, 10g( Yy ) = XyB SO fpa y, =exp(xkﬁpa)20 for

ke A. The second is to assume a different working model with an appropriate

support; for example, the exponential distribution y'™e Sxp(eﬂ) with a probability

density function fY(y;Qﬁ):Qﬁ exp(—eﬁ Y)l{yzo} where 6g =xB. A similar
approach is used to ensure £ pak € (0,1) for the binary variable y,. For example, we

can assume a working model y,, ~ Be(eﬁ) where Iogit(Hﬁk) =XPB . The previous

three working models yield nonlinear algorithmic PA estimators (see Definition 1.23
on page 90). However, even though linear and nonlinear estimators converge to the
same limit for working models with the same number of auxiliary variables, the MSE
of a nonlinear estimator is larger than the MSE of a linear estimator with the same
size when the sample size is small. In other words, when the sample sizes are small,
the sample size of a nonlinear estimator needed to achieve the same MSE of alinear
estimator is larger than the sample size of the linear estimator. The differencein MSE
is aso a function of the sample design and the complexity of the distribution of the
working model. The differences in efficiency between linear and nonlinear PA

estimators are empirically studied in Section 2.2.
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1.6.2 Alternative Modelsfor S

As mentioned in Definition 1.2, there are different waysto model S depending on the
availability of the frame and probability of inclusions for the PA models. We identify

four situations:

A. When the sample selection indicator S, for keU is modeled using the complete

population or frame,

B. When theinclusion probability =) for keU , instead of the sample selection

indicator, is modeled directly using the complete frame,

C. When the sample selection indicator S, for k € A ismodeled using the sample,

and

D. When theinclusion probability | for ke A, instead of the sample selection

indicator, is modeled directly using the sample.

Algorithm 1.1 creates the algorithmic PA estimator for situation A and is described in

detail in Example 1.1. In this example, the sample membership indicator S, for

keU is the dependent variable with a collection of models M, with an assumed

working model s | F id Be(ry) where 7 = Iogit_l(xkﬂ) that are fitted using ML
since the frame is available. In situation B, 7 is fitted, instead of S, assuming a

different working model since 7}, isacontinuous variable in arange 7\ (0,1). One
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possible model for 7 isthe fractiona logit with ) = Iogit‘l(xkﬂ) (See Remark 1.3

for a discussion of aternative models for ;). The working models of S, or 7 in
situations A and B are fitted using ML using the frame. In situations C and D, the
working models of S or =z, are fitted usng PML using the sample (see

Remark 1.6).

EXAMPLE 1.9 We illustrate the impact on the precision of the algorithmic
PA estimators under situations A through D using aternative working models for S,
or 7. (Bernoulli, fractional logistic, and linear models) fitted to either the population

or sample using the sample design and population from Example 1.1.

Table 1.7 shows the empirical relative efficiency (RE) of nine agorithmic PA
estimators of Y; and nine estimators of Y, compared with the HT estimator using
100,000 draws (see the definition of the RE in Section A.4 in Appendix A). The
algorithmic PA estimators are identified by the number in the rows named
"Estimator #' on the table. The last column of the table shows the RE of the GREG
VDK estimators for the same population characteristics. The table shows that all

algorithmic PA estimators fitted to either the population or the sample using MLE or

PMLE are more efficient than the HT estimators of Y; and Y, . The agorithmic PA

estimators are also more efficient than the HJ estimators, which are not included in

thetable.
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Table 1.7 shows that the algorithmic PA estimators for Y; and Y, (estimators 2 and 6,

respectively), with a assumed fractional logistic working model fitted to the frame
using ML, are slightly more efficient than the PA estimators 1 and 5 with an assumed

Bernoulli working model aso fitted to the frame using ML. When the mode is fitted

to the observed sample, the algorithmic PA estimators of Y; and Y, (estimators 4 and

8), with aa assumed fractiona logistic working model fitted using PML, are dlightly
more efficient than the PA estimators 3 and 7 with an assumed Bernoulli working

model fitted using PML fitted to the sample.

Although the differences are very small, al algorithmic PA estimators with assumed
Bernoulli or fractional logistic working models fitted to either the frame or sample
(estimators 1 to 8) are more efficient than the VDK estimators despite the uncertainty
in identifying the model. The minimum and maximum RE differences between the

PA estimators and VDK estimators are 0.51 and 0.64 percentage points for ;, and
2.43 and 3.26 percentage points for Y, . The largest differences correspond to the PA
estimators with the fractional logistic model for =\ fitted to the sample (PA

estimators 3 and 7).

When the assumed working mode! of 7| isthelinear probability model (estimators 9

through 16, see Remark 1.3), the algorithmic PA estimators are slightly more efficient

than the VDK estimators except for the PA estimators of Y; with the linear models
Sc=xp and 7 =xp fitted to the sample (estimators 9 and 10). In contrast, the

same PA estimators of Y; fitted to the frame are more efficient than the VDK
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estimators (11 and 12) with somewhat larger differences in RE. For the estimators of

Y, with a linear probability model, the maximum and minimum differences in RE

between the PA estimators 13 to 16 and the VDK are generdly less than one

percentage point.

Table 1.7 Relative efficiency compared to HT of the algorithmic PA estimators

and VDK by alternative models for estimating j\>¢, in Example 1.1
Estimator
Method Algorithmic PA VDK
MLE PMLE GREG

Datafile Population | Population | Sample Sample Sample

Dependent variable S Ty S Ty N/A

Situation A B C D N/A

Model M, Bernoulli | Fractional | Bernoulli | Fractional N/A

logistic logistic

Relative efficiency (HT)

Estimator # (@) 2 (3) 4

Totdl Y, 7.56 7.63 7.63 7.68 7.04

Estimator (5) (6) (7 (8)

Proportion Y, 77.76 77.87 77.19 78.02 74.76
Model M, Linear Linear Linear Linear N/A
Relative efficiency (HT)

Estimator # (9) (10) (12) (12

Totd Y, 6.19 6.72 8.24 7.68 7.03

Estimator # (13) (14 (15) (16)

Proportion Y, 77.19 77.71 77.66 78.02 74.76

Although no generalizations are possible based on the results of one simulation study,

the gains in efficiency may be larger if we assume a more complex working model

that matches the type of data for 7). However, these gains may be very small as
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illustrated in this example. These results also suggest that modeling =) instead S,
may yield more efficient algorithmic PA estimators independently of fitting the
model to the frame or the sample. One reason may be that S, = s, is a dichotomized
version of m, which generally leads to a loss of information (Kotsiantis &

Kanellopoulos, 2006). Since the goa of the PA agorithm is to identify the relevant
auxiliary variables that explain the sample selection, modeling S, may add
unnecessary noise. Although there are no differences in RE between the algorithmic
PA estimators fitted to the frame with assumed Bernoulli and fractiona logistic
working models, we hypothesize these models are practically the same because of the

large frame.

1.6.3 The Loss Function

In the PA agorithm, the comparisons among the fitted modelsin M in Steps 2, 4,
and 7 use a loss function, L(M):R — R, that measures the goodness of fit of the
models M e M being evaluated. In the PA algorithm, when the model isfitted using
ML, the loss function is based on the Akake information criterion (AIC), see
Akaike (1981). The AIC is an estimator of the quality of amodel relative to others for
agiven set of data. The AIC is used for variable selection in model building (Hastie,

Tibshirani, & Friedman, 2009). The AIC is computed as

AIC(//\\/l) - 2P—2£(/T/t) , (1.24)
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where P is the number of parameters fitted in the model M and £(//\\/l) is the

maximum value of the likelihood of the fitted model M . Smaller values of the AIC
indicate better goodness of fit. The first term in (1.24) penalizes the AIC by the

number of estimated parameters to prevent overfitting.

In the PA agorithm, when the model is fitted to the observed sample using PML, the

loss function is a design-based version of the AIC defined as
dAlC(/T/z)zzp—zc(AAﬂf),
where £(/T/l|}") is the maximum value of the PL of the fitted model M. The

dA|C(A7) is an estimate of the Alc(AA/t), that is, the AIC of the model M fitted to

the entire population. The loss function for the model M, fitted to the population is

L(//\\A):AIC(/TA) and for the mode fitted to the sample is

L(/Quf)szlc(/Tﬂf).

Although M, and M, are collections of infinite number of working models, the

PA algorithm does not fit all models nor evaluate their loss functions. Instead, a
subset of candidate models is generated using a one-variable-at-a-time stepwise
forward variable selection based on the value of the AIC or dAIC depending on
whether the model is fitted to the sample or frame. This method of variable selection
is a greedy algorithm that adds the best variable and removes the worst one from the

working model at each step measuring the goodness of fit on the AIC/dAIC for each
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variable addition and deletion. The agorithm attempts to find a globa optimum
through optimal local decisions in each step (Guyon & Elisseeff, 2003; Tang,
Alelyani, & Liu, 2014). This approach reduces the agorithm computation time

because not all modd s are fitted and evaluated.

The appeal of the AIC is the simplicity of the expression that does not require
multiple statistical tests of the coefficients of the linear estimators of the model
parameters®. Since the AIC is a relative measure among working models, the selected
model may have a poor fit if none of the models describes the observed datawell. In
the PA approach, the poor fit of the working models is not a major issue because the
resulting algorithmic PA estimator, as any model-assisted estimator, is always design-

consistent even if the working mode! is misspecified.

REMARK 1.9. The stepwise AIC variable is a commonly used method for
model building (Rawlings, Pantula, & Dickey, 1998); however, there are criticisms
since some of its assumptions are violated when used in thisway. These criticisms are
important for standard statistics but are not necessarily a weakness within the PA

framework. These criticisms of the AIC are most relevant when the prediction of

5 When the observations are iid for linear regression, the one-variable-at-atime AIC stepwise selection is
asymptotically equivalent to the stepwise selection using a cut-off for p-values of about 15.7 percent. This is
equivaent to comparing two models using the likelihood ratio test (Heinze, Wallisch, & Dunkler, 2018). This
relationship has not been shown for the sample-based AlC.
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future observations is the goal®. The models selected using the AIC may suffer from
selection bias since the variables with a large explanatory power in the observed
sample are more likely to be selected (Heinze, Wallisch, & Dunkler, 2018). The
selected model may not be the best to predict future samples. In contrast, this property
is desirable in the PA framework because the PA estimator is derived from the
observed sample and used to adjust the same observed sample and not for
adjustments of future samples. In other words, we are interested in the variables that

have large explanatory power.

REMARK 1.10. Although we have chosen the AIC as the loss function for the
PA algorithm, any other sample-based metric for measuring the goodness of fit such
as the adjusted R? and Schwarz or Bayesian information criterion (BIC) can be used
provided that there is a theoretical justification for the sample design and the
availability of software that computes these metrics (see Section A.2 in Appendix A
on page 290 for the theoretical justification of the sample-based AIC, dAIC, used in
the PA algorithm). Among the methods for variable selection, we do not recommend
those that rely on hypothesis testing such as stepwise regression based on p-values,
F-tests, t-tests of the regression coefficients or model fit statistics. The reliability of

the modified tests that reflect the sample design requires relatively large samples

6 Prediction in this context is the process for determining the value of statistical variables at some future point in
time. This type of prediction is not relevant within the survey-sampling context. This prediction is aso not to be
confused with the model-based estimation methodology from Valliant, Dorfman, & Roya (2000) where

predictions refer to as the values of cases not selected in the sample.
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(Mukhopadhyay, 2016). We also do not recommend variable selection methods that
rely on regularization because their goa is to minimize MSE instead of the bias
(Hastie, Tibshirani, & Friedman, 2009)’. Generally, these methods do not reflect the
effect of the sample design in the variable selection. Although the LASSO can be
used as a method for variable selection for complex designs (McConville, Breidt,
Lee, & Moisen, 2017), our empirical results show that when the model is not sparse,
LASSO tends to select fewer variables in the working model. Selecting fewer
variables is the opposite of the goal of the PA algorithm; that is, identifying all
relevant variables related to the outcome of the working model (see discussion in

Section 4.6).

1.6.4 Implementation of the PA Algorithm and
Computation of PA Estimators

The PA estimators, agorithm, and evaluation in this article are implemented in R (R
Development Core Team, 2017) with modifications under the GNU General Public
License (GPL-2, https.//lwww.r-project.org/LicensesGPL-2) to the R packages
sampling (Tillé & Matel, 2016), survey (Lumley, 2012), GAMLSS (Rigbhy &

Stasinopoul os, 2005), and the core statistics of R (R Development Core Team, 2017).

7 Although a large variance may be problem, the primary goal of the model selection is to reduce the bias. Once
this has achieved, methods to reduce the variance can be used when the variance is large.
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1.7 Statistical Properties of the Algorithmic PA Estimator

In this section, we present the generic expressions of the PA estimator, variance, and
variance estimator. We aso derive the large sample or asymptotic properties of the
PA estimators using the approach from Fuller (2009) and Isaki & Fuller (1982),
which is the standard for studying the large-sample properties of estimators in survey

sampling theory. In this setting, we assume an indexed sequence of nested finite
popul ations {FN }OI\IO=l of size Ny and the associated sequence of sample designs

p(Ay =ay) that meet suitable regularity conditions listed in Section 5.7. We show

is design consistent for the finite

0

that the sequence of PA estimators {YAPA,N}N 1

population total Yy, inthe N -th population with a limiting normal distribution that

allows inferences about the finite population total through tests of hypothesis or

confidence intervals.

1.7.1 The Generic Form of the PA Estimator and its
Design-Based Asymptotic Properties

Although the specific form of the PA estimator is only known at the end of the
algorithm, we can study the properties of a generic form of the agorithmic PA

estimator. Assume a superpopulation model M, for the outcome variable y , afinite

population F consisting of N iid redlizations from the superpopulation that is

sampled according to sample design p(A= a) as described in Section 1.5.3. We are
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interested in estimating the population total Y = z Yk, or the population mean
keU

Vz% based on the realized sample A=a. The generic expression of the PA

estimator of the population total Y , \?pA, IS

YAPA:WT(ﬁpa@S): z Wk[’pa,kSw (1.29)
keU

where w =[w ]e R"? is the vector of the weights described in Section 1.7.4, and

A

upaz[ﬁk,pa]e]RNXl is the vector of the PA adjusted fitted means iy, Of the

working model computed as pak = E(g_l(xkﬁ pa)) :

The following results describe the asymptotic properties of the generic PA estimator.

THEOREM 1.4. Assume a sequence of finite populations {Fy}_, of

increasing size Uy ={1,..,Ny}y,_, ad samples {ny}

N<1 drawn according to a

0

sample design { py (A =ay )}N:1 satisfying the regularity conditions listed in
Section 5.9. Let {\?pA,N}C:_l be the sequence of PA estimators \?pA,N of thetotal Yy

inthe N -th population. Then {\?pA,N }o,:_l is design consistent of the population total

Yy inthe sense that

7



YpaN _Yn

- A = 0p(ni"?). (1.26)

The immediate result of Theorem 1.4 is that the variance of the sequence of PA

estimators {\?pA,N }0:1—1 is stochastically bounded in the sense that

\V4 YPLN_Y_N
Nn o Ny

N J -0(nt). (1.27)

The limiting distribution of the sequence of PA estimators {\?pA,N }0:1—1 is

?P’f'N “N B v(0a), (1.28)
\/V(YPA,N |~7:N)

where N (0,1) isthe standard normal distribution. Similarly, the limiting distribution
of the sequence of PA estimators {YAPA'N}O:I—l when V(\?pA,N |]—“N) is estimated by
V(Yoan | /n ) is

fp’f’N —"__ B xr(0y). (1.29)
\/V(YPA,N |~7:N)

The proofs of these results are found in Section 5.9.
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1.7.2 Specific Forms of the PA Estimator and their

Expressions of Variance

In general, the estimator \?PA is nonlinear, sO we approximate V(\?pA) using the
linear terms of the Taylor's Series (TS) expansion of \?pA: Z(S). Let Z:RN SR

be a vector-to-scalar valued function of S where Z(S)= (W Ol pa )T S . The function

Z (S) is approximated by the linear terms of the multivariate TS expansion evaluated

at point E(S)=m (see Section 5.9 in Chapter 4). Then the approximate variance of

YAPA is
AV (Yea)=N?Z'(n) A Z (7). (1.30)
where Z'(w) = 9Z(S) Z(m) :&(S) (with some abuse of notation) is the vector
oS oS s,

of the directional partial derivatives of Z with respect to S, evaluated at S==x, and

A is the variance-covariance matrix of S. The approximate variance of \?pA,
AV(\?F,A), can be interpreted as the variance of the HT estimator of the linear

substitutes z, € Z'(w) for ke N (Woodruff, 1971).

The variance estimator of Yp, is

A A ~

V(Ypa) = N?2'T(7)A Z(n), (1.31)
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where 2’(7:) is the partial derivatives with respect to Z after replacing the unknown

A

guantities by their sample-based estimates, A=A®(A+nnT), and @ is the

Hadamard division operator.

REMARK 1.11. The algebraic expression of the partial derivatives in the
vector z can be difficult to derive for some nonlinear PA estimators, specifically
those PA estimators that use calibrated weights, because the weights are also

functions of S. One approach is to numerically compute the partial derivatives
zceZ'(m) for ke A and substitute the numeric vector in (1.31), following an
approach similar to Woodruff & Causey (1976)8. Although the algebraic expressions
of the partial derivatives are not needed since they are numerically computed; this

approach still requires the functional form of Z(S). Anocther aternative is to use

replication methods to estimate the variance V(VPA). See Section 5.9.4 for

computing the variance and variance estimator for a nonlinear PA estimator with a

Poisson distribution and the log link function.

REMARK 1.12. Demnati & Rao (2004) and Shah (2004) comment on the
issue with the TS linearization method for survey sampling estimates, which can
produce different variance estimators that are all asymptotically design-unbiased.

They argue that choice of the appropriate variance estimator requires considering an

8 Higher-order methods for numerical approximation of the partial derivative are available in some R packages.
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assumed model and the validity of that model under repeated sampling. Demnati &
Rao (2004) developed a TS linearization approach for deriving variance estimators
that leads directly to a unique expression of the variance based on smooth functions
of totals. In the PA approach, the expressions of the estimates of variance are also
unique and match those expressions from Demnati & Rao (2004). The difference is
that the variances in the PA approach are based on functions of the random vector S.
Since the estimators are linear/nonlinear functions of random variables, the
expressions of the variances are computed using the methods for computing the

variances of functions of the random variable S.

EXAMPLE 1.10. Table 1.8 shows the expressions of PA estimators for totals

and variances estimator for some working models. The estimators of the means are

obtained by dividing the estimators of the total by N and the variance by N 2.

Based on Definition 1.19, the sum of the residuals at the population level defined as

Eme=Y—Rme iSaymptoticaly zero, and the weighted sum of the residuals at the
sample level defined as épMe:(y—ﬁpMe)QS is also asymptotically zero in valid
PA working models. However, there is a second type of residuals defined as
| o - = Iy 5
eme=9"(Yk)—XkBme for the population and eprﬁe—(g (Yk)—XkB prﬂe)QS for

the sample. The sum of the residuals e,y in the population and the weighted sum of
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Table 1.8 PA estimators of thetotal Y and their variance estimators

Estimator Point estimator V ariance estimators

Horvitz-Thompson (HT) Yyr =d' (yos) @(\?HT ) =(yodo s)T &(y ©dOos)
where A=AQTI

Hajek (HJ) . T P N2 .
Yo =NLT®S) V(YHJ)zT(éOdGS)TA(éG)dOs)
d's NGt
where éz(y—iHJ)Qs, Ny =d's
Ratio (RA) A d"(yos) 2
Yop = X —2>—~ (v X = THis
R T (xos V(YRA)—{AHTJ (e0dos) A(e0dos)
where e=(y -xRy7 ) O, , Ruyr = Yt
Xyt
)ZHT—dT(XQS),YAHT =dT(yOS)
Normal Distribution with identity Ynormal = XBmie Where (Y _xT 1l (xodoeos) A(xodoeos)TixT
link function (GREG)* ST (Yormar) f,x( ) A( ) T
Brie =T Ty where é:(y—xﬂpm)@s

fxx =(x®s)T(d®x®s),

Tyy :(XGS)T(deQS)

Poisson distribution with log link Yooisson =d " (ﬁpa o s) where | See Section 5.9.4.

function A -
Ppa = eXp((s © X)B pa)

*See derivation of the PA estimator in Section A.5 on Appendix A on page 304.



residuals €,ye in the sample are also asymptotically zero. The two types of
residuals, Enye and ey for the population and E pe and epye are exactly zero

when the link function is the identity function. The importance of the second type of

residual isits use in computing the variance as illustrated in the following remark.

REMARK 1.13 Another expression for the variance of model-assisted

estimator is based on the HT variance of the variable for the residuals defined as
€k = Yk —M( Yk ). Thevarianceis
V(YA)= N2 z Z(ﬂ'm — KT )g—kg—l, (132)
Ty T
keU €U k 7¢1
where m(yy ) is a model-based estimator of 1 =E(yy ). Similarly, the expression

of the variance estimator is

V(Y)=N?2 T~ K Bl (1.33)
() kgg:A T Tk 7

The expressions (1.32) and (1.33) are derived in Wu & Sitter (2001), Breidt &

Opsomer, (2017), and Breidt & Opsomer (2000). Sérndal & Lundstrém (2005)

recommend these expressions when computing the variance for the GREG estimators

with residuals ¢ =y — xkﬁ pmie- 1hese expressions are different from the variance
of the PA/GREG estimator in Table 1.8. The variance estimator of the PA estimator

includes the factors X Tgi(x0doeos) and (x0doeos)TeXT where
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éz(y—xﬁ pm|e)©s. This factor represents the g-weights used in the alternative

expressions of the variance and variance estimator of the GREG estimator:

V(YA)Z N2 Z Z (7Z'k| —TKT| )M% and (134)
keA leA Tk 7

T(V) = N2 T — 7k Y€k A€ ’ (1.35)
( ) %\E\ av Tk 7

where gy =1+ (X —Xpyr | TtXc (see Samdal & Lundstrom, 2005). In other words,

the expression of the variance estimator of the PA/GREG estimator in Table 1.8 is
equal to the expression of the variance of the GREG estimator with the g-weights in
(1.35). The PA approach naturaly accounts for the g-weights that are more
appropriate on theoretica grounds (see Sarndal, Swensson, & Wretman 1989).

Looking at the asymptotic properties, the g-weights converge in probability to 1 since
IN —1:Op(n_1). Thus (1.35) approaches (1.34) as gie; — ¢ in large samples. In
other words, the variance and variance estimators with the g-weights are more

appropriate for smaller samples since they adjust for the discrepancies between the

auxiliary variable population totals X and the estimates of these population totals

X nT inthe observed sample.

A close examination of the variances of other PA estimators in Table 1.8 shows that
they also have factors similar to the g-weights that converge in probability to 1 in
large samples. Table 1.9 lists the “g-weights’ factors for other estimators listed in

Table1.8.
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Breidt & Opsomer (2017) and Sérndal & Lundstrém (2005) suggest ignoring the

g-weights in the variance estimator because they are asymptotically one. However,

relying on asymptotic consistency may not be justified when the sample is small.

Furthermore, standard practice for the other estimators such as the HJ and RA

estimators does not ignore their g-weights in their estimated variances. Ignoring these

g-weights in the variance estimator ignores the auxiliary variables, which is precisely

the information we want to include to reduce the variance.

Table1.9

The g-weights like factors in some PA estimators

Estimator

g-weight factor

Horvitz-Thompson (HT)

Hajek (HJ)

Ratio (RA)

Normal distribution with
identity link function (GREG)

X Tt (xodoeos)', (xodoeos) Ty X'

1.7.3

Linear and Nonlinear PA Estimators

We refer to PA estimators as linear or nonlinear depending on how the auxiliary

variables are related to the outcome variable.
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DEFINITION 1.22. A PA estimator® is linear if its working model is a fixed

effect normal distribution N (uk,oz) with an identity link function

Uy = E( Y |xk) =XPB . The generic expression (1.25) for the linear PA estimator is

YAPA:dT(XklA3 paQs): z dkskxkﬁpa’ (1.36)
keU

where d e RN d=[dy], and d is the sampling weight, ﬁpaeRPX1 are the PA
adjusted PMLE regression coefficients computed as ﬁpa:f“xﬁpm,e, where
Bomie € M pime,y @€ the PMLES of peM,, Ty e R™P isthe PA adjustment (see

Definitions 1.12 and 1.13), and s:[sk]e{o,l}NX1, where s is the realized sample

membership indicator for keU .

We implicitly refer to a linear PA estimator or linear working model when the
working model meets Definition 1.22 unless stated otherwise. Cassel, Sérndal, &

Wretman's (1977) definition for linear estimators in survey sampling theory is

6 = Bs, + Y B« Yk and focuses on the linear combinations of the outcome varigble
keA

instead of the parameters and auxiliary variables of the model.

THEOREM 1.5. The linear PA estimators can be written as the weighted sum

of the population totals of the auxiliary variables of the PA working model ./\’;lpA’y as

9 Thisclassification is similar to the linear and nonlinear GREG estimators in Sarndal (2007)).

86



Yea =X B pmie- (1.37)
The proof follows after replacing fi pa DY fx fi pmie 1N (1.25) using the sample design

weights dy for keU .

Theorem 1.5 shows that if the working model is linear, the estimate of thetotal Y isa

function of the PML estimates of regression coefficients g of the working model.

One immediate result of this theorem is the following corollary:

COROLLARY 1.1. The variance of the linear PA estimator is
V(Yeal F) = XTV( B pmicl f)x, (1.38)

which is a function of the variance of the parameters of the working model. Although
this expression looks like a model-based estimator, it is a design-based estimator, and

its variance depends on the sample design.

REMARK 1.14 The expression (1.37) is the form of the linear generalized

regression (GREG) estimator (Sérndal, Swensson, & Wretman, 1992) with as
assisting model with E(y,)=xB and V(y,)=c2. The Ypa, computed as the

sample weighted sum of the PA adjusted PMLE means of a normal model or as the

sum of products of the PMLE of p and their associated population totals, reproduces

A

the GREG estimator \?GREG:\?HT +(X—XHT)ﬁ, where ﬁz'f{x]’i“x )

A

Tx =X (dOX0S), and T,y =x' (dOYOS). However, the PA linear estimator
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and the linear GREG estimator are not the same since the set of auxiliary variablesin
the working model of the PA estimator is random that depends on the sample, while
the auxiliary variables in the linear GREG estimator are fixed. The linear GREG
estimators are a subclass of the PA linear estimator. These results are not surprising
since both are extremum estimators that optimize mathematically equivalent criterion
functions when they have the same working model (Greene, 2008). Fitting a well-
defined working normal model and using the PMLES of the regression coefficients of
the working model produces the same model-assisted estimator when the assisting

model is used to guide the form of the estimator.

EXAMPLE 1.11. Some examples of PA linear estimators and ther

corresponding parameters of the normal working model are listed in Table 1.10.
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Table 1.10

Examples of linear PA estimators

Estimator name

Working model

Estimator

Notes

Ha ek

Stratified

Ratio

Linear regression one

variable x

Stratified separate ratio

Stratified combined
ratio

YN (807
V"N (Brof). for he L., H}
i N (%002
Y N (B0 )
YN (Brxobxe ), for he {1, H)

Yk i@N(ﬁXk,GZXk),for hE{l,,H}

Y=Np pmle

H ~
Y= Z NpS pmig,h
h=1

Y=Xp pmle

Y=Xp pmle

H ~
Y= z XnB pmigh
h=1

H ~
Y= Z XnB pmie
h=1

D di Yk

B | _keA
pmle de

keA
D dYk
ke

ﬂAmee,h = ﬁ
ke Ay

D di Yk

keA

,Bpmle :m
keA

IR
3 _keA

Y dxg
keA

D de Yk

ke Ay,

:épmle h= z—
' die X
ke Ay

i > deXk

5 h=1 ke A,

pmle =R
2 2tk

h=1 ke Ay




DEFINITION 1.23. All PA estimators that do not meet Definition 1.22 are

called nonlinear estimators. The nonlinear PA estimators are new and differ from the
nonlinear GREG estimators described in Sarndal (2007) and Breidt & Opsomer
(2017). Closed form expressions of nonlinear estimators often do not exist, and they
must be computed numerically. The expression of the nonlinear estimator depends on
the distribution of the working model. For example, if the working model is a non-

normal generalized linear model (GLM), the nonlinear PA estimator is

Yoa = 2 W 9_1(Xkl§ pa,k) ' (1.39)
keA

where ﬁpa e RP? arethe PA adjusted PML estimates of the PMLE of the regression
coefficients ﬁpm|e computed as ﬁpa = fx ﬁpm|e, and g1 is the inverse of the link

function. The PMLES of the coefficients of the linear predictor, ﬁpm|e, are computed

maximizing the PL using iteratively reweighted least squares (IRLS) in combination
with numerical agorithms such as Gauss-Newton and Levenberg—Marquardt.
Nonlinear PA estimators can aways be computed when the auxiliary variable
population totals are available; in contrast, nonlinear GREG estimators require

complete auxiliary information (i.e., al X, are known).

EXAMPLE 1.12. In Section 2.2 on page 130, we evauate the performance of
three nonlinear PA estimators with assumed working models based on Bernoulli,
Poisson, and Gamma distributions. Table1.11 lists the working models and

functional forms of the nonlinear PA estimators from Section 2.2. The table aso

0



includes other nonlinear PA estimators with different with other nonlinear working

models.

REMARK 1.15 Sarndal (2007) defines nonlinear GREG estimators as those
that are generated by working models other than linear fixed effects models.
Although this definition almost matches Definition 1.23 for nonlinear PA estimators,
there are important differences. The nonlinear GREG estimator is based on two
working models: a nonlinear primary model used to derive an auxiliary variable and
population total and a linear secondary working model that is to produce the
functional form the estimator. To illustrate the role of the primary and secondary

working models, assume we want to compute a nonlinear GREG estimator using a

GLM model for the variable y, with B(y [x)=g *(xB). Since y is only

observed in the sample, a primary PL nonlinear model .7\\/‘pm|e,y with the auxiliary
variables x is fitted and used to compute the PMLESs of the regression coefficients

ﬁpm|e. The same model M pmie,y iS then used to predict the estimated means

H pmiek =g_1(xk[§ p|me) for al elements of the population. Note that this requires

knowing all the values of x, for keU . The fitted PL mean (i ynye Of the primary
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Table1.11

Examples of nonlinear PA estimators

Nonlinear PA Working model Link function g(9) Expression
Estimator
Bernoulli Be(6y) Xy B = logit (6 ) ) kP pa
Y=> dg———
keA 1+ exkﬁ pa
Poisson Po(6y) xiB =10g(0y) V=Y d*Pm
keA
Gamma g(ek) Xk P = Iog(@k) Y= Z dkexkﬁ pa
keA
2 = ~ ~ 2
Lognormal Log/\/(eﬂ,k,egk) B =0pk . V=3 d exp(xﬁ,kﬁ oa +€XP(X, O) /2)
X5 k6 =109 (6, k) keA
Inverse Gaussian 1 ~ d
IQ(Hﬁ,k,BO_k) Xk =——, Y=- <
ng keAXkB pa
Ex ti 1 v Ix.B
ponential Sxp(eﬁ,k) Xy = ——— Y= di\/XkBpa
ng keA
Zero-inflated 05 K X, o =log(0 X3 kB 5
Poisson [Cascr(-00)e P gy | Hewr=1o () N Rl
o Ok XskB =10git(05 ) Sh | 1y kB pa
1-0, )2
+ ( a,k) 1YkeNs0f

Yi!




model and the estimated population total M = > Homiex areestimates of the ML
keU

mean fiyek Of the working model fitted to the population and the sum of the means

M= z Hmek » respectively. Thetilde (~) indicates that the population total M is
keU

not computed as the HT estimator of the fitted meansas M 1 = > Al pmie » but
keA

rather as the sum of the predictions £ e for each element in the population. Since
the population total M isan estimate of M , then the variance of the estimated total
M is V(m |J—") #0 becausethe value of M depends on the selected sample. At this

step, the auxiliary variables x from the primary model are discarded, and the derived

auxiliary variable 1 pmie and population total M are used in a secondary normal
working model to form alinear GREG estimator. The secondary working model is

N(mka,az) , With location parameters a = (ao,al)T . The auxiliary variables are

my :(lﬁprﬂe,k) , and population totals are M :(N,mk) . The general expression of

the nonlinear GREG estimator of thetotal Y isthelinear estimator

—~ A

YaLres = Yut +(M -M g ) a, (1.40)
where &:(o?o,o?l)T eR?? are the linear regression estimators of a computed as

~ 17 T T - T
(l=Tmmey, where Tmm = demkmk, Tmy: demkyk,
keA keA

A

Myt :(NHT’MHT)’and Nir = > di -
keA
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From the PA context, the nonlinear GREG estimators are incomplete PA estimators

(see Definition 1.20) with a derived variable (See Section 1.8) and a normal model

N(mka,az). Note that if the model is correct, we expect that g =0 and @, =1.

One of the earliest nonlinear GREG estimators described in the literature is the
logistic generalized regression estimator (LGRE) from Lehtonen & Veijanen (1998).

In the simple case, the LGRE estimator assumes that the primary working model of

the outcome Y, is Yy lx ' Be(6y) with a link function logit(6, )=x,B, and the

exp(xyB)

mean wy =E(yy)= 1+exp(xyB)

estimated using PML &s figyjek- The estimated

population total M = D pmek » 1S the sum of the derived auxiliary variable
keU

fpmek. The secondary working model is yj i /\/’(ﬁmm’ka ,62), which is linear on

the fitted PMLE mean (i ynek Of the first model. The expression of the Lehtonen &

Veijanen (1998) nonlinear GREG estimator for the total Y is (1.40) after substituting

@, M,and M7 bon:Aideﬁmek , M, and M7, respectively.

HT keA
Wu & Sitter (2001) propose a nonlinear GREG estimator called a model
calibrated (MC) estimator. They follow the same approach described above and
produce two versions of MC estimators based on two secondary working models. The

primary model is the same as described above. The primary model is fitted to the

population to derive the population total as M = Z m pmiek - The secondary model
keU

94



of the first MC estimator is N/ (mka,az) described above, and the expression of the

first MC estimator is (1.40). For SRS, which is the sample design used in Wu & Sitter

(2001), then Nyt = N and (1.40) reduces to

~ A

YAMC :YAHT +(M -M HT )&1 (141)
The secondary working model of the second version of the MC estimator is

Vi iid (,j pm|e,ko21,02) , and the expression of the estimator of thetotal Y is

D A Yikimiek
YAMC :YAHT + (M — M HT ) keA (142)
> defidiex
keA ,

which is the calibration estimator with one auxiliary variable /e, and the

estimated population total M .

All the nonlinear GREG estimators described above require the values of the
auxiliary variables to be known (e.g., complete auxiliary information) for computing

the estimated population total.

