
 

 

 

ABSTRACT 

 

 

 

Title of dissertation:  SUPPLEMENTAL CHOLINE AND METHIONINE FOR DAIRY 

CATTLE: EFFECTS ON PERFORMANCE, LIVER FAT 

CONTENT AND GENE EXPRESSION, AND PLASMA AMINO 

ACID AND CHOLINE METABOLITE CONCENTRATIONS 

 

Sarah B. Potts, Doctor of Philosophy, 2019 

 

Dissertation directed by:  Professor Richard A. Erdman 

 Department of Animal and Avian Sciences 

 

The objectives of this dissertation were to 1) determine markers of post-ruminal 

choline supply so that bioavailability of rumen-protected choline (RPC) sources can be 

calculated in lactating cows and 2) investigate the production performance and metabolic 

effects of supplemental choline, methionine, or both on periparturient dairy cows.   

Observations from Experiment 1 indicated that of the 26 choline metabolites 

investigated, including 16 species of phosphatidylcholine (PC) and 4 species of 

lysophosphatidylcholine, free choline and betaine in blood and milk were most responsive 

to post-ruminal choline supplied via abomasal infusion.  However, RPC did not elicit 

changes in blood or milk choline metabolites, even at the very high doses tested in 

Experiment 2.  These results suggest that choline supplied as RPC is absorbed differently 

than choline supplied via abomasal infusion, that RPC is over-protected such that choline 



 

 

supplied in this form is not available to the cow, or that responses to RPC vary depending 

physiological state of the cow. 

Results from Experiment 2 indicated that primi- and multiparous cows respond 

differently to supplemental choline and methionine fed during the periparturient period.  

Feeding RPC to primiparous cows increased milk yield, while feeding rumen-protected 

methionine (RPM) had minimal effects on production.  In contrast, RPM improved milk 

components and fat-corrected milk yield for multiparous cows.  These observations suggest 

that primi- and multiparous cows have different methionine and choline requirements in 

the periparturient period.  

Investigation into the specific metabolic effects of choline and methionine fed to 

periparturient cows in Experiment 3 suggested that both RPC and RPM modify choline 

metabolism.  The milk and blood PC profile was altered by both RPC and RPM.  In line 

with this observation, RPC increased hepatic expression of the gene that encodes the 

enzyme responsible for catalyzing the rate-limiting step of PC synthesis via the CDP-

choline pathway.  The RPC-induced increase in hepatic betaine-homocysteine 

methyltransferase expression provided additional support for the connection between 

choline and methionine metabolism via one-carbon metabolism.  Modification of 

postpartum plasma lactate concentrations by RPC for both primi- and multiparous cows, 

in conjunction with alterations in pre- or postpartum body condition, also suggest a choline-

induced modification of tissue mobilization.       
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CHAPTER 1: INTRODUCTION 

 The periparturient period is a challenging time for the dairy cow as she transitions 

from pregnancy to lactation.  During this time, there are several metabolic adaptations and 

challenges that ensue, making the cow vulnerable to clinical and subclinical health 

disorders that impede optimal performance.  Several nutritional and management strategies 

have been examined, implemented, and shown to be effective in promoting cow health, 

production, and reproduction.  One strategy is to optimize the diet by adding supplemental 

nutrients that are presumed to be limiting during this time.  Due to the classic elevation in 

adipose tissue mobilization and subsequent hepatic lipid synthesis and very low density 

lipoprotein (VLDL) export that occurs during the early postpartum period, researchers have 

investigated the potential for lipotropes, such as choline and methionine, to improve health 

and performance.  Furthermore, the importance of transmethylation reactions in 

metabolism and gene expression has also prompted interest in balancing diets to provide 

sufficient choline, methionine, and B-vitamins to support one-carbon metabolism.   

Both choline and methionine (in the form of rumen-degradable protein) are 

degraded by rumen microbes (NRC, 2001); thus, dietary supplementation of these nutrients 

is accomplished through feeding them in a rumen-protected form, allowing for passage to 

the lower gut with minimal microbial degradation.  While the protection from ruminal 

degradation of rumen-protected choline (RPC) and rumen-protected methionine (RPM) 

have been well-established (Deuchler et al., 1998; Bach et al., 2000), it is important to 

quantify the availability of these nutrients once they reach the small intestine.  For RPM, 

this has been accomplished by measuring the change in methionine concentrations in the 

blood and estimates of the bioavailability for RPM sources have been reported (Bach et al., 
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2000; Südekum et al., 2004).  However, bioavailability estimates for RPC sources are 

lacking.  Deuchler et al. (1998) showed that post-ruminal choline supplied via an abomasal 

infusion increased total choline concentrations in milk.  More recently, de Veth et al. (2016) 

showed that specific choline metabolites such as choline, betaine, and phosphocholine in 

blood and milk, not just total choline, were responsive to post-ruminal choline supplied via 

an abomasal infusion.  However, similar, significant responses for cows fed RPC were not 

observed (de Veth et al., 2016), which complicates the task of estimating choline 

bioavailability from RPC sources.  It is important, both from a ration balancing standpoint, 

to identify potential markers that will allow for bioavailability estimates of RPC to be 

reliably calculated.   

Results from several studies in dairy cattle have shown production and health 

benefits to providing supplemental choline or methionine during the periparturient period 

(Zom et al., 2011; Osorio et al., 2013; Zhou et al., 2016; Zenobi et al., 2018a).  Feeding 

RPC to feed-restricted dry cows reduces liver triglyceride accumulation (Cooke et al., 

2007; Zenobi et al., 2018b), although this effect has not been consistently reported during 

the periparturient period in cows fed ad libitum (Zenobi et al., 2018a; Zhou et al., 2016).  

Despite this, RPC can elicit positive effects on milk production during the periparturient 

period (Zenobi et al., 2018a; Zom et al., 2011).  Feeding RPM to periparturient cows 

generally increases fat-corrected milk yield, milk fat yield, milk protein percentage, and 

feed intake (Osorio et al., 2013; Zhou et al., 2016).  Furthermore, as recently observed by 

(Osorio et al., 2014; Vailati-Riboni et al., 2017), RPM can have positive effects on immune 

function in periparturient cows.    
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Based on gene expression (Goselink et al., 2013; Zhou et al., 2017; Osorio et al., 

2014), enzyme activity (Zhou et al., 2017), and protein abundance (Zhou et al., 2018) 

analyses, it is clear that both choline and methionine can affect hepatic lipid and one-carbon 

metabolism in dairy cows.  However, further research into the mechanisms by which these 

nutrients elicit their effects is necessary to enhance their usefulness as nutritional tools to 

support cow health and production in the postpartum period.  Because both choline and 

methionine metabolism are related through one-carbon metabolism and 

phosphatidylcholine synthesis, further exploration is also necessary to enrich our 

understanding of how these nutrients interact with each other in ruminant animals.  To date, 

only one study has investigated this interaction in periparturient dairy cows (Zhou et al., 

2016). 

The two central hypotheses of this work are that 1) choline metabolites in blood 

and milk are responsive to RPC feeding such that they can be used to facilitate 

bioavailability calculations; and 2) dietary supplementation of RPC and RPM to 

periparturient cows has positive effects on production and liver metabolism and each 

nutrient influences hepatic lipid, choline, and methionine metabolism. 
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CHAPTER 2:  LITERATURE REVIEW 

 The periparturient period is a challenging time for the dairy cow and is 

characterized by substantial alterations in lipid, glucose, and protein metabolism in order 

to support the onset of copious milk production.  A cow’s success during this time can have 

a lasting influence on her entire lactation.  It is crucial to understand the metabolic 

adaptations and challenges that occur during this time, as well as strategies that can be 

implemented to help cows excel after calving.  Providing supplemental nutrients, such as 

choline and methionine, is a strategy that has been explored to promote cow performance 

during this time.  As such, it is important to understand the basic metabolism and functions 

of these nutrients. 

THE METABOLIC STATE OF THE PERIPARTURIENT COW 

 The transition period, defined as 21 d before calving through the first 21 d of 

lactation (Grummer, 1995), is a critical time for the dairy cow.  Nutrient requirements 

increase substantially as the cow transitions from gestation to lactation, but feed intake 

does not increase as rapidly, resulting in negative energy balance (NEB).  Occurrence of 

metabolic diseases, such as fatty liver, ketosis, milk fever, and retained placenta is high 

during the periparturient period (Markusfeld, 1987) and these diseases are correlated with 

NEB (Collard et al., 2000).  Incidence of metabolic disease can have major impacts on 

productive performance, reproductive success, lifetime efficiency, animal welfare, and 

ultimately, profitability of the dairy cow.  The success with which a cow transitions from 

the dry period to early lactation will impact her performance during the subsequent 

lactation.     
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 The fetal growth rate is much greater during the last third of gestation than the first 

two trimesters (Bauman and Currie, 1980).  This increases the dam's nutritional 

requirements even before initiation of lactation.  Grummer (2008) estimated that between 

60 d prepartum and 1 d prepartum, energy requirements for the growing fetus and gravid 

uterus increase from 2.9 to 3.7 Mcal NEL/d, representing a 6% increase in total energy 

requirements after energy required for maintenance was considered.  At the same time, 

physiological changes that occur around the time of calving cause dry matter intake (DMI) 

to decline, such that between 21 d prepartum and the day of calving, it is reduced by ~30-

40% (Vazquez-Añon et al., 1994; Grummer, 1995; Douglas et al., 2006).  This decline in 

DMI prior to calving likely contributes to the occurrence of NEB that begins at calving 

(Grummer, 2008).  Four days before parturition, a 680 kg cow requires ~14 Mcal NEL/d; 

the same cow will require ~33 Mcal NEL/d to produce 30 kg of 4% fat milk/d at 11 days 

in milk (DIM; NRC, 2001).  Thus, between 4 d prepartum and 11 d postpartum, energy 

requirements increase by nearly 136%, but DMI only increases by ~30-50% during the first 

week postpartum (Roche et al., 2013).  Drackley (1999) estimated that the postpartum dairy 

cow only consumes enough energy to meet ~74% of requirements by d 4 postpartum.  After 

calving, DMI will recover and eventually surpass that of the prepartum period (Ingvarsten 

and Anderson, 2000; Douglas et al., 2006; Grummer, 2008), but the rate at which nutrient 

intake increases is not sufficient to meet the rapid increases in nutrient demands associated 

with the increase in milk production during the early postpartum period, which perpetuates 

the NEB that was initiated immediately prepartum.  

 The magnitude of DMI depression prepartum correlates positively with risk for 

metabolic disease in early lactation (Grummer, 2008).  Over consumption of nutrients 
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during the dry period may negatively impact DMI postpartum (Douglas et al., 2006).  

Douglas et al. (2006) restricted DMI or allowed ad libitum DMI during the dry period.  

When compared with feed-restricted cows, ad libitum-fed cows gained body weight (BW) 

and body condition throughout the dry period and experienced greater DMI depression 

around parturition (Douglas et al., 2006).  Results reported by Douglas et al. (2006) are 

consistent with the fact that body condition score (BCS) correlates negatively with DMI 

(Roche et al., 2009).  Over-conditioned cows at calving are more likely to suffer from 

metabolic disease in the postpartum period than cows that calve in average condition 

(Roche et al., 2009).  Furthermore, Hartwell et al. (2000) observed that cows that calved 

with a BCS ≥3.75 had increased liver triglyceride (TG) accumulation between 1 and 28 d 

postpartum than cows that calved with BCS <3.75.  Therefore nutrient intake and BCS 

should be monitored closely during the dry period to prevent over-conditioning prior to 

calving in order to mitigate the magnitude of DMI depression and reduce the occurrence 

of peripartal disease. 

 Reasons for the decline in DMI prior to parturition and the slow rate at which 

nutrient intake increases postpartum are not fully understood, but endocrine changes 

associated with parturition probably contribute to periparturient hypophagea (Ingvarsten 

and Anderson, 2000).  In their review of potential mechanisms that influence DMI of the 

transition cow, Ingvarsten and Anderson (2000) suggested that various hormones, 

metabolites, and gut peptides are likely to have a strong influence over DMI during the 

periparturient period.  Plasma estrogen levels are high during the prepartum period and 

begin to decrease immediately after calving (Ingvarsten and Anderson, 2000; NRC, 2001), 

and estrogen has been shown to elicit a hypophagic response in dairy cattle (Grummer et 
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al., 1990; Bremmer et al., 1999).  Plasma insulin levels also increase during the prepartum 

period but begin to decline prior to parturition and remain low throughout the postpartum 

period (Veenhuizen et al., 1991; Ingvarsten and Anderson, 2000).  Although insulin 

reduces DMI in dairy cows (Leury et al., 2003), it probably contributes little to the intake 

depression observed around calving because plasma concentrations of insulin are very low 

just prior to calving when the most drastic drop in DMI occurs, and concentrations remain 

low during the postpartum period (Ingvarsten and Anderson, 2000; NRC, 2001).  Reasons 

for insufficient DMI immediately before calving and during the early postpartum period 

could also be related to a delay in rumen adaptation to a typical high energy, low neutral 

detergent fiber (NDF) lactation ration (Goff and Horst, 1997; NRC, 2001), oxidation of 

fuels by the liver (Allen et al., 2009), rumen fill, or other unknown mechanisms. 

 The process of tissue mobilization to support requirements for lactation is a normal 

physiological process that occurs in all mammals.  However, excessive mobilization caused 

by severe NEB can be detrimental to cow health and productivity.  Negative energy balance 

correlates positively with metabolic diseases, such as hepatic lipidosis and ketosis, and 

depresses immune function (Goff and Horst, 1997; Bobe et al., 2004).  These health 

problems may result in an even greater energy deficit by further reducing DMI, which can 

lead to additional health problems such as displaced abomasum (Shaver, 1997).   

Changes in Lipid and Carbohydrate Metabolism 

 During the transition period, homeorhetic responses cause significant changes in 

lipid and carbohydrate metabolism such that nutrients are partitioned to the mammary 

gland to support the rapid increase in milk production.  Mobilization of adipose tissue 
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during the early postpartum period is crucial for the cow to meet unfulfilled energy 

requirements of the mammary gland.  Bell (1995) estimated that within 4 d after calving, 

the mammary gland requires 4.5 times more fatty acids (FA) than the gravid uterus during 

late gestation.  In addition, glucose requirements increase from ~1100 g/d during the 

prepartum period to ~2500 g/d during early lactation (Drackley et al., 2001).   

Lipid Metabolism 

 The postpartum period is marked by extensive mobilization of body fat stores that 

is synchronized by endocrine changes that occur around the time of calving.  Mobilization 

of adipose tissue results in the release of FA and glycerol into the blood.  Glycerol can be 

used as a substrate for gluconeogenesis by the liver and non-esterified FA (NEFA) are used 

for lipogenesis in the mammary gland, oxidized as fuel by body tissues, or metabolized by 

the liver (Bell, 1995; Roche et al., 2013).  The decline of plasma insulin just prior to calving 

promotes lipolysis in adipose tissue and spares glucose to support the final stages of 

gestation, colostrogenesis, and subsequent high levels of milk production (Bell, 1995; Goff 

and Horst, 1997).  In addition to reduced insulin concentration, high blood growth hormone 

(GH) concentration also plays a role in nutrient partitioning during early lactation (Butler 

et al., 2003). 

 Loss of hepatocyte GH sensitivity during the periparturient period (Boisclair et al., 

2006; Vijayakumar et al., 2010) reduces the rate of insulin-like growth factor I (IGF-1) 

production by the liver, resulting in high blood GH levels and partitioning of nutrients to 

the mammary gland (Butler et al., 2003).  For postpartum cows, insulin may play a major 

role in dictating hepatocyte GH sensitivity and serve to regulate blood GH concentrations.  
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Butler et al. (2003) examined early lactation cows under hyperinsulinemic conditions and 

observed an increase in hepatic GH receptor mRNA and a decrease in plasma GH.  They 

suggested that higher insulin levels restored hepatic GH sensitivity and thereby decreased 

circulating GH concentrations (Butler et al., 2003).  For the hyperinsulinemic treatment, 

both plasma NEFA concentration and milk yield were reduced, indicating a decreased rate 

of adipose tissue mobilization which reduced the energy supply for the mammary gland 

(Butler et al., 2003).   

 Hormone sensitive lipase (HSL) catalyzes the release of FA from TG and 

diacylglycerol, and is the rate limiting enzyme in the release of FA from adipose tissue 

(Holm, 2003).  Hormone sensitive lipase is stimulated by glucagon and catecholamines, 

such as epinephrine and norepinephrine, and is inhibited by insulin (Holm, 2003).  There 

is also evidence for GH to promote HSL activity by activating β-adrenergic receptors which 

are responsible for activation of HSL (Vijayakumar et al., 2010).  Thus elevated plasma 

GH during the periparturient period likely serves to indirectly enhance lipolysis in adipose 

tissue.  These results suggest that reduced blood insulin concentration, followed by a 

subsequent elevation of GH, is critical in the regulation of adipose mobilization during the 

transition period.   

 In contrast to depressed adipocyte lipogenesis, mammary lipogenesis is enhanced 

during the postpartum period.  During established lactation, ~50% of milk FA originate 

from de novo synthesis (<C16:0) in the mammary gland, while the other 50% of milk FA 

are from preformed sources (>C16:0), such as the diet and adipose tissue (Bauman and 

Griinari, 2003).  During established lactation when cows are in positive energy balance, of 

the 50% of FA from preformed sources, only ~10% are derived from adipose tissue 
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(Bauman and Griinari, 2003).  However, during early lactation extensive adipose 

mobilization supplies the mammary gland with large quantities of NEFA resulting in a 

higher proportion of milk FA derived from preformed sources (Kay et al., 2005).  Stoop 

and coworkers (2009) determined that the proportion of preformed FA in milk fat correlates 

positively with the degree of NEB (r=0.7).  These findings coincide with the increased rate 

of lipolysis that occurs during early lactation when cows are in NEB.   

Carbohydrate Metabolism  

 During late pregnancy, fetal growth rate increases rapidly which is paralleled by 

greater nutrient requirements (Bauman and Currie, 1980).  As reviewed by Bell (1995), the 

growing fetus requires ~2.3 Mcal/d at 250 d of gestation, with ~30% of the energy demands 

met through oxidation of glucose or lactate.  In fact, glucose demands for cows during the 

prepartum period are as high as 1100 g/d (~4.4 Mcal/d; Drackley et al., 2001).  The high 

demand for glucose and amino acids during the last 40-60 d of gestation to support fetal 

growth and metabolism as well as colostrum synthesis require the cow to make substantial 

changes in the rate of hepatic gluconeogenesis (Bell, 1995; Drackley et al., 2001).  

Although glucose demands for the final weeks of gestation are high, requirements during 

the early lactation period are even greater, increasing from 1100 g/d during the prepartum 

period to ~2500 g/d during early lactation, representing a 127% increase (Drackley et al., 

2001).  Osmotic pressure is the main driver of milk volume, and lactose contributes to 

~50% of the osmotic gradient for fluid transport in the mammary gland (Cai et al., 2018).  

Because lactose production requires 1 unit of glucose and 1 unit of galactose (Linzell and 

Peaker, 1971), the mammary gland must have an adequate supply of glucose in order to 

maximize milk production.  To accommodate these changes in glucose and other nutrient 
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demands during the transition period, the metabolic activity of the liver nearly doubles 

during the transition period (Drackley et al., 2001) and the rate of hepatic gluconeogenesis 

is elevated substantially.  Reynolds et al. (2003) observed an average liver glucose 

production rate of ~1200 g/d at 19 d prepartum; this rate was increased by 150% at 21 d 

postpartum (>3000 g/d).   

 Glucose absorption by the ruminant digestive tract is low because rumen microbes 

metabolize most of the glucose derived from the fermentation of more complex 

carbohydrates (Bergman, 1990).  Instead, dairy cattle rely on volatile fatty acids (VFAs) as 

substrates for gluconeogenesis, with propionate being the main glucose precursor (Seal and 

Reynolds, 1993).  Diets fed to early lactation cows usually contain high proportions of 

fermentable carbohydrates, such as corn grain, that increase ruminal propionate production 

(Bergman, 1990).  However, total glucose precursor requirements cannot be met simply 

through ruminal propionate production, especially during early lactation when DMI is low 

and glucose requirements are high.  Between 32-73% of glucose is derived from ruminal 

propionate, so the remaining 27-68% of glucose is derived from other glucogenic 

substrates, such as amino acids from dietary protein or muscle catabolism, lactate, and 

glycerol (Drackley et al., 2001).  At 4 wk postpartum, Reynolds et al. (1988) determined 

that the maximum contributions of propionate, lactate, and amino acids to hepatic 

gluconeogenesis were 58, 21, and 15%, respectively.  Bell (1995) estimated that at 4 d 

postpartum, 65% of mammary glucose requirements could be met through absorbed 

propionate and amino acids and 20% of glucose requirements could be met through 

glycerol resulting from TG catabolism; the remaining 15% of glucose likely originates 

from amino acids derived from body tissues.  In a more recent study, glucogenic precursors, 
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including propionate, lactate, alanine, and glycerol, contributed to 73% and 84% of the 

glucose produced by the liver at 9 d pre- and 11 d postpartum, respectively (Reynolds et 

al., 2003).  This implies that other glucogenic substrates, such as amino acids from muscle, 

account for 27-16% of the glucose produced in the liver.  Between 2 wk prepartum and 5 

wk postpartum, lactating dairy cows lose an average of 21 kg of empty body protein 

(Komaragiri and Erdman, 1997), indicating that a substantial amount of body protein is 

catabolized during the periparturient period is likely used to provide amino acids for 

gluconeogenesis.  Thus, many other glucogenic substrates in addition to propionate play 

critical roles in the ability of the transition cow to meet glucose requirements during late 

gestation and early lactation. 

RUMINANT LIVER LIPID METABOLSIM 

 In ruminants, the liver is responsible for supplying glucose to the mammary gland 

and other extrahepatic tissues, metabolizing nitrogenous compounds and detoxifying 

ammonia, and processing FA into very low density lipoproteins (VLDL) to supply 

extrahepatic tissues.  The hepatic portal vein supplies the liver with propionate, NEFA, 

ammonia N, and amino acids that are derived from the diet.  Propionate serves as the main 

glucogenic precursor for early to mid-lactation dairy cows, supplying the liver with over 

60% of the substrates used for gluconeogenesis (Reynolds et al., 2003).  Non-esterified FA 

can serve as a direct energy source for the liver through complete oxidation, be partially 

oxidized to ketone bodies, or be esterified to glycerol to form TGs, which are subsequently 

incorporated into VLDL and exported to extrahepatic tissues (Grummer, 1993).  During 

the periparturient period, the liver metabolic rate is elevated to increase the rate of 
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gluconeogenesis and to accommodate the increased supply of ammonia, amino acids, and 

FA (Drackley et al., 2001).   

 Liver NEFA uptake is directly proportional to plasma NEFA levels (Bell, 1995; 

Drackley et al., 2001; Nguyen et al., 2008).  Consequently, liver NEFA uptake is enhanced 

during the periparturient period when plasma NEFA levels are elevated due to adipose 

mobilization.  Drackley et al. (2001) estimated that NEFA uptake by the liver was ~26% 

of circulating NEFA.  Non-esterified FA are delivered to the liver via the portal vein and 

the hepatic artery, with the latter supplying a greater proportion of NEFA during periods 

of adipose mobilization.  For cows at 11 d postpartum, NEFA flux from the hepatic artery 

was ~108% greater than the flux of NEFA from the portal drained viscera (Reynolds et al., 

2003).  

FA Uptake and Activation  

 A summary of hepatic NEFA metabolism is illustrated in Figure 2.1.  Nonesterified 

FA are transported into the hepatocyte via FA transport proteins 2 and 5 (FATP2 and 

FATP5, respectively) and FA translocase (Kawano and Cohen, 2013).  Once inside the 

cytoplasm, NEFA are activated to fatty acyl-CoA (FA-CoA) either by acyl-CoA 

synthetases (ACS) or by enzymes inherent to FATPs (Nguyen et al., 2008).  Once 

activated, FA-CoA are either oxidized in the mitochondria or peroxisome, or utilized as 

substrates for TG synthesis (Nguyen et al., 2008; Kawano and Cohen, 2013).  
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Figure 2.1.  Schematic of liver lipid metabolism.  FATP = fatty acid transport protein; 

CPT-1A = carnitine palmitoyltransferase 1; HMG-CoA = β-Hydroxy-β-methylglutaryl-

CoA; BHBA = β-Hydroxy-butyrate. 

Mitochondrial β-Oxidation  

 Fatty acyl-CoA cannot freely cross the mitochondrial membrane and a carnitine-

dependent shuttle, carnitine palmitoyltransferase 1 (CPT-1), is required to facilitate the 

transfer (Kawano and Cohen, 2013).  This enzyme is associated with the mitochondrial 

membrane and catalyzes the conversion of acyl-CoA to acyl-carnitine, a process that 

requires cytosolic carnitine (Nguyen et al., 2008).  Acyl-carnitine traverses the 

mitochondrial membrane via assistance of carnintine acyl-carnintine translocase, and 

subsequent reaction with the mitochondrial enzyme, CPT-2, yields mitochondrial FA-CoA, 
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which serves as the primary substrate for β-oxidation, and free carnitine, which can diffuse 

into the cytosol for future carnitine-dependent translocation reactions (Kawano and Cohen, 

2013).  Therefore, CPT-1 catalyzes the rate limiting step for mitochondrial β-oxidation 

because it controls substrate entry into the mitochondrial matrix.  Malonyl-CoA, the 

product of the first step in cytosolic FA synthesis catalyzed by acetyl-CoA carboxylase 

(ACC), inhibits the action of CPT-1 (Kawano and Cohen, 2013).  The first step of 

mitochondrial β-oxidation is catalyzed by an acyl-CoA dehydrogenase, resulting in 

production of a trans-2-Enoyl-CoA and reduction FAD+ to FADH2, the latter of which 

enter the electron transport chain (ETC) to produce 1.5 ATP (Nelson and Cox, 2008).  The 

second step of mitochondrial β-oxidation is catalyzed by an enoyl-CoA hydratase and the 

third step is catalyzed by β-hydroxyacl-CoA dehydrogenase, producing NADH that can 

enter the ETC to produce 2 ATP.  The final step of β-oxidation, catalyzed by a thiolase, 

results in a FA-CoA 2 carbons shorter than the initial FA-CoA and one molecule of acetyl-

CoA that can enter the TCA cycle to produce ATP (Nelson and Cox, 2008).  For even 

numbered saturated FA, this process repeats until the final step yields two acetyl-CoA 

molecules from butanoyl-CoA.  

 Insulin activates FA synthesis by stimulating ACC and results in the production of 

malonyl-CoA, which inhibits CPT-1 (Kawano and Cohen, 2013).  In contrast, glucagon 

activates a phosphorylation cascade which inhibits ACC and activates malonyl-CoA 

decarboxylase, effectively reducing the amount of malonyl-CoA and enabling full function 

of CPT-1 (Kawano and Cohen, 2013).  During the periparturient period, plasma insulin 

levels are low and glucagon levels are relatively constant such that the ratio of 

glucagon:insulin is increased (Ingvarsten and Andersen, 2000), thereby enabling FA-CoA 
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transport into the mitochondria for oxidation (Nguyen et al., 2008).  Because the rate of 

NEFA entry into the liver is increased during the periparturient period, large amounts of 

acetyl-CoA are produced through β-oxidation.   

 Dann and Drackley (2005) observed an increase in hepatic CPT-1 activity between 

30 d prepartum and 1 d postpartum, indicating that the rate of FA oxidation likely also 

increased during this time to accommodate increased NEFA uptake by the liver.  In 

agreement, results from in vitro incubation studies with liver tissue obtained from transition 

dairy cows indicate that the hepatic FA oxidation capacity of early lactation cows is 

significantly greater than mid-lactation cows (Andersen et al., 2002).  It is likely that CPT-

1 becomes saturated during the periparturient period such that the enzyme simply cannot 

process all of the FA-CoA in the liver.  Activity of CPT-1 plateaus when the concentration 

of palmitoyl-CoA in pregnant rat liver tissue is ~0.06 mEq/L (Saggerson and Carpenter 

1982; Gavino and Gavino, 1991).  Around the time of calving, plasma NEFA levels can 

peak as high as 0.9 mEq/L (Grummer, 1993).  If the liver takes up 26% of the circulating 

NEFA (Drackley et al., 2001), liver NEFA concentration would be approximately 0.23 

mEq/L at peak adipose tissue mobilization.  This concentration of NEFA is more than 

280% greater than the concentration of palmitoyl-CoA that maximizes hepatic CPT-1 

activity in pregnant rats.  Thus, the concentration of FA-CoA in the cytosol during the 

periparturient period probably exceeds the capacity of CPT-1 to facilitate its transport into 

the mitochondria for β-oxidation. 
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Ketogenesis  

 Typically, acetyl-CoA produced through β-oxidation will enter the TCA cycle for 

production of reducing equivalents that are shuttled to the ETC.  Alternatively, acetyl-CoA 

may be diverted to the ketogenic pathway under conditions where propionate supply is 

limited (Drackley et al., 2001).  In the first step of ketogenesis, two acetyl-Co-A molecules 

condense to form acetoacetyl-CoA (Nelson and Cox, 2008).  Acetoacetyl-CoA is converted 

to β-Hydroxy-β-methylglutaryl-CoA (HMG-CoA) which is catalyzed by HMG-CoA 

synthase (Nelson and Cox, 2008).  In the final steps of ketogenesis, HMG-CoA is converted 

to acetoacetate which is subsequently converted to β-Hydroxybutyrate (BHBA) and 

acetone (Nelson and Cox, 2008).  Acetoacetate and BHBA are the primary ketone bodies 

that are exported from the hepatocyte and transported to extrahepatic tissues for use as 

energy sources.  The rate limiting step of ketogenesis is catalyzed by of HMG-CoA 

synthase which is inactivated by the succinylation that occurs in the presence of the TCA 

cycle intermediate, succinyl-CoA (Nguyen et al., 2008).  Drackley et al. (2001) 

hypothesized that the amount of propionate available to produce succinyl-CoA via the TCA 

cycle influences the rate of ketogenesis, with, high levels of propionate increasing succinyl-

CoA production, thereby reducing the activity of HMG-CoA synthase.   

 Relative to mid-lactation cows, early lactation cows have a reduced capacity for FA 

oxidation (Andersen et al., 2002).  This is consistent with the classic elevation of plasma 

BHBA during the early postpartum period (Douglas et al., 2006; Carlson et al., 2007).  

Incomplete FA oxidation during early lactation (Andersen et al., 2002) probably developed 

as a mechanism for the ruminant to provide additional energy substrates for extrahepatic 

tissue during times of limited supply of glucose precursors (Drackley et al., 2001).  
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However, excessive ketone production leads to ketosis, which has significant negative 

impacts on milk production potential in early lactation and increases the risk for the 

development of other diseases during the periparturient period (Duffield et al., 2009).  Fatty 

liver and ketosis are both periparturient metabolic diseases and their occurrence is usually 

correlated (Grummer, 1993) because both result from increased hepatic NEFA uptake 

during the periparturient period.   

Peroxisomal β-Oxidation  

 Fatty acyl-CoA can also be oxidized in the peroxisome instead of the mitochondria.  

Peroxisomal β-oxidation is typically used for very long chain FA; however, during times 

when FA influx is high, it can apparently serve as an overflow oxidation pathway (Nguyen 

et al., 2008).  In contrast to the first step of β-oxidation in the mitochondria, the first step 

in peroxisomal β-oxidation is catalyzed by a different enzyme, acyl-CoA oxidase, which 

results in the production of H2O2.  Hydrogen peroxide is subsequently reduced to H2O + 

1/2 O2 by FADH2 (Nelson and Cox, 2008; Nguyen et al., 2008).  Because the peroxisome 

does not contain an ETC, NADH produced during the second step must be exported into 

the cytosol for reoxidation instead of entering the ETC directly to produce ATP (Nelson 

and Cox, 2008).  Thus, fewer ATP are produced through peroxisomal β-oxidation because 

FADH2 is used to reduce H2O2 in the first step instead of producing ATP through ETC, 

and because NADH produced during the second oxidative step cannot enter the ETC to 

produce ATP as in the mitochondria.  Similar to mitochondrial β-oxidation, the final step 

of each round of peroxisomal β-oxidation produces acetyl-CoA, which is exported to the 

mitochondria for entry into the TCA cycle (Nelson and Cox, 2008). 
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Triglyceride and VLDL Synthesis  

 Activated FA-CoA that are not transported into the mitochondria or peroxisome for 

β-oxidation are utilized for TG synthesis.  In contrast to the rodent and human, the capacity 

of the ruminant liver to synthesize FA de novo is limited; therefore, most of the FA 

incorporated into TG in the ruminant liver originate from body tissues or the diet 

(Grummer, 1993).  The first step of TG synthesis involves esterification of FA-CoA to the 

sn-1 position of glycerol-3-phosphate which is catalyzed by glycerol-3-phosphate acyl 

transferase (Kawano and Cohen, 2013).  Acylglycerol-3-phosphate acyl transferase 

catalyzes esterification at the sn-2 position and the resulting diacylglycerol is esterified to 

TG by diacylglycerol acyl transferase 1 (DGAT1; Kawano and Cohen, 2013).   

 Triglycerides are incorporated into VLDL and secreted into the blood for transport 

to extrahepatic tissues.  Very-low density lipoproteins are composed of apolipoproteins, 

phospholipid, free cholesterol, cholesterol esters, and TG.  Triglycerides, phospholipids, 

and proteins make up 45-63%, 12-17%, and 8-16% of this lipoprotein in cattle, respectively 

(Bauchart, 1993).  Apolipoprotein B100 (apoB100) is the major apolipoprotein in VLDL 

and functions in binding to low-density lipoprotein (LDL) receptors located on target 

tissues (Bauchart, 1993; Kawano and Cohen, 2013).  This lipoprotein is synthesized on the 

surface of the endoplasmic reticulum (ER) and is transported to the ER lumen for VLDL 

synthesis by microsomal triglyceride transport protein (MTTP; Tiwari and Siddiqi, 2012).  

This enzyme is associated with the rough ER membrane and possesses both an 

apolipoprotein binding region and a lipid binding region (Tiwari and Siddiqi, 2012) and 

therefore plays an integral role in the assembly of VLDL.  Once assembled, the VLDL 

particles are transported out of the ER to the Golgi apparatus via VLDL-transport vesicles, 
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where further processing occurs (Tiwari and Siddiqi, 2012).   Post-trans-Golgi network 

VLDL transport vesicles carry mature VLDL particles to the plasma membrane, where 

fusion occurs and VLDL are released into circulation (Siddiqi, 2015).  

PERIPARTURIENT FATTY LIVER DISEASE 

 During the periparturient period, most (~50%) cows accumulate TG in the liver to 

some extent (Grummer, 1993; Jorritsma et al., 2001).  Excessive accumulation of TG can 

lead to impaired amino acid and carbohydrate metabolism (Drackley et al., 2001).  Bobe 

et al. (2004) classified hepatic lipidosis, or fatty liver disease, into four categories according 

to the percentage of TG present in the liver tissue (% of wet weight): normal (<1%), mild 

(1-5%), moderate (5-10%), and severe (>10%).  Jorritsma et al. (2001) reported that 54% 

of the 218 early lactation cows that were sampled from 9 different grazing herds in The 

Netherlands suffered from moderate or severe fatty liver disease.  Because not all cows 

experience fatty liver disease, Herdt (2000) suggested that fatty liver occurrence is due to 

the failure of some cows to adapt to sustained NEB.  Fatty liver is categorized as a 

periparturient metabolic disease because the proportion of TG in the liver increases 

prepartum, peaks around parturition, and remains elevated throughout early lactation 

(Grummer, 1993).     

Development of Fatty Liver Disease 

 Once FA are taken up by the liver and activated to FA-CoA they can either be 

oxidized completely to CO2, oxidized incompletely to ketone bodies, or incorporated into 

TG for export via VLDL.  Ultimately, fatty liver results from the disparity between FA 

uptake and FA utilization and export.  Since the rate of FA export in the form of VLDL-
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TG is very slow in ruminants (Grummer, 1993), TG accumulation occurs during the 

periparturient period because more FA are taken up than can be oxidized or exported.  As 

shown in Figure 2.1, the first regulatory step of mitochondrial FA oxidation is catalyzed 

by CPT-1, which requires carnitine (Kawano and Cohen, 2013).  There is evidence that 

suggests hepatic carnitine levels are insufficient during the periparturient period.  Jesse et 

al. (1986) observed that oxidation of labeled palmitate increased when liver slices were 

supplemented with L-carnitine.  Abomasal infusion of L-carnitine reduced liver TG 

accumulation and increased the capacity of the liver to oxidize FA in lactating cows fasted 

to induce NEB (Carlson et al., 2006).  Furthermore, Carlson et al. (2007) observed that 

carnitine supplementation to cows from -14 to 21 d relative to calving decreased liver TG 

accumulation, suggesting that carnitine increased in the rate of hepatic FA transport into 

the mitochondria.  The rate of FA export in the form of VLDL-TG likely also plays a key 

role in the development of periparturient fatty liver disease (NRC, 2001).  The supply of 

choline for phosphatidylcholine (PC) synthesis, the major phospholipid component of 

VLDL, may be an important determinant of the rate of TG export from the liver (Pinotti et 

al., 2002).   

Impacts on Health, Reproduction, and Profitability 

 Fatty liver may develop as a direct result of the NEB induced by DMI depression 

associated with either parturition or diseases that reduce feed intake (NRC, 2001).  

Incidence of fatty liver disease correlates strongly with other metabolic diseases, including 

ketosis (Veenhuizen et al., 1991; Grummer, 1993), displaced abomasum (DA; Wensing et 

al., 1997; Kalaitzakis et al., 2006), and hypocalcaemia (Goff and Horst, 1997; Katoh, 

2002).  Ketosis is usually preceded by liver TG accumulation (Veenhuizen et al., 1991) 
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and cows with fatty liver usually have elevated levels of ketones in blood and urine (Bobe 

et al., 2004).  Severe fatty liver disease can cause a dramatic reduction in DMI (Bobe et al., 

2004), which predisposes the animal to a DA (Shaver, 1997) and exacerbates NEB and 

liver TG accumulation.  On the contrary, the depression in DMI associated with a DA 

(Kalaitzakis et al., 2006), hypocalcaemia (Goff and Horst, 1997), or any other disorder, 

intensifies NEB which can lead to increased liver TG accumulation.  The occurrence of 

mastitis and metritis during the postpartum period are also positively associated with liver 

TG content (Bobe et al., 2004) perhaps because excessive lipid mobilization contributes to 

immune dysfunction and inflammation (Sordillo and Raphael, 2013).      

 Fatty liver disease is also correlated to infertility in lactating dairy cows, which is 

likely due to its association with NEB and circulating NEFA levels.  The proportion of 

oocytes obtained from cows with fatty liver that successfully developed into embryos 

during an in vitro fertilization technique was significantly lower than that of oocytes 

collected from healthy cows (Wensing et al., 1997).  The authors concluded that oocytes 

that develop during the early postpartum period are probably negatively affected by high 

NEFA and low glucose concentrations in the blood as well as impaired liver function that 

is associated with hepatic lipidosis (Wensing et al., 1997).  Additionally, liver TG content 

correlates positively with the number of days open, days to first insemination, days to first 

estrus, days to first ovulation, and services per cow required to achieve conception (Bobe 

et al., 2004).  Although it is not determined whether the association between fatty liver and 

fertility is due to the inability of some cows to cope with the severe NEB and the subsequent 

elevation of plasma NEFA that occur during early lactation (Herdt, 2000) or due to a direct 
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effect of TG accumulation in the liver, it is clear that cows with fatty liver disease are at a 

higher risk for reproductive failure than healthy cows. 

 Severe fatty liver disease likely has a negative impact on whole-lactation milk 

production and consequently, lifetime profitability.  Deluyker et al. (1991) determined that 

cows that experienced clinical ketosis during the first 3 wk postpartum produced 253 kg 

less milk throughout the first 119 DIM and had a 2.7 kg lower peak-milk yield than cows 

that did not develop clinical ketosis during the 3 wk postpartum.  Although the study 

reported production losses coinciding with incidences of clinical ketosis, similar results 

might also be expected for fatty liver disease because the two diseases are related 

(Veenhuizen et al., 1991).  Bobe et al. (2004) estimated that annual costs associated with 

fatty liver disease exceed $60 million in the United States alone.        

Detection and Diagnosis of Fatty Liver Disease 

 Hepatic lipidosis is difficult to diagnose because outward symptoms of the disease 

are nonspecific.  Liver TG content correlates positively to urinary ketone output and in 

severe cases of fatty liver (>10% TG), feed intake will be significantly compromised (Bobe 

et al., 2004).  A significant reduction in DMI perpetuates liver TG accumulation by 

increasing the magnitude of NEB, and enhances the risk for development of other disorders 

as discussed previously.  Currently, the only accurate and reliable method of detection for 

fatty liver disease is through analysis of TG content of liver tissue obtained via biopsy 

(Bobe et al., 2004).  There are several obvious disadvantages to assessing liver TG content 

via biopsy.  The biopsy procedure is moderately invasive, labor intensive, and requires 

technical proficiency, making it impractical for producers.  Thus, development of a non-
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invasive approach to estimate liver TG content using data available on-farm would be 

beneficial in both industry and research settings. 

