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 Drill strings are slender structures used extensively in drilling and mining 

operations.  In this thesis work, secondary-frequency input additions to the drive 

speed input are considered and the resulting influence on system dynamics is 

examined.  Experimental studies are conducted with a laboratory scale drill-string 

arrangement, and high-frequency and low-frequency additions are considered for 

cases in which the drive speed frequency is close to either a bending mode or torsion 

mode natural frequency.  It is found that carefully chosen secondary-frequency 

additions can be used to attenuate undesirable system dynamics, especially, for rotary 

systems.  To complement the experiments, numerical studies are conducted with a 

reduced-order model of the drill-string system.  The obtained numerical results are 

found to be in reasonable agreement with the experimental results.  Preliminary 

numerical results obtained in the presence of rotor-stator interactions are also 

included.  In addition, areas in which the model construction will need further 

development are also discussed.  The findings of this work can be useful for 



  

considering secondary-frequency addition based schemes for controlling bending and 

torsional motions of drill-string systems.  
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Chapter 1 

Introduction 

A drill string is a slender hollow pipe used in drilling operations to transmit 

power from motors on or near the surface to the drill bit located at its end.  These 

slender and flexible structures are used extensively in modern drilling operations and 

have several interesting applications, include directional drilling, an example of 

which is depicted in Figure 1.1.  Drill-string dynamics exhibit a variety of nonlinear 

phenomena due to the nature of their interactions with the surrounding environment.  

These phenomena include stick-slip interactions between the drill string and the 

borehole, forward whirling, and backward whirling.  Stick-slip motions occur when a 

part of the drill string, usually the drill bit or a part of the string in contact with the 

borehole wall, is temporarily stopped by contact forces at the point of interaction and 

speeds back up again when the frictional force is overcome.  As a consequence, the 

string can undergo torsion and experience large amplitude torsional vibrations when 

the string suddenly speeds up after it is freed from the wall.  Forward whirling occurs 

when the drill string comes into contact with the borehole wall and begins rotating 

along the wall in the same direction as the drive speed; in this mode, slipping is 

possible between the borehole wall and the string.  Backward whirling is similar, 

except that the string whirls in a direction opposite its drive speed.  Backward 

whirling is typically associated with high stress levels in the structure.  Modeling of 

these motions and control of the same have been the focus of many previous and 

current studies on drill-string dynamics. 
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Figure 1.1. An example of horizontal or curved drilling (adapted from: 

http://www.cefor.umn.edu/research/numerical-simulation-tools/directional-drilling/). 

 

1.1 Configuration of a Typical Drill String 

Typically, a drill string consists of a shaft of drill piping, a drill bit, a drill collar 

and stabilizers.  A configuration for a standard drilling operation is illustrated in 

Figure 1.2.  The drill string is supported by a rig and hoisting system, which is used to 

control the tension in the drill string and, in effect, the weight on the drill bit.  Torque  
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Figure 1.2. Illustration of a typical drill rig assembly (Adapted from Liao, 

Balachandran, Karkoub, and Abdel-Magid, 2011). 

is transmitted from a motor through the rig to the drill string, and then, through the 

drill string to the drill bit. The major portion of the drill string consists of drill piping, 

a series of long metal tubes connected together.  Throughout the drilling process, a 

viscous fluid referred to as drill mud is pumped through the drill piping to the drill bit.  

Drill mud serves two important functions in a drilling operation.  First, the mud acts 

as a coolant to prevent the drill string from overheating.  Second, the mud washes 
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away the rocks and earth broken up by the drill bit and the motion of the drill string 

forces the resulting slurry to the surface.  The mud can then be reused for future 

operations.  The drill collars are sections of the drill string near the drill bit.  These 

sections of the drill string near the drill bit that are thicker in diameter and heavier in 

weight then the drill piping.  This allows them to withstand high stresses that tend to 

occur near the drill bit while the rig is in operation.  The final piece of the drill-string 

assembly is the stabilizer.  These are sections of the drill string that are wider than the 

drill collars, but they do not extend along the length of the drill string.  The stabilizers 

serve the purpose of limiting the amplitude of the lateral oscillations of the drill string 

by coming into contact with the borehole wall with only small oscillations of the drill 

string.  This generates a restoring force that limits the oscillations of the rest of the 

drill string. 

 

1.2 Literature on Modeling and Control of Drill-String Dynamics 

 Multiple studies have been devoted to the modeling and control of drill-string 

systems.  In terms of modeling, most studies favored the use of reduced-order models 

to simulate the interactions between some aspect of the drill string, usually the drill 

bit or collars, and the borehole well being drilled.  Most attempts to control the 

dynamics of the drill string have focused on controlling the torsional vibrations of the 

system through a variety of closed loop controllers. 

 Jansen (1991) proposed a two degree-of-freedom model in which the drill-

string system is treated as a rotating disk with an unbalanced mass enclosed within a 

borehole.  Interactions between the drill sting and stabilizer were modeled as a spring 
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force acting on the center of the disk with respect to the location of the stabilizer.  

Likewise, the interactions between the drill string and borehole wall were modeled by 

using spring forces, which were determined on the basis of clearance between the 

wall and the disk.  Though too simplistic to properly model complex interactions 

between the drill string and the borehole, the model has been used as a basis for 

several more complex model constructions. 

 Tucker and Wang (1999) developed an integrated mathematical model of a 

drill string.  Their study contained detailed equations for static configurations, 

boundary conditions and multiple types of force interactions between the drill string 

and the borehole.  In a later study, Tucker and Wang (2003) developed a model based 

on Cosserat theory of rods. This model was used to explore two potential methods of 

controlling drill-string vibrations. The first controller was a simple proportional-

integral controller that was used to regulate the drive speed of the system and limit 

stick- slip interactions between the drill string and borehole.  The second controller 

was a torque controller, in which up-moving waves were originated at the drill bit and 

propagated along the drill string to attenuate the torsional vibrations of the system.  

Both control methods were numerically shown to be effective in limiting stick-slip 

oscillations of the system. The second controller was found to be the more effective 

of the two but it is impractical as it requires a controller to be active at the drill bit.  

The basis for the second controller was discussed in previous work (Tucker and 

Wang, 1999). 

 Khulief, Al-Sulaiman, and Bashmal (2007) started from a spatially continuous 

system to arrive at a reduced-order model of the system, made up of a set of ordinary 
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differential equations.  These equations were then used to simulate stick-slip 

interactions between the drill string and the borehole wall. 

Sampaio, Piovan, and Lozano (2007) also developed a distributed-parameter 

model to study coupled torsional and axial vibrations.  They modeled a drill string as 

initially undeformed hollow beam that undergoes axial and torsional displacements.  

In order to capture the coupling between torsional and axial effects, nonlinear strain 

energy equations from their previous work (Sampaio, Piovan, and Lozano, 2005) 

were used to derive the equations of motion for the system.  Additionally, a nonlinear 

contact torque simulating the interaction between the drill bit and the bottom of the 

bore well was added to the system.  The predictions of the nonlinear model was 

compared to that of a linear model of the system and the comparisons showed a 

divergence between the predicted angular velocities of the system after the first 

period of stick-slip oscillations between the drill bit and the borehole well.   

A similar study was performed by Yigit and Christoforou (2006).  They 

included the axial movement of the drill string and new equations for the weight and 

torque applied to the drill bit were developed.  A linear control law was developed 

after a linearization of the governing nonlinear equations of motion of the system 

obtained in previous work (Yigit and Christoforou, 2000).  This control law was 

applied to the nonlinear system at the motor.  The control scheme was shown to be 

effective in reducing the vibrations of the system, providing an appropriate drive 

speed could be selected for a given weight on the bit.  A similar linear control was 

developed by Serrarens, de Molengraft, Kok, and den Steen (1998).  In this case, an 

H∞ controller was developed for the purpose of limiting sick-slip vibrations.  Through 
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numerical efforts, this controller was shown to be useful in limiting and attenuating 

stick-slip vibrations in the system. 