The properties and performance of the linear and nonlinear PA estimators compared
to the linear and nonlinear GREG estimators are studied through simulation in
Section 2.2. The results indicate that linear and nonlinear PA estimators have
approximately the same performance as the linear and nonlinear GREG estimators

when the appropriate weight wy is used in (1.25), and the use of complete auxiliary
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information does not improve the efficiency of the nonlinear GREG estimators for the

evaluated models.

1.7.4 Alternative Weights for Nonlinear PA Estimators

In SRS designs, the sampling weights d, aways meet the calibration eguations

> dg=N and > der=n (see Kott, 2006 for the definition of calibration
keA keA

equations). For designs other than SRS, the nonlinear PA estimators require very
large samples to converge compared to the sample size needed with the linear
estimators. One way to improve the rate of convergence in PA nonlinear estimators is

to replace the weights d, by calibrated weights w, in the PA estimator in (1.25). We

have studied three options for the weight wj, . These are:
. . 1
1. Thesampledesign weights dy, =—;
Tk
2. The weights calibrated (e.g., poststratified) to the population size N, defined as
dgN

W (N) = S (i€ D peaWi(n) =N); and
keA

3. The weights calibrated using raking to both the population size N, and the

sample sze n denoted a Wy, Such as the calibration equations

> W (n,ny =N and > W (N,nfTk =N e met where n:E(Z A i |]—“].
keA keA keA

96



All these sets of weights—d,, W (N) and W (N,n) for ke A,—produce sequences

of PA estimators that are asymptotically equivalent in the sense that

-1(v 5 -1/2
NN (Ypa,N —Y\N(N),N):Op(nN ),and
-1(v v; ~1/2
NNl(Ypa,N _YW(N,n),N):Op(nN )
However, Le Cam (1986) notes that the asymptotic theory does not inform on the
estimator properties for finite sample sizes found in practice. Since the estimators
\?pA, \?W(N) , and \?W(N’n) are asymptotically equivalent, we may just as well use any
of them in large samples. Le Cam’s point is demonstrated later in Section 2.2 when
we find substantial differences in efficiency among nonlinear estimators for different

weights and sample designs with small samples. The PA framework attempts to find

consistent estimators that also have good finite sample size efficiency.

In probability proportiona to size (PPS) designs, the PA estimator using the weight
W (N,n) tends to be more efficient, and the gain in efficiency is greater in nonlinear
working models. In Poisson (PO) sample designs, where the sampling weights d, do
not meet either the calibration equation, the weights W (N,n) €N achieve large gains
in efficiency for both linear and nonlinear models as shown in the examples in
Section 2.2. This result justifies the practice of calibrating sampling weights as a

preliminary step before additional adjustments as done in Brick, Flores Cervantes,

Lee, & Norman (2011).
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1.75 Bias-Corrected PA Estimators

According to Definition 1.18, valid PA models are those where both the sum of the
maximum likelihood (ML) residuals or the weighted sum of pseudo-maximum
likelihood (PML) residuals are asymptotically zero. This restriction limits somewhat
the models that can be used for the creation of PA estimators. However, the
expression of the PML estimator with an invalid model can be modified to ensure that
the sum of the residuals is zero, at least in expectation. The resulting bias corrected
PA estimator is still asymptotically unbiased and design consistent. The modification
of the expression of the bias adjusted PA estimator is illustrated in the following

example.

EXAMPLE 1.13. Define a collection of models My for the outcome variable

y, where vy |xk”~(«j N(,Bxk,azxﬁ) with one auxiliary variable x, and population
total X . The collection of models M, defines a family of normal ratio estimators
with parameters € with alocation prediction Mg =%B ; ascale predictor n, = X0 ;
and shape predictor n, =y for different values of y . We use identity link functions

are used for the three parameters. Among the ratio estimators produced for

y ={0,1,2} shownin Table 1.12, only those with y ={0,1} arevalid PA models.

Examining the creation of the PMLE estimator for the shape parameter y =2 in the

last row of the table, the value of ﬁ pmie 1S obtained by solving the sample based
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estimating equation (e.g., the estimating equation is the partial derivative of the PL

function with respect to B set to zero)

oL(B,0%:x,d|F Vie — X B
( )=S(,B|.7-")= dewzo, (1.43)
oB keA X
and the solution is e =Tyr, Where T = HT g = S dyfic . =2 and
NiT keA X

Nyt = > dy . We know that this is not a valid PA model because if the sum of the
keA

weighted residuals is zero, deq(:o where q<=yk—ﬁpm|exk, then
keA

N

~ Y, - .
B pmie = )A(HT # Yyt . Although we cannot remove the bias completely, we can

HT

remove it in expectation by creating a difference estimator using the estimators \?pA

and Ypy g @

Yonag = Yot +(Yoa—YomLe ), (144
where \?PMLE is the estimator of the population total Y from the PML model

identified in Step 8 of Algorithm 1.1 computed as Ypy = D disl pak » and Ypp isthe
keA

PA estimator created in Step 9 of Algorithm 1.1 as Yoy g = > ditl pmiek - In this
keA

case, the estimator for the model for theratiofor y =2 is

Ypaadj = THT X + (YHT +THT Xt ) : (1.45)
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If the total population N is known, then the PA bias adjusted estimator of the mean

v

is
Yeaad = 1T X +(YL+';HT %} (1.46)
which generalizes the Hartley-Ross ratio estimator for the mean for SRS to any
sample design. The Hartley-Ross ratio estimator under SRS is
N_li(y—r_i), where N 1zl and lel (Hartley & Ross

|>

=TX+
HR N n-1

1954).
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Table1.12

Normal ratio models and their associated PM LE estimators for Example 1.1

Shape PMLE Estimator .

A ~ _— Vaid PA
para;/neter Model Y = XBome Description estimator?
0 N(,Bxk 02) > diX Yk GREG with one auxiliary Yes

0 f oo <2 variable x, .
PPN dog
keA
1 N(,Bxk ngk) > die Yk Classical ratio estimator Yes
%) _ keA
ﬁpmle z dkxk
keA
) . .
2 N(ﬂxkﬂoxk) zdk& Design biased ratio No
[;; _keA Xk
pmle z dk

keA




The generic expression for the bias adjusted PA estimator for atota is

Yopad = 2 dk(yk + pak —ﬁpm|e,k) : (1.47)
keA

Note that if the weighted residuals add to zero, then the expression (1.47) becomes

(1.25) with w=d, for ke A. The variance of the bias-corrected nonlinear

estimators is more difficult to obtain since it requires the linearization of iy, and

Homiek - Still, the general formulain Section 1.7.1 applies.

Table 1.13 shows the general expression of the bias-corrected normal ratio models for

any value of y . The second row shows the special case for the collection of models

for a Poisson design with units sampled with probabilities of inclusion 7 .

Although the steps of Algorithm 1.1 (or Algorithm 3.1 for agebraic estimators) for
creating bias-corrected PA estimators are straightforward, software to produce the
estimators may not be available. For example, the value of the shape parameter y for
linear regression models can be estimated using the package gam ss (Stasinopoulos
et a., 2017); however, the function is unstable when the location and scale parameters

of the model do not include intercept terms (e.g., 73 =B1%, and n, =o1%). The

package | mvar (Posthuma Partners, 2018) is more stable, but does not fit models
using PMLE nor does it does produce the AIC for the evaluation of the model. Thus,

solving for the estimates would require a large programming effort.

102



€0t

Table1.13

Bias-corrected PA estimators for normal ratio models

Working model

Estimator

PMLE estimator of
regression coefficient

,Brrie

Notes

Yk i@/\/(ﬂxkﬂzxi)

Ykip/\/(ﬁ”klazﬂlg)

V = BomteX + (Yer X

YA =ﬂApn1en+(YAHT - ns)

> A%

_keA

> dixg

keA

A

B pmle

) > dévk
ﬂmeeKEA—
2. d

keA

For x, #ceR

Poisson designs
ng isthe observed sample size and

N isthe expected sample size.




EXAMPLE 1.14. In this example, we show the flexibility of the PA approach
for producing estimators from different types of models. We assume a
superpopulation multivariate model to describe the joint distribution of the study

variable y and the auxiliary variables x that are also assumed to be random. Unlike
previous examples, we do not assume a model with a univariate distribution based on

the linear regression model E(y) = px.

Let z, =(Yi.Xk) € R¥P) e one realization generated from the superpopulation
model M, with amultivariate normal defined by
idd [(By) [0 By
Zy ~ N Tl ) (148)
By ) | Ty Zux
with y, eR is the study variable, X =(Xy,.... Xp )€ RP? is the vector of the
T
auxiliary variables, where ﬁz(ﬁy,ﬁl) e R is the vector of the location
parameters of M,, B, €R isthelocation parameter of y,, By =(,Bl,...,ﬂp)T eRP

are the location parameters of X, X,y :[

afpqu e RPP is the variance-covariance

2

matrix of x where T XX

is the covariance between x,, and x; for p,qe{l...,P},
Ty = [o 2 } e R™P where 62, is the variance-covariance vector between y and

yX YXp YXp

x for pefl..,P}, and Z, :Z‘.Iy. Assume that the population totals (N,X) are
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known. Let ]—":(y,x) be the generated finite population as N iid redizations of
M, . We assume that the population F is sampled according to a sample design
p(S=s) where S isthe random vector for the sample membership indicator defined

by E(S)== and V(S)=A. We are interested in computing the population total of
y, Y, using the auxiliary variables x observed in the sample and the known

population totals (N, X).

We can take advantage of the relationship between y, and x,. described in M, by

assuming a working model for y, conditioned on the observed vaues x,, and

Yk | Xk - Since M, is a multivariate normal distribution, the conditional distribution
of vy |xx is a univariate normal distribution (Casella & Berger, 2002) with the
parameters

Yic X~ N (05,02, (1.49)
where 65 =8, + ):yx):;)%(x —By) and 62 :‘732'12)0( — zyxz;bzxy. We proceed in the
same way as before to derive the PA adjusted fitted means 1 pak DY solving the PL

of the distribution of y, | X, and the observed data to obtain the PMLE of the model

mean épmmﬁ =f pmiek COnsisting of the PML estimators listed in Table 1.14.
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A

Plugging the PML estimators and the PA adjustments f“l = NN and I
HT

_ -1
X _DX DX

into the generic expression of the PA estimator in (1.25), and after algebraic

simplification, the PA estimator for thetotal Y is

Yon = NYyy; +(x— NXHJ)igxlxiexy, (1.50)

where f:exx is the design-based estimate of the variance-covariance matrix
C(e ) eR™P of the auxiliary variable residuals ey, =x, — Xy and ﬁ‘.exy is the
design-based estimate of the covariance vector (C(ex,exy)e]RPXl between the

residuals e, and e, :y—\%,_u . The PA estimator in 1.50) exists if ﬁ‘.xx is invertible

(e.g., full rank, rankf:exex =P). The expression in (1.50) is new and has not been

previously reported in the literature as far as we know.

Suppose we use the centra multivariate normal distribution to produce another

estimator. The central multivariate normal distribution has the same expression as

above but with zero vector means, (ﬁy,ﬂl) =(0,0p) . We proceed in the same way
as before to derive the PA adjusted fitted means i, ¢ by solving the PL to obtain the

PML estimator of the model mean i ppyex :épmmﬁ consisting of the PML

estimators listed in Table 1.15.
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Table1.14  PMLE of the components of i, in Example 1.14
PML .
Estimator Expression Notes
Bpmiey A\ Yoy =(dTy)/(dTl),
d=[d]eR™
B pmie,x Xhy Xuy =dTX/(dT1)
f(pmle )A(HT )A(HJ :dTX
Zoniexs | £o, =(408,) A(dOE)NGE | A=A0 T, & =(x- Xy )OS
and NHT :dTl
Z pmie,yx Aexy ‘(dQéx)T&(dQEy)N,ﬁ A=AQM, ey :(y—\?HJ)C)S and
NHT =dT1
Table1.15  PMLE of the components of 4 e\ Of the noncentral working
model in Example 1.14
PML Expression Notes
Estimator
ﬁpmle,y YAHT YAHT ZdTy, dz[dk]ERAX]'
ﬁpmle,x )A(HT )A(HT —d"x
)’mele )A(HT )A(HJ =dTX
Zomexc | Ex=(00x0s) A(dOx0s)Nik A=AoH, Nyp=d'1
L ey >A2Xy=(d®x®s)TA(dOy®s)l\Al|]-1r A=AQH, Nyp=d'1
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-1 . .
x Dy into the generic

Plugging the PMLE estimators and PA adjustments fx =D
expression of the PA estimator in (1.25), and after algebraic ssimplification, the PA
estimator for the population total Y based on the central multivariate normal

distribution is

A

YAPA = YAHT + (X -X HT )i;)%ixy , (151)

where ﬁ‘.xx eRPP is the design-based estimate of the variance-covariance matrix

A

C(XHT)ERPXP, and )ixyeRPX1 is the design-based estimate of the variance-
covariance vector (C()A(HT,QHT)G]RPA. The estimator (1.51) exists if )A:XX IS

invertible, e.g. rank )ixx =P.

The estimator (1.51) is the Randomization Optimal Estimator proposed by Montanari
(1987, 1998, and 2002) that has been extensively studied in the literature (Fuller &
Isaki, 1981; Cassady & Vaiant, 1993; Rao, 1994; Tillé, 1999; Chen & Sitter, 1999;

and Montanari & Ranalli, 2002).

We refer to the estimator in (1.51) as the central optimal estimator and (1.50) is the
noncentral optimal estimator. For survey data where the outcome variable and the
auxiliary variables are positive, the model for the noncentral optimal estimator is
misspecified since the parameters means p are not generally zero. However, as a
model-assisted estimator, (1.51) is still design consistent. In contrast, the working
model of noncentral optimal estimators is more plausible because the means do not

have to be zero in the working model. The differences between the estimators are that
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(1.50) uses the HJ estimators of Y and X whilein (1.51) the HT estimators of Y and

X are used. The variance-covariance matrix in (1.50) is based on the estimated total

residuals )’ dyey = de(xk—)i(HJ) while (1.51) is based on the estimated
keA keA

totals )A<HT . We hypothesize that gainsin efficiency of the optimal estimator are due

to the type of model because this model describes the correlation among all auxiliary

variables and the outcome variable.

We do not include an evaluation of the non-central optimal estimator, but it is
expected to be more efficient than the central optima estimator when the HJ
estimators for the auxiliary variables have a better fit to the data. One difficulty in
fitting the central and non-central optimal estimators under the PA approach is the
selection of the auxiliary variables of the working model. These models are not fitted
using standard functions for generalized linear regression models and require
developing specialized routines for computing and maximizing the PL functions for

this type of model.

1.7.6 The Horvitz-Thompson Estimator

The HT estimator is referred to as the only true model-free design-based estimator; it

is a“no information” estimator in the sense that no population totals are used'®. The

10 The HT model described in Chen, et al. (2017) is used to predict non-sampled cases and differs from the “no
information” view of the HT estimator.
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HT estimator results from any working model (linear or nonlinear) without any PA

adjustment (equivalent to a PA adjustment fx =D, D;A(l =1 where | isthe identity

matrix). These results can be summarized in the following theorem:

THEOREM 1.6. Let Y, = > dyfipyx bean estimator consisting of the sum
keA

of the expanded values of fitted PMLE of the means of the assumed working

model M,,, then \?HT —\?u =0 and V(\?HT)—V(\?ﬂ):O.

In other words, the estimator based on fitted means of a working model without any
auxiliary variable is the same as the HT estimator. There are no gainsin efficiency by

fitting amodel without any population totals.

1.8 Auxiliary Variables and Population Totals

Within the PA framework, we define the auxiliary variables as x, € R™P for ke A
where the population totals X are known!!. For the PA estimators in this paper, the
additional information from the auxiliary variables consists only of the population

totals X . If complete auxiliary information is available (i.e., the values of x, are

11 Other classes of PA such as those that require complete auxiliary information or estimators that incorporate
estimated population totals from the sample are not described in this dissertation.
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known for every keU), it is summarized to produce population totals. The

population totals are considered fixed.

We consider two types of auxiliary variables. The first group includes the sample
design variables, that is, those variables created at the design stage or used to select

the sample. We list seven of these types of auxiliaries:

1. Unitauxiliary variable. The simplest auxiliary variable is a vector with a value of
one for all members of the population; the population total is N . The unit
auxiliary variable alows an intercept term in the regression model of the
parameters of the working model; this allows ML and PML models such that the
sum of the residuals and weighted residuals are asymptotically zero for valid PA

models.

2. First order probabilities of inclusion 7, for ke A with a population total

n= z 7 that corresponds to the expected sample size. For sample designs
keU

where 7\ oc X, both variables are equivalent since one is the scaled version of

the other.

3. Sample design weights d :7r|21 for ke A with apopulation total Dy = Z dy .
keU

The sample design weights can be scaed for numerica stability when
maximizing the PML function. Using the weight as an auxiliary variable requires

complete information on the weights to compute the population total D, .
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4. Certainty indicator. The indicator ¢, that identifies if a sample unit is selected
with certainty, ¢, =1, or ¢, =0, otherwise. The population total is the number of

cases sampled with certainty.

5. Stratum membership indicator defined as the vector
hic = (Nt B gy ) € {005 with e {1,...,H} for ke A where H isthe
number of strata, and hyy =1 if the element K isin stratum h', and hy, =0

otherwise. The population total is H:(Hl,...,Hh,...,HH)eRHX1 where

H=> hy.

keU

6. Qualitative or categorical auxiliary variables are defined by a vector of group
membership indicators gk:(gkl,...,gkg',...,ng)e{O,l}le with g'e{1,...,G}
for ke A where G is the number of groups or categories, and Okg =1 if the

element k is in group g’ and Okg' =0, otherwise. The population tota is

G:(Gl,...,Ggr,...,GG)eRGX1 where G= ) gy. Examples of categorical
keU

variables are gender, age groups, or geographic areas that are very common in

population surveys (Brick, 2013).

7. Quantitative or continuous auxiliary variables. This type of auxiliary variable is
commonly found in establishment surveys but is rare in population surveys.

Some examples of quantitative auxiliary variables are the tota number of
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patients seen during a period, the number of doctor visits at the end of a period,

taxable income, or total revenue.

Additional auxiliary variables can be derived from the interaction of the quantitative,
gualitative, and sampling variables. For example, the unit sample indicator and
continuous variables can produce the regression or multiple regression estimators, or
the interaction between sampling stratum indicators and a continuous variable yield to

the separate ratio estimator.

EXAMPLE 1.15. Assume two vectors of auxiliary variables g, and gj with
the membership indicator for the levels of two categorical variables G;, G,, and a
PA fully saturated linear model for the outcome variable with a normal distribution
YN (Bg +By +Bggohy) for ge{l..G} and g'c{l..G}. This moge

corresponds to the cross-tabulation of g and g' with, 8 (rows) and B4 (columns)

as main effects, and the interaction term gy =B4*By. We assume that the

population totals G *G'=(Nyy,...,Ngg') are available. Table 1.16 lists four and PA

estimators with different working models depending on the fit of the data. The first
PA estimator is the canonical HJ estimator for the single mean model where there are

no differences among the means of the cells g-g'. The second and third estimators
are for the main effect models (gor g') where there are no differences in the means

among columns (estimator 2) or rows (estimator 3) among columns. The last

113



estimator is for the fully saturated model where there are differences among the

means of thecells g-g'.
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q1T

Table 1.16

PA estimators of Example 1.15

Model PA Estimator Notes
1. Single mean Vo= YHT N Yy1 = Z Z z dggk Yogk » NHT = Z Z Z dggik »
Nypr geG g'eG’ keaggy 9eG g'eG’ keagyk

2. Row main effects g

3. Column main effects g’

4. Fully saturated gg'

N YAHT
_ 2 9
Yea= 2. N
geG '“HT,g

: Vot o
_ § 9
g'eG’ '"VHT,o'

. YHT g
Yoa= 2. 2 AHT—'ggNHT,gg’

geG geG’ NHT,gg’

N=2 > Ny

geG g'eG’

Yut,g = Z Z dgg'kyggk’ Npt,g = Z Z dgg’k’
g'eG’ keaggy g'eG’ keaggy

Ng = Z Ngg'
g'eG

YHT,g’:Z Z dggkygg’k’ NHT,g’:Z Z dgg’k’
geG keaggk 9eG keaggy

Ng = Z Nggy'
geG

Yirgg = 2, dogiYagk: NHrgg = 2. dggx
Keaggk Keaggk




REMARK 1.16 Little (2008) discusses the model-based estimation for the

setting where g are the strata and g’ are the poststrata, and the saturated model is

replaced by an additive model with main effects for strata and poststrata when the
stratum/poststratum cells have few observations. The PA estimator adopts a

prediction perspective that corrects the usual poststratified estimator based only on g’

so it can produce estimators that match both stratum and post-stratum margins while
allowing modifications of the fully saturated estimator in small samples by modifying
the distribution of the cell means. The effect of replacing the saturated model by the
simpler main effects model shrinks the estimates of the stratum/poststratum cell
sample means of the saturated model towards the means of the additive model. The
shrinkage of the sample means occurs during working model development in the PA
where simpler working models with a lower loss function replace the complex model
in the algorithm. Little (2008) describes this shrinkage of post-stratum means as a
desirable property of an estimator from the modeling perspective. In the extreme case,
when the optimal model has only one stratum, the initial model sample means shrink
towards the overall mean, which corresponds to the canonical form of the HT

estimator.

REMARK 1.17 If there is one categorical auxiliary variable for the
poststratification cells, the algorithmic PA estimator can be used for collapsing

poststrata without modifications to the algorithm.
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REMARK 1.18 Sarndal & Lundstrom (2005) describe the unit auxiliary
variable as the simplest auxiliary vector that does not recognize individual differences

among the elements of the population. If we assume a normal linear model for vy,

yki@/\f(ﬁ,o-g) with the auxiliary variable 1 and a population total N , the PMLE of

A

the regression coefficient is ,é pmie :EIH—T' the PA adjusted regression coefficient is

HT
Bpa=N Y';T , and the PA estimator is Yps = N THT \yhich matches the canonical
NAT Nt

form of the HJ estimator (see Definition 1.2).

EXAMPLE 1.16. In this example, we examine the effect on the efficiency
when the variances are modeled in the PA estimator. The documentation of the
command svygl min the package sur vey (Lumley, 2012) shows an example for
computing three estimates and their variances for the total number of students tested
(variable api . st u) using a continuous variable with the school's student enrollment
(variable enr ol ') from the data file api for the Academic Performance Index
(API) for al California schools. In this design, the frame consists of 6,157 California

schools stratified by school type with 4,397 elementary schools, 1,009 middle
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schools, and 751 high schools.*? A total sample of 200 schools is disproportionally
allocated to the three strata and three independently simple random samples of 100
elementary schools, 100 middlie schools, and 50 high schools are drawn from each

Stratum.

Lumley (2012) produces three estimators. the GREG estimates, and two ratio

estimators with a variance as a function of the mean (z and y?’) listed in Table 1.17.

Since this ratio estimator with a variance as a function of /,13 has a smaller standard
error for the observed sample, Lumley states that a higher efficiency is achieved by
better modeling the variance. The last row of the table shows the algorithmic PA

estimator for the same sample, with an assumed working models

Yk LY ([30 + ﬁlxk,ag) where only the location parameter of the distribution is

model ed.

The relative efficiency of the estimators for repeated sampling is shown in Table 1.18
for B= 100,000 draws (See Section A.4 in Appendix A for the definitions of the
empirical measures of precision in Monte Carlo studies). The results show that
although all estimators are more efficient than the HT estimator (12 times more

efficient), the gains in efficiency are relatively small when the variance is explicitly

2 The data file api pop in Lumley (2012) contains 6,194 schools. There are 35 schools with missing values of

the variable enr ol | . The variable enrol | is used to compute the tota X for the ratio estimators. Those
schools with missing values were removed from the file before the smulation and when computing the
estimatesin Table 1.12.
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modeled. In other words, the reduction in standard errors when modeling the variance

as Hs in Table 1.17 is not typical under repeated sampling. Note that the algorithmic

PA estimator does not achieve the largest RE, but the difference with respect to the

largest value is less than one percentage point.

Table1.17  Population totals, estimates, and standard errors for the total number
of students tested for three models from Lumley (2012) and two
algorithmic PA estimators

Population variable Description Total
Schools Number of California schoolsin frame 6,157
Enrolled students Tota enrolled studentsin CA schoolsin 3,8114,72
API Students AP stljtrﬁerr?[es tested in CA schoolsin frame 3,184,662

Estimators of total API

students Working Models Estimates Standard error

1. GREG N (Bo+Brxc.od) 3,186,758 31,341

2. Ratio estimator - N (B xe?) 3,190,038 29,566

3. Retio- 113 N (Brxe. X § ) 3,247,986 21,129
L N(Bo +51Xk-05)

4. Algorithmic PA 3,196,977 28,636
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Table1.18  Empirica summary results for 100,000 draws for Example 1.11.

Relative Bias Relative Root Relative
Estimator (RB) Mean Squared efficiency (RE)
(%) Error (RRMSE)
1LHT 0.02 3.406 0.00
2. GREG -0.01 0.939 12.15
3.Ratio- c® oy 0.00 0.919 12.73
4. Ratio - 0% oc y® 0.00 0.914 12.87
5. Algorithmic PA -0.04 0.918 12.77
EXAMPLE 1.17. Lumley, Shaw, & Dai (2011) provide an example of a more

complex auxiliary variable derived from the frame that can be used in the PA working
models. Their variable is based on the empirical influence function of a multiple
linear regression model. The influence function of a parameter describes the effect on
the estimator when changing one point of the data. After identifying a variable with a

strong linear relationship with the outcome z, a linear model is fit using P

explanatory variables available in the frame as 2k:ﬁxk, where

L AT
X = (Xer- - %p ) € REP are the auxiliary variables and B=(ﬁ1,...,/3p) eRP are

the fitted regression coefficients. Let Z, =(Zyq,....Zyp ) be the vector with the values
of the empirical influence function of each regression coefficient of afitted regression

for keU . The vector of the auxiliary variablesis x, =(jp +Z) where jp eR" is
the one vector jp=(1..1p), and the population tota is XeRP where
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X =Y % =(N,..,N). Since the population totals of the values of the empirical
keU

influence function are zeros, a value of one is added to each variable Z, to ensure

that the PA adjustment fzp :ﬁ is not undefined. Note that even if this
HT T HT,p

auxiliary variable is derived from a model, the variance-covariance of the population

totalsis zero, e.g., C(X)=0.
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Chapter 2 The Applications of Algorithmic PA Estimators

In this chapter we describe three applications of PA agorithmic estimators. In the
first, we show how the PA framework is used to select the auxiliary variables for the
working model of the estimator. In the second, we evaluate linear and nonlinear
algorithmic estimators derived using the PA framework. In the last example, we
derive and evaluate two algorithmic estimators in samples from Poisson sample
designs. Both estimators share the same auxiliary variables, but one has a more

complex working model with different regressions for location and scale parameters.

2.1 Variable Selection for Calibration Estimators

The most important application of the PA framework is the selection of variables for
calibration estimators in the presence of full response. As noted by Kott (2016), Kott
& Liao (2017), and Valliant, Dever, & Kreuter (2013), there is limited work on the
methodology for developing working models for model-assisted estimators within the
design-based context. Ruppert (2007) and Opsomer, Breidt, Moisen, & Kauermann
(2007) share similar views and highlight the need for methods for variable selection
in model-assisted estimators. For example, these methods are needed to identify
situations where the model-assisted estimator is less efficient than simple estimators

such as the Horvitz-Thompson (HT) estimator.

Chambers & Skinner (1999) proposed the creation of weights calibrated to as many

auxiliary variables as possible, but this approach is mainly intended for systems of
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weights for the analysis of multipurpose surveys (Haziza & Beaumont, 2017).
Including auxiliary variables that are not related to the outcome may increase the

variability of the weights.

Nascimiento Silva & Skinner (1997) proposed a stepwise method for variable
selection based on the mean squared error (MSE) of the linear regression estimator
for ssimple random sampling (SRS) designs. They empirically showed that calibrating
to areduced set of auxiliary variables correlated to the outcome achieves larger gains
in efficiency compared to calibrating to a larger set including unrelated variables.
However, their approach has severe limitations because their variable selection
procedure and expression for the estimate of variance do not generalize beyond SRS

designs.

More recently, McConville, Breidt, Lee, & Moisen (2017), denoted as MBLM
henceforth, proposed a model-assisted estimator for population totals based on the
Least Absolute Shrinkage and Selection Operator (LASSO) developed by Tibshirani
(1996). The LASSO is a regression anaysis method that performs both variable
selection and regularization that improves the prediction accuracy and interpretability
of the model. In the LASSO variable selection process, the explanatory variables
associated with regression coefficients with small or zero values are eliminated from

the initial model. From the PA framework viewpoint, although the superpopulation
. iid A ~
model M, for y is y < N(uk,o-g), the procedure fits 1| assok = XkBLAsso

where X = (X, xkp)eIRilxp for keU is the vector of the auxiliary variables
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associated with the LASSO regression coefficients B asso Z(ﬂl,...,ﬂp')T eRPH

computed as

ﬁLASSO =arg min{ z dic ( Yk —Bxk)z} subject to ||[i||l <t, (2.1)
BeB keA

where t is a prespecified parameter that determines the amount of regularization, d,

are the sampling weights, and |||?$||l is the L—1 norm of the parameter vector

peRPY such as PcP. The population total for Hiassok IS

M = > i assok = XﬁLASSO. The expression of the MBLM estimator of the total Y
keU

computed using the auxiliary variables 11, g0 » and the population total M is

Yiasso = D, dkYk +M = D disl assok
keA keA ) (2_2)
=YuT +('V| - MHT)BLASSO

Although the method for producing the LASSO estimator can be used to select
variables of the working model, the method does not produce a calibration estimator
in the sense that the calibrated weights meet the calibration equations (Deville &

Sarndal, 1992; Deville, Sarndal, & Sautory 1993). MBLM derives a calibration
estimator using a secondary working model yj LY (ﬁ LA$O,ka0+xkax,a§) with

auxiliary variables Xy =(ti assok-Xk) and population totals X*:(M,X). The

calibration LASSO estimator is

—~ A

Yeal _Lasso =Yt +(M =M g +(X = X7 )iy
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~ ~ aT\T ~_117 > A\T
where a = (ao,ax) computed as a = TX*X*TX*y, where T = Z dk(xk) X, and
keA

- T
TX*y = Z dk(x’,‘;) Yk - We propose a modification to the LASSO procedure that
keA

calibrates to the auxiliary variables of the model identified by the LASSO procedure

instead of calibrating to the total M = > /i) agsok - The modified LASSO estimator
keU

is atraditiona calibration estimator with the relevant auxiliary variables that explain
the outcome variable similar to the PA estimator. This modification is an alternative
to the PA agorithm but using (2.2) as the loss function. The evaluation of the MBLM
estimator and the modified LASSO estimator are not included here; but our initial
evaluation pf this loss function suggests that there are potential issues such as the

assumption that the model is known, sparse, and well specified.

Chen, Vdliant, & Elliott (2018), denoted as CVE henceforth, propose a method for
calibrating nonprobability samples to estimated population totals similar to the
MBLM estimator, but they use two separate samples and the adaptive LASSO (Zou,
2006). The CVE method does not produce a traditional calibration estimator, but
instead gives a GREG estimator with one derived auxiliary variable. The
superpopulation model is the same as the MBLM model described above. The

derived variable is (ijqsq, K, the estimated mean of the LASSO model fitted to a

probability sample A called the analytical sample. The estimated population total of

the derived variable ;ﬂml,k is derived as the HT estimator of the predicted means

) 350 ,k Of the LASSO model from the analytical sample but applied to the second
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sample A, cdled the benchmark sample. The model identification and variable

selection method of the CVE estimator do not apply to estimation from probability

samplesin the presence of full response that we are considering here.

REMARK 2.1. Fabrizi & Lahiri (2013) proposed a design-based
approximation to the Bayes Information Criterion (BIC) in finite population
sampling. Although they mentioned the importance of variable selection, they
evaluated their design-based BIC using hypothesis of one single parameter of a model
because their focus was estimating the parameter of the model rather than the
auxiliary variables for the calibration estimator as discussed here. They planned to
extend their findings to a general variable selection method but did not give a method

that evaluated models based on the design-based BIC.

REMARK 2.2. Pfeffermann & Sverchkov (1999) proposed a likelihood-
based method for estimating parameters of models using survey data selected using
an informative sampling method. This approach is called sample likelihood
(Chambers, Steel, Wang, & Welsh, 2012), and estimates the sample likelihood of
parameters of the conditional distribution of the observed data given the auxiliary
variables. Their method shares some similarities with PA modelling methods for the
sample membership indicators with some important differences. the use of the
pseudo-maximum likelihood estimation (PMLE) instead of maximum likelihood
estimation (MLE), and the implementation of separate steps for modeling the

sampling membership as an outcome variable (Steps 1, 2, 5, and 6 of Algorithm 1.1).

127



Pfeffermann & Sverchkov (1999) mention that sample likelihood permits the use of
standard inference procedures such as MLE or related residual analysis that are
building blocks for variable selection methods. However, no method for variable
selection or model building based on the sample likelihood has been proposed in the

literature.

Sverchkov (2010) extends the sample likelihood approach to estimation in the
presence of nonresponse when the probability of responding is related to the outcome
variable (e.g., missing data not missing at random or NMAR). As in previous
methodology, Sverchkov (2010) notes that the parameters of the models can be
estimated by MLE and evaluated using any classical information criteria such as the
Akaike AIC or the Schwarz BIC; however, no procedure based on this approach has
been reported in the literature. Furthermore, this approach does not address the

situation examined in this dissertation, that is, estimation with full response.

REMARK 2.3. It important to note that there a large number of methods for
variables selection described in the standard statistical literature. Many new methods
based on statistical learning approaches have been developed in recent years. An
older review of the standard statistics methods from the frequentist point of view is
found in Rao & Wu (2001). Bayesian selection methods are reviewed in Berger &
Pericchi (2001); Efron & Gou (2001) attempt to reconcile the frequentist and
Bayesian theories with limited success beyond the single parameter setting for the

normal distribution.
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More recent methods for variable selection, referred as to feature selection within the
Machine Learning context, are reviewed by Hastie, Tibshirani, & Friedman (2009)
and Somol, Novovicova, & Pudil (2010). One difference between the standard
methods and the approach to model selection in Machine Learning is the complete
characterization of the algorithms generally not discussed addressed in the standard
methods. For example, variable selection methods are classified as wrapper methods
(fit amodel to aportion of the sample and evaluate using the remaining sample), filter
methods (use a measure of error to score subsets of models), or embedded methods
(perform feature selection as part of the model building process), They also have
specific approaches to the identification and evaluation of models among the full set
of possible number (in contrast with few hypothesis tests used in most classical
methods). The reason is that this process is time consuming and costly if all models
are fitted. The classical and modern methods have their merits, and some of these
features are incorporated into the PA variable selection algorithm (e.g., greedy
fromward selection with aloss function). However, they all assume that the observed
data are independent and identically distributed random variables (iid). Furthermore,
some methods attempt to minimize the mean squared error (M SE) instead of the bias
that is the more common goal in survey estimation. Therefore, most of these methods
cannot be imported to the survey sampling context without a theoretical justification
or modifications to the procedure to reflect the sample design. As noted in Kott
(2016), Kott & Liao (2017), and Valliant, Dever, & Kreuter (2013), there is limited

work on the methodology for developing working models for model-assisted
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estimators within the design-based context despite the large number of variable

sdl ection methods in standard statistics.