 Jorritsma et al. (2001) attempted to develop a predictive statistical model using data 

from 9 commercial herds in The Netherlands.  Liver and blood samples were collected 

from 218 cows within 6-17 d postpartum.  Additionally, for each cow, a single day milk 

production record made between wk 4 and 12 wk after calving was obtained.  They 

regressed liver TG as a function of 1) herd (fixed) and blood concentrations of  NEFA, 

glucose, and urea N, and 2) herd (fixed), milk production, and BCS change; the R2 was 

0.33 and  0.22 for the first and second model, respectively.  They concluded that their two 

models were unable to adequately predict liver TG content.  However, it is possible that 

additional blood parameters, such as BHBA, VLDL, or other metabolites, average fat-

corrected milk production during the first week postpartum, and measures of prepartum 

BCS and DMI could have improved the accuracy of the model.   

 Attempts have also been made to implement ultrasound in the detection of fatty 

liver disease.  Bobe et al. (2008) utilized ultrasound to determine liver TG content in early 

lactation cows.  Using measurements from the ultrasound images, they were able to 

correctly categorize 82% of the liver samples as normal liver or mild, moderate, or severe 

fatty liver based on the disease categories described by Bobe et al. (2004).  These results 

suggest that ultrasound may be a useful tool in estimating liver TG content.  However, the 

instrumentation required for and the technical nature of this approach discourages its use 

in the field. 
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Prevention and Treatment of Fatty Liver Disease 

 The high prevalence of fatty liver during the periparturient period (>50% incidence 

rate; Jorritsma et al., 2001) has motivated the effort to elucidate the best method to prevent 

or mitigate liver TG accumulation in transition dairy cows.  Both management and 

nutritional strategies have been implicated in the prevention of fatty liver disease.  Cows 

that are fed ad libitum during the prepartum period have lower DMI postpartum and higher 

levels of liver TG compared with cows that are limit-fed during the prepartum period 

(Douglas et al., 2006).  Douglas et al. (2006) suggested that feed-restricting prepartum 

cows may have increased the liver's capacity for oxidation of FA, allowing for more 

efficient NEFA processing than cows fed ad libitum.  Management of appropriate BCS is 

critical for successful transition to lactation.  Reid et al. (1986) observed that over 

conditioned cows at dry-off mobilized more body fat and had higher liver TG content 

postpartum than their thinner counterparts.  Similarly, Roche et al. (2015) observed higher 

postpartum liver TG levels for cows with a higher BCS than those with a lower BCS at 

calving.  Thus, limit-feeding during the prepartum period and managing late lactation and 

dry cows might be used to prevent excessive condition gain and may reduce severity of 

liver TG accumulation.  

 The effect of the nutrient composition of the prepartum diet on post-partum hepatic 

TG accumulation has also been examined.  Grum et al. (1996) fed cows a high fat diet 

(6.7% ether extract), a high grain diet (49% concentrate), or a control diet (2.2% ether 

extract, 30% concentrate) during the dry period until 1 wk prepartum.  Cows fed the high 

fat diet showed significantly lower levels of TG in liver tissue compared with cows fed 

both the high grain and control diets.  In contrast, Bertics and Grummer (1999) concluded 
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that a diet supplemented with long chain FA to feed-restricted cows did not affect hepatic 

liver TG accumulation.  Grummer (2008) summarized results from multiple studies that 

examined the effect of increasing non-fiber carbohydrate (NFC) content of the prepartum 

diet on postpartum liver TG and found that 4 out of 5 studies reported similar liver TG 

levels across the diets examined.  Moreover, in the study by Douglas et al. (2006) where 

cows were fed either a high fat diet (6.4% fat, 22% NFC) or a low fat diet (2.8% fat, 36% 

NFC) at either ad libitum or restricted intake levels for 14 d before expected calving, the 

level of intake prepartum appeared to have a greater impact on postpartum liver TG 

accumulation than the composition of the prepartum diet.  While the composition of the 

prepartum diet is still important, these studies suggest that the level of intake during the 

weeks prior to calving as well as the BCS at calving are also important determinants of 

liver TG accumulation. 

 Supplementing diets with chromium, niacin, conjugated linoleic acid (CLA), 

choline, or Met, have also been identified as potential strategies to prevent excessive 

hepatic TG accumulation during the transition period.  Chromium plays a role in 

augmenting the insulin response through interaction with the insulin receptor (Vincent, 

2000); therefore, supplying additional chromium may potentially enhance insulin 

sensitivity in the early lactation cow and result in depressed adipose tissue lipolysis.  

However, supplemental chromium (0 - 12 mg chromium per kg BW0.75 in the form of 

chromium-Met) delivered orally once daily to periparturient dairy cows did not affect 

hepatic TG content (Hayirli et al., 2001; Smith et al., 2008).  Niacin has been shown to 

reduce the rate of lipolysis in feed-restricted dry cows (Pires and Grummer, 2007) and may 

be potentially useful in reducing hepatic TG content.  Morey et al. (2011) supplemented 
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cows with rumen protected niacin at either 0 or 24 g/d from d -21 to d 21 relative to 

parturition and observed a significant reduction in plasma NEFA at 5 and 10 d postpartum 

for niacin-treated cows, but similar concentrations of liver TG between control and treated 

cows.  Therefore, although supplemental niacin can apparently reduce lipolysis in 

periparturient cows, it is still unclear whether or not it will be useful in the prevention of 

fatty liver.  Grummer (2008) suggested that CLA could potentially alleviate periparturient 

fatty liver disease by reducing the severity of NEB since CLA, specifically trans-10, cis-

12 CLA,  has been shown to reduce lipogenesis in the mammary gland but enhance 

lipogenesis in the adipose tissue of lactating cows (Harvatine et al., 2009).  CLA-enriched 

FA supplements (containing 6 to 29% trans-10, cis-12 CLA) fed to periparturient cows (21 

d pre- through 63 d postpartum; Castañeda-Gutiérrez et al., 2005) and postpartum cows (1 

to 40 DIM; Odens et al., 2007), tended to reduce or significantly reduced postpartum 

plasma NEFA concentrations, respectively.  The reduction in plasma NEFA observed in 

early postpartum cows fed CLA-enriched FA supplements likely decreased liver NEFA 

uptake which could have potentially limited liver TG production.  Choline and Met have 

been implicated as lipotropic agents that may facilitate the export of TG from the liver by 

increasing the availability of PC (Grummer, 2008), which is required for VLDL synthesis 

(Yao and Vance, 1988).  Methionine is a precursor for the methyl donor, S-

adenosylmethionine (SAM; Martinov et al., 2010), that is required for the de novo 

synthesis of PC from phosphatidylethanolamine (PE; Zeisell, 1981).  Phosphatidylcholine 

can also be synthesized from a different pathway that utilizes dietary choline (Zeisell, 

1981).  Thus, increasing the amount of choline absorbed by the cow may reduce the rate of 
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de novo PC synthesis and spare Met, an already limiting amino acid for cows fed corn-

based diets (NRC, 2001), for other needs such as milk protein synthesis.  

 Because ketosis and fatty liver disease are related (Veenhuizen et al., 1991), 

approaches for the treatment of clinical ketosis could also be effective in the prevention or 

alleviation of fatty liver disease.  Intravenous infusion of glucose precursors and oral 

delivery of propylene glycol are recognized as treatments for clinical ketosis (Baird, 1982).  

Propylene glycol reduced plasma NEFA concentrations in non-lactating, feed-restricted 

cows when administered as part of a concentrate mix or as an oral drench (Christensen et 

al., 1997), and reduced blood ketone concentrations when administered as a daily oral 

drench to cows beginning 7 d prepartum (Studer et al., 1993).  A once daily oral drench of 

propylene glycol (500 mL/d) from 1 to 3 DIM resulted in numerically lower liver TG on d 

7 postpartum and significantly reduced mean plasma NEFA concentration through 21 DIM 

(Pickett et al., 2003).  Cows that received a 1-L propylene glycol drench daily for 7 d 

prepartum had significantly reduced liver TG concentrations at 1 and 21 DIM (Studer et 

al., 1993).  Furthermore, Rukkwamsuk et al. (2005) showed that cows receiving a daily 

400 mL oral drench of propylene glycol from -7 to 7 d relative to calving had significantly 

lower plasma NEFA and liver TG concentrations postpartum than control cows.  

CHOLINE AND METHIONINE METABOLISM 

Choline  

 Choline is an essential nutrient for non-ruminant animals, including rats, 

preruminant calves (NRC, 2001), and humans (Zeisel and da Costa, 2009).  It can be 

consumed in the diet or synthesized de novo in most cell types via the liberation of the 
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choline moiety from PC produced via the phosphatidylethanolamine N-methyltransferase 

(PEMT) pathway (Li and Vance, 2008).  Choline is required for PC synthesis, the major 

phospholipid comprising cell membranes and lipoproteins, and plays a role in methyl group 

metabolism as a methyl donor via the betaine-homocysteine methyltransferase (BHMT) 

pathway (Zeisel and da Costa, 2009).  Choline requirements for lactating dairy cows have 

not been specified (NRC, 2001).  However, because choline is rapidly degraded in the 

rumen (Sharma and Erdman, 1988) requirements are probably met through de novo 

synthesis.  Relative to nonpregnant, nonlactating women, recommended dietary choline 

intake is 6% and 29% greater for pregnant and lactating women, respectively (Ziesel and 

da Costa, 2009).  Thus it seems that requirements for choline vary depending on 

physiological state.  Perhaps the choline requirement of the periparturient dairy cow 

exceeds that which can be supplied via de novo synthesis, resulting in choline deficiency.  

The idea that the transition cow suffers from choline deficiency is supported by the high 

incidence of fatty liver disease (Jorritsma et al., 2001), which is the primary symptom of 

choline deficiency in other species (NRC, 2001). 
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Figure 2.2.  Choline, phosphocholine, betaine, and phosphatidylcholine structures.  

Adapted from Nelson and Cox (2008). 

 

 Phosphatidylcholine is the primary phospholipid of VLDL and comprises >50% of 

the phospholipids of cell membranes of mammals (Pinotti et al., 2002; Zeisel and da Costa, 

2009).  De novo PC synthesis, which occurs in the ER, can occur via the Cytidine 

Diphosphate-choline (CDP-choline) Pathway or the PEMT Pathway (Figure 2.3; Li and 

Vance, 2008; Cole et al., 2012).  Dietary choline is taken up by the cell via choline 

transporters and choline kinase (CK) phosphorylates the cellular choline to form 

phosphocholine (Li and Vance, 2008; Zeisel and da Costa, 2009).  Phosphocholine is 

converted to (CDP-choline) by cytidine triphosphate:phosphocholine cytidylyltransferase 

(CT) which is the rate-limiting step in the CDP-Choline Pathway (Li and Vance, 2008).  

Transcription of the gene encoding CT (PCYT1a; Phosphate Cytidylyltransferase 1 

Choline, α) is associated with cell division and growth instead of the energy status of the 

cell (Li and Vance, 2008), which is reasonable given that PC is a requirement for cell 
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membrane development.  CDP-choline is then converted to PC via CDP-choline:1,2-

diacylglycerol cholinephosphotransferase (CTP), which is bound to the membrane of the 

ER (Li and Vance, 2008).  Phosphatidylcholine synthesis via the PEMT pathway requires 

a series of 3 methylations of PE by SAM (Cole et al., 2012).  The overall contribution of 

the CDP-choline pathway to the production of PC in the ruminant is probably limited 

because dietary choline is degraded extensively in the rumen (Sharma and Erdman, 1988).  

Thus, the PEMT pathway is most likely the main source of de novo PC in the dairy cow. 

 

Figure 2.3.  Synthesis of phosphatidylcholine via the PEMT Pathway and the CDP-

Choline Pathway. SAM (S-adenosylmethionine); AdoHcy (S-adenosylhomocysteine); CK 

(choline kinase); CT (cytidine triphosphate:phosphocholine cytidylyltransferase); CTP 

(CDP-choline:1,2-diacylglycerol cholinephosphotransferase); DAG (diacylglycerol); PL 

(phospholipase).  Adapted from Cole et al. (2012). 

Choline as a Methyl Donor 

 In hepatocytes and probably mammary cells as well, free choline can play a role in 

methyl metabolism.  Free choline is converted to betaine via choline oxidase (Zeisell, 1981; 

Pinotti et al., 2002; Eklund et al., 2005).  Betaine can donate a methyl group to 

homocysteine to regenerate Met, a process catalyzed by BHMT (Pinotti et al., 2002; 



35 

 

Eklund et al., 2005).  Methionine can then enter the amino acid pool for protein synthesis, 

or serve as a precursor for SAM, a methyl donor required for many metabolic reactions 

(Selhub, 1999).  Thus it seems that supplemental dietary choline could spare Met for 

protein synthesis by providing additional betaine for the methylation of homocysteine.  

However, a recent in vitro experiment with cultured calf hepatocytes showed that choline 

chloride failed to increase the expression of BHMT, but instead increased expression of 

methionine synthase, an additional mechanism by which Met can be generated from 

homocysteine (Chandler et al., 2015). 

Supplemental Choline in Dairy Cow Diets 

 The study of the effect of choline in dairy cattle rations is complicated by the fact 

that dietary choline is degraded extensively by rumen microorganisms (Atkins et al., 1988).  

Early efforts to determine the choline requirement of lactating dairy cattle utilized 

abomasal infusions of choline chloride to provide a post-ruminal supply of choline (Sharma 

and Erdman, 1989).  Modern encapsulation technology has made it possible to protect 

choline from degradation in the rumen and these rumen protected choline (RPC) products 

are now commercially available to livestock producers.  Deuchler et al. (1998) estimated 

that one RPC product achieved 85% protection from ruminal degradation.  The availability 

of RPC products provides a more practical avenue through which the effects of choline 

supplementation can be investigated in ruminants.  

 Although RPC products have been developed and protection from rumen 

degradation is verified (Deuchler et al., 1998), methods to assess the intestinal 

bioavailability of choline supplied in this form once ingested have not been established.  
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For some nutrients, this can simply be estimated by measuring total tract digestibility; 

however, for other nutrients, such as choline and AA, this approach would result in an 

inaccurate assessment of availability due to microbial fermentation and degradation in the 

lower gut.  In such cases, nutrient bioavailability is better determined indirectly by 

measuring changes in blood, milk, or body tissue markers in response to increasing nutrient 

supply.  Deuchler et al. (1998) showed that post-ruminal choline chloride, delivered via an 

abomasal infusion, linearly increased total milk choline secretion.  Furthermore, choline 

chloride fed as RPC (50 g/d choline chloride) increased milk total choline concentration, 

but not yield in that study (Deuchler et al., 1998).  Recent characterization of milk and 

blood choline metabolite profiles throughout lactation have been reported (Artegoitia et al., 

2014).  In their study of choline metabolites, Artegoitia et al. (2014) identified several 

choline metabolites in blood and milk, including betaine, free choline, phosphocholine, 

glycerophosphocholine, sphingomyelin, as well as several species of PC and 

lysophosphatidylcholine.  These choline metabolites could be useful indicators of post-

ruminal choline supply, which could have utility in determining the bioavailability of 

choline supplied as RPC.   

Recently, de Veth and coworkers (2016) suggested that concentrations of specific 

choline metabolites in blood and milk were more indicative of post-ruminal choline supply 

than total choline.  In their study, de Veth et al. (2016) showed that post-ruminal choline 

chloride delivered via abomasal infusion, but not RPC, increased plasma betaine, free 

choline, and phosphocholine.  However, modest increases in plasma PC concentration were 

only apparent for cows supplied post-ruminal choline as RPC (de Veth et al., 2016).  

Furthermore, milk yields and concentrations of betaine, free choline, phosphocholine, and 
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acetylcholine were increased by abomasal infusion of choline chloride, but not RPC.  These 

results suggest that betaine, free choline, and phosphocholine could serve as potential 

markers for estimating post-ruminal choline supply.  However, in order to reliably calculate 

the bioavailability of choline supplied as RPC using the marker approach, it is imperative 

that such markers are responsive to post-ruminal choline supplied as RPC.  It is possible 

that the short experimental periods (5 days) in the study by de Veth et al. (2016) precluded 

RPC from eliciting changes in blood and milk choline metabolites similar to those observed 

when choline chloride was infused into the abomasum.  Further research in this area is 

needed in order to identify markers that will be responsive to post-ruminal choline supplied 

as RPC. 

 Several studies have examined the effect of feeding supplemental RPC to 

periparturient dairy cattle diets with the expectation that RPC would reduce liver TG 

accumulation and improve postpartum performance.  Cooke et al. (2007) induced lipolysis 

in non-lactating pregnant cows to mimic NEB experienced in the early lactation period by 

restricting feed intake to 30% of requirements for maintenance and gestation.  They 

observed that cows fed a diet containing 60 g/d RPC had significantly reduced liver TG 

levels compared with cows that did not receive RPC after 10 d of feed restriction.  Recently, 

Zenobi et al. (2018) demonstrated that increasing levels of RPC (30 to 120 g/d RPC) fed 

to feed-restricted dry cows reduced liver TG content in a linear fashion.  Furthermore, RPC 

also increased liver glycogen during feed restriction (Zenobi et al., 2018b).  Zom et al. 

(2011) showed that RPC (60 g/d) fed from -21 through 42 d relative to calving reduced 

liver TG accumulation during wk 1 and wk 4 postpartum compared to control cows.  In a 

companion paper, Goselink et al. (2013) attempted to elucidate the mechanisms by which 
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choline affects periparturient cow lipid metabolism by assessing changes in the expression 

of genes related to lipid metabolism in hepatic and adipose tissues.  Cows supplemented 

with 60 g/d RPC had increased FATP, PPARδ, MTP, and apoB100 mRNA expression in 

hepatic tissue.  These results suggest that cows supplemented with RPC had an enhanced 

ability to take up NEFA (as indicated by increased FATP expression), perform peroxisomal 

FA oxidation (as indicated by increased PPARδ expression), and export TG as VLDL (as 

indicated by increased MTTP and APOB100 expression).  In contrast, Zhou et al. (2016a) 

showed no effect of choline on liver TG content when fed to cows from -21 through 30 

DIM.  Although they did not observe changes in liver TG content, Piepenbrink and Overton 

(2003) showed that liver tissue harvested from periparturient cows (-21 through 63 DIM) 

fed RPC (45, 60, or 75 g/d) had an elevated capacity to oxidize FA.  In addition, RPC 

increased liver glycogen content for those cows (Piepenbrink and Overton, 2003).  Despite 

mixed reports of the effect of choline on hepatic TG accumulation, results by Goselink et 

al. (2013) provide support for choline as a lipotropic agent capable of improving hepatic 

lipid metabolism in periparturient dairy cows.   

 Production responses to supplemental RPC in lactating cows have been variable.  

Some studies fail to show a significant effect of feeding RPC on DMI postpartum (Hartwell 

et al., 2000; Piepenbrink and Overton, 2003; Zhou et al., 2016a; Zenobi et al., 2018a); 

however, Zom et al., 2011 reported significantly greater postpartum DMI for periparturient 

cows fed a RPC supplement pre- and postpartum relative to control cows.  Both 

Piepenbrink and Overton (2003), Zom et al. (2011), and Zhou et al. (2016a) observed 

similar milk yield between control and RPC-fed cows.  However, Elek et al. (2008) showed 

that RPC-supplemented cows (25 g choline/d for 21 d prepartum and 50 g choline/d for 60 
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d postpartum) had significantly greater milk yield.  Furthermore, Zenobi et al. (2018a) 

provided supplemental choline from -17 through 105 DIM and showed that RPC tended to 

increase milk yield and 3.5% fat-corrected milk (FCM) yield and this change was sustained 

throughout lactation, even after RPC supplementation ceased.  In the study by Hartwell et 

al. (2000), RPC was fed at 3 levels (0, 6, 12 g choline/d) across prepartum diets that differed 

in rumen undegradable protein (RUP; 4 and 6.2%) content.  A significant RUP by RPC 

interaction revealed that the highest level of RPC (12 g/d) coupled with the low RUP 

prepartum diet (4% RUP) significantly increased milk yield during the first 56 d 

postpartum; however, the opposite response was observed for the high RUP (6.2%) diet.  

Positive effects of RPC observed for cows fed the low RUP prepartum diet suggests that 

choline plays a role in mitigating Met deficiency.  There may also be positive effects of 

feeding RPC during the transition period on milk protein yield (Elek et al., 2008; Zom et 

al., 2011; Zenobi et al., 2018a), milk fat yield (Elek et al., 2008; Zenobi et al., 2018a), and 

milk fat and protein concentrations (Leiva et al., 2015).  However, Hartwell et al. (2000) 

observed similar yields of milk fat and protein among RPC and control cows across high 

and low RUP diets.  Furthermore, a significant RUP by RPC interaction for milk protein 

concentration indicated that the highest level of RPC (12 g choline/d) coupled with the low 

RUP diet (4% RUP) significantly reduced milk protein concentration while the opposite 

effect was observed for the high RUP (6.2%) diet.  These studies indicate that providing 

supplemental choline in the diet, in addition to improving liver lipid metabolism, may 

potentially improve DMI and milk and milk component production which may have 

important implications for health and profitability.  However, results reported to date are 

variable which likely reflects interactions between choline and other important nutrients, 
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such as amino acids and B-vitamins, as well as the pre- and postpartum choline status of 

the cow.  More research is needed to determine the conditions under which supplemental 

choline will have the most beneficial effects.  

Effects of Choline on Hepatic Gene Expression  

 To further our understanding of the mechanisms by which choline affects 

periparturient cows, recent research has focused on its effects on the expression of genes 

associated with lipid metabolism.  In their study of periparturient cows, Goselink et al. 

(2013) showed that RPC increased hepatic expression of MTTP, the gene that encodes 

MTP, and APOB100, suggesting that choline increased VLDL assembly.  These results 

corresponded with the choline-induced reduction in liver TG content for those cows (Zom 

et al., 2011).  Furthermore, RPC enhanced expression of FATP5, PPARδ, and CPT1A 

(Goselink et al., 2013) indicating that choline could have improved hepatic FA transport 

and oxidation.  Alteration in hepatic expression of genes related to glucose metabolism 

(pyruvate carboxylase and GLUT2) also suggest that choline affected glucose production 

by the liver (Goselink et al., 2013), which supports previous results that showed an increase 

in hepatic glycogen content in periparturient cows fed RPC (Piepenbrink and Overton, 

2003).  In contrast to these findings, Morrison et al. (2019) failed to observe any changes 

in hepatic expression of genes associated with FA oxidation, ketogenesis, VLDL synthesis, 

or glucose metabolism when periparturient cows were fed a supplement that included a 

mixture of B-vitamins and choline.  The reason for this discrepancy could be related to 

differences in the supplement fed (choline vs. choline and B-vitamins) as well as variation 

in the nutrient profile of the diets. 
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Given that choline and Met metabolism are closely related through one-carbon metabolism, 

it is of interest whether or not supplementation of choline affects expression of genes 

associated with these pathways.  To date, only one study has examined whether choline 

supplementation affects expression of genes involved in hepatic one-carbon metabolism in 

periparturient dairy cows.  In their study, Zhou et al. (2017) showed that supplemental 

choline increased the expression of two genes associated with the conversion of choline to 

betaine (choline dehydrogenase and betaine aldehyde dehydrogenase), suggesting that the 

supplemental choline was being used to synthesize betaine, which is required for Met 

recycling from Hcy via the BHMT pathway1, although BHMT activity was not affected 

by RPC.  Furthermore, RPC reduced the activity of 5-methyltetrahydrofolate-

homocysteine methyltransferase (MTR), the enzyme that catalyzes the rate-limiting step 

of the CH3-THF pathway.  Together, these results suggest that supplemental choline could 

have shifted Met recycling toward the BHMT pathway, rather than the CH3-THF pathway. 

In order to determine whether or not the choline supplied as RPC affects PC 

synthesis, which could have implications for subsequent VLDL assembly, it is also of 

interest to examine its effects on the expression of genes associated with the CDP-choline 

and PEMT pathways.  Choline did not alter hepatic expression of PEMT (Zhou et al., 

2017), suggesting no effect on de novo PC synthesis.  However, expression of PCYT1a, 

which encodes the rate-limiting enzyme in the CDP-choline pathway, phosphate 

cytidylyltransferase 1 choline α, was elevated by RPC, which could be indicative of 

enhanced PC synthesis via this pathway.  Studies in rodents suggest that PC species 

containing PUFA are likely derived via the PEMT pathway (Delong et al., 1999).  Given 

the recent characterization of various choline metabolites and PC species in blood and milk 
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of dairy cows throughout lactation (Artegoitia et al., 2014), assessment of blood or milk 

PC profile could have utility in determining dietary treatment effects on PC origin.  

However, specific PC species were not examined in the study by Zhou et al. (2017). 

Methionine 

 Methionine is the first limiting amino acid in dairy cows fed corn-based diets (NRC, 

2001).  Because dietary Met is degraded in the rumen, supplemental Met must be fed in a 

rumen-protected form (Bach and Stern, 2000).  Rumen protected Met (RPM) products are 

commercially available, and many studies have examined the effect of providing additional 

Met in lactating dairy cow diets.  Not only is Met required for protein synthesis, but it also 

plays a role in methyl donation and the formation of glutathione, an important antioxidant 

(Martinov et al., 2010), studies also have examined potential effects that Met may have 

during the periparturient period.  

 

Figure 2.4.  Structures of methionine, homocysteine, S-adenosyl-methionine, and 

glutathione.  Adapted from Nelson and Cox (2008). 
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Methionine as a Methyl Donor 

 Methionine serves as the precursor for the methyl donor, SAM, which is a required 

participant in many metabolic reactions (Chiang et al., 1996).  Methionine is converted to 

SAM through the addition of an adenosyl group by SAM synthetase, a process that requires 

1 ATP (Figures 2.4 and 2.5).  S-adenosylmethionine is capable of donating a methyl group 

in a variety of biochemical reactions, such as histone modifications that alter gene 

expression, protein methylations that change protein function, and phospholipid 

methylations (Chiang et al., 1996).  As shown in Figure 2.3, SAM also is important in the 

synthesis of PC via the PEMT pathway, which is likely the primary pathway by which 

ruminants derive PC.  After donation of a methyl group, SAM becomes S-adenosyl-

homocysteine (AdoHcy), which is then converted to homocysteine (Hcy; Figure 2.4).  

Homocysteine can then be converted back to Met via 1) the BHMT pathway, a process 

which requires betaine, the product of choline oxidation, or 2) the CH3-THF pathway which 

requires vitamin B12 (Figure 2.5).  Thus, it is clear that Met and choline metabolism are 

intertwined by the requirement of SAM for the synthesis of PC and the requirement of 

betaine for the regeneration of Met from Hcy via the BHMT pathway.   

Methionine as a Precursor for Glutathione 

 Methionine can also play a role in the production of glutathione, a tripeptide formed 

from γ-glutamine, cysteine, and glycine (Figure 2.4).  Glutathione plays several roles in 

metabolism which includes but is not limited to DNA synthesis, molecule transport, and 

protection of cells from oxidative damage through neutralization of reactive oxygen species 

(ROS) and free radicals (Meister and Anderson, 1983).  Glutathione is the most abundant 
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reducing molecule in rat liver cells (Yuan and Kaplowitz, 2009) likely because the liver is 

the major site for detoxification reactions in the body.  Reactive oxygen species, such as 

H2O2 and HO., are produced in abundance during times of inflammation and cellular stress 

(Yuan and Kaplowitz, 2009).  The dairy cow undergoes metabolic stress during the 

transition period and endures higher than normal levels of oxidative stress due to an 

imbalance between ROS production and antioxidant function (Sordillo and Raphael, 2013).  

This oxidative stress can lead to damage and impaired function of other tissues and can be 

detrimental to immune function (Sordillo and Raphael, 2013) which perpetuates metabolic 

stress through induction of greater NEB.  Strategies to reduce oxidative stress during the 

periparturient period include feeding antioxidants, such as vitamin E and selenium, and 

reducing the magnitude of NEB experienced during this time, as high levels of plasma 

NEFA promote ROS production (Sordillo and Raphael, 2013). As an additional dietary 

strategy, feeding supplemental Met during the transition period may also help reduce 

oxidative stress because Hcy can be converted to cysteine, which is a precursor for 

glutathione (Figure 2.5).   

Zhou et al. (2016b) showed that RPM increased hepatic concentration of 

glutathione in its reduced form during the periparturient period, which is indicative of 

improved ability to cope with free radicals and ROS.  Osorio et al. (2014b) showed that 

RPM decreased the expression of liver genes associated with glutathione production, but 

suggested that this finding was related to negative feedback associated with increased 

glutathione availability.  Furthermore, cows fed RPM also had reduced hepatic expression 

of genes associated with another antioxidant, superoxide dismutase, further suggesting that 

RPM decreased the need for antioxidants (Osorio et al., 2014b).  In a companion analysis 
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for the same study, the researchers also showed that RPM reduced the apparent oxidative 

stress postpartum (Osorio et al., 2014a).  Therefore, it seems that feeding supplemental Met 

does have potential to improve the immune status of periparturient cows and this effect is 

related, in part, to the ability to manage oxidative stress that occurs postpartum. 

 

Figure 2.5.  Metabolism of methionine.  S-adenosylmethionine (SAM); AdoHcy (S-

adenosylhomocysteine); Hcy (homocysteine); THF (tetrahydrofolate); BHMT (betaine-

homocysteine S-methyltransferase).  Adapted from Chiang et al. (1996) and Nelson and 

Cox (2008). 

Supplemental Methionine in Dairy Cow Diets 

 Several studies have examined production effects associated with feeding RPM 

throughout lactation.  Mixed production responses have been observed when cows in 

established lactation are supplemented with RPM or post-ruminally infused with Met,  

which could be explained by differences in the type of Met supplement administered, diet 
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components, the stage of lactation, or the dietary content of other amino acids such as Lys.  

Due to the high variability across studies for production responses associated with 

providing supplemental Met, a meta-analysis can be extremely useful in the detection of 

potential treatment effects through the use of data obtained from multiple studies.  In a 

recent meta-analysis of production responses for cows in established lactation, Zanton et 

al. (2014) observed that post-ruminal infusion of Met did not affect DMI, but that feeding 

a particular RPM product (Smartamine M®) resulted in significantly greater DMI.  In 

contrast, feeding a different PRM product (Mepron®) resulted in significantly lower DMI 

compared with control cows.  Supplemental Met, whether provided as a protected source 

or through post-ruminal infusion did not significantly alter milk yield; however, both milk 

protein and fat yields were significantly increased when compared with non-supplemented 

control cows (Zanton et al., 2014).  The milk protein response was not significantly 

different between RPM (Mepron® and Smartamine M®) and post-ruminal infusion of Met, 

but the milk fat response was significantly lower for Smartamine when compared with 

post-ruminal infusion of Met (Zanton et al., 2014).  Because production results varied with 

the specific supplemental Met source, Zanton and coworkers (2014) suggest 1) that the 

mechanism by which these Met sources function differ or 2) the post-ruminal availability 

of Met supplied varies depending on the source.  Other individual studies have consistently 

shown an increase in milk protein production for cows in established lactation provided 

supplemental Met (Rogers et al., 1989; Chen et al., 2011).  

    Because of Met’s role as a limiting amino acid, as well as its potential function 

as a lipotrope and a precursor for glutathione, some research has been conducted to 

determine if supplemental Met could improve health and performance during the 



47 

 

periparturient period.  Some studies have reported increases in postpartum DMI as a result 

of providing supplemental RPM during the periparturient period (Ordway et al., 2009; 

Osorio et al., 2013; Zhou et al. 2016a).  Ordway et al. (2009) observed a significant 

improvement in postpartum energy balance for cows supplemented with one of two RPM 

products throughout the transition period.  In contrast, Osorio et al. (2013) and Zhou et al. 

(2016a) did not observe any effect of RPM supplementation on postpartum energy balance.  

However, these researchers did observe that RPM increased milk yield, milk protein 

concentration, as well as yields of both milk fat and protein (Osorio et al., 2013; Zhou et 

al., 2016a).  Piepenbrink et al. (2004) also fed two doses of supplemental RPM to transition 

dairy cows and observed a significant quadratic effect for milk yield, with the low dose of 

RPM resulting in improved yield over the control; however, no changes in milk 

components were observed.  Additionally, Davidson et al. (2008) supplemented RPM 

during the early lactation period and observed a significant increase in milk protein yield 

but no changes in DMI, milk yield, or milk fat yield.  Ordway et al. (2009) showed that 

RPM increased milk protein concentration, but had no effect on milk or component yields.  

Thus, production responses to feeding RPM during the periparturient period are variable, 

but it does seem to increase milk protein yield and/or concentration in most instances.   

 In addition to observed positive effects on production, several studies have 

indicated that RPM improves the immune status of periparturient cows (Osorio et al., 

2014a; Zhou et al., 2016b; Batistel et al., 2017).  Furthermore, Zhou et al. (2016a) also 

showed a tendency for RPM to reduce incidence of ketosis and retained placenta after 

calving.  In contrast, others failed to see any effect of Met on incidence of metabolic disease 

(Osorio et al., 2013) and changes in plasma NEFA or BHBA for periparturient cows 
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(Davidson et al., 2008).  Thus, Met seems to be able to consistently elicit immune responses 

during the periparturient period, but RPM-associated improvements in metabolic disease 

status appear to be more variable.  Much larger studies would be required in order to 

conclusively determine if RPM reduces incidence of metabolic disease during the 

periparturient period. 

Because Met is a precursor for SAM, which is required for the formation of PC, it 

may have a role as a lipotropic agent, as hypothesized by Durand et al. (1992).  Durand et 

al. (1992) observed an increase in hepatic VLDL secretion in response to infusion of a 

mixture of Lys and Met in early postpartum cows and suggested that Met may work to 

improve TG export from the liver.  In contrast, evaluation of liver TG content throughout 

the periparturient period in studies by Osorio et al. (2013) and Zhou et al. (2016a) showed 

no effect of RPM on liver TG content.  Furthermore, Piepenbrink et al. (2004) failed to 

observe any change in liver TG content or liver FA oxidation when two different doses of 

a RPM were fed to periparturient cows.  Based on these findings, it seems unlikely that 

RPM acts as a lipotrope when supplemented during the periparturient period.   

Effects of Methionine on Hepatic Gene Expression 

 Recently, studies have examined effects of RPM on hepatic expression of genes 

associated with lipid and one-carbon metabolism in order to further understand the 

mechanism by which it affects performance of periparturient cows.  Osorio et al., (2016) 

showed that RPM fed during the periparturient period increased expression of PPARα and 

reduced expression of HMGCS2 at 21 DIM.  These results suggest an increased capacity 

of peroxisomal FA oxidation and a reduction in partial oxidation through the TCA cycle.  
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However, CPT1A expression was not affected by RPM (Osorio et al., 2016).  Reduced 

expression of MTTP and APOB100 at 21 DIM for cows fed RPM also suggested a decrease 

in VLDL assembly (Osorio et al., 2016).  Although liver TG content was not affected by 

RPM in that study (Osorio et al., 2013), perhaps this change reflects a reduction in the need 

for TG export via VLDL and a greater capacity for the liver to cope with the influx of FA 

during this time.  In contrast, Preynat et al. (2010) showed that RPM increased MTTP 

expression in periparturient cows. 

 Changes in the hepatic expression of genes associated with one-carbon metabolism 

have also been examined for periparturient cows fed RPM.  The RPM-associated increases 

in methionine adenosyltransferase 1A and S-adenosylhomocysteine hydrolase expression 

observed by Zhou et al. (2017) and Osorio et al. (2014a) suggest an elevation in SAM 

production and subsequent increases in SAM-related methyl-donation reactions.  Although 

expression of BHMT and MTR were not affected in the study by Zhou et al. (2017), RPM 

reduced MTR activity, suggesting that it reduced the need for Met recycling via the CH3-

THF pathway.  In support of this, Preynat et al. (2010) showed that RPM decreased 

expression 5,10 methyl-tetrahydrofolate reductase, the an enzyme that is important for the 

recycling of THF intermediates that result from the CH3-THF pathway.  Similar to results 

reported by Zhou et al. (2017), expression of MTR and BHMT were also not affected by 

RPM (Preynat et al., 2010).  In contrast, Osorio et al. (2014a) also showed that RPM 

increased MTR expression, particularly at 10 d prepartum and 7 d postpartum, although 

BHMT expression was not affected.  Whether or not RPM has an apparent effect on the 

CH3-THF pathway could be related to the initial methyl status of the cows, their 

physiological state, as well as the level of Met and other amino acids in the diet.  Further 
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research is needed in order to understand how and under what conditions RPM affects 

performance and metabolism during the periparturient period. 

 Relationship between Choline and Methionine Metabolism 

 As discussed previously, choline and Met metabolism are connected through their 

involvement in one-carbon metabolism and PC synthesis.  As the precursor for betaine, 

choline can participate in the regeneration of Met from Hcy via the BHMT pathway 

(Martinov et al., 2010).  Choline is required for PC synthesis via the CDP-choline pathway 

and Met, as the precursor of SAM, is indirectly required for PC synthesis via the PEMT 

pathway (Li and Vance, 2008).  Because both choline and Met have apparently positive 

effects on dairy cattle performance, it is of interest to determine if supplementation of both 

nutrients will have a positive synergistic effect.  Furthermore, it is also of interest to 

determine if providing supplemental choline can enhance Met recycling from Hcy via the 

BHMT pathway in order to spare Met for other purposes.  Only one previous study 

examined effects of providing both RPC and RPM to periparturient dairy cows, and 

presence of such a synergistic effect was not substantiated (Zhou et al., 2016a).  However, 

further research in this area is required to improve the understanding of how providing 

supplemental choline, Met, or both benefit the periparturient dairy cow.  



51 

 

REFERENCES 

Allen, M.S., B.J. Bradford, and M. Oba. 2009. Board Invited Review: The hepatic 

oxidation theory of the control of feed intake and its application to ruminants. J. Anim. Sci. 

87:3317–3334.  

Andersen, J.B., D.G. Mashek, T. Larsen, M.O. Nielsen, and K.L. Ingvasten. 2002. Effects 

of hyperinsulinaemia under euglycaemic condition on liver fat metabolism in dairy cows 

in early and mid-lactation. J. Vet. Med. 71:65–71. 

Artegoitia, V.M., J.L. Middleton, F.M. Harte, S.R. Campagna, and M.J. de Veth. 2014. 

Choline and choline metabolite patterns and associations in blood and milk during 

lactation in dairy cows. PLoS One. 9:e103412.  

Bach, A., and M.D. Stern. 2000. Measuring resistance to ruminal degradation and 

bioavailability of ruminally protected methionine. Anim. Feed Sci. Technol. 84:23–32.  

Baird, G.D. 1982. Primary ketosis in the high-producing dairy cow: clinical and subclinical 

disorders, treatment, prevention, and outlook. J. Dairy Sci. 65:1–10.  

Batistel, F., J.M. Arroyo, A. Bellingeri, L. Wang, B. Saremi, C. Parys, E. Trevisi, F.C. 

Cardoso, and J.J. Loor. 2017. Ethyl-cellulose rumen-protected methionine enhances 

performance during the periparturient period and early lactation in Holstein dairy cows. J. 

Dairy Sci. 100:7455–7467.  

Bauchart, D. 1993. Lipid absorption and transport in ruminants. J. Dairy Sci. 76:3864–

3881.  

Bauman, D.E., and W. Bruce Currie. 1980. Partitioning of nutrients during pregnancy and 

lactation: A review of mechanisms involving homeostasis and homeorhesis. J. Dairy Sci. 

63:1514–1529.  

Bauman, D.E., and J.M. Griinari. 2003. Nutritional regulation of milk fat synthesis. Annu. 

Rev. Nutr. 23:203–227.  

Bell, A.W. 1995. Regulation of organic nutrient metabolism during transition from late 

pregnancy to early lactation. J. Anim. Sci. 73:2804–2819. 

Bergman, E.N. 1990. Energy contributions of volatile fatty acids from the gastrointestinal 

tract in various species. Physiol. Rev. 70:567–590. 

Bertics, S.J., and R.R. Grummer. 1999. Effects of fat and methionine hydroxy analog on 

prevention or alleviation of fatty liver induced by feed restriction. J. Dairy Sci. 82:2731–

2736.  



52 

 

Bobe, G., J.W. Young, and D.C. Beitz. 2004. Invited review: pathology, etiology, 

prevention, and treatment of fatty liver in dairy cows. J. Dairy Sci. 87:3105–3124.  

Bobe, G., V.R. Amin, A.R. Hippen, P. She, J.W. Young, and D.C. Beitz. 2008. Non-

invasive detection of fatty liver in dairy cows by digital analyses of hepatic ultrasonograms. 

J. Dairy Res. 75:84–89.  

Boisclair, Y.R., S.R. Wesolowski, J.W. Kim, and R.A. Ehrhardt. 2008. Roles of growth 

hormone and leptin in the periparturient dairy cow. Pages 327-336 in Ruminant 

Physiology: Digestion, metabolism and impact of nutrition on gene expression, 

immunology and stress. K. Sejrsen, T. Hvelplund, and M.O. Nielsen, ed. Wageningen 

Academic Publishers, Wageningen, The-Netherlands.  

Bremmer, D.R., J.O. Christensen, R.R. Grummer, F.E. Rasmussen, and M.C. Wiltbank. 

1999. Effects of induced parturition and estradiol on feed intake, liver triglyceride 

concentration, and plasma metabolites of transition dairy cows. J. Dairy Sci. 82:1440–

1448. 

Butler, S.T., a L. Marr, S.H. Pelton, R.P. Radcliff, M.C. Lucy, and W.R. Butler. 2003. 

Insulin restores GH responsiveness during lactation-induced negative energy balance in 

dairy cattle: effects on expression of IGF-I and GH receptor 1A. J. Endocrinol. 176:205–

217. 