Kreuzer and Struck (2005) modeled the drill string as a long pipe with forces 

prescribed at the ends, the force at the top being due to the drive system of the drill 

string and the bottom one being due to external forces acting on the drill bit.  The 

model allowed for axial displacement at the drill bit, but no lateral displacement and 

the torsional and bending vibrations were treated as being uncoupled.  They started 

from a distributed-parameter model and reduced to a reduced-order model. By using 

this reduced-order model, Kreuzer and Struck showed that the torsional vibrations 

could be actively damped by applying a proportional-damping based controller. 

Melakhessou, Berlioz, and Ferraris (2003) created a four degree-of-freedom 

model of a drill string.  They intended to model the behavior of a drill string, when it 

is in contact with the borehole wall.  Bending and torsional displacements were 

considered, and this model was used to explore the forward and backward whirling 

motions of the drill string. 

Liao, Balachandran, Karkoub, and Abdel-Magid (2011) and Liao (2011) 

enhanced the work of Melakhessou, Berlioz, and Ferraris (2003) by accounting for 

the tilt of the drill string and stick-slip interactions between the string and borehole 

wall.  The model of Liao et al. enabled more accurate simulations and helped 

discover dynamics not found in the work of Melakhessou, Berlioz, and Ferraris 

(2003).  In addition, good comparisons between experimental results and model 

predictions were found.  Vlajic, Liao, Karki, and Balachandran (2012) and Vlajic 

(2014) modeled the whirling motions of a drill string by using a finite degree-of-
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freedom model.  In the model development, inextensibility of the drill string was 

assumed, allowing the axial displacement of the string to be expressed in terms of the 

lateral displacements.  The equations of motion were derived by using an extended 

Hamilton’s principle and a Galerkin projection was used to obtain a reduced-order 

model that could capture bending and torsional motions.  . 

 

1.3 Contributions 

The focus of this thesis work has been on investigating the effects of adding a 

secondary frequency term to the drive speed prescribed by a drill string assembly’s 

motor.  The additional term takes the form of a sinusoidal input with a chosen 

amplitude and frequency.  A series of experimental studies have been performed to 

evaluate the dynamic response of the system at frequencies about and between the 

first lateral and torsional natural frequencies of the drill string.  Following that, the 

equations of motion for the drill string are developed starting from the system energy 

components by using a distributed parameter model developed by Vlajic, Liao, Karki, 

and Balachandran (2012) and Vlajic (2014).  Subsequently, the numerical predictions 

based on these equations of motion are compared with the experimental results to 

determine the validity of the equations of motion for the more complex system.  A 

contribution of this thesis is a set of original experiments coupled with model 

simulations to examine the influence of additional frequency input additions on the 

dynamics of rotating, slender structures.  This work could open the doors to further 

investigations into the use of such input additions for attenuating undesirable system 

motions such as whirling motions.  
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1.4 Organization of Thesis 

In the following chapter, the setup and results for experimental studies 

detailing the effect of a secondary frequency on a drill string’s oscillations are 

presented.  Through these experimental efforts, additions to base drive speeds are 

explored when the primary drive speed is close to the natural frequencies of the first 

modes of torsional and bending vibrations.  In the third chapter, the equations of 

motion for the system are presented and simulations carried out with them are 

discussed.  The results of the simulations are compared with the experimental 

findings, to assess the validity of the model presented.  Finally, concluding remarks 

are collected together and presented, along with a discussion of future avenues of 

research in the fourth and final chapter.  References are also included.  Appendix A 

contains details related to the development of the model.  Appendix B contains the 

code used to analysis the video data from the experimental studies. 
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Chapter 2 

Experimental Studies 

 In this chapter, the results of a series of experimental studies performed to 

determine the effects of the additions to the drive speed on the system dynamics are 

detailed.  A slender aluminum rod with a rotor attached at one end is used to represent 

a portion of a drill-string system.  The rotor has an adjustable unbalanced mass in 

order model the eccentricities present in a real drill string system.  This string-rotor 

structure is driven by a servo motor at the top end of the drill string.  The complete 

experimental arrangement is depicted in Figure 2.1.  In this unique laboratory scale 

arrangement, the flexible structure dimensions have been chosen so that the relative 

locations of the first bending and torsion frequencies have similar characteristics as in 

a full scale drill string.  

 The servo motor is programed to apply a drive speed of the form β̇ = Ω +

𝛼𝑐𝑜𝑠(𝜔𝑡) where Ω is the base drive speed, ω is the secondary frequency, and α is the 

amplitude of the secondary frequency input.  Video footage of the system’s response 

to the drive speed input was recorded by using a digital camera and processed to 

determine the amplitude response of the system.  Data were taken for base drive 

speeds approaching the respective natural frequencies of the first bending and first 

torsional modes of the system and for secondary frequencies ranging from 0.25 Hz to 

5.0 Hz. 
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Figure 2.1.  Experimental arrangement used to study the dynamics of a drill-string 

section.  The rotor is at the bottom and a chuck is used at the top.  

 

2.1 Design and Setup 

The experimental model for the drill string consisted of three components: i) a 

rotor with an attached unbalanced mass, ii) a slender rod, hereafter referred to as a 

string, and iii) a servo motor.  The rotor consisted of an aluminum disk attached to a 

chuck through a slender aluminum string which was attached to the disk’s center. 
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This rotor-string assembly is presented in Figure 2.2.  The rotor had a set of holes 

drilled through it that extended radially from its center to its edge.  This allowed the 

eccentricity of the unbalanced mass with respect to the rotor’s center of mass to be 

varied.  The unbalanced mass consisted of a set of nuts and bolts that could be 

securely fastened through the holes in the disk.  The holes were threaded so as to 

securely hold the bolt in place and prevent the unbalanced mass from rattling during 

the experiments.  The weight of the unbalanced mass could be varied by changing the 

number of nuts secured to the bolt.  This configuration can be seen in Figure 2.3.  The 

rotor-string assembly is attached to a chuck at the other end of the string.  This chuck 

is in turn connected to the drive shaft of the servo motor, allowing the string-rotor 

assembly to be driven at different speeds by the motor. The driveshaft and motor 

assembly is shown in Figure 2.4. 

 

Figure 2.2. Rotor-string assembly used in the experiments. 
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                                   (a)                                             (b) 

Figure 2.3. Configuration of the unbalanced mass: (a) top-down view of the holes 

used to vary the eccentricity and (b) the nuts and bolt that made up the unbalanced 

mass. 

 

 
 

Figure 2.4. Motor assembly used in the experiments. 

 

A high-speed digital camera placed near the chuck, as shown in Figure 2.4, 

was used to track the amplitudes of lateral oscillations of the drill string.  In order to 

use the imaging system to track the lateral displacements of the rotor-string assembly 
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while the system is in operation, a section of the string connected to the rotor was 

wrapped in white tape and a thin shell of black paper was constructed around the tape.  

Additionally, the rotor was spray-painted black and a backdrop made with the same 

black paper was used to prevent the imaging system from tracking light reflecting off 

the rotor due to background events.  This setup is depicted in Figure 2.5.  The camera 

was set to record data in monochrome and its aperture stop was made small to darken 

the image, allowing for greater contrast between the white tape and black background 

and making it easier to use the image processing software for tracking the 

displacement. 

Data were collected for a set of base drive speeds near the first torsional and 

bending natural frequencies, with secondary frequencies beginning at 0.5π radians/sec 

and ranging upward.  When collecting data for a chosen combination of drive speed  

 

Figure 2.5. White tape and paper shell used to help track lateral displacements. 
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and secondary frequency, at least two minutes duration was allowed for the system to 

reach a steady-state response.  Video of the steady-state system response was then 

recorded for forty to fifty seconds at fifty frames per second.  Additionally, before 

each set of tests, a photograph was taken of the system at rest.  This photograph was 

used to determine the location of the equilibrium position of the model. 

After the data were collected, it was run through image processing code in 

Matlab.  The program was used to further enhance the contrast between the white 

section of the drill string and the black backdrop.  The program was used to go 

through the footage frame by frame tracking the position of white section of the drill 

string.  These points were then compared to the position of the equilibrium point of 

the system to determine the amplitude response of the system. 

