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and manipulating data among the DBMSs (referred to as foreign DBMS). An HDBMS isusually con�gured in a distributed client-server architecture where each foreign DBMS is runon a possibly dedicated server machine, taking requests from the HDBMS through its API.An HDBMS treats each of the foreign DBMSs as a \closed-box" component which cannot bemodi�ed and which retains its local autonomy, i.e. continues to support local applications.As in traditional distributed DBMSs, query optimization is important in HDBMS [Day85,SY+89, SL90, DKS92, LS92, ZL94, DSD95], particularly for global queries which are joinsbetween tables from separate foreign DBMSs. A global execution plan for a global queryconstitutes of a sequence of sub-queries which speci�es the join order, table/result shippingdirection, and execution sites. Although the optimization techniques used in traditional dis-tributed DBMSs [ML86] can be adapted to HDBMSs [DKS92], they induce some non-trivialproblems. One of the problems is cost estimation for query plans, which has been a recentresearch issue in HDBMS [DKS92, ZL94]. Cost estimation is essential in selecting the bestplan among various global query plans. The problem is harder in HDBMSs than in tradi-tional distributed DBMSs because foreign DBMSs from di�erent vendors have di�erent accessmethods, optimization strategies and cost models, all of which may be hidden from the globaloptimizer of the HDBMS.This paper presents a practical method for estimating the costs of global query plans fordistributed HDBMSs based on experience acquired from previous query executions. The basicidea is to use query feedback to adapt a parametric cost function. The parameters of the costfunction are gradually adjusted after each query execution, using query and database dependentfeedback such as table size and predicate selectivities measured during the execution of thequery, and query execution time measured after the query. Query and database feedback isindependent of the performance characteristics of the underlying DBMS, network, and HDBMSclient-server implementation, while query execution time is totally determined by them. AnAdaptive Cost Estimation (ACE)module has been designed and implemented which adapts itsparameters by distributing amongst them the estimation error which is the di�erence betweenestimated and actual values. The adapted parameters are then used for estimating follow-up queries. ACE is operational in ADMS�, an Enhanced Client-Server HDBMS prototypedeveloped at the University of Maryland [RK86, RES93, DR94], and obtains accurate costestimates with small CPU overhead but no I/O. The ACE module works together with anotheradaptive module of ADMS� which estimates the selectivities from exactly the sizes of thereturned results [CR94].1.1 The Problem and Related WorkConsider the distributed query shown in Figure 1 where two global query plans are considered.In the query, P is a selection predicate on R1, � a join predicate between R1 and R2. Symbols� and 1 denote selection and join respectively. The query is issued at site D, with the �nal2
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where  P ΘandPlan 1:step 1. perform �P (R1) at site A, send result to a temporary table T at site B.step 2. perform T 1� R2 at site B, send result to site D.Plan 2:step 1. send R2 to site A.step 2. perform �(R1) 1� R2 at site A, send result to site D.Figure 1: An Example of Distributed and Heterogeneous DBMSsresult to be sent back to the same site. Sites A and B are running di�erent DBMSs that areforeign to the HDBMS at site D. Each of the two plans can be the less costly one dependingon the size of the tables, the selectivity of the selection, and in particular, the e�ciency ofthe access methods supported by the underlying foreign DBMSs. For example, if the resultsize of �P (R1) is much smaller than the size of R2, then Plan 1 might be favored because itincurs less communication cost. However, if DBMS A has much faster access methods on theselection and join attributes of R1 which can be used to perform �(R1) 1� R2 than DBMS Bcan perform T 1� R2, then Plan 2 might be favored. In a homogeneous distributed DBMS,the costs of performing �(R1) 1� R2 (at site A) and T 1� R2 (at site B) are easier to estimatebecause all sites (A, B, D)are running the same DBMS. In a HDBMS environment, it is ratherdi�cult because commercial DBMSs have no mechanism for exposing internal optimizationparameters and statistics to be used by the global optimizer at the site where the query isissued (site D).The importance of developing an appropriate cost estimation mechanism for query opti-mization in HDBMSs was �rst pointed out in [SY+89]. Two methods, database calibration[DKS92] and query sampling [ZL94], were later proposed based on the philosophy that indi-vidual foreign DBMSs are viewed as \black-boxes" of which cost models can be \deduced"based on the cost information revealed by the execution of queries (namely, the actual queryexecution times). 3