Cai, J., D. Wang, and J. Liu. 2018. Regulation of fluid flow through the mammary gland 

of dairy cows and its effect on milk production: A systematic review. J. Sci. Food Agric. 

98:1261-1270. 

Carlson, D.B., J.W. McFadden, A. D’Angelo, J.C. Woodworth, and J.K. Drackley. 2007. 

Dietary L-carnitine affects periparturient nutrient metabolism and lactation in multiparous 

cows. J. Dairy Sci. 90:3422–3441. 

Castañeda-Gutiérrez, E., T.R. Overton, W.R. Butler, and D.E. Bauman. 2005. Dietary 

supplements of two doses of calcium salts of conjugated linoleic acid during the transition 

period and early lactation. J. Dairy Sci. 88:1078–1089. 

Chandler, T.L., and H.M. White. 2017. Choline and methionine differentially alter 

methyl carbon metabolism in bovine neonatal hepatocytes. PLoS One. 12:e0171080.  

 Chen, Z.H., G.A. Broderick, N.D. Luchini, B.K. Sloan, and E. Devillard. 2011. Effect of 

feeding different sources of rumen-protected methionine on milk production and N-

utilization in lactating dairy cows. J. Dairy Sci. 94:1978–1988. 

Chiang, P.K., R.K. Gordon, J. Tal, G.C. Zeng, B.P. Doctor., K. Pardhasaradhi, and P.P. 

McCann. 1996. S-Adenosylmethionine methylation. FASEB J. 10:471–480. 



53 

 

Christensen, J.O., R.R. Grummer, F.E. Rasmussen, and S.J. Bertics. 1997. Effect of method 

of delivery of propylene glycol on plasma metabolites of feed-restricted cattle. J. Dairy Sci. 

80:563–568.  

Cole, L.K., J.E. Vance, and D.E. Vance. 2012. Phosphatidylcholine biosynthesis and 

lipoprotein metabolism. Biochim. Biophys. Acta. 1821:754–761.  

Collard, B.L., P.J. Boettcher, J.C. Dekkers, D. Petitclerc, and L.R. Schaeffer. 2000. 

Relationships between energy balance and health traits of dairy cattle in early lactation. J. 

Dairy Sci. 83:2683–2690. 

Cooke, R.F., N. Silva Del Río, D.Z. Caraviello, S.J. Bertics, M.H. Ramos, and R.R. 

Grummer. 2007. Supplemental choline for prevention and alleviation of fatty liver in dairy 

cattle. J. Dairy Sci. 90:2413–2418.  

Dann, H.M., and J.K. Drackley. 2005. Carnitine palmitoyltransferase I in liver of 

periparturient dairy cows: effects of prepartum intake, postpartum induction of ketosis, and 

periparturient disorders. J. Dairy Sci. 88:3851–3859.  

Davidson, S., B.A. Hopkins, J. Odle, C. Brownie, V. Fellner, and L.W. Whitlow. 2008. 

Supplementing limited methionine diets with rumen-protected methionine, betaine, and 

choline in early lactation Holstein cows. J. Dairy Sci. 91:1552–1559.  

de Veth, M.J., V.M. Artegoitia, S.R. Campagna, H. Lapierre, F. Harte, and C.L. Girard. 

2016. Choline absorption and evaluation of bioavailability markers when supplementing 

choline to lactating dairy cows. J. Dairy Sci. 9732–9744. 

Delong, C.J., Y. Shen, J. Michael, and Z. Cui. 1999. Molecular distinction of 

phosphatidylcholine synthesis between the CDP-choline pathway and 

phosphatidyethanolamine methylation pathway. J. Biol. Chem. 274:29683–29688.  

Deluyker, H.A., J.M. Gay, L.D. Weaver, and A.S. Azari. 1991. Change of milk yield with 

clinical diseases for a high producing dairy herd. J. Dairy Sci. 74:436–445.  

Deuchler, K.N., L.S. Piperova, and R.A. Erdman. 1998. Milk choline secretion as an 

indirect indicator of postruminal choline supply. J. Dairy Sci. 81:238–242.  

Douglas, G.N., T.R. Overton, H.G. Bateman, H.M. Dann, and J.K. Drackley. 2006. 

Prepartal plane of nutrition, regardless of dietary energy source, affects periparturient 

metabolism and dry matter intake in Holstein cows. J. Dairy Sci. 89:2141–2157. 

Drackley, J.K. 1999. Biology of dairy cows during the transition period: the final frontier? 

J. Dairy Sci. 82:2259–2273.  



54 

 

Drackley, J.K., T.R. Overton, and G.N. Douglas. 2001. Adaptations of glucose and long-

chain fatty acid metabolism in liver of dairy cows during the periparturient period. J. Dairy 

Sci. 84:E100–E112.  

Durand, D., Y. Chilliard, and D. Bauchart. 1992. Effect of lysine and methionine on in vivo 

hepatic secretion of VLDL in the high yielding dairy cow. J. Dairy Sci. 75(Suppl. 1):279. 

(Abstr.). 

Duffield, T.F., K.D. Lissemore, B.W. McBride, and K.E. Leslie. 2009. Impact of 

hyperketonemia in early lactation dairy cows on health and production. J. Dairy Sci. 

92:571–580. 

Eklund, M., E. Bauer, J. Wamatu, and R. Mosenthin. 2005. Potential nutritional and 

physiological functions of betaine in livestock. Nutr. Res. Rev. 18:31–48.  

Elek, P., J.R. Newbold, T. Gaal, L. Wagner, and F. Husveth. 2008. Effects of rumen-

protected choline supplementation on milk production and choline supply of periparturient 

dairy cows. Animal. 2:1595–1601. 

Gavino, G.R., and V.C. Gavino. 1991. Rat liver outer mitochondrial carnitine 

palmitoyltransferase activity towards long-chain polyunsaturated fatty acids and their CoA 

esters. Lipids. 26:266–270.  

Goff, J.P., and R.L. Horst. 1997. Physiological changes at parturition and their relationship 

to metabolic disorders. J. Dairy Sci. 80:1260–1268.  

Goselink, R.M.A., J. van Baal, H.C.A. Widjaja, R.A. Dekker, R.L.G. Zom, M.J. de Veth, 

and A.M. van Vuuren. 2013. Effect of rumen-protected choline supplementation on liver 

and adipose gene expression during the transition period in dairy cattle. J. Dairy Sci. 

96:1102–1116.  

Grum, D.E., J.K. Drackley, R.S. Younker, D.W. LaCount, and J.J. Veenhuizen. 1996. 

Nutrition during the dry period and hepatic lipid metabolism of periparturient dairy cows. 

J. Dairy Sci. 79:1850–1864.  

Grummer, R.R., S.J. Bertics, D.W. Lacount, J.A. Snow, M.R. Dentine, and R.H. 

Stauffacher. 1990. Estrogen induction of fatty liver in dairy cattle. J. Dairy Sci. 73:1537–

1543.  

Grummer, R.R. 1993. Etiology of lipid-related metabolic disorders in periparturient dairy 

cows. J. Dairy Sci. 76:3882–3896.  

Grummer, R.R. 1995. Impact of changes in organic nutrient metabolism on feeding the 

transition dairy cow. J. Anim. Sci. 73:2820–2833. 



55 

 

Grummer, R.R. 2008. Nutritional and management strategies for the prevention of fatty 

liver in dairy cattle. Vet. J. 176:10–20.  

Hartwell, J.R., M.J. Cecava, and S.S. Donkin. 2000. Impact of dietary rumen undegradable 

protein and rumen-protected choline on intake, peripartum liver triacylglyceride, plasma 

metabolites and milk production in transition dairy cows. J. Dairy Sci. 83:2907–2917.  

Harvatine, K.J., J.W.I. Perfield, and D.E. Bauman. 2009. Expression of enzymes and key 

regulators of lipid synthesis is upregulated in adipose tissue during CLA-induced milk fat 

depression in dairy cows. J. Nutr. 139:849–854.  

Hayirli, A., D.R. Bremmer, S.J. Bertics, M.T. Socha, and R.R. Grummer. 2001. Effect of 

chromium supplementation on production and metabolic parameters in periparturient dairy 

cows. J. Dairy Sci. 84:1218–1230.  

Herdt, T.H. 2000. Ruminant adaptation to negative energy balance. Influences of the 

etiology of ketosis and fatty liver. Vet. Clin. North Am. Food Anim. Pract. 16:215–230. 

Holm, C. 2003. Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. 

Biochem. Soc. Trans. 31:1120–1124. 

Ingvartsen, K.L., and J.B. Andersen. 2000. Integration of metabolism and intake 

regulation: a review focusing on periparturient animals. J. Dairy Sci. 83:1573–1597. 

Jesse, B.W., R.S. Emery, and J.W. Thomas. 1986. Aspects of the regulation of long-chain 

fatty acid oxidation in bovine liver. J. Dairy Sci. 69:2298–2303.  

Jorritsma, R., H. Jorritsma, Y.H. Schukken, P.C. Bartlett, and T. Wensing. 2001. 

Prevalence and indicators of postpartum fatty infiltration of the liver in nine commercial 

dairy herds in The Netherlands. Livest. Prod. Sci. 68:53–60. 

Kalaitzakis, E., N. Roubies, N. Panousis, K. Pourliotis, E. Kaldrymidou, and H. Karatzias. 

2006. Evaluation of ornithine carbamoyl transferase and other serum and liver-derived 

analytes in diagnosis of fatty liver and postsurgical outcome of left-displaced abomasum 

in dairy cows. J. Am. Vet. Med. Assoc. 229:1463–1471.  

Katoh, N. 2002. Relevance of apolipoproteins in the development of fatty liver and fatty 

liver-related peripartum diseases in dairy cows. J. Vet. Med. Sci. 64:293–307. 

Kawano, Y., and D.E. Cohen. 2013. Mechanisms of hepatic triglyceride accumulation in 

non-alcoholic fatty liver disease. J. Gastroenterol. 48:434–441.  

Kay, J.K., W.J. Weber, C.E. Moore, D.E. Bauman, L.B. Hansen, B.A. Crooker, and L.H. 

Baumgard. 2005. Effects of week of lactation and genetic selection for milk yield on milk 

fatty acid composition in Holstein cows. J. Dairy Sci. 88:3886–3893. 



56 

 

Komaragiri, M.V, and R.A. Erdman. 1997. Factors affecting body tissue mobilization in 

early lactation dairy cows. Effect of dietary protein on mobilization of body fat and protein. 

J. Dairy Sci. 80:929–937.  

Leiva, T., R.F. Cooke, A.P. Brandão, R.S. Marques, and J.L.M. Vasconcelos. 2015. Effects 

of rumen-protected choline supplementation on metabolic and performance responses of 

transition dairy cows. J. Anim. Sci. 93:1896–1904. 

Leury, B.J., L.H. Baumgard, S.S. Block, N. Segoale, R.A. Ehrhardt, R.P. Rhoads, D.E. 

Bauman, A.W. Bell, and Y.R. Boisclair. 2003. Effect of insulin and growth hormone on 

plasma leptin in periparturient dairy cows. Am. J. Physiol. Regul. Integr. Comp. Physiol. 

285:R1107–1115.  

Li, Z., and D.E. Vance. 2008. Phosphatidylcholine and choline homeostasis. J. Lipid Res. 

49:1187–1194.  

Linzell, J.L., and M. Peaker. 1971. Mechanism of Milk Secretion. Physiol. Rev. 51:564–

597. 

Markusfeld, O. 1987. Periparturient traits in seven high dairy herds. Incidence rates, 

association with parity, and interrelationships among traits. J. Dairy Sci. 70:158–166. 

Martinov, M. V, V.M. Vitvitsky, R. Banerjee, and F.I. Ataullakhanov. 2010. The logic of 

the hepatic methionine metabolic cycle. Biochim. Biophys. Acta. 1804:89–96.  

Meister, A., and M.E. Anderson. 1983. Glutathione. Ann. Rev. Biochem. 52:711–760. 

Morey, S.D., L.K. Mamedova, D.E. Anderson, C.K. Armendariz, E.C. Titgemeyer, and 

B.J. Bradford. 2011. Effects of encapsulated niacin on metabolism and production of 

periparturient dairy cows. J. Dairy Sci. 94:5090–5104.  

Morrison, E.I., H. Reinhardt, H. Leclerc, T.J. Devries, and S.J. LeBlanc. 2018. Effect of 

rumen-protected B vitamins and choline supplementation on health, production, and 

reproduction in transition dairy cows. J. Dairy Sci. 101:9016–9027.  

National Research Council. 2001. Nutrient Requirements of Dairy Cattle. 7th ed. Natl. 

Acad. Press, Washington, DC.  

Nelson, D.L. and M.M. Cox. 2008. Lehninger Principles of Biochemistry. 5th ed. W.H. 

Freeman and Company, New York, NY.  

Nguyen, P., V. Leray, M. Diez, S. Serisier, J. Le Bloc’h, B. Siliart, and H. Dumon. 2008. 

Liver lipid metabolism. J. Anim. Physiol. Anim. Nutr. (Berl). 92:272–283.  



57 

 

Odens, L.J., R. Burgos, M. Innocenti, M.J. VanBaale, and L.H. Baumgard. 2007. Effects 

of varying doses of supplemental conjugated linoleic acid on production and energetic 

variables during the transition period. J. Dairy Sci. 90:293–305.  

Ordway, R.S., S.E. Boucher, N.L. Whitehouse, C.G. Schwab, and B.K. Sloan. 2009. 

Effects of providing two forms of supplemental methionine to periparturient Holstein dairy 

cows on feed intake and lactational performance. J. Dairy Sci. 92:5154–5166.  

Osorio, J.S., P. Ji, J.K. Drackley, D. Luchini, and J.J. Loor. 2013. Supplemental 

Smartamine M or MetaSmart during the transition period benefits postpartal cow 

performance and blood neutrophil function. J. Dairy Sci. 96:6248–6263.  

Osorio, J.S., E. Trevisi, P. Ji, J.K. Drackley, D. Luchini, G. Bertoni, and J.J. Loor. 2014a. 

Biomarkers of inflammation, metabolism, and oxidative stress in blood, liver, and milk 

reveal a better immunometabolic status in peripartal cows supplemented with 

Smartamine M or MetaSmart. J. Dairy Sci. 97:7437–7450.  

Osorio, J.S., P. Ji, J.K. Drackley, D. Luchini, and J.J. Loor. 2014b. Smartamine M and 

MetaSmart supplementation during the peripartal period alter hepatic expression of gene 

networks in 1-carbon metabolism, inflammation, oxidative stress, and the growth 

hormone-insulin-like growth factor 1 axis pathways. J. Dairy Sci. 97:7451–7464.  

Pickett, M.M., M.S. Piepenbrink, and T.R. Overton. 2003. Effects of propylene glycol or 

fat drench on plasma metabolites, liver composition, and production of dairy cows during 

the periparturient period. J. Dairy Sci. 86:2113–2121.  

Piepenbrink, M.S., and T.R. Overton. 2003. Liver metabolism and production of cows fed 

increasing amounts of rumen-protected choline during the periparturient period. J. Dairy 

Sci. 86:1722–1733.  

Piepenbrink, M.S., A.L. Marr, M.R. Waldron, W.R. Butler, T.R. Overton, M. Vázquez-

Añón, and M.D. Holt. 2004. Feeding 2-hydroxy-4-(methylthio)-butanoic acid to 

periparturient dairy cows improves milk production but not hepatic metabolism. J. Dairy 

Sci. 87:1071–1084.  

Pinotti, L., A. Baldi, and V. Dell’Orto. 2002. Comparative mammalian choline metabolism 

with emphasis on the high-yielding dairy cow. Nutr. Res. Rev. 15:315–332.  

Pires, J.A.A., and R.R. Grummer. 2007. The use of nicotinic acid to induce sustained low 

plasma nonesterified fatty acids in feed-restricted Holstein cows. J. Dairy Sci. 90:3725–

3732.  

Preynat, A., H. Lapierre, M.C. Thivierge, M.F. Palin, N. Cardinault, J.J. Matte, and A. 

Desrochers. 2010. Effects of supplementary folic acid and vitamin B12 on hepatic 

metabolism of dairy cows according to methionine supply. J. Dairy Sci. 93:2130–2142.  



58 

 

Reid, I.M., C.J. Roberts, R.J. Treacher, and L.A. Williams. 1986. Effect of body condition 

at calving on the health and performance of dairy cows. Anim. Prod. 43:1–6.  

Reynolds, C.K., G.B. Huntington, H.F. Tyrrell, and P.J. Reynolds. 1988. Net metabolism 

of volatile fatty acids, D-β-hydroxybutyrate, nonesterified fatty acids, and blood gasses by 

portal-drained viscera and liver of lactating Holstein cows. J. Dairy Sci. 71:2395–2405.  

Reynolds, C.K. 1992. Metabolism of nitrogenous compounds by ruminant liver. J. Nutr. 

122:850–854. 

Reynolds, C.K., P.C. Aikman, B. Lupoli, D.J. Humphries, and D.E. Beever. 2003. 

Splanchnic metabolism of dairy cows during the transition from late gestation through 

early lactation. J. Dairy Sci. 86:1201–1217.  

Roche, J.R., N.C. Friggens, J.K. Kay, M.W. Fisher, K.J. Stafford, and D.P. Berry. 2009. 

Invited review: Body condition score and its association with dairy cow productivity, 

health, and welfare. J. Dairy Sci. 92:5769–5801. 

Roche, J.R., A.W. Bell, T.R. Overton, and J.J. Loor. 2013. Nutritional management of the 

transition cow in the 21st century? A paradigm shift in thinking. Anim. Prod. Sci. 1000–

1023.  

Roche, J.R., S. Meier, A. Heiser, M.D. Mitchell, C.G. Walker, M.A. Crookenden, M.V. 

Riboni, J.J. Loor, and J.K. Kay. 2015. Effects of precalving body condition score and 

prepartum feeding level on production, reproduction, and health parameters in pasture-

based transition dairy cows. J. Dairy Sci. 98:7164–7182.  

Rogers, J.A., S.B. Peirce-Sandner, A.M. Papas, C.E. Polan, C.J. Sniffen, T.V. Muscato, 

C.R. Staples, and J.H. Clark. 1989. Production Responses of Dairy Cows Fed Various 

Amounts of Rumen-Protected Methionine and Lysine. J. Dairy Sci. 72:1800–1817.  

Rukkwamsuk, T., S. Rungruang, A. Choothesa, and T. Wensing. 2005. Effect of propylene 

glycol on fatty liver development and hepatic fructose 1,6 bisphosphatase activity in 

periparturient dairy cows. Livest. Prod. Sci. 95:95–102.  

Saggerson, D.E., and C.A. Carpenter. 1982. Regulation of hepatic carnitine 

palmitoyltransferase activity during the foetal-neonatal transition. FEBS Lett. 150:177–

180. 

Seal, C.J., and C.K. Reynolds. 1993. Nutritional implications of gastrointestinal and liver 

metabolism in ruminants. Nutr. Res. Rev. 6:185–208. 

Sharma, B.K., and R.A. Erdman. 1988. Effects of high amounts of dietary choline 

supplementation on duodenal choline flow and production responses of dairy cows. J. 

Dairy Sci. 71:2670–2676.  



59 

 

Shaver, R.D. 1997. Nutritional risk factors in the etiology of left displaced abomasum in 

dairy cows: a review. J. Dairy Sci. 80:2449–2453. 

Selhub, J. 1999. Homocysteine metabolism. Annu. Rev. Nutr. 19:217–246. 

Siddiqi, S.A. 2015. In vitro analysis of the very-low density lipoprotein export from the 

trans-Golgi network. Curr. Protoc. Cell Biol. 67:11.21.1-11.21.17. 

Smith, K.L., M.R. Waldron, L.C. Ruzzi, J.K. Drackley, M.T. Socha, and T.R. Overton. 

2008. Metabolism of dairy cows as affected by prepartum dietary carbohydrate source and 

supplementation with chromium throughout the periparturient period. J. Dairy Sci. 

91:2011–2020.  

Sordillo, L.M., and W. Raphael. 2013. Significance of metabolic stress, lipid mobilization, 

and inflammation on transition cow disorders. Vet. Clin. North Am. Food Anim. Pract. 

29:267–278.  

Stoop, W.M., H. Bovenhuis, J.M.L. Heck, and J. a M. van Arendonk. 2009. Effect of 

lactation stage and energy status on milk fat composition of Holstein-Friesian cows. J. 

Dairy Sci. 92:1469–1478.  

Studer, V.A., R.R. Grummer, S.J. Bertics, and C.K. Reynolds. 1993. Effect of prepartum 

propylene glycol administration on periparturient fatty liver in dairy cows. J. Dairy Sci. 

76:2931–2939.  

Tiwari, S., and S.A. Siddiqi. 2012. Intracellular trafficking and secretion of VLDL. 

Arterioscler. Thromb. Vasc. Biol. 32:1079–1086.  

Vazquez-Añon, M., S. Bertics, M. Luck, R.R. Grummer, and J. Pinheiro. 1994. Peripartum 

liver triglyceride and plasma metabolites in dairy cows. J. Dairy Sci. 77:1521–1528. 

Veenhuizen, J.J., J.K. Drackley, M.J. Richard, T.P. Sanderson, L.D. Miller, and J.W. 

Young. 1991. Metabolic changes in blood and liver during development and early 

treatment of experimental fatty liver and ketosis in cows. J. Dairy Sci. 74:4238–4253.  

Vijayakumar, A., R. Novosyadlyy, Y. Wu, S. Yakar, and D. LeRoith. 2010. Biological 

effects of growth hormone on carbohydrate and lipid metabolism. Growth Horm. IGF Res. 

20:1–7.  

Vincent, J.B. 2000. The biochemistry of chromium. J. Nutr. 130:715–718. 

Wensing, T., T. Kruip, M.J.H. Geelen, G.H. Wentink, and A.M. Top. 1997. Postpartum 

fatty liver in high-producing dairy cows in practice and in animal studies. The connection 

with health, production and reproduction problems. Comp. Haematol. Int. 7:167–171.  



60 

 

Yao, Z., and D.E. Vance. 1988. The active synthesis of phosphatidylcholine is required for 

very low density lipoprotein secretion from rat hepatocytes. J. Biol. Chem. 263:2998–3004. 

Yuan, L., and N. Kaplowitz. 2009. Glutathione in liver diseases and hepatotoxicity. Mol. 

Aspects Med. 30:29–41.  

Zanton, G., G. Bowman, M. Vázquez-Añón, and L. Rode. 2014. Meta-analysis of lactation 

performance in dairy cows receiving supplemental dietary methionine sources or 

postruminal infusion of methionine. J. Dairy Sci. 97:7085–7101.  

Zeisell, S.H. 1981. Dietary choline: biochemistry, physiology, and pharmacology. Annu. 

Rev. Nutr. 1:95–121. 

Zeisel, S.H., and K. da Costa. 2009. Choline: an essential nutrient for public health. Nutr. 

Rev. 67:615–623.  

Zenobi, M.G., R. Gardinal, J.E. Zuniga, A.L.G. Dias, C.D. Nelson, J.P. Driver, B.A. 

Barton, J.E.P. Santos, and C.R. Staples. 2018a. Effects of supplementation with ruminally 

protected choline on performance of multiparous Holstein cows did not depend upon 

prepartum caloric intake. J. Dairy Sci. 101:1088–1110.  

Zenobi, M.G., T.L. Scheffler, J.E. Zuniga, M.B. Poindexter, S.R. Campagna, and H.F.C. 

Gonzalez. 2018b. Feeding increasing amounts of ruminally protected choline decreased 

fatty liver in nonlactating, pregnant Holstein cows in negative energy status. J. Dairy Sci. 

101:5902–5923.  

Zhou, Z., M. Vailati-Riboni, E. Trevisi, J.K. Drackley, D.N. Luchini, and J.J. Loor. 

2016a. Better postpartal performance in dairy cows supplemented with rumen- protected 

methionine compared with choline during the peripartal period. J. Dairy Sci. 99:8716–

8732.  

Zhou, Z., O. Bulgari, E. Trevisi, M.A. Ballou, F.C. Cardoso, and D.N. Luchini. 2016b. 

Rumen-protected methionine compared with rumen-protected choline improves 

immunometabolic status in dairy cows during the peripartal period. J. Dairy Sci. 

99:8956–8969.  

Zhou, Z., T.A. Garrow, X. Dong, D.N. Luchini, and J.J. Loor. 2017. Hepatic activity and 

transcription of betaine-homocysteine methyltransferase, methionine synthase, and 

cystathionine synthase in periparturient dairy cows are altered to different extents by 

supply of methionine and choline. J. Nutr. 147:11–19.  

Zom, R.L.G., J. van Baal, R.M.A. Goselink, J.A. Bakker, M.J. de Veth, and A.M. van 

Vuuren. 2011. Effect of rumen-protected choline on performance, blood metabolites, and 

hepatic triacylglycerols of periparturient dairy cattle. J. Dairy Sci. 94:4016–4027.  

  



61 

 

 

 

 

 

 

 

 

 

 

CHAPTER 3: EXPERIMENT 1 

 

Use of Blood and Milk Markers to Assess Post-ruminal Choline Supply1 

 

 

 

 

 

 

 

 

 

 
1S.B. Potts, E. Davis, and R.A. Erdman.  Use of blood and milk markers to assess post-

ruminal choline supply.  In preparation for submission to the Journal of Dairy Science. 

  



62 

 

ABSTRACT 

The  objectives of this study were to 1) identify potential blood and milk markers 

of post-ruminal choline chloride (ChoCl) supply and 2) determine the rate at which rumen-

protected choline (RPC) must be fed in order to elicit changes in these metabolites in blood 

and milk such that apparent bioavailability can be calculated.  Study 1 utilized 5 rumen 

fistulated Holstein cows (208 ± 108 DIM) in a 5 x 5 Latin square design with 14-d treatment 

periods.  The five treatments included a basal TMR, and the basal TMR plus 15 g/d ChoCl 

as RPC, 30 g/d ChoCl as RPC, 15g/d ChoCl as a 7-d abomasal infusion, and 30 g/d ChoCl 

as a 7-d abomasal infusion.  Milk and blood were sampled daily during the last 3 days of 

each period and analyzed for concentrations of choline metabolites by HILC-MS/MS.  

ChoCl delivered via abomasal infusion, but not RPC, increased concentrations of both 

betaine and free choline in both blood and milk.  Furthermore, abomasal infusion of ChoCl 

increased milk concentrations and yields of both total choline and phosphocholine.  Neither 

abomasal infusion of ChoCl nor RPC altered the response of blood or milk total 

phosphatidylcholine, total lysophosphatidylcholine, or individual species of these 

compounds.  Study 2 utilized 20 Holstein cows (163 ± 38 DIM) in a completely randomized 

experiment with a 10-d covariate and 21-d treatment period.  Dietary treatments included 

a basal TMR and the basal TMR plus 35, 70, and 105 g/d ChoCl as RPC.  Blood and milk 

were sampled daily during the last 3 days of both the 10-d covariate and the 21-d treatment 

periods.  Treatment had no effect on milk or blood free choline or betaine responses.  

Collectively, these results suggest that betaine and free choline in milk and blood are the 

most responsive indicators of post-ruminal ChoCl supplied via abomasal infusion.  Perhaps 

a relatively slower release of choline supplied via RPC into the small intestine, reduces the 
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efficacy of these metabolites to serve as indicators of post-ruminal choline supplied in this 

manner.   
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INTRODUCTION 

Choline is an important micronutrient that plays many crucial roles within the body.  

The choline ion itself can act as a methyl donor to regenerate the universal methyl donor, 

S-adenosylmethionine, making it an important participant in one-carbon metabolism 

(Zeisel and da Costa, 2009).  Furthermore, choline can serve as a precursor for the 

neurotransmitter, acetylcholine, as well as the primary phospholipid in cellular membranes, 

phosphatidylcholine (PC; Zeisel and da Costa, 2009).  Phosphatidylcholine is also the 

predominant membrane lipid in very low density lipoproteins (VLDL), which is required 

for the export of triglycerides, from the liver (Li and Vance, 2008).  Because of this crucial 

function, in many mammals the primary symptom of choline deficiency is triglyceride 

accumulation in the liver (NRC, 2001).  Although the choline requirement of lactating dairy 

cattle has not been formally defined (NRC, 2001), the relatively high incidence of liver 

triglyceride accumulation that occurs during the periparturient period (Jorritsma et al., 

2001) suggests that the choline requirement during this period may in fact be higher than 

during other periods of the lactation cycle.  

For most animals, the choline requirement is primarily met through its consumption 

in the diet (Zeisel and da Costa, 2009). However, in ruminant animals, dietary choline is 

subject to extensive rumen degradation (Atkins et al., 1988), making it difficult to increase 

choline availability to the animal by traditional diet supplementation.  Because of this, 

rumen-protected choline (RPC) products have been developed in order to protect choline 

from microbial degradation in the rumen, while still allowing for digestion and absorption 

in the small intestine.  Some products have been shown to have over 85% protection from 
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rumen degradation (Deuchler et al., 1998).  However, the efficiency with which choline 

supplied as RPC is absorbed post-ruminally has not been well-established.  Traditional 

methods used for determining nutrient bioavailability, such as digestion studies, cannot be 

reliably applied for some nutrients such as choline and amino acids due to the ability of 

microbes of the lower gut to degrade and synthesize these nutrients.  Because of this, the 

bioavailability and intestinal absorption of fermentable nutrients can be estimated 

indirectly by changes in blood or tissue metabolite concentrations in response to increasing 

nutrient dose (Rulquin and Kowalczyk, 2003) using the slope-ratio technique (Batterham, 

1992; Littell et al., 1997).  In order to estimate bioavailability using this approach, a reliable 

marker of post-ruminal choline supply must be identified. 

Previous work in our laboratory demonstrated that milk total choline is responsive 

to post-ruminal choline supplied via abomasal infusion (Deuchler et al., 1998).  In an effort 

to identify specific marks to assess post-ruminal choline supply, de Veth et al. (2016) 

showed that specific choline metabolites, namely betaine and free choline, in blood and 

milk increased in response to post-ruminal choline chloride (12.5 or 25 g/d) supplied via 

abomasal infusion.  These results suggest the utility of betaine and free choline as potential 

candidates to serve as markers of post-ruminal choline supply.  However, when RPC was 

fed to deliver similar amounts of post-ruminal choline chloride in the same study, no 

consistent response in blood or milk free choline or betaine was observed.  The lack of 

choline metabolite responses to RPC may have been due to the relatively short feeding 

period (4 days) prior to sampling.  Depending on rate at which RPC mixes with rumen 

contents and its density relative to particles flowing out of the rumen, there may have been 

a lag between the initiation of feeding and intestinal appearance of choline.  It is also 
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possible that the bioavailability of choline chloride supplied as RPC is much lower than 

that of choline chloride supplied via abomasal infusion, such that insufficient levels of RPC 

were fed during that study to cause significant responses in blood or milk choline 

metabolites.   

The objectives were to 1) identify potential blood and milk markers of post-ruminal 

choline chloride supply and 2) determine the rate at which RPC must be fed in order to 

elicit changes in these metabolites in blood and milk such that apparent choline 

bioavailability can be calculated. 

MATERIALS AND METHODS 

 Both experiments were conducted according to procedures approved by the 

University of Maryland, College Park Institutional Animal Care and Use Committee. 

Study 1 

Design and Treatments 

 Five mid to late-lactation Holstein cows (208 ± 108 DIM), each fitted with a rumen 

cannula, were used in a 5x5 Latin square experiment with 14-day experimental periods.  

The five experimental treatments included:  1) a basal TMR (CON); 2) the basal TMR plus 

52 g/d RPC (ReaShure®, Balchem Corp., New Hampton, NY) to supply 15 g choline 

chloride (ChoCl; RPC15); 3) the basal TMR plus 104 g/d RPC to supply 30 g ChoCl 

(RPC30); 4) basal TMR plus 7-days continuous abomasal infusion of 15g/d ChoCl 

(ABO15); and 5) basal TMR plus 7-days continuous abomasal infusion of 30g/d ChoCl 
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(ABO30).  The first 7 days of each period served as diet adaptation period for cows fed 

RPC.  Cows were housed in individual tie-stalls fitted with water mattresses and bedded 

with sawdust to allow for collection of individual feed intake data.  Cows were milked 

twice daily in a milking parlor at 0630 and 1600 h.  All cows were fed the same basal TMR 

(Table 1), balanced to meet requirements of a 624 kg Holstein cow producing 35 kg milk 

per day at 3.85% fat (NRC, 2001), once daily at 0700 h for ad libitum intake.  RPC was 

top-dressed immediately after feed delivery and hand-mixed into the top 1/3 of the feed 

offered.  Body weight was measured at the start of each experimental period.  Body 

condition was also assessed (1-5 scale; 1=thin, 5=fat) at the beginning of each experimental 

period by a single trained investigator.  

Abomasal Infusion 

Abomasal infusion lines consisted of 2m Tygon® tubing attached to a plastisol 

flange (10 cm) designed to keep the infusion line in the omasal-abomasal orifice.  Infusion 

lines were put in place for all cows at the beginning of the experiment and remained in 

place throughout the entire study even when an animal was not receiving an infusion 

treatment.  During each period, proper placement of the plastisol flange was assessed every 

other day during the infusion period.    

Continuous abomasal infusions of ChoCl began the morning of d 8 of each period 

and continued through d 14 for the cows receiving ABO15 and ABO30.  Each infusion 

treatment was prepared by mixing ChoCl (15 g or 30 g; 99% ChoCl, Product # F6522120, 

Balchem Corp., New Hampton, NY) with 2 L H2O.  Treatments were continuously infused 

for 22 h each day via a peristaltic pump (Harvard Apparatus, Holliston, MA) at a rate of 
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~91 mL/h to allow 2 h per day for cows to be milked in the milking parlor (1 h per milking).  

During the 7-d infusion period, infusate was changed after the morning milking at 

approximately 0700 h.  Any remaining infusate was weighed to so that total ChoCl infused 

could be calculated.      

Sample Collection and Analysis 

Milk yield was electronically recorded for each cow at every milking.  The amounts 

of feed offered and refused for individual animals was recorded daily and BW was recorded 

at the end of each experimental period.  Two samples of milk were collected at each 

milking during the last 3 days of each 14-d period.  One sample was analyzed for 

concentration of fat, protein, lactose, and somatic cells by Lancaster DHIA (Manheim, PA) 

and the second sample was stored at -20°C until analysis of choline metabolites.  Blood 

was sampled after the morning milking at 0700 h during the last 3 d of each experimental 

period.  Blood samples were collected by tail venipuncture in 10mL vacutainer tubes 

containing potassium EDTA.  Plasma was separated by centrifugation (2000 x g for 15 min 

at 4°C) and stored at -20°C within 30 minutes of collection.    

Choline metabolite concentrations [Betaine (BET), free choline (Cho), 

phosphocholine (PCho), total PC, total lysophosphatidylcholine (LPC), and sphingomyelin 

(SM)] in blood plasma and milk were determined by HILC-MS/MS as described by de 

Veth et al. (2016).  Choline metabolite analysis included measurement of 16 individual FA 

metabolites of PC and 4 individual FA metabolites of LPC (de Veth et al., 2016).  Milk 

secretion of choline-containing compounds was calculated based on molecular weight.  
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Secretion of total choline was calculated as the sum of the secretion of Cho, PCho, SM, 

total PC, and total LPC.   

Statistical Analysis 

The infusion line for one particularly large cow (> 800 kg BW) with a high feed 

intake would not remain in the omasal-abomasal orifice. This was in spite of repeated 

attempts (twice daily) to check and replace if needed the abomasal catheter during her 

infusion periods.  Therefore, data for this cow for both infusion treatments were not 

included in the analysis.  Due to a prolonged recovery from the rumen fistulation surgery, 

data from period 1 for one cow (CON treatment) was not included in the analysis.  

Therefore, results presented are based on analysis of 4, 5, 5, 4, and 4 cows for CON, 

RPC15, RPC30, ABO15, and ABO30, respectively.  Due to an infusion pump malfunction 

on the first sample collection day of period 1, the cow receiving the ABO15 treatment did 

not receive the entire dose of ChoCl.  Therefore, data from this day for that cow were 

discarded prior to analysis. 

All data were summarized by period before statistical analysis.  Statistical analyses 

were performed using SAS (version 9.3, SAS Institute, Inc., Cary, NC).  Data were 

analyzed using a mixed model that included the random effects of cow and period and fixed 

effect of treatment.  When treatment was significant, multiple mean comparisons were 

performed using Fisher’s LSD.  Linear contrasts were performed to compare the effects of 

the infusion treatments with the control and RPC treatments (ABO vs. CON and ABO vs. 

RPC, respectively) as well as to compare the effects of the RPC treatments with the control 

(RPC vs. CON).  Statistical significance was declared at P < 0.05.      
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Principal component analysis was performed using the PrinComp Procedure of 

SAS to determine which, if any, milk or blood choline metabolites were most related to the 

amount of ChoCl infused into the abomasum.  Thus, data from the CON, ABO15, and 

ABO30 (corresponding to 0, 15, and 30 g/d ChoCl infused) were used in this analysis.  All 

major metabolite groups (total choline, BET, Cho, PCho, SM, total PC, and total LPC) 

were kept in the analysis and individual PC or LPC species were added to the analysis one 

at a time to determine if any clustered with abomasal infusion of ChoCl.   

Study 2 

Design and Treatments 

 Twenty Holstein cows (12 primiparous, 8 multiparous; 163 ± 38 DIM) were used 

in a 31-d experiment with a completely randomized design.  Cows were housed and fed in 

individual tie-stalls as described in Experiment 1.  Ten days prior to the start of the 21-d 

treatment period, cows were moved into tie-stalls to allow for acclimation and collection 

of covariate data.  Throughout the acclimation and treatment periods, all cows were fed the 

same basal TMR (Table 3.1) once daily at 0730 h and milked twice daily at 0600 and 1600 

h in a milking parlor.  The basal TMR was formulated to meet the requirements of 635 kg 

Holstein dairy cow producing 36 kg of milk per day at 3.8% fat.  

Experimental treatments were based on results from RPC15 and RPC30 in 

Experiment 1.  Within parity, cows were randomly assigned to one of 4 dietary treatments: 

the basal TMR only (CON); the basal TMR plus 120 g/d RPC (ReaShure® Balchem Corp., 

New Hampton, NY) to supply 34.5 g ChoCl (RPC35); the basal TMR plus 240 g/d RPC to 
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supply 69.1 g/d ChoCl (RPC69); or the basal TMR plus 360 g/d RPC to supply 103.7 g/d 

ChoCl (RPC104).  During the 21-d experimental period, treatments were applied daily as 

a top-dress following feed delivery and mixed with the top ~1/3 of the feed offered as in 

Experiment 1.  

Sample Collection and Analysis 

 Feed intake and refusals and milk recording was as previously described for 

Experiment 1.  Body weight was measured electronically twice daily upon exit from the 

milking parlor.  During the last 3 days of the 10-d acclimation period and the last 3 days of 

the 21-d treatment period, blood from each cow was collected by tail venipuncture as 

previously in Experiment 1.  Plasma was retained and stored at -20°C until analysis of Cho 

and BET as described for Experiment 1.   

Two milk samples from each cow were collected from the morning and evening 

milkings during the last 3 days of both the acclimation and experimental periods.  One 

sample was analyzed for concentration of fat, protein, lactose, and somatic cells by 

Lancaster DHIA (Manheim, PA) and the second sample was aliquoted into a 15mL conical 

tube and two 1.5mL microcentrifuge tubes which were subsequently stored at -20°C until 

analysis of Cho and BET as described for Experiment 1.  Additional milk samples were 

also collected from both morning and evening milkings on d 7 and d 14 of the treatment 

period for analysis of milk components (Lancaster DHIA, Manheim, PA). 
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Statistical Analysis 

 Production data collected daily during the treatment period (feed intake and milk) 

were averaged by week before statistical analysis.  Data obtained during the last 3 days of 

the acclimation period were averaged by individual cow and used as a covariate for the 

analysis of production and milk and blood BET and Cho data.  Production data (feed intake, 

milk, milk components) were analyzed using a mixed model (SAS; version 9.3, SAS 

Institute, Inc., Cary, NC) with repeated measures, which included the fixed effects of 

treatment (CON, RPC35, RPC69, or RPC104) and wk of the experimental period (1, 2, or 

3) as well as the random effect of the covariate measurements taken during the acclimation 

period.  Week was considered as the repeated factor, with cow nested within treatment 

serving as the subject.  The compound symmetry matrix was used for all variables, as it 

consistently resulted in the lowest Akaike Information Criterion.  Milk and blood BET and 

Cho data were analyzed using a mixed model that included the fixed effect of treatment 

and random effect of the covariate measurements taken during the acclimation period.  

Statistical significance was declared at P < 0.05.    

RESULTS 

Study 1 

 Production.  Dry matter intake, milk production and milk composition for Study 1 

are shown in Table 3.2.  Providing supplemental choline, either as RPC or as an abomasal 

infusion, did not affect production or performance.  However, RPC30 and ABO15 cows 

tended to have reduced DMI relative to other treatments (P = 0.06). 
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 Milk choline metabolites.  Milk choline metabolite concentrations and yields are 

shown in Tables 3.3 and 3.4, respectively.  With the exception of BET, Cho, PCho, and 

total choline, choline metabolites in milk were not affected by treatment.  Concentrations 

and yields of BET, Cho, PCho, and total choline were greatest for ABO15 and ABO30, 

and were similar among CON, RPC15, and RPC30.   

