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Abstract

Bifurcation control is discussed in the context of the stabilization of high
angle-of-attack flight dynamics. Two classes of stabilization problems for which
bifurcation control is useful are discussed. In the first class, which is emphasized
in this presentation, a nonlinear control system operates at an equilibrium point
which persists only under very small perturbations of a parameter. Such a system
will tend to exhibit a jump, or divergence, instability in the absence of appropriate
control action. In the second class of systems, an instance of which arises in a
tethered satellite system model [14], eigenvalues of the system linearization appear
on (or near) the imaginary axis in the complex plane, regardless of the values of

system parameters or admissible linear feedback gains.

1. Introduction

The important role played by concepts from bifurcation theory in the sciences,
engineering and the social sciences is well-established (e.g., [7], [12], [15], [19]).
Nonlinear phenomena such as the appearance of limit cycles, divergence to new

steady states, and transition to chaotic behavior have been observed and studied
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for a great variety of systems. Only recently have issues of the control of such
nonlinear phenomena been given serious consideration (e.g., [1]-[2], [4], [9], [14],
[16], [17]). Thus, the theory of control of bifurcations, as well as that of controlling
chaos, is in its infancy. In this note, some results of a program of research in
bifurcation control and applications are presented. Empbhasis is placed on concepts
and on the motivation provided by applications. Explicit calculations and other
technical details can be found in references [1]-[4], [10], [14].

The paper is organized as follows. In the next section, some of the main
questions considered in bifurcation control are discussed along with representative
results. In Section 3, we consider control law design for an aircraft model at high

angle-of-attack. Concluding remarks appear in Section 4.
2. Bifurcation Control Framework

Consider a nonlinear system

¢ = F,(z) (1)

where z € IR", u is a real parameter and F is sufficiently smooth. Suppose (1) has
an equilibrium point z¢(u) which exists and is asymptotically stable for a range
of parameter values. QOutside the normal operating regime, i.e., as u is varied,
the operating point can lose its stability in a number of ways. For instance, a
complex conjugate pair of eigenvalues of the linearization of (1) at zo may cross
the imaginary axis into the right half of the complex plane as y is varied through
a critical value p.. Alternately, the equilibrium point might cease to exist past
a parameter value for which the linearization has a zero eigenvalue. In the first
of these simple routes to instability, the system (1) is known to undergo a Hopf
bifurcation to periodic solutions. In the second, a fold or saddle-node bifurcation

occurs.

Generically, the situation in the case of a Hopf bifurcation can be further
classified according to whether the bifurcation is subcritical or supercritical. To
describe these possibilities further, denote by u. the critical parameter value, and
suppose that zo(u) is stable for u < p. but unstable for y > p.. Fig. (1a) illus-
trates the subcritical Hopf bifurcation, wherein unstable periodic orbits of small
amplitude emerge from zo(u.) and exist, locally, for ;£ < p.. In the supercritical
Hopf bifurcation, a stable periodic orbit emerges at ., and exists for p > p. (see

Fig. 1(b)).
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Fig. 1. (a) Subcritical, and (b) Supercritical Hopf Bifurcation

From Fig. 1(a), in the subecritical case an initial condition near zo(y) for
pu > pe will tend to diverge away from the nominal equilibrium. In contrast, as
seen from Fig. 1(b), for a supercritical Hopf bifurcation the same initial condition
would result in an oscillatory motion in the immediate vicinity of z¢. Thus, the
supercritical bifurcation results in a more desirable system response than the sub-
critical bifurcation, locally near u = p.. This observation, when considered along
with other related local and global issues [1], [3], [4], [9], [10], leads to questions of
stabilizability of Hopf bifurcations.

In [1], the stabilization of Hopf bifurcations by smooth feedback is considered.
Specifically, local bifurcation control deals with the design of smooth control laws
u = u(z) which stabilize a bifurcation occurring in a one-parameter family of

systems
&= fu(z,u). (2)

These control laws exist generically, even if the critical eigenvalues of the linearized
system at the equilibrium of interest are uncontrollable. It is shown that rendering
the bifurcation supercritical also achieves asymptotic stability of the equilibrium
zo at criticality. Explicit computations yielding stabilizing control laws are also

given in [1].