 When collecting data, secondary frequencies below 0.5π radians/sec were 

avoided, as the program controlling the servo motor was found to experience memory 

errors if the secondary frequency was dropped below that threshold.  First, data would 

be taken for the system response at a base drive speed without a secondary frequency 

as a baseline.  After that, a secondary frequency was added to the drive speed.  

Starting at 0.5π radians/sec, the secondary frequency was increased in 0.25π 

radians/sec increments with the response data being recorded at each new secondary 

frequency.  This increase continued until the servo motor was unable to provide the 

required secondary frequency due to vibrations in the system. 

The system parameters for the experimental model are listed below in Table 

2.1.  The values for the natural frequencies and damping ratios were determined 
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experimentally by tracking the system displacement responses and applying the 

logarithmic decrement equations to the results.  The bending frequency and 

associated damping ratio were determined by applying a lateral displacement to the 

system and tracking the response of the system.  The process was similar for 

determining the torsional frequency and damping ratio, with an angular initial 

displacement applied to the system rather than a lateral displacement.  In order to 

track the angular oscillation, white tape was placed on the unbalanced mass as well as 

the string.  By using these two points of reference, the angular oscillation was 

tracked. 

Table 2.1. Experimental system parameters. 

 

Parameter Value Units 

dr 0.2651 m 

dchuck 0.03 m 

dconnect .0508 m 

hr 0.0127 m 

hchuck 0.03 m 

hconnect 0.0127 m 

L 0.857 m 

r 0.00238 m 

e 0.0635 m 

m 0.0617 kg 

M 0.970 kg 

E 70*10^9 Pa 

G 25*10^9 Pa 

ωn,b 1.52π rad/s 

ωn,t 8.2π rad/s 

ζb 0.00087  

ζt 0.011  
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2.2 Results for Drive Speeds around the First Bending Natural Frequency 

The first bending natural frequency for the string-rotor assembly is 1.52π rad/s 

(0.76 Hz or ~46 RPM).  Hence, data were collected for base driving speeds at π rad/s 

(30 RPM) and 1.33π rad/s (40 RPM).  This was done to observe the effects of 

secondary frequency on the system as the drive speeds approached the first bending 

frequency.  The system was not driven at a base drive speed at the aforementioned 

natural frequency in order to avoid driving the system at resonance, a condition which 

could potentially damage the system. 

When the system was driven at a base drive speed of π rad/s, the servo motor 

was able to sustain the range of secondary frequencies from 0.5π rad/s to 8.75π rad/s.  

The amplitude response of the system across this range is shown in Figure 2.6.  For 

secondary frequencies at the low end of this range, the amplitude response of the 

system is observed to increase greatly.  As the speed of the secondary frequency is 

increased, the response amplitude of the system was found to decrease, eventually, 

dropping below the response amplitude of the system in the absence of a secondary 

frequency input.  This attenuation in the amplitude was found to continue until the 

secondary frequency approached 4.75π rad/s, at which point the response amplitude 

increased above the base system response amplitude.  Subsequently, the amplitude 

response was found to be attenuated once more as the secondary frequency was 

increased beyond 4.75π rad/s and the system response remained this way through the 

rest of the experiments.  
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Figure 2.6. Amplitude response for system at base drive speed of π rad/s. 

When the system was driven at a base drive speed of 1.33π rad/s, the servo 

motor was able to sustain the range of secondary frequencies from 0.5π rad/s to 8.75π 

rad/s.  The resulting amplitude response of the system observed across this range is 

shown in Figure 2.7.  For secondary frequencies at low end of this range, the response 

amplitude of the system was found to increase slightly above the case without the 

secondary frequency addition.  As the speed of the secondary frequency is increased, 

the system amplitude response rapidly decreased, barely dropping below the response 

of the system without a secondary frequency input.  From then on, the attenuation of 

the system remained very small and almost constant for the range of considered 

secondary frequency inputs. 
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      (a) 

 

(b) 

Figure 2.7. (a) Amplitude response for system at base drive speed of 1.33π rad/s. (b) 

Expanded view. 
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2.3 Results for Drive Speeds around the First Torsional Natural 

Frequency 

The first torsional natural frequency for the system is significantly higher than 

that of the first bending natural frequency, being, about 8.2π rad/s (4.1 Hz or 246 

RPM).   Data were collected for base driving speeds of 7.67π rad/s (~230 RPM) and 

8π rad/s (240 RPM).  This was done to observe the effects of secondary frequency 

addition on the system response, as the drive speed approached the first torsional 

frequency.  As was the case for primary drive speeds close to the lateral natural 

frequency, the system was not driven at a base drive speed at the aforementioned 

natural frequency to avoid a resonance situation, which could be potentially harmful 

to the system.  

When the system was driven at a base drive speed of 7.67π rad/s, the servo  

 

Figure 2.8. Amplitude response for system at base drive speed of 7.67π rad/s. 
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Figure 2.9. Amplitude response for system at base drive speed of 8π rad/s. 

 

motor was able to sustain the range of secondary frequencies from 0.5π rad/s to 9π  

rad/s.  The amplitude response of the system across this range is shown in Figure 2.8.  

For most of the secondary frequency inputs, there is not much attenuation in the system 

response amplitude when compared with the system response without a secondary 

frequency.  This exception to this is at 8.5π rad/s were the system experiences a 

moderate amplification in the system response.  This amplification is found to rapidly 

attenuate as the secondary frequency is increased past 8.5π rad/s.  

When the system was driven at a base drive speed of 8π rad/s, the servo motor 

was able to sustain the range of secondary frequencies from 0.5π rad/s to 9.25π rad/s.  

The amplitude response of the system across this range is shown in Figure 2.9.  The 

overall system response to the secondary frequencies is seen to show some 

attenuation.  An amplification is seen in the system response around 8.5π rad/s, as 
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seen in the previous set of experiments associated with the base drive speed case of 

7.67π rad/s.  Additional experimental results are included in Chapter 3, wherein 

comparisons between numerical results and experimental predictions are provided. 

When attenuation is observed in the system response due to the addition of a 

secondary-frequency input, it is suspected that the addition of a new frequency input 

steers the system to a different response region.   
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Chapter 3: Numerical Studies and Comparisons between 

Numerical and Experimental Results 
 

In this chapter, a model for the drill sting is adapted from previous work 

(Vlajic et al. 2012) to assess the addition of secondary-frequency inputs and the 

simulation results are compared to experimental results from the previous chapter.  

The equations of motion used for the model are a reduced-order system obtained 

through a Galerkin projection from a distributed parameter system obtained by using 

the extended Hamilton’s principle.  The reduction is carried out by considering 

projections based on the first torsional and bending modes of the system.  A force 

interaction model representing interactions between the rotor-string system and a 

stator is also presented.  The reduced system is numerically solved for different base 

drive speeds corresponding to those used in the experimental studies.  The range of 

secondary frequencies considered in the simulations is larger than that considered in 

the experiments.  The numerical results are compared to the experimental results.  

Finally, a preliminary study conducted on the effects of the secondary frequency 

additions in the presence of borehole interactions is also presented. 