Relative to CON, post-ruminal infusion of ChoCl increased milk concentrations of 

total choline, BET, Cho, and PCho by 119, 63, 56, and 68 µM, respectively (ABO vs. CON: 

P = 0.02, P < 0.01, P = 0.03, and P < 0.01).  Furthermore, abomasal infusion of ChoCl 

increased milk total choline, BET, Cho, and PCho yields by 4314, 1872, 2049, and 2387 

µmol/d, respectively (ABO vs. CON: P = 0.02, P < 0.01, P = 0.03, and P < 0.01).  In 

contrast, feeding ChoCl as RPC did not alter milk concentrations or yields of these 

metabolites relative to CON (RPC vs. CON: P ≥ 0.57).  However, there was a tendency for 

RPC to increase both SM concentration and yield relative to CON (RPC vs. CON: P = 0.05 

and P = 0.07, respectively).  Relative to RPC treatments, ABO treatments also had higher 

milk total choline, BET, Cho, and PCho concentrations by 112, 67, 68, and 66 µM, 

respectively (ABO vs. RPC: all P < 0.01).  In accordance, infusion of ChoCl also increased 

milk total choline, BET, Cho, and PCho yields by 4129, 2128, 2394, and 2444 µmol/d, 

respectively, relative RPC (ABO vs. RPC: all P < 0.01).   

Blood choline metabolites.  Blood choline metabolite concentrations are shown in 

Table 3.5.  Blood BET and Cho concentrations were greatest for ABO15 and ABO30 but 

similar among CON, RPC15 and RPC30.  Concentrations of other choline metabolites 

were not affected by post-ruminal ChoCl.  Abomasal infusion of ChoCl increased BET 
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concentration by 65 µM relative to CON (ABO vs. CON: P < 0.01) and 68 µM relative to 

RPC (ABO vs. RPC: P < 0.01).  Similarly, abomasal infusion of ChoCl increased Cho 

concentration by 2.71 µM relative to CON (ABO vs. CON: P = 0.01) and by 2.99 µM 

relative to RPC (ABO vs. RPC: P < 0.01).  However, supplying ChoCl as RPC did not 

affect concentrations of these choline metabolites in blood. 

Principal component analysis.  Loading plots resulting from the principal 

component analysis of milk and blood choline metabolites in Study 1 are shown in Figures 

1.3 and 2.3.  For milk choline metabolite yields, Principal Components 1 and 2 collectively 

accounted for over 96% of variation (Figure 3.1).  Milk BET and Cho yields were more 

closely associated with the amount of ChoCl infused into the abomasum than other 

metabolites (Figure 3.1).  Of the individual PC and LPC species examined (16 total and 4 

total, respectively), only the yield of one PC species grouping, PC 18:0/22:6 + 18:1/22:5, 

showed any association with the amount of ChoCl infused and this association was 

negative (Figure 3.1).  For blood concentration variables, Principal Components 1 and 2 

accounted for 99.5% of variation and Components 1 and 3 accounted for 98.9% of variation 

(Figure 3.2). Blood BET, Cho, and PCho concentrations were more closely associated with 

the amount of ChoCl infused post-ruminally than any other choline metabolite or 

individual species of PC or LPC (Figure 3.2).    

Study 2 

Production.  Feeding RPC at the levels tested in this study did not have any effect 

on milk production, milk components, DMI, BW, or feed efficiency (Table 3.6). 
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Free choline and betaine.  Milk Cho and BET yields and concentrations were not 

altered by feeding RPC and were not affected by increasing the amount of RPC fed (Table 

3.7).  In contrast, feeding RPC tended to reduce blood Cho concentration (P = 0.09; Table 

3.7), but increasing the amount of RPC supplied did not affect blood Cho or BET 

concentrations. 

DISCUSSION 

 Results from Study 1 showed significant changes in milk and blood choline 

metabolite yields and concentrations in response to abomasal infusion of ChoCl.  In 

contrast, feeding ChoCl as RPC did not affect these parameters.  Furthermore, results from 

Study 2 indicated no response in blood or milk Cho or BET when increasing levels of RPC 

were fed.  

There were no production responses to supplemental ChoCl supplied via abomasal 

infusion (Study 1) or as RPC (Studies 1 and 2), which is similar to results reported by de 

Veth et al. (2016) and Deuchler et al. (1998).  Neither of these studies, nor those reported 

by de Veth et al. (2016) and Deuchler et al. (1998), were designed to detect production 

effects.  Sharma and Erdman (1989) showed positive responses for milk, fat percentage, 

and fat-corrected milk yield when 30 or 50 g/d ChoCl was infused into the abomasum.  In 

contrast, Grummer et al. (1987) failed to observe changes in milk production or feed intake 

when 22 g/d of choline was infused into the abomasum.  Production responses to post-

ruminal ChoCl supplied as RPC are also variable, with some reporting improvements in 

milk yield and milk composition (Elek et al., 2008; Leiva et al., 2015) and others reporting 
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no effects on production (Hartwell et al., 2000; Guretzky et al., 2006).  However, most of 

these studies examined responses to RPC fed during the periparturient period.   

Few experiments have reported individual milk or blood choline metabolites in 

dairy cows provided with post-ruminal ChoCl.  Deuchler et al. (1998) showed that milk 

total choline concentration and yield increased linearly when ChoCl (0, 25, 50, or 75 g/d) 

was delivered by post-ruminal infusion.  In a follow-up study, they also showed that post-

ruminal ChoCl fed as RPC (50 g/d) increased milk total choline concentration and tended 

to increase milk total choline yield (Deuchler et al., 1998).  These results implicated total 

choline in milk as an indicator of post-ruminal choline supply.  It is possible that there are 

more specific indicators of post-ruminal choline supply that total choline, such as 

individual choline metabolites.  Recently, de Veth et al. (2016) supplied supplemental 

ChoCl (12.5 or 25 g/d) via abomasal infusion or as RPC and examined individual blood 

and milk choline metabolite responses.  However, their experimental design only allowed 

4 days for cows to adapt to post-ruminal ChoCl supplied as RPC, which may have made it 

difficult to detect changes in choline metabolites in blood and milk for those treatment 

groups.  In study 1, amounts of post-ruminal ChoCl were similar to de Veth et al. (2016), 

but l the diet adaptation period was increased to 11 days and samples were collected over 

the last 3 days of each 14-d experimental period.   

Choline metabolite concentrations and yields in milk, with the exception of total 

PC and individual PC species, in Study 1 were similar to those reported by Artegoitia et al. 

(2014) for mid- to late-lactation cows, but slightly lower than those reported by de Veth et 

al. (2016).  Milk PC concentrations and yields in this study were much lower than those 
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previously reported (Artegoitia et al., 2014; de Veth et al., 2016).  Furthermore, blood BET, 

Cho, and SM concentrations for Study 1 were similar to those reported by de Veth et al. 

(2016) and Artegoitia et al. (2014) for mid- to late-lactation cows; however, the baseline 

total PC and total LPC concentrations for this study were much lower.  Artegoitia et al. 

(2014) showed that choline metabolite yield and concentrations in milk and blood, 

respectively, vary with stage of lactation.  However, the discrepancies between PC and 

LPC data in this study and the study by de Veth et al. (2016) are not likely due to differences 

in lactation stage as a comparison of these data with those reported by Artegoitia et al. 

(2014) for mid- to late-lactation cows were also dissimilar.  Blood concentrations of several 

individual PC and LPC species from Study 1 were consistently lower than those reported 

for mid- to late-lactation cows (Artegoitia et al., 2014).  Thus, the reason for these 

discrepancies remain unclear, but could be related to variation in blood and milk 

concentrations among individual cows.  This idea is supported by observations for total 

LPC in blood and milk, as cow contributed to ~70% of the error variance.  However, cow 

only accounted for 6 and 27% of the error variance for concentration and yield of total PC 

in blood and milk, respectively. 

Similar to results reported by de Veth et al. (2016), in Study 1 abomasal infusion 

of ChoCl increased milk total choline, Cho, and BET yields but feeding ChoCl as RPC did 

not.  Furthermore, abomasal infusion of ChoCl increased blood Cho and BET and tended 

to increase PCho concentrations, which is also similar to the observations of de Veth et al. 

(2016).  However, contrary to results reported by de Veth et al. (2016), who also reported 

a significant increase in milk PCho yields in response to abomasal infusion of ChoCl and 

blood PC concentration with both forms of post-ruminal ChoCl, there were no changes in 
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milk yield or blood concentration of any other major choline metabolite in Study 1.  Results 

reported by de Veth et al. (2016) also showed a significant, albeit minor, increase in milk 

glycerolphosphocholine yield in response to ChoCl supplied as both abomasal infusion and 

RPC.  However, milk and blood samples were not analyzed for this metabolite in Study 1.   

Previous work showed an increase in milk total choline yield in response to post-

ruminal ChoCl infusion, with the greatest response (a 41% increase) observed when 25 g/d 

ChoCl was infused (Deuchler et al., 1998).  Observations from Study 1 are in accordance 

with these results as milk total choline was increased by ~38% when 15 and 30 g/d ChoCl 

was infused post-ruminally in Study 1.  However, Deuchler et al. (1998) only observed a 

21% increase in milk total choline yield when 50 g/d ChoCl was supplied as RPC and this 

result was not statistically significant.  Similarly, feeding 15 or 30 g/d ChoCl as RPC during 

Study 1 in the current study did not affect milk total choline yield. 

In an effort to determine if any choline metabolite or specific PC or LPC species is 

associated with post-ruminal ChoCl supply, a principle component analysis was conducted 

using data from the abomasal infusion treatments.  For both milk metabolite yield and 

blood metabolite concentrations, both BET and Cho were clustered with the amount of 

ChoCl infused into the abomasum, suggesting potential utility as markers for post-ruminal 

ChoCl supply.  Of all of the individual PC and LPC species examined (16 and 4 species, 

respectively), only one PC species in milk (PC 18:0/22:6, 18:1/22:5) was negatively 

associated with post-ruminal ChoCl.  This suggested that this milk metabolite decreases as 

post-ruminal choline supply increases making it a questionable indicator post-ruminal 

choline supply. 
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Based on results for Study 1, and those reported by de Veth et al. (2016), it appears 

as though blood and milk Cho and BET are the most responsive to post-ruminal ChoCl 

supply.  From Study 1, estimates of the bioavailability of RPC were not possible due to a 

lack of a response in blood concentration and milk yield of either of these two metabolites.  

It was hypothesized that insufficient RPC was fed in Study 1 in order to detect a response 

in BET and Cho in blood and milk.  Therefore, Study 2 was conducted in order to determine 

if feeding higher levels of RPC could elicit such a response.  However, differences in milk 

and blood BET and Cho in response to feeding higher levels of RPC (35, 70, or 105 g/d 

ChoCl as RPC) were not detected. 

Reasons for a lack of response in blood and milk BET and Cho when ChoCl was 

fed as RPC in both Studies 1 and 2 are unclear.  Previous studies using feed-restricted dry 

cows have shown physiological responses, namely in the form of a reduction in liver 

triglyceride content (Cooke et al., 2007; Zenobi et al., 2018b), in response to feeding ChoCl 

as RPC.  Responses in lactating cows, although variable, have also been reported (Zom et 

al., 2011; Zenobi et al., 2018a).  It is possible that ChoCl fed as RPC is utilized and 

metabolized differently than that which is supplied directly to the small intestine via 

abomasal infusion, making BET and Cho unsuitable markers of post-ruminal ChoCl supply 

when ChoCl is fed as RPC.  Protection of ChoCl supplied as RPC from rumen microbial 

degradation has been documented (Deuchler et al., 1998; Brusemeister and Sudekum, 

2006) and Deuchler et al. (1998) estimated the bioavailability of a former RPC product to 

be ~36%.  However, it is possible that the RPC source fed in Studies 1 and 2, as well as the 

study reported by de Veth et al. (2016), is so well-protected from rumen degradation that 

the cow is able to break down and absorb very little ChoCl once it reaches the small 
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intestine.  In several species, dietary choline is primarily absorbed in the jejunum and ileum 

via a carrier protein at low concentrations and by diffusion at high concentrations (Zeisel, 

1981; Sheard and Zeisel, 1986).  Thus, any delay in the liberation of ChoCl once RPC 

reaches the small intestine could thwart the efficiency of choline absorption.  Perhaps the 

break-down of the protective coating of RPC is insufficient by the time it reaches the 

jejunum and ileum, and ChoCl is not made available until after it passes the primary avenue 

by which choline is absorbed.  Further investigation into this idea is warranted.    

CONCLUSION 

These findings agree with previous work that investigated indicators of post-

ruminal choline supply.  It is concluded that free choline and betaine in blood and milk 

have the greatest potential to be used as markers of post-ruminal choline supply in lactating 

dairy cows.  However, because these metabolites were not responsive to choline chloride 

supplied in a rumen-protected form, they may not be the best indicators of post-ruminal 

choline supply when choline chloride is fed as RPC.  Further studies should investigate 

possible over-protection of RPC in an effort to explain this lack of response before the 

search for other potential biomarkers of post-ruminal choline supply commences.   
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Table 3.1. Ingredient and nutrient composition of the basal TMR for Studies 1 and 2  

 Study 1  Study 2 

Ingredient  % of DM 

  Corn Silage 47.2  39.0 

  Alfalfa Silage --  13.7 

  Alfalfa Hay 14.4  5.9 

  Corn, ground 14.4  13.7 

  Soybean Meal 14.4  15.6 

  Mineral Mix1,2 9.8  10.8 

  Megalac® --  1.3 

    

Nutrient Composition3    

  DM 48.9  47.0 

  NDF 30.8  29.0 

  CP 16.6  16.1 

  NFC 44.9  37.9 

  NEL, Mcal/kg 1.66  1.99 
1Study 1: Mineral mix included 30.7% SoyPlus, 17.4% soybean hulls, 6.1% corn gluten meal, 7.6% wheat 

middlings, 7.5% limestone, 3.7% Bio-Phos, 1.4% magnesium sulfate, 1.1% magnesium oxide, 4.8% sodium 

bicarbonate, 1.4% Dyna-mate, 4.8% salt, 2.3% Diamond V. Yeast, 0.27% TM-433, 0.13% 4-PlexC, 0.3% 

vitamin ADE, 0.19% vitamin E (125000 U), 0.27% Sel-Plex 600, 0.27% selenium, 6.3% Megalac, 2.3% 

Omigen-AF, 0.25% Mepron, 0.53% Rumensin, 0.4% Bio-Mos.     
2Study 2: Mineral mix included 30.5% SoyPlus, 16.3% soybean hulls, 6.8% corn gluten meal, 4.1% 

MetAAtein, 5.3% Megalac, 7.24% limestone, 6.4% sodium bicarbonate, 3.6% salt, 4.7% Bio-Phos, 1.6% 

potassium carbonate, 1.6% molasses, 2.1% Diamond V. Yeast, 2.1% Omigen-AF, 1.3% Dyna-mate, 1.3% 

magnesium sulfate, 1.1% urea (45%), 1.1% magnesium oxide, 0.5% Rumensin, 0.4% Bio-Mos, 0.3% Clarify 

Larvicide, 0.3% TM-433, 0.3% vitamin ADE, 0.3% selenium, 0.3% Sel-plex 600, 0.2% Mepron, 0.2% 

vitamin E (125000 U), 0.2% 4-PlexC. 
3Nutrient profile of individual diet ingredients was analyzed by wet chemistry at Cumberland Valley 

Analytical Services (Waynesboro, PA).  
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Table 3.2. Least-square means for feed intake, production, body weight, and body condition score during Study 1  

1Treatments included no supplemental choline (CON), 15 g/d choline chloride supplied as RPC (RPC15), 30 g/d choline chloride supplied as RPC (RPC30), 15 

g/d choline chloride supplied as a continuous abomasal infusion (ABO15), and 30 g/d choline chloride supplied as a continuous abomasal infusion (ABO30). 
2P-value associated with the fixed effect of treatment (trt) or linear contrasts. 

  

 Treatment1  P-Value2 

Item CON RPC15 RPC30 ABO15 ABO30 SEM Trt 

ABO vs. 

CON 

ABO vs. 

RPC 

RPC vs. 

CON 

DMI, kg/d 25.2 25.6 23.0 22.5 26.1 1.0 0.08 0.47 0.99 0.47 

Milk, kg/d 33.5 33.5 33.0 32.7 33.7 2.8 0.33 0.59 0.85 0.65 

Milk Fat           

  kg/d 1.19 1.21 1.18 1.19 1.22 0.11 0.92 0.79 0.82 0.91 

  % 3.58 3.60 3.62 3.65 3.60 0.20 0.97 0.64 0.83 0.73 

Milk Protein           
  kg/d 1.04 1.04 1.03 0.99 1.04 0.09 0.27 0.45 0.36 0.91 

  % 3.10 3.10 3.13 3.05 3.10 0.11 0.35 0.46 0.17 0.72 

BW, kg 711 715 690 716 718 39 0.07 0.50 0.06 0.37 

BCS 3.26 3.10 3.05 3.24 3.14 0.25 0.56 0.63 0.30 0.18 
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Table 3.3.  Least-square means for milk choline metabolite concentrations (µM) during Study 1 

 Treatment1  P-value2 

Item CON RPC15 RPC30 ABO15 ABO30 SEM Trt 

ABO vs. 

CON 

ABO vs. 

RPC 

RPC vs. 

CON 

Total Choline 324b 339b 323b 445a 441a 50 0.04 0.02 <0.01 0.86 

Betaine 56.5b 43.8b 60.2b 124a 114a 18 <0.01 <0.01 <0.01 0.80 

Free Choline 133b 123b 120b 188a 190a 23 0.03 0.03 <0.01 0.57 

Sphingomyelin 49.2 52.3 53.5 51.4 51.7 4.02 0.31 0.22 0.34 0.05 

Phosphocholine 73.3b 83.9b 66.6b 160a 122a 46 <0.01 <0.01 <0.01 0.90 

Total Phosphatidylcholine 84.0 93.2 89.3 89.0 91.8 9.0 0.89 0.49 0.90 0.41 

Total Lysophosphatidylcholine 2.30 2.52 2.55 2.36 2.46 0.22 0.75 0.60 0.44 0.24 

Phosphatidylcholine Species           
  16:0/16:1 7.84 8.60 8.41 8.92 8.87 0.99 0.92 0.39 0.67 0.56 

  16:0/16:0 36.0 38.7 36.8 40.4 39.6 4.38 0.89 0.40 0.53 0.70 

  16:0/18:2 0.012 0.011 0.023 0.014 0.016 <0.001 0.42 0.63 0.68 0.41 

  16:0/18:1  29.8 33.9 32.2 31.7 33.6 3.28 0.75 0.38 0.88 0.29 

  16:0/20:4 1.41 1.71 1.38 1.34 1.42 0.33 0.20 0.83 0.20 0.40 

  16:0/20:3  6.61 7.30 6.79 6.15 6.46 0.75 0.37 0.58 0.10 0.41 

  18:0/18:2,18:1/18:1 10.4 11.4 11.5 10.0 10.3 1.36 0.46 0.81 0.10 0.25 

  18:0/18:1 3.92 4.48 4.19 4.13 4.04 0.60 0.57 0.64 0.35 0.21 

  16:0/22:6,18:1/22:5,18:2/20:4  0.14 0.18 0.14 0.15 0.14 0.04 0.43 0.85 0.41 0.38 

  18:1/20:4,18:0/20:5,16:0/22:5 0.46 0.56 0.46 0.49 0.50 0.13 0.61 0.65 0.83 0.50 

  18:0/20:4  0.47 0.55 0.45 0.47 0.45 0.07 0.58 0.89 0.47 0.67 

  18:0/20:3 0.21 0.22 0.28 0.23 0.21 0.06 0.74 0.90 0.47 0.47 

  18:1/22:6 0.023 0.029 0.027 0.028 0.014 0.007 0.22 0.79 0.18 0.41 

  18:0/22:6,18:1/22:5 0.002 0.008 0.002 0.0007 0.005 0.004 0.47 0.75 0.47 0.37 

  18:0/22:5  0.038 0.049 0.054 0.049 0.044 0.017 0.69 0.50 0.53 0.22 

 

           



87 

 

Lysophosphatidylcholine Species 

  16:0 1.91 2.02 2.06 1.88 2.02 0.18 0.66 0.79 0.39 0.33 

  18:2 0.004 0.015 0.002 0.0034 0.006 0.009 0.71 0.97 0.60 0.65 

  18:1 0.17 0.18 0.17 0.17 0.15 0.019 0.72 0.80 0.38 0.66 

  18:0 0.29 0.30 0.32 0.30 0.28 0.049 0.91 0.97 0.47 0.54 
1Treatments included no supplemental choline (CON), 15 g/d choline chloride supplied as RPC (RPC15), 30 g/d choline chloride supplied as RPC (RPC30), 15 

g/d choline chloride supplied as a continuous abomasal infusion (ABO15), and 30 g/d choline chloride supplied as a continuous abomasal infusion (ABO30). 
2P-value associated with the fixed effect of treatment (trt) or linear contrasts. 

  



88 

 

Table 3.4.  Least-square means for milk choline metabolite yields (µmol/d) during Study 1 

 Treatment1  P-Value2 

Item CON RPC15 RPC30 ABO15 ABO30 SEM Trt 

ABO vs. 

CON 

ABO vs. 

RPC 

RPC vs. 

CON 

Total Choline 10402b 10924b 10251b 14625a 14807a 2102 0.04 0.02 <0.01 0.89 

Betaine 1899b 1395b 1891b 3722a 3819a 481 0.01 <0.01 <0.01 0.65 

Free Choline 4197b 3934b 3771b 6120a 6372a 821 0.03 0.03 <0.01 0.64 

Sphingomyelin 1566 1687 1689 1595 1704 115 0.24 0.23 0.44 0.07 

Phosphocholine 2494b 2750b 2124b 5517a 4244a 1685 <0.01 <0.01 <0.01 0.90 

Total Phosphatidylcholine 2708 3015 2831 2824 3083 390 0.76 0.43 0.89 0.45 

Total Lysophosphatidylcholine 72.2 82.6 81.7 75.0 83.1 9.8 0.51 0.36 0.57 0.16 

Phosphatidylcholine Species           
  16:0/16:1 244 280 269 279 306 38.7 0.73 0.25 0.56 0.43 

  16:0/16:0 699 790 743 805 852 105 0.75 0.25 0.46 0.52 

  16:0/18:2 0.42 0.34 0.72 0.48 0.58 0.22 0.35 0.55 0.99 0.54 

  16:0/18:1  967 1091 1022 1011 1129 142 0.61 0.34 0.86 0.36 

  16:0/20:4 45.1 55.7 43.2 46.2 47.8 12.5 0.25 0.75 0.57 0.42 

  16:0/20:3  214 236 214 197 216 30.5 0.37 0.70 0.19 0.49 

  18:0/18:2,18:1/18:1 335 366 363 332 355 54.4 0.78 0.81 0.41 0.36 

  18:0/18:1 128 144 133 138 138 25.6 0.78 0.46 0.98 0.41 

  16:0/22:6,18:1/22:5,18:2/20:4  4.57 5.81 4.52 5.30 4.63 1.26 0.36 0.61 0.73 0.40 

  18:1/20:4,18:0/20:5,16:0/22:5 14.8 18.3 14.3 17.0 16.9 4.82 0.40 0.37 0.70 0.49 

  18:0/20:4  15.1 17.9 14.2 15.2 15.0 2.66 0.57 1.00 0.60 0.67 

  18:0/20:3 7.04 7.34 8.78 7.21 6.87 1.88 0.87 1.00 0.50 0.58 

  18:1/22:6 0.75 0.90 0.83 1.01 0.51 0.23 0.30 0.96 0.50 0.55 

  18:0/22:6,18:1/22:5 0.07 0.21 0.09 0.02 0.17 0.11 0.44 0.77 0.52 0.42 

  18:0/22:5  1.31 1.53 1.73 1.70 1.45 0.57 0.80 0.50 0.85 0.37 
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Lysophosphatidylcholine Species 

  16:0 60.9 66.3 66.1 59.8 68.1 8.12 0.42 0.54 0.54 0.25 

  18:2 0.16 0.52 0.06 0.12 0.22 0.30 0.72 0.99 0.65 0.70 

  18:1 5.29 5.88 5.38 5.65 5.10 0.74 0.81 0.90 0.63 0.60 

  18:0 9.43 9.90 10.17 8.70 9.08 1.71 0.70 0.64 0.19 0.56 
1Treatments included no supplemental choline (CON), 15 g/d choline chloride supplied as RPC (RPC15), 30 g/d choline chloride supplied as RPC (RPC30), 15 

g/d choline chloride supplied as a continuous abomasal infusion (ABO15), and 30 g/d choline chloride supplied as a continuous abomasal infusion (ABO30). 
2P-value associated with the fixed effect of treatment (trt) or linear contrasts. 
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Table 3.5.  Least-square means for blood choline metabolite concentrations (µM) during Study 1 

 Treatment1  P-value2 

Item CON RPC15 RPC30 ABO15 ABO30 SEM Trt 

ABO vs. 

CON 

ABO 

vs. RPC 

RPC vs. 

CON 

Total Choline 2837 2697 2934 2682 2940 191 0.44 0.88 0.97 0.89 

Betaine 48.3b 39.2b 51.1b 120a 106a 16.7 <0.01 <0.01 <0.02 0.85 

Free Choline 4.71b 4.39b 4.48b 7.60a 7.24a 0.73 0.02 0.01 <0.01 0.75 

Sphingomyelin 494 472 507 473 504 21.2 0.14 0.72 0.94 0.74 

Phosphocholine 0.14 0.31 0.18 0.32 0.44 0.18 0.37 0.12 0.21 0.45 

Total Phosphatidylcholine 2237 2138 2340 2135 2357 180 0.58 0.96 0.96 0.99 

Total Lysophosphatidylcholine 85.1 82.5 83.6 80.7 85.9 4.76 0.26 0.44 0.87 0.33 

Phosphatidylcholine Species           
  16:0/16:1 20.5 17.0 22.1 19.0 20.0 2.3 0.48 0.72 0.99 0.71 

  16:0/16:0 34.5 30.0 34.8 32.8 36.0 3.2 0.58 0.98 0.48 0.56 

  16:0/18:2 5.25 4.68 5.22 4.85 5.14 0.50 0.45 0.51 0.86 0.39 

  16:0/18:1  138 122 166 133 139 15.6 0.19 0.93 0.55 0.70 

  16:0/20:5,16:1/20:4 16.3 12.5 15.1 14.0 15.7 1.95 0.33 0.44 0.45 0.16 

  16:0/20:4 88.7 76.6 88.0 77.7 87.9 8.57 0.12 0.30 0.91 0.23 

  16:0/20:3  251 245 254 233 265 20.6 0.17 0.86 0.97 0.88 

  18:0/18:2,18:1/18:1 973 980 993 952 1052 79.5 0.53 0.60 0.71 0.78 

  18:0/18:1 173 157 197 163 174 18.2 0.20 0.78 0.51 0.81 

  16:0/22:6,18:1/22:5,18:2/20:4  7.56 6.46 7.27 6.28 7.40 0.96 0.11 0.19 0.94 0.16 

  18:1/20:4,18:0/20:5,16:0/22:5 54.5 44.8 53.9 47.0 52.3 6.56 0.39 0.41 0.95 0.35 

  18:0/20:4  123 112 137 83 96 33.1 0.34 0.21 0.09 0.92 

  18:0/20:3 321 275 301 298 327 30.5 0.69 0.81 0.40 0.36 

  18:1/22:6 3.83 3.45 3.68 3.91 3.69 0.40 0.91 0.95 0.55 0.58 

  18:0/22:6,18:1/22:5 7.10 6.75 7.84 6.50 6.68 1.17 0.86 0.70 0.49 0.88 

  18:0/22:5  52.8 44.9 52.8 45.5 49.6 7.27 0.76 0.49 0.82 0.59 
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Lysophosphatidylcholine Species           
  16:0 24.7 23.9 24.4 23.4 25.4 1.25 0.30 0.77 0.71 0.53 

  18:2 37.4 36.3 36.6 35.0 38.1 2.89 0.48 0.58 0.94 0.50 

  18:1 1.99 2.22 2.71 2.85 2.28 0.64 0.84 0.47 0.87 0.54 

  18:0 20.3 20.1 19.9 19.9 20.8 0.94 0.70 0.99 0.49 0.58 
1Treatments included no supplemental choline (CON), 15 g/d choline chloride supplied as RPC (RPC15), 30 g/d choline chloride supplied as RPC (RPC30), 15 

g/d choline chloride supplied as a continuous abomasal infusion (ABO15), and 30 g/d choline chloride supplied as a continuous abomasal infusion (ABO30). 
2P-value associated with the fixed effect of treatment (trt) or linear contrasts. 
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Table 3.6.  Least-square means for feed intake and production during Study 2 

 Treatment1  P-value2 

Item CON RPC35 RPC69 RPC104 SEM Trt Week 

DMI, kg/d 23.3 23.6 23.3 23.6 0.33 0.93 0.35 

Milk, kg/d 33.1 33.5 32.5 33.4 0.47 0.44 <0.01 

Milk Fat        

  % 3.78 3.89 3.89 3.86 0.09 0.80 0.75 

  kg/d 1.25 1.28 1.21 1.32 0.04 0.29 <0.01 

Milk Protein        

  % 2.92 2.91 3.02 2.96 0.03 0.13 <0.01 

  kg/d 0.98 0.96 0.97 0.99 0.03 0.95 <0.01 

BW, kg 644 648 634 625 8.64 0.28 0.27 

4% FCM, kg/d 32.0 32.6 31.2 33.2 0.78 0.30 <0.01 

FCM/DMI 1.37 1.38 1.34 1.42 0.03 0.42 <0.01 
1Treatments included no supplemental choline (CON), 34.5 g/d choline chloride supplied as RPC (RPC35), 69.1 g/d choline chloride supplied as 

RPC (RPC69), or 103.7 g/d choline chloride supplied as RPC (RPC104). 
2P-value associated with the fixed effect of treatment (Trt) and week of experimental period.  
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Table 3.7.  Milk and blood free choline and betaine responses for Study 2 

 Treatment1  P-value2 

Item CON RPC35 RPC69 RPC104 SEM Trt 

CON vs. 

RPC Linear 

Blood         

  Free Choline, µM2 7.27 5.56 5.88 5.70 0.74 0.36 0.09 0.23 

  Betaine, µM 20.0 17.4 18.7 20.7 2.15 0.67 0.68 0.68 

Milk         

  Free Choline, µM 208 195 228 205 20.7 0.76 0.95 0.65 

  Free Choline, µmol/d 6192 6166 6615 6339 527 0.96 0.81 0.69 

  Betaine, µM 24.8 24.6 24.7 26.4 2.50 0.94 0.89 0.67 

  Betaine, µmol/d 749 789 737 819 77.0 0.83 0.73 0.71 
1Treatments included no supplemental choline (CON), 34.5 g/d choline chloride supplied as RPC (RPC35), 69.1 g/d choline chloride supplied as 

RPC (RPC69), or 103.7 g/d choline chloride supplied as RPC (RPC104). 
2Contrast CON vs. RPC = control vs. average of all three RPC treatments.  
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Figure 3.1.  Loading plot of principle components 1 vs 2 derived from principal component 

analysis describing the relationship among milk choline metabolites and amounts of 

choline infused into the abomasum.  Variable definitions: choline_in = amount of choline 

chloride infused (0, 15, or 30 g/d), t_Cho = total choline (µmol/d), Bet = betaine (µmol/d), 

Cho = free choline (µmol/d), SM = sphingomyelin (µmol/d), PCho = phosphocholine 

(µmol/d), t_PC = total PC (µmol/d), t_LPC = total LPC (µmol/d), PC_6 = PC 

18:0/22:6,18:1/22:5. 
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 Figure 3.2.  Loading plot of principal components 1 vs 2 and 1 vs 3 derived from principal 

component analysis describing the relationship among blood choline metabolites and the 

amounts of choline infused into the abomasum.   Variable definitions: choline_in = amount 

of choline chloride infused (0, 15, or 30 g/d), t_Cho = total choline (µM), Bet = betaine 

(µM), Cho = free choline (µM), SM = sphingomyelin (µM), PCho = phosphocholine (µM), 

t_PC = total PC (µM), t_LPC = total LPC (µM), PC_6 = PC 18:0/22:6,18:1/22:5 (µM). 
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CHAPTER 4: EXPERIMENT 2 

 

Production Responses to Rumen-protected Choline and Methionine Supplemented 

during the Periparturient Period Differ for Primi- and Multiparous Cows1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
1S.B. Potts, C.M. Scholte, K.M. Moyes, and R.A. Erdman.  Production responses to rumen-

protected choline and methionine supplemented during the periparturient period differ for 

primi- and multiparous cows.  In preparation for submission to the Journal of Dairy 

Science.  
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ABSTRACT 

The objective of this experiment was to examine production performance responses 

to feeding rumen-protected choline (RPC), methionine (RPM), or both during the 

periparturient period.  Fifty-four Holstein cows (25 primiparous, 29 multiparous) were used 

in a randomized block design experiment with a 2 x 2 factorial treatment structure.  Cows 

were blocked by expected calving date and parity and assigned to one of 4 treatments: CON 

(no RPC or RPM); CHO (60 g/d RPC); MET (12 g/d RPM prepartum; 18 g/d RPM 

postpartum); or CHO + MET.  Treatments were applied once daily as a top dress from 3 

wk before through 5 wk after calving.  Dry matter intake (DMI) and milk production were 

recorded daily and milk samples were obtained once weekly.  Data were analyzed for 

primi- and multiparous cows separately using a repeated measures mixed model that 

included random effects of cow and block and fixed effects of CHO, MET, week, and their 

interactions; week served the repeated effect.  Treatment did not affect DMI or calculated 

energy balance during the pre- or postpartum periods.  However, MET increased overall 

milk fat and protein concentrations by 9 and 7%, respectively, and increased both fat yield 

and 4% fat-corrected milk (FCM) yield by 0.36 and 5.8 kg/d during wk 3 postpartum for 

multiparous cows.  In contrast, feeding MET had no effect on the production of 

primiparous cows.  For primiparous cows, CHO increased milk yield by 3.5 kg/d and 

tended to increase FCM and protein yield by 2.6 and 0.10 kg/d, but it did not affect the 

production of multiparous cows.  Although calculated energy balance was not affected, 

RPC reduced the prepartum body condition score (BCS) of primiparous cows.  This, in 

conjunction with elevated plasma non-esterified fatty acids (NEFA) and β-hydroxybutyrate 

(BHBA), suggests some effect of CHO on prepartum body tissue mobilization for 



98 

 

primiparous cows fed CHO.  During the postpartum period, BCS and plasma NEFA 

concentrations were not affected by treatment for primiparous cows, although plasma 

BHBA tended to be increased by CHO.  In contrast to the results for primiparous cows, 

treatment did not affect prepartum BCS or plasma NEFA or BHBA levels for multiparous 

cows, but postpartum BCS was reduced by CHO.  These results suggest that primi- and 

multiparous cows respond differently to CHO and MET supplemented during the 

periparturient period.  This variation in response could be mediated by differences in 

choline and methionine requirements of primiparous vs. multiparous cows.    
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INTRODUCTION 

Choline is an essential nutrient for most  animals, including rats, preruminant calves 

(NRC, 2001), and humans (Zeisel and da Costa, 2009).  Choline is required for 

phosphatidylcholine (PC) synthesis, the major phospholipid comprising cell membranes 

and lipoproteins, and plays a role in methyl group metabolism as a methyl donor (Zeisel 

and da Costa, 2009).  Because choline is a precursor for PC, which is required for very low 

density lipoprotein (VLDL) synthesis (Li and Vance, 2008), choline deficiency impedes 

triglyceride (TG) export from the liver and can result in fatty liver disease (Zeisel, 1981).  

Choline requirements for lactating dairy cows have not been specified (NRC, 2001); 

however, increased prevalence of fatty liver disease during early lactation (Jorritsma et al., 

2001) suggest that choline supply may be insufficient during this time.  In humans, relative 

to nonpregnant, nonlactating women, recommended dietary choline intake is 6% and 29% 

greater for pregnant and lactating women, respectively (Ziesel and da Costa, 2009).  Thus, 

it seems logical that the choline requirement of the dairy cow might increase during the 

periparturient period.   

Feeding rumen-protected choline (RPC) to feed-restricted dry cows consistently 

reduces liver TG content (Cooke et al., 2007; Zenobi et al., 2018b).  In contrast, 

supplementing periparturient cows with RPC has decreased (Zom et al., 2011) or has had 

no effect (Zhou et al., 2016a; Zenobi et al., 2018a) on liver TG content.  Furthermore, 

production responses of periparturient cows fed RPC are also variable (Hartwell et al., 

2000; Piepenbrink and Overton, 2003; Elek et al., 2008; Zom et al., 2011; Zhou et al., 

2016a).  This variation is likely due to many factors, such as different length of RPC 
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supplementation prepartum, the amount of RPC fed, the choline status of the cows before 

supplementation, and the availability of other methyl donors.   

Methionine (Met) and lysine are the two most limiting amino acids in dairy cattle 

diets (NRC, 2001).  Methionine is not only required for protein synthesis, but also serves 

as the precursor for S-adenosylmethionine (SAM), the most predominant methyl donor in 

the body that is required for many metabolic reactions, including the de novo synthesis of 

PC from phosphatidylethanolamine in the phosphatidylethanolamine methyl-transferase 

(PEMT) pathway (Li and Vance, 2008).  Therefore, methionine may indirectly improve 

liver TG export via VLDL through its participation in PC synthesis.  Furthermore, Met can 

also be used as a precursor of glutathione, an important antioxidant (Yuan and Kaplowitz, 

2009; Meister and Anderson, 1983), which might help the dairy cow cope with the 

increased metabolic stress that is characteristic of the periparturient period (Sordillo and 

Raphael, 2013).   

Supplementing rumen-protected Met (RPM) during the periparturient period 

generally increases milk protein production (Osorio et al., 2013; Ordway et al., 2009; Zhou 

et al., 2016a) and improves immune status (Zhou et al., 2016b).  However, feeding RPM 

during this time has not been shown to have an effect on liver TG content (Osorio et al., 

2013; Zhou et al., 2016a; Batistel et al., 2017).  It is possible that the availability of Met as 

well as the other major limiting amino acid, Lysine (NRC, 2001), plays a role in 

determining the type of response observed when RPM is supplemented to periparturient 

cows.  It is also possible that additional Met supplied in the diet is diverted to protein 
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synthesis, instead of methyl group metabolism, which could explain the lack of a liver TG 

response.   

Because both choline and Met have the apparent potential to improve hepatic TG 

export from the liver, it could be expected that supplementing either or both would promote 

production performance during the periparturient period.  Zhou et al. (2016a) fed both RPC 

and RPM to periparturient cows and observed increased milk yield and DMI for cows 

supplemented with RPM but not RPC, and there was no effect of either supplement on liver 

TG content.  Furthermore, no synergistic effect of both RPC and RPM fed simultaneously 

was observed in that study. 

Additional research is warranted to further the understanding of potential roles that 

choline and Met may play during the transition period and how they may affect cow 

performance during this time.  Therefore, the objective of this experiment was to compare 

the effects of feeding RPC, RPM, or both during the periparturient period on production 

and liver TG accumulation. 

MATERIALS AND METHODS 

All experimental procedures that utilized animals were approved by the University 

of Maryland, College Park Institutional Animal Care and Use Committee. 

Animals and Study Design 

Between March and December 2017, 25 primiparous and 29 multiparous Holstein 

cows from the Central Maryland Research and Education Center were selected for use in 
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a randomized block design experiment with a 2 x 2 factorial treatment structure.  The two 

factors were 0 or 60 g/d RPC (28.8% choline chloride; ReaShure®; Balchem Corp., New 

Hampton, NY) and 0 or 12 g/d RPM (75% DL-Methionine; Smartamine® M; Adisseo 

USA, Inc., Alpharetta, GA) prepartum and 18 g/d RPM postpartum.  Thus, the four 

resulting treatments included: 1) no supplemental choline or methionine (control; CON); 

2) 60 g/d RPC (CHO); 3) 12 g/d RPM prepartum and 18 g/d RPM postpartum (MET); and 

4) a combination of CHO and MET treatments (CHO + MET; 60 g/d RPC + 12 g/d RPM 

prepartum and 18 g/d RPM postpartum).   

Prior to the start of the experiment, animals were blocked by age (primiparous vs. 

multiparous) and expected calving date and randomly assigned to treatment.  Treatments 

were applied daily as a top dress from 21 d before expected calving through 35 d 

postpartum.  Throughout the experiment, cows were housed in a free stall-barn equipped 

with electronic feeding gates (American Calan, Inc., Northwood, NH) to allow for 

individual cow feed intakes to be recorded.  Cows were trained to use the electronic feeding 

gates approximately 31 d before expected calving.  Once trained to a specific gate, cows 

retained their assigned feeding gate for the duration of the experiment.  Free-stalls were 

equipped with rubber mattresses and bedded with sawdust.  Due to facility limitations, pre- 

and postpartum animals were housed in the same group throughout the study except during 

calving.  When calving appeared imminent, animals were moved to individual box-stalls 

until after parturition.  Stocking density of the group pen never exceeded 80% throughout 

the study.      
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Prepartum and postpartum cows were fed their respective total mixed rations 

(TMR) throughout the study.   All cows received the same basal prepartum diet (Table 4.1) 

starting 21 d before expected calving.  After calving, cows received the same basal lactation 

diet (Table 4.1) until 35 days postpartum.  Cows were fed once daily at 0800 h for ad-

libitum intake (~5-10% orts).  Feed refusals were removed each morning before the 

delivery of fresh feed.  After calving, cows were milked twice daily in a milking parlor at 

0600 and 1600 h.  All animals were visually observed twice daily for signs of illness.  Upon 

signs of illness, cows were treated as directed by the herd veterinarian.     