In the calibration method, synthetic databases are created and imported into foreignDBMSs, then a set of queries are issued so as to deduce the parameters of the cost mod-els. This method requires the overhead of creating and loading the \special purpose" syntheticdatabase into each member foreign DBMS.In the query sampling method, sample queries are performed against existing databasesin the foreign DBMSs. The query execution times are then measured and used to determinethe cost parameters using a multiple regression technique. Using existing databases insteadof creating synthetic databases relieves the burden and overhead of de�ning and populatingthe synthetic database. Nevertheless, the method still incurs the overhead of initially runningthe sample queries and periodically repeating them to re
ect the database evolution throughupdates.1.2 Structure of the PaperThe rest of the paper is organized as follows: Section 2 describes a representation model forglobal query plans, a classi�cation scheme for foreign queries, and the adaptive cost estimationtechnique. Section 3 describes the implementation of ACE in ADMS�. Section 4 analyzesthe performance results of ACE based on the implementation of ADMS�. Conclusions andfuture work are discussed in Section 5.2 Adaptive Cost Estimation for Distributed HDBMSWe �rst present a model for global query plans which is used to decompose each global queryto a collection of local subqueries each of which is executable on a single site. Based onthis model, the total cost of a global query plan can be easily obtained by summing up thecomposing subqueries. A scheme is then used to classify the subqueries into di�erent classesaccording to their performance characteristics. We then propose a generic parametric costfunction for all classes of subqueries and describe the technique for adapting the parametriccost function.2.1 Global Query Plan and Classi�cationWe decompose a general query to subqueries that can be computed locally on a single serversite with a selection-projection (sp) or selection-projection-join (spj) operation. The rationalein this decomposition is that these subqueries have predictable cost behavior mostly becausethey are performed in one pass.De�nition 1 A Local-Compute-and-Forward (LCF) (sub)query, denoted by��(�P (R))A!B or ��(�P (Ri 1 Rj))A!B ;4



Class Query Type Index on Selection/Join AttributesQC1 ��(�P (R))A!B sp with a clustered indexQC2 ��(�P (R))A!B sp with a non-clustered indexQC3 ��(�P (R))A!B sp with no indexQC4 ��(�P (Ri 1 Rj))A!B spj with a clustered indexQC5 ��(�P (Ri 1 Rj))A!B spj with a non-clustered indexQC6 ��(�P (Ri 1 Rj))A!B spj with no indexTable 1: Query Classesis a selection-projection (sp) or selection-projection-join (spj) query that is to be executed at asingle site A of a DBMS with the result being exported from site A and imported to site B.Note that for a spj LCF query, the two operand tables Ri and Rj must both reside in site A'sDBMS. When A and B refer to the same site no result export/import is needed. Otherwise,the result is to be generated from A's DBMS, transmitted over the network, and imported intothe DBMS of site B.Every global query plan can be represented by a sequence of LCF-queries. For example,consider a global query ��(�P (R1) 1 R2 1 R3) where R1; R2; R3 reside in sites A;B;C respec-tively and each of which running a di�erent DBMS, and the �nal result is to be imported intosite D. Let �Ri be the union of the projection of � on Ri and the selection/join attribute(s)of Ri. The following are two possible global query plans:��((�P (R1)A!B 1 R2)B!C 1 R3)B!D((��R1(�P (R1)) 1 ��R2 (R2)B!A) 1 ��R3 (R3)C!A)A!DThe total cost of a global query plan can be obtained by summing up the costs of the composingLCF-queries. In this paper, we shall concentrate on estimating the costs for LCF-queries asthey constitute the basics of a global query plan.In De�nition 1, we de�ne two classes of LCF-queries, sp and spj. However, since each classrepresents a broad range of queries whose best access methods may greatly vary, we adopt theclassi�cation of [ZL94] for LCF-queries which is based on whether a clustered, or unclusteredindex is present in the selection/join attributes or no index. Table 1 shows the six LCF queryclasses QC1 � QC6 obtained by this classi�cation. We associate a distinct cost function toeach of these classes. The rationale behind such a classi�cation is that queries in the same classhave the same set of available access methods and are, therefore, most likely to be handled bythe foreign optimizer in the same way. 5