REMARK 2.4. One important difference between the standard statistical
methods and those based on Machine Learning is the reliance on statistical testsin the
former versus the test-free optimality criteria of the latter methods. This difference is
key to the role of the estimated parameters of the fitted working model within the PA
framework and in survey sampling estimation in general. In the PA approach, the
values of the estimated model parameters are not important since no inference is
made. This is sensible because the population characteristic such as totals or means
should be robust to the values of the parameters of assumed models that are unknown
or inestimable. In the PA approach, there is no hypothesis testing or any other
statistical measure for each estimated model parameter. Only the fit of the model
drives the inclusion of the variables in the model. The model fit affects the residuals
of the estimates, which in turn have an impact on the variance. Although the model is
important, the goal is not identifying the true model. Instead, the model is just a tool

for producing efficient estimators.

2.2 Variable Selection in Algorithmic PA Estimators

In the first part of this example, we evaluate the algorithm for variable selection for
the working model of algorithmic PA estimators based on a single realization of the

sample. Since the variables in the working model determine the functional form of the
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estimator, this example also evaluates the functional form of the algorithmic PA

estimator.

The simulation is motivated by the example in Section 7.9.1 of Sérndal, Swensson, &
Wretman (1992), denoted as SSW henceforth, where the efficiency of multiple
regression estimators is compared to simple estimators. The sampling frame is the

MU281 population with 1985 administrative data for 281 Sweden municipalities
(Tillé & Matei, 2016).13 The study variable y is RMT85x10~#, where RMT85 is the

municipa tax receipts received in 1985. Two auxiliary variables on the frame are

% = CS82, the number of Conservative Party seats in the municipal council in 1982,
and x, = SS82, the number of Social Democrat Party seats in the municipal council
in 1982. SSW fit different regression modelson y from the frame and determine that

the multiple regression estimator Ysgy, xax2 With the model (1,%q,%,) has the best fit

for the population. Through repeated sampling, they verify that \?ssw, wx2 1Sthemost

efficient among other alternative estimators such as the HT, two ratio estimators with

auxiliary variables x and x,, respectively, and two regression estimators with
models My, =(1%) ad My, =(Lx), respectively. This example has

pedagogical value but requires knowing the outcome variable for every unit in the

frame.

13 Asin the Sarndal, Swensson, & Wretman (1992) simulation, the three municipalities with the largest values of

municipal tax receipts received in 1985 in the MJ284 population are removed for the sampling frame.
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In the first scenario, we recreate this study evaluating the same group of estimatorsin

the SSW simulation in addition to the algorithmic PA estimator, \?pA, xix2 With the

collection of working models M., with d pr ( Bo+ PrXq + ,Bzxz,az) spanned by

the auxiliary variables x=(1,%,X;), assuming that only the population totals
X =(N, Xy, X,) are known. The collection of working models M, of \?pA, lx2 €an

reproduce the models of the other estimators evaluated in the original study.

In each simulation run, a SRS sample of 100 municipalities is drawn, and estimates,
their estimated variances, and confidence intervals are computed. These statistics are
used to compute the empirical relative bias (RB, in percentage), relative root mean
squared error (RRMSE), and relative efficiency (RE in percentage) of the estimator
compared to the HT (see the definitions of these empirica summary measures in

Section A.4 in Appendix A).

The middle panedl of Table 2.1 shows the RB, RMSE, RE, the empirical coverage rate
for 95% nomina confidence interval coverage (ECR), and the empirical length of

ECR (LECR) of the estimators for B =100,000 runs for the first scenario. The table
dso includes Kish's weighting design effect deffyigq, =1+ cv(w)2 where
w={w},_, and w are the weights assuming that the sampling weights d =m

are calibrated to the population totals of the model of the algorithmic PA estimator.

Table 2.1 shows the results for the estimators \?ssvv, XIX2 1 \?PA, xix2 and HT; the HT

estimator is used as a reference. The empirical bias of the estimators \?ssw, xix2 and
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YAPA,X]_XZ are both very small, less than 0.3 percentage points as expected. Both
estimators are 2.7 times more efficient than \?HT. The table shows that the
algorithmic PA estimator YAPA,x1x2 is as efficient as the estimator \?ssw, YAX2
identified by SSW, even though \?pA, wix2 1S based on the observed sample in each
simulation run. Both estimators \?ssvv, xix2 and \?pA, wix2 have the same performance
because, in each run, the PA agorithm chooses the same model of Ysgy. xax2, SO

\?pA, X1x2 :\?ssw, xix2- 1N general, the PA algorithm does not necessarily select the

same model in all samples, athough it does so here.

In the second scenario, we assume there is complete auxiliary information so we can

compute a new auxiliary variable x3 =X - X, and its population total X3 = z X3
keU

for the interaction between ¥ and X,. We compare the algorithmic PA estimator

Ya, xixoxa With the collection of working models M., spanned by x=(1,3,%, %)

to the multiple regression estimator \?ssw, xx2x3 With a fixed linear model with the

same auxiliary variables x. Note that if the population total X3 is known, the PA

estimator does not require complete auxiliary information data.

The lower pane of Table2.1 shows the results of the simulation of the second

scenario. As in the previous scenario, the estimators have small empirical biases and

the estimators VPA,X1X2X3 and \?ssw, xxox3 are 3.5 times more efficient than \?HT :

Using the derived variable x5 increases the efficiency of the estimators by 20
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percentage points over those estimators with a model with only x=(1x,%,). A
surprising result is that the PA agorithmic estimator \?pA, xix2x3 1S slightly more
efficient than Ysgw, xaxoxa Which has no model uncertainty, and the empirical deff,,

is smaller for \?PA, wx2x3 than for \?ssvv, xix2x3- We expected the efficiency of the

estimators with a fixed model to be the lower bound of the estimators with

uncertainty in their working model.

The ECRs of the estimates in both scenarios are somewhat |ess than the nomina 95%
rate. The more complex estimators (those with four terms in the model) have lower
ECRs than the ECR of those with three auxiliary variables). The HT estimator with
no auxiliary variables is closer to the nominal coverage. The losses in coverage
appear to be due to the complexity of the functional form of the working model, the
number of auxiliary variables, and the sample size, and how well variance estimate
approximates the variance of the estimate. This effect will be the topic of future

research.

While the PA algorithm in Scenario 1 selects only the model (1,%,X,) in al 100,000

runs, in Scenario 2, the algorithm selects only four different models of the 16 possible

working models spanned by (L¥y,%,%;) for Ypa waxoxs. Teble2.1 lists the

distribution and details of the selected models for the PA estimator VPA,X1X2X3 in

100,000 simulations runs.
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Table2.1 Results of asimulation for Scenarios 1 and 2 for the example in

Section 2.1
Scenario | Estimator (I?)/S RSEZSE g/s ECR | LECR | deff,,
All Yot 0.036 | 8508 00 | 0938 | 1758 | 1.000
1 Yesw xaxe | -0122 | 4412 |2719 | 0930 | 0885| 1.014
1 Yoa xixe | -0122 | 4412 |2719 | 0930 | 0885| 1.014
2 Yasw. xxaxa | -0.207 | 4000 |3525 | 0922 | 0787 | 1.022
2 Yoa xixaxa | -0.169 | 3993 |[3540 | 0922 | 0783| 1.014

Table2.2 shows the empirical distribution of the selected working models in
Yea, xaxoxa- The probabilities of selecting the models (L xp,%3) and (L xy,X3) are
0.43 and 0.32, respectively. One of these two models is selected about 75 % of the
time in repeated sampling. All selected models include the variable X3, suggesting
that this derived variable is more important than x or X,. In this case, there is no

single best model selected for most of the samples.

This example shows that the algorithmic PA estimator is flexible and capable of
producing an efficient estimator based on the observed sample. It also shows that the
selected auxiliary variables of the final model may vary from sample to sample
(Scenario 2) or may be the same for all samples (Scenario 1). The agorithmic PA
estimator may be as or more efficient than the estimator with the best model

identified when the model for y can be obtained analyzing the full population.
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Table2.2 Empirical distribution ofA the working models selected by the
agorithmic PA estimator Ypa yxox3 for 100,000 simulation runs

Estimator - Xl'V'Ode'S M yX2 - Perczoe/g)tage
v v v v 6.26
R v v x v 32.40
YPA, x1x2x3 y o L, L, 4574
v x x v 18.60
Tota 100.00

v': Auxiliary variable selected in the model
x: Auxiliary variable not selected in the model

2.3 Performance of Linear and Nonlinear Algorithmic PA

Estimators

In this example, we use simulation to examine the statistical properties of the linear

and nonlinear algorithmic PA estimators along with alternative estimators across

different types of outcomes, sample designs, and levels of working model

misspecification for a range of sample sizes and populations. We evaluate seven

estimators for simulation scenarios created by combinations of the factors listed in

Table 2.3 for a sequence of 10 populations { Fy }T\?:l with increasing sizes { Ny}

10
N=1’

each sampled at the same rate f = fy ::l_N' Only a subset of these scenarios are

N

presented here, and the full set is presented in Appendix A Section A.1 on page 279.
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Table2.3 Factors in the simulation study for linear and nonlinear PA estimators

Factors Description

Types of Outcome (3) 1. Bernoulli: Binary data

2. Poisson: Count data

3. Gamma: Continuous positive data with a constant
coefficient of variation

Sample designs (3) 1. SRS: Simple random sample without replacement

2. PPS: Probability proportional to size without
replacement

3. PO: Poisson sampling

Modéd strength (3) 1. High
2. Medium
3. Low

Population size (10) The sequence of populations with increasing size
where each population is sampled at the same sampling
rate

The available auxiliary variables are X :(L xk) with their respective population
totals X =(N, X). These simulations do not evaluate the variable selection of the

algorithmic PA because there are only two auxiliary variables.

In this simulation, we examine the numerical performance of agorithmic
PA estimators in a setting used to study the estimator’s asymptotic properties; that is,
through a sequence of increasing population and samples (Isaki & Fuller, 1982;
Fuller, 2009). Asymptotic theory does not describe an estimator’s performance in
small samples, the minimum sample size needed for an estimator to approach its

limit, or the performance relative to other estimators (Small, 2010). Since in practice,
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the sample size is small in some situations, the numerical results obtained through

simulation in this example supplement the asymptotic properties of the PA estimators.

Table 2.4 shows the expressions of seven estimators of the total Y = z yx evauated
keU

in this simulation study. The first three are the commonly used estimators HT, HJ,
and GREG. We include three algorithmic PA estimators. two nonlinear and one linear
PA estimator (see Section 1.7.3 on page 85). The first nonlinear PA estimator
(NLPA) does not use calibrated weights while in the second (NLCA), the sampling
weights are calibrated to the sample size and total population (see Section 1.7.4). The
last estimator isthe model-calibrated estimator (MC) of Wu & Sitter (2001) described
in Remark 1.15. The MC estimator requires auxiliary data for all the elementsin the
population to be computed. The MC estimator for the Bernoulli population is based
on the generalized logistic regresson method (GLRE) described in Lehtonen &
Veijanen (1998). The new versions of the MC estimator for the Gamma and Poisson
populations are derived following the approach in Wu & Sitter (2001), but we include

the intercept term.

We use the HT estimator as the reference in the evaluation because it is unbiased for
any sample size. In some scenarios, estimators have the same functional form, for

example, the HT and the HJ estimatorsin SRS.
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Table2.4 Seven estimators of the total population Y for the examplein
Section 2.3 in matrix notation
Estimator Expression Notes
1. HT: Horvitz- v T
Yyt =d Os
Thompson HT (y )
. A v \ T
2 HJHaJek YHJ :,\LdT(yQS) NHT:d S
Nt

3. GREG: 7 v X a p_m-1a s T

Generalized YereG = YHT +(X Xyt )Bls Bis =Ty xTxy Where T, , =(SOdOX)'y

Regression* and T, =(SOdOX)

4. NLPA: v T(n - -1(.p

Y, =d Os = X where

Algorithmic nLpa =0 (BinLpa OS) lA'NLPAAg ( Bpa)

Nonlinear Bpa € M pay € My =(1x) where gtis

Parametric . . . .
logit! for the Binomial, exp for the Poisson
and Gamma populations, and B ;5 = f‘xﬂ pmie
where ﬁpm|e are the PMLE of aBernoullli,
Poisson, or Gamma distribution model M,

. R AT R ' N
,EA)\.lNL'Ct:r?-' Yarca =W (SO finLca) SameasNL?A but replacmg_ d by W, the
gorithmic calibrated weights to population totals (n,N).

Non-linear

calibrated PA

6. LNPA: v; T - ~ P P v

Y, =d (sO = . M M, =(1x),

Algorithmic LNPA ( HLNPA) leNPAA i‘ﬁpa Ppac< ’ pay & My (l )

Linear Bpa =T'xBpme Where e arethe PMLE

Parametric of aNormal distribution model M,

7. MC Model v v YRR Y S ; - i N

Yyvc = Yot +(M —M With m = , M=(N,M|,
Calibrated MC = YHT ( HT)“ (Léime) ( )

N N R ~ T
Myt :(NHT'MHT)' M=1 ppc,

M =dT (Amc ©8), B 29_1(Xﬁpmle) with
g’l is Iogit’l for the Binomial, exp for the

Poisson and Gamma popul ations, ﬁpm|e are

the PMLE of a Bernoulli, Poisson, or Gamma
distribution model /\/ly ,

a= Tgﬁmfm,y where 'IA'm’y =(Sod C)m)T y

and 'f'm’m =(Sedo m)T m

" See Section A.5in Appendix A on page 304 for the derivation of the linear PA estimator.
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The population parameters for the scenarios are listed in Table 2.5. The populations

are generated using the linear predictor

M = 9(#) = Bo+ PiXc +0 &, (2.3)
where the parameters B,, B, o, and the link function g(z) depend on the
scenarios in Table 2.5. The error term ¢, is A(0,1), and the auxiliary variable x,

has a distribution Beta(c,3) with shape parameters o = 3 and 8 = 6. For the PPS

and PO sample designs, the auxiliary variable x is used as the measure of size

(MQOS) to compute the inclusion probabilities 7z, =n , where n is the

X
ZkeU X

sample size for the PPS design or the expected sample size for the PO design.

The strength of the model or model misspecification is measured by p,, the

correlation between n, and X, which is afunction of & in the linear predictor 7, .

For a fixed value of p,y, o :\/ﬁfvar(x)(pn‘f —1). A value of p,y= 0.9 (high)

describes a strong linear relationship between g(u ) and X . In this case, we have a
well-specified model. The other scenarios are for p,, = 0.2 (low) and p, = 0.6

(medium). Where the relationship is weak or medium, the model is misspecified.

Figure 2.1 shows the scatter plot of the populations of size 10,000 from scenarios in

Table2.5.
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Table2.5

simulation scenarios

Popul ation parameters and empirical population statistics by

Population Scenarios
Distribution of 'y | X

Bernoulli Poisson Gamma
Type of outcome Binary Count PQSltIVG
continuous
Model g(uy)=Bo+ B X +0 &,
Parameters of distribution Pk = My A= py a =10y, p =1C
Link function 7y = g( ) log( pay / (1~ ) log( 1) log( )
Mean uy =g~ (k) 1/ (1+exp(-n)) exp() exp(nk)
Linear predictor coefficients
Bo (intercept) -1.00 1.00 1.00
B (slope) 10.00 1.00 1.00
o (high) 7.30 0.73 0.73
o (medium) 1.99 0.20 0.20
o (low) 0.72 0.07 0.07
Empirical population statistics*
Mean Y 0.86 391 5.00
Variance S7 0.14 4.91 0.02
Mean X 0.33 0.33 0.33
Variance S% 0.02 0.02 0.02
Correlation p; x (high) 0.90 (medium) 0.60 (low) 0.20
Correlation pyy 0.36 0.27 0.16

* Population statistics are computed as the averages over the 100,000 simulated populations.

In all scenarios, the MC estimators are oracle estimators in the sense that they have a

correctly specified mean, although the variance might be misspecified because of the

dispersion induced by o . The linear working models for GREG and LNPA

estimators have a misspecified functional form for the type of data. For the nonlinear

PA estimators, the functional forms of the working models are correct, but we cannot
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say that their working models are correctly specified or misspecified because the

variablesin the selected model are determined agorithmically.

Figure2.1  Scatter plots of the populations described in Table 2.5
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In all scenarios, the MC estimators are oracle estimators in the sense that they have a
correctly specified mean, although the variance might be misspecified because of the
dispersion induced by o. The linear working models for GREG and LNPA
estimators have a misspecified functional form for the type of data. For the nonlinear
PA estimators, the functional forms of the working models are correct, but we cannot
say that their working models are correctly specified or misspecified because the

variablesin the selected model are determined agorithmically.

In each simulation run, a new population from the sequence of 10 populations with
indices Uy :{J,...,ZOOON}ll\?:1 is generated using the model parameters listed in
Table2.5. Each finite population Ny -th of size Ny € {2000, 4000, ..., 20000} is
sampled with f =0.05. For the SRS and PPS samples ny is fixed,
ny € {100, 200, ..., 1000}, while for PO design, these are the expected sample sizes.

The simulation is run B= 100,000 times for each scenario, sample design, and
population in the sequence. The performance of the seven estimators is evaluated

using RB and RE defined in Section A.4 in Appendix A.

The results of the simulations are summarized graphically for the Bernoulli
population for the SRS and PO designs in Figures 2.2 and 2.3, respectively.
Figure 2.2 shows six plots for the RB for six estimators for the Bernoulli population.
In each plot, the vertical axis indicates the RB as a percentage while the horizontal
axis is the sample size used to compute the estimator. The first row shows the RB of

the estimators computed from samples from an SRS design while the second row is
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the RB for samples using a PO design. The columns indicate the values of PyX

which measure the model strength when the population is generated. Figure 2.3
shows plots with the RE with the same layout for the SRS and PO sample designs for
the Bernoulli population. The complete set of figures for all populations, sample

designs, and modelsisfound in Appendix A, Section A.1.

The first row in Figure 2.2 shows that for the Bernoulli population, the RBs of al
estimators are very small, even for samples of 100 cases when using an SRS design.
For example, the largest RB is for the MC estimator 0.13% for a sample size of 100

cases for p,x = 0.9. The same pattern holds for all examined populations and

correlations for SRS designs.

Although the empirical RBs of the estimators are small, they become noticeable in
smaller samples drawn using a PO design as shown in the second row of Figure 2.2.
Except for the NLPA estimator, the RBs can be greater than 0.5% for samples of 100

cases for p, x = 0.6 and 0.9. The RBs do not become zero in samples as large as
1,000 cases for the Bernoulli population for ppx = 09. The HJ estimator has the

largest RB when the correlation is small or medium. In this population, the NLPA

estimator has asmaller RB for Ppx = 0.9 and approaches to zero for smaller sample
sizes when opx = 0.6 and 0.9. A similar pattern holds this population and the PPS

design but with dlightly smaller biases; see Figures A.1 through .9 in Section A.1 in

Appendix A.
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Although not as extreme as in the Bernoulli population, the RBs of the estimators
have similar patterns in the Gamma and Poisson populations for the PO and PPS
designs with one exception. The NLPA estimator has a considerably larger RB in
most of the range of sample sizes examined (i.e., for a sample size of 100 cases,
between 1.5 and 2.5 percentage points in the Gamma popul ation and between two and

four percentage pointsin the Poisson population).

We discuss the bias of the HJ estimator, and this discussion applies to other

estimators as well. The HJ estimator is a ratio estimator in the PPS and PO designs

and its bias, ]B%(\?H J ) , is a function of the covariance between the estimates of \?H J

and Ny, IB%(\?HJ)=—(COV(\?HJ,NHT), where Nyr = > dy (see Cochran, 1977).
keA

The correlation between y and 7 in these populations is high by design since both

guantities are functions of the auxiliary variable x. Although the bias vanishes in
large samples because in the sequence of estimators \%HJ,N and NHT,N are
consistent, e.g., \?HJ,N Yy :Op(nﬁﬂz) and Nyp y — Ny :Op(nﬁﬂz), the bias is
noticeable when n is smal in the PPS and PO designs. For example,

]B%(\?HJ ) = 0.43 Y % for asample size of 100 cases from the Bernoulli population.

The source of the bias of the NLPA estimator is different since it is not a ratio. As
described in Section 1.5.5, the PA adjustment fx is applied to the linear predictor

Nk =XkPB . The impact of this adjustment on the estimator depends on the inverse of
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the link function, g'l, that maps the PA adjusted 7 to py as py :g'l(nk). In the
Bernoulli population, the inverse of the link function g'l(nk) of the NLPA estimator
isthe logistic function that bounds /i, i to values between zero and one. As aresult,
the effect of any PA adjustments is controlled, since the PA adjusted mean ,LAtpa,k

cannot be greater than one or less than zero.

In contrast, in the Poisson and Gamma populations, the inverse of the link function of

the NLPA estimator is the exponential function,
Hpak = g'l(ﬁpa, pa) = exp(xkfxﬁpm|e), and its support has a lower bound but no

finite upper bound (i.e., any positive number greater than zero for the Gamma
distribution or greater than or equal to zero for the Poisson distribution). Although the

values of the PA adjusted means (1 pak are stochastic and depend on the ratio of the
auxiliary variable population totals and their estimates, the PA estimated mean ( pa,k

may be very large after this ratio is exponentiated. As a result, the NLPA estimator is
expected to require very large sample sizes to converge. These observations are
illustrated in the figures that show small biases for the NLPA estimator at small
sample sizes for the Bernoulli population and large biases even with sample sizes as

large as 1,000 in the Poisson and Gamma popul ations.

The RE of the estimators for the SRS design across the populations is almost constant
for all the sample sizesin the simulations. In contrast, in the PPS and PO designs, the

RE is not constant because the bias component of the M SE differs by sample size. For
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this analysis, we use the averages of the RE of groups of estimators across the range
of sample sizes to characterize their gains in efficiency in the PPS and PO designs,
even though some estimators perform better for specific ranges of sample sizes and

populations types.

The first row of Figure2.3 shows the RE of the estimators for the Bernoulli
population for samples drawn using SRS. The RE of the estimators is correlated to

the values of p, x . The average RE of the GREG, MC, LNPA, and NLCA estimators

are 1.0%, 5.5%, and 7.0% for p, x = 0.2, 0.6, and 0.9, respectively.

The RE of the estimators of the Bernoulli population for the PO designs is higher than
the RE for SRS as shown in the second row of Figure 2.3. If we combined the GREG,
MC, LNPA, and NLCA estimators, their average REs are 64.0%, 79.0%, and 83.1%

for p,x = 0.2, 0.6, and 0.9, respectively. When p, x = 0.6 or 0.9, the estimators

with similar values REs form two groups. The first group consists of the GREG and
LNPA estimators, and they have a higher RE average than the second group of
estimators (the MC and NLCA estimators). The differences in the combined RE

average between the first and second group are 4.8% and 7.5% for ppx = 0.6 and

0.9, respectively. A similar pattern holds for the PPS designs for the Bernoulli

population, but with smaller differencesin RE.

All estimators are more efficient than the HT estimator for al designs and

correlations for the Bernoulli population. The average REs of the HJ and NLPA

147



estimators are much lower than the average of the other estimators. The MC estimator

does not perform as well as the othersin the Bernoulli population.

Similar patterns in RE are observed for the Gamma and Poisson populations except

for the clustering of estimators with similar RE for high values of p,x . The gainsin

efficiency from the estimators are generally small in SRS designs compared to the
PPS and PO designs, and the gains in the PPS designs are smaller than the gains in
the PO designs. In many cases, the linear estimators (GREG and LNPA) have alarger
RE than the nonlinear estimators with the correct working model. None of the
estimators that use auxiliary information do worse than the estimators that ignore the
auxiliary information altogether even when the relationship between the outcome and

auxiliary variable is weak.

The estimator with the highest RE varies by scenario and the GREG, LNPA, MC, and
NLCA estimators al perform very similarly. The GREG estimator has the largest
gainin RE in one-third of the scenarios, followed closely by the LNPA estimator. The
performance of the linear estimators is surprising because the linear functional form
of the working modelsis aways misspecified for all outcomes. From a practical point
of view, none of the four estimators (GREG, LNPA, NLCA, and MC) has a
significant advantage over the others across the simulated scenarios for these

populations.

The MC estimator, proposed as an estimator that makes more effective use of the
auxiliary information from the frame, does no better than the linear estimators

(GREG, LNPA) or the nonlinear (NLCA) estimator that only use the popul ation totals
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of the auxiliary variables. Furthermore, all the model-assisted estimators and the MC

estimator do well evenif p, , isvery low. These results differ from those reported in

Wu & Sitter (2001). The MC estimator uses the predicted PML means of the model
applied to the whole population; however, it is not clear why this should be more
efficient than just using the auxiliary variable population totals. We would not expect
substantial gains from the MC estimators in most situations, as shown in these

simulations.

A second observation is that the GREG and LNPA estimators perform as well or
better than the nonlinear estimators with correctly specified models. This observation
guestions the reasons for considering nonlinear estimates that are less efficient than
their linear counterparts. One answer is that linear estimates, especialy for domains,
can be negative. Negative estimates are avoided in nonlinear models. This feature is
important in nonresponse research, where we use nonlinear models for modeling

response propensities.
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Figure2.2 Relative bias (RB) of seven estimators as a function of the sample size
for a population with a Bernoulli distribution by sampling design (SRS
and PO) by model strength (medium, low, and high).
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Figure2.3 Relative efficiency (RE) of seven estimators as a function of the sample
size for a population with a Bernoulli distribution by sampling design
(SRS and PO) by model strength (medium, low, and high).
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2.4 Algorithmic PA Estimators in Poisson Sample Designs

In this example, we derive algorithmic PA estimators for the total Y = Z yi from
keU

samples drawn using a Poisson sample design PO, compare these estimators to
aternatives found in the literature, and evaluate their statistical properties using

simulation.

In a PO sample design, each element has a predetermined positive inclusion
probability 7 >0 for keU (Sérndal, Swensson, & Wretman, 1992). Let ng be the
observed sample size (e.g., realized sample), which is a random variable, and n be

the expected sample size under repeated sampling defined as n=E(ng| F)= > 7.
keU

14

The PA algorithmic estimators in this example are derived from the working models
spanned by the auxiliary variables X, = (:L,ﬂ'k,dk) , the unit indicator, the probability
of inclusion, and the sampling weight, and their corresponding population totals are

X =(N,n,d) where d= ) dy . The estimators considered differ in the complexity
keU

of the location and scale parameters of the models. The two agorithmic PA

estimators are

14 The PO sample design can be seen as the realized sample of N independent trials, where each element Yk

has a probability 7 | of appearing in the sample.
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1. PA Estimator \?pAl with the collection of working models M, with

i B
y's N(Qﬁ,eg) where 05 |Xx =1k = Bo+ Pr 7k + B2 7'L'kl and
05 | Xk =Ny k =00, The auxiliary variables for the location parameter are

(L7, dg) with the population totals (N,n,d). For the scale parameter, the

auxiliary variableis 1 with acontrol total N .

2. PA Estimator \?pAz with a collection of more complex working models M, ,,

with yii~0I N(@B 902) where

Op =y =Bo+Prmy + B2 dy, and (2.4)

0, = (exp(oo +01 7 +05 dk))|/,tk|97/2,

where 97 =7¢. The regresson models model in (2.5) is more appropriate when the
variance is proportional to a power of the mean. The auxiliary variables for the
location and scale parameters are (1,7, dy ) with the population totals (N,n,d). For
the shape parameter, the auxiliary variable is 1 with a control total N . In the PA

estimator \?pAz, the observed sample determines the working models for the mean

and variance.

The simulations below explore the performance of the estimators when the working
model is misspecified. The estimators are evaluated for the four scenarios described
in Table 2.6 for a population size of N = 10,000 and the expected sample size is

n= 500. The superpopulation generating model is
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Y = Bo+ By +omy &, (2.5)
where the values of the parameters g,, f;, o, o, and y arelisted in the table, and
the error term ¢, is A/(0,1). In all scenarios, alatent or unobserved variable z, with
a distribution Beta(3,6) is used to compute the measure of size x, =10+10 z., and

the first-order inclusion probabilities are 7, = n 15

RS
Z:keU X

In Scenarios 1 and 2, y is positively correlated with 7 while for Scenarios 3 and 4,
this correlation is negative. Scenarios 1 and 3 do not include an intercept term (e.g.,

B 1= 0), while the intercept is nonzero in Scenarios 2 and 4. Since the collection of

working models AM;, assumes a constant variance, the models in \?pAl are

misspecified in Scenarios 1, 3 and 4. On the other hand, the working models in

M, for \?pAz can reproduce the correct model for both mean and variance in

Scenarios 1, 2 and 3. All working models in the collections M, ,, and M, ,, of the

algorithmic PA estimators Yp,; and \?pAz are misspecified in Scenario 4.

> The inclusion probabilities 7 , and the auxiliary variable x, are collinear so either 7, or x, canbeusedin

the models but not both.
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Table 2.6 Parameters of simulations of four scenarios and empirical statistics
Model: y, =By + B 7 +0 7] g
Scenarios
Parameters
1 2 3 4
Popul ation parameters
Bo 0 10 0 20
B1 500 500 2 1/8
a 1 1 1 -2
o 25 5/2 1 6
Y 12 0 -1/2 -1/3
Population characteristics
Empirical population mean Y 50.00 39.00 40.49 51.86
Empirical population variance Sy 62.49 62.49 62.49 62.49
Empirical correlation py, 0.71 0.74 -0.70 -0.56
Empirical Kish's deff 101 | 101 101 | 101
Empirical deff the HJ estimator 1.05 105 110 108

In each scenario and simulation run, a new population is generated and sampled using

a PO design with an expected sample size n= 500. The estimators of the total

Y= z yx are computed using the realized sample of size ng. The smuléation is
keU

repeated B = 100,000 times for each scenario.

The lower pane of Table2.7 shows selected empirical statistics of the artificial

populations such as the mean and variance, the correlaion py, between

Y={W}y, ad 7={ryf,  the Kis's weighting design effect,

155



defl‘fkishzlJrcv(d)2 where d ={d,} and the design effect of Y for the

keA’

V(Y
HJ estimator del‘fy :(—HT). All these population statistics are computed as the
VSRS(Y)

average of dtatistics of the simulated populations within each scenario. The

performance of the estimatorsis evaluated using RB, RRM SE, and RE with respect to

the HT estimator defined in Section A.4 in Appendix A.

The upper pane of Table2.7 shows the RB, RRMSE, and RE of the HT and HJ
estimators used as a reference and the algorithmic PA estimators. The lower panel
shows the same statistics for the oracle estimators for each scenario. The oracle
estimators are derived as PA estimators assuming there is no mode
misspecification.(These estimates are algebraic PA estimators and are discussed in
Section 1.7.3 on page 85). The results in the table confirm that the HT estimator is
very inefficient when the sample is drawn using a PO design, and that the HJ
estimator is a better aternative (Sérndal, Swensson, & Wretman, 1992). The HJ
estimator is on average 95 times more efficient in these scenarios. We are interested
in the additional gains in efficiency of algorithmic PA estimators with respect to the

HJ and oracle estimators.

We begin the discussion with the empirical bias of the agorithmic PA estimators. As

expected for any model-assisted estimators, the RBs are very small in most scenarios.

Now we consider the efficiency of the algorithmic PA estimators \?pAl and \?pAz. In

this discussion, we compare the efficiency of \?pAl and \?pAz to the oracle estimators,
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using the oracle for each scenario as a reference except for Scenario 4, where \?2 is

the reference because there is no oracle. The algorithmic PA estimators are derived
using the fit of the model, and they achieve sizeable gains in efficiency over the HJ

estimator despite the largeinitial gains of the HJ over the HT estimator.

The resultsin Table 2.7 show that, in general, the agorithmic PA estimators track the

oracle estimators well even though they do not use the population-generating model.
In particular, \?pAl with a misspecified and simple model performs as well as the

oracle estimators with only a dlightly lower RE in Scenarios 1 and 3. These

differences are so small that these estimators are practically equivalent.

In Scenario 2, both agorithmic PA estimators are much more efficient than the oracle

estimators. They are also more efficient than the best estimator in Scenario 4. The
estimator \?pAl with a misspecified and simple working model is flexible enough to
produce estimates that overcome the negative correlation py, that has alarge impact
on the efficiency of the estimators with a misspecified model. In contrast, the
algorithmic PA estimator YAPAZ with a more complex working model is slightly more
efficient than the oracle estimators in Scenarios 1, 3, and 4. An exception is

Scenario 2, where \?pAz is slightly lower \?pAl.

The results of the simulations are somewhat surprising. We might expect the
algorithmic PA estimator to be much less efficient than the oracle estimators because

the algorithmic estimators reflect the increased variance due to the uncertainty of the
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model. One hypothesis is that since there are few variables to build the model, the
model selection does not contribute significantly to the MSE of algorithmic

estimators.

Comparing the two algorithmic estimators, the estimator \?pAz with the more

complex working model has the largest RE in Scenarios 1, 3, and 4. In contrast YAPA]_
is the best estimator in Scenario 2. However, the differences are very small. These

results suggest that using the more complex working model in \?pAz gives only small

gainsin efficiency over \?pAl. In practice, any of these estimators is a good choice in

these scenarios.

These results highlight the importance of a flexible working model, and the exact
functional form of the model for the mean and variance is not needed. The results also
show that including the inclusion probabilities and the weights as auxiliary variables
(if their control totals are available) may improve the efficiency of the estimators. The
gains in efficiency and the effect of the model selection with a large number of

variables are the topics of future research.
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65T

Table2.7

(RE) estimator for eight estimators for n= 500 and N = 10,000

Empirical relative bias (RB), empirica relative root mean squared error (RRMSE), and empirical relative efficiency

Scenario*
1 2 3 4
Estimator
RB RRMSE RE RB RRMSE RE RB RRMSE RE RB RRMSE RE
(%) x10° (%) x10° (%)  x10° (%) x10°
Reference
HT 0.00 4,382 0 0.01 4,370 0 0.00 4,504 0 0.01 4,804 0
HJ 0.00 6387 39.70 0.00 467 86.62 -0.01 691 4147 | -0.01 1,695 7.03
Algorithmic PA
\?pAl 0.00 489 79.41 0.00 313 193.81 0.00 496 81.59 | -0.02 1,404 10.72
\?PAZ 0.00 489 79.47 0.00 313 193.57 0.00 491 83.06 | -0.01 1,393 10.90
Oracle/
Algebraic PA
Y; (Scenario 1) 0.00 488 79.59 0.00 342 162.49 | -0.01 1,087 16.18 | -0.01 2,007 473
\?2 (Scenario 2) 0.00 488 79.55 0.00 341 163.14 | -0.01 1,076 16.52 | -0.01 1,994 4.80
\?3 (Scenario 3) 0.01 1,082 15.41 0.01 887 23.25 0.00 491 83.23 | -0.01 1,474 9.63

* Scenarios are defined in Table 2.5; RE is the empirical relative efficiency of the estimator with respect to the HT estimator. The empirical
estimates are based on 100,000 simulation runs.
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Chapter 3 The Algebraic PA Estimators

In Section 1.7, we describe the PA estimators as weighted sums of PA adjusted PML

solutions of the working models that relate the outcome y to the auxiliary

variables x. This result redefines the role of the working model. In the traditional
model-assisted approach, the working model attempts to describe the finite
population and leads to a way of estimating model parameters. With the PA, the
working model not only guides the functional form of the estimator but is a collection
of models that are used to choose the estimator itself and the estimated parameters.
This view goes beyond the current understanding of the role of working modelsin the

model-assisted theory.