Data Collection and Sample Analysis 

Feed intake and diet composition.  Individual feed intake was recorded daily as 

feed offered minus feed refused.  Samples of individual feed ingredients were collected 

once weekly throughout the study and composited before analysis of nutrient composition 

by wet chemistry methods (Cumberland Valley Analytical Services; Waynesboro, PA).  

Additional samples of silage were analyzed monthly by NIR (Cumberland Valley 

Analytical Services) so that diet adjustments could be made to maintain consistency 

throughout the study.  Dry matter (DM) of haylage and corn silage was determined twice 

weekly in order to maintain a constant mixture of feed ingredients on a DM basis.      

Body weight, body condition, rumination and calving data.  Postpartum body 

weight (BW) was recorded electronically twice daily upon exit from the milking parlor; 

prepartum BW was recorded three times per week using the same scale system.  Body 

condition scores (BCS; 5-point scale; 1 = thin, 5 = fat; Wildman et al., 1982) were 

determined independently by two trained investigators each week.  Daily rumination time 
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(min/d) was collected electronically using the SCR system (Allflex® USA, Inc., Airport, 

TX).  Calving difficulty scores were assigned on a 1-5 scale (1 = no assistance, 5 = extreme 

difficulty; Djemali et al., 1987), and calf sex and BW were recorded at calving.   

Milk.  After calving, milk yield was recorded electronically at each milking.  At 

approximately d 7, 14, 21, 28, and 35 postpartum, samples of milk were collected for 

analysis of fat, true protein, and somatic cell count by Lancaster DHIA (Lancaster, PA).   

Blood.  Blood was collected via coccygeal venipuncture in the morning before 

feeding on approximately -21, -14, -7, 0, 4, 7, 11, 14, 21, 28, and 35 d relative to calving.  

Because some cows calved early or late, prepartum samples were actually collected (±2 d) 

on -19, -12, and -6 d relative to calving.  Samples were collected into two 10mL evacuated 

tubes containing potassium EDTA, one 6mL evacuated tube containing sodium fluoride as 

a glycolytic inhibitor, and one 10mL evacuated tube containing sodium heparin.  Tubes 

were immediately placed on ice and then centrifuged at 2000 x g for 15 min at 4°C.  Plasma 

aliquots were stored at -20°C until analysis.  Concentrations of non-esterified fatty acids 

(NEFA) were determined using a colorimetric assay (HR Series NEFA HR(2), FUJIFILM 

Wako Diagnostics U.S.A, Mountain View, CA).  Glucose and β-hydroxybutyrate (BHBA) 

concentrations were also determined using commercial colorimetric assays (Autokit 

Glucose, FUJIFILM Wako Diagnostics U.S.A, Mountain View, CA; β-hydroxybutryate 

LiquiColor®, #2440, Stanbio Laboratory, Boeme, TX).   

Liver.  Approximately 120 mg of liver tissue was collected from each animal via 

percutaneous liver biopsies on approximately d -21 (actual prepartum samples were 

obtained on -19±2 d) and d 7 relative to calving.  The biopsy incision site was identified as 
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the location where an imaginary line from the tuber coxae to the olecranon intersected the 

11th intercostal space.  Cows were restrained in a chute and local anesthesia (2% lidocaine) 

was provided before a small incision was made in the skin and the biopsy needle (14G x 

15 cm; Tru-Cut®, Merit Medical, Jordan, UT) was inserted.  Approximately 10 passes of 

the biopsy needle were required in order to obtain 120 mg of tissue.  Tissue was 

immediately snap frozen in liquid nitrogen and stored at -80°C until TG analysis.  Liver 

lipids and triglycerides were determined similar to procedures outlined by Zenobi et al. 

(2018a) but with slight modifications to accommodate the analysis of 50 mg of tissue 

instead of 100 mg.  Approximately 50 mg of liver tissue was homogenized in 1 mL of 

saline, followed by addition of 0.5 mL of saline:methanol (1:1).  Total lipids were extracted 

according to Folch et al. (1957) using 1 mL of homogenate; the remaining 0.5 mL of 

homogenate was used to determine DM content by drying at 60°C for 24 h.  Lipid extracts 

were analyzed for TG content using a colorimetric procedure (Foster and Dunn, 1973).  

Statistical Analysis 

 Four cows were removed from the study early due to various reasons.  One 

multiparous cow from the CHO + MET treatment was removed during wk 3 postpartum 

due to a severe coliform mastitis infection.  Another multiparous cow that calved with 

twins on the CHO + MET treatment was removed due to a retained placenta and severely 

depressed DMI that eventually led to a right displaced abomasum during wk 2 postpartum.  

Two cows (one multiparous on the CON treatment, one primiparous on the CHO + MET 

treatment) were removed due to injuries.  Data for these cows were utilized in the statistical 

analyses up until the day before they were removed from the study.  Data from other cows 
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that required health-related interventions for various reasons throughout the study (Table 

4.2) were not excluded from the analysis.  Instead, potential outliers were detected using 

Cook’s Distance for each variable, using a cutoff of n/4.  If a particular week for a cow was 

identified as a potential outlier for more than 4 response variables, it was excluded from 

the statistical analysis for all variables.   

 Initial statistical analysis of data from both primi- and multiparous cows revealed 

that primi- and multiparous cows seemed to respond to RPC and RPM differently.  

Unfortunately, the experimental design precluded proper investigation of parity by 

treatment interactions because parity was confounded with block.  Therefore, all data were 

analyzed for primi- and multiparous cows separately.  Production and plasma NEFA, 

BHBA, and glucose measurements were reduced to weekly means before statistical 

analysis.  Data were analyzed using a repeated-measures mixed model using SAS (version 

9.4; SAS Institute, Cary, NC).  The model included the random effect of cow nested within 

block and fixed effects of week relative to calving (-3, -2, -1, 1, 2, 3, 4, or 5), the main 

effects of CHO and MET, and all two- and three-way interactions.  Week relative to calving 

served as the repeated factor and the auto-regressive (1) covariance structure was chosen 

because it resulted in the lowest Akaike Information Criterion values for most variables.  

Postpartum liver TG data (d 7 postpartum) were analyzed using a mixed model (SAS, 

version 9.4) that included the fixed main effects of CHO and MET and their interaction.  

Prepartum liver TG content, determined from samples collected in the morning before first 

treatment application (~d -21), was also included in the model as a random covariate effect.   
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  All data are presented as least-square means unless otherwise noted.  Comparison 

of least-square means was carried out using Fisher’s LSD only if a significant P-value was 

observed.  Significance was declared at P ≤ 0.05 and tendencies were declared at P ≤ 0.10. 

RESULTS 

Days on Treatment, Calving Details, and Health   

Details regarding the number of days on treatment prepartum, calving, and 

incidence of health disorders are shown in Table 4.2.  On average for all treatments, 

multiparous and primiparous cows received their respective treatments for ~20 and 18 d 

before calving, respectively (Table 4.2).  Although statistics were not performed on health 

data, there were numerically more cases of mastitis for both primi- and multiparous cows 

on the CON treatment compared to all other treatments (Table 4.2).   

Prepartum Performance  

Prepartum DMI, BCS, energy balance, and daily rumination results for primi- and 

multiparous cows are shown in Table 4.3.  With the exception of BCS for primiparous 

cows and BW for multiparous cows, prepartum performance was not affected by treatment.  

Feeding CHO reduced prepartum BCS (P = 0.02) for primiparous cows but not multiparous 

cows.  Multiparous cows that received MET had a lower BW prepartum (P = 0.02), but 

prepartum BW for primiparous cows was not affected by treatment.  For both primi- and 

multiparous cows, prepartum DMI and energy balance decreased as calving approached (P 

< 0.01; Figure 4.1).  For multiparous cows, daily rumination time also decreased as calving 

approached (P =0.02; Figure 4.1). 
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Postpartum Production: Multiparous Cows  

Production responses for multiparous cows are shown in Table 4.4.  A tendency for 

a CHO x MET interaction for milk yield (P = 0.10) indicated that cows fed CHO + MET 

had numerically lower milk yield relative to all other treatments.  MET increased milk fat 

percentage (P = 0.03), and this difference tended to be more pronounced during wk 3 

postpartum (MET x Week: P = 0.06; Figure 4.2 A).  By contrast, CHO reduced milk fat 

percentage during wk 4 postpartum (Figure 4.2 B).  Milk fat yield was not affected by 

CHO, but MET increased milk fat yield during wk 3 postpartum (Figure 4.2 C).  

Furthermore, cows fed MET had greater 4% fat-corrected milk (FCM) yield during wk 3 

postpartum (MET x Week: P = 0.02; Figure 4.3 A).  Cows that received MET had greater 

overall milk protein percentage (P < 0.01), but there tended to be a positive synergistic 

effect of feeding both CHO and MET for milk protein concentration (CHO x MET: P = 

0.07; Table 4.4).  Protein yield was not affected by MET, but a CHO x Week interaction 

(P = 0.04; Figure 4.4) indicated that CHO reduced it during the first week after calving.  A 

tendency for a MET x Week interaction (P = 0.08; Table 4.4) indicated that cows that were 

fed MET had numerically lower MUN during wk 1 and wk 3 postpartum.  Furthermore, 

cows fed CHO had numerically greater MUN during wk 1 and wk 3 postpartum (CHO x 

Week: P = 0.06; Table 4.4).  Milk somatic cell count was not affected by treatment (Table 

4.4). 

Postpartum energy balance, DMI, daily rumination, and BW of multiparous cows 

were not affected by treatment (Table 4.4).  However, feeding CHO reduced the average 

BCS during wk 3 and 4 postpartum (CHO x Week: P = 0.05).   
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Postpartum Production: Primiparous Cows 

Production responses for primiparous cows are shown in Table 4.5.  Feeding CHO 

increased overall milk yield by 3.5 kg/d (P = 0.04).  A MET x Week interaction (P < 0.01) 

indicated that cows fed MET had numerically greater milk yield during wk 1 postpartum. 

Furthermore, a significant CHO x MET x Week interaction (P < 0.01) indicated that cows 

that received CHO + MET had greater 4% FCM yield during wk 3 postpartum (Figure 4.3 

B).   

A significant CHO x MET x Week interaction for milk fat percentage (P < 0.01) 

indicated that cows on the CHO treatment had a lower milk fat percentage than cows on 

the MET treatment during wk 2, 3, and 5 (Figure 4.5).  Furthermore, cows on the CHO 

treatment had a lower milk fat percentage than cows on the CON and CHO + MET 

treatments during wk 3 postpartum (Figure 4.5).  A significant CHO x MET x Week 

interaction for milk fat yield (P = 0.01) indicated an increase in milk fat yield for the CHO 

+ MET treatment over the MET treatment during wk 3 postpartum, although fat yield for 

CHO + MET cows was not statistically different from CON or CHO cows.  In contrast to 

milk fat, milk protein percentage was not affected by treatment; however, CHO tended to 

increase overall milk protein yield (P = 0.06; Table 4.5).  There was no effect of CHO or 

MET on MUN or SCC (Table 4.5).   

Postpartum energy balance, DMI, daily rumination, and BCS of primiparous cows 

were not affected by treatment.  However, cows fed MET had greater BW during the first 

week postpartum compared with cows that did not receive MET (MET x Week: P = 0.03).   
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Blood Metabolites 

 Prepartum plasma BHBA, glucose, and NEFA concentrations for primi- and 

multiparous cows are shown in Table 4.6.  For multiparous cows, prepartum plasma 

metabolites were not affected by treatment.  In contrast, CHO increased NEFA 

concentration (P = 0.05) and tended to increase plasma BHBA concentration (P = 0.08) in 

primiparous cows during the prepartum period.   

 During the postpartum period, treatment did not affect plasma BHBA, glucose, or 

NEFA concentrations in multiparous cows (Table 4.6), although there was a tendency for 

MET to increase BHBA concentration (P = 0.10).  Similarly, plasma NEFA concentration 

were not affected by treatment for primiparous cows during the postpartum period; 

however, CHO significantly increased plasma BHBA concentrations during this time (P = 

0.05).  Additionally, a tendency for a MET x CHO x Week interaction (P = 0.06) for plasma 

glucose indicated that cows fed CHO or MET alone had numerically lower concentrations 

than CON cows during wk 1 postpartum.   

Liver Triglyceride 

 Liver TG concentrations on d 7 postpartum are shown in Figure 4.6.  Neither CHO 

nor MET affected postpartum liver TG content even after the prepartum TG measurement 

(taken before treatment initiation at day -19±2 relative to calving) was used as a covariate 

in the statistical model. 
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DISCUSSION 

 These results indicate that feeding CHO and MET during the periparturient period 

can have positive, but different effects on the production of both primi- vs multiparous 

cows.  Feeding MET had positive effects on milk fat and protein percentages for 

multiparous cows, whereas feeding CHO had positive effects on milk yield for primiparous 

cows.  These differences in responses by parity can likely be attributed to a difference in 

choline and Met requirements for these two groups of cows.  This experiment was not 

designed to investigate treatment by parity interactions.  However, the lack of a uniform 

response among primi- and multiparous cows is not surprising since the two groups of 

cows likely differ in their choline and methionine requirements during this period.  Because 

the average number of lactations for dairy cows in the U.S. is 3, primiparous cows make 

up a large portion of the U.S. dairy herd.  Therefore, future experiments should be designed 

in order to further investigate these differences so that strategies can be implemented to 

better meet the needs of primi- vs multiparous cows.  

Results from previous studies indicate variable milk and milk component responses 

to RPC and RPM during the periparturient period.  Similar to results reported by Ordway 

et al. (2009), MET did not elicit an increase in milk yield for primi- or multiparous cows 

in the current study.  This is in contrast to other studies (Zhou et al., 2016a; Batistel et al., 

2017) that showed an increase in milk yield when RPM was fed to periparturient cows.  

However, MET increased milk fat percentage and yield for multiparous cows, especially 

during wk 3 postpartum in the current study.  Others (Zhou et al., 2016a; Batistel et al., 

2017) have also shown that RPM fed during the periparturient period increases milk fat 
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yield, but this increase was associated with an increase in overall milk yield, since fat 

percentage remained unchanged in those studies.  Because no increase in milk yield was 

observed, the increase in milk fat and FCM yield during wk 3 postpartum for the 

multiparous cows supplemented with MET in this study can be mostly attributed to the 

increase in milk fat percentage that also occurred at this time.  In contrast to results for 

multiparous cows, but similar to those reported by Ordway et al. (2009) for primi- and 

multiparous periparturient cows, MET did not affect milk fat yield or content for 

primiparous cows.  

Milk yield and FCM yield of multiparous cows were not affected by CHO, which 

is similar to results reported in other studies (Zom et al., 2011; Leiva et al., 2015; Zhou et 

al., 2016a).  In contrast, CHO increased milk yield by ~3.4 kg/d and tended to increase 

FCM yield for primiparous cows, which is similar to results by Elek et al. (2008), who 

observed a 4.4 kg/d increase in milk yield and 2.5 kg/d increase in FCM yield when RPC 

was fed to multiparous cows before and after calving.  Furthermore, feeding RPC during 

the transition period has also been shown to increase milk yield of multiparous cows in 

early lactation and through wk 40 postpartum even after supplementation ceased (Zenobi 

et al., 2018a).  In contrast, Davidson et al. (2008) showed that RPC did not alter milk yield 

for primiparous cows when fed during early lactation.  Consistent with previous work 

(Hartwell et al., 2000; Piepenbrink and Overton, 2003; Elek et al., 2008; Zhou et al., 2016a; 

Zenobi et al., 2018a), overall milk fat percentage was not affected by RPC.  However, a 

CHO x Week interaction for multiparous cows indicated that CHO reduced milk fat 

percentage during wk 4 postpartum.  Milk yield was not altered by CHO for multiparous 

cows, so this change in milk fat concentration during wk 4 was not an artifact of dilution.  
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Furthermore, a significant CHO x MET x Week interaction for primiparous cows indicated 

that cows on the CHO treatment had lower milk fat percentage during wk 3 postpartum, 

which is likely due to the numerically greater milk yield for those cows at that time.  In the 

current study, CHO also did not alter milk fat yield, although primiparous cows fed CHO 

+ MET had greater milk fat yield than those fed CHO or MET alone due, in part, to the 

numerically greater milk yield and fat percentage for those cows.  These observations are 

similar to previously reported results (Zom et al., 2011; Zhou et al., 2016a), where RPC 

did not affect milk fat yield when fed to periparturient cows.  Reported increases in milk 

fat yield in response to RPC in the studies by Zenobi et al. (2018a) and Elek et al. (2008) 

were likely due to the concurrent increase in overall milk yield that was observed.   

Similar to results reported by Ordway et al. (2009), MET increased milk protein 

percentage, but not yield, for multiparous cows in the current study.  However, MET did 

not alter milk protein percentage or yield for primiparous cows.  In contrast to these 

findings, others (Osorio et al., 2013; Zhou et al., 2016a; Batistel et al., 2017) reported 

increased milk protein concentration and yield in response to feeding RPM during the 

periparturient period.  However, the increased protein yield observed in these studies was 

partially due to the simultaneous increase in milk yield.   

Milk protein percentage was not affected by CHO for both primi- and multiparous 

cows, which is similar to results reported by others (Piepenbrink and Overton, 2003; Zom 

et al., 2011; Zhou et al., 2016a; Zenobi et al., 2018a).  Because CHO increased milk yield 

for primiparous cows, there was a tendency for CHO to also increase milk protein yield.  

Previous work by Zenobi et al. (2018a) also showed an increase in milk protein yield in 
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response to RPC fed during transition.  However, similar to results of the current study, 

this response was also likely due to the increase in milk yield also observed for cows fed 

RPC since milk protein concentration was not affected by treatment (Zenobi et al., 2018a).  

In the current study, CHO reduced milk protein yield for multiparous cows during the first 

wk after calving.  As milk protein percentage was not affected by CHO, this change was 

likely due to the numerically lower milk yield of multiparous cows fed CHO during this 

time.   

There were no changes in DMI in response to MET or CHO.  In contrast to this 

observation, Osorio et al. (2013) showed that RPM increased postpartum DMI when fed to 

periparturient cows.  Similarly, Zhou et al. (2016a) and Batistel et al. (2017) also showed 

an increase in pre- and postpartum DMI in response to RPM supplemented to during the 

periparturient period.  Ordway et al. (2009) reported a significant treatment x parity 

interaction, whereby RPM supplementation during the periparturient period reduced DMI 

for multiparous cows, but not for primiparous cows.  However, DMI as a percentage of 

BW was not affected by feeding RPM, which is in accordance with the observations of the 

current study.  Similar to the findings of the current study, previous studies have also shown 

that RPC supplementation to periparturient cows does not impact pre- or postpartum DMI 

(Hartwell et al., 2000; Piepenbrink and Overton, 2003; Zhou et al., 2016a; Zenobi et al., 

2018a). 

Feeding MET reduced prepartum BW for multiparous cows, but this was due to a 

lower initial BW for these cows, and this difference was not significant during the 

postpartum period.  Prepartum BW of primiparous cows was not affected by MET; 



115 

 

however, a MET x Week interaction postpartum indicated a higher BW for MET-treated 

cows during week 1 postpartum.  Feeding MET did not affect BCS or energy balance 

during the pre- or postpartum period; however, a MET x Week interaction indicated that 

primiparous cows fed MET had a lower energy balance at the beginning of the experiment, 

but energy balance was similar between MET-treated cows and those that did not receive 

MET by week 2 prepartum.  These results suggest that MET had minimal impact on 

apparent tissue mobilization.  This conclusion is further supported by a lack of plasma 

NEFA and BHBA responses to MET for both multiparous and primiparous cows.  The 

results of the current study are concordant with other studies (Zhou et al., 2016a; Batistel 

et al., 2017) that reported no effect of RPM on postpartum BW, BCS, or energy balance.  

In contrast, Osorio et al. (2013) observed that RPM reduced postpartum BCS and energy 

balance and increased plasma NEFA during the first 5 weeks postpartum, which suggested 

an increase in tissue mobilization.   

Similar to previous results for multiparous cows (Piepenbrink and Overton, 2003; 

Leiva et al., 2015; Zenobi et al., 2018ba), CHO did not affect pre- or postpartum BW for 

cows in the current study.  Furthermore, CHO did not affect energy balance before or after 

calving.  However, CHO reduced prepartum BCS for primiparous cows, suggesting 

potential modification of body tissue mobilization before calving.  This idea is further 

supported by the increase in prepartum plasma NEFA and BHBA that was observed for 

primiparous cows fed CHO.  These prepartum responses were not apparent for multiparous 

cows fed CHO.  During the postpartum period, CHO reduced BCS for multiparous cows 

but did not affect BCS for primiparous cows.  This may suggest that CHO increased tissue 

mobilization for multiparous cows in the postpartum period; however, the lack of change 
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in plasma NEFA and BHBA for multiparous cows in response to CHO does not support 

this.  Although BCS, BW, and energy balance of primiparous cows were not affected by 

CHO during the postpartum period, elevated BHBA levels suggest that CHO may have 

increased hepatic ketogenesis.  Overall, these results suggest that choline may modify body 

tissue mobilization.  Contrary to the results of the current study, previous studies have not 

indicated alterations in body tissue mobilization in response to RPC (Peipenbrink and 

Overton, 2003; Zhou et al., 2016a; Zenobi et al., 2018a).  Furthermore, Goselink et al. 

(2013) failed to observe changes in the expression of genes associated with lipid 

mobilization in adipose tissue harvested from cows fed RPC during the periparturient 

period.  Nevertheless, Hartwell et al. (2000) observed an increase in BW loss for cows fed 

12 g/d choline as RPC during the postpartum period, suggesting that RPC can have effects 

that manifest as changes in body tissue mobilization.   

Liver TG content was not affected by MET for multiparous or primiparous cows in 

the current study, although the liver TG levels were relatively low for all treatments, which 

may have minimized responses to CHO or MET.  However, this lack an effect of CHO or 

MET on liver TG is similar to results presented elsewhere (Osorio et al., 2013; Zhou et al., 

2016b; Batistel et al., 2017).  These observations suggest that additional Met supplied as 

RPM during the periparturient period may not be used to support PC synthesis via SAM.  

Responses to MET by multiparous cows suggest that the additional dietary Met was 

diverted toward milk component production rather than the methyl-metabolism cycle to 

support PC and, subsequently, VLDL synthesis in the liver.   
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Studies that used feed restriction to induce negative energy balance in dry cows 

have shown that RPC can reduce liver TG accumulation (Cooke et al., 2007; Zenobi et al., 

2018b).  It has been hypothesized (Pinotti et al., 2002) that choline increases the rate of TG 

export from the liver by increasing the availability of PC and subsequently increasing the 

production of VLDL.  This seems to be the case for dry cows under conditions of negative 

energy balance (Cook et al., 2007; Zenobi et al., 2018b).  However, results obtained from 

periparturient cows have not supported this possibility.  Similar to the results of the current 

study, other experiments failed to demonstrate reductions in liver TG by feeding RPC 

during the periparturient period (Hartwell et al., 2000; Zenobi et al., 2018a; Zhou et al., 

2016a).  In contrast, Zom et al. (2011) showed a reduction liver TG content during the first 

week postpartum when RPC was fed.  As follow-up to that study, Goselink et al. (2013) 

showed that hepatic expression of genes associated with liver lipid metabolism were altered 

by RPC.  Among the genes affected, expression of those involved in VLDL synthesis 

(apolipoprotein B100 and microsomal triglyceride transfer protein) was increased with 

RPC.  While it is apparent from restricted feeding experiments in dairy cows that feeding 

RPC will reduce liver TG, the specific conditions under which such responses would occur 

outside of restricted feeding experiments is unclear. 

Feeding CHO and MET together was expected to have a synergistic effect on 

performance.  Such an effect was not observed in the current study, which is similar to 

results reported by Zhou et al. (2016a).  Both choline and Met have the ability to participate 

in the methyl-group metabolism pathway, and transition cows may in fact be deficient in 

both nutrients.  The primary symptom of choline deficiency is fatty liver (Zeisel et al., 

1981), and the relatively high incidence of fatty liver disease in early lactation dairy cows 
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(Jorritsma et al., 2001) suggests insufficient choline availability during this time.  It might 

be expected that feeding additional choline could function to spare Met for other uses.  

However, the lack of milk protein responses to choline in the current study do not appear 

to support this concept.  Production and immune responses to Met supplied during the 

transition period (Zhou et al., 2016a; Zhou et al., 2016b) also suggest that cows require 

additional Met during this time.   

Because no increase in apparent tissue mobilization or a change in liver TG content 

was observed in response to MET, it seems as though the additional Met supplied to the 

cows in this study was used for other purposes.  In the case of multiparous cows, MET 

could have been used to support milk production, as evidenced by changes in milk 

composition.  For primiparous cows, the additional Met supplied as RPM may have been 

used to support continued skeletal and muscle growth and development, since MET did 

not affect milk production responses.  In addition, Met can also be used to support the 

immune system through its role in the synthesis of glutathione (Martinov et al., 2010).  

Although the current study was not designed to analyze the effects of MET on animal 

health, results shown in Table 4.2 do not suggest any trends for improved health for cows 

fed MET.  Previous work in dairy cattle has shown positive effects on immune function 

when RPM was fed during the transition period (Osorio et al., 2013; Zhou et al., 2016b).  

  Variation in responses to RPM supplemented during the periparturient period 

could be due to a variety of factors, including the Met requirements of the cow, the Lys:Met 

ratio of the diet, and the length and timing of RPM supplementation.  The NRC (2001) 

recommends a Lys:Met ratio of 3:1, or a Lys content of 7.2% of MP and Met content of 
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2.4% of MP.  The Lys:Met ratios for the base prepartum and postpartum diets in the current 

study, as predicted by NRC (2001), were 3.79:1 and 3.70:1, respectively.  Thus, Lys should 

not have been limiting in the base diet.  The Lys:Met ratios for the prepartum and 

postpartum base diets in the current study are similar to those reported by Zhou et al. 

(2016a), Osorio et al. (2013), and Ordway et al. (2009).  For the postpartum diets 

supplemented with MET (MET and CHO + MET), the predicted (NRC, 2001) Lys:Met 

ratio was reduced to 2.94:1, which is similar to the ratios of the MET-supplemented 

postpartum diets fed by others (Zhou et al., 2016a; Osorio et al., 2013; Ordway et al., 2009).  

The amino acid profile of the individual ingredients and diets from this study as well as 

previous studies are estimated by book values and model predictions, respectively, and not 

via chemical analysis, which represents an inherent source of error of ration formulation.  

It is possible that the amino acid profile of the diets fed in the current study as well as 

previous studies could have differed such that the supply of Lys and Met, and other amino 

acids, was not accurately described.  This makes it difficult to ascertain reasons for the 

variation in responses of cows to RPM across studies.     

Many factors likely also play a role in determining the responses observed when 

choline is supplemented during the periparturient period.  Dietary factors, such as the 

Lys:Met ratio and the amount and type of protein supplied prepartum, postpartum, or both, 

may affect responses.  Hartwell et al. (2000) fed three levels of RPC to transition cows that 

were fed either a high or low RUP diet (4.0 or 6.2% RUP, respectively) during the 

prepartum period.  A significant diet x RPC interaction for milk production indicated that 

the increase in milk yield in response to RPC was dependent upon the level of RUP 

supplied in the prepartum diet.  It is also possible that the prepartum metabolic status of 
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the cow as well as her BCS and adiposity may affect her response to RPC.  Zahra et al. 

(2006) showed that over-conditioned cows (BCS > 4) had increased milk production in 

response to RPC fed during the transition period.  Feeding supplemental choline should 

only improve production in situations when the choline requirement of the animal is not 

met; however, the choline requirement of dairy cattle has not been established (NRC, 2001) 

and likely fluctuates depending on physiological state, as is apparent with other mammals 

(Ziesel and da Costa, 2009).  Furthermore, accurate methods for predicting the choline 

status of a cow are lacking, so it is difficult to determine when and if choline supply is 

insufficient.  

CONCLUSION 

 Feeding Met as RPM during the periparturient period had positive effects on milk 

production for multiparous cows, while feeding choline as RPC had positive effects on 

milk production for primiparous cows.  Neither nutrient had any apparent impact on 

postpartum liver TG accumulation.  Variation in responses to these nutrients between 

primi- and multiparous cows are likely due to differences in Met and choline requirements.  

Further investigation into potential interactions between parity and choline or Met 

supplementation to periparturient cows is warranted. 
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Table 4.1. Ingredient and nutrient composition (% of DM) of the basal prepartum and 

postpartum diets1 

Item Prepartum Postpartum 

Ingredient   

  Corn silage 44.0 29.2 

  Legume silage -- 11.6 

  Timothy hay 30.0 -- 

  Alfalfa hay -- 7.9 

  Ground corn 2.0 19.5 

  Soybean meal 6.8 6.5 

  Fresh meal2 -- 25.3 

  Close-up meal3 17.2 -- 

Nutrient   

  DM, % of as-fed 48.4 51.9 

  NDF 45.7 32.9 

  ADF 27.7 21.4 

  Lignin 3.9 3.3 

  CP 14.3 16.7 

  MP4 9.32 10.40 

  Lys, % of MP4 6.71 6.74 

  Met, % of MP4 1.77 1.82 

  Lys:Met 3.79 3.70 

  Starch 16.0 24.0 

  TDN 66.7 67.0 

  Fat 2.4 2.6 

  NEL, Mcal/kg 1.51 1.62 

  Ash 6.7 7.6 

  Calcium 1.1 1.1 

  Phosphorus 0.38 0.40 

  Magnesium 0.44 0.30 

  Potassium 1.5 1.9 

  Sulfur 0.42 0.30 

  Sodium 0.08 0.50 

  Chloride 0.95 0.60 

  DCAD, mEq/kg5 -103 369 
1Nutrient composition was calculated from wet chemistry analysis of individual feed ingredients sampled 

weekly throughout the study.  Cows on all treatments received the same base diet throughout the study, with 

treatments applied daily as a top-dress. 
 2Fresh meal included: 35.5% soybean hulls, 26.1% SoyPlus® (Dairy Nutrition Plus™, Ames, IA), 11.2% 

dried molasses, 6.5% ProvAAl2 MetAAtein® (Perdue Agribusiness LLC©, Binghamton, NY), 5.6% 

MegaLac® (Church & Dwight Co., Inc, Ewing, NJ), 3.1% limestone, 2.8% sodium bicarbonate, 1.87% salt, 

1.16% OmniGen-AF® (Phibro Animal Health Corporation™, Teaneck, NJ), 1.16% Diamond V XP™ 

(Diamond V™, Cedar Rapids, IA), 0.93% potassium carbonate, 0.93% cane molasses, 0.84% Dynamate® 

(The Mosaic Company, Plymouth, MN), 0.58% urea, 0.49% magnesium oxide, 0.37% Bio-fos® (The Mosaic 

Company, Plymouth, MN), 0.28% Rumensin® (Elanco, Greenfield, IN), 0.14% vitamin A,D, E mix, 0.13% 
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Selenium, 0.13% Sel-Plex 600® (Alltech®, Lexington, KY), 0.13% trace mineral salt, and 0.08% vitamin E 

(125,000 U).  
3Close-up meal included: 30.9% soybean hulls, 22.2% Animate® (Phibro Animal Health Corporation™, 

Teaneck, NJ), 15.8% SoyPlus® (Dairy Nutrition Plus™, Ames, IA), 11.6% limestone, 6.33% ProvAAl2 

MetAAtein® (Perdue Agribusiness LLC©, Binghamton, NY), 2.64% Diamond V XP™ (Diamond V™, Cedar 

Rapids, IA), 2.64% OmniGen-AF® (Phibro Animal Health Corporation™, Teaneck, NJ), 2.11% cane 

molasses, 1.48% Bio-fos® (The Mosaic Company, Plymouth, MN), 1.27% urea, 0.63% salt, 0.63% 

Rumensin® (Elanco, Greenfield, IN), 0.63% magnesium oxide, 0.27% vitamin A,D, E mix, 0.23% vitamin E 

(125,000 U), 0.23% Sel-Plex 600® (Alltech®, Lexington, KY), 0.23% selenium, and 0.21% trace mineral 

salt. 
4MP = metabolizable protein; MP, Lys as a % of MP, and Met as a % of MP were predicted from NRC (2001) 

using the average prepartum or postpartum DMI for all cows.  
5DCAD = dietary cation anion difference; predicted from NRC (2001) using average prepartum or 

postpartum DMI for all cows. 
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Table 4.2. Number of days on treatment prepartum, calving details, and health event counts 

for primiparous and multiparous cows fed the control (CON) diet or the control diet plus 

RPC (CHO), RPM (MET), or both (CHO + MET)1 

  Treatment2 

Item CON CHO MET CHO + MET 

Multiparous     

  n 8 7 7 7 

  Prepartum treatment days 21 ± 5 22 ± 5 19 ± 2 20 ± 5 

  Incidence of twins 1 0 0 1 

  % heifer calves3 67 43 57 50 

  Calf birth weight, kg4 43 ± 2 48 ± 2 50 ± 4 45 ± 4 

  Calving Difficulty Score5 1.50 1.57 1.14 1.14 

No. Cases  

  Clinical Mastitis6 4 0 2 1 

  Displaced Abomasum 0 1 0 1 

  Lameness 0 1 0 0 

  Retained Placenta7 0 2 1 1 

     

Primiparous      

  n 7 6 6 6 

  Prepartum treatment days 17 ± 6 17 ± 2 20 ± 3 18 ± 4 

  Incidence of twins 0 0 0 0 

  % heifer calves 43 83 83 33 

  Calf birth weight, kg 42 ± 4 42 ± 4 42 ± 4 43 ± 4 

  Calving Difficulty Score 1.86 1.50 1.17 1.17 

No. Cases     

  Clinical Mastitis 3 0 1 0 

  Displaced Abomasum 0 0 1 0 

  Lameness 0 0 0 0 

  Retained Placenta 0 1 0 1 
1Prepartum, cows were supplemented with 60 g/d RPC (ReaShure®, Balchem Corp., New Hampton, NY; 

CHO), 12 g/d RPM (Smartamine® M; Adisseo USA, Inc., Alpharetta, GA; MET), or both (CHO + MET).  

Postpartum, cows were supplemented with 60 g/d RPC, 18 g/d RPM, or both.  Cows were monitored and 

treatments were applied from 21 days before expected calving through 35 DIM. 
2Results are reported as treatment means ± standard deviation. 
3Percentage of female calves born from cows on each treatment; calculations included one set of female twins 

born on the CON treatment and one set of male twins born on the CHO + MET treatment for multiparous 

cows. 
4Calf birth weight was determined using a weight tape within 24 h of birth. 
5Calving Difficulty Score: 1 = no problem or unobserved; 2 = slight problem, but no assistance; 3 = needed 

assistance; 4 = considerable force required; 5 extreme difficulty. 
6Clinical symptoms of mastitis (milk/quarter appearance) for which treatment was administered. 
7Defined as failure to expel fetal membranes within 24 h of calving.  
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Table 4.3.  Prepartum performance of primi- and multiparous cows (n=25 and 29, respectively) fed the control (CON) diet or the control 

diet plus RPC (CHO), RPM (MET), or both (CHO + MET)1 

 Treatment  P-value 

Item CON CHO MET 

CHO + 

MET SEM CHO MET 

MET 

x 

CHO Week 

CHO 

x 

Week 

MET 

x 

Week 

MET x 

CHO x 

Week 

Multiparous             

  DMI, kg/d 11.8 11.2 11.4 11.3 0.7 0.60 0.80 0.74 <0.01 0.18 0.72 1.00 

  Rumination, min/d 477 473 480 469 24 0.77 1.00 0.87 0.02 0.38 0.38 0.50 

  BW, kg 749 780 703 692 25 0.69 0.02 0.41 0.33 0.88 0.09 0.49 

  BCS 3.54 3.54 3.52 3.49 0.06 0.82 0.66 0.81 0.64 0.60 0.73 0.90 

  Energy Balance, Mcal/d2 2.64 1.99 2.53 2.30 1.40 0.76 0.94 0.89 <0.01 0.26 0.90 0.80 
             

Primiparous             

  DMI, kg/d 9.18 9.15 8.72 8.50 0.63 0.85 0.39 0.88 <0.01 0.88 0.18 0.42 

  Rumination, min/d 470 499 433 447 29 0.47 0.15 0.82 0.11 0.32 0.98 0.86 

  BW, kg 616 624 631 634 18 0.76 0.50 0.89 0.47 0.50 0.65 0.65 

  BCS 3.65 3.60 3.81 3.60 0.05 0.02 0.13 0.10 0.57 0.43 0.92 0.56 

  Energy Balance, Mcal/d2 1.00 0.77 0.30 -0.75 1.19 0.59 0.36 0.73 <0.01 0.96 0.05 0.51 
1Primi- and multiparous cows were supplemented with 60 g/d RPC (ReaShure®, Balchem Corp., New Hampton, NY; CHO), 12 g/d RPM (Smartamine® M; Adisseo 

USA, Inc., Alpharetta, GA; MET), or both (CHO + MET) prepartum.  Cows were monitored and treatments were applied from 21 days before expected calving 

through 35 DIM. 
2Energy balance was calculated according to NRC (2001) equation 2-19.  
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Table 4.4.  Postpartum performance of multiparous cows (n = 29) fed the control (CON) diet or the control diet plus RPC (CHO), RPM 

(MET), or both (CHO + MET)1 

 Treatment  P-value 

Item CON CHO MET 

CHO + 

MET SEM CHO MET 

MET 

x 

CHO Week 

CHO 

x 

Week 

MET 

x 

Week 

MET x 

CHO x 

Week 

DMI 19.2 18.1 20.7 19.2 1.1 0.26 0.26 0.84 <0.01 0.49 0.95 0.90 

Milk, kg/d 35.0 37.0 37.6 32.9 1.9 0.49 0.69 0.10 <0.01 0.42 0.70 0.86 

Milk Fat             

  % 3.77 3.58 3.95 4.06 0.14 0.75 0.03 0.30 <0.01 0.05 0.06 0.96 

  Yield, kg/d 1.37 1.36 1.56 1.43 0.08 0.36 0.11 0.44 0.03 0.18 0.02 0.52 

Milk Protein             

  % 2.86 2.76 2.96 3.07 0.05 0.87 <0.01 0.07 <0.01 0.45 0.18 0.42 

  Yield, kg/d 1.05 1.07 1.15 1.08 0.05 0.59 0.28 0.34 0.11 0.04 0.06 0.41 

4% FCM, kg/d 33.6 34.1 37.7 35.2 1.7 0.57 0.14 0.39 <0.01 0.07 0.02 0.75 

Rumination, min/d 508 510 520 503 17 0.68 0.89 0.60 <0.01 0.37 0.85 0.18 

BW, kg 651 627 626 606 22 0.33 0.31 0.92 <0.01 0.39 0.41 0.68 

BCS 3.26 3.11 3.23 3.05 0.06 0.01 0.44 0.84 <0.01 0.05 0.50 0.53 

Energy Balance, Mcal/d -3.04 -5.57 -3.37 -2.87 1.35 0.46 0.39 0.28 <0.01 0.61 0.58 0.71 

MUN, mg/dL 10.4 10.6 9.2 10.5 0.6 0.29 0.31 0.39 0.73 0.06 0.08 0.46 

SCC, 1000 cells/mL 853.0 416.0 79.2 72.0 392.0 0.58 0.17 0.59 0.27 0.11 0.57 0.44 
1Cows were supplemented with 60 g/d RPC (ReaShure®, Balchem Corp., New Hampton, NY; CHO), 18 g/d RPM (Smartamine® M; Adisseo USA, Inc., Alpharetta, 

GA; MET), or both (CHO + MET) postpartum.  Cows were monitored and treatments were applied from 21 days before expected calving through 35 DIM. 
2Energy balance was calculated according to NRC (2001) equation 2-16. 
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Table 4.5.  Postpartum performance of primiparous cows (n = 25) fed the control (CON) diet or the control diet plus RPC (CHO), RPM 

(MET), or both (CHO + MET)1 

 Treatment  P-value 

Item CON CHO MET 

CHO + 

MET SEM CHO MET 

MET 

x 

CHO Week 

CHO 

x 

Week 

MET 

x 

Week 

MET x 

CHO x 

Week 

DMI 14.5 15.1 13.8 15.3 0.8 0.21 0.81 0.55 <0.01 0.74 0.59 0.98 

Milk, kg/d 23.2 26.7 23.0 26.5 1.6 0.04 0.90 0.99 <0.01 0.45 <0.01 0.15 

Milk Fat             

  % 3.98 3.68 4.18 3.97 0.16 0.13 0.15 0.78 <0.01 0.51 0.69 <0.01 

  kg/d 0.97 1.05 1.00 1.11 0.07 0.18 0.49 0.88 0.10 0.55 0.89 0.01 

Milk Protein             

  % 3.03 2.91 3.06 2.96 0.11 0.33 0.71 0.95 <0.01 0.76 0.88 0.18 

  kg/d 0.72 0.82 0.75 0.82 0.04 0.06 0.80 0.78 0.01 0.56 0.94 0.94 

4% FCM, kg/d 23.0 25.3 23.4 26.2 1.5 0.10 0.63 0.86 <0.01 0.82 0.15 <0.01 

Rumination, min/d 511 504 493 477 23 0.62 0.34 0.83 <0.01 0.43 0.30 0.80 

BW, kg 533 537 545 560 15 0.54 0.26 0.69 <0.01 0.26 0.03 0.72 

BCS 3.32 3.34 3.46 3.37 0.05 0.52 0.13 0.25 0.07 0.51 0.85 0.82 

Energy Balance, Mcal/d -2.09 -2.81 -3.65 -3.35 0.80 0.79 0.21 0.54 <0.01 0.45 0.80 0.41 

MUN, mg/dL 11.2 11.0 11.6 12.7 0.5 0.46 0.08 0.22 0.72 0.83 0.42 0.29 

SCC, 1000 cells/mL 504.0 148.0 65.4 139.0 191.0 0.47 0.26 0.28 0.63 0.72 0.65 0.62 
1Cows were supplemented with 60 g/d RPC (ReaShure®, Balchem Corp., New Hampton, NY; CHO), 18 g/d RPM (Smartamine® M; Adisseo USA, Inc., Alpharetta, 

GA; MET), or both (CHO + MET) postpartum.  Cows were monitored and treatments were applied from 21 days before expected calving through 35 DIM. 
2Energy balance was calculated according to NRC (2001) equation 2-16. 
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Table 4.6.  Pre- and postpartum blood metabolite responses of primi-and multiparous cows (n = 25 and 29, respectively) fed the control 

(CON) diet or the control diet plus RPC (CHO), RPM (MET), or both (CHO + MET)1 

 Treatment  P-value 

Item CON CHO MET 

CHO 

+ 

MET SEM CHO MET 

MET x 

CHO Week 

CHO x 

Week 

MET x 

Week 

MET x 

CHO x 

Week 

Prepartum             

Multiparous             

  BHBA, mM 0.25 0.30 0.29 0.33 0.04 0.30 0.42 0.86 <0.01 0.21 0.14 0.07 

  NEFA, mEq/L 0.36 0.43 0.40 0.40 0.07 0.65 1.00 0.64 0.27 0.91 0.75 0.32 

  Glucose, mg/dL 56.2 54.8 55.4 55.5 2.0 0.74 0.99 0.72 0.72 0.76 0.27 0.52 

Primiparous             

  BHBA, mM 0.31 0.37 0.29 0.36 0.04 0.08 0.65 0.85 0.07 0.37 0.45 0.67 

  NEFA, mEq/L 0.44 0.47 0.37 0.55 0.05 0.05 0.99 0.14 0.79 0.54 0.14 0.30 

  Glucose, mg/dL 61.3 59.6 60.1 58.8 2.6 0.57 0.69 0.93 0.74 0.78 0.34 0.43 
             

Postpartum             

Multiparous             

  BHBA, mM 0.47 0.61 0.57 0.52 0.09 0.64 0.99 0.32 0.09 0.28 0.18 0.96 

  NEFA, mEq/L 0.71 0.67 0.81 0.66 0.06 0.15 0.46 0.38 <0.01 0.50 0.33 0.62 

  Glucose, mg/dL 53.6 49.5 54.1 54.8 1.7 0.31 0.10 0.17 0.32 0.58 0.82 0.73 

Primiparous             

  BHBA, mM 0.40 0.46 0.45 0.49 0.02 0.05 0.14 0.75 0.13 0.96 0.29 0.44 

  NEFA, mEq/L 0.52 0.58 0.63 0.60 0.06 0.77 0.29 0.42 0.02 0.68 0.40 0.28 

  Glucose, mg/dL 62.4 59.0 58.3 59.2 2.0 0.54 0.35 0.30 0.01 0.54 0.76 0.06 
1Prepartum, cows were supplemented with 60 g/d RPC (ReaShure®, Balchem Corp., New Hampton, NY; CHO), 12 g/d RPM (Smartamine® M; Adisseo USA, 

Inc., Alpharetta, GA; MET), or both (CHO + MET).  Postpartum, cows were supplemented with 60 g/d RPC, 18 g/d RPM, or both.  Cows were monitored and 

treatments were applied from 21 days before expected calving through 35 DIM.  
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Figure 4.1. Mean DMI (A) and daily rumination (B) for primi- and multiparous cows.  For 

primi- and multiparous cows, DMI decreased as calving approached (P < 0.01) and 

subsequently increased after calving (P < 0.01).  For primiparous cows, daily rumination 

tended to decrease as calving approached (P = 0.11) and increased after calving (P < 0.01).  