Cost Factor Meaningf1 constant initialization overhead cost of 1 unitf2 number of messages required to execute an LCFf3 cardinality of the �rst operand tablef4 average tuple length of the �rst operand table in bytesf5 cardinality of the second operand tablef6 average tuple length of the second operand table in bytesf7 cardinality of query resultf8 average tuple length of query result in bytesf9 total size of query result in bytesTable 2: Notations for Cost Factors2.2 Cost ModelIn traditional distributed database systems where all sites are running the same DBMS, thefollowing formula is typically used in estimating the cost of a distributed query plan (withknown local access methods) [ML86, OV91]:Total cost = WCPU � (number of instructions) +WI=O � (number of I=Os) +WMSG � (number of messages) +WBY TE � (number of bytes) (1)where WCPU ;WI=O;WMSG, and WBY TE, are system-wide constants that denote the weighted(relative) cost per instruction execution, per I/O operation, per message transmitted and perbyte of data transmitted over the network, respectively. Usually, these weights are empiricalvalues obtained by running a large set of sample queries and are hard-coded into the DBMSkernel. Details about the local access methods of the query plan must be known a priori inorder to estimate the parameters including number of instructions executed, number of I/Osperformed, number of messages and total bytes of data transferred over the network. Theseparameters depend not only on the query characteristic and data pro�le (including table sizesand query selectivities), but also on the DBMS kernel's characteristics (including the size of thecode that implements each access method, the bu�er manager's strategies, and the networkinterface parameters). These parameters can only be available in proprietary solutions ofhomogeneous systems, and therefore are refereed to as system-dependent parameters.The above formula, however, is of no use for the HDBMS case because the global queryoptimizer has no access to the system-dependent parameters and/or knowledge on how theoptimizer of each foreign DBMS will perform. Since system-dependent parameters are unavail-able, we must use a cost model that is solely based on query/data-dependent parameters suchas query expression, data statistics, and estimated sizes of results. Like [S+79, K+85, ZL94],we assume that all four parameters of formula 1 are in proportion to a few basic quantitativequery/data dependent parameters, called cost factors. ACE uses nine cost factors f1 � f96



whose meaning is shown in Table 2. For a sp query, the factors f5 and f6 are omitted and theirvalues are zeros. The CPU and I/O costs on the server are captured in the f3 � f7 factorswhile the rest of them model the communication network and the client-server inter-operationcost. Exact or pretty accurate estimates of the above factor values can be obtained by thequery feedback as these factors do not depend on the internals of the foreign DBMSs, and canreadily be obtained.For each query class QCj(1 � j � 6), ACE maintains and uses a cost estimation function:ĉ(q) =Xi ai;j � fi(q) (2)where ĉ(q), the estimated cost of a LCF query q 2 QCj, is a linear combination of cost factorsfi(q), with ai;j being the cost coe�cients (of query class QCj) that map the cost factors tothe estimated cost. Note that unlike formula 1 where the CPU, I/O, and network costs areconsidered separately, the ACE cost formulae model the cumulative cost of all these costsregardless of the idiosyncrasies of the underlying DBMS and network.Consider a sp query q of class QC1 where the clustered index is maintained as a B-tree. Thecost of shipping the query to the foreign DBMS will be subsumed by a1;1f1(q) and a2;1f2(q).The cost of navigating the B-tree, which includes the initialization overhead (a constant) andthe number of B-tree nodes retrieved (depending on the height of the tree and the selectiv-ity of the predicate), will be subsumed by a1;1f1(q); a3;1f3(q) and a7;1f7(q). Similarly, thecost of retrieving and processing the quali�ed tuples from the relation will be subsumed bya4;1f4(q); a7;1f7(q), and a8;1f8(q); the cost of transmitting the result over the network willbe subsumed by a9;1f9(q). Similarly, if a linear scan, rather than the B-tree, is chosen as theaccess method, the cost of the linear scan can still be properly subsumed by di�erent productsin the cost function. The purpose of the cost coe�cients ai;j is to map a query to the cost ofthe access method that is most likely to be chosen, based on the characteristics of the query(which are quanti�ed by the cost factors). The values of ai;j determine the accuracy of thecost estimation.2.3 Adaptive Cost EstimationDatabase calibration [DKS92] and query sampling [ZL94] techniques have been proposed toestimate the unknown parameters of a foreign cost function. As discussed in section 1.1,both methods require a non-trivial periodic tuning and incur substantial overhead. We pro-pose a much simpler, dynamic, and cost-e�ective approach for estimating the cost coe�cients,which uses neither synthetic tables nor sample queries. In our method, the coe�cients adjustgradually after each query execution by using actual cost measurement. The coe�cients areguaranteed to converge to the \optimal values" (which will be de�ned later) as queries proceed,thus yielding more and more accurate cost estimates.7



