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Abstract

In this paper, we propose a new method for estimating query cost in client-server based
heterogeneous database management system. The cost estimation parameters are adjusted
by an Adaptive Cost Estimation (ACE) module which uses query execution feedback yield-
ing more and more accurate cost estimates. The most important features of ACE are its
detailed cost model which accounts for all costs incurred, its rapid convergence to the ac-
tual parameter values, and its low overhead which permits continuous adaptation during
the run time of the system. ACE has been implemented and tested with Oracle 6, Oracle
7, Ingres, and ADMS. Extensive experiments performed on these systems show that the
ACE’s time estimates are within 20% of the real wall-clock time for more than 92% of the

queries. This percentage surpasses 98% for queries over 20 seconds.

1 Introduction

Advances in relational database technologies have enabled large organizations and companies
to store and manage unprecedented large volumes of data in relational databases. However,
due to certain considerations, such as specialized applications requirements, legacy systems, or
even strategic decisions, an organization may, instead of conforming to a database management
system (DBMS) from a single vendor, elect to adopt DBMSs from different vendors at the same
time. To best serve the organization, it is desirable that data stored in heterogeneous DBMS
platforms can be retrieved and inter-operated in a convenient and efficient way. A Heteroge-

neous Database Management System, (HDBMS), coordinates the inter-operation by accessing
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and manipulating data among the DBMSs (referred to as foreign DBMS). An HDBMS is
usually configured in a distributed client-server architecture where each foreign DBMS is run
on a possibly dedicated server machine, taking requests from the HDBMS through its API.
An HDBMS treats each of the foreign DBMSs as a “closed-box” component which cannot be

modified and which retains its local autonomy, i.e. continues to support local applications.

As in traditional distributed DBMSs, query optimization is important in HDBMS [Day85,
SY*89, SL90, DKS92, 1.592, Z1.94, DSD95], particularly for global queries which are joins
between tables from separate foreign DBMSs. A global execution plan for a global query
constitutes of a sequence of sub-queries which specifies the join order, table/result shipping
direction, and execution sites. Although the optimization techniques used in traditional dis-
tributed DBMSs [ML86] can be adapted to HDBMSs [DKS92], they induce some non-trivial
problems. One of the problems is cost estimation for query plans, which has been a recent
research issue in HDBMS [DKS92, 7Z1.94]. Cost estimation is essential in selecting the best
plan among various global query plans. The problem is harder in HDBMSs than in tradi-
tional distributed DBMSs because foreign DBMSs from different vendors have different access
methods, optimization strategies and cost models, all of which may be hidden from the global
optimizer of the HDBMS.

This paper presents a practical method for estimating the costs of global query plans for
distributed HDBMSs based on experience acquired from previous query executions. The basic
idea is to use query feedback to adapt a parametric cost function. The parameters of the cost
function are gradually adjusted after each query execution, using query and database dependent
feedback such as table size and predicate selectivities measured during the execution of the
query, and query execution time measured after the query. Query and database feedback is
independent of the performance characteristics of the underlying DBMS, network, and HDBMS
client-server implementation, while query execution time is totally determined by them. An
Adaptive Cost Estimation (ACE) module has been designed and implemented which adapts its
parameters by distributing amongst them the estimation error which is the difference between
estimated and actual values. The adapted parameters are then used for estimating follow-
up queries. ACE is operational in ADM S+, an Enhanced Client-Server HDBMS prototype
developed at the University of Maryland [RK86, RES93, DR94], and obtains accurate cost
estimates with small CPU overhead but no I/O. The ACE module works together with another
adaptive module of ADM S+ which estimates the selectivities from exactly the sizes of the
returned results [CR94].

1.1 The Problem and Related Work

Consider the distributed query shown in Figure 1 where two global query plans are considered.
In the query, P is a selection predicate on Ry, © a join predicate between Ry and R,. Symbols

o and X denote selection and join respectively. The query is issued at site D, with the final



select *
from R1, R2
where P and ©

Plan 1:
step 1. perform op(Ry) at site A, send result to a temporary table T" at site B.
step 2. perform T Mg R, at site B, send result to site D.
Plan 2:
step 1. send R, to site A.
step 2. perform o(R1) Mg Ry at site A, send result to site D.