For multiparous cows, daily rumination decreased as calving approached (P = 0.02) and 

increased after calving (P < 0.01).  
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Figure 4.2.  Milk fat percentage (A and B) and yield (C) for multiparous cows fed the 

control diet (CON), 60 g/d RPC (CHO), 12 g/d RPM prepartum and 18 g/d RPM 

postpartum (MET), or both (CHO + MET) from 21 days before expected calving through 

35 DIM.  Milk fat percentage: CHO x Week: P = 0.05; MET x Week: P = 0.06; Milk fat 

yield: MET x Week: P = 0.02.  Asterisks indicate that individual means are significantly 

different (P < 0.05).  
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Figure 4.3.  Fat-corrected milk for multiparous (A) and primiparous cows (B) fed the 

control diet (CON),  60 g/d RPC (CHO), 12 g/d RPM prepartum and 18 g/d RPM 

postpartum (MET), or both (CHO + MET) from 21 days before expected calving through 

35 DIM. For multiparous cows, MET x Week: (P = 0.02).  For primiparous cows, CHO x 

MET x Week (P < 0.01).  Asterisks indicate that individual means are significantly 

different (P < 0.05). 
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Figure 4.4.  Milk protein yield for multiparous cows fed the control diet (CON), 60 g/d 

RPC (CHO), 12 g/d RPM prepartum and 18 g/d RPM postpartum (MET), or both (CHO + 

MET) from 21 days before expected calving through 35 DIM. CHO x Week: (P = 0.04).  

Asterisks indicate means that are significantly different (P < 0.05).  
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Figure 4.5. Milk fat percentage (A) and yield (B) for primiparous cows fed the control diet 

(CON), 60 g/d RPC (CHO), 12 g/d RPM prepartum and 18 g/d RPM postpartum (MET), 

or both (CHO + MET) from 21 days before expected calving through 35 DIM.  Milk fat 

concentration: CHO x MET x Week: P < 0.01; Milk fat yield: CHO x MET x Week: P = 

0.01.  Means that lack common superscripts at each week relative to calving are 

significantly different (P < 0.05). 
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Figure 4.6.  Liver TG concentration (% of DM) for primi and multiparous cows (n = 23 

and n = 29, respectively) fed the control diet (CON), 60 g/d RPC (CHO), 12 g/d RPM 

prepartum and 18 g/d RPM postpartum (MET), or both (CHO + MET) from 21 days before 

expected calving through 35 DIM.  Data show liver TG concentrations from samples 

obtained at ~7 d postpartum.  Triglyceride concentrations of liver samples obtained on the 

day of study enrollment (prepartum) were used as covariates in the statistical analysis.  

CHO and MET did not affect liver TG content for primiparous (P = 0.65, P = 0.20, 

respectively) or multiparous cows (P = 0.26, P = 0.98, respectively).  
 

 
  

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

CON CHO MET CHO +
MET

L
iv

e
r 

T
ri
g

ly
c
e
ri
d
e
, 
%

 D
M

Primiparous Multiparous



138 

 

 

 

 

 

 

 

 

 

CHAPTER 5: EXPERIMENT 3 

Feeding Rumen-protected Choline or Methionine during the Periparturient Period 

affects Plasma and Milk Choline Metabolites, Plasma Amino Acids, and Hepatic 

Expression of Genes Associated with Choline and Lipid Metabolism1 

 

 

 

 

 

 

 

 

 

1S.B. Potts, K.M. Brady, C.M. Scholte, K.M. Moyes, N.E. Sunny, and R.A. Erdman.  

Feeding rumen-protected choline or methionine during the periparturient period affects 

plasma and milk choline metabolites, plasma amino acids, and hepatic expression of genes 

associated with choline and lipid metabolism. In preparation for submission to the Journal 

of Dairy Science. 
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ABSTRACT 

Feeding supplemental choline and Met during the periparturient period can have 

positive effects on cow performance; however, the mechanisms by which these nutrients 

affect performance and metabolism are unclear.  The objective of this experiment was to 

determine if providing rumen-protected choline (RPC), rumen-protected Met (RPM), or 

both during the periparturient period modifies plasma AA, the choline metabolite profile 

of plasma and milk, and hepatic mRNA expression of genes associated with choline, Met, 

and lipid metabolism.  Cows (25 primiparous, 29 multiparous) were blocked by expected 

calving date and parity and assigned to one of 4 treatments: CON (no RPC or RPM); CHO 

(60 g/d RPC); MET (12 g/d RPM prepartum; 18 g/d RPM postpartum); or CHO + MET. 

Treatments were applied daily as a top dress from ~21 d prepartum through 35 days in milk 

(DIM).  On the day of treatment enrollment (d -19±2 relative to calving), liver and blood 

samples were collected for covariate measurements.  At ~7 and 14 DIM, samples of blood 

and milk were collected for analysis of choline metabolites, including 16 species of 

phosphatidylcholine (PC) and 4 species of lysophosphatidylcholine (LPC).  Blood was also 

analyzed for AA and select organic acid concentrations.  Liver samples were collected from 

multiparous cows at ~7 DIM for gene expression analysis.  Choline reduced milk betaine 

yield for multiparous cows but tended to increase it for primiparous cows. Choline 

increased and Met tended to increase yields of 4 PC species as well as LPC 18:0 in 

multiparous cows.  However, only LPC 18:1 yield was increased by choline for 

primiparous cows.  Met reduced blood free choline concentrations and choline tended to 

increase glycerolphosphocholine but decrease sphingomyelin concentrations in 

multiparous cows.  For primiparous cows, Met decreased concentrations of total PC and 
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several species of PC during the second week of lactation, but choline only affected 

concentrations of 2 PC species.  For both groups of cows, Met increased blood Met 

concentrations, but choline did not.  Choline significantly reduced lactate and pyruvate 

concentrations in the blood of multiparous cows, but only numeric differences were 

observed for primiparous cows.  When fed without Met, choline increased hepatic mRNA 

expression of betaine-homocysteine methyltransferase and phosphate cytidylyltransferase 

1 choline, α.  In addition, choline also tended to decrease mRNA expression of 3-hydroxy-

3-methylglutaryl-CoA synthase 2 and peroxisome proliferator activated receptor α when 

fed with or without Met.  These results indicate that both Met and choline can have effects 

on choline metabolism when supplemented during the periparturient period and that these 

effects differ between primi- and multiparous cows.  
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INTRODUCTION 

The choline requirement for dairy cattle has not been defined (NRC, 2001), 

although it is considered to be an essential nutrient for other mammals, including humans 

(Zeisel and da Costa, 2009).  Because lactation increases the choline requirement in 

humans (Zeisel and da Costa, 2009), the same is probably also true for cows.  Choline 

deficiency can limit an animal’s ability to export lipids from the liver because it is required 

for synthesis of phosphatidylcholine (PC), the major phospholipid that comprises very low-

density lipoproteins (Yao and Vance, 1988).  Phosphatidylcholine is synthesized via one 

of two pathways: 1) the cytidine diphosphate (CDP)-choline pathway using choline derived 

from the diet; and 2) the phosphatidylethanolamine methyl-transferase (PEMT) pathway 

whereby a series of three methylation reactions occur to convert phosphatidylethanolamine 

to PC (Caudill, 2010).  Because dietary choline is rapidly degraded in the rumen (Atkins 

et al., 1988), it is likely that in ruminants, the majority of PC is synthesized via the PEMT 

pathway.  Feeding rumen-protected choline (RPC) could potentially lead to more PC 

synthesis via the CDP-choline pathway.  Delong et al. (1998) suggested that PC species 

that contained poly-unsaturated FA (PUFA) were derived from PEMT origin in rats.  Thus, 

the profile of individual PC species in blood or milk that result when RPC is supplemented 

in periparturient cows could be indicative of a change in PC source.   

Methionine is considered to be the most limiting AA in dairy cattle diets (NRC, 

2001) and it is used not only for protein synthesis, but also for synthesis the methyl donor 

S-adenosylmethionine (SAM), one of the most important methyl donors in the body 

(Chiang et al., 1996).  S-adenosylmethionine is required for de novo synthesis of PC via 
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the PEMT pathway (Li and Vance, 2008) and for this reason, studies in dairy cattle have 

investigated the lipotropic potential of Met, although liver triglyceride (TG) responses to 

Met have not been reported (Bertics and Grummer, 1999; Zhou et al., 2016b).  

Furthermore, SAM is also implicated in regulation of gene expression via histone 

methylation reactions (Mentch and Locasale, 2016).  After donating its methyl group, SAM 

is converted to homocysteine (Hcy), which can be used to regenerate Met or synthesize 

glutathione, an important antioxidant in the body (Martinov et al., 2010).  Thus, through 

these roles, Met has the potential to have significant impacts on immune function, as well 

as lipid and protein metabolism. 

 Choline and Met metabolism are integrated through their participation in one-

carbon metabolism.  Choline indirectly serves as a methyl donor in the one-carbon 

metabolic pathway via betaine, the product of choline oxidation.  Betaine is required for 

the regeneration of Met from Hcy via the betaine-homocysteine methyltransferase 

(BHMT) pathway (Martinov et al., 2010).  Alternatively, Hcy can also be converted to Met 

via the methyl-tetrahydrofolate (CH3-THF) pathway by methionine synthase (MS), an 

enzyme that requires vitamin B12 to function (Preynat et al., 2009).  Methionine also 

indirectly influences PC synthesis through the PEMT pathway via the availability of SAM.  

Because of these connections, as well as down-stream effects of both PC, SAM, and Hcy, 

feeding supplemental choline or Met has the potential to affect the metabolism of each 

other as well as several other metabolic processes within the body. 

During the periparturient period, the availability of many nutrients can be limited 

due the increase in nutritional demands associated with the onset of lactation coupled with 
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the slow increase in feed intake after parturition (Grummer, 1995).  In an effort to derive 

nutritional strategies that improve cow health and performance during this time, recent 

attention has been given to nutrients involved in one-carbon metabolism, such as choline, 

Met, and B-vitamins (Zhou et al., 2016b; Duplessis et al., 2017; Zenobi et al., 2018; Zang 

et al., 2019) due to the aforementioned functions associated with lipid transport and 

metabolism, immune function and gene expression.  Previous investigations have shown 

that supplementing many of these nutrients around the time of calving can modify hepatic 

expression of genes associated with choline, Met, and lipid metabolism (Preynat et al., 

2010; Goselink et al., 2013; Zhou et al., 2017a) as well as the plasma AA profile (Zhou et 

al., 2017b; Zang et al., 2019).  However, only the study by Zhou et al. (2017a,b) 

investigated specific effects associated with supplementation of choline, Met, or both 

during the periparturient period.  Furthermore, none of these studies investigated possible 

effects of dietary Met or choline on the milk and blood choline metabolite profile of 

periparturient cows.  Such changes could help further our understanding of how these 

nutrients affect the metabolism and production performance of postpartum cows. 

The objective of this study was to determine if providing supplemental choline, 

Met, or both during the periparturient period modifies plasma AA concentrations, the 

choline metabolite profile of plasma and milk, as well as hepatic expression of genes 

associated with choline, Met, and lipid metabolism.  It was also of interest to determine if 

such responses were different between primiparous and multiparous cows, as was the case 

for production responses.  
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MATERIALS AND METHODS 

 All procedures that utilized animals were approved by the University of Maryland, 

College Park, Institutional Animal Care and Use Committee. 

Animals and Study Design 

Between March and December of 2017, 25 primiparous and 29 multiparous 

Holstein cows from the Central Maryland Research and Education Center were selected 

for use in a randomized block design experiment with a 2 x 2 factorial treatment structure.  

The two factors were 0 or 60 g/d RPC (ReaShure®; Balchem Corp., New Hampton, NY) 

and 0 or 12 g/d RPM (Smartamine® M; Adisseo USA, Inc., Alpharetta, GA) prepartum and 

18 g/d RPM postpartum.  Thus, the four resulting treatments included: 1) no supplemental 

choline or Met (control; CON); 2) 60 g/d RPC (CHO); 3) 12 g/d RPM prepartum and 18 

g/d RPM postpartum (MET); and 4) a combination of CHO and MET treatments (CHO + 

MET; 60 g/d RPC + 12 g/d RPM prepartum and 18 g/d RPM postpartum).  Prior to the 

start of the experiment, cows were blocked by age (primiparous vs. multiparous) and 

expected calving date and randomly assigned to treatment.  Treatments were applied daily 

as a top dress from 21 d before expected calving through 35 DIM.  Additional details 

regarding basal pre- and postpartum diets and animal care and housing were as described 

in Chapter 4.     

Sample Collection and Analysis 

On approximately d 7 and 14 postpartum, samples of milk were collected and stored 

at -80°C until analysis of choline metabolites by HILC-MS/MS (Artegoitia et al., 2014).  
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Metabolites examined included betaine, free choline, glycerophosphocholine (GPC), 

sphingomyelin (SM), 16 species of PC, and 4 species of lysophosphatidylcholine (LPC).  

Blood was collected via coccygeal venipuncture in the morning before feeding on 

approximately -21, 7, and 14 d relative to calving.  Because some cows calved early or late, 

prepartum samples were actually collected on -19 ± 2 d relative to calving.  Samples were 

collected into one 10mL evacuated tube containing potassium EDTA and one 10mL 

evacuated tube containing sodium heparin.  Tubes were immediately placed on ice and 

then centrifuged at 2000 x g for 15 min at 4°C.  Plasma aliquots were stored at -80°C until 

analysis.  Amino acid and organic acid (citrate, fumarate, lactate, malate, oxaloacetate, 

pyruvate, succinate, and α-ketoglutarate) concentrations of plasma were determined using 

the methods described by Sunny and Bequette (2010).  Briefly, plasma samples (50 µL) 

were deproteinized with 500 µL of cold acetonitrile and evaporated to dryness under N2.  

Amino acids and organic acids were then converted to their respective t-butyldimethylsilyl 

derivatives by heating at 90°C for 1 h. Metabolites were separated by gas chromatography 

(HP-5ms, 30 m × 0.25 mm × 0.25 μm, Agilent Technologies, Santa Clara, CA) before 

selected ion monitoring of specific ion fragments with mass spectrometry under electron 

ionization.  Choline metabolite concentrations of plasma were determined as described 

previously for milk (Artegoitia et al., 2014). 

Approximately 150 mg of liver tissue was collected from each animal via 

percutaneous liver biopsies on approximately -21 d (actual prepartum samples were 

obtained on -19 ± 2 d) and 7 d relative to calving using a 14G biopsy needle (14G x 15 cm; 

Tru-Cut®, Merit Medical, Jordan, UT).  Further details regarding the liver biopsy procedure 
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are described in Chapter 4.  Tissue was immediately snap frozen in liquid nitrogen and 

stored at -80°C.  Liver samples obtained from 5 of the 7 blocks of multiparous cows (n = 

20, 5 cows per treatment) were used for gene expression analysis as described below.  

These 5 blocks were selected because all of the cows within each of them completed the 

experiment.   

Hepatic expression of genes related to choline and methionine metabolism (betaine-

homocysteine S-methyltransferase, BHMT; phosphatidylethanolamine N-

methyltransferase, PEMT; phosphate cytidylyltransferase 1, PCYT1A;  glutathione 

synthesis, GSS; 5-methyltetrahydrofolate-homocysteine methyltransferase, MTR) and lipid 

metabolism (carnitine palmitoyltransferase 1A, CPT1A; diacylglycerol O-acyltransferase 

1, DGAT1; 3-hydroxy-3-methylglutaryl-CoA synthase 2, HMGCS2; microsomal 

triglyceride transfer protein, MTTP; peroxisome proliferator activated receptor alpha, 

PPARα) was determined via RT-PCR.  Expression of phosphoglycerate kinase 1 (PGK1) 

was also determined for use as the housekeeping gene.  Primers were designed (Table 5.1) 

using the National Center for Biotechnology Information (NCBI) primer BLAST Software 

(NCBI, Bethesda, MD).  Primers needed to: 1) span an intron; 2) target a region as close 

to the 3’ end of the sequence as possible; 3) amplify all splice variants; 4) have a melting 

temperature of 58-60°C; 5) have a G/C content of 40-60%; 6) be between 18-30 nucleotides 

in length; and 6) generate a PCR product that was 100-250 nucleotides in length.  Primers 

(25 nmol DNA oligos; standard desalting purification) were obtained from Integrated DNA 

Technologies (Coralville, IA) and reconstituted in ultrapure water. Amplification 

efficiencies were determined for each primer pair by performing RT-qPCR (QuantiTect 

SYBR® Green PCR Kit, Qiagen Inc., USA, Germantown, MD) using 2-fold serial dilutions 
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of pooled cDNA (1µg). Efficiency was calculated using the equation [(10(-1/slope))-1], where 

slope is equal to the slope of the regression of the CT value on the log10(copy number).  

Efficiencies ranged from 0.96 to 1.08 for all primers tested.  Primer specificity was verified 

by dissociation curve analysis, agarose gel electrophoresis, and sequencing of PCR 

products.  

Liver total RNA was extracted using the RNeasy Lipid Tissue Mini Kit with on-

column DNase digestion (Qiagen Inc.).  Approximately 20-30 mg of liver tissue was 

weighed and kept frozen in liquid nitrogen until homogenization in 0.5 mL of QIAzol Lysis 

Reagent (Qiagen Inc.).  The remainder of the RNA extraction protocol was carried out 

according to manufacturer instructions.  After extraction, RNA was stored at -80°C.  The 

concentration of RNA in each sample was determined using a commercially available kit 

(Quant-iT™ RiboGreen™ RNA Assay Kit, Catalog #R11490, ThermoFisher Scientific, 

Waltham, MA) and 1 µg of RNA was used for cDNA synthesis (QuantiTect Reverse 

Transcription Kit, Qiagen Inc.).  For the reverse transcription reactions, a reaction of a pool 

of total RNA without reverse transcriptase was conducted as a control for genomic DNA 

contamination. Complementary DNA was not diluted prior to PCR analysis and was stored 

at -20°C.  

The PCR reactions were carried out using a commercially available kit according 

to the manufacturer instructions (QuantiTect SYBR® Green PCR Kit, Qiagen Inc.) in a 

CFX-Connect™ Real-Time PCR Detection System (Bio-Rad Laboratories Inc., Hercules, 

CA).  The PCR reactions were performed in 96-well plates (VWR International, LLC, 

Radnor, PA) in a CFX-Connect™ Real-Time PCR Detection System (Bio-Rad 
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Laboratories, Inc.) for 40 cycles using the following program: 95°C for 15 min (activation), 

94°C for 15s (denaturation), 55°C for 30s (annealing), and 72°C for 30s (extension). 

Dissociation curve analysis ensured amplification of a single PCR product and absence 

from the no RT controls. Data were normalized to PGK1 and analyzed by the 2-ΔΔ Ct 

method. 

Statistical Analysis 

 Similar to production data (presented in Chapter 4), AA, organic acid, and choline 

metabolite data were analyzed for primi- and multiparous cows separately.  Postpartum 

blood AA, organic acid, and choline metabolite concentrations were analyzed using a 

repeated-measures mixed model (SAS, version 9.4) that included the random effect of cow 

nested within block and fixed effects of week relative to calving (1 or 2), the main effects 

of CHO and MET, and all two- and three-way interactions.  Prepartum metabolite 

concentration, determined from samples collected in the morning before first treatment 

application (-19 ± 2 d relative to calving), was also included in the model as a covariate. 

Week relative to calving served as the repeated factor and the compound symmetry 

covariance structure was used.  Milk choline metabolite concentrations and corresponding 

yields were analyzed using a similar model that did not include a prepartum covariate 

measurement.    

 Gene expression fold-changes (relative to postpartum CON) were analyzed in a 

mixed model that included the main effects of CHO and MET, their interaction, and the 

random effect of cow.  Prepartum gene expression fold-change (relative to postpartum 

CON) was included in the model as a covariate.  Thus, postpartum gene expression results 
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are expressed as covariate-adjusted fold-changes relative to CON.  Cook’s Distance was 

used to detect potential outliers using a threshold of 4/n.  If a cow was identified as a 

potential outlier for more than 4 of the 10 genes of interest, she was removed from the 

analysis.  Based on this method, results from two cows (one from CON and one from CHO) 

were considered outliers and removed from the final analysis.  Statistical significance was 

declared at P ≤ 0.05 and tendencies were declared at P ≤ 0.10.  

RESULTS AND DISCUSSION 

 There were several changes in plasma AA, organic acid, and choline metabolite 

concentrations as well as alterations in milk choline metabolite yields in response to 

providing supplemental choline and Met.  This is the first study in dairy cattle that has 

examined effects of providing these nutrients during the periparturient period on several 

species of choline metabolites in blood and milk.  These results demonstrate that both 

choline and Met can modify both AA and choline metabolism when supplemented during 

the periparturient period and that these responses vary between primi- and multiparous 

cows.   

Plasma Amino Acids 

 Plasma AA concentrations for multiparous and primiparous cows are shown in 

Tables 5.2 and 5.3, respectively.  All changes in plasma AA concentrations due to treatment 

occurred without any changes in protein intake, as DMI was not affected by treatment 

(presented in Chapter 4).  With the exception of Ser, there were no main effects (P > 0.05) 

for any of the non-essential AA.  This is in contrast to previous work by Zhou et al. (2017b), 
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who showed that feeding MET fed during the periparturient period increased Ala, Asp, 

Asn, and Pro concentrations but did not affect Ser.  For the multiparous cows in this study, 

a MET x Week interaction (P = 0.05; Table 5.2) indicated that MET reduced Ser 

concentrations during week 2 but not week 1 postpartum.  Similarly, for primiparous cows, 

MET reduced Ser concentrations regardless of time (P < 0.01; Table 5.3), although there 

tended to be a MET x CHO interaction (P = 0.08), with a more pronounced reduction in 

Ser occurring when both CHO and MET were fed.  Ser is required for the first step toward 

glutathione production from Hcy as well as for regeneration of 5, 10-methyl-

tetrahydrofolate from tetrahydrofolate (THF) in the CH3-THF pathway (Selhub, 1999).  

Thus, the reduction in Ser observed for cows fed MET could be indicative of enhanced 

Met recycling via the CH3-THF pathway or elevated glutathione production.  However, as 

discussed later, hepatic mRNA expression of MTR, the gene that encodes the rate-limiting 

enzyme in the CH3-THF pathway, and GSS, the gene that encodes glutathione synthetase, 

were not affected by CHO or MET.   

Feeding CHO tended to increase plasma Gly concentrations during the first week 

of lactation for primiparous cows (CHO x Week: P = 0.08; Table 5.3) but not multiparous 

cows.  Dimethylglycine, a byproduct of the BHMT pathway, can be converted to sarcosine 

and, subsequently, glycine (Eklund et al., 2005).  Thus, the observed increase in Gly for 

primiparous cows fed choline in the current study could indicate enhanced flux of Hcy 

through the BHMT pathway.  Glycine is also produced as a byproduct from the conversion 

of THF to 5, 10-methyl-tetrahydrofolate, so this increase in plasma Gly could also be 

indicative of enhanced Met recycling through the CH3-THF pathway.  However, plasma 
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Gly levels were not altered by CHO for multiparous cows, which is similar to results 

reported by Zhou et al. (2017b).   

Changes in plasma concentrations of non-essential AA during the early postpartum 

period are not surprising, given that cows are generally in negative energy and protein 

balance even as DMI gradually increases (Grummer, 2008).  Concentrations of Pro and 

Tyr were greater during the second week of lactation as compared to the first for both 

groups of cows.  However, there tended to be a MET x Week interaction for Tyr 

concentration for primiparous cows (P = 0.08; Table 5.3), which indicated that MET 

dampened this increase during the second week of lactation.  The increase in Pro and Tyr 

was not surprising, given that Pro is glucogenic and Tyr is both glucogenic and ketogenic.  

These results are similar to previous reports by Doepel et al. (2002) and Zhou et al. (2017b).  

Consistent with results reported by Zhou et al. (2016a), plasma Ala concentrations were 

greater during week 2 postpartum for both groups of cows, but only results for multiparous 

cows showed statistical significance (P < 0.01; Table 5.2).  This finding likely indicates an 

increase in muscle tissue break-down to support gluconeogenesis via the alanine cycle. 

 Feeding CHO tended to reduce essential AA (EAA) concentrations (P = 0.10; Table 

5.2) for multiparous but not primiparous cows.  This is in contrast to the observations of 

Zhou et al. (2017b), who showed that feeding choline to multiparous periparturient cows 

did not affect overall EAA concentrations.  Zhou et al. (2016a) used a liver functionality 

index, an index that utilizes blood concentrations of albumin, cholesterol, and bilirubin to 

indicate immune and metabolic status, to rank cows according to how well they adapted 

during the periparturient period.  They observed that a low index (poor immune and 
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metabolic status) was associated with a reduction in circulating EAA during the postpartum 

period (Zhou et al., 2016a).  The authors suggested that this change could be the result of 

enhanced uptake of these AA for synthesis of acute phase proteins, which are associated 

with inflammation.  Thus, the CHO-induced decrease in EAA for multiparous cows in the 

current study could reflect a poor transition to lactation; however, immune function of cows 

in the current study was not assessed, so further inferences related to this hypothesis cannot 

be made.   

For multiparous cows, CHO numerically reduced Leu, Lys, and Val concentrations, 

although only the decrease in Leu concentration was statistically significant (P =0.04; 

Table 5.2).  However, these EAA were not affected by CHO for primiparous cows.  The 

reduction in Leu and Val is consistent with results reported by Zang et al. (2019) when a 

supplement containing several methyl donors (choline, Met, betaine, riboflavin, and 

vitamin B12) was provided to cows during the periparturient period.  In agreement with 

previous observations (Zhou et al., 2017b), CHO did not affect plasma Met concentrations 

in the current study. 

Consistent with previous work (Blum et al., 1999; Zhou et al., 2017b), MET 

increased plasma Met (P < 0.01; Tables 5.2 and 5.3) for both groups of cows, indicating 

that the Met fed as RPM was absorbed.  Feeding MET without CHO numerically increased 

concentrations of all EAA examined for both groups of cows relative to CON, suggesting 

that providing MET improved the AA profile (Zhou et al., 2017a) and increased availability 

of these AA to allow for greater protein synthesis.  This is consistent with previous findings 

(Zhou et al., 2017b) as well as the production responses that were observed for these cows 
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(presented in Chapter 4), where milk protein percentage was enhanced for multiparous 

cows fed MET.  Although milk protein production was not altered by MET for primiparous 

cows (presented in Chapter 4), it is possible that stimulation of protein synthesis by MET 

was directed instead toward skeletal growth or maintenance.  There was a tendency for a 

MET x Week interaction for BCAA (P = 0.07; Table 5.2) for multiparous cows which 

indicated that MET numerically increased these AA during the second but not the first 

week of lactation.  This could indicate that MET stimulated gluconeogenesis and 

ketogenesis during this time.  There appeared to be a negative synergistic effect of feeding 

CHO + MET for plasma Phe concentration for multiparous cows (MET x CHO: P = 0.03; 

Table 5.2) because cows fed CHO + MET had lower Phe concentrations than cows fed 

CHO or MET alone.  A similar trend was observed for primiparous cows, but the MET x 

CHO interaction was not statistically significant (P = 0.12; Table 5.3).   

For both primi- and multiparous cows, plasma concentrations of Thr increased from 

the first week to the second week of lactation (P < 0.01 and P = 0.04, respectively; Tables 

5.2 and 5.3).  All other EAA, with the exception of Met and Phe, also increased from week 

1 to 2, but these changes were only statistically significant for Lys and Val concentrations 

in primiparous cows (P = 0.04 and P < 0.01, respectively; Table 5.3).  This finding is 

congruent with previous findings (Doepel et al., 2002; Zhou et al., 2016a) and likely 

coincides with an increase in the demand for AA postpartum.    

Plasma Organic Acids 

 Plasma organic acid concentrations for multiparous and primiparous cows are 

shown in Table 5.4.  For multiparous cows, CHO drastically decreased plasma lactate 
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concentration (P < 0.01) which coincided with a decline in pyruvate concentrations (P < 

0.01), although pyruvate concentrations were only reduced when CHO was fed without 

MET (MET x CHO, P = 0.04).  Furthermore, CHO reduced plasma oxaloacetate 

concentration (P = 0.01) in multiparous cows.  This observation, in conjunction with the 

reduction in plasma pyruvate concentration for cows fed CHO, could be indicative of 

elevated TCA cycle activity.  In support of this, work by Goeslink et al. (2013) showed 

that periparturient cows fed RPC had decreased hepatic expression of pyruvate 

carboxykinase mRNA, which suggested a decrease in the need to replenish oxaloacetate.  

However, because the results from the current study reflect metabolite concentrations in 

venous plasma, it is difficult to make extrapolations to TCA function.  Alternatively, these 

findings could be indicative of an alteration in muscle glycolysis or the Cori cycle.   

In contrast to results for multiparous cows, plasma lactate, pyruvate, and 

oxaloacetate were not affected by CHO for primiparous cows (Table 5.4).  However, MET 

tended to increase oxaloacetate concentrations during week 1, but not week 2 postpartum 

(MET x Week, P = 0.07; Table 5.4), which might indicate reduced TCA cycle activity 

during week 1.  Furthermore, a MET x CHO interaction for plasma pyruvate concentrations 

(P = 0.05; Table 5.4) indicated that primiparous cows fed CHO or MET alone had 

numerically lower concentrations compared to CON or CHO + MET.  However, because 

the changes in plasma pyruvate concentrations occurred in the absence of altered plasma 

lactate concentrations, treatment effects were probably not due to changes in the Cori cycle, 

as was postulated for multiparous cows.  
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Feeding CHO increased plasma fumarate and malate concentrations for 

primiparous cows (P = 0.02 and P = 0.05, respectively; Table 5.4), but not multiparous 

cows.  Accumulation of fumarate or malate could indicate insufficient oxaloacetate to 

maintain TCA cycle activity, but a lack of a CHO effect on oxaloacetate for primiparous 

cows does not support this.  There was a tendency for CHO x Week interaction for 

succinate concentrations in primiparous cows (P = 0.07; Table 5.4), where CHO increased 

succinate concentrations during week 1 but reduced them during week 2 postpartum.  The 

increase in succinate during week 1 occurred parallel to an increase in Gln for cows fed 

CHO during this time (CHO x Week: P  = 0.04; Table 5.3), which might suggest an increase 

in glutaminolysis (Klein et al., 2013).   

In contrast to primiparous cows, there were no main effects of CHO or MET on 

fumarate or malate for multiparous cows.  A MET x CHO x Week interaction (P = 0.03; 

Table 5.4) for multiparous cows indicated that CHO, MET, and CHO + MET had 

numerically greater fumarate concentrations during week 1 postpartum than CON (12.4 vs. 

10.6 µM).  However, during week 2 postpartum, CON had numerically greater fumarate 

concentrations than each of the three experimental treatment groups (12.9 vs. 11.8 µM).  

Furthermore, a tendency for a MET x CHO x Week interaction for malate (P = 0.09; Table 

5.4) indicated a similar pattern for malate concentrations during week 2 postpartum (4.0 

µM for CON vs. 3.7 µM for CHO, MET, and CHO + MET), which could have been a 

downstream effect of the changes in fumarate concentrations that observed at this time.  

These results could indicate that MET and CHO altered TCA cycle activity during week 2 

postpartum for multiparous cows.   
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For both primi- and multiparous cows, plasma citrate concentrations increased for 

primiparous (Week: P = 0.04; Table 5.4) and tended to increase for multiparous cows 

(Week: P = 0.10; Table 5.4) from week 1 to week 2.  Plasma citrate concentrations 

observed in this study were similar to those reported by Klein et al. (2013) for Brown Swiss 

cows in early lactation.  Enhanced FA oxidation during the early postpartum period 

increases TCA cycle activity (Roche et al., 2013); however, due to a sudden influx of FA, 

there could be a lag until the TCA cycle is fully equipped to oxidize these FA, which could 

explain the delayed increase in citrate concentrations observed in the current study.   

For both primi- and multiparous cows, plasma concentrations of α-ketoglutarate 

were greater during week 1 than week 2 postpartum (P < 0.01 and P = 0.03, respectively; 

Table 5.4).  It has been suggested that α-ketoglutarate dehydrogenase, a rate-limiting 

enzyme of the TCA cycle that converts α-ketoglutarate to succinyl-CoA, is inhibited by 

oxidative stress (McLain et al., 2011).  This theory, in conjunction with the idea that cows 

are under increased oxidative stress during the early postpartum period (Sordillo and 

Raphael, 2013), could explain the increase in α-ketoglutarate during week 1 postpartum.  

Greater α-ketoglutarate concentrations after calving could also be reflective of enhanced 

activities of the alanine and urea cycles at this time.   

Plasma Choline Metabolites 

 Postpartum plasma choline metabolite concentrations are shown in Table 5.5.  

Treatment did not affect concentrations of betaine for primi- or multiparous cows.  

Furthermore, free choline concentrations were not affected by CHO for either group of 

cows, but MET reduced it (P = 0.03; Table 5.5) in multiparous cows.  The lack of a CHO 
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effect on betaine and free choline concentrations was somewhat surprising, given that 

recent work (de Veth et al., 2016; results presented in Chapter 3) has shown that plasma 

concentrations of betaine and free choline are most responsive to post-ruminal choline 

supplied by abomasal infusion.  However, in both of those studies, plasma betaine and free 

choline concentrations were minimally affected by post-ruminal choline supplied in the 

diet as RPC, which is in agreement with the results described here.  It is possible that post-

ruminal choline supplied as RPC is absorbed and utilized differently than that supplied by 

abomasal infusion.  Because the reduction in free choline concentrations for multiparous 

cows fed MET did not coincide with a reduction in betaine concentration, these results do 

not suggest any MET-induced changes in the BHMT pathway.  This idea is further 

supported by the fact that mRNA expression of BHMT was not altered by MET in this 

study, as discussed later.  Alternatively, the MET-induced reduction in free choline 

concentration could indicate an increase in PC synthesis, although MET did not affect total 

PC concentrations.   

 For multiparous cows, CHO tended to increase GPC but decrease SM 

concentrations (P = 0.07 and P = 0.10, respectively; Table 5.5).  In contrast, these 

metabolites were not affected by CHO in primiparous cows.  De Veth et al. (2016) showed 

that supplying post-ruminal choline via abomasal infusion or as RPC increased milk GPC 

concentration and yield, which is consistent with the observations for blood plasma in 

multiparous cows.  Glycerophosphocholine, a choline carrier in milk, is synthesized from 

PC (Gallazzini and Burg, 2009; Bernhard et al., 2018).  Thus, its increase in plasma when 

CHO was fed could indicate an increase in PC availability to support its synthesis, although 

total PC concentrations were not affected by CHO.  Similar to results for primiparous cows, 
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previous studies have not shown any changes in SM concentrations when choline is 

supplied as RPC (de Veth et al., 2016; results presented in Chapter 3).  

 Total LPC concentrations were not affected by treatment for multiparous cows 

(Table 5.5), which agrees with results observed for cows supplied with post-ruminal 

choline via RPC or abomasal infusion (presented in Chapter 3).  However, CHO tended to 

increase LPC 18:1 concentration for multiparous cows (P = 0.07; Supplemental Table 

5.S1).  In contrast, CHO numerically increased total LPC concentrations during week 2 

postpartum (CHO x Week interaction: P = 0.07; Table 5.5) for primiparous cows.  

Furthermore, CHO x Week interactions for LPC 16:0, 18:0, 18:1, and 18:2 (P =0.05, P = 

0.04, P = 0.06, and P = 0.05, respectively; Supplemental Table 5.S2) indicated that CHO 

numerically increased concentrations of each of these species for primiparous cows during 

week 2 postpartum as well.  These results are contrary to previous observations where post-

ruminal Cho did not affect concentrations of these LPC species in the blood (presented in 

Chapter 3).  However, that study was conducted using mid- to late-lactation cows, not 

periparturient cows, and previous work has shown that LPC concentrations vary 

throughout lactation (Artegoitia et al., 2014).  Lysophosphatidylcholines play several roles 

in the body and can modify gene expression, function in metabolic signaling pathways, and 

affect cellular mechanisms associated with survival (D’Arrigo and Servi, 2010).  Heimerl 

et al. (2014) showed that in humans, plasma concentrations of certain LPC species, such 

as LPC 18:0, 18:1, 18:2, 18:3, and 16:0, are lower in obese individuals and that these 

differences persisted even after weight-loss intervention, suggesting that these metabolites 

play a role in energy metabolism.  Elevation of these compounds by CHO in the current 

study could have been a direct result of the increased supply of dietary choline.  It is also 
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possible that these changes reflect a mechanism by which dietary choline could modulate 

changes in body reserves and energy metabolism.  In support of this, CHO reduced BCS 

for multiparous cows during the postpartum period and primiparous cows during the 

prepartum period (presented in Chapter 4).     

Other than PC 16:0/18:2, plasma concentrations of total PC and individual PC 

species were not affected by treatment for multiparous cows (Supplemental Table 5.S1).  

A tendency for a MET x CHO x Week interaction (P = 0.09) indicated that CHO and MET 

numerically increased concentrations of PC 16:0/18:2 relative to CON during the second 

week of lactation (820 vs. 648 µM), but CHO + MET was similar to CON during this time.  