Consider the cost function ĉ(q) = Pni=1 ai � fi(q) that is associated with a query class QCof a foreign DBMS A. Let q1; q2; : : : ; qk (k � n) be a sequence of queries from class QC andc1; c2; : : : ; ck be the corresponding actual query execution times measured. The cost estimationerror for qi can be expressed as ĉ(qi)� ci. A reasonable way to assign values to ai's is to �ndthe values that will minimize the squared sum of the cost estimation errors:
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kXi=1(ĉ(qi)� ci)2 = kXi=1( nXj=1 ajfj(qi)� ci)2 (3)= kXi=1(Xi �A� ci)2 (4)where Xi = [f1(qi); f2(qi); : : : ; fn(qi)] and A = [a1; a2; : : : ; an]T (xT denotes the transpose of x).This problem is known as the Least Square Problem and its solution A�k = [a(k)1 ; a(k)2 ; : : : ; a(k)n ]Twhich minimizes expression 4 can be computed as [Mar87]:A�k = (XTX)�1(XTC) (5)where X is a k � n matrix with Xi being the i'th row, and C = [c1; c2; : : : ; ck]T . This \stage-wise" method requires recomputation every time a new estimate error is to be included. Forexample, if an additional query qk+1 and its observed cost ck+1 are to be included, then A�k+1needs to be computed form scratch, because it takes no advantage of previously computed val-ues of A�k . A better method, called recursive least-square estimation, [Lee64, You84], eliminatesthe duplication by using a recursive expression. It expresses the solution A�k , when k > n, ina recursive form:a(k)l = a(k�1)l � [ nXi=1 gkl;i � fi(qk)][ nXi=1 a(k�1)i � fi(qk)� ck]; for 1 � l � n (6)g(k)l;m = g(k�1)l;m � �[ nXi=1 g(k�1)l;i � fi(qk)][ nXi=1 fi(qk)g(k�1)i;m ]; for 1 � l;m � n (7)where � = 1=(Xk �G �XTk ), G is an n� n matrix with G(i; j)1�i;j�n = g(k�1)i;j .In the above recursion, the coe�cient ai's are adjusted after each query by subtracting acorrected term which is in proportion to the estimation error. The gi;j 's can be viewed as amatrix of self-organized memory cells that take subsequent estimation errors as feedback tosupport the adaptation of ai's. Note that the above recursive relation does not hold for k � nbecause there does not exist a unique least square solution for a system of k equations whichhas more than k variables. However, if we start the recursion by assigning a(0)i = 0, g(0)i;j = 0for i 6= j, and g(0)i;i to some large number, then the solution computed using formulae 6 and 7eventually converges to the one computed using formulae 5 as k increases [You84].The adaptation mechanism starts as soon as the �rst query is executed. During the �rstfew queries, the cost estimation errors may be relatively large because the cost function is stillin its learning stage. Our experiments show that, however, after a few queries, the estimatedcosts are very close to the actual costs. The advantages of ACE over previous methods include:9