3.1 Equations of Motion for the String-Rotor Model 

The model development for this thesis work follows earlier work from the 

author’s research group (Vlajic, Liao, Karki, and Balachandran, 2012 and Vlajic,  

2014).  The kinetic energy of the drill string running from x = 0 to x = L, rotor, and 

the unbalanced mass of the string-rotor system located at x = L can be written as 

follows:  
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𝑇𝑠𝑡𝑟𝑖𝑛𝑔 = ∫ [𝜌𝐴(𝑢̇2 + 𝑣̇2 + 𝑤̇2) + 𝜌𝐼(𝑣̇′2 + 𝑤̇′2) + 𝜌𝐼𝑜𝛽2̇  
𝐿

0

+ 2𝜌𝐼𝑜𝛽̇𝑣̇′𝑤′] 𝑑𝑥    (3.1) 

 

𝑇𝑟𝑜𝑡𝑜𝑟 =
1

2
[𝑀(𝑢̇2 + 𝑣̇2 + 𝑤̇2) + 𝐼𝐷(𝑣̇′2 + 𝑤̇′2) + 𝐼𝐷𝑜(𝛽2̇ + 2𝛽̇𝑣̇′𝑤′)]|𝑥 = 𝐿  (3.2) 

 

 

𝑇𝑚𝑎𝑠𝑠 =
𝑚

2
[𝑢̇2 + (𝑣̇ − 𝛽̇𝑒𝑠𝑖𝑛(𝛽))

2
+ (𝑤̇ + 𝛽̇𝑒𝑐𝑜𝑠(𝛽))

2

] |𝑥 = 𝐿  (3.3) 

 

 

In these equations, 𝑢 = 𝑢(𝑥, 𝑡),   𝑣 = 𝑣(𝑥, 𝑡), and 𝑤 = 𝑤(𝑥, 𝑡) are the axial 

and lateral displacement fields, respectively, and the partial derivatives with respect 

to x and t are indicated by the operations (·)̇  and (·)′,   respectively.  The variable x is 

defined such that x=0 represents the end of the drill string that is connected to the 

motor assembly and x=L is at the end attached to the rotor and unbalanced mass.  The 

rotational motion prescribed by the motor at x=0 is of the form  Ω + 𝛼𝑐𝑜𝑠(𝜔𝑡), where 

Ω is a constant drive speed, 𝜔 is a secondary frequency, and 𝛼 is the amplitude of the 

secondary frequency.  From this, the term 𝛽(𝑡) can be derived as 𝛽(𝑡) = Ω𝑡 +

𝛼

𝜔
sin(𝜔𝑡) + 𝜃(𝑥, 𝑡), where 𝜃(𝑥, 𝑡) is the angular deformation of the system. 

Assuming that the system is linearly elastic, the potential energy of the string-

rotor system can be developed as 

𝑈 =
1

2
 ∫ [𝐸𝐴𝑢′2 + 𝐸𝐼(𝑣′′2 + 𝑤′′2) + 𝐺𝐼𝑜𝛽′2 − 2𝑀𝑔𝑢′]

𝐿

0

𝑑𝑥   (3.4) 

and the virtual work done on the system due to contact with the stator is given by 

𝛿𝑊 = 𝜆 (
𝐹𝑓𝑟𝑑𝑟

2
𝛿𝛽 + 𝐹𝑣𝛿𝑣 + 𝐹𝑤𝛿𝑤)  (3.5) 
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The quantities 𝑀, 𝐼𝐷 , and 𝐼𝐷𝑜 in Eq. (3.2) are derived below.  The rotor and 

the chuck that connect it to the string are treated a system consisting of three discs.  

The chuck is treated as two discs to account for the fact that it has both steel and 

aluminum components. 

𝑚𝑐ℎ𝑢𝑐𝑘,𝑠𝑡𝑒𝑒𝑙 =
𝜌𝑠𝑡𝑒𝑒𝑙ℎ𝑐ℎ𝑢𝑐𝑘𝜋𝑑𝑐ℎ𝑢𝑐𝑘

2

4
      (3.6) 

𝑚𝑐ℎ𝑢𝑐𝑘,𝐴𝑙 =  
𝜌𝐴𝑙ℎ𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝜋𝑑𝑐𝑜𝑛𝑛𝑒𝑐𝑡

2

4
     (3.7) 

𝑚𝑟𝑜𝑡𝑜𝑟 =
𝜌𝑠𝑡𝑒𝑒𝑙ℎ𝑟𝜋𝑑𝑟

2

4
      (3.8) 

𝑀 =  𝑚𝑐ℎ𝑢𝑐𝑘,𝑠𝑡𝑒𝑒𝑙 + 𝑚𝑐ℎ𝑢𝑐𝑘,𝐴𝑙 + 𝑚𝑟𝑜𝑡𝑜𝑟     (3.9) 

𝐼𝐷 =
𝑚𝑐ℎ𝑢𝑐𝑘,𝑠𝑡𝑒𝑒𝑙(3𝑑𝑐ℎ𝑢𝑐𝑘

2 + 4ℎ𝑐ℎ𝑢𝑐𝑘
2 ) + 𝑚𝑐ℎ𝑢𝑐𝑘,𝐴𝑙(3𝑑𝑐𝑜𝑛𝑛𝑒𝑐𝑡

2 + 4ℎ𝑐𝑜𝑛𝑛𝑒𝑐𝑡
2 )

48

+
𝑚𝑟𝑜𝑡𝑜𝑟(3𝑑𝑟

2 + 4ℎ𝑟
2)

48
     (3.10) 

𝐼𝐷𝑜 =
𝑚𝑐ℎ𝑢𝑐𝑘,𝑠𝑡𝑒𝑒𝑙𝑑𝑐ℎ𝑢𝑐𝑘

2 + 𝑚𝑐ℎ𝑢𝑐𝑘,𝐴𝑙𝑑𝑐𝑜𝑛𝑛𝑒𝑐𝑡
2 + 𝑚𝑟𝑜𝑡𝑜𝑟𝑑𝑟

2

8
      (3. 11) 

Eqs. (3.1) - (3.5) are used as a starting point, and the following assumptions 

and approach are used to derive the governing equations of motion for the rotor-string 

system.  Due to the physical constraints and geometry of the system, the axial 

displacement of the string, 𝑢(𝑥, 𝑡), is related to the lateral displacements, 𝑣 = 𝑣(𝑥, 𝑡) 

and 𝑤 = 𝑤(𝑥, 𝑡); that is, 

𝑢′ =
1

2
(𝑣′2 + 𝑤′2)     (3.12) 

Since the axial vibratory modes of the system have much higher natural 

frequencies compared to those of the torsional and lateral modes, axial vibrations are 
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not considered here.  The mass of the drill sting is very small compared to the mass of 

the rotor and this mass is also neglected.  The spatial and temporal parts of the lateral 

and torsional displacements are assumed to be able to be separated into the following 

forms: 

𝑣(𝑥, 𝑡) =  ∑ 𝑉𝑖(𝑡)𝜙𝑣,𝑖(𝑥)

𝑁

𝑖=0

    (3.13) 

𝑤(𝑥, 𝑡) =  ∑ 𝑊𝑖(𝑡)𝜙𝑤,𝑖(𝑥)

𝑁

𝑖=0

    (3.14) 

𝜃(𝑥, 𝑡) =  ∑ Θ𝑖(𝑡)𝜙𝜃,𝑖(𝑥)

𝑁

𝑖=0

    (3.15) 

 The extended Hamilton’s Principle is used to derive the partial differential 

equations of motion with the associated boundary conditions.  Subsequently, 

Galerkin’s method is then used to cast the system of partial differential equations into 

a system of three coupled ordinary differential equations corresponding to the 

bending motions in the two directions and the torsion motion.  This reduction has 

been carried out under that the assumption that only the first bending and torsion 

modes dominate the system response.  The justification for a single mode assumption 

along each of the two bending directions and the torsion direction is based on the 

experimental arrangement discussed in the last chapter.  The governing equations of 

motion are given by Eqs. (3.16) - (3.18), and the associated coefficients can be found 

in Appendix A.  A more detailed derivation can be found in the work of Vlajic 

(2014).  All terms containing 𝛽 are determined at x = L. 
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𝑎1𝑉̈  + 𝑎2𝑉̇ + 𝑎3Ω𝑊̇  + 𝑎4𝑉 + 𝑎5(Θ̇𝑊̇ + Θ̈𝑊) − 𝑚𝑒𝜙𝑣𝜙𝜃Θ̈ 𝑠𝑖𝑛(𝛽)

− 𝑚𝑒𝜙𝑣𝛽̇2cos (𝛽)  = 𝜆𝐹𝑣      (3.16) 

𝑏1𝑊̈ + 𝑏2𝑊̇ + 𝑏3Ω𝑉̇ + 𝑏4𝑊 + 𝑏5Θ̇𝑉̇ + 𝑚𝑒𝜙𝑤𝜙𝜃Θ̈ cos(𝛽)