This result is contrary to previous observations (presented in Chapter 3), where PC 

16:0/18:2 was not affected in mid-to late-lactation cows supplied with post-ruminal 

choline.  Delong et al. (1999) classified PC origin in rats and suggested that PC species 

with a high proportion of long chain FA or long chain poly-unsaturated FA (PUFA) are 

produced via the PEMT pathway and PC species with a high proportion of short or medium 

chain saturated FA are derived from the CDP-choline pathway.  Based on this 

classification, PC 16:0/18:2 is probably produced via the CDP-choline pathway, and the 

changes observed in the current study could be indicative of alterations in this pathway.   

Concentrations of PC 18:0/18:1 and PC 18:1/22:6 tended to be reduced by CHO 

for primiparous cows (P = 0.07 and P = 0.09, respectively; Supplemental Table 5.S2), but 

total PC concentrations were unaffected.  Dietary choline is used for the synthesis of PC 

via the CDP-choline pathway (Li and Vance, 2008).  Thus, it was hypothesized that CHO 

would enhance PC synthesis via this pathway.  The reduction in PC 18:1/22:6 



160 

 

concentration by CHO substantiates this, as this PC species is considered to be derived 

from the PEMT pathway (Delong et al., 1999).  However, a lack of change in other PC 

species by CHO, specifically those of CDP-pathway origin that contain mostly saturated 

FA (Delong et al., 1999), do not support this hypothesis. 

Feeding MET reduced total PC during week 2 but not week 1 for primiparous cows 

(MET x Week: P =0.02).  In line with this observation, concentrations of several PC 

species, including PC 16:0/16:0, PC 16:0/16:1, PC 16:0/18:2, PC 16:0/20:3, PC 18:0/18:1, 

PC 18:0/20:3, and PC 18:0/18:2 + 18:1/18:1, were reduced or tended to be reduced for 

primiparous cows fed MET during week 2 postpartum (MET x Week interactions: all P ≤ 

0.05; Table 5.S2).  These results observed for MET suggest a reduction in the CDP-choline 

pathway for PC synthesis because most of these species would be considered to be of CDP-

choline-pathway origin (Delong et al., 1999).  However, MET also reduced or tended to 

reduce concentrations of several PC species that contained ≥ 5 double bonds (PC 18:1/20:4 

+ 18:0/20:5 + 16:0/22:5, PC 18:1/22:6, PC 18:0/22:5, and PC 18:0/22:6,18:1/22:5; Table 

5.S2) for primiparous cows.  These PC species are considered to be of PEMT origin 

(Delong et al., 1999).  Previous research in rats also suggested that dietary Met alters 

plasma concentrations of various PC species, specifically by reducing those that contain 

linoleic acid and PC 16:0/20:4 (Sugiyama et al., 1997).  For ruminants, it is likely that the 

majority of PC is synthesized via PEMT because most dietary choline is degraded in the 

rumen (Atkins et al., 1988), which would conceivably reduce the functionality of the CDP-

pathway.  The observations of the current study suggest that either the classification system 

proposed by Delong et al. (1999) is not applicable to ruminants, or that MET was not being 

used to enhance the PEMT pathway.   
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For multiparous cows, concentrations of most of the choline metabolites measured 

were greater during week 2 postpartum than week 1 (P ≤ 0.05; Table 5.5), although free 

choline and betaine were reduced over time (P = 0.03 and P < 0.01, respectively; Table 

5.5).  Similarly, concentrations of nearly all metabolites were greater or tended to be greater 

in week 2 (P ≤ 0.11; Table 5.5) for primiparous cows, with the exception of free choline 

and GPC, which did not change.  These results are consistent with those reported by 

Artegoitia et al. (2014), who showed increases in plasma concentrations of SM, total LPC, 

total PC, and GPC, as well as most species of LPC and PC during the first 3 weeks of 

lactation.  Furthermore, Artegoitia et al. (2014) also reported a decrease in plasma betaine 

concentration from week 1 to week 3 of lactation.  Although concentrations of free choline 

were similar to those reported in the current study, results from Artegoitia et al. (2014) did 

not indicate any temporal effects for plasma free choline concentrations over the course of 

lactation, which is contrary to findings for multiparous cows.   

Milk Choline Metabolites 

 Milk choline metabolite yields are shown in Table 5.6.  Results for concentrations 

of milk choline metabolite and individual PC and LPC species can be found in 

Supplemental Tables 5.S5 and 5.S6 for multi- and primiparous cows, respectively.  Free 

choline yield and concentration were not affected by treatment for either group of cows.  

For multiparous cows, CHO reduced milk betaine yield during week 1 postpartum (3629 

vs. 4912 µmol/d), but not week 2 (CHO x Week: P = 0.03; Table 5.5).  In contrast, CHO 

tended to increase milk betaine yield (P = 0.09; Table 5.5) but not concentration (Table 

5.S.6) for primiparous cows.  Feeding MET increased betaine concentrations during week 
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1 (154 vs. 131 µM), but not week 2 for multiparous cows (MET x Week: P = 0.02; Table 

5.S5), but MET did not affect milk betaine concentration for primiparous cows (Table 

5.S6).  Results for milk free choline concentration are similar to results observed for 

lactating sows fed supplemental choline during the perinatal period (Mudd et al., 2016).  In 

contrast, previous work in mid- to late lactation dairy cattle showed that milk betaine and 

free choline yields were increased by post-ruminal choline supplied via abomasal infusion 

(de Veth et al., 2016; results presented in Chapter 3) and RPC (de Veth et al., 2016).  

However, results reported by de Veth et al. (2016) indicated that milk betaine and free 

choline responses were much greater when post-ruminal choline was supplied as an 

abomasal infusion rather than RPC.   

 During week 2 postpartum, MET tended to increase milk GPC yield for multiparous 

cows (86,833 vs. 76,599 µmol/d; MET x Week: P = 0.08; Table 5.6), but CHO had no 

effect.  In contrast, milk GPC yield for primiparous cows was not impacted by treatment 

(Table 5.6).  However, a synergistic effect of CHO and MET for milk GPC concentration 

was observed for primi- and multiparous cows (MET x CHO: P = 0.01 and P = 0.02, 

respectively; Tables 5.S5 and 5.S6), whereby CHO + MET had greater GPC concentrations 

than either CHO or MET.  The lack of a CHO effect on milk GPC yield and concentration 

is inconsistent with research in lactating women, where choline supplementation has been 

shown to increase milk GPC content (Davenport et al., 2015), and dairy cows, in which 

post-ruminal choline tended to increase milk GPC yield (de Veth et al., 2016).  However, 

similar to results of the current study, Mudd et al. (2016) did not observe changes in milk 

GPC content when supplemental choline was provided to lactating sows fed a choline-

deficient diet.  Because GPC is synthesized from PC, it is logical that its concentration 
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could be affected by choline supply and that an increase in its concentration might reflect 

ample availability of PC.  

Yields of SM and total LPC were not affected by treatment for multiparous cows.  

However, feeding CHO increased SM concentration during week 1 but not week 2 

postpartum (52.1 vs. 42.1 µM; CHO x Week, P = 0.03; Table 5.S5) which could have been 

the result of the lower milk yield (~2.8 kg) for multiparous cows fed CHO during this time 

(presented in Chapter 4).  Furthermore, CHO + MET tended to increase overall total LPC 

concentrations of multiparous cows (MET x CHO, P = 0.08; Table 5.S5) which could be 

attributed to the lower milk yield for these cows (presented in Chapter 4).  For primiparous 

cows, CHO tended to increase SM and total LPC yields during week 2 (964 vs. 844 µmol/d 

and 100 vs. 82 µmol/d, respectively) but not week 1 (CHO x Week, P = 0.06 and P = 0.07, 

respectively; Table 5.S6).  This observation for primiparous cows was likely due to the 

increased milk yield observed for cows fed CHO during week 2 postpartum (presented in 

Chapter 4), as milk SM and total LPC concentrations were not affected.  Similar to these 

results, choline supplementation in swine during the perinatal period did not affect milk 

concentrations of SM or LPC during the 3-week lactation period (Mudd et al., 2016).  

Furthermore, de Veth et al. (2016) and results presented in Chapter 3 also showed no 

change in milk SM or total LPC yields when post-ruminal choline was provided to lactating 

cows. 

For multiparous cows, CHO increased yield and concentration of LPC 18:0 (P = 

0.03 and P < 0.01, respectively; Tables 5.S3 and 5.S5).  Additionally, MET increased 

concentration and tended to increase yield of LPC 18:0 (P < 0.01 and P = 0.08, 
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respectively; Tables 5.S3 and 5.S5).  Although yield was not affected by treatment, there 

tended to be a positive synergistic effect of CHO + MET on LPC 16:0 concentration (MET 

x CHO, P = 0.09).   For primiparous cows, CHO increased yield of LPC 18:1 (P = 0.05; 

Table 5.S4) and tended to increase yield of LPC 16:0 during week 2 postpartum (CHO x 

Week, P = 0.07; Table 5.S4).  Because concentrations of these metabolites were not 

affected by CHO, this result was likely due to increased milk yield by primiparous cows 

fed CHO (presented in Chapter 4).  A significant MET x CHO x Week interaction (P = 

0.03; Table 5.S4) indicated that CHO + MET increased yield of LPC 18:2 relative to CON 

during week 2 (6.7 vs. 5.6 µmol/d) but not week 1.  Previous findings did not show any 

change in milk content or yield of LPC species when post-ruminal choline was supplied to 

lactating cows (presented in Chapter 3).  However, that study examined responses for cows 

in established lactation, which could explain the discrepancy between observations.   

 For both primi- and multiparous cows, total PC yield was not affected by treatment.  

However, CHO tended to increase total PC concentration for multiparous cows (P = 0.07; 

Table 5.S5) but decrease it for primiparous cows (P = 0.07; Table 5.S6).  This discrepancy 

is likely explained by the different milk yield responses observed between primi- and 

multiparous cows fed CHO, as it had a positive effect on milk yield for primiparous cows 

but no effect for multiparous cows (presented in Chapter 4).  The results of the current 

study are similar to those reported by de Veth et al. (2016) for dairy cows as well as those 

reported for sows (Mudd et al., 2016) and lactating women (Davenport et al., 2015). 

 Yields of individual PC species were not affected by treatment for primiparous 

cows (Table 5.S4).  However, for multiparous cows, CHO increased the yield of several 
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PC species with FA that contained ≥ 4 double bonds, including PC 16:0/20:5 + 16:1/20:4, 

PC 18:1/22:6, PC 18:0/22:6 + PC 18:1/22:5, PC 18:0/22:5 (all P ≤ 0.02; Table 5.S3).  In 

addition, CHO tended to increase yield of PC 18:0/18:1 (P = 0.07; Table 5.S3).  These 

changes all corresponded with increases in concentration (all P ≤ 0.03; Table 5.S5).  

Feeding MET also increased the yield of several PUFA-containing PC species, including 

PC 18:1/22:6, PC 18:0/22:6 + PC 18:1/22:5, PC 18:0/22:5 (all P ≤ 0.03; Table 5.S4), which 

also coincided with MET-induced increases in concentration (P ≤ 0.02; Table 5.S5).  

Because the majority of these changes involved PC species that contained PUFA, these 

results suggest, similar to those for plasma discussed previously, that CHO and MET could 

have altered the balance between of the two PC synthesis pathways.  These results are 

contrary to previous observations for mid- to late lactation cows that received post-ruminal 

choline (Chapter 3).  However, the results of the current study demonstrate that both CHO 

and MET modify choline metabolism in periparturient dairy cattle, although the 

significance of these changes remains to be determined. 

Liver Gene Expression  

 Relative expression of hepatic genes associated with choline, Met, and FA 

metabolism are shown in Table 5.7.  Gene expression was assessed for a subset (n = 20) of 

multiparous cows only.  Feeding CHO tended to increase, while MET decreased expression 

of PCYT1A (P = 0.10 and P < 0.01, respectively).  However, a tendency for a CHO x MET 

interaction (P = 0.10) indicated that mRNA expression was only increased when CHO was 

fed separate from MET (Figure 1).  Because the PCYT1A gene encodes phosphate 

cytidylyltransferase 1 choline α, the enzyme catalyzes the rate-limiting step of the CDP-
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choline pathway (Li and Vance, 2008), these results lend support to the hypothesis that 

supplemental choline increases PC synthesis via the CDP-choline pathway.  That providing 

MET reduced expression of this gene suggests that availability of methyl donors (e.g., 

SAM or CH3-THF) was sufficient to support PC synthesis from phosphatidylethanolamine 

via the PEMT pathway.  Zhou et al., (2017a) also observed an increase in PCYT1A mRNA 

expression for periparturient cows fed choline.  However, in contrast to findings of the 

current study, they showed that supplemental Met also increased PCYT1A mRNA 

expression.  

For multiparous cows fed MET, an elevation in PEMT mRNA expression would 

have coincided with some of the increases observed for the milk yield of several PC species 

that are presumably synthesized via the PEMT pathway.  However, there were no treatment 

effects on mRNA expression of PEMT in the current study.  Contrary to these results, 

previous research that examined hepatic mRNA expression of PEMT in periparturient dairy 

cows showed an increase in PEMT expression when supplemental Met was fed (Preynat et 

al., 2010; Osorio et al., 2014; Zhou et al., 2017a).  

Similar to previous results (Preynat et al., 2010; Osorio et al., 2014; Zhou et al., 

2017a), MET did not affect mRNA expression of BHMT.  However, expression of BHMT 

tended to be elevated when choline was fed alone (Figure 1; CHO x MET, P = 0.09).  This 

result could indicate an increase in Met recycling from Hcy via the BHMT pathway for 

cows fed CHO without MET.  The fact that the elevation in BHMT mRNA expression was 

absent for MET + CHO suggests that when Met supply is sufficient, there is less need to 

resynthesize Met from Hcy via this pathway.  In support of this hypothesis, recent in vitro 
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work by Zhang et al. (2016) showed a reduction in BHMT mRNA expression with 

increasing concentrations of Met, indicating that when Met is in ample supply, less Met is 

regenerated from Hcy through the BHMT pathway.  However, the observations of the 

current study are contrary to those reported by Zhou et al. (2017a), who did not observe 

changes in BHMT mRNA expression or activity when choline was supplemented to 

periparturient cows.   

Treatment did not affect the mRNA expression of MTR or GSS.  These results 

suggest that neither CHO nor MET affected the CH3-THF pathway or the production of 

the antioxidant, glutathione.  Contrary to these results, Osorio et al. (2014) showed that 

Met supplemented during the periparturient period increased mRNA expression of both 

MTR and GSS during the first week of lactation.  However, similar to findings of the current 

study, other studies have also shown no effect of choline or Met supplementation during 

the periparturient period on mRNA expression of MTR or GSS (Preynat et al., 2010; Zhou 

et al., 2017a).  However, in the study by Zhou et al. (2017a), activity of MTR was reduced 

by both choline and Met supplementation, which suggests that alterations in MTR function 

by choline and Met may not be at the transcriptional level.  Contrary to this hypothesis, 

Zhang et al. (2016) showed a reduction in MTR mRNA expression for calf hepatocytes 

cultured with increasing levels of Met.  The reduction in MTR activity for cows fed choline 

or Met observed by Zhou et al. (2017a) corresponds with the hypothesis that when Met is 

fed, there is less need for Met regeneration from Hcy via the CH3-THF pathway and that 

when choline is fed, there is likely more reliance on Met recycling via the BHMT pathway.  
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The mRNA expression of CPT1A, the protein that is responsible for transporting 

FA into the mitochondria for oxidation, was also not affected by feeding CHO or MET.  

These results are similar to those reported by Goselink et al. (2013) and Morrison et al. 

(2018) for periparturient cows fed choline.  Furthermore, Osorio et al. (2016) also showed 

no change in CPT1A expression when Met was supplemented during the periparturient 

period.  Together, these results suggest that neither choline nor Met affect the rate at which 

FA become available for mitochondrial oxidation.  However, enzyme activity or 

concentration was not measured, so this is only speculative. 

The mRNA expression of HMGCS2 and PPARα tended to be reduced by CHO (P 

= 0.10 and P = 0.08).  Similar to results reported by Osorio et al. (2016), MET did not 

affect mRNA expression of HMGCS2 or PPARα in the current study.  These results would 

suggest reductions in ketogenesis and hepatic FA oxidation by cows fed choline, although 

CHO did not affect postpartum plasma BHBA or NEFA concentrations for multiparous 

cows (presented in Chapter 4).  Results from the current study are contrary to previous 

research that did not show changes in HMGCS2 (Morrison et al., 2018) or PPARα 

(Goselink et al., 2013; Morrison et al., 2018) mRNA expression when choline was fed to 

periparturient cows.   

Feeding MET tended to reduce mRNA expression of DGAT1 (P = 0.08), suggesting 

a reduction in liver TG synthesis, although there was no effect of MET on liver TG content 

(presented in Chapter 4).  In contrast, CHO did not alter the expression of DGAT1.  In 

agreement, Goselink et al. (2013) did not observe changes in the mRNA expression of 

hepatic glycerol-3-phosphate O-acetyltransferase 1, the enzyme that catalyzes the first step 
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in TG synthesis, when choline was fed to periparturient cows.  Taken together, these results 

suggest no change in the rate of liver TG synthesis when choline is fed before and after 

parturition. 

Contrary to results reported by Goselink et al. (2013), but similar to those reported 

by Morrison et al. (2018), CHO did not affect mRNA expression of MTTP in this study.  

In contrast to results reported by Preynat et al. (2010), who showed an increase in MTTP 

mRNA expression when Met was fed to periparturient cows, there were no changes in 

MTTP mRNA expression in association with MET in the current study.  Microsomal 

triglyceride transfer protein is an enzyme involved in packaging TG into VLDL in the liver 

(Bernabucci et al., 2004).  An increase in MTTP mRNA expression would indicate a 

potential increase in the rate of VLDL formation, which is the proposed route by which 

choline could reduce hepatic TG concentration in dairy cows (Cooke et al., 2007).  

However, results of the current study do not support this, and these results are in line with 

a lack of a MET or CHO effect on liver TG content (presented in Chapter 4).   

CONCLUSION 

 The results from this study underscore that choline and Met metabolism are 

interconnected, and suggest that each affect AA and choline metabolism differently when 

supplemented during the periparturient period.  Results for Met suggest an improvement 

in AA status to support protein synthesis, while changes in plasma lactate and pyruvate in 

response to choline suggest potential alterations in muscle glucose metabolism.  Changes 

in the PC profile of both plasma and milk were associated with feeding both choline and 

Met, and suggest that both nutrients can modulate the balance of PC synthesis via the CDP-
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choline and PEMT pathways during the periparturient period.  However, responses were 

quite variable between primi- and multiparous cows, which could relfect differences in 

choline and Met requirements during this time.  Further investigation into the response 

differences between primi- and multiparous cows fed choline and Met during the 

periparturient period is warranted. 

ACKNOWLEDGMENTS 

The author would like to acknowledge the staff the Central Maryland Research and 

Education Center Dairy Unit for their assistance with animal care and management.  The 

authors are also grateful to Claudia Gomez and Emily Davis (University of Maryland, 

Department of Animal and Avian Sciences) for providing assistance with sample and data 

collection.  Partial funding for this study was provided by Balchem Corporation (New 

Hampton, NY).   

  



171 

 

REFERENCES 

Artegoitia, V.M., J.L. Middleton, F.M. Harte, S.R. Campagna, and M.J. de Veth. 2014. 

Choline and choline metabolite patterns and associations in blood and milk during 

lactation in dairy cows. PLoS One. 9:e103412.  

Atkins, K.B., R.A. Erdman, and J.H. Vandersall. 1988. Dietary choline effects on milk 

yield and duodenal choline flow in dairy cattle. J. Dairy Sci. 71:109–116.  

Bernabucci, U., B. Ronchi, L. Basiricò, D. Pirazzi, F. Rueca, N. Lacetera, and  A. 

Nardone. 2004. Abundance of mRNA of apolipoprotein B100, apolipoprotein E, and 

microsomal triglyceride transfer protein in liver from periparturient dairy cows. J. Dairy 

Sci. 87:2881–2888. 

Bernhard, W., C.F. Poets, A.R. Franz, A.A. A, and W. Bernhard. 2018. Choline and 

choline-related nutrients in regular and preterm infant growth. Eur. J. Nutr. 1–15.  

Bertics, S.J., and R.R. Grummer. 1999. Effects of fat and methionine hydroxy analog on 

prevention or alleviation of fatty liver induced by feed restriction. J. Dairy Sci. 82:2731–

2736.  

Blum, J.W., R.M. Bruckmaier, and F. Jans. 1999. Rumen-protected methionine fed to 

dairy cows: bioavailability and effects on plasma amino acid pattern and plasma 

metabolite and insulin concentrations. J. Dairy Sci. 82:1991–1998.  

Caudill, M.A. 2010. Pre- and postnatal health: evidence of increased choline needs. J. 

Am. Diet. Assoc. 110:1198–1206.  

Chiang, P.K., R.K. Gordon, J. Tal, G.C. Zeng, B. P. Doctor, K. Pardhasaradhi, and P. P. 

McCann. 1996. S-Adenosylmethionine methylation. FASEB J. 10:471–480. 

Cooke, R.F., N. Silva Del Río, D.Z. Caraviello, S.J. Bertics, M.H. Ramos, and R.R. 

Grummer. 2007. Supplemental choline for prevention and alleviation of fatty liver in 

dairy cattle. J. Dairy Sci. 90:2413–2418.  

D’Arrigo, P., and S. Servi. 2010. Synthesis of lysophospholipids. Molecules. 15:1354–

1377.  

Davenport, C., J. Yan, S. Taesuwan, K. Shields, A.A. West, X. Jiang, C.A. Perry, O. V. 

Malysheva, S.P. Stabler, R.H. Allen, and M.A. Caudill. 2015. Choline intakes exceeding 

recommendations during human lactation improve breast milk choline content by 

increasing PEMT pathway metabolites. J. Nutr. Biochem. 26:903–911.  

Delong, C.J., Y. Shen, J. Michael, and Z. Cui. 1999. Molecular distinction of 

phosphatidylcholine synthesis between the CDP-choline pathway and 

phosphatidyethanolamine methylation pathway. J. Biol. Chem. 274:29683–29688.  



172 

 

Doepel, L., H. Lapierre, and J.J. Kennelly. 2002. Peripartum performance and 

metabolism of dairy cows in response to prepartum rnergy and protein intake. J. Dairy 

Sci. 85:2315–2334.. 

Duplessis, M., H. Lapierre, D. Pellerin, J.P. Laforest, and C.L. Girard. 2017. Effects of 

intramuscular injections of folic acid, vitamin B12, or both, on lactational performance 

and energy status of multiparous dairy cows. J. Dairy Sci. 1–14.  

Eklund, M., E. Bauer, J. Wamatu, and R. Mosenthin. 2005. Potential nutritional and 

physiological functions of betaine in livestock. Nutr. Res. Rev. 18:31–48.  

Gallazzini, M., and M.B. Burg. 2009. What’s new about osmotic regulation of 

glycerophosphocholine. Physiol. 24:245–249.  

Goselink, R.M.A., J. van Baal, H.C.A. Widjaja, R.A. Dekker, R.L.G. Zom, M.J. de Veth, 

and A.M. van Vuuren. 2013. Effect of rumen-protected choline supplementation on liver 

and adipose gene expression during the transition period in dairy cattle. J. Dairy Sci. 

96:1102–1116.  

Grummer, R.R. 1995. Impact of changes in organic nutrient metabolism on feeding the 

transition dairy cow. J. Anim. Sci. 73:2820–2833. 

Grummer, R.R. 2008. Nutritional and management strategies for the prevention of fatty 

liver in dairy cattle. Vet. J. 176:10–20.  

Heimerl, S., M. Fischer, A. Baessler, G. Liebisch, A. Sigruener, S. Wallner, and G. 

Schmitz. 2014. Alterations of plasma lysophosphatidylcholine species in obesity and 

weight loss. PLoS One. 9:1–7.  

Klein, M.S., M.F. Almstetter, N. Nürnberger, G. Sigl, W. Gronwald, S. Wiedemann, K. 

Dettmer, and P.J. Oefner. 2013. Correlations between milk and plasma levels of amino 

and carboxylic acids in dairy cows. J. Proteome Res. 12:5223–5232.  

Li, Z., and D.E. Vance. 2008. Phosphatidylcholine and choline homeostasis. J. Lipid Res. 

49:1187–1194.  

Martinov, M. V, V.M. Vitvitsky, R. Banerjee, and F.I. Ataullakhanov. 2010. The logic of 

the hepatic methionine metabolic cycle. Biochim. Biophys. Acta. 1804:89–96.  

McLain, A.L., P.A. Szweda, and L.I. Szweda. 2011. α-Ketoglutarate dehydrogenase: A 

mitochondrial redox sensor. Free Radic. Res. 45:29–36.  

Mentch, S.J., and J.W. Locasale. 2016. One-carbon metabolism and epigenetics: 

Understanding the specificity. Ann. N. Y. Acad. Sci. 1363:91–98.  

Morrison, E.I., H. Reinhardt, H. Leclerc, T.J. Devries, and S.J. LeBlanc. 2018. Effect of 



173 

 

rumen-protected B vitamins and choline supplementation on health, production, and 

reproduction in transition dairy cows. J. Dairy Sci. 101:9016–9027.  

Mudd, A.T., L.S. Alexander, S.K. Johnson, C.M. Getty, O. V Malysheva, M.A. Caudill, 

and R.N. Dilger. 2016. Perinatal dietary choline deficiency in sows influences 

concentrations of choline metabolites, fatty acids, and amino acids in milk throughout 

lactation. J. Nutr. 146:2216–2223.  

NRC. 2001. Nutrient Requirements of Dairy Cattle. Seventh Re. National Academy 

Press, Washington, D.C. 

Osorio, J.S., C.B. Jacometo, Z. Zhou, D. Luchini, F.C. Cardoso, and J.J. Loor. 2016. 

Hepatic global DNA and peroxisome proliferator-activated receptor alpha promoter 

methylation are altered in peripartal dairy cows fed rumen-protected methionine. J. Dairy 

Sci. 99:234–244.  

Osorio, J.S., P. Ji, J.K. Drackley, D. Luchini, and J.J. Loor. 2014. Smartamine M and 

MetaSmart supplementation during the peripartal period alter hepatic expression of gene 

networks in 1-carbon metabolism, inflammation, oxidative stress, and the growth 

hormone-insulin-like growth factor 1 axis pathways. J. Dairy Sci. 7451–7464.  

Preynat, A., H. Lapierre, M.C. Thivierge, M.F. Palin, N. Cardinault, J.J. Matte, and A. 

Desrochers. 2010. Effects of supplementary folic acid and vitamin B 12 on hepatic 

metabolism of dairy cows according to methionine supply. J. Dairy Sci. 93:2130–2142.  

Preynat, A., H. Lapierre, M.C. Thivierge, M.F. Palin, J.J. Matte, A. Desrochers, and C.L. 

Girard. 2009. Effects of supplements of folic acid, vitamin B12, and rumen-protected 

methionine on whole body metabolism of methionine and glucose in lactating dairy 

cows. J. Dairy Sci. 92:677–689.  

Roche, J.R.,  A. W. Bell, T.R. Overton, and J.J. Loor. 2013. Nutritional management of 

the transition cow in the 21st century? A paradigm shift in thinking. Anim. Prod. Sci. 

1000–1023.  

Selhub, J. 1999. Homocysteine metabolism. Annu. Rev. Nutr. 19:217–246. 

Sordillo, L.M., and W. Raphael. 2013. Significance of metabolic stress, lipid 

mobilization, and inflammation on transition cow disorders. Vet. Clin. North Am. Food 

Anim. Pract. 29:267–278.  

Sugiyama, K., A. Yamakawa, A. Kumazawa, and S. Saeki. 1997. Methionine content of 

dietary proteins affects the molecular species composition of plasma phosphatidylcholine 

in rats fed a cholesterol-free diet. J. Nutr. 127:600–607. 

Sunny, N.E., and B.J. Bequette. 2010. Gluconeogenesis differs in developing chick 

embryos derived from small compared with typical size broiler breeder eggs. J. Anim. 



174 

 

Sci. 88:912–921.  

Vance, J.E., and D.E. Vance. 1986. Specific pools of phospholipids are used for 

lipoprotein secretion by cultured rat hepatocytes. J. Biol. Chem. 261:4486–4491. 

de Veth, M.J., V.M. Artegoitia, S.R. Campagna, H. Lapierre, F. Harte, and C.L. Girard. 

2016. Choline absorption and evaluation of bioavailability markers when supplementing 

choline to lactating dairy cows. J. Dairy Sci. 9732–9744.  

Watkins, S.M., X. Zhu, and S.H. Zeisel. 2003. Phosphatidylethanolamine-N-

methyltransferase activity and dietary choline regulate liver-plasma lipid flux and 

essential fatty acid metabolism in mice. J. Nutr. 133:3386–3391. 

White, H.M. 2015. The role of TCA cycle anaplerosis in ketosis and fatty liver in 

periparturient dairy cows. Animals. 5:793–802.  

Yao, Z., and D.E. Vance. 1988. The active synthesis of phosphatidylcholine is required 

for very low density lipoprotein secretion from rat hepatocytes. J. Biol. Chem. 263:2998–

3004. 

Zang, Y., S.S. Samii, W.A. Myers, H.R. Bailey, A.N. Davis, E. Grilli, and J.W. 

McFadden. 2019. Methyl donor supplementation suppresses the progression of liver lipid 

accumulation while modifying the plasma triacylglycerol lipidome in periparturient 

Holstein dairy cows. J. Dairy Sci. 102:1224–1236.  

Zeisel, S.H., and K. da Costa. 2009. Choline: an essential nutrient for public health. Nutr. 

Rev. 67:615–623.  

Zenobi, M.G., R. Gardinal, J.E. Zuniga, A.L.G. Dias, C.D. Nelson, J.P. Driver, B.A. 

Barton, J.E.P. Santos, and C.R. Staples. 2018. Effects of supplementation with ruminally 

protected choline on performance of multiparous Holstein cows did not depend upon 

prepartum caloric intake. J. Dairy Sci. 101:1088–1110.  

Zhang, Q., S.J. Bertics, N.D. Luchini, and H.M. White. 2016. The effect of increasing 

concentrations of dl-methionine and 2-hydroxy-4-(methylthio) butanoic acid on hepatic 

genes controlling methionine regeneration and gluconeogenesis. J. Dairy Sci. 99:8451–

8460.. 

Zhou, Z., T.A. Garrow, X. Dong, D.N. Luchini, and J.J. Loor. 2017a. Hepatic activity 

and transcription of betaine-homocysteine methyltransferase, methionine synthase, and 

cystathionine synthase in periparturient dairy cows are altered to different extents by 

supply of methionine and choline. J. Nutr. 147:11–19.  

Zhou, Z., J.J. Loor, F. Piccioli-Cappelli, F. Librandi, G.E. Lobley, and E. Trevisi. 2016a. 

Circulating amino acids in blood plasma during the peripartal period in dairy cows with 

different liver functionality index. J. Dairy Sci. 99:2257–2267.  



175 

 

Zhou, Z., M. Vailati-Riboni, D.N. Luchini, and J.J. Loor. 2017b. Methionine and choline 

supply during the periparturient period alter plasma amino acid and one-carbon 

metabolism profiles to various extents: Potential role in hepatic metabolism and 

antioxidant status. Nutrients. 9:1–19.  

Zhou, Z., M. Vailati-Riboni, E. Trevisi, J.K. Drackley, D.N. Luchini, and J.J. Loor. 

2016b. Better postpartal performance in dairy cows supplemented with rumen- protected 

methionine compared with choline during the peripartal period. J. Dairy Sci. 99:8716–

8732.  

Zom, R.L.G., J. van Baal, R.M.A. Goselink, J.A. Bakker, M.J. de Veth, and  A.M. van 

Vuuren. 2011. Effect of rumen-protected choline on performance, blood metabolites, and 

hepatic triacylglycerols of periparturient dairy cattle. J. Dairy Sci. 94:4016–4027.  

  



176 

 

 Table 5.1.  Forward and reverse primers used for RT-qPCR 
Gene 

Symbol Description 

GenBank 

Accession Primer  Sequence (5' to 3')1 Length2  

Choline and Methionine Metabolism      

  BHMT 
betaine-homocysteine S-

methyltransferase  
NM_001011679.1 

F GCTGTATGGGCAGTTGAAGC  
70 

R AATGGCAGTTTACCCCCACG  

  GSS glutathione synthetase NM_001015630.1 
F GAAGATCGAACCCGAGCCTT  

157 
R GGTTCGAAGCAGATGTCCCA  

  MTR 

5-methyltetrahydrofolate-

homocysteine 

methyltransferase 

NM_001030298.1 
F AGCCTTTCTTCGACGTCTGG  

264 

R CGTAGAAGGTGGCTATGGGC  

  PCYT1A 

phosphate 

cytidylyltransferase 1, 

choline, α 

NM_001105052.2 
F GCTCCAACACAGAGGACAGAA 

384 

R ACTCTGCCTTGGACTGATGG 

  PEMT 
phosphatidylethanolamine 

N-methyltransferase 
NM_182989.3 

F TCCGAGCGGGCATGACAAC  
197 

R CAAAGTGGGGTTCCGAGAGGT  

Lipid Metabolism 

  CPT1A 
carnitine 

palmitoyltransferase 1A  
NM_001304989.1  

F TCGTCACCATGCGTTACTCC   
131 

R GGGTTTTCGGCCTGAGAAGA  

  DGAT1 
diacylglycerol O-

acyltransferase 1 
NM_174693 

F TGGCCTTTCTCCTCGAGTCT  
214 

R TAGGTCAGGTTGTCGGGGTA  

  HMGCS2 

3-hydroxy-3-

methylglutaryl-CoA 

synthase 2 

 

NM_001045883.1 

F GCAACACTGACATTGAGGGC  
125 

R ACAGACCACCAGTGCATAGC  

  MTTP 
microsomal triglyceride 

transfer protein 
NM_001101834.1 

F GCTTCAGCTGCAATCTGGAC  
157 

R CACCGTGATGCCACCAGTTA  

  PPARα 
peroxisome proliferator 

activated receptor alpha 
NM_001034036.1 

F CCGAGGAGTCATCCAGCATC   
129 

R TCAGCCGAATCGTTCTCCTAAA  

Housekeeping  
  

 

  PGK1 phosphoglycerate kinase 1 NM_001034299.1 
F GAATGGGAAGCTTTTGCCCG 

176 
R AGCTCTAAACTGGCACCACC 

1Primer direction (F=Forward; R=Reverse). 
2Amplicon length in base pairs.  
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Table 5.2.  Postpartum plasma amino acid and organic acid concentrations (µM) for multiparous cows (n = 27) fed the control (CON) 

diet or the control diet plus RPC (CHO), RPM (MET), or both (CHO + MET)1, 2 

 Treatment  Week Postpartum  P-value 

Item CON CHO MET 

CHO + 

MET SEM 1 2 SEM CHO MET 

MET x 

CHO Week 

Alanine 234 194 215 216 17.4 196 228 9.18 0.38 0.67 0.42 <0.01 

Aspartate 4.63 3.90 4.44 4.36 0.35 4.30 4.36 0.20 0.22 0.71 0.33 0.80 

Glutamate‡‡ 34.8 30.5 36.5 34.2 2.29 33.6 34.4 1.24 0.13 0.26 0.63 0.55 

Glutamine 54.8 49.5 54.0 59.1 10.5 52.9 55.8 5.3 0.99 0.66 0.61 0.54 

Glycine 633 591 747 662 109 714 603 68.7 0.54 0.38 0.84 0.24 

Histidine 63.0 59.7 66.7 65.5 4.11 62.5 65.0 2.26 0.57 0.24 0.80 0.29 

Isoleucine† 196 198 224 179 19.7 195 204 12.3 0.26 0.79 0.22 0.56 

Leucine† 186 172 213 161 15.7 177 189 9.72 0.04 0.58 0.21 0.37 

Lysine 76.8 68.2 88.3 74.4 7.61 74.5 79.3 4.46 0.12 0.23 0.72 0.39 

Methionine 23.1 21.8 35.3 34.6 2.30 29.0 28.4 1.26 0.65 <0.01 0.90 0.68 

Phenylalanine 53.7 56.9 58.7 48.6 2.76 54.0 55.0 1.64 0.20 0.54 0.03 0.63 

Proline 99.8 89.2 100.1 95.8 8.63 91 102 4.55 0.38 0.68 0.72 0.02 

Serine†† 126 124 108 118 7.40 114 125 5.34 0.57 0.12 0.45 0.20 

Threonine 91.6 91.3 98.4 97.5 10.5 89.6 99.9 5.49 0.96 0.52 0.98 0.04 

Tyrosine 43.6 44.8 46.6 43.2 3.74 39.9 49.2 2.03 0.75 0.84 0.54 <0.01 

Valine†† 257 248 301 236 23.7 247 274 13.7 0.11 0.49 0.24 0.11 

BCAA3† 639 618 737 578 58.5 618 667 35.3 0.11 0.60 0.23 0.29 

EAA3 973 908 1120 927 77.0 958 1006 48.2 0.10 0.30 0.43 0.41 
1Prepartum, cows were supplemented with 60 g/d RPC (ReaShure®, Balchem Corp., New Hampton, NY; CHO), 12 g/d RPM (Smartamine® M; Adisseo USA, 

Inc., Alpharetta, GA; MET), or both (CHO + MET).  Postpartum, cows were supplemented with 60 g/d RPC, 18 g/d RPM, or both.  Cows were monitored and 

treatments were applied from 21 days before expected calving through 35 DIM. 
2Blood samples were obtained during week 1 and week 2 postpartum. 
3BCAA = branched chain AA; EAA = essential AA. 
††MET x Week interaction, P ≤ 0.05; †MET x Week interaction, P ≤ 0.10; ‡‡MET x CHO x Week interaction, P ≤ 0.05. 
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Table 5.3. Postpartum plasma amino acid concentrations (µM) for primiparous cows (n = 24) fed the control (CON) diet or the control 

diet plus RPC (CHO), RPM (MET), or both (CHO + MET)1, 2 

 Treatment  Week Postpartum  P-value 

Item CON CHO MET 

CHO + 

MET SEM 1 2 SEM CHO MET 

MET x 

CHO Week 

Alanine 191 213 209 209 15.2 196 215 8.98 0.44 0.63 0.45 0.14 

Aspartate 4.96 5.51 5.50 4.69 0.42 5.15 4.94 0.22 0.78 0.32 0.24 0.42 

Glutamate 45.1 46.4 47.2 45.2 2.83 47 45 1.68 0.90 0.86 0.54 0.39 

Glutamine** 72.4 78.1 77.3 87.3 7.4 81 77 4.7 0.25 0.33 0.76 0.50 

Glycine* 725 989 638 562 166 757 700 93.5 0.53 0.12 0.26 0.64 

Histidine 64.9 67.5 63.7 64.8 3.11 64.5 65.9 2.05 0.52 0.50 0.80 0.64 

Isoleucine 161 171 184 176 16.1 163 183 9.05 0.95 0.35 0.52 0.08 

Leucine 158 164 170 159 15.1 155 171 8.17 0.88 0.79 0.53 0.09 

Lysine 63.5 71.0 74.1 76.6 9.56 65.7 76.9 4.74 0.55 0.32 0.78 0.04 

Methionine 22.2 24.1 36.2 35.3 2.21 29.4 29.5 1.15 0.80 <0.01 0.49 0.90 

Phenylalanine 51.3 56.2 53.1 49.8 2.69 53.3 51.9 1.67 0.75 0.35 0.12 0.55 

Proline 87.2 96.3 88.2 94.2 7.06 86.2 96.8 3.86 0.26 0.94 0.81 0.02 

Serine 113 127 106 95 7.85 111 110 4.72 0.90 0.01 0.08 0.96 

Threonine 75.8 77.6 70.7 69.7 7.0 64.7 82.2 3.90 0.95 0.31 0.84 <0.01 

Tyrosine† 41.6 41.5 40.3 34.6 3.69 35.8 43.2 2.15 0.40 0.23 0.40 0.01 

Valine 225 219 231 216 18.5 205 241 9.92 0.55 0.93 0.77 <0.01 

BCAA3 543 556 585 552 48.5 523 595 26.3 0.82 0.67 0.61 0.03 

EAA3 829 861 895 909 96.7 820 927 46.0 0.80 0.48 0.91 0.04 
1Prepartum, cows were supplemented with 60 g/d RPC (ReaShure®, Balchem Corp., New Hampton, NY; CHO), 12 g/d RPM (Smartamine® M; Adisseo USA, 

Inc., Alpharetta, GA; MET), or both (CHO + MET).  Postpartum, cows were supplemented with 60 g/d RPC, 18 g/d RPM, or both.  Cows were monitored and 

treatments were applied from 21 days before expected calving through 35 DIM. 
2Blood samples were obtained during week 1 and week 2 postpartum. 
3BCAA = branched chain AA; EAA = essential AA. 
**CHO x Week interaction, P ≤ 0.05; *CHO x Week interaction, P ≤ 0.10; †MET x Week interaction, P ≤ 0.10. 
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Table 5.4.  Postpartum plasma organic acid concentrations (µM) for multiparous (n = 27) and primiparous cows (n = 24) fed the 

control (CON) diet or the control diet plus RPC (CHO), RPM (MET), or both (CHO + MET)1, 2 

 Treatment  Week Postpartum  P-value 

Item CON CHO MET 

CHO + 

MET SEM 1 2 SEM CHO MET 

MET x 

CHO Week 

Multiparous             
  Citrate 667 619 709 818 76.0 674 733 39.0 0.67 0.11 0.29 0.10 