� E�ciency. The coe�cients of the cost function are determined and dynamically modi�edon-line without I/O access and with negligible CPU overhead.� Robustness. It is practically di�cult to isolate the costs of a query plan that are con-tributed by the underlying operating system and/or network softwares, because theyare heterogeneous and proprietary systems. In our method, however, these modules aretreated as black-boxes and their contributing costs are subsumed in the cost function im-plicitly by using a linear combination of query-dependent only parameters with adaptivecoe�cients.� Practicality. Based only on a generic cost function with adaptable parameters and asimple recursion scheme, ACE is easy to customize for and incorporated into di�erentdatabase architectures/environments. We have implemented ACE in a client-server basedHDBMS prototype with very little coding overhead.3 Implementation of ACEWe implemented ACE inside ADMS�, an enhanced multi-site client/server (E-CS) HDBMS,in which the clients are fully-
edged DBMSs capable of caching and maintaining downloadeddata subsets obtained as a result of running global queries on multiple DBMSs [RK86, RES93,DR94]. The database servers are commercial and other prototype DBMSs accessed throughapplication level gateway software, called ADMS+, which capitalizes on incremental accessmethods [Rou91] for downloading and maintaining cached data results in the form of materi-alized views. The communication between servers and clients is based on TCP/IP NetworkingProtocol over LAN/WAN. Figure 2 shows the system architecture of ADMS� with threecommercial DBMSs and our own ADMS prototype. Each client runs a single-user version ofADMS, called ADMS�, which maintains on its own local storage materialized views, cachedcatalogs, and statistics.ACE is built into the Global-Query Optimizer of ADMS� to estimate the costs of di�erentclasses of LCF queries. The Global-Query Optimizer parses a global HDBMS query into asequence of LCF-subqueries, obtains statistic information about the operand tables(cardinality,tuple length, indexes etc.) from the locally stored system catalogs, maps each LCF-subqueriesinto its corresponding query class based on the classi�cation criteria de�ned in Table 1, theninvokes the ACE module to produce the cost estimation for each LCF-subquery. The total costof a global query plan can be obtained by summing up the costs of the composing LCF-queries.The Global-Query Optimizer then prunes o� costly query plans and generates an executionplan with the minimum cost estimate.One of the key factors related to the cost estimation is the predicate selectivity, whichis the number of tuples satisfying a given predicate. The accuracy of selectivity estimation10
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Figure 2: ADMS� System Architecturedirectly a�ects the accuracy of the query cost estimation. ADMS uses another adaptive module,called Adaptive Selectivity Estimator (ASE) [CR94], for interpolating the value distributionsof attributes which are then used to estimate selectivities. ASE produces accurate estimates ofrecord selectivities from real attribute value distributions which are adaptively approximated bya curve-�tting polynomial using the query feedback mechanism. Its accuracy and performancehave been reported in the above paper.Both ACE and ASE are modules of the global-query optimizer of ADMS� using queryfeedback to adapt. ASE is invoked by ACE when a LCF-subquery with a selection predicate isgenerated by the global-query optimizer and its selectivity needs to be estimated. In ADMS�,the query feedback consists of (a) the actual selectivity obtained after running the query, (b) theactual real time cost of the query execution, (c) catalog statistics from the server(s). ASE uses(a) and (c) while ACE uses (b) and (c). Catalog statistics basically include table cardinalitiesand indexing information. These are piggy-backed with the query result from the server(s)and used to update the locally cached client catalogs.ACE and ASE require some matrix manipulation and mathematical computation but onlyincur CPU cost. In our ADMS� implementation of ACE and ASE, the overhead of the ACEand ASE module computation is only a small fraction of the optimization cost and negligiblewhen compared to the real query execution cost.As mentioned above, ACE uses real wall-clock time observed on the client to adapt. Foreach query, a start timestamp is obtained by the client just before it begins to transmit the11