We can take advantage of this relationship to “engineer” or derive a new class of PA
estimators we call algebraic PA estimators. To do this, we treat the working model
without variable selection. This approach does not utilize a powerful aspect of the PA
but does reveal how PA estimators are related to other traditional estimators. In this

case, the PA estimator is based on the adjusted pseudo maximum likelihood estimator

(PMLE) solution for u, =E(yy); if we plug these into the generic form of the PA

estimator in Algorithm 3.1, we can produce algebraic PA estimators.

Computing the algebraic PA estimators can be done numerically or algebraically. The
latter is often feasible with a linear working model with a few auxiliary variables. In
this case, the expression of the algebraic PA estimator may be tractable and can be

written in aclosed form.
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Algorithm 3.1 Algorithm for the derivation of the algebraic PA estimators

Algebraic PA estimators

1: Propose a specific working model M, for the outcome vy .

2: Compute M y with the PMLE of the parameters of the model M, .

3: Create the PA model /\A/lpa,y by adjusting the PMLE of the regression
coefficients //\\/lprne,y by the PA adjustment fx.

4: Compute the fitted adjusted PA mean s, for ke A using the PA model

/T/lpa,y and substitute 4,  in the generic form of the PA estimator
Yep = Z dkﬁ pa,k
keA

5: Simplify the expression of \?pa = z Oyl pa if itistractable.
keA

3.1 The Classical Design-Based Estimators as a Class of
Algebraic PA Estimators

Some algebraic estimators in the class of linear PA estimators and bias-corrected PA
estimators for SRS designs match classica design-based estimators. For example,
expansion, stratified, classical ratio, separate ratio, and combined ratio estimators,
simple and multiple regression estimators, and poststratified estimator. When the
sample design is other than SRS, the PA estimator reproduces generalized versions of
these classical design-based estimators. In other words, some classical design-based
survey-sampling estimators are a subclass of algebraic PA estimators created using

the adjusted PMLE of their working models.
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Our rationae for considering algebraic PA estimators is that it provides insights into
the conditions when one estimator is more efficient than others. This understanding

can inform guidelines for the use of these estimators when there is model uncertainty.

Some prominent estimators are the Hansen, Hurwitz, & Madow (1953) regression
estimator, the Hartley & Ross 1954 ratio estimator, the Montanari (1998)
randomization optimal estimator, the Deville & Sarndal (1992) calibration estimators
with a Euclidian distance function, and the Sérndal, Swensson, & Wretman (1992)
GREG. The list of estimators in the table is by no means complete. For example, the
table does not include the aternative design-based estimators for Poisson and
Bernoulli sample designs (Sérndal, Swensson, & Wretman 1992; Fuller 2009)

discussed later.

The view that the classical design-based survey estimators are PA estimators with
working regression models with different auxiliary variables has pedagogical value.
The PA framework provides a unifying approach to estimation rather than disjoint
and seemly unrelated estimators as often presented in sampling textbooks (Cochran
1977; Lohr 2010). However, the PA framework is not fully developed yet, and its

current form does not handle complex designs such as multistage sampling.
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3.2 Algebraic PA Estimators in Poisson Sample Designs

In this example, we derive three algebraic PA estimators following the steps in

Algorithm 3.1 for the total Y = z yi for samples from a Poisson sample design
keU

(PO). The agebraic PA estimators \?1 \?2, and \?3, are evaluated through simulation

for four artificia populations generated by the model in (2.5) with population
parameters described in Table 2.6 (see Section 2.4. for additional details of these

scenarios).

In each scenario, one PA algebraic estimator is an oracle because the estimator is
created using the model that generated the population, while the others have a
misspecified working model (see Definitions 1.17 and 1.18 in Section 1.5.6). The

algebraic PA estimators are:

1. Estimator \?1 with a working mode! for the outcome vy |7rk”~d N (ﬁlﬂk,a 27rk )
Solving the pseudo-log-likelihood (PL) fitted to the data and simplifying the

algebraic expression gives

A~ n A~
Yi=—Yyr- (3.1)
nS

The expression (3.1) is a ratio estimator where the auxiliary variable is 7, the

estimated total is ng= Y dyry , and the population total is n= >z . Another
keA keU

way to interpret this estimator is as the Horvitz-Thompson (HT) estimator \?HT

164



with a PA adjusment ['=-- (see Section 17). Sandd, Swensson, &

nS
Wretman (1992) propose the estimator in (3.1) as an aternative estimator for
Bernoulli (BE) sample designs; however, as shown here, this estimator can also be

used in PO sample designs.

If the inclusion probabilities are constant as in BE sample designs, then the PA

estimator \?1 becomes \?ajtylz N ys as described in Fuller (1975) and Sarndal,

Swensson, & Wretman (1992)¢, where ¥y isthe unweighted mean ys= > Y

keng Ns

The alternative estimator for a PO sample design described by Sarndal, Swensson,

& Wretman (1992) is YAaItZ = NEH—T, which is the H§ek (HJ) ratio estimator of
HT

thetotal Y (H§ek, 1971). The estimator \?ajtz isitself an algebraic PA estimator

with a working model yk|xk”~dj\/(ﬁ0,a§). This PA estimator is the rétio

estimator when the auxiliary variable is one instead of 7| . The PA framework

justifies the alternative estimators for PO and BE designs proposed in the

literature.

16 Sarndal, Swensson, & Wretman (1992) describe a BE as a PO design where the first order probabilities of

inclusion arethe same; i.e, 7, =z for KeU .
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The agebraic PA estimator \?1 in (3.1) is easily generalized to fixed sample
designs such as probability proportional to size (PPS) sampling for outcome
variables with a working model yj |xk“~q/\/([31xk,xk012). The auxiliary variable

X, IS used as the measure of size for calculating the inclusion probability

Ty N2k where X¢ >0 for dl keU. Since for this design, n=ng, then
zkeUXk

\?1 reduces to the HT estimator. When this model holds for y, in PPS sampling,

the HT estimator is more efficient than the HJ estimator. This observation
identifies one condition where the HT estimator is the preferred estimator. Most
discussions in the literature provide arguments in favor of the HJ estimator over
the HT estimator, but they do not address the reverse case (Sarndal, Swensson, &

Wretman, 1992).

2. Estimator \?2 with aworking model for the outcome vy, |7 d pr (ﬁo + ﬁlnk,ag)

. Solving the PL function and simplifying the algebraic expression gives

Y YH17s —Ns¥s . NVs—Ns¥hr | (3.2)

is the unweighted sample mean of the inclusion

probabilities of the observed sample ng. The estimator \?2 is the GREG with

166



auxiliary variables (1,7 ), and population totals (N,n) (Sarndal, Swensson, &

Wretman, 1992).

. Estimator \?3 with a working model yj |7rk”~dj\/(/317r|;1,0127r|21). In contrast to

previous models, the correlation between the outcome variable and the probability
of inclusion is negative. Solving the PL function for this model yields the

algebraic PA estimator

Vs = TH oz HT
TH

Vit (3.3)

/

where TH,, is the harmonic total of the inclusion probabilities in the frame,

TH, =NH(z), where H(z) is the harmonic mean of = ={zy}, , 0
H(”)ZL&- fﬁﬁ,HT is the HT estimator of TH,,
Zkeuﬂk

™ J.. [ Ny

Zk Adk”

in (3.3) is a generalization for complex designs of the estimator known as

. The algebraic PA estimator

predictive product estimator for SRS proposed by Agarwal & Jain (1989).

The estimator \?3 is aso a product estimator (Cochran, 1977), and the

TH,
THz HT

-1
HT estimator YHT after the PA adjustment FTH —[ j . As a product

estimator, \?3 is expected to be more efficient than the ratio estimator (3.1) when
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{Yicfioy 1S negatively correlated with {”k}keu . The estimator Y5 can also be

A

. . . ~ Y, . .
written as the ratio estimator Y; = D&ﬂ , where D isthe population total of the
HT

weights D= > dy and dyp = > dZ.
keU keng

The algebraic PA estimators \?1 \?2, and \?3 are oracle estimators for Scenarios 1, 2,

and 3, respectively because in these scenarios both the mean and variance of the
working models are correctly specified. For Scenario 4 al working models are
misspecified. Since the algebraic PA estimators were “engineered” for specific
population models (e.g., they are oracle estimators), we focus the discussion on their

properties when the models are misspecified.

The lower pane of Table 2.7 shows the relative bias (RB), empirica relative root
mean squared error (RRMSE), and relative efficiency (RE) with respect to the HT
estimator defined in Section A.4 in Appendix A. The same statistics for the HT and
HJ estimators are shown in the upper pane of the table for reference. The highest

values of RE areindicated in boldface for each scenario.

We begin by discussing the RB and RE of the algebraic PA estimators. As expected,
for any model-assisted estimators, the RBs are very small even if the working models
are misspecified (Sarndal, 2007). When the model has a good fit, all algebraic PA
estimators achieve sizeable gains in efficiency over the HJ, above the substantial
gains the HJ has over the HT estimator. The respective oracle estimators have the

largest RE in Scenarios 1, 2, and 3.
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Estimators \?1 and \?2 achieve almost the same efficiency in al scenarios. In
Scenario 1, the oracle \?1 is dightly more efficient than \?2. In Scenario 2, the

difference between the oracle \?2 and \?1 is larger but less than a half percentage
point. Practically, these differences are very small, and any of these estimators is a
good choice in these scenarios. On the other hand, estimators \?1 and \?2

underperform in Scenarios 3 and 4, where the HJ estimator is two times more

efficient in Scenario 3 and five times more efficient in Scenario 4.

The estimator \?3 that assumes a negetive correlation py, is the least efficient

estimator in Scenarios 1 and 2 where its working model is grossly misspecified. In

these scenarios, the HJ estimator is between 2 and 3 times more efficient than \?3. In

contrast, \?3 is the best estimator in Scenarios 3 and 4 where py, is negative. The

estimator \?3 is between two and five times more efficient than \?1 and \?2 in Scenario
3 and 4. In Scenario 4, where al working models of the estimator are misspecified,

\?3 is the best estimator because its working model is closer to the correct model.

These observations highlight the importance of an appropriate working model. We do
not need to know the exact functional form of the model for the mean and variance,
but the working model should have a reasonable fit. The simulations also show that
there are situations when the model-assisted estimator with a grossly misspecified
working model can be less efficient than simple estimators such as the HJ estimator.

Using the algorithm to choose the models avoids these pitfalls.
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Chapter 4 The Theory of the PA Estimators

In this chapter, we describe the theory and motivation of the weighting adjustments of
the PA estimator. The weighting procedure is caled Orthogona or Conditional
weighting, a procedure initially developed for producing efficient estimators in the
presence of nonresponse. Algorithm 1.1 is the result of the modification of the
original procedure described in this chapter. The following sections describe the
motivation of the PA framework using an analysis based on the statistical concept of
propagation of uncertainty (or propagation of errors) in a system. In the last section,
we describe extensions of the PA estimator such as estimators with different
functional forms and more complex estimators that incorporate additional population

characteristics such as the variance, median, and coefficient of variation.

4.1 Orthogona Weighting

Orthogonal weighting is an analyticad methodology for creating weighting
adjustments to reduce bias and variance of estimates of survey data. Orthogonal
weighting is also called projection weighting since it can be described geometrically
as projections of hyperplanes on the vector spaces generated by the span of the

auxiliary variablesin the models.

We refer to these methods as orthogona wel ghting because the auxiliary variables are

assumed to be mutually orthogonal or uncorrelated. We discuss departures from the
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assumed orthogonality in practice in Section 4. See Chang (2018) for a discussion of

orthogonal projection in arelated context.

We originaly developed this methodology for adjusting for sampling weights for
nonresponse; however, we adapted it for the creation of efficient estimators in the
presence of full response. The procedure fits parametric models of the outcome

variable y, and either the response propensities ¢ when used to adjust for

nonresponse, or the probabilities of inclusion 7 when used for estimation with full
response. Although the values of 7 are known, they are still modeled to identify the
auxiliary variables that explain the selection mechanism. To simplify our discussion,

we refer to the probability of selection as ¢ in this chapter due to the way the

procedure was devel oped.

The goa of the orthogonal weighting methodology is to identify the smallest set of
variables to adjust for nonresponse. For reasons that become apparent later, adjusting
using the smallest set of auxiliary variables is the best approach for reducing bias and
variance. Orthogona weighting only targets this group of auxiliary variables related

to the probability of response and the survey outcome.

We begin by describing the orthogona weighting theory as we initially developed it
for nonresponse adjustments, followed by the modifications we made so it is
applicable for increasing the efficiency of estimates in the presence of full response.

Algorithm 1.1 isthe result of these modifications.
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The principles of Orthogonal Weighting are

1. We fit separate parametric models to the study or outcome variable y and the
selection indicator ¢ (either from the selected sample or after nonresponse).

When fitting the models, we identify the smallest set of variables for the

adjustments. We show that efficient estimators of y can be obtained by adjusting

to a smaller set of variables even though there may be a large number of

explanatory variables for the study variable y or the probabilities of inclusion ¢ .

2. We do not assume that the true model can be identified (See PA framework
Principle 2 on page 29). Misspecified models with omitted variables are possible
in the PA approach and are very common in practice (see Definition 1.17 on page

57 for misspecified models).

While models with extraneous or irrelevant variables do not affect the bias, they
can increase the variance of the estimates. Including many extraneous variablesin
the model reduces the gainsin the efficiency of the estimator. The algorithm gives
more importance to identifying and excluding extraneous variables when it is

used for estimation with full response.

The views of model misspecification in the orthogonal weighting approach are in
sharp contrast with other methodologies that fit complete models under the
implicit assumption that more included variables are better than missing any

important variables. We show that unbiased and efficient estimators are possible
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3.

4.

with orthogonal weighting even if the working models for y and ¢ are both

misspecified. This approach is not the current view in the literature especially for

double robust estimators (Kim & Haziza, 2014).

When adjusting for nonresponse, we require variables that are available for both
respondents and nonrespondents. Additional gains are possible if population totals
are available for calibration. For estimation in the presence of full response, we

require all auxiliary variables to have population totals.

We adopt Sarndal & Lundstrom (2005) point of view of the relationship between
bias and weighting adjustments. We do not expect the bias of the estimates to be
entirely removed by the adjustments, but the bias is mitigated. To reduce bias and
increase efficiency, we require powerful auxiliary variables that explain both only

the outcome variable(s) and the probabilities of inclusion.

4.2 Effect of Sample Selection in the Distribution of the

Observed Data

We examine the effect of the sample selection (either from an informative sample

design or from the response mechanism) on the distribution of the outcome variable

on the observed sample compared to its distribution in the population. We require an

additional assumption; that the outcome variable(s) y and the selection propensities,

¢,

are random variables that can be decomposed as a sum of orthogona (or

uncorrelated) random components. The decomposition of any mechanism into
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individual components is a common tool in fields such as engineering, signal
processing, physics, mathematics, and measure-theoretic probability. The use of these
elementary units does not imply that the data need to conform to this assumption.
However, the concept of orthogonal random variables provides a better understanding
of the process because we can examine the effect of the procedure on these individual

components separately.

We begin by defining the models in terms of orthogonal components. Let 1, be the
P-dimensiona space spanned by the wvector of auxiliary variables

x=(x,..%p)eRP, Y =span(x). Since the elements of x are assumed to be

orthogonal among themselves, then (C(xp,xq)=0 for al p=qge{l,..,P}. We aso

assume that the vector x includes all the auxiliary variables of the superpopulation

models M, for y and M, , for ¢ defined by thelinear predictors

ny=X’Bﬁ=ﬂ1X1+...+ﬁpBXpﬁ , and (41)
T]¢ :X¢¢ :¢1Xl+"'+¢% X% ,

where Xg =(x1,...,x%)eRPB is the vector of orthogonal auxiliary variables

associated with the linear predictor 77y, B; isthe dimension of Xg defined as the

-
number of nonzero elements of Xz, and B:(ﬁl,...,ﬁpﬂ ) eRPB 4 is the vector of
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the parametersin 7.’ Similarly, x, =(x1,...,xp¢ ) cR'™ isthe vector of orthogonal

auxiliary variables associated with the linear predictor Ngr By is the number of

T X
nonzero elements of x;, and ¢ = (¢1,...,¢% ) € RP‘” 1 is the vector of the parameters

in 7, . Notice that the elementsin Xz and x are not necessarily the same.

Since the random vector x contains all the auxiliary variables of the models M, and

M¢ ) then

x=xXg Uxy = (% Xp)eR".

Thevectors, xz and x, aresubsetsof x, eg., Xz =x and x; = X.

Let the vector space ) be a subspace of infinite-dimensional vector space ).,
where 1), includes other variables that are not part of the models M, and M, but
are observed in the sample. The vector subspaces 1 :span(xﬂ) and 1} =span(x¢)

are both subspaces of 1, and since we assume that 1), is an orthogonal space, then

thisalso holdstruein VB , and 155 )

17 Without loss of generality and for simplicity, we use only the location parameters. A more formal proof would
include the scale and shape parameters of the models.
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Since the random vector x is orthogonal, then x the basis of the spaces ). The

subspaces 1 and )j are generated by the projection of x on Xz and xon Xy,
respectively. As a result, Xg and X, are the basis of the reduced dimensions of Vs,

andvq,.

To clarify this setting, consider the superpopulation models M, and M, listed in

Table 4.1. The table shows the parameters of the models for the outcome variable y

and the sample selection ¢. The first model, My, has a linear predictor

Mg =B+ PaXia+BaXka+PsXs  with  the auxiliary varidble  vector
Xg =(x.%3.%4.%5). The second model, My, has a linear predictor
Mg =d1% +62% +¢3x With the auxiliary variable vector x; =(x,%p,%). The vector
space )} that includes all parameters of the models M, and My is spanned by
X = (., %3, %4, % ) U (%0, %0, X3 ) = (%1, X2, %3, %4, %5 ) . Note that the auxiliary variable x,
does not play any rolein M, . Similarly, the variables x, and x5 do not play any role

in M; . Since x is orthogonal, then (C(xp,xq)=0 for p£gell,..5.

The assumption of the orthogonal decomposition of random variables with a common

base is very strong and is partly justified by the Karhunen-Loéve theorem for the
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expansion of a stochastic process (Ghanem & Spanos, 2012)*8, This assumption must
be relaxed for orthogonal adjustments for estimation with full response because the

auxiliary variables are not orthogonal in practice.

To describe the effect of the sample selection on the distribution of y in the sample,

we expand the definitions presented above.

Let ]—“:(y,x)eRNX(P”) be a finite population generated by N iid realizations of
the superpopulation model for y, M, , where U ={1....,N} arethelabelsof 7, and
X = (X1 X ) € RPN is arealization of the random vector x described above for
keU. Let yp e RN pe the population vector of the outcome variable y with a
distribution  function  fy, (yk)l{yeD} where D is the support of y, and
E(yN):gﬁl(nﬁ)eRNﬂ, 13 :xﬁBeR'\M is the linear estimator, and g[}l is the

inverse of the link function for vy .

18 A set of orthogona random variables can be obtained from a set or correlated random variables by principal
component decomposition or by Gram-Schmidt orthonormalization.
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6.7

Table4.1 Example of modelsfor y and ¢ with their associated linear predictors and auxiliary variables

Auxiliary variable
Dependent Model Sub- Linear predictor vector of the _ _ Auxiliary Model parameters
variable M vector n model Dimension Vector*
space M X x| XXX X5
Outcome y | M, Vs g = Prsa+ Pexa+ Baxa+Boxs | Xp=(xxaxuxs) | Fp=4 | (x.00ax4.5) | A | O | Bs | Ba | Bs
Sample M¢ V¢ 77¢,k =¢1Xkl +¢2Xk2 +¢3Xk3 X¢ = (Xl’XZ'XS) = Rﬁ =3 (Xl,Xz,X3,0) ¢l ¢2 ¢3 0 0
selection ¢

* Thedimension of x is P=5.



Let R, be the random variable for the indicator for whether the element keU is

selected in the sample (or is arespondent) or not, defined as

1 if unitk isselected in the sample (or responds)
R¢ = : , (4.2)
0 otherwise
with a probability mass function
Pk R¢=1
f =I )= : 4.3
R (Re=Tk) {1_¢k R, =0
The probability of R =1 or R, =1 are functions of ¢ . Let R :[Rk]e{o,l}NXl be

the random vector for the whole population where the population mean vector for R

is E(R):¢:g¢jl(n¢):[g¢§1(n¢k)}:[¢k]e(O,l)NXl, the linear predictor is

n, =x¢¢eRNX% , theinverse of the link function for ¢ is g;l, and X4 QXERNX%

is the vector of auxiliary variables of ¢. The discrete random vector

}NX]_

R=[R]<{01

classifies the elements of F into those that appear in the sample

or not depending on the probability of selection ¢ = gﬁl(nﬁ ) € (O,l)NXl.

Since we are not interested in the distribution of R but on the distribution of y

conditioned on the cases in the sample, we define a new random variable for the

product of these two random variables.

180



Let W be the random vector result of the vector-to-vector valued function
W:RN 5> RN, defined as W(y,R)=y©R. The probability distribution of
W, € W, which isthejoint distribution of R, and vy, is

by (Vi)Y yen!

R =1
: 4.4
1_¢k)fYk(yk)l{yeD} Rk =0 ( )

fvvk(Wk)= fYkRk(YK'rk): (

The random vector W =W ] e R corresponds to the outcome cases y selected in
the sample and entries with zero values for those cases not selected in the sample,
yor, where r e{O,l}NXl is the vector with the realizations of R=r. The
conditional distribution function of W |R, =1, for only the cases observed in the

sample, is derived using the definition of conditional distribution function as

_ R (Yo Re=1)
Pr(Rc=1)

fug IRe=1 (W) =y R (Y Re=1). (4.5)

% *

Let x;k:xq)k‘&:l:(xkl,..,xk%) be the values of x;, when R =1 (IR,

xﬁ% are not random anymore), then (4.5) becomes

fV\4<|F§<:1(Wk) =fYk,Rk=1(YkaX¢ = X; ) (4.6)
The expression in (4.6) correspondsto the distribution fy, - of the original model M,

for 'y with the linear predictor ny =Xz =PBoX+..+BpXp, transformed to the

distribution fyk of a new model /\/l; with alinear predictor 77:, containing only the
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auxiliary variables in the vector x p hot found in the vector X - Conditioning on

R¢ =1 reduces the random space of y .

To clarify this point, consider the models M, and M¢ listed in Table4.1. The
model M, of the outcome y in the population has the linear predictor

N = P+ BaXa + BaXs + PsXs While the model for the sample selection M, hasthe
linear predictor 17, =@y +@X> +¢3%3. The model of the observed sample M; of

the outcome y has the linear predictor 1723 = PaXq + PsXs5, Since X, and X5 are the

only auxiliary variablesin xg that that are not found in X, . The linear predictor of

the observed cases, 77; , 1S a reduced random space because the distribution of vy

does not depend on the auxiliary variables X and x, anymore.

These results have a geometric interpretation. Let Vyj be the vector space of the new
model /\/l; (e.9., when we condition M,, on the caseswhere R, =1 for keU ), then

Vy; is the orthogonal complement of projection of the vector 775 on the vector 775 .
Returning to the models in Table 4.1, the vector space 2 is the plane spanned by
proj% ng., the projection of vector 17z =% +P3%+B4%+PsXs 1O

My =P1% +¢2% +¢3%3, &S

P — —_

.- Ng N - N N

proj, s = > -7, o= Bp1% +Bepo¥e, (4.7)
p=

oo
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vector representation of the basis X, eXx. The orthogonal complement of the

subspace Y , Vy{,;, represents the reduced random space of 775 that corresponds to

the plane 173 = Bap4X4 + BspsXs orthogonal to the plane 1, . The conditioned model

M; for the observed sample, represented by the subspace Vy{,; , depends only on the

auxiliary variables x, and Xs.

The previous observations are key for designing the algorithm for the orthogona
weighting procedure. If we want to adjust for the effect of sample selection imposed

by the model M¢ , we only need to adjust for the auxiliary variables x, and X3

because x, and x5 are not affected by the selection (or response). Hence the name of

orthogonal adjustment because we target only those components affected by the

sample selection or response mechanism. If we are modeling ¢ (e.g., ¢ isunknown),

we do not need to have the correct model M, =(X1, %0, X3), since a misspecified

(e.g., reduced) model /\/L; :(xl,x3) can restore the population distribution of y .

The expression of the expected value of y in the observed conditioned on the

observed casefor keU is

E(W R =1)=g;"(np )=ggl(xﬁ—ﬁ¢|3), (4.8)
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where X531 indicates the auxiliary variables in the complement set of the

intersection of the elements of the vectors X4 and X B A more formal proof of (4.8)

requires measure-theoretic probability and advanced linear algebra (Luenberger,

1969; William, 2011).

4.3 Modeling of the Outcome and Sample Selection

The main element of orthogona weighting is the development of the models for ¢
and y. Separate parametric models are fitted using initial or saturated models with
the same set of auxiliary variables for ¢ and y. In this section, we describe the

orthogonal weighting adjustment as it was originally developed for estimation for

nonresponse.

43.1 Modeling the Parameter ¢

In the first step of an algorithm that adjusts for sample selection based on the

orthogonal approach, we fit a parametric model ﬂ\/l,,; to the sample membership

indicator (or respondent) in the population or sample. Fitting the model //\\/l¢ is
straightforward because we have the indicator R, =r, for respondents and
nonrespondents for ke A or cases in the sample or not for keU . When fitting the
model /\A/l¢ , the initial model or saturated model should include al variables that

explain the selection mechanism independently of the outcome. The goal of the first
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step is to produce the best model for the sample selection for all outcome variables.
We expect the model fitting procedure (for example, the modeling based on the AIC
astheloss function in the PA framework) to identify and remove extraneous variables

in the saturated modd!.

Returning to the models in Table 4.1, the initial model or saturated model for ¢,

M, includes the auxiliary variables x = (%, %y, %3, %4,%s), and the selected model

by the algorithm is M, = (%, %2, %3,0,0).

43.2 Modeling the Outcome Variable y

In the second step, we fit a parametric model M y to the outcome variable y . Fitting

the model .//\>ly is more difficult than fitting the model to R, =r, because we only
observe the selected sample (or respondents), and it may have a different distribution
than the population as discussed in Section 4. Our solution is to use the estimate of ¢ ,
¢ from the model //\\/l¢ identified in Section 4.3.1. We use the model /T/lgb to produce

a sample-selection adjusted set of weights ak == (1 =Ai where qfk = g_l(ﬁ¢,k),

E(R¢) ¢«

M4 K =x¢,k$ and use this new weight when fitting the model /\A/ly. The adjusted
weight ak removes the sample-selection bias of y in the sample and restores in

expectation the population distribution when the model //\\/lgb is correct. This result

can be expressed as
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E((y®R|Rk=1)©a—y|]-“)=OGJ, (4.9)

whered = [ak] e RN jsthe vector of the adjusted weights. Asin any mode fitting
procedure, we may not identify the correct model M due to sample variation. For
the models shown in Table4.1, the initial model for y is M, = (%, X0, X3, X4, %5 )
and the fina mode! identified at this step is //\\/ly =(%1,0,X3,%4,%5) using the weights

derived from the model M, = (%, X2, %3,0,0).

4.4 Modeling y Conditioned on the Reduced Model for ¢

In the third step, we identify a new model for ¢, Mys, with the variables that
explain both y and ¢ using the models //\/\l¢ fitted in Section 4.3.1 and the model
.//\\/ly, fitted in Section 4.3.2. The new model .//\\/ly¢ for ¢ contains the auxiliary

variables from the intersection of models /\A/lw; =/T/lyﬂ/\A/l¢. We refer to these
variables as the common variables of the models for y and ¢ . The reason for using
only the common variables for the reduced model .//\Zwb is justified in Section 4.2.

Only the common variables are affected by the sample selection and this adjustment

targets only these variables.
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We then proceed in the same way as described in the previous section. We recompute

sel ection-adjusted weights aﬁ using q? from the reduced model .//\\/ly¢ as a; =% . At
k

this point, we have severa options to produce the estimate when there is sample
selection bias. Since the focus of this dissertation is estimation in the presence of full
response, these options are not discussed here. The extension of the PA framework to

estimation with nonresponse will be the topic of afuture paper (See Appendix A).

4.5 Developing the PA Algorithm for Estimation with Full
Response

The goals of the orthogona adjustment procedure for estimation with nonresponse
described in Section 4.3 differ from when the method is used for estimation with full
response. When there is nonresponse, the goal is to remove selection bias. In contrast,
when there is full response, the goa is to improve the efficiency of the estimators
because there is no selection bias. The modifications made to the procedure described
in Section 4.3 change the focus of the orthogonal adjustments from removing bias to
increasing efficiency by identifying as many variables related to the outcome as
possible. As shown in the next section, the largest improvements in efficiency are
achieved when the model includes the variables with the largest contributions to the
variance of the model. The following modifications to the procedure described in

Section 4.3 are consolidated in Algorithm 1.1.
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1. Theagorithm fits the model M y for the outcome variable y using the sampling

weight dy, (Step 3 of Algorithm 1.1). When thereis full response, there is no need

to use the weight from .//\Z¢ because y isobserved for al sampled cases.

2. The algorithm replaces the adjusted weight ak :% where (I;k is the fitted
k

selection probability from .7\\/‘¢y by

g 2k
dsz—k%, (4.10)
$ D ey

keA

when fitting y the second time (Step 6 of Algorithm 1.1). Since we want to

calibrate to as many variables of the model as possible, and the common variables
may be the largest contributors to the variance, the adjusted weight in (4.10)
increases the likelihood that the common variables will be selected in the fina

model.

3. The agorithm fits the model My for y using the saturated set of auxiliary

variables x (Step 7 of Algorithm 1.1). This is an extra step that refits the model

for y accounting for the effect of the common variables.

Algorithm 1.1 is not unique, and severa options can be implemented to target the
important variables that contribute to the variance of the estimator. One option is to

ignore the algorithm, fit a single model, and calibrate using the auxiliary variablesin

188



the final model. This is the procedure used in Nascimiento Silva & Skinner (1997).
This option works well for simple random sample designs, but the estimators are not
as efficient in small samples and for informative designs when variables related to the

outcome are used for sampling.®

A second option is to calibrate only to the common variables that explain ¢ and y.
This option yields very efficient estimators (on some occasions, estimators that are
more efficient than those produced by Algorithm 1.1) when the common variables are
large contributors to the variance of the model for y. The concern with this option is
that we do not know if the common variables are the largest contributors when fitting
the model. When this is not the case, the efficiency is noticeably lower than the

estimators from the algorithm.

A third option is to force the common variables into the final model. We separate the

common variables from the pool of variables for the model for y. The final estimate

is computed by calibrating the common variables and the variables in the final model

M y- Theresulting estimator is generally efficient, but its efficiency is not aslargein

small samples. The issue is that this option tends to identify extraneous common
variables when the correl ation between the probability of selection and the outcomeis

low.

19 There are also differences in the method for variable selection between Nascimiento Silva & Skinner (1997) and
the PA agorithm. They use p-value based stepwise procedures and the mean squared error as the loss function.
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Estimators based on Algorithm 1.1 have the best empirical performance among all the
options we evaluated. We were surprised that in cases where there is model selection
uncertainty, the estimators were slightly better than those estimators with a fixed

model based on a complete analysis of the population data (see Sections 1.3 and 2.1).

4.6 TheVariance of the Linear PA Estimator as a Function of
the Number of Auxiliary Variablesin the Model

We explore the variance of PA linear estimators (calibration estimators) as a function
of the number of auxiliary variables in their model to determine the strategy to follow
when fitting models in the presence of full response. We analyze the variance of

estimators using an artificial example under ideal conditions.

EXAMPLE 4.1 Let y be the outcome variable with a superpopul ation model
My 10 with yk”g/\/(xkﬂ,ai), where X, =(%,....%o) is the vector with 10
auxiliary variables where xpiigj\/(ux,af), py=1and oZ=3. for pell,..,10},
B=(B1-s ﬂlO)T is the vector of the parameters of the model with values
$=(10,9,87.6554321)", and 02=52. The auxiliary variables are orthogona
random variables, x, L xg; that is, (Cor(xp,xq):o for p=qe{l..10} and

(Cor(xp,xp)=1 for pe{L..,10} (see Section 4.3). Note that a set of orthogonal

random variables can be obtained from a set of correlated random variables by
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principal component decomposition or by Gram-Schmidt orthonormalization (Arfken,

Weber, & Harris, 2015).

Let 7 be the finite population consisting of N = 1,000 iid realizations from M.

The elements of F are identified by the labels U ={1,...,1000}. A sample A of

expected sample size n= 100 is selected according to a Bernoulli sample design with

1,000x1

Ty = D 001 The sample design is defined by the vector Se{0,1} with the
N

0.01[-%2,

sample membership indicators with an expected value E(S)=[ the

variance-covariance matrix C(S)=A where Ay = %(1— %j =0.09 for keU and

Ay =0 for k£l eU . We assume that the population totals X =17 x = (Xy,..., Xy0)

are known. The parameter of interest is the population total Y = 1Ty where y € RN

and y =[yy] for keU.

In this example, the outcome y is alinear function of 10 auxiliary variables x. We
expect the linear PA estimators with working models with close to the complete set of
auxiliary variables to have smaller variances than those estimators with smaller sets.
We also expect the full PA estimator, the PA estimator with the complete set of
auxiliary variablesin its model, to have the smallest variance. On the other hand, if no
auxiliary variables are used, then the variance of the PA estimator should be the same

as the variance of the HT estimator.
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To facilitate the notation, let \?pA,C be the PA estimator of the total Y where the

subscript ¢ indicates the number of auxiliary variables and totals used in the assumed

model asindicated in Table 4.2.