This approach has been employed in the design of stabilizing control laws for
a tethered satellite system in the station-keeping mode [14]. In this application, a

pair of uncontrollable pure imaginary eigenvalues appears in the system lineariza-



tion. In [14], local bifurcation control is employed to stabilize the equilibrium

using linear and nonlinear tether tension control laws.
3. An Application to High « Flight Control

Several authors have studied the nonlinear phenomena that arise commonly in
aircraft flight at high angle-of-attack (alpha). The literature on high alpha flight
dynamics, control and aerodynamics has grown at a rapid pace. Of particular
relevance here are references [6], [8], [11], and [16]. The direct linkage of aircraft
stall and divergence, as well as other nonlinear aircraft motions in high incidence
flight, to bifurcations of the governing dynamic equations is a goal of many previous

investigations.

In [4], we study the stabilization of the trim condition of an aircraft arbitrarily
close to the stall angle, in a manner which also provides an impending stall warning
signal to the pilot. This signal is a small-amplitude, stable limit cycle-type pitching
motion of the aircraft which persists to within a prescribed margin from impending
divergent stall. This is a Hopf-bifurcated periodic solution of the system dynamics,
which is stabilized using the methods of bifurcation control. From [11, Egs. (10),
(11)], we have the following model for pitching motions of a model F-8 Crusader
aircraft in nearly level flight (i.e., for pitch angle remaining small). Here, o =
angle-of-attack, 8 = pitch angle, = pitching moment, and é. = the instantaneous

elevator control surface deflection.

& =0 — a?8 —0.08808 — 0.877a + 0.47a2 + 3.8464°
—0.2156, + 0.286.0a2 4 0.4762a + 0.6383 (3a)

§ = —0.3960 — 4.208« — 0.47a% — 3.5640°
~ 20,9676, + 6.2658,a> + 4662 + 61.462 (3b)

We have studied the stability of this model as a function of . viewed as a
parameter, as well as stabilization of the trim condition using elevator deflection
as a feedback control signal which can either be linear or nonlinear. In either case,
we seek control laws which have a negligible effect on the trim condition, which
itself depends on 8.. To achieve this, we require a certain form of dependence of

the control signal on the state, namely

6e(z) = bec + { a polynomial in (z; — z1¢(bec))
and (22 — z20(8ec))}- (4)



Here, z; and z; are the state variables « and 6, respectively, 8. is the constant
commanded value of 6., and subscripts 0 indicate equilibrium (trim) values of
state variables, which depend on 8.c. In our example, curve fitting gives an
approximation for the trim condition as a function of 8. [4].

The design procedure aims to result in an increased range of stable angles-of-
attack. First, a linear feedback complying with the general form (4) is designed to
stabilize the trim condition for all values of 8. up to a value which verges on stall.
Next, a nonlinear controller is designed to control the stability of the bifurcation
which occurs at the point of instability just prior to stall. This bifurcation is a Hopf
bifurcation to periodic solutions. By ensuring a small amplitude stable periodic
solution in the neighborhood of the unstable trim condition, a signal of incipient
stall is produced (a stall warning signal). This is achieved through the addition of

nonlinear (quadratic and cubic) terms to the linear feedback, as follows:

8o =6ec + k1(a — ag(bec)) + k2(8 — 6o (8.c))
+ q1(a — a0(8ec))® + ha(a — ap(bec))’
+ ha(8 = bo(bec))® (5)

Here, q1 = hy = hgy = 0.8, resulting in a supercritical Hopf bifurcation (as seen by

applying the software tool BIFOR2 [12]). Fig. 2 illustrates the conclusions.
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Fig 2. Bifurcation diagram for controlled model of F-8

As shown in [4], this results in significantly extending the operating envelope.
The stable limit cycle (“L” in Fig. 2) bifurcates via a homoclinic orbit and then

vanishes. System trajectories near the nominal equilibrium for parameter values



past this “homoclinic” value but prior to the “fold” critical parameter value, will

diverge, no longer converging to a stable limit cycle.

4, Discussion

Only certain fundamental aspects of bifurcation control problems and ap-
plications were discussed in this note. We mention several problems which are
currently under investigation. The suboptimal design of stabilizing controllers for
nonlinear systems bordering on instability is being considered [10]. Applications
of bifurcation control ideas in areas such as active stall mitigation in jet engines [3]
and control of voltage collapse in electric power systems are also being addressed.
Finally, extensions are suggested by interesting recent work on the control of chaos
[17].
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