query to the server(s) and an end timestamp is recorded after the last record of the result hasbeen received. The elapsed time between the timestamps is our metric of cost and measures allother costs, inter-operation, server CPU, server I/O, communication, and server and networkcontention factors.4 Experimental ResultsWe performed extensive experiments to estimate LCF query cost in ADMS�. The con�g-uration of these experiments included three commercial DBMS servers Oracle (v7.0), Oracle(v6.0) and Ingres (v6.0), our own prototype ADMS (v3.3) server, and the ADMS� (v2.0) En-hanced Client-Server HDBMS. Oracle 7 runs on a SparcStation 20, Oracle 6 on a SparcStation2, Ingres on a DECstation 5000/200, and ADMS on a SparcStation 2. The clients were run onseparate SparcStation 2s. All client and server machines are connected via a shared Ethernetnetwork. All the experiments were conducted during the night under low network/server loads.We used the Wisconsin Benchmark relations [BT94] in all our experiments. The eighttables used along with their statistics are shown in Table 3. These are pre-loaded into eachof the server DBMSs before the experiments are run. A range-varying parametric query foreach of the six LCF classes of queries was used to generate randomly distributed range queries.These are shown in Table 4 in their ADMS� extended SQL syntax with C1 and C2 being thevariable range parameters and, REL1 and REL2 being relation variables from the database.The result is to be downloaded to and stored in a materialized view on the client.For each LCF class, one hundred di�erent ranges were randomly generated but with con-trolled selectivity to generate results of varying sizes from 10 to 10000 records. Each of thesegroups of one hundred queries was regenerated for four di�erent sets of varying size relations toobtain 400 queries for each class or 2400 queries for the whole experiment. These 2400 querieswere randomly mixed to generate the �nal query stream used in all server runs of our experi-ment. The random ranges, the variations of relations and the random mix were employed toreduce side-e�ects of shared bu�ers by similar queries.The query stream was run from cold start and a single log for each server was generated.From these logs we make our observations and draw conclusions. We compare the ACE esti-mated cost with the actual real-time costs and generate histograms and graphs showing theaccuracy of the estimates, the relative errors, and the adaptive capability of ACE.Figure 3 � Figure 6 show the statistical and con�dence analysis of ACE's runs on all fourservers. The histograms show the percentage of queries for each 10% intervals of relative error.On Oracle7, 92% of the queries had relative error between 0 and 10%. The corresponding�gure for Oracle6 is 90%, for Ingres 78% and for ADMS1 70%. The percentage of queries for1ADMS is more susceptible to Unix mannerisms and its eager prefetching which are more di�cult to estimate.Another reason for the lower �gure for ADMS is that query execution times are much shorter than all the other12



Relation Tuple Length Cardinality Clustered Index Non Clustered Indexonek1 182 1000 Y Yonek2 182 1000 N Ntwok1 182 2000 Y Ytwok2 182 2000 N N�vek1 182 5000 Y Y�vek2 182 5000 N Ntenk1 182 10000 Y Ytenk2 182 10000 N NTable 3: Experiment RelationsQuery Type ADMS� Extended SQL Formatsp with a select a1; : : : ; an from DB:REL1cluster-indexed attribute where un2 > C1 and un2 < C2 into V IEW1;sp with a select a1; : : : ; an from DB:REL1non-cluster-indexed attribute where un1 > C1 and un1 < C2 into V IEW2;sp with no select a1; : : : ; an from DB:REL1indexed attribute where k1 > C1 and k1 < C2 into V IEW3;spj with a select a1; : : : ; am; b1; : : : ; bn from DB:REL1, DB:REL2cluster-indexed attribute where DB:REL1:un2 = DB:REL2:un2 andDB:REL1:un2 > C1 and DB:REL1:un2 < C2 into V IEW4;spj with a select a1; : : : ; am; b1; : : : ; bn from DB:REL1, DB:REL2non-cluster-indexed attribute where DB:REL1:un1 = DB:REL2:un2 andDB:REL1:un1 > C1 and DB:REL1:un1 < C2 into V IEW5;spj with no select a1; : : : ; am; b1; : : : ; bn from DB:REL1, DB:REL2indexed attribute where DB:REL1:k1 = DB:REL2:un2 andDB:REL1:k1 > C1 and DB:REL1:k1 < C2 into V IEW6;Table 4: Experiment Querieswhich ACE had relative error of less than 20% range from an impressive 97% for Oracle7 downto 92% for Ingres.The right hand side of Figure 3 � Figure 6 illustrate the con�dence analysis on the meanrelative error for each 10-second query time interval ranging from 0 to the maximum querytime on each server. The con�dence coe�cient was set to 95%. These graphs show the meanrelative error and its standard deviation contained below the 20% value.From the experiment logs, we found that more than 98.5% of the of long queries, i.e. withreal-time � 20 seconds, have relative error less than 20% for all four servers with ADMS beingthe winner this time with 99.2% of its long queries. This is important because HDBMS queriesserver DBMS and thus the standard deviation of the relative error is much more sensitive.13
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Figure 3: Complete Mixed Queries on Oracle7 Server
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Figure 4: Complete Mixed Queries on Oracle6 Server
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Figure 5: Complete Mixed Queries on Ingres Server
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Figure 6: Complete Mixed Queries on ADMS Server14
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(A) Adaptive Cost Estimation
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Figure 7: sp with a non-clustered index on Oracle7(Query Class:QC2)
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Figure 8: spj with a clustered index on Oracle7(Query Class:QC4)15
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(A) Query Classs:QC_1 on Oracle7