Table 4.2 Variance of incomplete PA estimator as a function of the auxiliary
variables
PA #of Auxili Populati
estimator | auxiliary V;)i(;é?g tp;jgo” Parameters Notes
” variables p
Yeac c X X
A No
Yeao0 0 None None None cali bArati on,
YuT
Yoas 1 (%) (X1) ()
YAPA,Z 2 (% %) (X1, X3) (B1.52)
YAPA,p p (Xl,...,Xp) (Xl,...,Xp) (ﬂl,...,ﬂp)
\ 9 (XaXe) | (XpuXo) | (BriniBe)
All
A aqxiliary
Yea0 10 (X Xe0) | (Xp Xg0) | (BpoeBrg) | VAIADIESIN
model
M ’

y

For example, Yppo= D d ¥k
keA

is the PA estimator with no information while

Ypa10 = XB pmie is the full PA estimator with an assumed working model Mg,

with the vector of auxiliary variables x =(, ..., %) -
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Using the result from (1.36) and the definition of an incomplete PA estimator

(Definition 1.19), the expression of YAPA,O is

YAPA,O =X p pmle- (4.11)
To compute the variance of YAPA,O, we note that the assumed model is a valid PA

model; therefore the sum of the weighted residuals, deq(zo, where
keA

& = Yk —xkfi pmie - Since the HT estimator is \?HT = z di % , then we can rewrite
keA

YPA as

Ypa0= 2, diXib pmie = Y - (4.12)
keA

As aresult, V(YAPA’O |]—“):V(\?HT) (see Section 1.7.6). For the sample design in this

example, the variance V(VHT) is

V(Yur |F) =V (Yono | F) =(d-1) 3" yg =3,741,156, (4.13)
keU

where d :l: 1000 is the sampling weight. Fitting any model without using the
T

population totals does not improve the variance of the PA estimator over the HT

estimator.

We now compute the variance of the PA estimator \?pA,l with an assumed working

model My, with y "9 A (lekl,az); that is, the model with the first auxiliary
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variable X . The expression of YAPA’]_, the partial PA estimator with one auxiliary

variable X and the population total X;, is

Ypa1 = X181 pmie- (4.14)
If we assume large samples in this example so the effect of the g-factors is not

important (see Section 1.7.4), then the variance of YAPA’]_ IS

V(Yoarl F)~(d-1) Y ef = 2,843,377, (4.15)
keU

where g4 = Yy — xklﬂAMel is the residual of the model M4, fitted to the population

for keU . Thereduction of variance between V(\?HT |.7-“) in (4.13) and V(YAPA,llf)

in (4.15) is 897,778 or 24 percent.

If we assume that the working model is M, with y d N(ﬁlxk1+ﬁ2xk2,02);
that is, a working model with the auxiliary variables x and X,, then the variance of

YAPA,Z of the PA estimator YAPA’Z is

V(Ypa2 | F)=(d-1) Y €5 = 2,110,065, (4.16)
keU

where Q<2:yk_(xk]ﬁmle,l+xk2/§mle,2) for keU. The reduction of variance
between V(Ypa, | F) and V(Ypay|F) is 733,313 (26 percent). The reduction of

variance between V(YAPA’Z | F ) and V(\?HT | F ) is 1,631,091 (44 percent).
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Table 4.3 shows the variances V(\?pA,C | F ) for the estimator Ypa ¢ for ce{0,...,10}

computed as described above. The table also shows the values of variance reduction

and percentages with respect to Yy = Ypao ad Ypac.1-

Table4.3 Variance of incomplete PA estimator as a function of the auxiliary

variables
Variance reduction Variance reduction with
PA # of with respect to respect to
estimator \?:ﬁglb?reﬁ Variance YAPA,C—l YAPA,O

Yeac © Value (%) Value (%)
Yono 0 3741156 NA  NA NA

\ " 1 2,843,378 897,778 24 897,778 24
A 2 2,110,065 733313 26 1,631,091 44
Yons 3 1,526,610 583455 28 2,214,546 59
Yona 4 1,089,527 437,084 29 2,651,630 71
Yons 5 749,149 340377 31 2,992,007 80
Yons 6 527,259 221,890 30 3,213,897 86
Yon7 7 363,427 163,833 31 3,377,730 90
YAPA,S 8 279,133 84,294 23 3,462,024 93
YAPA,9 9 248,846 30,287 11 3,492,311 93
YAPA,10 10 238,349 10,496 4 3,502,807 94

The last row of Table 4.3 shows that the PA estimator YAPA,lO’ which uses the correct

working model M, 1o, achieves the lowest variance with a reduction of 94 percent
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with respect to the variance of the PA estimator \?F,A,O with no auxiliary information.

The table also shows that the reduction of variance for this example is not constant
for each variable added to the working model. The largest and smallest reduction of

variance are achieved when the auxiliary variables x and X, with associated
regression coefficients B, =10 and p,, =1 are included in the working model,

respectively. These results suggest that the strategy for the development of the
working model in the presence of full response should target al variables of the true
model and not a subset (for example, using only the common variables described in
Section 4.4). Although the common variables may be the auxiliary variables with the
largest reduction of variance, we do not know if this is the case when fitting the

model.
We can derive the algebraic expression for the empirica results presented in
Table 4.3 by rewriting the variance V(VPA,C | F ) in terms of the variance of the

V(\?pA,p | F ) the variance of the PA estimator \?pA,p with the full model (e.g., P

auxiliary variables). First, we generalize the expression (4.16) so the variance
V(\?pA,C |]—") for the PA estimator Ypa with ¢ auxiliary variables X¢ = (%, X )
is
V(Yeac | 7)~(d-1)ele, (4.17)
~ ~ ~ ~ T .
where €; =Yy —XBmec and Bm|e,c=(ﬂm|e,1,...,ﬁm|elc) . The expression of the

difference of the variance of the PA estimator \?pA,C with a working model with
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c auxiliary variables and PA estimator \?pA,p with the full model (or the P auxiliary

variables) after algebraic smplificationis

{Vonc )V (Tonp 17) (01 e - e @19

~ T T -~
~(d=1)Bmieci1Xci1XcrBmiech

. . . T
where X¢,q = (X1, Xp) and Bm|e,c+1:(ﬂm9£+l,...,ﬂm|ep) for ce{0,..,P-1}.

Notice that Qxc(ﬁme’c), the quadratic form of |A3m|e,c and the matrix xgxc, is

ﬁrTme,CxeCﬁmm,c. Since the matrix xIxC is positive semidefinite, then
Qxc(ﬁme’c)zo for any ce{l...,P}. This result shows that the variance of the full

PA estimator \?pA,p is always equal to or smaller than the variance of the partial PA

estimators \?pA,C (e, V(\?pA,p) is alower bound). We can rewrite (4.18) using the

lower bound of O, (ﬁmle,c) &S

. . . 2
V(YPA,c | F ) < V(YPA,P | F )+(d —1)lmax(xg+1xc+1) Bn1e,c+1H2' (4.19)
where )“max(xlecﬂ) is the largest eigenvalue of the matrix xJ,1Xc,1 and [Brec +1H§

is the squared L-2 norm of the vector ﬁmgcﬂ computed as

o 2_ 8T 4 52 :
ﬁmle,c+1”2 =PBmieciPmieci1= z Bhek- Note that in Example4.l, the
ke{C+ZL...,P}

eigenvalues of x"x have the same value; that is, 1 =1,=1000 for pe{l...,lO}.
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Furthermore, any of the c eigenvalues of the submatrix xgxc formed by any
subvector of auxiliary variables x. < X aso have the same values 1 =1,000. Thisis

due to the orthogonality of the vector x . Using these results, we rewrite (4.19) as

V(Yoac 1 7) =V (Yoap | 7)+(d-1)2 Hﬁmecﬂui , (4.20)

Since the eigenvalues are the same for all models in this example, the reduction of

variance when adding auxiliary variables to the working model is a function of

2

Bn‘le,c”z-

Table 4.4 shows the algebraic expression of the variances of the sequence of partial

PA estimators \?pA,C for ce{0,...,P} using (4.20). The table shows the variance of

the incomplete PA estimator decreases as more auxiliary variables are used until the

incomplete PA estimator becomes the complete estimator YAPA’P:YAPA with the
lowest variance. The second term (d-1)2 (,éﬁ,le,ﬁﬁr%,e,z+...+[§§1€,p_1+[§§19,p)

decreases as each auxiliary variable x, for pe{l..,P} is added to the working

model until it becomes zero. Since the differences of the variance between two

consecutive partial PA estimators \?pA,C_l and \?pA,C are aways positive (e.g.,
\% (\?pA,C | F )—V (YAPA,C_]_ | F ) =ApB r%ie,c ), the minimum variance is achieved when the

estimator is the complete calibration estimator \?pA :
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66T

Table4.4 Variance of partial PA estimators as a function of the number of auxiliary variablesin their model

Tt : Variance
Estimator Number of auxiliary variables vy
C ( PAC |]:)
Yeno OF Yo (No caliobration) V(\?PA,P)JF(O' —1)/1(l§r%|e,1+l§%|e,2 + ---+ﬁr%Ie,P—1+Br%Ie,P)
Ypa1 1 V(Ypap)+(d —1)/1(/%%1&2 +---+ﬁAr%1Ie,P—1+:ér$ie,P)
- T 2 V(\?PA,P)JF(O' —1)/1(5%|e,3+---+Br%|e,P—1+B%|e,P)
g
Ypap_2 P-2 V(\?PA,P)JF(Cl ~1)4 (ﬁr%le,P—l*‘ﬁr%le,P)
Ypap-1 P-1 V(\?PA,P)JF(O' ~1)ABGep
S Yopp OF You . P : V(?PA P)
T A (calibrated to all variables) |




EXAMPLE 4.2 We now examine the effect of including extraneous variables
in the working model using the population and sample design from Example 4.1. We

assume that there are an additional 10 orthogonal extraneous variables
X=(X,.» Xo0) With xp“i"/\/(o,s) for pe{ll..,20}, where x, 1l x, for

p=qefl,..,20}.

Table 4.5 shows the variance V(\?pA,C | F ) of the sequence of the PA estimators
Yeac for ce{10,...,20} beginning with the correct working model My 10 with the
auxiliary variables (..., %) after adding the extraneous variables (X, ..., Xo) One
at the time to the model M y.10. Thetable also shows the value of variance reduction

and percentages with respect to V(YApAylolf ) the variance of YAPA,]_O with the

correct model, and V(VPA’O | F ) to the variance of Ypag=Yyr With no auxiliary

variables.
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Table4.5 Variance of incomplete PA estimator as a function of the extraneous

variables
Variance reduction Variance reduction with
PA # of with respect to respect to
estimator %gﬁg Variance YAPA,lO YAPA,O

Ypac © Value (%) Value (%)
Yoao 10 238,349 NA NA 3,502,807 93.6
A 1 238,342 897,778 24 3,502,815 93.6
Yoarr 12 237,606 733313 26 3,503,551 93.6
Yoars 13 237,581 583455 28 3,503,576 93.6
Yonra 14 237,499 437,084 29 3,503,658 93.7
Yonis 15 237,366 340377 31 3,503,791 93.7
Yonis 16 236,877 221,890 30 3,504,279 93.7
Yon17 17 236,868 163,833 31 3,504,289 93.7
Yonis 18 236,858 84294 23 3,504,298 93.7
Yono 19 236,752 30287 11 3,504,404 93.7
Yon 20 20 236,457 10,496 4 3,504,699 93.7

When we fit a variable that is not part of the model, the fitted value of the associated
regression coefficient of this variable is zero. As a result, the extraneous auxiliary

variables do not contribute significantly to the sum of the squared residuas of the

estimator. The expression of the variance of \?pA,C, as a function of the cumulative

number of extraneous variables, is

V(Yeac 1) =V (Yoa | ) +(d-)ele;, (4.21)
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where g, =y—xcﬁm|e,c for ce{11,...,20} . Note that under ideal conditions such as

orthogonal variables and very large sample sizes, calibrating to the extraneous
variables does not increase the variance of the PA estimator. Based on this analysis,
an algorithm should calibrate to as many auxiliary variables as possible to achieve the
lowest value of the variance even if it includes extraneous variables as these do not

increase the variance of the estimators under these conditions.

Figure 4.1 summarizes graphically the variance reduction from Examples 4.1 and 4.2

for a sequence of PA estimator \?pA,C for ce{1,..,20}. The line in red show the
variance of the PA estimator with a working model where one auxiliary variable is
added the time until the complete model (correct) is fitted (e.g., (xl,...,xlo) with
B= (10,...,1) ). The line in blue shows the variance of the PA estimators beginning

with the correct working model when one extraneous variable is added at the time to

the correct model for (X1,...,Xog) . As shown above, the largest reduction in variance
is when the auxiliary variable x with g, =10 is fitted. Note that although the
auxiliary variables xg, X9, and Xg with associated regression coefficients fig =3,
Pog =2, and B15=1 are part of the true model, they do not significantly reduce the

variance of the PA estimator.
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Figure 4.1 Variance reduction of the sequence of PA estimators from Examples
4.1and 4.2

4,000,000 1
3,000,000 1

2,000,000 -

Variance
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1,000,000 - -

0 5 10 15 20
Variable x in model

s Correctvariables * Extraneous variables

4.7 The Propagation of Error for Variance Reduction

Propagation of uncertainty or error is a statistical method that examines how the
errors of variables are transmitted through a function in a system (Clifford, 1973).
Controlling the propagation of uncertainty is done through adjustments to the input of
the functions, so the uncertainty of the function is reduced. We illustrate how the
analysis of propagation of errors can provide a better understanding of estimators

when they are analyzed as functions of random variables.

Nx1

Let S=[S]€{01} " be the discrete random vector with the sample membership

indicators for a fixed sample. The vector S follows a discrete multinomial
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distribution with E(S)==<(0,1)"* and C(S)=AeRV™N (see Definition 1.5).

The vector S isavector field with {O,l}N where each S isavector.

Define f as the vector-to-scalar valued function f : RN 5> R as

f(S)=d"(yos). (4.22)
The equation (4.22) is the Horvitz-Thompson (HT) for the total Y where
y =[yik]e R"?. The HT estimator is alinear function of the random elements S of

S for keU sinceit can be expressed as
Yot =4S + o+ AN Sy » (4.23)

where 4, =YX for ke{l,...,N} .2 Theerror of f(S) isthevariance of f(S) defined
Tk

V(f(S))=(doy) A(doy), (4.24)

which is the quadratic function Q:RN—>R, QA(z):zTAz with A=A and

z=dOYy.

% Note the focus on linear functions of the random variables S for k e {1,...,N} instead of linear combination

of the outcome Y, (Wolter, 2017).
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Now, we add an adjustment through the scalar fleR with the PA adjustment,

fl:dTS . We define the scalar-to-scalar valued function f*:R — R of S as

- -1

f(8)=Id" (yos)=N(d's| (doy)'s. (4.25)

Before proceeding, we verify that the sequence of estimators adjusted by a sequence
of adjustment I';, f*(Sy), is consistent, or E(f*(SN )—f(Sn )—) :(’)(n_l) as

N — 0.

The new function f*(S) is the Hjek estimator (HJ) of the total Y, and since f*(S)
is nonlinear (of S), the propagation error in f*(S) is approximated using the first

order approximation of the multivariate Taylor expansions of f* evaluated a S==

by
v(f*(9))~ o (s)'] Aaf*(s)| (4.26)
oS ‘ oS \ !
S=n S=n
where of (S)= of (S),...,af (S) cR™N is the vector of the directional
oS oS, OSN

. . . of*(S
derivative? taken with respect to avector field S. Let D= 6é ) , then

21 Vector derivatives are important in theoretical and applied physics as they arise in fields such as electricity,
magnetism, and fluid mechanics among other areas. These are tools to study random fields in matrix

representation.
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D Z[dek —%dk:|k {1 N} . (427)

As a vector of partial derivatives, each element of D, Dy for ke{l...,N},
measures the change of f*(S) with respect to S, while § for I #ke{1,...,N}

remain constant. Since the function f* (S) is very smple, the change is the same for

al §.. However, this observation establishes a link to replication methods for

estimating variances such as the Jackknife, where each replicate measures the effect
of the estimator when one element is removed. When considering the random

variable S, the Taylor variance resembles the replication methods because the
variance is computed as a function of the changes in f*(S) for each S, keeping the

effect of the others constant. Each element in D, can be viewed as a“replicate.”
After algebraic simplification, the propagation error or variance of the function f* ( S)
is

v(f*(5))=(doe) A(dOe)=Qy(doe), (4.28)
where e=y —Y isthe vector of the residuals around the population mean Y .

There is no easy way to compare the quadratic forms Q, (d ©e) and Q,(d®y) for

designs other than SRS to determine if the adjustment reduces the propagation of

errors. However, we can determine an inequality that bounds the differences between
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the two estimators. The upper bounds provide insights on the conditions when one

estimator is more efficient than the other.

Let QAQT =A be the spectral decomposition of A, where A=diag(}) is the
diagonal matrix of the vector of eigenvalues A RN, and Q=(qy,...ax) is the

matrix of the eigenvectors ¢ RN for keU . Since by definition A is symmetric
and positive semidefinite (e.g., it is a fixed size sample design, see Section 5.3), al
eigenvalues except for one are real positive numbers, and the matrix Q is orthogonal
with rows and columns forming an orthonormal basis. Then the quadratic forms

(4.22) and (4.28) can be written as

2
Q(doy)=2, 1,4 HQI (do Y)H and
2
Qi (doe)=3, A HCII (do G)H : (4.29)
which are weighted sums of the squared L—2 norms (i.e., Euclidean norm) of the
projectionsof dOy or d © e to the eigenvectors of the matrix Q where the weights

arethe eigenvalues 4, for k €U . Note that the only difference in the quadratic forms
Qx(dOy) and Q4 (dOe) isthe variables y and e since both have the same set of

eigenvalues, orthonormal basis, and sampling weights (e.g., the matrix A isthe same
in both). The expressions can easily be evaluated for smple random designs. The
comparison is not as straightforward in informative designs where there is an

interaction of y or e and the sample design represented by Q.
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To have a general sense of the differences between the estimators, let 4, be the

maximum eigenvalue of A defined as A, = argmax{4y,..., Ay | , then the following
AeA

inequalities hold

Qu(A0Y) < e [Py e
Q4 (4 0€) < [ (@30

Since A and ||d||2 are dways positive, the ratio of the quadratic formsis

QA(d(De) < ”6”2 ) (4_31)

The ratio in (4.31) shows that the propagation error in f*(S) is smaller than f (S) if

the sum of the squared residuals or e'e is smaller than the sum of squared y values

or yTy . Thisexpression is similar to theratio of partitioned sums of squares. If we let

y berelatedto = as y, = x|, then theratio of the variancesis

Qi (doe) <ZkeUﬂ'§+N_2n
Q (doy) ZkeUﬂ'%

(4.32)

Theratio in (4.32) shows that the HT estimator is more efficient than the HJ estimator
when y isalinear function of 7 . The adjustment fl increases the propagation error
in f*(S) compared to f(S). This situation (a high linear correlation) is common in

practice. In Example 1.1 on page 7, the hospitals are drawn using the number of beds
as the hospital measure of size, and the number of beds is correlated to the outcome

variable for hospital expenditures (e.g., larger hospitals measured in terms of the
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number of beds have large expenditures). In this case, the HT estimator for total

expenditures is more efficient than the HJ estimator as shown in Table 1.5.

Using the same approach, we examine the propagation error for the ratio estimator

(RA) compared to the HT estimator where

. d'(yos
d' (x09)
Now, we add the PA adjustment through the scalar I'y = X X _ _cRto

Xyt ) d"(x©9)

the function in (4.22). We define the scalar-to-scalar valued function fRIR SR of

Sas

d"(yos)

) .34
d"(x©9) (4.34)

tR(S)=Txd" (yos)=X

Equation (4.34) is a nonlinear function of S so the variance is approximated

by (4.26). After algebraic simplification, the propagation error of f R(S) is
V(fR(9))=(doe) A(doe)=Qy (d0e), (4.35)

where e= y—x% and QA(d Qe) is the quadratic form of the vector d © e and the

matrix A .

ot R(S) .
The vector D:T can be written as
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Y
D {dek — X~ ) (4.36)

X:|ke{l,...,N}

which shows the effect of changes if fR(S) for each §. In this case, the change
depends on the value of X, . The variance is the sum of the cross-product of all these

“replicates’ Dy for ke{l...,N}. The similarities between the Taylor series

“replicates’ and replication methods are also observed here.

The ratio of the quadratic forms using the upper bounds of A is

QA(d(De) < ”6”2 ) (4_37)

Assume that the outcome is a constant, y, =c for ke{l.., N}. After smplifying

(4.37), theratio of the quadratic formsis
(4.38)

This ratio is aways greater than one, and the value is very large due to the
assumption of constant outcomes which does not occur in practice. Although this

assumption does not hold in practice, this result shows that when y is not correlated

to X, theratio estimator can be very inefficient compared to the HT estimator.
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4.8 Incorporating Population Totals into the Pseudo-
Likelihood

The second motivation for the PA estimators is to improve the precision of the PML
estimates by incorporating the additional information represented by the control totals
of the auxiliary variables directly in the PL function. Until now, the PML approach
has been used mainly to estimate the model parameters instead of finite population
characteristics, and the auxiliary variable population totals are not used in this

approach (Binder, 1983; Binder & Roberts, 2009).

Incorporating the auxiliary population information is based on the following

observations. Assume a linear superpopulation model M, where N (77;3 ,02) with
ng =XB. When this model is fitted to the finite population, the MLE of the regression

coefficients Bye € R™F meet the following condition

ﬁmle = Tx_x]Txy ) (4.39)

where TXX:XTX{Z Xikak}GRPXP and TWZXTY{Z Xikyjk}GRPXl. Let
keU keU

the first component in x, be one for ke{l.,N}. Let r;eR™" be the first

partitioned row, and ¢; € RP pe thefirst partitioned column of the matrix Ty x- The

elements of r; and c; correspond to a vector of the auxiliary variable population

totals.
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rn=cf =X=(N,Xg... Xp_1) e R*P. (4.40)
When the model is fitted to a sample drawn according to a sample design p(A= a)

(see Definition 1.5), the sample-based or PML estimator of fim|e is
Brie— Toot Ty 17 =0p (), (4.41)

where 'T'XX is the sample-based estimator of Ty, given by

:I\-XX I(SOdOX)TXZ[ Z dkxpkquS( ERPXP. (442)

keU :lp,qe{L...,P}

-’I\-XyZ(SQdQX)Ty:|:dekaykS( eRPY  is the sample-based

keU :l pe{l,...,P}

estimator of T,y . The sample-based estimators of ry and c; of Ty, are the first row

and column of 'T'XX are given by

. AT J % " 1P
THT 1= CHT 2= XHT :(NHT'XHT,l’--"XHT,P—l)ER : (4.43)
where rl—fHTylep(n_l) and cl—élzop(n_l). However, the population totals

X are known, and there is no need to use estimates in r; and c; of 'T'XX. Excluding

the population totals X from 'T'XX does not take advantage of all the information

available.
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There are different ways to incorporate the population totals X in 'T'XX , Which, at the

same time, incorporates them into ﬁpm|e. One method is through the PA adjustment
factor which is a diagonal matrix fx eRP*P defined as

Iy =D, D} (4.44)

A

Then the PA adjusted estimator of Ty, , Ty pa € RPP is

2 A =1 T nal

TXX,PA = TXXFX = TXXDXD)A( = DXTXXDX . (445)
The PA adjustment 'y removes the sampling variability from f1pa. and Cy pa (0.
E(r —FlpAl}“) = E(cT —QTPA |}"):Oe Rlxp). The propagation of the adjustment

'y aso reduces the variability of other elements of T pa. TO examine the

propagation errors, we rewrite 'IA'XX,PA in terms of their elements as

. . Xy X
TXX,PA{T P q} e RPP, (4.46)
{

Although the effect of fx is similar to calibrating to the population totals of the
elements in f pp, ad ¢ pa, the remaining adjusted entries of T’X,X,PA do not meet

the calibration restriction since the population total of ‘fx isnot XX .

pXq

This type of PA adjustment for these entriesis justified as a special class of improved
estimators proposed by Srivastava & Jhgjj (1981). They define this class of estimators

adjusted by the product of two estimators:
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Y=Y H(u,yv), (4.47)

A. >"<
where U=%, sz—J and Y = X% » H(u,v) isafunction of u and v such that
i i

=

The point (u,v) assumes the value in a closed convex subset in R? containing
the point (1,1);

2. Thefunction H(u,v) is continuous and bounded in R?;

3. H(11)=1;and

4. Thefirst and second order partial derivatives of H(u,v) exist and are continuous.

The properties of this class of estimators, such as asymptotic bias and MSE, are

described in Srivastava & Jhajj (1981).

The idea of adjusting for estimators using products of auxiliary variables is the

motivation for creating alternative versions of PA estimators.

4.9 Alternative Forms of PA Estimators

Before describing the methods to incorporate population characteristics other than the

population total of the PA estimator, we derive the PA estimator of the total of y

y 2
with a superpopulation model M where yj |xk'5]I N {%%J We assume that
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only the auxiliary population totals (N, X) are available. After solving the PL for the

model M fitted to the observed sample to obtain the PMLE of 3, we obtain

> dicYk

3 omie = KA . (4.48)
ﬂprrle %

keA X

The auxiliary variableis 1 , SO the population total is z % . Since we assume that
X keU

we do not have the entire population, the population total for this variable cannot be

computed. As an aternative, we propose a PA adjustment for the total % with the

sample-based estimate defined as Ai . Then the PA adjustment for this estimator is

Xyt
X X
U = = ZHT (4.49)
U Xy X
Notethati— Al =Op(1j.
X Xyt n

The PA estimator is then obtained applying the adjustment to (4.49) and plugging into

the generic PA estimator (1.25). The PA estimator for thetotal Y for this moddl is

A

s o X
Yon = Yy1 % . (4.50)

The estimator in (4.50) is the generalization of the product ratio estimator proposed
by Murthy (1964). Although the product ratio estimator is a PA estimator with

population totals that do not quite match the auxiliary variables, the important point is
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that estimators can be derived using any adjustments as long are they are correlated to

the outcome. This observation provides some aternatives for PA estimators.

The PA estimator described in the previous chapters has the form of aratio estimator

based on ratios to totals as

. Xp
Ix, (4.51)

XUt p

for pe{l...,P}. Thisestimator is called the total ratio PA estimator. The alternative
is based on the inverse of fxp, and applies to product ratio estimators described
above.

An dlternative is a PA adjustment based on the ratio of the population means to the

sample-based estimate of the same mean; this is called the mean ratio PA estimator.

The PA adjustment for the mean ratio is

My =—P2—, (4.52)
P Xuip
— X el AHT
where X, =—2 and X P for peld,... P,
=N Hap = pei }

For sample designs where NHT =N, the total ratio PA estimator and mean ratio PA

estimator produce the same estimator. Otherwise, there are differences in the
estimators due to the different adjustments made to the regression coefficients. For

example, if x istheterm for the intercept, the PA adjustment for this term is aways
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one for the mean ratio PA estimator, but the adjustment affects the slope regression

coefficients. In contrast, using the total ratio estimator, the adjustment is I and
HT

the variation NHT affects the coefficients of the slopes.

The third group does not rely on the population totals represented as the sum of the
elements in the frame. Instead, the estimators in this group use an function of the
expected value as the factor. For example, the total ratio estimator is the exponential

mean ratio PA estimator, with PA adjustment factor defined as

. Xy
Fxp =exp = : (4.53)
HJ,p

for pe{l,...,P}. An exponential total ratio could also be computed by replacing the

means by totals. There are the corresponding alternatives for product estimators.

If the population variance is available, a PA estimator can be computed as

r Xp S (4.54)
2 == 5 .
XS Xugp S

2(%—X)
where S2=———  is the population variance of X and

PN P

X zdk(xk_XHJ p)
Ship= ~ is the sample-based estimate of the population variance
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Many other estimators can be constructed in this way based on the product of the
population coefficient variation, population kurtosis, and population median.

Estimators that are ratios to other population characteristics, such as

A Xp+Cy
p
r XpiCry = F L& (4.55)
pt Xp
Sk
where Cy :)?_p is the population coefficient of variation of X, for pe{L...,P}
p

could also be constructed. The difficulty lies in the fact that it is unusual to know

these population quantities.

The PA adjustment using population characteristics described above is similar to a
regression coefficient that is constant for all the cases in the sample. We consider the
same population characteristics but use the information at the sample level. The
population characteristics that can be incorporated at the sasmpled element level are
listed in Table 4.6. The table shows the auxiliary variable and the popul ation totals for

these popul ation characteristics.

EXAMPLE 4.3. Let y be the variable of interest with a superpopulation

iid 2 (Xk—i)z
~N(60+[3Xxk+ﬁzzk,a ) 7z =———, and the

model My where yy N

population totals (N, X,Z) where Z = S>2< . The linear PA estimator for the total Y

for thismoded is
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R R R 9
Ypa =NBpmieo+ XBpmex +SxBpmie,z - (4.56)

Note that the estimate of the total of the auxiliary variable 2z is

A2

G55 %) S

Sy = Y, d¢Z =D ~—~——" andthepopulation total is Sg = >
keA kea  Nur -1 keU
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0ce

Table 4.6

Auxiliary variables and population totals for population characteristics at the sampled element level

Popul ation total

PA adjustment factor

Population : Auxiliary variable N 2
characteristic Working model 2 z Ty =3
Variance i 2 \2 2 2
ykllgN(zk:B’O-Z) (Xk_XHJ) Sx ST)Z(
Nir —1 >
QA0 (gpe?) | OB | (R % ()
Qx (R)
Coefficient of id > )2 CV3 CVg
variation Vi~ N(Zkﬁ’f’z) (Xk_XHJ) X Té
(R —2) X VX
HT HT
Kurtosis id ~ 4 K
Y = N (a8 .0?) (%X Kx b
2 X
(NHT —1)(8&)
Skewness id ~ 3 G
Y = N (a8 o) (%~ X Cx =
A -2 X
(NHT _1)(SHT)
2 Al |

“Note: & (x < Q(Ry)) =1 if X < Qy(Ry) , O othenwise, Gy (Ry) = F2(Ry) where F (xp, | =KsA——2

Ny



REMARK 4.1 Asinthe PA estimator with the PA adjustment factor

the role of the adjustment factors for aternative PA estimatorsin (4.52) (4.53), (4.54)
and those listed in the last column Table 4.6 is to incorporate the auxiliary variable
population information (e.g., population mean, total, coefficient of variation,
variance) into the PL. As in the PA estimator, these adjustments are expected to
reduce the variance of the estimator if the auxiliary variables are related to the

outcome variable.
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Chapter 5 Deriving the Asymptotic Properties of Survey
Sampling Estimators

In this chapter, we derive the asymptotic properties of the parametric (PA) estimator.
Most estimators proposed in the survey sampling literature derive their large sample
properties by establishing an asymptotic equivaence to the Horvitz-Thompson (HT)
estimator (see, for example, Wu & Sitter, 2001; Breidt & Opsomer, 2017). If the
proposed estimator is asymptotically equivalent to the HT estimator, then it inherits

the HT asymptotic properties. The HT estimator is design consistent, and the

~

VHT,N _YN

sequence of estimators Zy = converges in distribution to A'(0,1) ina

N

V(YHT,N

sequence of increasing size finite populations (N ) and samples sizes(n). Thus, the
proposed estimator is also consistent with a limiting normal distribution. Using
similar relationships, the asymptotic design variance of the proposed estimator is
equivalent to the asymptotic design-based variance of the HT estimator of the
residuals g =y, —u, where g, isthefitted mean of the model. This approach is not

generaly used in the classical asymptotic statistical literature for studying estimators

defined as functions of random variables (Lehmann, 1999).

Although this approach is valid, it is not informative of the rate of convergence of the
proposed estimator. For example, the proposed estimator might require large samples
to approach its limit, and its performance may be very poor for small sample sizes.

The current large sample approach used in survey sampling does not provide insights
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into the proposed estimator's efficiency. Consequently, most papers include

simulation studies to examine their properties empirically.

We take a different approach for the study of the estimator’s large sample properties
in the PA framework. One significant difference is the notation and algebra. We rely
heavily on discrete multivariate statistics matrix notation, matrix operations, and
matrix calculus (e.g., quadratic forms of matrices, matrix inequalities, eigenvalues, or
vector-induced matrix norms). The main advantage is the ease of deriving the

estimator’ s asymptotic properties.

The second difference is the focus on the random variables S , elements of the
discrete random vector S=(S,,...,S.,....Sy ) , With the sample membership indicators

(see Definition 1.5 on page 44). This vector is the only stochastic component
involved in the theory. Thisideais an extension of the method proposed by Cornfield
(1944) that enables the use of results from standard asymptotic theory to derive the
statistical properties of finite population estimators. Further extending this idea to
random vectors and matrices reduces the derivation of the formulas for expected
values and variances, so it becomes a simple algebraic routine while providing new

insights into the properties of the estimators.

We begin with the idea discussed by Tillé (2006), where any sample design can be

uniquely described by the vector of the expected values, E(S) =x and the variance-
covariance matrix of S, C(S)=A. We show that the variance-covariance matrix A

has unique mathematical properties determined by sample design. Estimators such as
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the Horvitz-Thompson (HT), Hek (HJ), generalized regression (GREG), and
parametric (PA) are defined as functions of the membership indicators of S. The
estimators or functions can be linear or nonlinear, and their asymptotic properties are
systematically derived applying theorems of linear and nonlinear functions of

sequences of random variables.

In the following sections, we discuss the foundations of different approaches to
estimation from survey data with full response and show how any sample design is
uniquely defined by a multivariate probability mass function of the discrete random
vector S that defines the type of sample design. The matrix approach to the large
sample properties of the estimator is then illustrated. This approach alows us to
derive the expression of the estimator, its variance, and variance estimator, and their

asymptotic properties.

5.1 Estimation Frameworks

Different theories for survey estimation depend on two random processes used to
model the sample selection: one process is unobservable and generates the finite
population from a superpopulation model; and the other is observable that selects the
sample from the finite population. This setting is similar to the Rubin-Bleuer &
Schiopu Kratina's probability product-space for the framework for joint design based

and model-based inference. (Rubin-Bleuer & Schiopu Kratina, 2005).

The process that generates the finite population and draws the sample for the realized

population is hierarchical. At the first stage, the finite population F with an outcome
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variable y is generated as N identically independent distributed realizations (iid),
Yk €U, from a superpopulation model M, with a distribution fy. In the second
stage, a sample of size n is selected from the realized finite population, according to
a sample design p(S=s) defined by a random vector S with a multivariate

probability mass function fg. Both variables are well defined with

YN|XN“~de(9)’and

SN |yN “‘fs(ﬂf,A). (51)

Different estimation frameworks are the result of assumptions of the sampling

distributions of y and S. The estimation frameworks based on the random vectors y

and S arelistedin Table 5.1.

Table5.1 Estimation frameworks as a function of random vectors y and S
Estimation o Source of Target of
framework Distribution variation Estimation Comment
Design- fS(S|Y = y) S, observed Y Thevariable y isfixed
based and considered as
constant
Model- f ( 1S=1 y , unobserved Y Sampling distribution of
based Y Y197 Ys=y S isignored
Super- fy s(y,S) S, observed 0 Bothy and S are
population and y random variables
unobserved
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The differences among the estimation frameworks depend on how y and S are
treated when producing estimates and inferences. Once this treatment is defined, it

becomes straightforward to derive the statistical properties of the estimators in any of

these frameworks.