  Fumarate‡‡ 11.9 12.0 12.2 12.2 0.67 12.1 12.1 0.37 0.92 0.73 0.96 0.94 

  Lactate 1053 570 1089 671 181 936 756 102 <0.01 0.64 0.86 0.25 

  Malate‡ 4.27 3.91 4.08 3.85 0.26 4.12 3.94 0.15 0.27 0.61 0.80 0.34 

  Oxaloacetate†† 42.0 36.1 55.8 29.8 6.58 37.6 44.2 3.45 0.01 0.52 0.14 0.11 

  Pyruvate 66.4 36.5 50.5 50.4 7.20 52.3 49.7 4.24 0.02 0.88 0.04 0.68 

  Succinate 70.4 69.3 70.0 69.7 0.71 70.0 69.8 0.42 0.30 0.99 0.53 0.65 

  a-ketoglutarate 10.15 9.65 9.21 9.63 0.57 10.0 9.3 0.28 0.94 0.37 0.37 0.03 

Primiparous             

  Citrate 710 729 787 725 50 707 768 26.6 0.64 0.45 0.41 0.04 

  Fumarate 10.4 12.1 10.7 11.8 0.65 11.4 11.1 0.28 0.02 0.98 0.58 0.31 

  Lactate 903 654 601 752 152 743 712 82.1 0.73 0.47 0.17 0.74 

  Malate 3.59 4.26 3.62 4.13 0.32 4.04 3.76 0.15 0.05 0.84 0.75 0.08 

  Oxaloacetate† 41.5 45.8 43.9 39.9 6.45 39.1 46.4 3.91 0.98 0.77 0.49 0.18 

  Pyruvate 51.9 46.6 42.7 51.9 3.72 51.0 45.6 2.71 0.59 0.58 0.05 0.22 

  Succinate* 70.8 71.2 70.6 70.0 0.53 70.6 70.7 0.28 0.82 0.16 0.30 0.88 

  a-ketoglutarate 10.10 11.17 10.82 10.60 0.95 11.1 10.3 0.38 0.63 0.92 0.40 <0.01 
1Prepartum, cows were supplemented with 60 g/d RPC (ReaShure®, Balchem Corp., New Hampton, NY; CHO), 12 g/d RPM (Smartamine® M; Adisseo USA, 

Inc., Alpharetta, GA; MET), or both (CHO + MET).  Postpartum, cows were supplemented with 60 g/d RPC, 18 g/d RPM, or both.  Cows were monitored and 

treatments were applied from 21 days before expected calving through 35 DIM. 
2Blood samples were obtained during week 1 and week 2 postpartum. 
*CHO x Week interaction, P ≤ 0.10; ††MET x Week interaction, P ≤ 0.05; †MET x Week interaction, P ≤ 0.10; ‡‡MET x CHO x Week interaction, P ≤ 0.05; ‡MET 

x CHO x Week interaction, P ≤ 0.10.  
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Table 5.5. Postpartum plasma choline metabolite concentrations (µM) for multiparous (n = 27) and primiparous cows (n = 24) fed the 

control (CON) diet or the control diet plus RPC (CHO), RPM (MET), or both (CHO + MET)1, 2 

 Treatment  Week Postpartum  P-value 

Item3 CON CHO MET 

CHO + 

MET SEM 1 2 SEM CHO MET 

MET x 

CHO Week 

Multiparous             

  Betaine 49.7 41.0 42.3 44.8 4.75 49.7 39.2 2.41 0.49 0.69 0.21 <0.01 

  Free Choline 4.27 4.85 4.10 3.63 0.32 4.54 3.88 0.20 0.85 0.03 0.11 0.03 

  GPC 11.9 20.6 11.5 17.2 3.79 11.2 19.4 2.55 0.07 0.60 0.69 0.03 

  SM 325 280 329 282 29.6 281 327 14 0.10 0.91 0.99 <0.01 

  Total LPC 249 319 245 255 32.0 217 317 21.9 0.23 0.28 0.36 <0.01 

  Total PC 2328 2778 2687 2389 276 2185 2906 163 0.78 0.96 0.18 <0.01 

Primiparous             

  Betaine 52.6 51.2 45.8 48.3 6.50 52.7 46.2 3.20 0.92 0.42 0.75 0.03 

  Free Choline 4.18 3.85 4.68 4.29 0.33 4.34 4.16 0.20 0.26 0.17 0.92 0.48 

  GPC‡ 10.5 14.0 13.6 14.9 2.59 13.1 13.4 1.92 0.36 0.46 0.69 0.90 

  SM 298 298 308 303 26.61 261 343 13 0.92 0.77 0.93 <0.01 

  Total LPC* 230 269 246 226 25.13 219 267 14.9 0.67 0.57 0.22 0.02 

  Total PC†† 2574 2337 2316 2151 221 1923 2766 124 0.34 0.29 0.86 <0.01 
1Prepartum, cows were supplemented with 60 g/d RPC (ReaShure®, Balchem Corp., New Hampton, NY; CHO), 12 g/d RPM (Smartamine® M; Adisseo USA, 

Inc., Alpharetta, GA; MET), or both (CHO + MET).  Postpartum, cows were supplemented with 60 g/d RPC, 18 g/d RPM, or both.  Cows were monitored and 

treatments were applied from 21 days before expected calving through 35 DIM. 
2Blood samples were obtained during week 1 and week 2 postpartum.  
3GPC = glycerophosphocholine; SM = sphingomyelin; LPC = lysophosphatidylcholine; PC = phosphatidylcholine. 
*CHO x Week interaction, P ≤ 0.10. 
††MET x Week interaction, P ≤ 0.05. 
‡MET x CHO x Week interaction, P ≤ 0.10. 
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Table 5.6. Milk choline metabolite yields (µmol/d) for multiparous (n = 27) and primiparous cows (n = 24) fed the control (CON) diet 

or the control diet plus RPC (CHO), RPM (MET), or both (CHO + MET)1, 2 

 Treatment  Week Postpartum  P-value 

Item3 CON CHO MET 

CHO + 

MET SEM 1 2 SEM CHO MET 

MET x 

CHO Week 

Multiparous             

  Betaine** 3957 3437 3993 2982 377 4270 2914 213 0.05 0.57 0.50 <0.01 

  Free Choline 2749 1923 1480 1221 754 1515 2172 361 0.45 0.18 0.70 <0.01 

  GPC† 74791 74847 75579 80981 4884 71383 81716 2992 0.56 0.47 0.57 0.01 

  SM 1271 1444 1363 1277 91 1395 1283 60.2 0.62 0.67 0.15 0.19 

  Total LPC 101 99 107 107 10.2 93.6 114 5.98 0.96 0.47 0.94 <0.01 

  Total PC 4211 4636 3839 4491 424 4108 4480 293 0.20 0.53 0.78 0.38 

Primiparous             

  Betaine 2497 3239 2534 2815 294 3399 2143 173 0.09 0.50 0.43 <0.01 

  Free Choline 1061 1212 1049 1158 104 804 1435 67.0 0.21 0.74 0.83 <0.01 

  GPC 45550 44377 43049 49441 4143 43457 47751 2323 0.52 0.75 0.36 0.07 

  SM*‡ 910 948 855 876 87 890 904 48.5 0.73 0.47 0.92 0.77 

  Total LPC* 71.7 101 84.1 73.2 9.1 73.8 91.2 5.13 0.31 0.39 0.04 <0.01 

  Total PC 2887 2730 2966 2354 391 2658 2811 243 0.32 0.70 0.55 0.61 
1Prepartum, cows were supplemented with 60 g/d RPC (ReaShure®, Balchem Corp., New Hampton, NY; CHO), 12 g/d RPM (Smartamine® M; Adisseo USA, 

Inc., Alpharetta, GA; MET), or both (CHO + MET).  Postpartum, cows were supplemented with 60 g/d RPC, 18 g/d RPM, or both.  Cows were monitored and 

treatments were applied from 21 days before expected calving through 35 DIM. 
2Milk samples were obtained during week 1 and week 2 postpartum.  
3GPC = glycerophosphocholine; SM = sphingomyelin; LPC = lysophosphatidylcholine; PC = phosphatidylcholine. 
**CHO x Week interaction, P ≤ 0.05. 
*CHO x Week interaction, P ≤ 0.10. 
†MET x Week interaction, P ≤ 0.10. 
‡MET x CHO x Week interaction, P ≤ 0.10. 
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Table 5.7.  Postpartum covariate-adjusted gene expression fold-changes relative to CON 

for multiparous cows (n = 20) fed the control (CON) diet or the control diet plus RPC 

(CHO), RPM (MET), or both (CHO + MET)1, 2 

 Treatment  P-value 

Gene 

Symbol3 CON CHO MET 

CHO + 

MET SEM CHO MET 

MET x 

CHO 

Choline & Methionine Metabolism 

  BHMT 0.94 2.10 1.07 1.03 0.36 0.13 0.17 0.09 

  GSS 1.52 1.73 1.59 1.51 0.31 0.72 0.69 0.43 

  MTR 1.01 1.38 0.82 0.79 0.26 0.51 0.14 0.42 

  PCYT1A 0.96 1.65 0.65 0.66 0.20 0.10 <0.01 0.10 

  PEMT 1.60 2.01 1.80 1.66 0.46 0.65 0.79 0.32 

Lipid Metabolism 

  CPT1A 1.04 1.37 1.01 0.66 0.26 0.97 0.16 0.18 

  DGAT1 1.01 1.21 0.71 0.71 0.22 0.64 0.08 0.66 

  HMGCS2 1.04 0.52 0.82 0.51 0.25 0.10 0.64 0.69 

  MTTP 1.00 1.23 1.01 0.88 0.25 0.82 0.48 0.44 

  PPARα 0.93 0.63 1.16 0.72 0.20 0.08 0.43 0.75 
1Prepartum, cows were supplemented with 60 g/d RPC (ReaShure®, Balchem Corp., New Hampton, NY; 

CHO), 12 g/d RPM (Smartamine® M; Adisseo USA, Inc., Alpharetta, GA; MET), or both (CHO + MET).  

Postpartum, cows were supplemented with 60 g/d RPC, 18 g/d RPM, or both.  Cows were monitored and 

treatments were applied from 21 days before expected calving through 35 DIM. 
2Prepartum (-21 d relative to calving) gene expression fold-change was used as a covariate in the statistical 

model. 
3BHMT = betaine-homocysteine S-methyltransferase; GSS = glutathione synthetase; MTR = 5-

methyltetrahydrofolate-homocysteine methyltransferase; PCYT1A = phosphate cytidylyltransferase 1, 

choline, α; PEMT = phosphatidylethanolamine N-methyltransferase; CPT1A = carnitine palmitoyltransferase 

1A; DGAT1 = diacylglycerol O-acyltransferase 1; HMGCS2 = 3-hydroxy-3methylglutaryl-CoA synthase 2; 

MTTP = microsomal triglyceride transfer protein; PPARα = peroxisome proliferator activated receptor α.    
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Table 5.S1. Postpartum plasma concentrations (µM) of lysophosphatidylcholine (LPC) and phosphatidylcholine (PC) species for 

multiparous cows (n = 27) fed control (CON) diet or control diet plus RPC (CHO), RPM (MET), or both (CHO + MET)1, 2 

 Treatment  Week Postpartum  P-value 

Item CON CHO MET 

CHO + 

MET SEM 1 2 SEM CHO MET 

MET x 

CHO Week 

Lysophosphatidylcholine Species             

  LPC 16:0 68.1 85.2 70.0 69.7 8.32 65.4 81.1 4.64 0.27 0.37 0.26 0.02 

  LPC 18:2 128 169 124 133 21.1 108 169 12.6 0.21 0.30 0.40 <0.01 

  LPC 18:1 4.28 6.43 4.94 5.03 0.63 4.18 6.16 0.39 0.07 0.53 0.10 <0.01 

  LPC 18:0 43.8 56.0 43.8 50.0 6.75 40.4 55.0 4.00 0.25 0.81 0.81 <0.01 

Phosphatidylcholine Species             

  PC 16:0/16:1 16.8 15.9 17.4 14.2 2.64 14.2 17.9 1.43 0.40 0.83 0.63 0.03 

  PC 16:0/16:0 14.3 16.7 16.0 12.4 2.09 12.5 17.1 1.27 0.78 0.49 0.14 0.02 

  PC 16:0/18:2‡ 588 732 671 526 69.8 544 715 35.1 0.99 0.35 0.03 <0.01 

  PC 16:0/18:1 274 288 269 251 28.1 251 290 15.4 0.94 0.44 0.54 0.04 

  PC 16:0/20:5,16:1/20:4 5.16 6.47 5.73 5.83 1.09 5.23 6.37 0.66 0.49 0.97 0.55 0.22 

  PC 16:0/20:4 101 130 113 95 15.9 97 122 9.04 0.70 0.45 0.12 0.05 

  PC 16:0/20:3 181 216 237 201 26.0 177 240 13.8 0.98 0.42 0.16 <0.01 

  PC 18:0/18:2,18:1/18:1 583 712 719 631 75.1 552 771 41.3 0.78 0.69 0.13 <0.01 

  PC 18:0/18:1 211 217 221 235 26.9 191 250 15.4 0.69 0.59 0.87 <0.01 

  PC 16:0/22:6,18:1/22:5,18:2/20:4 10.8 13.7 13.4 11.7 2.27 11.5 13.3 1.31 0.76 0.91 0.28 0.33 

  PC 18:1/20:4,18:0/20:5,16:0/22:5 67.4 83.6 80.3 73.9 13.5 67.8 84.8 7.74 0.69 0.89 0.37 0.11 

  PC 18:0/20:4 132 148 164 147 29.1 121 174 17.7 0.97 0.56 0.55 0.05 

  PC 18:0/20:3 99.4 92.4 141 114 25.8 85 139 15.0 0.48 0.20 0.68 <0.01 

  PC 18:1/22:6 2.88 3.88 3.36 3.26 0.52 2.99 3.70 0.34 0.37 0.89 0.28 0.14 

  PC 18:0/22:6,18:1/22:5 10.3 12.5 11.2 11.9 2.49 10.2 12.8 1.50 0.51 0.96 0.75 0.22 



184 

 

  PC 18:0/22:5 39.7 48.6 48.0 47.5 9.36 37.3 54.7 5.75 0.62 0.66 0.59 0.05 
1Prepartum, cows were supplemented with 60 g/d RPC (ReaShure®, Balchem Corp., New Hampton, NY; CHO), 12 g/d RPM (Smartamine® M; Adisseo USA, 

Inc., Alpharetta, GA; MET), or both (CHO + MET).  Postpartum, cows were supplemented with 60 g/d RPC, 18 g/d RPM, or both.  Cows were monitored and 

treatments were applied from 21 days before expected calving through 35 DIM. 
2Blood samples were obtained during week 1 and week 2 postpartum.  
‡MET x CHO x Week interaction, P ≤ 0.10.  
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Table 5.S2. Postpartum plasma concentrations (µM) of lysophosphatidylcholine (LPC) and phosphatidylcholine (PC) species for 

primiparous cows (n = 24) fed control (CON) diet or control diet plus RPC (CHO), RPM (MET), or both (CHO + MET)1, 2 

 Treatment  Week Postpartum  P-value 

Item CON CHO MET 

CHO + 

MET SEM 1 2 SEM CHO MET 

MET x 

CHO Week 

Lysophosphatidylcholine Species             

  LPC 16:0** 73.3 79.6 73.0 68.1 6.12 68.6 78.4 4.03 0.89 0.32 0.33 0.11 

  LPC 18:2** 102 121 120 111 12.8 98 129 7.7 0.70 0.77 0.26 <0.01 

  LPC 18:1* 3.94 4.80 4.29 4.08 0.48 3.65 4.91 0.29 0.46 0.69 0.24 <0.01 

  LPC 18:0** 46.8 51.5 52.7 43.1 5.70 43.1 53.9 3.17 0.64 0.81 0.19 <0.01 

Phosphatidylcholine Species             

  PC 16:0/16:1†† 16.6 19.5 16.8 15.1 2.69 14.4 19.7 1.41 0.81 0.41 0.35 <0.01 

  PC 16:0/16:0†† 14.5 15.8 14.3 12.1 2.01 11.7 16.7 1.12 0.80 0.31 0.38 <0.01 

  PC 16:0/18:2†† 558 541 518 492 58.8 439 615 30.1 0.70 0.42 0.93 <0.01 

  PC 16:0/18:1† 307 275 303 276 32.2 261 320 16.9 0.33 0.98 0.93 <0.01 

  PC 16:0/20:5,16:1/20:4 5.51 5.21 5.29 3.42 1.02 4.28 5.43 0.57 0.25 0.33 0.40 0.11 

  PC 16:0/20:4† 99 100 90 84 11.2 77 110 6.63 0.80 0.25 0.76 <0.01 

  PC 16:0/20:3†† 204 182 190 176 21.8 149 227 11.5 0.39 0.61 0.84 <0.01 

  PC 18:0/18:2,18:1/18:1†† 657 554 583 551 64.4 466 707 34.1 0.27 0.52 0.55 <0.01 

  PC 18:0/18:1†† 289 227 259 238 23.2 216 290 13.4 0.07 0.66 0.36 <0.01 

  PC 16:0/22:6,18:1/22:5,18:2/20:4 16.9 14.2 15.8 12.3 2.49 12.6 17.0 1.43 0.19 0.52 0.85 0.02 

  PC 18:1/20:4,18:0/20:5,16:0/22:5 87.2 86.8 69.7 64.1 8.46 62.8 91.1 6.11 0.70 0.03 0.74 <0.01 

  PC 18:0/20:4† 135 123 128 104 21.1 99 145 12.3 0.37 0.52 0.76 <0.01 

  PC 18:0/20:3†† 99.8 89.8 89 79 16.1 69 110 9.0 0.51 0.47 1.00 <0.01 

  PC 18:1/22:6 4.27 3.51 3.24 2.84 0.35 2.85 4.08 0.26 0.09 0.03 0.60 <0.01 

  PC 18:0/22:6,18:1/22:5 20.6 19.2 18.6 12.6 2.69 14.7 20.8 1.75 0.15 0.11 0.37 0.03 
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  PC 18:0/22:5 62.0 58.7 53.1 33.7 9.36 41.7 62.0 5.66 0.19 0.08 0.35 0.02 
1Prepartum, cows were supplemented with 60 g/d RPC (ReaShure®, Balchem Corp., New Hampton, NY; CHO), 12 g/d RPM (Smartamine® M; Adisseo USA, Inc., Alpharetta, GA; 

MET), or both (CHO + MET).  Postpartum, cows were supplemented with 60 g/d RPC, 18 g/d RPM, or both.  Cows were monitored and treatments were applied from 21 days 

before expected calving through 35 DIM. 
2Blood samples were obtained during week 1 and week 2 postpartum.  
**CHO x Week interaction, P ≤ 0.05; *CHO x Week interaction, P ≤ 0.10; ††MET x Week interaction, P ≤ 0.05; †MET x Week interaction, P ≤ 0.10; ‡MET x CHO x Week interaction, 

P ≤ 0.10.  
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Table 5.S3. Milk yields (µmol/d) of lysophosphatidylcholine (LPC) and phosphatidylcholine (PC) species for multiparous cows (n = 

27) fed the control (CON) diet or the control diet plus RPC (CHO), RPM (MET), or both (CHO + MET)1, 2 

 Treatment  Week Postpartum  P-value 

Item CON CHO MET 

CHO + 

MET SEM 1 2 SEM CHO MET 

MET x 

CHO Week 

Lysophosphatidylcholine Species             

  LPC 16:0 79.2 76.3 82.1 81.7 8.73 72.9 86.7 5.03 0.84 0.63 0.88 0.02 

  LPC 18:2 9.9 8.0 10.7 8.99 1.13 7.5 11.3 0.68 0.11 0.44 0.90 <0.01 

  LPC 18:1 1.55 2.08 1.76 1.63 0.20 1.42 2.10 0.12 0.32 0.55 0.11 <0.01 

  LPC 18:0 10.6 13.6 13.1 14.9 1.07 12.5 13.7 0.75 0.03 0.08 0.60 0.28 

Phosphatidylcholine Species             

  PC 16:0/16:1 164 169 144 167 17.6 140 181 12.8 0.43 0.51 0.60 0.04 

  PC 16:0/16:0 571 574 540 585 55.0 511 624 39.9 0.65 0.85 0.70 0.07 

  PC 16:0/18:2 474 568 442 480 54 479 504 34.8 0.22 0.26 0.60 0.59 

  PC 16:0/18:1 1309 1512 1202 1371 136 1307 1390 96.2 0.17 0.35 0.90 0.56 

  PC 16:0/20:5,16:1/20:4 0.12 0.24 0.15 0.39 0.07 0.33 0.12 0.05 0.01 0.18 0.32 0.02 

  PC 16:0/20:4 147 160 137 138 13.9 142 149 9.81 0.59 0.25 0.63 0.60 

  PC 16:0/20:3 359 407 358 391 39.7 370 387 26.8 0.30 0.83 0.84 0.64 

  PC 18:0/18:2,18:1/18:1 767 840 676 800 84.8 766 776 55.7 0.24 0.43 0.76 0.89 

  PC 18:0/18:1 262 304 263 324 28.2 304 273 20.1 0.07 0.72 0.73 0.31 

  PC 16:0/22:6,18:1/22:5,18:2/20:4 14.1 17.0 15.5 18.4 1.93 17.2 15.3 1.42 0.14 0.46 1.00 0.39 

  PC 18:1/20:4,18:0/20:5,16:0/22:5 45.3 52.2 45.7 55.1 5.12 51.7 47.5 3.80 0.11 0.74 0.80 0.48 

  PC 18:0/20:4 29.3 35.1 34.8 41.2 4.12 37.6 32.7 2.80 0.14 0.16 0.94 0.22 

  PC 18:0/20:3 10.6 12.6 13.1 14.5 1.65 13.7 11.7 1.02 0.29 0.17 0.85 0.11 

  PC 18:1/22:6** 1.66 2.41 2.56 4.02 0.45 2.79 2.54 0.30 0.02 0.01 0.42 0.56 

  PC 18:0/22:6,18:1/22:5 3.36 4.64 4.16 6.82 0.67 5.23 4.26 0.52 <0.01 0.03 0.29 0.24 



188 

 

  PC 18:0/22:5†† 2.97 4.40 4.20 6.61 0.63 5.64 3.45 0.46 <0.01 0.01 0.43 <0.01 
1Prepartum, cows were supplemented with 60 g/d RPC (ReaShure®, Balchem Corp., New Hampton, NY; CHO), 12 g/d RPM (Smartamine® M; Adisseo USA, 

Inc., Alpharetta, GA; MET), or both (CHO + MET).  Postpartum, cows were supplemented with 60 g/d RPC, 18 g/d RPM, or both.  Cows were monitored and 

treatments were applied from 21 days before expected calving through 35 DIM. 
2Milk samples were obtained during week 1 and week 2 postpartum.  
**CHO x Week interaction, P ≤ 0.05; ††MET x Week interaction, P ≤ 0.05; †MET x Week interaction, P ≤ 0.10.  
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Table 5.S4. Milk yields (µmol/d) of lysophosphatidylcholine (LPC) and phosphatidylcholine (PC) species for primiparous cows (n = 

24) fed the control (CON) diet or the control diet plus RPC (CHO), RPM (MET), or both (CHO + MET)1, 2 

 Treatment  Week Postpartum  P-value 

Item CON CHO MET 

CHO + 

MET SEM 1 2 SEM CHO MET 

MET x 

CHO Week 

Lysophosphatidylcholine Species             

  LPC 16:0* 58.1 81.5 67.1 57.7 7.87 59.7 72.5 4.4 0.97 0.35 0.05 <0.01 

  LPC 18:2‡‡ 4.59 5.38 4.88 5.39 0.58 4.15 5.97 0.31 0.27 0.80 0.81 <0.01 

  LPC 18:1 0.97 1.11 0.97 1.33 0.12 0.96 1.23 0.07 0.05 0.36 0.35 <0.01 

  LPC 18:0 8.9 12.9 10.7 8.3 1.30 9.34 11.1 0.74 0.53 0.28 0.02 0.03 

Phosphatidylcholine Species             

  PC 16:0/16:1 128 112 119 86.4 15.4 97.8 124 10.5 0.12 0.25 0.59 0.08 

  PC 16:0/16:0 378 366 380 294 53.1 324 385 35.2 0.35 0.49 0.48 0.22 

  PC 16:0/18:2 286 270 261 209 42.8 249 264 25.9 0.43 0.31 0.66 0.64 

  PC 16:0/18:1 916 899 930 752 137 852 896 85.1 0.47 0.62 0.55 0.68 

  PC 16:0/20:5,16:1/20:4 0.17 0.07 0.13 0.26 0.09 0.25 0.06 0.06 0.90 0.41 0.21 0.02 

  PC 16:0/20:4 79.7 78.4 81.0 65.3 12.8 75.1 77.1 7.69 0.50 0.64 0.57 0.82 

  PC 16:0/20:3 218 242 250 195 36.4 224 228 22.0 0.67 0.84 0.28 0.89 

  PC 18:0/18:2,18:1/18:1 538 540 608 478 81.6 557 525 49.9 0.43 0.96 0.41 0.59 

  PC 18:0/18:1 222 199 231 173 31.0 215 198 18.5 0.19 0.77 0.56 0.43 

  PC 16:0/22:6,18:1/22:5,18:2/20:4 9.6 10.6 12.7 9.59 2.09 11.3 9.9 1.23 0.60 0.60 0.32 0.33 

  PC 18:1/20:4,18:0/20:5,16:0/22:5 34.9 30.2 37.5 30.4 5.53 36.3 30.2 3.32 0.28 0.79 0.82 0.13 

  PC 18:0/20:4 21.7 20.5 24.9 19.2 3.65 23.6 19.5 2.21 0.34 0.80 0.53 0.14 

  PC 18:0/20:3 7.25 7.14 9.02 7.08 1.24 8.22 7.03 0.73 0.40 0.48 0.45 0.16 

  PC 18:1/22:6 2.48 2.58 3.42 2.45 0.68 3.03 2.44 0.40 0.52 0.55 0.43 0.19 

  PC 18:0/22:6,18:1/22:5 4.10 4.17 5.59 4.18 0.97 5.01 4.00 0.57 0.49 0.43 0.44 0.12 
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  PC 18:0/22:5 3.39 2.80 4.02 3.34 0.85 4.08 2.69 0.49 0.45 0.48 0.95 0.01 
1Prepartum, cows were supplemented with 60 g/d RPC (ReaShure®, Balchem Corp., New Hampton, NY; CHO), 12 g/d RPM (Smartamine® M; Adisseo USA, 

Inc., Alpharetta, GA; MET), or both (CHO + MET).  Postpartum, cows were supplemented with 60 g/d RPC, 18 g/d RPM, or both.  Cows were monitored and 

treatments were applied from 21 days before expected calving through 35 DIM. 
2Milk samples were obtained during week 1 and week 2 postpartum. 
*CHO x Week interaction, P ≤ 0.10; ‡‡MET x CHO x Week interaction, P ≤ 0.05; ‡MET x CHO x Week interaction, P ≤ 0.10.  
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Table 5.S5. Milk choline metabolite concentrations (µM) for multiparous cows (n = 27) fed the control (CON) diet or the control diet 

plus RPC (CHO), RPM (MET), or both (CHO + MET)1, 2 

 Treatment  Week Postpartum  P-value 

Item3 CON CHO MET 

CHO + 

MET SEM 1 2 SEM CHO MET 

MET x 

CHO Week 

Betaine†† 120 96 116 114 13.4 142 80 7.18 0.33 0.61 0.42 <0.01 

Free Choline 80.4 52.6 41.0 39.9 23.3 47.9 59.1 11.2 0.52 0.25 0.55 <0.01 

GPC 2221 2150 2115 2745 135 2372 2243 79.0 0.04 0.08 0.01 0.17 

SM** 38.1 41.2 37.7 47.0 3.64 47.1 34.8 1.91 0.09 0.44 0.38 <0.01 

Total LPC 2.95 2.76 2.94 3.66 0.26 3.09 3.07 0.14 0.29 0.09 0.08 0.86 

  LPC 16:0 2.32 2.12 2.25 2.79 0.22 2.41 2.34 0.12 0.43 0.17 0.09 0.54 

  LPC 18:2 0.29 0.22 0.30 0.30 0.03 0.24 0.31 0.02 0.28 0.14 0.25 0.01 

  LPC 18:1 0.046 0.056 0.049 0.053 0.005 0.045 0.056 0.003 0.12 0.96 0.47 0.02 

  LPC 18:0 0.32 0.38 0.36 0.52 0.03 0.42 0.37 0.02 <0.01 <0.01 0.17 0.08 

Total PC 125 131 107 162 16.5 141 122 9.28 0.07 0.70 0.14 0.07 

  PC 16:0/16:1 4.83 4.80 3.92 5.72 0.63 4.72 4.91 0.36 0.15 0.99 0.14 0.64 

  PC 16:0/16:0 16.7 16.3 14.9 20.2 1.91 17.1 16.9 1.13 0.20 0.58 0.13 0.88 

  PC 16:0/18:2† 14.0 16.2 12.4 17.8 2.22 16.4 13.8 1.21 0.09 1.00 0.46 0.03 

  PC 16:0/18:1 38.9 42.9 33.5 48.8 4.97 44.3 37.8 2.87 0.06 0.95 0.25 0.06 

  PC 16:0/20:5,16:1/20:4 0.004 0.007 0.005 0.016 0.0003 0.012 0.004 0.002 0.03 0.12 0.16 0.01 

  PC 16:0/20:4†† 4.31 4.52 3.89 5.14 0.61 4.85 4.08 0.34 0.22 0.86 0.38 0.04 

  PC 16:0/20:3 10.6 11.5 10.0 14.3 1.64 12.7 10.6 0.90 0.11 0.49 0.30 0.03 

  PC 18:0/18:2,18:1/18:1 23.0 23.9 19.0 29.4 3.33 26.3 21.2 1.80 0.09 0.82 0.15 <0.01 

  PC 18:0/18:1 7.88 8.79 7.37 11.8 1.17 10.5 7.46 0.66 0.03 0.27 0.13 <0.01 

  PC 16:0/22:6,18:1/22:5,18:2/20:4†† 0.43 0.49 0.45 0.69 0.09 0.60 0.43 0.05 0.09 0.20 0.29 <0.01 

  PC 18:1/20:4,18:0/20:5,16:0/22:5†† 1.38 1.49 1.30 2.03 0.22 1.79 1.31 0.13 0.06 0.29 0.16 <0.01 
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  PC 18:0/20:4†† 0.90 1.02 0.98 1.54 0.16 1.33 0.90 0.10 0.04 0.07 0.18 <0.01 

  PC 18:0/20:3†† 0.32 0.36 0.37 0.55 0.06 0.48 0.32 0.04 0.08 0.06 0.25 <0.01 

  PC 18:1/22:6†† 0.05 0.07 0.08 0.15 0.02 0.10 0.07 0.01 0.02 <0.01 0.12 0.03 

  PC 18:0/22:6,18:1/22:5† 0.11 0.14 0.12 0.25 0.03 0.19 0.12 0.02 <0.01 0.02 0.07 <0.01 

  PC 18:0/22:5†† 0.10 0.13 0.12 0.26 0.03 0.21 0.10 0.02 <0.01 0.01 0.09 <0.01 
1Prepartum, cows were supplemented with 60 g/d RPC (ReaShure®, Balchem Corp., New Hampton, NY; CHO), 12 g/d RPM (Smartamine® M; Adisseo USA, 

Inc., Alpharetta, GA; MET), or both (CHO + MET).  Postpartum, cows were supplemented with 60 g/d RPC, 18 g/d RPM, or both.  Cows were monitored and 

treatments were applied from 21 days before expected calving through 35 DIM. 
2Milk samples were obtained during week 1 and week 2 postpartum. 
3GPC = glycerophosphocholine; SM = sphingomyelin; LPC = lysophosphatidylcholine; PC = phosphatidylcholine. 
**CHO x Week interaction, P ≤ 0.05; ††MET x Week interaction, P ≤ 0.05; †MET x Week interaction, P ≤ 0.10.  
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Table 5.S6. Milk choline metabolite concentrations (µM) for primiparous cows (n = 24) fed the control (CON) diet or the control diet 

plus RPC (CHO), RPM (MET), or both (CHO + MET)1, 2 

 Treatment  Week Postpartum  P-value 

Item3 CON CHO MET 

CHO + 

MET SEM 1 2 SEM CHO MET 

MET x 

CHO Week 

Betaine 122 133 124 136 21.84 166 92 11.8 0.60 0.88 0.98 <0.01 

Free Choline 51.7 48.0 49.6 47.3 5.76 38.8 59.5 3.35 0.60 0.80 0.89 <0.01 

GPC‡ 2174 1778 1994 2153 112 2095 1955 71.4 0.28 0.38 0.02 0.15 

SM‡ 45.3 38.1 40.1 39.1 4.77 43.8 37.5 2.60 0.38 0.66 0.51 0.01 

Total LPC 3.46 4.12 3.85 3.21 0.44 3.54 3.78 0.24 0.99 0.55 0.15 0.28 

  LPC 16:0 2.80 3.33 3.07 2.56 0.38 2.86 3.02 0.21 0.99 0.51 0.18 0.40 

  LPC 18:2 0.22 0.22 0.21 0.23 0.02 0.20 0.25 0.01 0.87 0.76 0.83 <0.01 

  LPC 18:1 0.045 0.044 0.045 0.056 0.004 0.045 0.050 0.003 0.25 0.16 0.16 0.14 

  LPC 18:0 0.44 0.53 0.49 0.36 0.07 0.45 0.46 0.036 0.72 0.35 0.11 0.70 

Total PC 145 108 137 107 17.7 131 118 10.5 0.07 0.79 0.82 0.30 

  PC 16:0/16:1 6.53 4.39 5.43 3.75 0.73 4.88 5.17 0.49 0.01 0.22 0.74 0.68 

  PC 16:0/16:0 18.8 14.5 17.3 13.1 2.24 16.0 15.3 1.49 0.06 0.51 0.96 0.99 

  PC 16:0/18:2 14.6 10.6 12.0 9.8 2.17 12.4 11.1 1.25 0.15 0.42 0.68 0.32 

  PC 16:0/18:1 45.9 35.5 43.0 34.3 6.46 41.9 37.4 3.81 0.14 0.74 0.89 0.30 

  PC 16:0/20:5,16:1/20:4 0.010 0.003 0.006 0.013 0.006 0.013 0.003 0.004 1.00 0.57 0.23 0.03 

  PC 16:0/20:4 4.07 3.09 3.73 2.94 0.59 3.70 3.22 0.35 0.14 0.67 0.87 0.25 

  PC 16:0/20:3 11.0 9.6 11.4 8.8 1.55 11.0 9.4 0.93 0.19 0.89 0.68 0.18 

  PC 18:0/18:2,18:1/18:1 27.1 21.4 28.1 22.1 3.65 27.3 22.0 2.16 0.11 0.80 0.96 0.04 

  PC 18:0/18:1 11.4 7.94 10.67 7.98 1.53 10.59 8.38 0.87 0.06 0.83 0.81 0.02 

  PC 16:0/22:6,18:1/22:5,18:2/20:4 0.50 0.43 0.58 0.43 0.10 0.55 0.42 0.06 0.26 0.67 0.66 0.03 

  PC 18:1/20:4,18:0/20:5,16:0/22:5 1.78 1.23 1.74 1.37 0.28 1.77 1.28 0.16 0.10 0.86 0.74 <0.01 
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  PC 18:0/20:4 1.12 0.84 1.14 0.86 0.18 1.16 0.82 0.11 0.13 0.90 0.99 <0.01 

  PC 18:0/20:3 0.37 0.29 0.41 0.32 0.06 0.40 0.30 0.03 0.16 0.53 0.90 <0.01 

  PC 18:1/22:6 0.13 0.11 0.15 0.11 0.03 0.14 0.10 0.02 0.31 0.65 0.69 0.04 

  PC 18:0/22:6,18:1/22:5 0.21 0.17 0.26 0.19 0.05 0.24 0.17 0.03 0.25 0.56 0.80 0.01 

  PC 18:0/22:5 0.19 0.12 0.19 0.15 0.05 0.20 0.12 0.03 0.27 0.72 0.73 <0.01 
1Prepartum, cows were supplemented with 60 g/d RPC (ReaShure®, Balchem Corp., New Hampton, NY; CHO), 12 g/d RPM (Smartamine® M; Adisseo USA, 

Inc., Alpharetta, GA; MET), or both (CHO + MET).  Postpartum, cows were supplemented with 60 g/d RPC, 18 g/d RPM, or both.  Cows were monitored and 

treatments were applied from 21 days before expected calving through 35 DIM. 
2Milk samples were obtained during week 1 and week 2 postpartum. 
3GPC = glycerophosphocholine; SM = sphingomyelin; LPC = lysophosphatidylcholine; PC = phosphatidylcholine. 
‡MET x CHO x Week interaction, P ≤ 0.10.
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Figure 5.1. Relative postpartum hepatic mRNA expression of genes related to Met and 

choline metabolism of multiparous cows (n = 20) fed the control (CON) diet or the control 

diet plus RPC (60 g/d; CHO), RPM (12 g/d prepartum, 18 g/d postpartum; MET), or both 

(CHO + MET) from samples taken ~7 d after calving.  Data are expressed as covariate-

adjusted fold-changes relative to the CON treatment.  For both genes, MET x CHO tended 

to be significant (P = 0.09 and P = 0.10, respectively). 
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Figure 5.2. Relative postpartum hepatic mRNA expression of genes related to lipid 

metabolism of multiparous cows (n = 20) fed the control (CON) diet or the control diet plus 

RPC (60 g/d; CHO), RPM (12 g/d prepartum, 18 g/d postpartum; MET), or both (CHO + 

MET) from samples taken ~7 d after calving.  Data are expressed as covariate-adjusted fold-

changes relative to the CON treatment.  The main effect of MET tended to be significant (P 

= 0.08) for DGAT1.  The main effect of CHO tended to be significant for PPARα and 

HMGCS2 (P = 0.08 and P = 0.10, respectively).    
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CHAPTER 6: SUMMARY AND FUTURE DIRECTIONS  

The first objective of this work was to identify blood and milk markers that are 

responsive to post-ruminal choline supplied via an abomasal infusion and rumen-protected 

choline (RPC).  Results from the first study (Chapter 3) provide additional support for the 

use of betaine and free choline in blood and milk as indicators of post-ruminal choline 

supply; however, these markers were not affected by feeding RPC, even at a very high 

feeding rate (>100 g/d choline chloride).  This suggested that either choline chloride supplied 

as RPC is absorbed differently than when it is supplied as an abomasal infusion or that the 

RPC product is over-protected, such that it is unavailable to the cow post-ruminally.  It is 

likely that both scenarios contribute to the observations of the first study.  Because RPC has 

been shown to elicit physiological effects in several different studies, both in feed-restricted 

cows and lactating cows (Chapters 4 and 5), it is unreasonable to suggest that the RPC was 

completely unavailable to the cow.  Perhaps the protective coating of RPC is broken down 

slowly, such that its release into the small intestine is delayed, and subsequent absorption 

efficiency is reduced.    

The second objective of this work was to determine the effects of providing rumen-

protected Met (RPM) and RPC on production, hepatic gene expression, and indicators of 

choline and amino acid metabolism of periparturient dairy cows.  Results from the third 

study utilizing periparturient cows (Chapter 4) suggest that RPM and RPC affect milk 

production responses in different ways, and that these effects vary depending on the age of 

the cow.  Primiparous cows responded more favorably to RPC, where milk yield was 

increased.  In contrast, positive responses caused by RPM for multiparous cows manifested 

as increases in milk component concentrations and yield, as well as fat-corrected milk.  
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These results suggest that the physiological state as well as the magnitude of the choline or 

Met deficiency are likely important factors that determine how cows respond to 

supplemental choline or Met.  The absence of a synergistic effect when both RPC and RPM 

were supplemented conflicts with the hypothesis that providing these two nutrients together 

during the periparturient period augments production responses. 

Both RPM and RPC caused slight changes in the blood AA and organic acid profile, 

and RPM, but not RPC, increased blood Met concentrations for both primi- and multiparous 

cows (Chapter 5).  Interestingly, RPC consistently reduced circulating lactate 

concentrations, which could be indicative of a choline-induced modification of the Cori 

Cycle.  Alterations in blood choline metabolites were also apparent for both RPM and RPC 

which supports the hypothesis that both RPM and RPC have effects on choline metabolism.  

Additionally, alterations in the phosphatidylcholine (PC) profile of blood and milk by both 

RPC and RPM suggested potential shifts in the PC synthesis pathways.  Specifically, several 

PC species that contained poly-unsaturated fatty acids were elevated by RPC and RPM, 

indicating a potential increase in de novo PC synthesis from phosphatidylethanolamine.  

Somewhat contradictory to this observation was that RPC also increased hepatic expression 

of the gene that regulates the synthesis of PC from dietary choline in multiparous cows.  

However, this change did coincide with an increase in milk PC 18:0/18:1 yield, a PC species 

presumably synthesized via this pathway, for multiparous cows.  The results from this study 

demonstrated that RPM and RPC each have the ability to modify AA and choline 

metabolism, but that these effects are probably achieved through different avenues. 
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Future studies should continue to investigate the mechanisms by which choline and Met 

influence cow health and performance not only during the early postpartum period, but 

also throughout lactation.  Additionally, establishing the conditions under which feeding 

supplemental choline and Met would have the most benefit is also of interest from a 

practical standpoint.  Results reported in the third and fourth studies (Chapters 4 and 5) 

suggest a potential interaction between these nutrients and parity.  Given that a large 

portion of the U.S. dairy herd is comprised of primiparous cows, this potential interaction 

warrants further exploration. 
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