real cost

estimated cost

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

10

20

30

40

50

60

70

80

90

100

Number of Result Tuples

Q
u

e
ry

 C
o

s
t 

(e
la

p
s
e

d
 t

im
e

 i
n

 s
e

c
.)

(B) Query Classs:QC_5 on Oracle6
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(C) Query Classs:QC_3 on Ingres
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(D) Query Classs:QC_4 on ADMS
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Figure 9: Adaptive Cost Estimation for di�erent query classes in order of query result size16



are by nature more time-consuming than local ones. In our experiments, the larger relativeerrors are contributed by the short queries in which the error is perhaps more tolerable. A20% relative error on a 100 second query is itself intolerable but more acceptable for 1 � 5second queries.We now show how ACE behaves on some of the LCF classes. It should be noted that thegraphs for each of the classes were extracted from the same log of the 2400 queries but illustrateACE's performance for each individual class. The left hand side of Figure 7 and Figure 8 depictACE's estimated time and the real-time of each query. The queries shown on the x-axis are inthe very same chronological order as they occur in the 2400 query stream and, therefore, havewide time variation. The graphs on the right hand side of these �gures illustrate the relativeerrors corresponding to the same chronological order of the queries on the left hand side. Theyare included to show the adaptive capability of ACE for the corresponding classes. Note thatACE was started from \cold" in all experiments and that it only takes a few queries to reducethe relative error below 20%.Finally, in Figure 9 we present yet another (and customary) view of some of the LCF-query classes but now with the x-axis showing the queries sorted on the number of recordsthey generate. Since queries on all size relations are plotted and since query results of 10 to1000 are generated from four pairs of relations, there are considerably more points in thatrange. Again, these �gures show that ACE makes very accurate estimates of the real-timecost. Note also in these �gures the spikes to zero of the estimated cost correspond to the coldstart of the very �rst query of the class.5 Conclusion and Future WorkIn this paper, we proposed a new technique for estimating the query cost in a heterogeneousDBMS environment. Accurate cost estimation is very important in such systems because errorscan have a huge impact on actual execution cost. We formulated and provided a solution tothe problem by a detailed cost model which explicitly accounts for server CPU, server I/O,and network overhead, but implicitly captures system dependent factors such as hardwarecon�guration, operating system and underlying DBMS.The cost formula coe�cients are adaptively adjusted by an adaptive cost estimation moduleusing query feedback and statistics obtained during execution yielding more and more accu-rate cost estimates. The most important features of our approach are the rapid convergencecapability of ACE and its low overhead which permits continuous adaptation during the runtime of the system.The implementation of ACE and its experimentation with commercial DBMSs, in conjunc-tion with the accuracy of the results which have been repeatedly validated for more than twomonths, makes us optimistic that sooner, rather than later, there will be available e�cient17
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