− 𝑚𝑒𝜙𝑤𝛽̇2 sin(𝛽) = 𝜆𝐹𝑤      (3.17) 

𝑐1Θ̈ + 𝑐2Θ̇ + 𝑐3Θ + 𝑐4(𝑉̈𝑊 + 𝑉̇𝑊̇) + 𝑚𝑒𝑊̈𝜙𝑤𝜙𝜃 cos(𝛽)

− 𝑚𝑒𝑉̈𝜙𝑣𝜙𝜃𝑠𝑖𝑛(𝛽) = 𝜆𝐹𝑓𝑟

𝑑𝑟

2
     (3.18) 

Here, 𝜆 is defined as 

𝜆 = {
0 𝑓𝑜𝑟 𝑅 < 𝛿 
1 𝑓𝑜𝑟 𝑅 ≥ 𝛿

  (3.19) 

where 𝛿 indicates the clearance between the rotor and the stator while the system is at 

rest and R is amplitude of the rotor’s oscillations, defined by the equation 

𝑅 =  √𝑤(𝐿, 𝑡)2 + 𝑣(𝐿, 𝑡)2   (3.20) 

3.2 Force-Interaction Model 

The force interaction model used for this system has been adapted from work 

by Vlajic (2014) and this model is designed to account for changes in the friction 

coefficient as the system transitions between slipping and sticking motions.  The 

normal force generated by the contact between the rotor and the stator is assumed to 

be linearly proportional to the deformations of the stator, as the stator itself is made 

from a linear elastic material.  From the considered parameters, the equations for the 

frictional and normal forces can be derived as 

𝐹𝑁 =  {
0                 𝑓𝑜𝑟 𝑅 ≤ 𝛿

𝐾(𝑅 − 𝛿) 𝑓𝑜𝑟 𝑅 > 𝛿
    (3.21) 
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𝜇 = −
2

𝜋
tan−1(𝜖𝑓𝑣𝑟𝑒𝑙) [

𝜇𝑠 − 𝜇𝑘

1 + 𝛿𝑓|𝑣𝑟𝑒𝑙|
+ 𝜇𝑘]    (3.22) 

𝐹𝑓𝑟 = 𝜇 ∗ 𝐹𝑁     (3.23) 

The frictional force will oppose the motion and have the opposite sign of the 

relative velocity between the two surfaces generating the friction.  Unfortunately, 

signum functions are not continuous and they are difficult to utilize in numerical 

integration methods.  Hence, the signum function that would normally be used in Eq. 

(3.22) has been replaced with an inverse tangent function in order to give a smooth 

approximation for the friction force. The quantity 𝜖𝑓 determines how steep the 

approximation is and consequentially how accurate the representation is.  The 𝛿𝑓 term 

in Eq. (3.22) is a positive constant that represent the rate at which the static 

coefficient of friction transitions to the kinetic coefficient of friction with respect to 

the relative velocity between the rotor and the stator. 

In order to relate the normal and tangential forces back to Eqs. (3.16) – (3.18), 

they were transformed to accommodate the expressions for external work in the 

equations of motion.  This is accomplished by relating them back to the directional 

forces 𝐹𝑣 and 𝐹𝑤, resulting in the equations 

𝐹𝑣 =
−𝐹𝑓𝑟𝑊 − 𝐹𝑁𝑉

𝑅
   (3.24) 

𝐹𝑤 =
𝐹𝑓𝑟𝑉 − 𝐹𝑁𝑊

𝑅
   (3.25) 

3.3 Numerical Studies  

 The structural equation for the string-rotor system given by Eqs. (3.13) – 

(3.15) were numerically solved by using a second-order Rosenbrock integration 
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scheme.  The absolute and relative tolerances were set to 1e-6.  The parameters for the 

simulations are provided in Table 2.1.  A time scale of 1000 seconds was simulated 

for each set of base drive speeds and secondary frequencies to allow for the system to 

reach a steady-state response.  The amplitude response was calculated based on the 

last twenty seconds of data.  As in the experimental studies, the system response to 

the base drive speed without a secondary frequency input was first simulated and the 

secondary frequency input was added in subsequent tests.  Due to the simulations not 

having the same limitations as the experimental system, a wider range of secondary 

frequencies could be studied in the simulations. The secondary frequency value was 

started from 0.25π rad/s and this value was increased by 0.25π rad/s after each test, up 

to a maximum to 20π rad/s.  The initial displacements of the system were assumed to 

be zero for the test involving the only the base drive speed.  The subsequent 

simulations with the secondary frequency inputs assumed initial conditions 

corresponding to the response for a previous secondary frequency input.  

 

3.4 Simulations for Drive Speeds around the First Bending Natural 

Frequency 

The first bending natural frequency for the string-rotor assembly was 

estimated by the code to be 1.488π rad/s (~45 RPM).  Like the experimental study, 

data was collected for base driving speeds between at π and 1.33π rad/s.  The 

amplitude secondary frequency in the simulation remains the same as in the 

experimental study, with a value of 0.1π rad/s. 
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The response for the system at a base drive speed of π rad/s is shown in Fig 

3.1.  When the system was driven at a base drive speed of π rad/s, the amplitude 

response of the system was greatly amplified for low speed secondary frequencies 

with a large amplification occurring at 0.5π rad/s.  As the speed of the secondary 

frequency increased beyond 0.5π rad/s, the amplitude response of the system rapidly 

decayed, dropping back to the same amplitude response as the system without a 

secondary frequency at 0.75π rad/s.  The system has another small amplification at 

2.5π rad/s, at which point the amplitude increases above the base system again.  The 

amplitude response then attenuates once more as the secondary frequency increases to 

2.75π rad/s, dropping back to the baseline response system and remaining this way 

for the rest of the observable data. 

When the system is driven at π rad/s with no secondary frequency, the 

amplitude response of the drill string is fairly constant and circular as depicted below 

in Figure 3.2.  At steady state, the system response prescribes an almost perfect circle 

with a radius of 0.003 meters. As the secondary frequency is added to the drive speed, 

the amplitude response of the system increases drastically, reaching a peak when the 

secondary frequency is 0.5π rad/s.  The consistent circular response of the system 

began to decay, developing the period-three circular lobe shape displayed in Figure 

3.3. 
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Figure 3.1. Amplitude response of drill string at base drive speed of π rad/s. 

 

Figure 3.2. Displacement response of drill string when driven at π rad/s with no 

secondary frequency addition. 
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Figure 3.3. Displacement response of drill string when driven at a primary speed of π 

rad/s with a secondary frequency addition of 0.5π rad/s. 

 As the secondary frequency increased beyond 0.5π rad/s, the amplitude 

response of the system rapidly decayed back to baseline response of the system.  

Though the amplitude of the response remained constant as the secondary frequency 

increased the lobe shape of the system continued to become less circular.  This 

eventually resulted in a small amplification of the amplitude response at 2.5π rad/s, 

were the lope shape of the amplitude response took on a star-shaped pattern, as shown 

in Figure 3.4.  As the frequency continued to increase, the amplitude response once 

again decreased back to baseline response, both in terms of the amplitude and the 

lobe shape.  This process is depicted in Figure 3.5. 
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Figure 3.4. Displacement response of drill string when driven at a primary speed of π 

rad/s with a secondary frequency addition of 2.5π rad/s. 

 

(a)                                                              (b) 

Figure 3.5. Displacement response of drill string when driven at a primary speed of π 

rad/s with a secondary frequency addition: (a) 2.75π rad/s and (b) 3.5π rad/s. 
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The response for the system at a base drive speed of 1.33π rad/s is shown in 

Figure 3.6.  When the system was driven at a base drive speed of 1.33π rad/s, the 

addition of q secondary frequency to the drive signal had almost no effect on the 

response of the system.  Over the range of secondary frequencies from 0.25 – 10.00 

Hz there is less than a 1% shift in the amplitude response, with slight attenuation at 

lower secondary frequencies and slight amplification at the higher frequencies.  The 

lobe shape of the amplitude response for the baseline system is fairly constant though 

somewhat more varied than the baseline response of the system driven at π rad/s.  