REMARK 5.1. In the design-based approach, the random vector S is the
only source of variability; all design-based estimators are functions of S. In contrast,
in the superpopulation approach, both S and y are random and contribute to the
variability of the estimators, and the target of the estimator is not a finite population
characteristic but a parameter € of the superpopulation model. That is, there are two
components of the variance, one from the finite population generation and the second
from sample selection. For model-based estimation, the sample selection isignored in
estimation if the sample is balanced. Since in al frameworks the estimators are
functions of these vectors of random variables, standard multivariate statistical tools
can be used to derive their large sample properties. In the following sections, we
focus only on the asymptotic properties of design-based estimators, that is, we

condition on y =y which becomes a vector of constants.

5.2 The Probability Mass Function of the Random Vector S

Sample designs p(A= a) where A issome random subset of apopulationand a isa
particular sample that was selected, can be uniquely defined as follows. let

Se {0,1}N a vector-valued random variable with a discrete multivariate distribution
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consisting of N random sample membership indicators S=(S;...., SN)T, with an

expected value E(S|F)=n where n=[r,]€(0,1)" is the vector of the first-order

inclusion probabilities 7, >0% for keU, (C(S|]-"):]E(SST|]-")—7mT:A is the

variance-covariance matrix of S, where A=[Ay|=[ry —my7 ] for kleU, and

7y 1S the second order probability of inclusion of elements k and |. The covariance

matrix A is a Hermitian matrix (Dol, Steerneman, & Wansbeek, 1996), which

impliesit has specific properties. A is

(@)

(b))

(c)

(d)

A real (square) symmetric matrix;

A normal matrix such that AAT = ATA;

A matrix that can be diagonalized by a unitary matrix with real elements on

the diagonal (finite-dimensional spectral theorem); and

A matrix with real and linearly independent eigenval ues.

Additional propertiesof A depend on the type of sample design.

5.3 Typesof Sample Designs

We are interested in discrete random vectors S such that E(S|F)=ne(01)" and

C(S|F)=A. We dso require 7, >0 for al 7, in =, and 7y >0 in

22 |n order to be a Lebesgue measure, 7, > 0.
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N =[zy]eR"N, where T is the matrix with the second order of probability of
inclusion, 7, for the elements k and | defined as the probability that the 2-tuple
(k,I) are both selected in the sample. These conditions define a measurable design

within the survey sampling theory context (Sérndal, Swensson, & Wretman, 1992).

We use the variance of the sum of the elements of S to classify the sample designs.

Let Z:RN > R be the function Z=Z(S)=1TS, then Z represents the sum of all

elements of S. The variance of Zis V(Z |]—“)=1TA1, and it can be decomposed as

the sum of the contribution of the variances and covariance of thetermsin S as

V(Z|F)=1"A1= Y V(S |F)+ Y C(S.S |F). (5.2)

keU k,l€U k=l
This expression has an intuitive meaning. Each element of S, S, contributes to the
total variance through the variance component, V(Sk | F ) and through the sum of

the covariances with the other elements > C(S(,S | F).
leU kel

The value of V(1T8|f) determines if it is a fixed sample size design or a random

sample size design. This classification facilitates the derivation of the asymptotic
properties of the estimators since these designs have very different properties of the

variance-covariance matrix A .
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531 Fixed Sample Size Designs

The random vector S represents a fixed sample size design if V(lTS| ]—“) =0. Some

examples of fixed sample size designs are SRS, Sampford, Midzuno, and Tillé

sampling (Tillé, 2006). These designs have the following properties:

@ A ispositive semidefinite.

(B 1f Ayin(A)<An_1<...<A2 <A (A) arethe ordered eigenvalues of A, then
Amin(A)=0; that is, the eigenvalues 4y (A) for keU are nonnegative.

(©  lrowgA=0and 1" col, A=0 for keU,and Tr(IA)=0, that is the sums of

rows, the sum of columns, and the total sum of the elementsof A is zero.

(d) The sample sizeis computed as n= 1"x.

532 Random Sample Size Designs

The discrete random vector S with parameters E(S|F)=n and C(S|F)=A isa

random sample size design if V(lTS|]-“)¢O. Some examples of random size

designs are the Bernoulli, and PO (Tillé, 2006). Although this type of samplingisless
frequently implemented in practice, random size designs are especialy useful for
modeling nonresponse. The additional properties of the random sample size designs

are.

(@) A is positive definite with all eigenvalues A, (A) >0 for keU .
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(b)  A=diag(m) because 7y =7y in A for k| eU k=1 .

() The row and column sums are 17 rowy A=y, 1col| A=m for k,I €U , and

Tr(1A)=n where n isthe expected sample size, n:E(lTSU-").
(d) V(lTSU-"):lTAI:1T(nO(1—n)).

(e Letse {O,l}NX1 be the vector of the realization of S, S=s then the observed
samplesize n, is ng =1's.

) I Ayin(A)SAN1<..<A5<Ama(A) are the ordered eigenvalues of the

variance-covariance matrix A, then the eigenvalues are the first order

probability of incluson . The largest eigenvalue of A, is

Amax (A) = argmax {7, } .
keU

REMARK 5.2 The properties and classification of sample designs based on
the properties of variance-covariance matrix A as a Hermitian matrix described
above and in Sections 5.3, 5.3.1, and 5.3.2 have not been reported on the literature

before.
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5.4 Functions of the Random Vector S

We explore two basic functions of the random vector S using results from
multivariate standard statistical limit theory to understand the statistical properties of

design-based estimators.

5.5 Function for the Mean Vector of the Random Vectors S

N
Let Z:R" - R" be avector-valued function defined as Z(S _ 1 S, where S
N k k

k=1

isthe k-th realization of S for k e{1,...,N}. The random vector Z is the average of
al vectors S,. This function is a typical example found in statistical limit theory
textbooks (e.g., Polansky, 2011). Define {Z },  as the sequence of estimators Z .

Then

(@ limE(Z, | F)=mn.

N— o0

(b)  V(Z,|F) isbounded, V(Z, |f):o(%j.

(c)  Following from (&) and (b) {Z,},_, is aconsistent sequence of estimators of

7t (weak convergence, Polansky, 2011).
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5.6 Function for the Mean of the Elements of the Random
Vector S

Define the second function as follows: let Z:RN — R be a vector-to-scalar valued

function Z(S) =%1TS. This function differs from the one in the previous section

because Z is now the average of the N elements S, of S. The function Z is the

overall sampling rate (or expected sampling rate in random sample size designs). To
study the asymptotic properties of Z, let { ZN }fl:l be the sequence of estimators Z .

The expected value and variance of this sequence are

E(Zy |]:)=%1-|[jnN and (5.3)
1 .7
V(ZN |f)=F1NAN1N' (54)

This function is not as common because the elements S, € S may not have the same
expected value, E(S¢ | F)=E(S |F) for k=l and k,I eU , and the 2-tuples (k)

may be correlated (they are not independent).

Modified versions of asymptotic properties theorems for sequences of random
variables that are neither identical nor independent are used to determine the
asymptotic properties of this sequence. Furthermore, additional conditions on the

behavior of the other parameters need to be imposed before deriving the asymptotic
properties of the sequence of estimators {Zy, }flzl. We discuss these conditions in

more detail in Section 5.10.
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The expressions (5.3) and (5.4) can be further simplified depending on the type of

sample design. If S is afixed sample size design, then E(Z|f)= =f,where f

n
N
is the overal sampling rate and V(Z |]—") =0. In this case, there is no need to find an
upper bound for the sequence of estimators {ZN }0,3:1 because V(ZN | F ) is always

Z€Ero.

In contrast, if S is a random sample size design, then the sequence {ZN}TSI:l

converges to the expected sampling rate L z 7y - An upper bound of the variance
keN

V(ZN | F ) is found by applying regular rules for variances of random vectors,
inequalities for quadratic forms of Hermitian matrices, and inequalities for

eigenvalues in terms of matrix norms. So

2 Amax (AN)

1 1 1
~Amax (An)[In]; = N (5.5

V(Zn |~7:N)ZF1LAN1N = N2 (In)< NE
where Q4 (1n)=1NAn1y is the quadratic form of the vector 1y, A (An) iS

the maximum eigenvalue of the matrix Ay, and |1y ||§ isthe squared LZ-norm of the

vector 1y, where |1y ||§ = > 1°=N. The variance V(Zy|Fy) is bounded by a
keN

function that depends on the largest eigenvalue of Ay, Aax (AN ) . In sample designs

where the sample draws are independent (e.g., for k=l,kleU), then
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AN :diag(nN O(1n —nN)). Since for diagonal matrices, the eigenvalues are the

elements of the diagonal, the largest eigenvalueis

Amex (AN ) = maxarg{Ay g} = maxarg{ﬂN,k (1—7TN’k)} . (5.6)
keU keUy

The bound of A (Ay) dependson ry . It is desirable to have a bound that does

not depend on the first order inclusion probabilities. This bound can be found by

noticing that A (Ay) is the variance of a random variable with a Bernoulli

distribution, which has a maximum vaue when = =%. Then, the variance of

sequence {ZN }fl 4 for designs with random sample sizes is bounded by

V(Zy |]—"N)£KWN:O(%], (5.7)

where Ky =0.5. An implicit assumption in (5.7) is that Ky =O(1) which is true if

lim ﬂ*max (AN)<OO.
N—o

5.7 Linear Functions of the Elements of the Random Vector S

We now introduce a constant vector ac R" in the function Z . Let a:[ak]eRN be
a vector of constants, and let Z:RN >R be the function of S defined as
1 1o 19 . . —
Z(S)=—a S= N > &S - To study the asymptotic properties of this estimator, we
k=1

N
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define the sequence of estimators {ZN}‘fl= and apply the same rules as in

1

0

Section 1.5. The expected value and variance of {Zy }_, are

E(Zy |FN)=%aTNnN and (5.8)

2
1 1 Amax (AN ) [[@
V(Zy |~7:N):maLANaN :WQAN (an)< max,\(l 3l E”Z (5.9

where |lay ||§ is the square of the L?-norm of ay, [ay ||§ =" afy - The upper bound
keN

of V(Zy|Fn) isafunction of the largest eigenvalue of Ay . Replacing Apay (Ay)
by Kn 2 Ama (An) O

2
Ky ]

V(Zn | Fy ) E—
(Zn 1) N N

where Ky can be any of the following vector-induced matrix norms:

N N
[Anl, = e D [Anig]=max Y g —7nE| - 1-norm
eU k=1 |€UN k=1

N N
Kn =1 [An]l,, = max X |An|= max > |7y =7 i | - oo-norm
keU -1 keUn -1

V2
AN = [tr(ALAN )} Frobenius norm

This upper bound depends on the values of the elements of Ay . Asin the previous
section, we can refine the upper bound for sample designs with random sample sizes

since Ay =diag(my O (1-my)) then
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Amax (An ) = maxarg{[A g ]} = maxarg{[ 7 (1- ) ]} (5.10)
keUn keUy

Also, as in the previous section, the upper bound that does not depend on the

eigenvalues or matrix norms is found by noting that A (Ay) is maximum when

T =2, %0
k=%
V(zZy | R )<K_N”aN”2:o(ij 0(1):0(% (5.11)
NENJTNON N N’ '
2
a
where Ky =0.5 after applying Slutsky's theorem and assuming that ” N ”2 = (9(1).

An implicit assumption in (5.11) is that Ay (AN)=0(1) as N —>oo. We explore

2
a
Situations where ” N”2

#O(1) in Section 5.10 by defining an explicit sequence

0

{aN}N:]_'

5.8 The Horvitz-Thompson Estimator as a Linear Function of

the Elements of the Random Vector S

The HT estimator of the population mean V:%lTy is the linear function Z(S)

defined in Section 56 where a=doy, d=1om=[d]=|7"| for keU and

y e RN The HT estimator of the mean Y is
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Vi =z(s)=%(d oy)'s. (5.12)

Let {\?HT N} be the sequence of HT estimators defined in (5.12), then the
" IN=L

expected value and variance are

> 1
E(YHT,N |7:N)=W1TNYN, (5.13)
kS 1 T
V(YHT,Nlj:N):F(dN Oyn) Ay (dnOYN)- (5.14)

The conditions for the sequence of the estimators {\?HT N} to be asymptotically
"IN=1

unbiased and consistent depend on the sample design and the outcome (Sérndal,

Swensson, & Wretman, 1992). In other words, whether an estimator meets these

0

conditions depend on the sequences {yyJy_;: {EN"‘}N=1' and {A}y_,- These

cannot be set arbitrarily; for example, if the sequence of Sy isavalid sample design,
then Ay has to be a Hermitian matrix with the properties described in Sections 5.3.1

and 5.3.2. These additional conditions often are not fully explored in the current

literature.

5.8.1 The Variance of the Horvitz-Thompson Estimator

To derive the variance of HT estimator, we reparametrize (5.12) using the variable S

defined as follows:

238



e Let S:RN 5 RN be a vector-to-vector valued function of S where S=doS.

The expected value of S is
E(S|F)=doE(S|F)=don=1. (5.15)

The covariance matrix of S, Ag € RN*N 1S

V(S|F)=Ag=d"V(S)d

: (5.16)
dy
The variance of the sequence of HT estimators, {\?HT N} is
"IN=1
Amax | An & 2
ST U SN e [Ans) yn
V(YHT,leN)—FyNANsyN =7y ()= 2. (517)

Its bound is a function of the largest eigenvalue, /”tmax(AN é) , of the reparametrized
covariance matrix Ag. As in previous sections, we can refine the bound by

replacing lmax(ANé) by Ky Zimax(ANé) using any of the matrix norms induced

by the vector 1-norm, co-norm, or Frobenius norm as
N N L
Ayl = max Z‘ANSH ‘ = max Z‘deledel —4 1- norm

N N

1

Kn =1Ans| = mex Z‘ANSKI‘: mex Z‘deledel —# c0-norm
Un g Un |3

T V2 |
Ans|e = [tr(ANéANé)} Frobenius norm
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For random sample size designs, we can refine the value of Ky since

Ayg=diag(dy —1). Thevalueof Ky is

Ky = argmax{ANé} =dnmax —1=7Nmin —1-
kEUN

Notice that effect of the weights dy on Ay reflected in Ayg. The bound of

~ o0
{YHT,N}N_ is a function of the maximum sampling weight dy, not the maximum

0

7 nk @sintheestimator in Section 5.7. The bound of the variance of {\?HT N } IS
" IN=L

2
V(Yr o 1) < Ky [ynlo :O(iJO(l):O(ij , (5.18)

where ||yN||§ is the square of the Euclidian norm of yy, ||yN||§ —yNYn - The order

of the variance V (Yt n|Fy) is (’)(N_l) after using Slutsky's theorem. Two

2
implicit assumptionsin (5.18) are Ky =O(1) and %z@(l).

Breidt & Opsomer (2017) lists two conditions for the consistency of the HT

estimator:
D1: limsup<n max |Ayylf<o
N—0 kilEUN '
2
> vk
D2: limsup X&N__
Now NN
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N
2
iyl B VRt Vg
NN NN Ny

Note that =0(1) in (5.18) means that for the

finite population second moment for y, thereis anon-zero constant ¢ such that

kl <o, (5.19)

as the population size increases. This is condition D2. To understand condition D1,
we use the bound proposed by Breidt & Opsomer (2017) for the variance of the HT

estimator in (5.20):

Ny 2 X ‘AN kl‘ N 2
~ 1 & YNk | k#leUp ' N |yk|
VIYyT )< + , 5.20
( HT) Nﬂ’lé N 112 kZ:;]_ N ( )
keU

d= maxarg{i}, that is, d is the maximum weight. Replacing 4, by d in (5.20)

keU Tk
N n
and after simplification using the fact that an =nand f = N we obtain
k=1
V(Yir )= o(lj . (5.21)
n

which converges to zero because  max ‘AN H‘—)O as N—oo. This result is
kel kleUy'

based on the fact that draws from the sample tend to become independent, (e.g.,

m —mery >0 for k#1e€U) as the population and sample sizes go to infinity.
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Although both formulas give the same solution, (5.18) is easier to derive and

interpret.

5.8.2 The Variance Estimator of the Horvitz-Thompson
Estimator

The variance estimator of the HT estimator of the mean Y is derived from (5.16)

after replacing A by A=AQII as

V(Yir |F) = 2 (y@dOS) A(yodos). (5.22)

Reparametrize V(Y7 | F) as asum of the new variable y = e Ak| expanded
Ty 7

by 74, Similar to an HT estimator as

V(Yyr 1F) = Z PRAS (5.23)

keU leU 7K

Continue reparametrizing (5.23) using the following variables
e yeRVN where y :(y®n)TA(y®n).

e S e RN 3 matrix with the sample membership indicators of the 2-tuples

(k,I) where E(S,)=1I, the matrix with the second order probability of inclusion

W -
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2.n2
e As, eRMN the covariance matrix of S, where Ag,=[zym — 7] ad

T 1S the fourth order inclusion probability of the 4-tuples (k,I,m,n).

2
e To avoid tensor notation, we vectorize y and T as vec(y)eRN,

2 \ o
vec(l'[O_l) eRN" (Magnus & Neudecker, 1999). The expression of V (Yt 1.F)

with the reparametrized variablesis
~ o 1 T 1
V(Y |]—")=Fvec(\|1) vec(m°es,). (5.24)
The expected valueis

E(V(Yar )1 7) :izvec(\y)T E(vec(r[@‘l@sz))

, (5.25)

therefore, V(Y7 | ) isan unbiased estimator of V(Y | F).

To study the limiting distribution and bounds of the estimator V(Yiyr |F) as

N,n—>co, we derive the expression of V(XAT(VHT)U-") following the same

procedures from the previous sections.
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V(@'(\?HT )lf) =NL4V(vec(\y om)' vec(Sz)) =

=Ni4vec(\|; %, 1'[)T V(vec(S;))vec(y o II)

1
=N_4ve(:(\|l®l'l)T As, vec(y @ IT) ,
1
N4
2
e (Z5,) [y oyl
SR N

Qas, (vec(y o))

where Apax ():52) is the largest eigenvalue of the matrix
Ts, =As, 0A? @12 o,

2
(”kl _”kﬂl) (”klrm_”klﬂmn) _

2 2

withthe element Ty s, = >
vy ax

An upper bound K Zlmax(zsz) is obtained using the vector induced matrix norms

in ZSZ as
N
g, || = max 2‘2‘52,”‘ 1- norm
1 IEU k:].
N
K=Ec | =max ‘2 ‘ o0-norm
S2leo keU |Z;'_ S2M
T 12 _
s, . =[tf(252,k| Is, )} Frobenius norm

The main difficulty of identifying an upper bound for K isthat it requires examining

the elements of Xg, where the third and fourth order 7ym7mn Of inclusion
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probabilities (7, and m4y,) ae not available or difficult to compute for some

complex designs.

On the other hand, for random sample size designs, we can refine the value of K
3

since Xg, is a diagonal matrix where Xg =[(dk —1)3}={(7r,21—1) } K is the

maximum sampling weight which is equivaent to the smallest 7). Assuming that

2
lyoyl; _

N O(1) then, after using Slutsky's theorem,

1

j 0(1)= O(Fj . (5.26)

- K oyl (1

V(Yiyr) is bounded in probability and h|li£100§7(\?,4T,N)=NliLnQ/'(\?,ﬂ,N)=o. The

2
ly @yllz
N

expression in (5.26) implicitly assumes that is O(1) which can be written

as
) HyezH2 %(yﬁ) % Vi
ly ?\I Yo e_ia LA o), (5.27)

which is the fourth population moment of y. Equation (5.26) is condition D4 in

Breidt & Opsomer (2017). Condition D2 is krlnin {mnK } =4 >0 which we have
y EUN

dready covered since, in order to produce @’(VHT | F), wedivide by A by I which

is defined if minarg{jr |} > 0. Theresult in (5.26) is found in the literature.
k,leU
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We illustrate the speed of convergence varies and we can even find situations where

V (Yigr | ) will not become zero as N — oo Substitute X¢ by v in ||y©y||§, then

an upper bound of ¥(Yyry), in tems of the population mean Yy, is
%A/(VHT,N)S KXZ =KyNZY. If we define {Yn}ny @ @ sequence of real

constants, yy € RN where Yy =O(NP), then the value of p such as V(Y1 )

does not converge, eg., V(Yurn)20p(1), is pz—%. If —%< p<—% then

_ _ , 3 >
V(Yyr,n) converges at a slower rate than (’)p(N 1); it p<—7 V(Yar )

converges at afaster rate than O, ( N_l) .

5.8.3 The Central Limit Theorem and the Horvitz-
Thompson Estimator

Deriving the asymptotic normality of a design-based estimator is a difficult topic. The
Central Limit Theorem (CLT) for finite populations has only been rigoroudly justified
for some designs (Cardot, Degras, & Josserand, 2013). Proof for equa probability
sampling is found in Madow (1948), Erdds & Reényi (1959), and Hgjek (1960) while
Haek (1964) proved the theorem for reective Poisson sampling with varying
probabilities and Scott & Wu (1981) for the ratio and regression estimators under
simple random sampling. In general, the finite population CLT proofs are technically

difficult and omitted in most textbooks. Using the multivariate approach for the
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random vector S and the fixed finite population y provides an alternative approach

for proving the theorem for some designs.

Consider al designs where the sampling units are independently drawn without

replacement, =y =mm; for k=l eU . Examples of these designs are Bernoulli and
Poisson. Using the re-parametrization described in Section 5.8.1, then \?HT =S with
E(Sc|F) =Yk, and V(S|F)=yk(dc~1). By the Lindenberg, Lévy, and Feller

version of the CLT for independent random variables with different means and

variances (see Theorem 6.1 and Corollary 6.3 in Polansky 2011), the sequence of

estimators {Zy }_; ZN=NTN1(\%HT,N _Y_N) and 7y = >, V(Sw|F) has a
keUy

limit distribution A(0,1) if >’ E(|SK—yk|")=o(r',(,) for some n > 2.
kEUN

For other designs, where S, and S are correlated, the Lindenberg-Lévy-Feller CLT

assumption of independence may be weakened. For example, if we redefine the

o0 —

sequence {\?HT,N } o {SN }::0 as a sequence of dependent and correlated random

variables and we assume the following conditions hold:

B(Snl A ) =tnk <o,

V(Sn1Fn )=t Nk <o, and (5.28)
lim NV(Sy 17y )=t €(0c0).
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1 _ o
where ,uN,k:NZﬁk,and TN = z V(SNklfN)-'_zzC(SNk’SleN) for
keU keU n k=leU

N — oo . Several mild technical conditions but different from author to author need to
be imposed beyond those for Lindeberg-Lévy-Feller to derive Central Limit
Theorems for dependent correlated sequences. Most authors claim a limiting normal
distribution by appealing to the specific version of the centra limit theorem. For
example, Breidt, Opsomer, & Sanchez-Borrego, (2016) clam normality after

invoking Lyapunov’s version of the central limit theorem.

5.84 The Design Consistency of the Horvitz-Thompson
Estimator

There are different ways to establish consistency of a sequence of estimators
{éN }ONO—1' For example, Lehmann (1999) gives a sufficient condition for an estimator

to be consistent when the sequence of estimators converge to a constant in quadratic

mean. This condition is demonstrated for the HT estimator using the same

reparameterization of (5.12) with S=d©y © S. The expected value and variance of

the HT estimator, Y =% > §.is
keU

v (Yr |f)=i[ 3 ZASszi( > V(S1F)+ X3 C(5§ |]-“)j, (5.29)

2 2
N keU leU N
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where theterms > > C(S. S | F) are not zero. Let {\?HT N} be the sequence of
kel €U S IN=L

HT estimators, where \?HT,N _ 1 > S then
NN kEUN

> AN
- ~\2 V(YHT,NU:N) 2 2
P{(YHT,N —YN) Zeﬁ}ﬁ h _ 12 keUn keLZJN
EN N EN . (530)
2
kIl
eiNn  Ni

Since (5.30) holds for any &) >0 then the sequence of HT estimators {\?HT N} is
" IN=1

consistent for Yy, . Note that this condition holds for both random sample size and

fixed sample size single stage designs.

For our discussion, to prove that a sequence of estimators {éN}:_l is design

consistent of the population characteristic 8y, we use two sufficient conditions to

establish design consistency (Remark 5.3.1 and Exercise 5.18 in Sarndal, Swensson,

& Wretman 1992):

A

(&) The sequence of estimators {6 “ from sequences of sample sizes
NJN=1

{ny } 1y drawn using sample designs { py (Ay =ay )}::1 from the sequence

of increasing sample sizes {Ny}y is

of populations {Fy}y N1’

=1

asymptotically unbiased for a population characteristic 6 , that is
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N|iLnoo[E(é,\, )-0n } -0. (5.31)

N

(b.)  The variance of the sequence of estimators {GN}:_l goes to zero as the

sample and population sizes go to infinity (e.g., V(§N|f)<oo and

lim V(6 |7)=0).

N—0o0

The design consistency of the HT estimator of the mean is proven using the results
(5.13) and (5.18), the sequence of HT estimators {\?HT N} is design consistent
"IN=1

for Yy -

5.85 The Confidence Intervals and the Horvitz-Thompson
Estimator

In this section, we derive the asymptotic properties of the confidence intervals (Cl) of
the HT estimator of the mean. Confidence intervals are created by identifying a
function of the observed sample data that produces an interval or region containing
the true parameter value with a probability o (e. g., 100a % or confidence
coefficient) that is specified before selecting the sample (Polansky, 2011). Cls are
created by inverting a statistica hypothesis test or a pivotal quantity defined as a
function of the data and the unknown parameter 6, whose distribution does not

depend on € or any other unknown parameter (Casella & Berger, 2002).
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Since we use the results of the CLT, the confidence intervals also refer to a sequence

of random variables. For example, for the sequence for the HT estimator {\?HT N}
N\

0

of Yy, the function Z= N1’

, the sequence is {Zy} where

Yur.n— YN
\/V(\?HT,N |7:)

Zy = . The limiting distribution of {Zy}(_, is A'(0,1) as N — .

For confidence intervals, we define the sequence {CN (o | Ay )}C:l:1 in terms of the
upper and lower limits as
Cn (o Fn)=

{VHT,N +\/V(7HT,N |-7:N)Z(1—a)/2’VHT,N +\/V(\7HT,N |-7:N)Z(1+a)/2

} . (5.32)

When V(\?HT,N |]—“N) is not known we replace it by @'(\?HT,N |]—“N), and the revised

Yhr.N N

— converges to a normal
\/V(YHT,N |~7:N)

sequence {Z*N}:=1 where Zy =

distribution. This result follows because the sequence {@(\?HT,N | Fn )} is a
=1

consistent estimator of V(\?HT,N | Fn ); using the theorem for functions of consistent

— P
estimators, \/V(YHT,N | A ) > [¥(Yir n | 7y ) - Combining all these resuits,
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lim Pr[\?N eCy (a | 7y )]

N—o0

= h'j'_”)‘ Pr[\lV(VHT,N | Fn )Z(l—a)/z <Yy —VYir < \/V(VHT,N AN )Z(1+a)/2j|' (5:33)

=qa
In other words, the sequence of upper and lower limits of the confidence intervals

Cn (a | F) areasymptotically accurate.

5.9 Properties of Estimators as Nonlinear Functions of the

Elements of S

All PA estimators are functions of S, which is a consistent estimator of . We can
derive the asymptotic properties of new estimators under regularity conditions that
depend on the type of function. In Section 5.8 we derive the large sample properties

of the HT estimator whichisalinear function of the §, €S.

For estimators such as the HJ and ratio estimators, the function is nonlinear; that is,

the estimator is aratio of linear combinations of S €S. For this type of estimators,

the variance is derived using the linear approximation of the nonlinear function using

thefirst two terms of the Taylor Series (TS) expansion.

The PA estimator of the mean of the population characteristic 6 is defined as

f RVN>R , the vector-to-scalar valued function twice differentiable, where

é(s)=%dT(5@f (9)). (5.34)
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The TS approximation of 5(8) evaluated at the point S=mx. is

- 1 o0’ (Sof (S
0(5)=d"(Sof (9 +5; (68 ( ))L o (5.35)
1 P | |
+ﬁop( S "‘sz

where HS* = nH <|S—a]. Thus, the expected value E(é(s)) is
E(é(sﬂf):%ff(n)+o(N—1), (5.30)

because E(S—n|F)=0 and E(

2 C
S —nH2|]-“ SNE for aconstant C.

The variance V(QL(S)U-“) is

V(ms)m)_é[(@“(sg<S>>_L J A{@dTﬁzf(s))L wo[1). e
The approximate variance of @ (S) is
T
AV(@QIF)-%H“T(S@? (S))J J A[adT(Sazf (S))J (5.39)
S=n S=n

We now derive the regularity conditions that will permit us to establish the large-

sample properties of the PA estimator based on the function f(S) of the discrete

random vector S. We do not include any regularity conditions for the existence and
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uniqueness of maximum likelihood estimators and pseudo-maximum likelihood

estimators which are part of the PA framework (see Definitions 1.7 and 1.10).

Let f(S) bethe PA estimator for population characteristic 6, define the following

1 Let {f(Sy )}(::1 be a sequence of estimators defined by f (Sy ) for a sequence of

nested finite populations {Fy},_, such as Fyc Fy,y for NeN with

=1
increasing population size where each element of the population is identified by

their labels Uy €{L,..., Ny .

2. Each population Fy e{Fy}\_, in the sequence fNr:(er,fo)eRN'X(Pﬂ)

consists of a vector with the population characteristic of interest yy: € RN*T and

amatrix Xy e RN*P with P-auxiliary variables.

3. Let {Sy }C:I:l be a sequence or random vectors with the sample membership

indicators associated with the sequence of populations {7y }E e

4. Each k sample membership indicator S €Sy is associated with the k

dement of the finite population Fgy =(VYiv . Xkw) for keUy  for each

SN' € {SN }§=l and .7:N' S {‘7:N }E=l'
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0

5. For each SNIE{SN}N:]_’

the expected value and variance-covariance of Sy,
E(Sy)=nn  and  C(Sy)=Ap, uniquely define sample design
pn' (A =ay’) for the population N’ in the sequence of sample designs

0

{Pn (A =2y )}y, associated with {7y} .

0

6. For each SNre{SN}Ezl in Ay e {Fn oy

the sample design is measurable,
that is 7y >0 for al keUy, and zyn >0 for al k=leUy E(Sy)=np

and (C(SN') =AN'.

0

7. For each Sy e{Sy }(;:1 in Ay e{Fnfya

the sample size drawn from the

population Fy is Ny :1}\,rnNr = z iy for fixed sample size designs, or the
keN’

expected sample size is E(ny ) =1y 7y . We assume that  lim %z f (01),
N—oo Ny

that is as the population size goes to infinity, the ratio converges to the overall

sampling rate bounded and away from 0 or 1.3

2 Note that we do not assume that the sample size goes to infinity. The increasing population size affects the

sample design S which affects E(SNV) =my . In other words, the sample size n cannot set separately from

N —o0.
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8. For each y\ e {Fy},_, in the sequence of populations, Fy e{Fy},_,+ the

2
[ynl _

Euclidian norm is bounded, N
N

O(1), as N — oo (for consistency of the PA

estimator f(Sy)).

9. Thefunction f (S) issmooth and twice differentiable.

Let {f (SN )}O:I:l be the sequence of PA estimator f(Sy) (or any other estimator

defined as a function of Sy € Sy ), where the regularly conditions 1 to 9 hold in

addition to the following conditions:

(8) The sequence of estimators {f (SN )}O:IZl is asymptotically unbiased for 6y, that
is

lim E(f (Sy)-f(=))=0. (5.39)

N—o0

This condition can be shown for any PA estimator f (Sy ) using the result (5.36).

(b) The variance of the sequence of estimators {f (Sy )}::1 goesto0as N — oo, that
is

lim V(f(Sy)|Fy)=0. (5.40)

N—o0
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This condition is shown for any PA estimator f(Sy) using the result (5.37), and

it depends on the specific form of the PA estimator and sample design. See the

following sections for specific forms of PA estimators.

Let {@(f (Sn ))}w_l be the sequence of variance estimators of a sequence of PA

estimators {f (SN )}O:IZl that meet the regularity conditions 1 to 9 in addition to

conditions (a) and (b) and the following conditions:

(c) For each yy {7y }ONO=1 in the sequence of populations, Fy e{Fy }flzl, the
2
Euclidian norm of the Hadamard squared of y, is bounded, %HyOZHZ =0(1),

as N-—o>w where yOZ=yOy (for consistency the variance estimator

V(f(Sn))):

(d) The sequence of estimators {@(f (SN))}:_l is asymptotically unbiased for
{V(f(sn))},,_ thetis

lim B(V(f (Sn))-V(f(Sn)))=0. (5.41)

N—0

(e) The variance of the sequence of estimators {@(f (Sn ))}:_1 goesto0as N - o,
that is

lim V(V(f(Sy)|A))=0. 5.42

Jim V(¥ (f (Sy)1 7)) (5.42)
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Both conditions also depend on the specific form of the PA estimator and sample

design. See the following sections for specific forms of PA estimators.

Assuming these regularity conditions hold, let {Z, }[:H be the sequence of estimators

defined as Zy =f (Sy)—f (my ) wherethefunction f:RN — R and

()= (S)LF |

isthe vector of partial derivatives of f(S) evaluated at S=x. If d(=) isnot equal to

the zero vector and d(=m) is continuous in the neighborhood of =, and
o @ d T
(S —7n )NNY2 = A (0,A) (see Polansky 2011) then ZN—>N(O,(d(n)) Ad(n))

as N — o (See Theorem 6.5 in Polansky 2011). As aresult, the limiting distribution

of the sequence of estimators {Z—N} where Zy =f(Sy)-f(my) and

JV(T(s))

where V(f(S))=(d(ny)) Ay d(my) is

N=1

f(S’N)_f (RN) iN(O,l),

JV(H(9)
as N—o. Using Slutsky's theorem, when V(f (S))=(d(nN))TAN d(my) is

estimated by V(7 (S)) = (d(my)) Ay d(my) then

f(Sn)-f(7n) i/\/(o,l).

JV(i(9)
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REMARK 5.3 The nonlinear PA estimators require solving more complex
functions of S such as the inverse of link functions for GAMLSS models (e.g.,
exponential, negative inverse, and the inverse of the root square). The most complex
expression is for nonlinear estimators with weights calibrated to the population and
sample size, w, for keU which are also a function of S, €S. Computing the TS
approximations for these functions require derivatives of products of vectors/matrices
using the matrix chain rule, the derivative of the inverse of matrices, and derivative of

Hadamard products.

REMARK 5.4 Unlike estimating the parameter of nonlinear models that are
solved iteratively (McCullagh & Nelder, 1989), the form of the PA estimator defied

as
has always a closed form since ﬁpa = E(y) where IE(y) depends on the density
distribution of y. Once the model parameters are estimated (they may be computed

iteratively), they are plugged into the expression of p=E(y) of the working model

(see Section 1.5.1).