Once the secondary frequency is added in, the lobe shape of the response becomes 

slightly more varied for lower speed secondary frequencies.  As the secondary 

frequency of the system continues to increase, the lobe shape of the system response 

began to collapse back to the lobe shape prescribed by the baseline response.  Though 

there is a slight amplification at higher speed secondary frequencies it is almost 

negligible and there is no noticeable change in the lobe shapes of the amplitude 

response at these higher frequencies.  The progression of the lobe shape of the 

amplitude response as the secondary frequency increases is detailed in Figures 3.7 – 

3.9. 
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Figure 3.6. Amplitude response of drill string driven at 1.33π rad/s (top). Expanded 

view of amplitude response (bottom). 

0 10 20 30 40 50 60 70
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

 (rad/s)

A
m

p
lit

u
d
e
 (

m
e
te

rs
)

 

 

  = 0 rad/s

  = .1 rad/s

0 10 20 30 40 50 60 70
0.0146

0.0147

0.0147

0.0148

0.0148

0.0149

0.0149

 (rad/s)

A
m

p
lit

u
d
e
 (

m
e
te

rs
)

 

 

  = 0 rad/s

  = .1 rad/s



 

 

36 

 

  

Figure 3.7. Displacement response of drill string when driven at a primary speed of 

1.33π rad/s with no secondary frequency addition. 

  

Figure 3.8. Displacement response of drill string when driven at a primary speed of 

1.33π rad/s with a secondary frequency addition of 0.5π rad/s. 
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Figure 3.9. Displacement response of drill string when driven at a primary speed of 

1.33π rad/s with a secondary frequency addition of 2π rad/s. 
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The response for the system at a base drive speed of 7.67π rad/s is shown in 
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Figure 3.10. Amplitude response of drill string at base drive speed of 7.67π rad/s. 

 

secondary frequency.  The exceptions to this were the secondary frequencies around 

6π, 9π and 12π rad/s where large amplifications in the amplitude occurred, with each 

amplification being larger than the last.  Interestingly, the frequencies at which the 

amplifications occur do not correspond to any of the natural frequencies of the 

system. 

 The amplitude response of the simulation for a drill string driven at 7.67π 

rad/s prescribed a circular response that was similar in shape to those of the system 

when driven at π and 1.33π rad/s but with more variation in the amplitude than the 
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frequency did little to alter the amplitude and shape of the amplitude response of the  
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Figure 3.11. Displacement response of drill string when driven at a primary speed of 

7.67rad/s with no secondary frequency addition. 

system until the secondary frequency approached 6π, 9π, 12π.  As depicted in Figures 

3.12 – 3.15, as the secondary frequency approached 6π rad/s the lobe shape of the  

 

Figure 3.12. Displacement response of drill string when driven at a primary speed of 

7.67π rad/s with a secondary frequency addition of 5.75π rad/s. 
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amplitude response became less circular and its amplitude began to increase.  As the 

secondary frequency increased past 6π rad/s, the response rapidly collapsed back to 

the shape and amplitude of the base response.  The same was true of the system 

response at 9π and 12.25π rad/s, though the lobe shapes at these peaks in amplitude 

were different than the one at 6π rad/s.  The displacement responses for secondary 

frequencies of 9π and 12.25π rad/s are depicted in Figure 13.16. 

 

Figure 3.13. Displacement response of drill string when driven at a primary speed of 

7.67π rad/s with a secondary frequency addition of 6π rad/s. 
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Figure 3.14. Displacement response of drill string when driven at a primary speed of 

7.67π rad/s with a secondary frequency addition of 6.25π rad/s. 

  

Figure 3.15. Displacement response of drill string when driven at a primary speed of 

7.67π rad/s with a secondary frequency addition of 6.5π rad/s. 
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                                   (a)                                                            (b) 

Figure 3.16. Displacement response of drill string when driven at a primary speed of 

7.67π rad/s with a secondary frequency addition: (a) 9π rad/s and (b) 12.25 π rad/s. 

 

The response for the system at a base drive speed of 8π rad/s is shown in 
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Figure 3.17. Amplitude response of drill string at base drive speed of 8π rad/s. 

 

unaffected by the addition of secondary frequencies, with the exception of the 

amplifications at secondary frequencies of 6.5π rad/s and 9.5π rad/s.  At these peaks 

in amplitude the lobe shapes of the amplitude responses shift from the consistent 

circular response to complex periodic or nearly periodic motions, as shown in Figures 

3.19 and 3.20b.  The shift to these complex lobe shapes is depicted in Figure 3.20, 

with the lobe shape in Figure 3.20a depicting the transition shape between the peak 

and the baseline responses. 
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Figure 3.18. Displacement response of drill string when driven at a primary speed of 

8π rad/s with no secondary frequency addition. 

 

Figure 3.19. Displacement response of drill string when driven at a primary speed of 

8π rad/s with a secondary frequency of 6.5π rad/s. 
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                                 (a)                                                                (b) 

Figure 3.20. Displacement response of drill string when driven at a primary speed of 

8π rad/s with a secondary frequency addition: (a) 9.25π rad/s and (b) 9.5π rad/s. 

3.6 Comparisons between Experimental and Numerical Results 

 Overall, the experimental studies and the simulations of the system show 

reasonable agreement with one another.  The first mode of bending frequency 

calculated in the simulations, 1.488π rad/s, is nearly identical to the experimental 

determined natural frequency of the system, 1.52π rad/s.  The first mode of torsional 

frequency for the simulations and the experimental modal, 7.4π and 8.2π rad/s 

respectively, are also close.  The amplitude responses of the simulation and the 

experimental studies are reasonably similar, though the experimental model does 

produce some phenomena that does not appear in the simulated system. 

 In Figures 3.21 below the amplitude response for the experimental model and 

simulation for a base drive speed of π rad/s are depicted.  The two studies show good 

agreement, with both system experiencing a large peak in amplitude for a secondary 

frequency of 0.5π rad/s.  The decay in amplitude response after the peak amplitudes 
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                                 (a)                                                                (b) 

Figure 3.21. Amplitude response of drill string at base drive speed of π rad/s: (a) 

experiments and (b) simulations. 

and the amplitude response for the system eventually attenuates below the baseline 

response of the system, while the simulation only decays to the baseline response of 

the system.  Both systems also experience a smaller peak as the secondary frequency 

continues to increase, but the experimental model’s peak occurs when the secondary 

frequency is 4.75π rad/s, while the simulation’s is at 2.5π rad/s. 

 The lobe shapes of the amplitude response for the system when driven at π 

rad/s show reasonable to excellent correspondence between the experimental studies 

and the simulations.  The baseline response for the systems, shown in Figure 3.22, is 

circular in both cases, but the lobe shape of the experimental study depicts a large 

variation in the amplitude over, while the lobe shape of the simulation show very 

little variant in amplitude.  As the systems approach their shared peak when the 

secondary frequency is 0.5π rad/s, both systems experience a large amplification in 

amplitude, and the simulation’s response becomes as variable at the experimental 

studies, as shown in Figure 3.23.  When the secondary frequency increase to  
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                                 (a)                                                                (b) 

Figure 3.22. Displacement response of drill string when driven at a primary speed of 

π rad/s with no secondary frequency addition: (a) experiments and (b) simulations. 

             

                                  (a)                                                                (b) 

Figure 3.23. Displacement response of drill string when driven at a primary speed of 

π rad/s with a secondary frequency of 0.5π rad/s: (a) experiments and (b) simulations. 
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                                 (a)                                                                (b) 

Figure 3.24. Displacement response of drill string when driven at a primary speed of 

π rad/s with a secondary frequency of 2.5π rad/s: (a) experiments and (b) simulations. 

 

2.5π rad/s, the decay of the amplitude response takes on a similar form than that of 

the simulation.  The lobe shapes of both the simulation and the experimental studies 

collapse back to the baseline response of their respective systems, as depicted in 

Figure 3.25. 

        

                                 (a)                                                         (b) 

Figure 3.25. Experimental displacement response of drill string when driven at a 

primary speed of π rad/s with a secondary frequency of 6π rad/s: (a) experiments and 

(b) simulations. 
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The systems’ responses for a base drive speed of 1.33π rad/s, displayed in 

Figure 3.26, also show good agreement.  The overall system responses are very 

similar, with the baseline amplitudes being almost identical.  Both systems also 

experience an amplification in amplitude response for secondary frequencies above π 

rad/s, though the amplification for the experimental studies is slightly larger.  The 

variation in the lobe shape of the amplitude response of the experimental study is also 

slightly higher than that of the simulation when the base frequency of the system is 

1.33π rad/s.  Aside from this increase in variance for the experimental study, the lobe 

shapes of the simulation and experimental study show similar behavior.  Both system 

experience an increase in variance at a secondary frequency of 0.5π rad/s that 

collapses back to baseline response shortly as the secondary frequency continues to 

increase.  This process can be seen in Figures 3.27 – 3.29. 

        

                                 (a)                                                                (b) 

Figure 3.26. Amplitude response of drill string at base drive speed of 1.33π rad/s:      

(a) experiments and (b) simulations. 
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                                         (a)                                                (b) 

Figure 3.27. Displacement response of drill string when driven at 1.33π rad/s with no 

secondary frequency: (a) experiments and (b) simulations. 

 

                                          (a)                                                (b) 

Figure 3.28. Displacement response of drill string when driven at 1.33π rad/s with a 

secondary frequency of 0.5π rad/s: (a) experiments and (b) simulations. 

 

                                        (a)                                                    (b) 

Figure 3.29. Displacement response of drill string when driven at 1.33π rad/s with a 

secondary frequency of 2π rad/s: (a) experiments and (b) simulations. 
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The comparisons between the system responses for the experimental studies 

and the simulations for base drive speed of 7.67π rad/s and 8π rad/s, presented in 

Figures 3.30 and 3.31, show reasonable agreement between the experimental studies 

and the simulations and are very similar to one another.  In both cases, the simulation 

predicts a peak when the secondary frequency is about 6π rad/s that does not occur in 

the experimental studies.  Both the system driven at 7.67π rad/s and the system driven 

at 8π rad/s have circular lobe plots for their baseline responses, with the simulations 

and the experimental studies being a good match.  This similarity is depicted in 

Figures 3.32 and 3.35.  Both systems also have a peak at around 9π rad/s, with the 

lobe shapes between the experimental studies and the simulation showing good 

agreement.  This agreement can be observed in Figures 3.33, 3.34, and 3.36. 

 

                   

                                 (a)                                                                (b)                                               

Figure 3.30. Amplitude response of drill string at base drive speed of 7.67π rad/s:     

(a) experiments and (b) simulations. 

0 5 10 15 20 25 30
4.6

4.8

5

5.2

5.4

5.6

5.8

6

6.2

6.4

6.6
x 10

-3

 (rad/s)

A
m

p
lit

u
d
e
 (

m
e
te

rs
)

 

 

  = 0 rad/s

  = .1 rad/s

0 5 10 15 20 25 30 35
3.5

4

4.5

5

5.5

6

6.5

7
x 10

-3

 (rad/s)

A
m

p
lit

u
d
e
 (

m
e
te

rs
)

 

 

  = 0 rad/s

  = .1 rad/s



 

 

52 

 

       

                                 (a)                                                                (b) 

Figure 3.31. Amplitude response of drill string at base drive speed of 8π rad/s:     (a) 

experiments and (b) simulations. 

 

            

                                 (a)                                                                (b) 

Figure 3.32. Displacement response of drill string when driven at 7.67π rad/s with no 

secondary frequency: (a) experiments and (b) simulations. 
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                                 (a)                                                                (b) 

Figure 3.33. Displacement response of drill string when driven at 7.67π rad/s with a 

secondary frequency of 2π rad/s: (a) experiments and (b) simulations. 

 

   

                                 (a)                                                             (b) 

Figure 3.34. Displacement response of drill string when driven at 8π rad/s with a 

secondary frequency addition: (a) 9.25π rad/s and (b) 9.5π rad/s. 
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                                 (a)                                                                (b) 

Figure 3.35. Displacement response of drill string when driven at 8π rad/s with no 

secondary frequency addition: (a) experiments and (b) simulation. 

                

                                 (a)                                                                (b) 

Figure 3.36. Displacement response of drill string when driven at 8π rad/s with a 

secondary frequency of 9.25π rad/s: (a) experiments and (b) simulations. 

 

 

 

 

-8 -6 -4 -2 0 2 4 6 8

x 10
-3

-8

-6

-4

-2

0

2

4

6

8
x 10

-3

v(L,t) (meters)

w
(L

,t
) 

(m
e
te

rs
)

-5 -4 -3 -2 -1 0 1 2 3 4 5

x 10
-3

-5

-4

-3

-2

-1

0

1

2

3

4

5
x 10

-3

v(L,t) (meters)

w
(L

,t
) 

(m
e
te

rs
)

-0.015 -0.01 -0.005 0 0.005 0.01 0.015
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

v(L,t) (meters)

w
(L

,t
) 

(m
e
te

rs
)

-8 -6 -4 -2 0 2 4 6 8

x 10
-3

-8

-6

-4

-2

0

2

4

6

8
x 10

-3

v(L,t) (meters)

w
(L

,t
) 

(m
e
te

rs
)



 

 

55 

 

3.7 Preliminary Studies on the effects of the secondary frequency on 

Rotor-Stator interactions 

A preliminary study into the effects of the secondary frequency on the 

torsional displacement of a system in contact with a borehole wall was conducted in 

this section in preparation for future work.  The parameters used for the force-

interaction model from section 3.2 are listed in Table 3.1.  The parameters for the 

structural equations remained the same as those in the experimental studies and 

simulations.  The purpose of the future work that would follow this preliminary study 

would be to utilize the secondary frequency to control the torsional response of the 

drill string. 

 This study was performed with simulation parameters similar to the ones used 

earlier in the chapter. The two difference are the length of the simulated timespan and 

the inclusion of the rotor stator interaction forces.  The timespan was cut from 1000 

seconds to 400 seconds with data being collected for the last 10 seconds instead of 20 

seconds, as the rotor-stator interaction causes the system to reach a steady state 

response more rapidly than it does without said interaction. 

Table 3.1. Parameters for Force-Interaction Model 

Parameter Value Units 

Kc 106 Nm-1 

δ 0.254 m 

μd 0.07  

μs 0.07  

εf 106  

δf N/A  
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 In the study, the torsional response of the system was simulated for base drive 

speeds of π rad/s.  The maximum torsional response for the system is shown below in 

Figure 3.37.  The system’s torsional response corresponds well amplitude response of 

the system discussed earlier in the chapter, with peaks in the torsional response 

corresponding to peaks in the amplitude response.  For secondary frequencies at 

which the system experiences peaks in torsional response, the frequency of torsional 

oscillation increases greatly compared to the baseline torsional response, while the 

torsional frequencies where the system does not experience peaks are similar to the 

baseline torsional response.  These frequency interactions are depicted in Figures 3.38 

and 3.39 

 

Figure 3.37. Maximum torsional displacement for case with rotor-stator interaction at 

base drive speed of π rad/s. 
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Figure 3.38. Torsional displacement of system when driven at a base drive speed of 

1.33π rad/s with a secondary frequency of 0.25π rad/s. 

  

 

Figure 3.39. Torsional displacement of system when driven at a base drive speed of  

π rad/s with a secondary frequency of  0.5π rad/s. 
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Chapter 4: Concluding Remarks 

 Drill strings are used extensively in modern drilling operations and these 

rotating structures can experience high levels of vibrational stress, some of which is 

due to the string interactions with the borehole wall.  These high levels can lead to 

wear of the drill strings and failure due to fatigue.  In an effort to mitigate such 

failures, many studies have attempted to control the vibrations of drill strings.  