REMARK 5.5 The expressions (5.37) and (5.38) do not reflect the
variability from the model selection. Modifications to these expressions to reflect the

model selection variability will be the topic of future research.
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REMARK 5.6 Some of the regularity conditions described above are
identified based on the properties of the variance covariance matrix A listed in
Section 5.3, the redefinition of the sample design as a function of the discrete random
variable for the sample membership indicator in Section 5.8 have not described

beforein the literature.

59.1 The Hg ek Estimator

Let y be the variable of interest with a superpopulation model M, where

Yk ~N(ﬁ,02), B R, isthe location parameter. Let F be a finite population
consisting of N iid realizations of M. Let S be a random discrete vector that

uniquely defines the sample design p(S=s) with E(S)=n and C(S)=A that

meets the regularity conditions listed in Section 5.9 on page 252.

The PA estimator with this working model, the auxiliary variable 1, the tota

population N isthe HJ estimator:

R T R
g _d (yos)

HJ dTS — F pmle (543)

The HJ estimator is anonlinear function f : RY — R where f (S) :% , the numerator

and denominator are linear functions of S, with a(S)=d"(y©S) and b(S)=d'S.

Using the results from Section 5.9, we approximate \?H , by the first two terms of the

TSof thefunction f. (S) at the point S== as
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(S=m)+0,(Is-z)- (5.44)

S=n

~ T
A
S=n aS

We focus on the term OYug
oS

which is a scalar-by-vector, partial, directiona

S=n
derivative with respect to the random vector S. Using the chain rule for derivatives of

matrices

Ny _doyol (doy)'s

as\ d’s Tg)? (do1)
S=n (d S) S=n
doyol Y 1 -
=T_W(d01)zﬁdo(y_m’ (5.45)
1
-—d
Jdoe

where e=y-Y is the vector of residuas of the model M, fit to the entire

population. The approximate variance of \?H R

AV(\?HJ):év((d@e)T(S—n)) e
:%(d@e)u(doe) |

The estimator of the variance @'(\?HJ), computed by replacing the unknown

population quantities by their sample-based estimates, is

V(\?HJ)z 1 (d@é@s)TA(dOéQS), (5.47)
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where é=(y—\?HJ )@s are the sample-based residuals of the PL model, NHT =d's

A

and A=AQ@II. The expression (5.47) matches the variance estimator of the HJ

estimator in sampling books (Cochran, 1977).
Using the same arguments in Section 5.9, since the PA estimator \?H 5 isanonlinear

function of S then the sequence of PA estimator {\?GREG N} is design consistent
N o

of the population mean Yy, . The limiting distribution of the sequence of estimators

o0 o0

YhaN — YN

V(VHJ,N)

Yo N —YN

V(VHJ,N)

and is N'(0,1).

N=1 N=1

59.2 The Classical Ratio Estimator

Let y be the variable of interest with a superpopulation model M,y with
yk~N(XkB,xk02), where x e R,q is the auxiliary variable, g eR_q is the

location parameter, and X =1"xeR is the population totals. Let F be a finite

population consisting of N iid realizations of M. Let S be a random discrete
vector that uniquely defines the sample design p(S=s) with E(S)== and

C(S)=A that meets the regularity conditions listed in Section 5.9 on page 252.
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The PA estimator with the normal working model A, the auxiliary variable X,

and the population total X isthe RA estimator:

yos) -
RA d (X S) ﬁpmle ( )

The RA estimator is a nonlinear function f:R™ >R where f(S):%, the

numerator and denominator are linear functions of S, with a(S)=d"(yoS) and

b(S)=d" (x©S). Using the results from Section in Section 5.9, we approximate \?RA

by thefirst two terms of the TS of the function f. (S) at thepoint S== as

(S=m)+0,(|s-al;). (5.49)

We focus on the term Nea which is a scalar-by-vector, partial, directiona

S=n
derivative with respect to the random vector S. Using the chain rule for derivatives of
matrices

Nea| | (doy)' dT(yos)(dox)'

oS S dT(X@S) (dT(XQS))Z

S=n
(doy) Y(dox)'

= 5.50
X X 2 (550)
1 Y 1
—2do|y-x—|==do(y-xR
X O(y xj x40 R)
1
- ~doe
X O
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where e=y-Y is the vector of residuals of the model M, fit to the complete
population. The approximate variance of \?RA is

)=t

AV (Yra) 2 (d oe) A(dOe) (551)

The estimator of the variance @(\?RA), computed by replacing the unknown

population quantities by their sample-based estimates, is

@(?m): xi (doeos) A(doEos), (5.52)
HT

where é:(y—inHT)Qs are the sample-based residuals of the PL model,

T
QHT:M, XHTsz(x()s), and A=AQ@II. The expression (5.52)
d' (x0s)

matches the variance estimator of the RA estimator in sampling books (Cochran,

1977).

Using the same arguments in Section 5.9, since the PA estimator Y, is a nonlinear

0

function of S then the sequence of PA estimator {\?RA N} is design consistent of
N o

the population mean Yy . The limiting distribution of the sequence of estimators

o0 o0

Yea N | gg ) RATN L s Ar(0,0).

[ Gy
N=1 N=1
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5.9.3 The Linear PA Estimator (GREG)

Let y be the variable of interest with a superpopulation model M, where
yk~/\/(xk[5,02), Xk=(Xk1,...,ka)€R1xp is the vector of auxiliary variables,

Bz(ﬂl,...,ﬁp)TeRPX1 is the vector with the location parameters, and

X =1"Tx e R*P isthe vector of the population totals of the auxiliary variables x. Let

F beafinite population consisting of N iid realizationsof M. Let S bearandom
discrete vector that uniquely defines the sample design p(S=s) with E(S)== and

C(S)=A that meets the regularity conditions listed in Section 5.9 on page 252.

The PA estimator of the population mean Y based on the model M y IS

el 1.~ 1 _ A~ 1~
YGREG :NXB pmle =NXTxx]Txy ' (5.53)
where T =(S0dox) xeRPP, 'T'Xyz(SQd@x)Tye]RPXl, and

ﬁpm =T;X]’i“xyeRPX1. This expression 5.53) matches the GREG estimator in

Sarndal, Swensson, & Wretman (1992).

The variance of Ygpeg iS

V(\%GREG)=$XTC(I§pme)X-
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Using the results from Section A.3.2 for the variance-covariance (C(ﬁ pm|e) in (A.22),

the approximate variance of \?GREG is
2~ 1 _ _
AV(YGREG ) _ WxTTxxl(x odoe) A(xodoe)TEX. (5.54)

The expression of AV(\?GREG) matches those in Sérndal, Swensson, & Wretman

(1989), Binder (1996), and Demnati & Rao (2004) which includes the g-weights. This

expression does not reflect the effect of the model selection on the variance estimator.

The variance estimator @'(\?GREG), computed by replacing the unknown population

guantities by their sample-based estimates, is
T(y. _ 1 ra N Rl T
V1 Yerea —WXTxx(X@d@eG)S) A(xOdOeos)TuX', (555

where é:(y—xf} pm|e)os are the sample-based residuals of the PL model, 'T'XX 15

the matrix of the HT estimates of the cross product x'x,and A=AQTI. Us ng the

same arguments in Section 5.9, since the PA estimator Ygreg iS anonlinear function
~ o0
of S then the sequence of PA estimator {YGREG N} is design consistent of the
" IN=1

population mean Yy . The limiting distribution of the sequence of estimators

o0 o0
YGREG,N — YN

V(Y_GREG,N )

Y% Y,
and | —ECN N is V(0,1).

V(Y_GREG,N )

N=1 N=1
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594 The Nonlinear PA Estimator for Poisson Model with

thelog Link Function

Let y the variable of interest with a superpopulation model M, where
Yic ~ Poisson(4), E(yi)=4, 10g(A)=xB, X = (X, X ) € REP s the vector
of auxiliary variables, B:(ﬂl,...,,Bp)TeIR{PXl is the vector with the location

Rle

parameters, and X = 1"x e is the vector of the population totals of the auxiliary

variables x. Let 7 be a finite population consisting of N iid realizations of M.
Let S be arandom discrete vector that uniquely defines the sample design p(S= s)

with E(S)=n and C(S)=A that meets the regularity conditions listed in Section

5.9 on page 252.

The PA estimator of the total Y based on M, with Poisson model, the location
parameter 65 =Xp, log link function, the auxiliary variables x, and population totals
X,is

Yoo =d" (fipa ©8), (5.56)
where i, is the vector PA adjusted fitted mean of the model where

Hpa = eXp(XBPAQ S) and d =[dy ]=n"" = L—lk} e RN are the sampling weights.
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Using the results from Section 5.9, we approximate \?po by the first two terms of the

TSof thefunction f, (S) at the point S=n as

(S=m)+0,(|s -al3). (5.57)

A

We focus on the term 5(;(_;0 which is a scalar-by-vector, partial, directiona

S=n
derivative with respect to the random vector S. To compute the approximate

variance, we use (5.38) as

“ R T n
AV (Ypo) = (d Ofipe) A(d O fime)

+(aﬁpa(n)jTA(8ﬁpa(“)]_ (5.58)

0S oS

+2(d O fipe) A( =

When computing the variance, we distinguish the following terms

 \} isthe component of the variance of the HT estimator with the variable fi

Vi =(dOfime) A(dOfime)- (5.59)

e V, is the component of variance for the linearized part of ﬁpa represented by

~ T -
2 2
v, =| Hea | s Mpa (5.60)
oS oS
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aupak::ﬁ anBpa
oS pak ™ 5g

Since and using the results from Section A.3.3, this

component can be decomposed in the following components.

V,; is the component of variance from the model fit g™ (fie) = XBme With the

residuas e= e —g(xfimG) as

Vo1 = (fime ©x0 €)' A(fime ©xOe). (5.61)

V,, isthe component of variance from PA adjustment fx made to the regression

coefficients ﬁpm|e as

A

Bmiep Briep

Voo = ﬁmIeQX—Xp@dQeJ A{ﬁmlee

x,0d0e|, (562

p p

or Vor =0 if p=qe{l...,P}.

V,3 isthe component of variance from the correlation between the PA adjustment

and the model fit g™ (1 e) = XBme 3

ﬂMap

;
st{ﬁmle@ xdeOeJ Alfime ©xp©dOe)

P , (5.63)

) T (. B
e ©x,0d0e) Al fime 022 x, 0dOe
Xp

or Vos =0 if p=qe{l..,P}.
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e V3 is the component of variance form variance-covariance between the HT

estimator with the variable ﬁpa, the PA adjustment, and the modd fit

g_l(ﬁmle) = Xﬁmle a

A

ﬂMap

VS_Z(FA‘mIeOXOe)TA(!:‘MeO Xp GdQeJ

p
+2(ﬁm|e@xge)TA(,1m,e@xp@d@e) : (5.64)

ﬁMap

;
+2{ﬁm|e© xp(DdG)eJ Alfime©xp0dOe)

p

or V3=0if p£ge{l..,P}.

The approximate variance is the sum of al these components as
AV(Y’\po) :Vl +V21 +V22 +V23 +V3 . (565)
The variance estimator V(\?po) is computed by replacing the unknown population

quantities by their sample-based estimates, that is e:(y—xﬁpme)@s, Bme by

Rpmies Txx DY To,and A=AQII.

The variance estimator @(,é pa,p,ﬂA pa’q) is computed by replacing the unknown
population quantities by their sample-based estimates, that is, e= ﬁrﬂe—g_l(xfi,ﬂe)
by é:(ﬁprﬂe—g_l(xfi pm|e))Os, Tyx » DY Ty , the matrix of the HT estimates of the

population of the cross product totals of x, and A by A=AQII.
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5.10 Defining a Sequence for the Populationy in Survey
Sampling Asymptotic Theory

In this section, we elaborate on some conditions for design consistency that are not
often discussed in the current literature. In standard statistical asymptotic theory, the
large sample properties of estimators and statistical tests are assessed assuming that
sample size n goes to infinity (Polansky, 2011). The standard approach for the study
of the asymptotic properties in surveys was established in Isaki & Fuller (1982), and

numerous papers use this approach. Isaki & Fuller's setup assumes an indexed

0

sequence of nested finite populations { 7 },_, With labels {Un={L...Ny }}N:1 and

associated probability samples {AN}Ezl

drawn according to a sample design
{Pn(Av =ay )}0:1:1 from each finite population in the sequence. In this setting, both

the finite population size Ny, and sample size ny increase to infinity but the ratio is

finite, since by definition, lim I:—N: fy = f €(0,1) with conditions such as
N—o Ny
N—o0

. 1 . .
limsup— z yE<oo and limsup<sn max ‘AN,H‘ <o (for the variance of the
N—oo NN keUp N o0 k=leUy

HT estimator to converge to 0), or I(rlnin {nw}2A>0  and
,EUN

. 1 . . .
limsup—— "y <oo (for the variance estimate of the HT estimator).
N—o0 N keUN
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Although this approach is sound, the consistency of the sequence of estimators
depends on the sequence {yy }y,_, ad {my}y_, Which are not explicitly defined,

except for y which is assumed to have finite popul ation moments.

A complete study of the asymptotic properties of an estimator requires examining the
limiting behavior of quantities that are used to compute the estimator. For example,

consider the expected val ue of the estimator described in Section 5.7,

Z(S)= E(i Ts} - Lamn,
N N

with the corresponding sequence of estimators {Z }flzl. In order to determine the

large sample properties of Z, we need to define the limiting behavior of a, n, and

A, as N—o. When N increases, the size of the vector Sy also increases. The

increasing size of Sy affects my, Ay, and ay; they also increase in size. For

example, the condition that my is finite leads to ny :1TNnN <o, where ny . the
sample size in the population Ny, is not sufficient since it does not describe the

relationship between ny and Ny as Ny increases.

A way to solve this dependency is by linking the limiting behavior of ny and Ny as

lim N _ €(0,1). This limiting sampling rate also implicitly links the behavior

N—0 NN
N—o0
. . 1-[57[[\] .
of my and Ny . The sum of = isthe same order of N, that is, the term N. is
N
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(’)(1) . This order means the sum of the elements of my can go to infinity, but it must

be of the same order of N . This order also implies that the sample size n cannot be

set separately since it depends on the design. When we indicate that N — o and
n— oo suchas n/ N — f , what we mean isthat 1],y — o, S0 the proprieties of S

are being defined since by definition, minarg{z,}>0 and A must meet the
keU

properties of Hermitian matrices in addition to the properties of the type sample
design (See Sections 5.2 and 5.3). Both properties aso imply that

7N maxk = MaX arg(my )=O(N). However, the limiting behavior of Zy aso
N

depends on ay , which may not be related to my, . In other to keep the order O(1) in

yL“N
Ny

, the sum y{my needs to be O(N). This order is achieved when

yhln =0O(2), since my is O(N).

Define {yy },_, @ @sequence of real constants where Yy :(’)(NP), that is that the

mean of the population increases in {7y }y_, but it is bounded by O(Np). Let
{\?HT N} be a sequence of HT estimators of Yy, from samples drawn according to
" IN=L

the sample designs { py(Ay =ay )}Ti:1 from the populations {7y}, _,. Let
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{V(\%HT,N | Fn )} be the sequence of variances of \?HT’N . From Section 5.8.1, the
N_

upper bound of V(Y pr | Ay ) is V(Y mr |fN)s KnYi3, since %”y,\,”g < NYZ.

The vaue of p such as V(\?N,HT |]—“N) does not converge, e.g,
_ 2

V(Ya,nt [ Ay )2 O(1), is obtained by solving the expression ((’)(Np)) >0(1). If

Yy grows a the same rate as the population size N, eg, p=0, then

V(Yn,n7 | Ay ) does not converge. If —%< p<1then V(Yy pr |y ) converges at
a sower rate than (’)(N_l) and if p<—%, it converges at a faster rate than

(’)p(N‘l). If the mean of the population stays constant as the population increases,
then Yy :O(IogN)SO(N_l), then V(Yyr ) converges at a much faster rate to

zero than O(N71). One implicit assumption in this development is Ky =0O(1) as
N

N —>ow.

These results provide guidelines for the study of the asymptotic properties of the
estimators through simulations, since they describe how the different finite
populations can be generated depending on the relationship between the N, =, and
y as the population size increases. Notice that we assume that the model does not
change as N — . See McConville, Breidt, Lee, & Moisen (2017) for the case that

the number of regression coefficientsincreasesas N — .
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Chapter 6 Final Comments

In this paper, we introduce the PA framework for estimation with full response.
The PA framework is a methodology for producing efficient estimators by
targeting the auxiliary variables related to the outcome or outcomes. A key

application is variable selection for efficient calibration estimators.

Despite using models, the PA estimators are model -assisted (in contrast to model-
dependent), asymptotically consistent, and their properties do not depend on
whether the model holds or not. Inferences depend on the sampling strategy or

sample design used to draw the sample.

All PA estimators are sums of expanded estimated adjusted means of models
where the model parameters for location, scale, and shape are functions of linear
regressions of the auxiliary variables. Different auxiliary variables and model
parameters produce different PA estimators. The PA framework establishes a link
between standard statistical theory and design-based estimation. The approach
justifies the use of standard statistical modeling for building working models and
estimators within the design-based paradigm. The modeling approaches provide a
metric for identifying the functional form of the model and for selecting the
relevant auxiliary variables of the model. Current model-assisted approaches do

not provide such metrics.
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The PA estimators are derived algorithmically from the observed sample. Since
the PA agorithm evaluates a pool of models, it avoids reliance on specifying a
single working model with a specific set of auxiliary variables without a clear
rationale. Since the metric and model are well defined, the creation of algorithmic
PA estimators can be fully automated. Current practice does not provide such

tools.

If the working model and set of auxiliary variables are specified, then the PA
methodology reproduces most classical survey estimators using the algebraic PA

approach.

Even complex estimators such as the Deville's Euclidian distance calibrated
estimator and Sarndal’ s generalized regression estimator (GREG) are aso specia
cases of PA estimators. Furthermore, asillustrated in examples, new design-based
estimators can be derived or engineered when the working model and auxiliary

variables are specified.

The focus of the PA framework presented here is the estimation with full
response, but the proposed methodology is a stepping-stone towards the

development of estimation in the presence of nonresponse.

The presented framework also can be extended to estimators for domains,
estimators from a cluster and two-stage designs, and estimators for other
population characteristics such as the population distribution function and order

statistics (i.e., quantiles and median).
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The loss function in the current implementation of the PA algorithm is based on a
sample-based version of the AIC, although other metrics for goodness of fit could

be used.

A very important line of research is accounting for model selection. The challenge

isto ensure statistical inferenceisvalid following PA variable selection.

Finally, the approach we have used treats the sample design as having a
multinomial distribution, and design-based estimators are functions of the random
vector of the membership indicators. This approach provides a different way to
study the survey sampling estimation theory. By using matrix notation and matrix
operations, the PA framework facilitates obtaining asymptotic properties by

relying on results from standard statistical theory.

We believe this approach is better suited for concepts such as the asymptotic
relative efficiency of design-based estimators, providing insights on the efficiency

of estimators when the sample sizes are small.
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Appendix A Supplemental Plots and Proofs

A.1 Figuresfor Simulation Study in Section 2.2

This section contains the plots with relative bias (RB) and relative efficiency (RB)
of the scenarios in the simulation study described in Section 2.3 on the evaluation
of the performance of linear and nonlinear algorithmic PA estimators (see Section
A .4 for the definitions of empirical measures). There are nine figures grouped by

the distribution of the population:

Population Figures
Binomial (binary data) Al1toA3
Poisson (count data) A4t0A.6

Gamma: Continuous positive data with a constant coefficient of | A.7t0 A.9
variation

Each figure shows the RB and RE of estimators of the total population under
repeated sampling (100,000 draws) from sample sizes drawn with a constant
sampling rate ranging from 100 to 1000 cases with a fixed sampling rate of 0.05.
In each plot, the vertical axis corresponds to the sample size from 100 to 1,000.
The vertical axis on the left plot is RB while on the right is the RE; both are
shown in percentage points. In each figure, the rows show the estimates by model

strength measured by o, x . The top plots correspond to low (o, x =0.3), the
middle plots are medium (o, x = 0.6), and the bottom plots are high (o, x =

0.9). Within each population, the first figure shows the results for samples drawn
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using simple random sampling (SRS), the second for sampling with probability

proportional to size (PPS) and the last for Poisson sampling (PO).

Additional information on the factors and models for this study is found in
Tables 2.3 and 2.5. The expressions of the estimators are listed in Table 2.4. The

following symbols identify the estimators on plots A-1 to A-9:

Estimator Symbol
H§ ek HJ

Model Calibrated MC

Generalized Regression GREG
Algorithmic Linear Parametric LNPA
Algorithmic Nonlinear Parametric NLPA
Algorithmic Non-linear calibrated PA NLCA
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FigureA.1 Relative Bias (RB) and Relative efficiency (RE) of seven
estimators as a function of the sample size for the population with
aBernoulli distribution with SRS designs.
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FigureA.2 Relative Bias (RB) and Relative efficiency (RE) of seven
estimators as a function of the sample size for the population with
aBernoulli distribution with PPS designs.
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FigureA.3 Relative Bias (RB) and Relative efficiency (RE) of seven
estimators as a function of the sample size for the population with
aBernoulli distribution with PO sampling designs.
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FigureA.4 Relative Bias (RB) and Relative efficiency (RE) of seven
estimators as a function of the sample size for the population with
a Poisson distribution with SRS designs.
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FigureA.5 Relative Bias (RB) and Relative efficiency (RE) of seven
estimators as a function of the sample size for the population with
a Poisson distribution with PPS designs.
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Figure A.6 Relative Bias (RB) and Relative efficiency (RE) of seven
estimators as a function of the sample size for the population with
a Poisson distribution with PO sampling designs.
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FigureA.7 Relative Bias (RB) and Relative efficiency (RE) of seven
estimators as a function of the sample size for the population with
a Gamma distribution with SRS designs.
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FigureA.8 Relative Bias (RB) and Relative efficiency (RE) of seven
estimators as a function of the sample size for the population with
a Gamma distribution with PPS designs.
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FigureA.9 Relative Bias (RB) and Relative efficiency (RE) of seven
estimators as a function of the sample size for the population with
a Gamma distribution with PO sampling designs.
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A.2 Sample-Based AlIC Estimator

Akalke (1981) defined “an information criterion” (AIC) as the estimator of
EyEX(Iog(g(x|é(y)))) as
A|C=/Kizm=—2|og(£(é|y))+2p, (A1)

where Iog(ﬁ(él y)) is the numerical value of the log-likelihood at its maximum

point, which corresponds to the values of the maximum likelihood estimates of 6,
and P is the number of estimable parameters in the model. The latter term is a
correction bias. The subscript mle indicates that the AIC is based on the MLE

estimators.

We derive the sample-based AIC, dAIC as a plug-in estimator. Assume the
function AIC fitted to the population is sampled using a design defined by S
such as E(S)=n and V(S)=A, then the sample-based estimator of AlCmie

used in the PA framework is dAIC defined as

dAIC= AlCpme=—2Y" dk@|og(4<(é|y))+2p. (A.2)
keU

Equation (A.2) is the sample-based version of the AIC used in the PA approach.

Although E deSKIog(Lk(ély))lf =Zlog(£k(6f|y)), there is no

keU keU

assurance that E(Afcpmm):/ﬁ:m since E(P|F)=+P or the number of
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parameters of the PML fitted to the sample, is an unbiased estimate of the number
of parameters of the ML fitted to the entire population. Other alternatives address
this problem but at the population level. One approach is the Takeuchi's

Information Criterion (TIC, see Takeuchi 1976) which replaces P by
~ -1
e[ 3(6)z(6) ).

The TIC is then an asymptotically unbiased estimate of the expected K-L

information. However, Burnham & Anderson (2003) describe the problems with

this approach since the estimation of the Jacobian J(é ) and Information matrix

T (é ) adjustment are computationally expensive and unstable in small samples.

Lumley & Scott (2015) implements the AIC based on the TIC by replacing P by

~ -1
the sample-based estimate Tr(J(Q)I(Q) j in the instruction AIC from the R

package survey (Lumley, 2012). Our experience confirmed the issues with this
approach because this instruction computed imaginary values in the simulation

runs.

We decided to use the number of parameters P in the PMLE because of the
mathematical simplicity (i.e., count the number of parameters in the model). The
reason being that it is unredlistic to assume that the PML model fitted to the
sample can accommodate the same number of parameters as the ML modd fitted
to the population since the sample size is smaller, sometimes in severa orders of

magnitude than the population size. We do not expect to fit the same number of
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parameters in the population model using asample. The empirical results from the
selection of variables based on the PA version of the AIC and the fact that the PA
estimators perform dlightly better than knowing the true model provide support

for the use of thisversion of the AIC.

A.3 Theorems

A.3.1Proof of Theorem 1.1

THEOREM 1.1 Assume a sequence of finite populations {Fy}_, of
increasing size Uy ={L...,Ny }_, ad samples {ny }y_, drawn according to a
sample design { PN (AN =ay )}::1 satisfying the regularity conditions in Section
5.9 on page 252. The sequence of PA adjustment factors {fX,N }:121 convergesto

the identity matrix | e R™P as

N|iLn001+:«:,(fX,N ~1|F)=0.
N—o0

We need to show that PA adjustment factor, fx =DXD§(1€IR{PXP, is a design

RPXP

consistent  estimator of the identity matrix |e where

Dy :diag(dT(xC)S)) is the diagonal matrix of the Horvitz-Thompson (HT)

estimates of the auxiliary variables Xy =(Xq....%p) for keU,
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Dy :diag(lTX) Is the diagonal matrix of the auxiliary variable population totals
X =1"x=(Xq,..., Xp) e R*P, and S€{0,1} isadiscrete random variable for the
design p(S=s) defined by E(S)=mne(0)"" and C(S)=AcRVN, and

d=n®1= [dk]=[7k] € RN is the vector with the sampling weights defined as

the inverse of the probabilities of inclusion.

Using the first two terms of the Taylor’'s Series expansion of the function fx (S)

evaluated at the point S=m, we can appropriate fx as

- - or
Px(8)=Tx|g +ZX (8-m)+Op(|s-l3). (A3)

S=n

To avoid tensor notation, we work on the elements of the diagonal T'y . (S) using

the aternative definition of fx as a diagonal matrix with the ratios of the

population defined as

X
. XM fp=q
Fxpe | =1 X1 . (A.4)
0 Ifp=g

for p=qe{l,...,P} . Thefirsttermis

~

X
Iy P

p‘&n:dT(xp@s)

| X :M:L
_ld (pom) | [ X

Working on the second term with the partial evaluated at S=m:
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N

oy,
oS

_ 0 Xp _ Xp(doxp)T‘
T80T (xp09) |
— 17T

S=n

.
—_ Xp(doxp) 2=—Xp(d@xk)T . (A.5)
(dT(XpG)n)) XIO

T
_MEH@XN
p

Condition (a): The estimator r Xp isasymptotically unbiased for 1 as

E(fxp)zE(l—(d o Xp)T(S—n)+O(%D
=1+o(%j

whereit is the same for all elements of the diagonal, so ]E(fx ) =1+ O(%} :

(A.6)

Condition (b): The variance of estimator %fx goes to zero as N —>o. We

begin by rewriting the variance of T X, & afunction of the variance of Xyt p &

V[fﬂ]—v M(S—n) +o(iJ

P . (A.7)
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Since we aready proved that V()%HT,p) goes to zero as N — oo, then the same
applies to the totals in diagonals. Since conditions (a) and (b) are met, then the

~ 0
sequence of estimators {FN’X}N—l is adesign consistent estimator of | .

The approximate variance-covariance of fx : (C(fx ) ,is

(A.8)

where AV()ZHT,p) is the approximate variance of the HT total of the auxiliary

variable x, computed as AV()ZHT,p)=(d®Xp)TA(d®Xp) for pe{l..,P}.

The variance-covariance estimator of T, C(T' ) eRPP is

@(f“x)_diag{v():(?’l),...,V(i%T'P)J, (A.9)

where ¥(Xpr ) =(d0x,) A(dox,) and A=A 1.

A .3.2Variance-Covariance of §,,,. inaNormal Linear Model

Let y the variable of interest with a superpopulation model M, where
_ ( 2) _ 1P - - .

Y ~ N (XkB:o “ ), X =(Xcp,-.. %p ) € R™T is the vector of auxiliary variables

and Bz(ﬁkl,...,ﬁkp)T e R™? is the vector with the location parameters. Let F
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be afinite population consisting of N id redizationsof M. Let S bearandom
discrete vector that defines the sample design p(S=s) with E(S)==n and

C(S)=A that meets the regularity conditions listed in Section 5.9. Assume that a
normal PL model is fitted to the sample. The vector of the PMLE estimators

Brme € R™is

Bomie = T Tyy (A.10)
where
:l\-XX:(S@d@X)TX:[Z dk%)(ikaki|€RPXP,and (All)
keU
~ T ™
Ty =(SOdOX) y=[zkeu xikyjk]eRpl. (A.12)

See Binder (1983) for the proof that ﬁpm|e is a design consistent estimator of

Bre, that is

lim B(Be—Bpme)=0<R”, and (A.13)
N—o

'\li_r)nooc(ﬁ pmle) =0e RPXP'

The variance-covariance (C(ﬁ pm|e) is computed using the first two terms of the

TS approximation of the function ﬁpm|e(s) evaluated at the point S=x as

ﬁpmle(s) =l§pm|e(S)‘S:Tr +[ X(;(S Xy J (S—m)+ O, (”S - n||§) .(A.14)
S=n

Working on the first term,
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A

=TT

BpﬂJ&m w<xﬂ&m

:«SGdefxy%SGdGXfy

o (A.15)
=T Ty

:ﬁMe

Working on the second term of (A.2) and using the chain rule for derivatives of

matrices
OTriT 1. .07
XX Xy aTXX T T—l Xy
= Xy o ———
oS oS oS . (A.16)
S=n
=A= Al + A2

The partia derivative of a matrix with respect to the vector S generates a
3-dimensional matrix of size PxPx N . We will not introduce vector notation

since the matrix becomes of size Px P.

A1:f§3[i§?)f_lf

T Tyl - (A.17)

~ 40
Computing the second term A, = Tx_xla— from (A.17),

S=n
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oS ‘
S=n
x,Od (A.18)
=Tl oy
Xp ©d
Putting terms A, and A, we obtain
X1®d X]_@d
-1 o —
A=-TgH .. X1 - xp|Bmie+Ter| - |y
Xp@d Xp@d
o , A.19
x1®d®(y—x|3m|e) ( )

=Tt

Xp ©d G(Y—Xﬁme)

where e=y — xﬁm|e is the vector with the residuals of the ML model fitted to the

population. The approximate variance-covariance is obtained computing the

varianceof A as

X ©0d @(y _Xﬁmle)

AC(B prie) = T AC Tt

xp ©d Q(y _Xﬁmle)

I X 0doe

T AC Toon . (A.20)
_Xp odoe
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T . . )
where V, = (x ,©dO e) A(xq odo e) . The approximate variance-covariance

between Bymiep ad Bpmiep 1S

AC(Bomiep-Bpmieq) = Trk, (¥ 0d0€) A(x;0doe Tk . (A21)

The variance estimator (f?( Bpm| ep: B pn,ie’q) , computed by replacing the unknown

population quantities by their sample-based estimates, is
PN ~ ~ AT - A
where é:(y—xﬁ pm|e)®s®n is the vector with the sample-based residuals of

the PL model, T, is the element (p,q) of T, » the matrix of the HT estimates

pXg

T

of the population of the cross product x x, and A=AQI. The expression

(A.22) matches those found in Binder (1983), Sarndal, Swensson, & Wretman

(1992), and Fuller (2009).

A .3.3Variance-Covariance of g, inaNormal Linear Model

Let y the variable of interest with a superpopulation model M, where

Yk ~N(xkl3,02), X = (Xgre - xkp)eRlxp is the vector of auxiliary variables

and B=(Byq,---» ﬂkp)T e RP is the vector with the location parameters. Let F

be afinite population consisting of N iid realizationsof M, . Let S be arandom

discrete vector that uniquely defines the sample design p(S=s) with E(S)

L
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and C(S)=A that meets the regularity conditions listed in Section 5.9. Assume

that a normal PL model is fitted to the sample. The PA estimator of ﬁm|e erP?
is
ﬁpa:fxﬁpmle’ (A.23)

where ﬁpmle is the vector with the PML estimates of ﬁMe eRP? described in

Section A.3.2 and fx is the PA adjustment matrix described in Section A.3.3.

The sequence of PA estimators {ﬁpa,N}oo is design consistent of [Aim|e,N since

N=1

it is the product of the sequence of estimates {ﬁpm|e,N}(: L which is design

consistent of ﬁm|e,N (see Binder, 1983), and the sequence of PA adjustments
{fx,N}:_l’ which is design consistent of the identity matrix | after applying
Slutsky's theorem. In other words, the following two conditions hold
lim E(ﬁMe—ﬁpa)zﬂeRPX1 and (A.24)
N—>x©
lim C(Bpy)=0eRPP.
N—c0 (ﬁpa) ©
The approximate variance-covariance C(ﬁpa) is computed using the first two

terms of the TS approximation of the function ﬁpa(s) evauated at the point

S=n as

300



~ T
P pa
Bpa(s)—Bpa(S)‘s_n"'[ ag ] (S—n)+(9p(||S—n||§). (A.25)

S=n
e
Working on the term ( gga]
S=n
op pa| _ aFXB prrle|
oS \ S ‘
S=n ) S=n i (A.26)
6Fx 5 c 65 pme
= Bome| +I'x
0S S 0S o
. . . 8fx aﬁ pme . . .
The partia derivatives =5 o3 were derived in Sections A.3.1 and A.3.2.

Combing these results, the approximate variance-covariance between ﬁpa, p and

B paq IS
AC(E pa,p B pa,CI) =Tx, ;Xq [qu]TX_:Xq +[qu] (A.27)
2T [VWaq [Ty,
where

T . o .
o qu = (xp o0do e) A (xq o0do e) is the contribution to the variance form

fitting the PL model y =|§pm,ex with residuals e=y—|§pm|ex :
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~ T ~
Prie,p Brie,p '
prz( Xp xpodee A Xp prdOe or quzo if

p#qe{l..,P} is the contribution to the variance form the PA adjustment

A

Iy

W, _2(/3”"6"“
X

-
b prd@eJ A(xp@dee) or V\Npq=0 if

p

p;tqe{l...,P} is the contribution to the variance form the covariance

between the PA adjustment and the PL model y = f pmieX -

The variance estimator @(ﬁ pa,p,ﬂA pa,q), computed by replacing the unknown

population quantities by their sample-based estimates, that is, e:y—xﬁr”e by

é:(y—xﬁ pm|e)®s, the elements (p,g) of Ty, by Ty, the matrix of the HT

estimates of the population of the cross product totalsof x, and A by A=AQII.