Typically, this control take the form of a closed loop scheme applied to the drive 

system.  A potential alternative to this type of controller is an open loop scheme based 

on adding additional input signals into the system in order to attenuate undesirable 

system responses such as whirling motions.  An open loop scheme may not need the 

expensive sensor arrangements that may be needed for feedback in a closed loop 

scheme. 

This focus of this thesis work has been on investigating the effects of adding a 

secondary frequency to the drive speed prescribed by a drill string system’s motor. In 

order to develop a control scheme based on adding additional inputs to system, one 

must first understand how those inputs interact with the system.  To this end, 

experimental studies were performed to determine how a sinusoidal addition to the 

drive speed of a system would affect its system response.  Following earlier work 

from the author’s research group (Vlajic, Liao, Karki, and Balachandran, 2012 and 

Vlajic, 2014), a model was also developed and the results obtained from this model 

are compared to those obtained from experimental studies.  Finally, a preliminary 

numerical investigation into the effects of additional secondary frequencies in 

systems with rotor-stator interactions was performed in preparation for future work. 
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4.1 Experimental Studies 

 A rotor-string model of a drill string was fabricated and used to investigate the 

effects of additional frequency inputs on the amplitude response of a drill string.  

Secondary frequencies ranging from 0.5π rad/s to 9.25π rad/s were added to base 

drive speeds near the first bending and torsional mode frequencies of the considered 

drill string.  Of the four base drive speeds studied, namely, π rad/s, 1.33π rad/s, 7.67π 

rad/s and 8π rad/s, for the drive speed of 1.33π rad/s, no attenuation in amplitude 

response due to the secondary input was observed.  In addition, for the drive speed of 

7.67π rad/s, only small attenuations in the amplitude response were noted.  At the  

other base drive speeds, namely, π rad/s and 8π rad/s, the system response amplitude 

did experience large attenuations due to the addition of the secondary frequency, 

sometimes decreasing the response to as much as half the baseline response (the case 

without any secondary input addition).  These experimentally observed attenuations 

support the viability of attenuating undesired system responses by adding an 

additional frequency input.  However, careful consideration of the base drive speeds 

and secondary frequency additions are needed.  

4.2 Simulations and Comparisons with Experimental Studies 

 The structural and force-interaction model adapted from earlier work by 

Vlajic, Liao, Karki, and Balachandran (2012) and Vlajic (2014) was used to simulate 

the system response and comparisons were made with experimental results.  On the 

whole, the numerical results showed reasonable agreement with the experimental 

results and there were cases with discrepancies as well.  The model simulations failed 

to capture the attenuations of the system response observed in the experimental 
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studies, and in addition, the model predictions included some behaviors that were not 

present in the experimental study.  This suggests that the model may need further 

refining to fully explore the dynamics of a drill-string system. 

4.3 Suggestions for Future Work 

 The present thesis works support the possibility of developing an open loop 

control scheme based on the addition of inputs into the system.  However, in order to 

make this control scheme a reality, there remains much work to be done.  First, an in 

depth study into the effects of secondary frequencies on force interactions between 

the borehole wall and the drill string must be developed.  In addition, a stability 

analysis needs to be carried out to a better picture of the dynamics of the system. 

Parametric studies on the effects of altering the secondary frequency and the system’s 

parameters are also recommended with appropriate consideration to models with 

force interactions as well as those without them.  Finally, the model used to simulate 

the system response can be extended to include higher order modes of the drill-string 

structure.  
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Appendix A: Coefficients in Equations of Motion 
 

All terms, which do not have integrals in them, are associated with the position x=L. 

 

𝑎1 = [(𝑀 + 𝑚)𝜙𝑣
2 + 𝐼𝐷𝜙𝑣

′2]     (𝐴. 1) 

 

𝑎2 = 2𝜁𝑏√𝑎1𝑎4     (𝐴. 2) 

 

𝑎3 = 𝐼𝐷𝑜𝜙𝑣
′ 𝜙𝑤

′     (𝐴. 3) 
 

𝑎4 = ∫ (𝐸𝐼𝜙𝑣
′′2 − 𝑀𝑔𝜙𝑣

′′𝜙𝑣)
𝐿

0

𝑑𝑥  + 𝑀𝑔𝜙𝑣
′ 𝜙𝑣      (𝐴. 4) 

 

𝑎5 = 𝐼𝐷𝑜𝜙𝑣
′ 𝜙𝜃𝜙𝑤

′       (𝐴. 5) 
 

𝑏1 = [(𝑀 + 𝑚)𝜙𝑤
2 + 𝐼𝐷𝜙𝑣

′2]       (𝐴. 6)  
 

𝑏2 = 2𝜁𝑏√𝑏1𝑏4      (𝐴. 7) 

 

𝑏3 = −𝐼𝐷𝑜𝜙𝑣
′ 𝜙𝑤

′       (𝐴. 8) 
 

𝑏4 = ∫ (𝐸𝐼𝜙𝑤
′′2 − 𝑀𝑔𝜙𝑤

′′𝜙𝑤)
𝐿

0

𝑑𝑥  + 𝑀𝑔𝜙𝑤
′ 𝜙𝑤      (𝐴. 9)    

 

𝑏5 = −𝐼𝐷𝑜𝜙𝑣
′ 𝜙𝜃𝜙𝑤

′       (𝐴. 10) 
 

𝑐1 = (𝐼𝐷𝑜 + 𝑚𝑒2)𝜙𝜃
2       (𝐴. 11) 

 

𝑐2 = 2𝜁𝑡√𝑐1𝑐3      (𝐴. 12) 

 

𝑐3 = 𝐺𝐼𝑜 ∫ 𝜙𝜃
′ 2

𝐿

0

𝑑𝑥      (𝐴. 13) 

 

𝑐4 = 𝐼𝐷𝑜𝜙𝑣
′ 𝜙𝜃𝜙𝑤

′       (𝐴. 14) 
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Appendix B: Matlab Code 
Code used to carry out video analysis 

 
file            = 'videoname.avi' 
info            = aviinfo(file) 
tmov            = mmreader(file); 
nFrames         = info.NumFrames; 
fRate           = info.FramesPerSecond; 
dTime           = 1/fRate; 
timeVec         = (0:nFrames-1)*dTime; 

  
positionxPix    = nan(nFrames,1); 
positionyPix    = nan(nFrames,1); 
adjust          = 1.75; 
arealim         = 250; 
pix2mm          = 6*2.54*10/(427- 35); 

  
for ind1 = 1:nFrames 

     
    disp(ind1) 
    image           = read(tmov,ind1); 
    imageCrop       = image; 
    level           = graythresh(imageCrop)*adjust; 
    imageBW         = im2bw(imageCrop,level); 
    [B,L] = bwboundaries(imageBW,4,'noholes'); 
    s  = regionprops(L); 

     
    for ind2 = 1:length(s); 

         
        if s(ind2).Area > arealim 
            positionxPix(ind1)   = s(ind2).BoundingBox(1) + 

s(ind2).BoundingBox(3)/2; 
            positionyPix(ind1)   = s(ind2).BoundingBox(2) + 

s(ind2).BoundingBox(4)/2; 
        end 
    end 
end 

  
positionX       = positionxPix*pix2mm; 
positionY       = positionyPix*pix2mm; 

  
[Xcheck] = isnan(positionX); 
[Ycheck] = isnan(positionY); 

  
Ncheck = 0; 
  

for ind3 = 1:length(positionX) 
    if Xcheck(ind3) == 0 && Ycheck(ind3) ==0 
        Ncheck = Ncheck + 1; 
        finalX(Ncheck) = positionX(ind3); 
        finalY(Ncheck) = positionY(ind3); 
    end 
end 
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meanX            = 90; 
meanY            = 84; 
positionR        = sqrt((meanX-finalX).^2 + (meanY-finalY).^2); 
R_ave(ind5,ind6) = mean(positionR); 

  
NormX=finalX-meanX*ones(length(finalX),1)'; 
NormY=finalY-meanY*ones(length(finalY),1)'; 

  
save([file '_VideoData.mat']) 
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