A.4 Empirical Summary Measures Used in Monte Carlo

Simulations

The summary measures for bias and accuracy for Monte Carlo Simulations for a

fixed population F are defined as

- 1we Yep-Y
RB(YE)%=100><E ™y (A.28)
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MSE (Ve ) = =2 = ), (A.29)
RRMSE = MSEgYE)  and (A.30)
Y
o MSE(\?HT)
RE(YE) /0_100{ MSE(?E) - } (A.31)

where \?E is the estimator being evaluated and \?E,b is the estimate \?E of the

population total Y computed from the sample drawn in the simulation

be{l,...,B}, and B isthe number of runs.

The same summary measures for Monte Carlo Simulations where the finite

population F isrecreated from a subpopulation for each simulation run drawn is

- 1B Yep—Yo
RB(YE)%=100xE o (A.32)

MSE

B /.~ 2
() - 2ol (A33

B
MSE(Ye )
b

- Nop MSE (Y7 )
RE(YE) A)_loo{m-l} (A.35)

where \?E Is the estimator being evaluated and \?E,b is the estimate \?E of the

population total Y computed from the sample drawn in the simulation

be{l,..,B}, and B isthe number of runs.
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A.5 Derivation of the Linear PA Estimator

In this section, we derive the linear PA estimator or the PA estimator with the
linear working model using matrix algebra (see Section 1.7.3 and Definition 1.22

for details of linear PA estimators).

Let y be the outcome variable with an assumed linear superpopulation model
My with yy [ X id /\/(xkﬂ,ag) , Where x :(xl,...,xp)eRlxp is the vector with

P-auxiliary variables, and B :(ﬁl,...,ﬁp)T e R™4 is the vector of the regression
coefficients of the linear predictor of the location parameter of the model M, .
Let F=(y,x) be the generated finite population that is N iid realizations of
M,,. The population F is sampled according to a sample design p(S=s) that

meets the suitable regularity conditions described in Section 5.9. Let Se {O,l}NXl

be the discrete random vector for the sample membership indicator defined by

)N><1

E(S|F)=ne(01) ~and V(S|F)=AeRVN,

We are interested in estimating the population total of y in F, defined as

Y= z Yk » using the auxiliary variables x observed in the sample and the
keU

known population totals X . To compute the PA estimator, we need to estimate

H pak :fxﬁpmle’ that is, we first need to compute the PMLs of regression

coefficients B of the model M, , fitted to the sample as
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B pmie = argmax log £(B,o:S,d,x| F) (A.36)
Be/\/ly

where the sample-based log-likelihood of this model M, is (1.3). The pseudo-

log-likelihood in matrix notation is

logZ(B,0;S.d,x|F)= —é(SOd oy —XB))T (y—xB)

=y (log(a) %J (A.37)

The score function, S(B|F), isthe vector with the partial derivatives of the PLL

with respect to g given by

s(p1x)- 22T

1 T T '
:—?{(SGdO(y—XB)) x+(y-xB) (SOAOX)
The PMLEs are the roots of the score function set to zero

S(B1F)=(sodo(y-xB)) x+(y-xB) (S0dOx)=0.

Solving for g, we obtain the following

(S@d@(y—xﬁpn.‘e))-rx+(y—xﬁpm|e)T(S®d®X)=0
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(S@d O(Xﬁprﬂe))Tx+(x|§pm|e)T(SOde) =(SOd®y)Tx+yTS®d®x
2(sodo(xp pmle))T x=2(S0doy) x
X" (S0d0 (X me))=x" (S0doY)

(SQdQX)Txﬁpm|e=(S@d®x)Ty

~ -1 n 1~
- Bpm6=((S®d®x)Tx) (Sodox) y=Tgh,. (A39

where Ty, = Y Scdixpxy and T,y = > Scdyxgyy are the HT estimators of
keU keU

T

the population matrix Ty, =X"x and population vector T, = xTy with the cross

sumsof x and y.

Replacing the PA adjusted fitted mean of the model, fi 5 = (S © X) Ty prye and

using the sampling weight w=d in the generic expression in (1.25), the PA

estimator of thetotal Y using the linear working model M, is

Yo =d' (ﬁpa QS)
—dT ((xfxﬁ e os) .

:XBmee

which matches the expression in (1.37).
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REMARK A.1. The derivation of the expression for ﬁpm|e in (A.38) is

based on direct operations of Hadamard products. The expression of ﬁpm|e can be

aternatively derived using rewriting the operation as a product of diagonal matrix

and using the commutative property of the symmetric matrices.

The Hadamard product of the vector Sand the matrix A isdefined as

S At A2 - Ana An
S || A1 A o Ponaa Aoy
SOA=| ..
Svar || Avar A - Avar Avaan
SN LA Az - A Aw
SA SA2 - SANa SAN
S0 Shor - SMNa SN
= =A0OS
SveaAN-11 SneAn-1r - SnaaAvar SnaAvan
SnAnt SNAvz - SNAa SNAW

We can rewrite the Hadamard product as
SOA =diag(S)A=DgA,

where Dg = diag(S) isthe diagonal matrix of S defined as

S 0 .. 0 O
0S .. 0 0
Dg=diag(S)=S=|.. .. . 0 0
0 . Syyq O
0 0 0 Sy

Since Dg isasymmetric matrix, then the following identities hold:
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(DS)T =Dg symmetric matrix ,
DsA =ADg commutative property ,
SOdOA =diag(S)(doA)=diag(S)diag(d)(A)=DgsD4A ,
DgDy = diag(S©d) = Dgpq , and

(DgDyq )T = (Dsod )T =Dgpg Symmetric matrix .
Then

SOAOA =DgDy4A = ADgDy =A OGSO commutative properties
=DgD4A =ADyDs=A0d0OS
=DgDy4A = DsADy =SOA Od
=DgDyA = DsADy =SOA Od
=DgDy4A =DgD4A =SOdOA
=DgDy4A =DyDsA =dOSOA

Representing the Hadamard product as a matrix product of a diagonal matrix then

we can solve for B,y astheroots of score function as follows:

(DSOd (y - xp mee))T X+ (y - xp mee)T Dgpgx =0

(DSOdy —Dsod (Xﬁ pn1e))T X+ (YT - (Xﬁ pMe)TjDSQdX =0.
(( DSOdy)T - (DSod (Xff mee))zj +y Dgpgx - (Xﬁ mee)T Dgpgx =0

(Dsody)T X— (DSod (Xﬁ prrle))T X+y DgogX— (Xﬁ mee)T Dspgx =0
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Then

. T . T
(DSOd (XB pmle)) X +(XB pmle) Dgogx = (DSOdY)T X+ yTDSOdX
~ T ~ T
Dsod (XB pmle) X+ Dgoqg (XB pn1e) x=y" (Dgog)x+y Dgogx
~ T T
2Dgqg (XB pn1e) x=2y (Dggq)x
XTDS@d (Xﬁ pmle) = (DSQd )XTy
DX XB pmle = (DSQd)XTy

~ -1 -1
= Bome = (DSdeTx) (DSQd)xTy = ((S @d@x)T x) (S @d@x)T y.
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Appendix B Expanding the PA Approach

The approach presented in this dissertation attempts to unify estimation | survey
theory by using a systematic approach based on standard statistical tools. The goal
is to provide tools for answering current problems in estimation, in particular,
estimation with nonresponse. Figure B.1 shows the areas of expansion of the PA

framework. We classify these areas by the type of estimators shown below:

Estimator Description

Y -estimators Estimators of the outcome variable produced by replacing y

in the estimator. The estimators presented in this dissertation

are Y -estimators since the estimator is formed by using the

fitted adjusted PLME means (i, i -

W-estimators Future development. Estimators of the outcome variable
produced by replacing the sampling weight d by the fitted
means of the distribution of an assumed model for the
weights. The weights (or probabilities of inclusion) are
assumed to be generated by a superpopulation model. These
estimators establish a link from the PA approach to

calibration and other methods for weighting adjustments.
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Y -W-estimators

Future development. Combination of Y and W
estimators, where the outcome and weights are

replaced.

R-estimators

Future development. Estimators of the outcome variable
produced by replacing the sampling weight d by fitted
means of the distribution of an assumed model for the
weights reflecting the effect nonresponse. The
nonresponse adjusted weights are for the development

of systems of weights for multipurpose surveys.

Y -R-estimators

Future development. Estimators of the outcome variable
produced by replacing the sampling weight d and

outcome variable reflecting the effect nonresponse.
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FigureB.1

Y-estimators
Model for
outcomey

¥

Classical
estimators

Model based
estimation

1

W-estimators
Model for
weights and
adjustments

Calibration
methods

v

Y-W-estimators

Future development areas of the PA framework

Weighting
systems

s

Model for bothy
and wgts

\ 4

R-estimators
Model for
response

\ 4

\ 4

Double Robust
estimators

313

R-Y-estimators
Model for both
response and
outcome

,L

R-Y-estimators
NMAR




314



References

Agarwal, M., & Jain, N. (1989). A new predictive product estimator. Biometrika,
76, 822-823.

Akalke, H. (1981). Likelihood of a model and information criteria. Journal of
Econometrics, 16(1), 3-14. doi:10.1016/0304-4076(81)90071-3

Arfken, G. B., Weber, H. J,, & Harris, F. E. (2015). Mathematical Methods for
Physicists (7th ed.). Watham, MA: Elsevier.

Beaumont, J.-F. (2008). A new approach to weighting and inference in sample
surveys. Biometrika, 95(3), 539-553. doi:10.1093/biomet/asn028

Berger, J. O., & Pericchi, L. R. (2001). Objective Bayesian methods for model
selection: introduction and comparison. In P. Lahiri (Ed.), Model selection
(pp. 135-207). Beachwood, OH: Institute of Mathematical Statistics.
doi:10.1214/Inms/1215540968

Binder, D. A. (1983). On the variances of asymptotically normal estimators from
complex surveys. International Statistical Review, 51(3), 279-292.

Binder, D. A. (1996). Linearization methods for single phase and two-phase
samples: a cookbook approach. Survey Methodology, 22(1), 17-22.

Binder, D., & Roberts, G. (2009). Design- and model-based inference for model
parameters. In Sample Surveys: Inference and Analysis Vol 29B.

Breidt, F. J., & Opsomer, J. D. (2000). Loca polynomial regression estimators in
survey sampling. The Annals of Statistics, 28(4), 1026-1053.

Breidt, F. J., & Opsomer, J. D. (2017). Model-assisted survey estimation with
modern prediction techniques. Satistical Science, 32(2), 190-205.

Breidt, F. J,, Opsomer, J. D., & Sanchez-Borrego, |. (2016). Nonparametric
variance estimation under fine stratification: an alternative to collapsed
strata. Journal of the American Statistical Association, 111(514), 822-833.
doi:10.1080/01621459.2015.1058264

Brick, J. M. (2013). Unit nonresponse and weighting adjustments. a critical
review. Journal of Official Satistics, 29, pp. 329-353.

315



Brick, J. M., Flores Cervantes, 1., Lee, S., & Norman, G. (2011). Nonsampling
errorsin dual frame telephone surveys. Survey Methodology, 37(1), 1-12.

Burnham, K. P, & Anderson, D. R. (2003). Model Selection and Multimodel
Inference: A Practical Information-Theoretic Approach (2nd ed.).

Springer.

Cardot, H., Degras, D., & Josserand, E. (2013). Confidence bands for Horvitz—
Thompson estimators using sampled noisy functional data. Bernoulli,
19(5A), 3067-2097. doi:10.3150/12-BEJ443

Casdla, G., & Berger, R. L. (2002). Statistical inference. Pacific Grove, CA:
Duxbury Press.

Cassady, R., & Vadiant, R. (1993). Conditiona properties of poststratified
estimators under normal theory. Survey Methodol ogy, 18(2), 183-192.

Cassdl, C., Sarndal, C., & Wretman, J. (1977). Foundations of inference in survey
sampling. New York, NY: Wiley.

Chambers, R. L., & Skinner, C. J. (1999). Intelligent calibration? Proceedings of
the Meeting of the International Association of Survey Satisticians, (p.
221 231). Helsinki.

Chambers, R. L., Sted, D. G.,, Wang, S, & Welsh, A. (2012). Maximum
Likelihood Estimation for Sample Surveys (1st ed.). Boca Raton, FL:
Chapman and Hall/CRC.

Chang, C.-S. (2018). Understanding Conditional Expectation via Vector
Projection. Retrieved from
https://www.ee.nthu.edu.tw/cschang/Tal k01142008.pdf

Chen, J. K., Vdliant, R., & Elliott, M. R. (2018). Calibrating non-probability
surveys to estimated control totals using LASSO, with an application to
political polling. Journal of the Royal Satistical Society: Series C
(Applied Satistics), 1-25. doi:10.1111/rssc.12327

Chen, J., & Sitter, R. R. (1999). A pseudo empirical likelihood approach to the
effective use of auxiliary information in complex surveys. Satistica
Snica, 9, 385-406.

Chen, Q., Elliott, M. R., Haziza, D., Yang, Y., Ghosh, M., Little, R. J,, . . .
Thompson, M. (2017). Approaches to improving survey-weighted
estimates. Satistical Science, 32(2), 227-248.

316



Cheng, R. (2017). Non-standard parametric statistical inference. Oxford: Oxford
University Press.

Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey,
W., & Robins, J. (2017). Double/Debiased Machine Learning for
Treatment and Causal Parameters. Retrieved 02 13, 2018, from
arXiv:1608.00060

Clifford, A. A. (1973). Multivariate error analysis. A handbook of error
propagation and calculation in many-parameter systems. New York, NY':
John Wiley & Sons.

Cochran, W. (1977). Sampling Techniques (3rd ed.). New Delhi: Wiley & Sons.

Cornfield, J. (1944). On samples from finite populations. Journal of the American
Satistical  Association,  39(226), 236-239. Retrieved from
https://www .jstor.org/stable/2279953

Cox, D. R. (1970). Smple Regression: Analysis of Binary Data. London:
Methuen Y oung Books.

Demnati, A., & Rao, J. (2004). Linearization variance estimation for survey data.
Survey Methodology, 30(1), 17-26.

Deville, J.,, & Sarndal, C. (1992). Calibration estimators in survey sampling.
Journal of the American Satistical Association, 87, 376-382.

Deville, J.-C., Sérndal, C.-E., & Sautory, O. (1993). Generalized raking
procedures in survey sampling. Journal of the American Satistical
Association, 88(423), 1013-1020.

Dol, W., Steerneman, T., & Wansbeek, T. (1996). Matrix algebra and sampling
theory: the case of the Horvitz-Thompson estimator. Linear Algebra and
its Applications, 237/238, 225-238.

Efron, B., & Gous, A. (2001). Scales of evidence for model selection: Fisher
versus Jeffreys. In P. Lahiri (Ed.), Model selection (pp. 208-246).
Beachwood, OH: Institute of M athematical Statistics.
doi:10.1214/Inms/1215540972

Erdos, P., & Rényi, A. (1959). On the central limit theorem for samples from a
finite population. Magyar Tuidoaniyos Akadenmia Budapest Matematikai
Kutato Intezet Koezlemenyel, 4, 49-57.

317



Fabrizi, E., & Lahiri, P. (2013). A design-based approximation to the Bayes
Information Criterion in finite population sampling. Satistica, LXXI1(3),
289-301. doi:10.6092/issn.1973-2201/4325

Ferrar, S. L., & Cribari-Neto, F. (2004). Beta regression for modelling rates and
proportions. Journal of Applied Satistics, 31(7), 799-815.

Fuller, W. A. (1975). Regression analysis for sample surveys. Sankhya C., 37,
117-132.

Fuller, W. A. (2009). Sampling Satistics. Hoboken, New Jersey: John Wiley &
Sons.

Fuller, W. A., & Isaki, C. T. (1981). Design under superpopulation models. In D.
Krewski, R. Plateck, J. N. Rao, & M. P. Singh, Current topics in survey
sampling (pp. 196-226). New Y ork: Academic Press.

Ghanem, R., & Spanos, P. (2012). Sochastic finite el ements. a spectral approach.
Dover Publications; Revised edition.

Gourieroux, C., Monfort, A., & Trognon, A. (1984). Pseudo maximum likelihood
methods: theory. Econometrica, 52(3), 681-700. doi:10.2307/1913471

Greene, W. H. (2008). Econometric Analysis. Upper Saddle River, NJ: Pearson
Prentice Hall.

Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature
selection. Journal of Machine Learning Research, 1157-1182.

Hgjek, J. (1960). Limiting distributions in simple random sampling from a finite
population. Magyar Tuidoaniyos Akadenmia Budapest Matematikai
Kutato Intezet KoezZlemenyel, 361-374.

Haek, J. (1964). Asymptotic theory of regective sampling with varying
probabilities from a finite population. The Annals of Mathematical
Satistics, 35(4), 1491-1523. doi:10.1214/a0ms/1177700375

Haek, J. (1971). Comment on an essay on the logica foundations of survey
sampling by Basu, D. In V. Godambe, & D. e. Sprott, Foundations of
Satistical Inference (p. 236). Holt McDougal .

Hansen, M. H., Hurwitz, W. N., & Madow, W. G. (1953). Sample survey methods
and theory. New Y ork: John Wiley and Sons.

318



Hartley, H. O., & Ross, A. (1954). Unbiased ratio estimators. Nature, 174, 270-
271.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical
learning (2nd, corrected 12th printing 01/13/2017 ed.). New York:
Springer-Verlag. doi:10.1007/978-0-387-84858-7

Haziza, D., & Beaumont, J.-F. (2017). Construction of weights in surveys. a
review. Statistical Science, 32(2), 206-226. Retrieved from
https://projecteuclid.org/euclid.ss/1494489812

Heinze, G., Wallisch, C., & Dunkler, D. (2018). Variable selection - A review and
recommendations for the practicing statistician. Biometrical Journal.
Biometrische Zeitschrift, 60(3), 431-449. doi:10.1002/bim;j.201700067

Horn, R., & Johnson, C. (2013). Matrix Analysis (2nd ed.). New York, NY:
Cambridge University Press.

Horvitz, D., & Thompson, D. (1952). A generalisation of sampling without
replacement from a finite universe. Journal of the American Satistical
Association, 47, 663-685.

Isaki, C. T., & Fuller, W. A. (1982). Survey design under the regression
superpopulation model. Journal of the American Satistical Association,
77(377), 89-96.

Johnson, N. L., Kotz, S., & Balakrishnan, N. (1994). Continuous Univariate
Distributions (2nd ed., Val. 1). Wiley.

Kim, J. K. (2009). Cdlibration estimation using empirica likelihood in survey
sampling. Satistica Snica, 19, 145-157.

Kim, J. K. (2010). Calibration estimation using exponential tilting in sample
surveys. Survey Methodology, 36(2), 145-155.

Kim, J. K., & Haziza, D. (2014). Doubly robust inference with missing data in
survey sampling. Satistica Snica, 24(1), 375-394.
doi:10.5705/ss.2012.005

Kim, J. K., & Riddles, M. K. (2012). Some theory for propensity-score-
adjustment estimators in survey sampling. Survey Methodology, 38(2),
157-165.

319



Kotsiantis, S., & Kanellopoulos, D. (2006). Discretization techniques: a recent
survey. GESTS International Transactions on Computer Science and
Engineering, 32(1), 47-58.

Kott, P. S. (2006). Using calibration weighting to adjust for nonresponse and
coverage errors. urvey Methodology, 32(2), 133-142.

Kott, P. S. (2016). Cdibration weighting in survey sampling. WIREs
Computational Satistics, 8, 39-53. doi:10.1002/wics.1374

Kott, P. S., & Liao, D. (2017). Calibration weighting for nonresponse that is not
missing at random: alowing more calibration than response-model
variables. Journal of Survey Satistics and Methodology, 5(2), 159-174.
Retrieved from https://doi.org/10.1093/jssam/smx003

Le Cam, L. (1986). Asymptotic Methods in Satistical Decision Theory. New
York, NY, USA: Springer-Verlag.

Lehmann, E. (1999). Elements of Large-Sample Theory. New York, NY:
Springer-Verlag.

Lehtonen, R., & Veijanen, A. (1998). Logistic generalized regression estimators.
Survey Methodology, 24(1), 51-55.

Little, R. J. (2008). Weighting and prediction in sample surveys. Calcutta
Satistical Association Bulletin, 60, 239-240.

Lohr, S. (2010). Sampling: Design and Analysis (2nd ed.). Boston: Brooks/Cole.

Luenberger, D. (1969). Optimization by Vector Space Methods. New Y ork: John
Wiley and Sons, Inc.

Lumley, T. (2010). Complex Surveys. A Guide to Analysis Using R
doi:10.1002/9780470580066

Lumley, T. (2012). survey: analysis of complex survey samples. R package
version 3.28-2.

Lumley, T., & Scott, A. (2015). AIC and BIC for modeling with complex survey
data. Journal of Survey Statistics and Methodology, 3(1), 1-18.

Lumley, T., Shaw, P. A., & Dai, J (2011). Connections between survey
calibration estimators and semiparametric models for incomplete data.

320



International Satistical Review, 79(2), 200-220. doi:10.1111/j.1751-
5823.2011.00138.x

Madow, W. G. (1948). On the limiting distributions of estimates based on
samples from finite universes. The Annals of Mathematical Satistics, 19,
535- 545.

Magnus, J. R., & Neudecker, H. (1999). Matrix Differential Calculus with
Applications in Statistics and Econometrics. Chichester: Wiley.

McConville, K. S., Breidt, F. J, Lee, T. C., & Moisen, G. G. (2017). Model -
assisted survey regression estimation with the Lasso. Journal of Survey
Satistics and Methodology, 5(2), 131-158. doi:10.1093/jssam/smw041

McCullagh, P., & Nelder, J. (1989). Generalized linear models (2nd ed.). New
York, NY: Chapman and Hall/CRC.

Montanari, G. E. (1987). Post-sampling efficient Q-R prediction in large sample
surveys. International Statistical Review / Revue Internationale de
Satistique, 50(22), 191-202.

Montanari, G. E. (1998). On regression estimation of finite population means.
Survey Methodology, 24(1), 69-77.

Montanari, G. E. (2002). Theory & methods: conditioning on auxiliary variable
means in finite population inference. Australian & New Zealand Journal
of Statistics, 407-421. doi:10.1111/1467-842X.00138

Montanari, G. E., & Ranali, M. G. (2002). Asymptotically efficient generalized
regression estimators. Journal of Official Satistics, 18(4), 577-589.

Montanari, G. E., & Randli, M. G. (2005). Nonparametric model calibration
estimation in survey sampling. Journal of the American Satistical
Association, 100, 1429-1442.

Mukhopadhyay, P. (2016). Complex Surveys. Analysis of Categorical Data.
Singapore: Springer.

Murthy, M. (1964). Product method of estimation. Sankhya: The Indian Journal
of Satistics, Series A, 26(1), 69-74.

Nascimiento Silva, P., & Skinner, C. (1997). Variable selection for regression
estimation in finite populations. Survey Methodology, 23(1), 23-32.

321



Opsomer, J. D., Breidt, F. J., Moisen, G. G., & Kauermann, G. (2007). Rejoinder
to Opsomer, Breidt, Moisen, and Kauermann (2007). Journal of the
American Statistical Association, 102(478), 415-416.

Papke, L., & Wooldridge, J. (1996). Econometric methods for fractional response
variables with an application to 401(k) plan participation rates. Journal of
Applied Econometrics, 619-632. doi:10.1002/(SIC1)1099-
1255(199611)11:6<619::A1D-JAE418>3.0.CO;2-1

Pfeffermann, D., & Sverchkov, M. (1999). Parametric and semi-parametric
estimation of regression models fitted to survey data. Sankhya: The Indian
Journal of Satistics, Series B, 61(1), 166-186. Retrieved from
http://www.jstor.org/stable/25053074

Polansky, A. (2011). Introduction to statistical limit theory. Boca Raton, FL:
Chapman & Hall/CRC.

Posthuma Partners. (2018). Imvar: Linear Regression with Non-Constant
Variances. Retrieved from https:.//CRAN.R-project.org/package=Imvar

R Development Core Team. (2017). R: A Language and Environment for
Statistical Computing. R Foundation for Satistical Computing. Vienna,
Austria. Retrieved from http://www.R-project.org

Rao, C. R, & Wu, Y. (2001). On model selection. In P. Lahiri (Ed.), Model
selection (Vol. 38, pp. 1-57). Beachwood, OH: Institute of Mathematical
Statistics. doi:10.1214/Inms/1215540960

Rao, J. N. K. (1966). Alternative estimators in pps sampling for multiple
characteristics. Sankhya: The Indian Journal of Statistics, Series A, 28(1),
47-60. Retrieved from http://www.jstor.org/stable/25049398

Rao, J. N. K. (1994). Estimating totals and distribution functions using auxiliary
information at the estimation stage. Journal of Official Satistics, 10(2),
153-165.

Rao, J. N. K. (2008). Discussion of "Weighting and prediction in sample surveys®
by Little, R. Calcutta Statistical Association Bulletin, 60, 29-39.

Rao, P. (1971). Some notes on misspecification in multiple regressions. The
American Satistician, 25(5), 37-39. Retrieved from
https://www .jstor.org/stable/2686082

Rawlings, J. O., Pantula, S. G., & Dickey, A. D. (1998). Applied regression
analysis. Aresearch tool (2nd ed.). New York, NY: Springer-Verlag.

322



Rigby, R. A., & Stasinopoulos, D. M. (2005). Generalized additive models for
location, scale and shape, (with discussion). Journal of Applied Statistics,
54(3), 507-554.

Rubin-Bleuer, S., & Schiopu Kratina, I. (2005). On the two-phase framework for
joint model and design-based inference. Annals of Statistics, 33(6), 2789-
2810.

Ruppert, D. (2007). Comment to Opsomer, Breidt, Moisen, and Kauermann
(2007). Journal of the American Satistical Association, 102(478), 409-
411.

Sarndal, C., & Lundstrom, S. (2005). Estimation in Surveys with Nonresponse.
Chichester, England: John Wiley & Sons.

Sarndal, C., Swensson, B., & Wretman, J. (1989). The weighted residual
technique for estimating the variance of the general regression estimator of
the finite population total. Biometrika, 76(3), 527-537.
doi:10.2307/2336118

Sérndal, C., Swensson, B., & Wretman, J. (1992). Modd Assisted Survey
Sampling. New Y ork: Springer.

Sarndal, C.-E. (2007). The calibration approach in survey theory and practice.
Survey Methodology, 33(2), 99-1109.

Scott, A., & Wu, C.-F. (1981). On the Asymptotic Distribution of Ratio and
Regression Estimators. Journal of the American Statistical Association,
7(76), 98-102.

Shah, B. V. (2004). Comment to Demnati and Rao (2004): Linearization Variance
Estimators for Survey Data. Survey Methodology, 30(1), 17-26.

Small, C. G. (2010). Expansions and Asymptotics for Satistics. Chapman & Hall.

Somol, P., Novovicova, J., & Pudil, P. (2010). Efficient feature subset selection
and subset size optimization. In A. Herout (Ed.), Pattern Recognition.
Rijeka: IntechOpen. doi:10.5772/9356

Srivastava, S. K., & Jhajj, H. S. (1981). A class of estimators of the population

mean in survey sampling using auxiliary information. Biometrika, 68(1),
341-343. doi:10.1093/biomet/68.1.341

323



Stasinopoulos, M. D., Righy, R. A., Heller, G. Z., Voudouris, V., & De Bastiani,
F. (2017). Flexible Regression and Smoothing: Using GAMLSSin R. Boca
Raton, FL: Chapman and Hall/CRC.

Stasinopoulos, M., Rigby, B., Voudouris, V., Akantziliotou, C., Enea, M., &
Kiose, D. (2017). gamliss. Generalised Additive Models for Location Scale
and Shape Version 5.1-2.

Sverchkov, M. (2010). On modeling and estimation of response probabilities
when missing data are not missing at random . Joint Statistical Meetings,
Proceedings of the Survey Research Methods of the American Satistical
Association.

Takeuchi, K. (1976). Distribution of informational statistics and a criterion of
model fitting. Suri-Kagaku (Mathematic Sciences), 12—18.

Tang, J., Aldyani, S, & Liu, H. (2014). Feature selection for classification: a
review. In C. C. Aggawal, Data Classification: Algorithms and
Applications (pp. 37-64). Chapman and Hall/CRC.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of
the Royal Statistical Society Series B, 58, 267-288.

Tillé, Y. (1999). Estimation in surveys using conditiona inclusion probabilities:
complex design. Survey Methodology, 25(1), 57-66.

Tillg, Y. (2006). Sampling Algorithms. Springer.

Tillg, Y., & Mate, A. (2016). sampling: Survey Sampling. {R package version
2.8. Retrieved from https://CRAN.R-project.org/package=sampling

Vdliant, R., Dever, J. A., & Kreuter, F. (2013). Practical Tools for Designing and
Weighting Survey Samples. New Y ork: Springer.

Vadliant, R., Dever, J. A., & Kreuter, F. (2018). PracTools: Tools for Designing
and Weighting Survey Samples. R package version 0.8. Retrieved from
https://CRAN.R-project.org/package=PracTools

Vdliant, R., Dorfman, A., & Royall, R. (2000). Finite population sampling and
inference: a prediction approach. New Y ork: John Wiley & Sons.

van der Laan, M. J,, & Rose, S. (2011). Targeted learning: causal inference for
observational and experimental data. New York: Springer.
doi:10.1007/978-1-4419-9782-1

324



Wedderburn, R. W. (1974). Quasi-likelihood functions, generalized linear models,
and the Gauss-Newton method. Biometrika, 61(3), 439-447. Retrieved
from www.jstor.org/stable/2334725

Williams, D. (2011). Probability with Martingales (14th ed.). Cambridge:
Cambridge University Press.

Wolter, K. (2017). Introduction to variance estimation (2nd ed.). New York:
Springer-Verlag.

Woodruff, R. S. (1971). A simple method for approximating the variance of a
complicated estimate. Journal of the American Statistical Association,
66(334), 411-414.

Woodruff, R., & Causey, B. (1976). Computerized method for approximating the
variance of a complicated estimate. Journal of the American Satistical
Association, 71(354), 315-321. doi:10.2307/2285303

Wu, C., & Sitter, R. (2001). A model-calibration approach to using complete
auxiliary information from survey data Journal of the American
Satistical Association, 96(453), 185-193.

Yee, T. W. (2015). Vector Generalized Linear and Additive Models: With an
Implementation in R. New York, NY, USA: Springer.

Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the
American Statistical Association (Theory and Methods), 101(406), 1418-
1429. doi:10.1198/016214506000000735

325



	Ismael Flores Cervantes, Doctor of Philosophy, 2019
	Preface
	Dedication

	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Chapter 1 The Parametric Approach to Survey Sampling Estimation
	1.1 Introduction
	1.2 Background and the Need for Change
	1.3 Example of an Algorithmic PA Estimator
	1.4 Principles of the PA Framework
	1.5 Concepts, Definitions, and Notation
	1.5.1 Superpopulation Models
	1.5.2 Notation for the Collection of Models
	1.5.3 Finite Populations and Sample Designs
	1.5.4 The Log-Likelihood and Pseudo-Likelihood
	1.5.5 PA Framework Definitions
	1.5.6 Miscellaneous PA Framework Definitions

	1.6 Computing Algorithmic PA Estimators
	1.6.1 General Considerations before Computing Algorithmic PA Estimators
	1.6.2 Alternative Models for S
	1.6.3 The Loss Function
	1.6.4 Implementation of the PA Algorithm and Computation of PA Estimators

	1.7 Statistical Properties of the Algorithmic PA Estimator
	1.7.1 The Generic Form of the PA Estimator and its DesignBased Asymptotic Properties
	1.7.2 Specific Forms of the PA Estimator and their Expressions of Variance
	1.7.3 Linear and Nonlinear PA Estimators
	1.7.4 Alternative Weights for Nonlinear PA Estimators
	1.7.5 Bias-Corrected PA Estimators
	1.7.6 The Horvitz-Thompson Estimator

	1.8 Auxiliary Variables and Population Totals

	Chapter 2 The Applications of Algorithmic PA Estimators
	2.1 Variable Selection for Calibration Estimators
	2.2 Variable Selection in Algorithmic PA Estimators
	2.3 Performance of Linear and Nonlinear Algorithmic PA Estimators
	2.4 Algorithmic PA Estimators in Poisson Sample Designs

	Chapter 3 The Algebraic PA Estimators
	3.1 The Classical Design-Based Estimators as a Class of Algebraic PA Estimators
	3.2 Algebraic PA Estimators in Poisson Sample Designs

	Chapter 4 The Theory of the PA Estimators
	4.1 Orthogonal Weighting
	4.2 Effect of Sample Selection in the Distribution of the Observed Data
	4.3 Modeling of the Outcome and Sample Selection
	4.3.1 Modeling the Parameter (
	4.3.2 Modeling the Outcome Variable y

	4.4 Modeling y Conditioned on the Reduced Model for (
	4.5 Developing the PA Algorithm for Estimation with Full Response
	4.6 The Variance of the Linear PA Estimator as a Function of the Number of Auxiliary Variables in the Model
	4.7 The Propagation of Error for Variance Reduction
	4.8 Incorporating Population Totals into the Pseudo-Likelihood
	4.9 Alternative Forms of PA Estimators

	Chapter 5 Deriving the Asymptotic Properties of Survey Sampling Estimators
	5.1 Estimation Frameworks
	5.2 The Probability Mass Function of the Random Vector S
	5.3 Types of Sample Designs
	5.3.1 Fixed Sample Size Designs
	5.3.2 Random Sample Size Designs

	5.4 Functions of the Random Vector S
	5.5 Function for the Mean Vector of the Random Vectors S
	5.6 Function for the Mean of the Elements of the Random Vector S
	5.7 Linear Functions of the Elements of the Random Vector S
	5.8 The Horvitz-Thompson Estimator as a Linear Function of the Elements of the Random Vector S
	5.8.1 The Variance of the Horvitz-Thompson Estimator
	5.8.2 The Variance Estimator of the Horvitz-Thompson Estimator
	5.8.3 The Central Limit Theorem and the Horvitz-Thompson Estimator
	5.8.4 The Design Consistency of the Horvitz-Thompson Estimator
	5.8.5 The Confidence Intervals and the Horvitz-Thompson Estimator

	5.9 Properties of Estimators as Nonlinear Functions of the Elements of S
	5.9.1 The Hájek Estimator
	5.9.2 The Classical Ratio Estimator
	5.9.3 The Linear PA Estimator (GREG)
	5.9.4 The Nonlinear PA Estimator for Poisson Model with the log Link Function

	5.10 Defining a Sequence for the Population y in Survey Sampling Asymptotic Theory

	Chapter 6 Final Comments
	Appendix A Supplemental Plots and Proofs
	A.1 Figures for Simulation Study in Section 2.2
	A.2 Sample-Based AIC Estimator
	A.3 Theorems
	A.3.1 Proof of Theorem 1.1
	A.3.2 Variance-Covariance of  in a Normal Linear Model
	A.3.3 Variance-Covariance of  in a Normal Linear Model

	A.4 Empirical Summary Measures Used in Monte Carlo Simulations
	A.5 Derivation of the Linear PA Estimator

	Appendix B Expanding the PA Approach
	References

	MTBlankEqn