Figure 1: An Example of Distributed and Heterogeneous DBMSs

result to be sent back to the same site. Sites A and B are running different DBMSs that are
foreign to the HDBMS at site D. Each of the two plans can be the less costly one depending
on the size of the tables, the selectivity of the selection, and in particular, the efficiency of
the access methods supported by the underlying foreign DBMSs. For example, if the result
size of op(R1) is much smaller than the size of Ry, then Plan 1 might be favored because it
incurs less communication cost. However, if DBMS A has much faster access methods on the
selection and join attributes of R1 which can be used to perform o(R;) Mg Rz than DBMS B
can perform T Mg Rj, then Plan 2 might be favored. In a homogeneous distributed DBMS,
the costs of performing o(R1) Mg Rs (at site A) and T Mg Ry (at site B) are easier to estimate
because all sites (A, B, D)are running the same DBMS. In a HDBMS environment, it is rather
difficult because commercial DBMSs have no mechanism for exposing internal optimization
parameters and statistics to be used by the global optimizer at the site where the query is
issued (site D).

The importance of developing an appropriate cost estimation mechanism for query opti-
mization in HDBMSs was first pointed out in [SYT89]. Two methods, database calibration
[DKS92] and query sampling [Z1.94], were later proposed based on the philosophy that indi-
vidual foreign DBMSs are viewed as “black-boxes” of which cost models can be “deduced”
based on the cost information revealed by the execution of queries (namely, the actual query

execution times).



In the calibration method, synthetic databases are created and imported into foreign
DBMSs, then a set of queries are issued so as to deduce the parameters of the cost mod-
els. This method requires the overhead of creating and loading the “special purpose” synthetic

database into each member foreign DBMS.

In the query sampling method, sample queries are performed against existing databases
in the foreign DBMSs. The query execution times are then measured and used to determine
the cost parameters using a multiple regression technique. Using existing databases instead
of creating synthetic databases relieves the burden and overhead of defining and populating
the synthetic database. Nevertheless, the method still incurs the overhead of initially running
the sample queries and periodically repeating them to reflect the database evolution through

updates.

1.2 Structure of the Paper

The rest of the paper is organized as follows: Section 2 describes a representation model for
global query plans, a classification scheme for foreign queries, and the adaptive cost estimation
technique. Section 3 describes the implementation of ACE in ADMS+. Section 4 analyzes
the performance results of ACE based on the implementation of ADM S+. Conclusions and

future work are discussed in Section 5.

2 Adaptive Cost Estimation for Distributed HDBMS

We first present a model for global query plans which is used to decompose each global query
to a collection of local subqueries each of which is executable on a single site. Based on
this model, the total cost of a global query plan can be easily obtained by summing up the
composing subqueries. A scheme is then used to classify the subqueries into different classes
according to their performance characteristics. We then propose a generic parametric cost
function for all classes of subqueries and describe the technique for adapting the parametric

cost function.

2.1 Global Query Plan and Classification

We decompose a general query to subqueries that can be computed locally on a single server
site with a selection-projection (sp) or selection-projection-join (spj) operation. The rationale
in this decomposition is that these subqueries have predictable cost behavior mostly because

they are performed in one pass.

Definition 1 A Local-Compute-and-Forward (LCF) (sub)query, denoted by

Tolop(R))a—p or wo(op(Ri X R;))a—B,



‘ Class ‘ Query Type ‘ Index on Selection/Join Attributes

QCY 7o(ocp(R))a—p sp with a clustered index
QCH 7o(ocp(R))a—p sp with a non-clustered index
QC3 7o(ocp(R))a—p sp with no index

QCs | malop(Ri W Rj))a—n spj with a clustered index
QCs | malop(Ri W R;))a—n spj with a non-clustered index
QCs | malop(Ri W R;))a—n spj with no index

Table 1: Query Classes

is a selection-projection (sp) or selection-projection-join (spj) query that is to be executed at a

single site A of a DBMYS with the result being exported from site A and imported to site B.

Note that for a spj LCF query, the two operand tables R; and R; must both reside in site A’s
DBMS. When A and B refer to the same site no result export/import is needed. Otherwise,
the result is to be generated from A’s DBMS, transmitted over the network, and imported into

the DBMS of site B.

Every global query plan can be represented by a sequence of LCF-queries. For example,
consider a global query 7m,(cp(R1) X Ry M Rs3) where Ry, Ry, R3 reside in sites A, B, C respec-
tively and each of which running a different DBMS, and the final result is to be imported into
site D. Let ap, be the union of the projection of @ on R; and the selection/join attribute(s)

of R;. The following are two possible global query plans:
To((0p(R1)a—B X Ry)p—c M R3)p_p

(Mg, (0P(R1)) M T g, (R2)B—a) W Tag, (R3)o—a)a—D

The total cost of a global query plan can be obtained by summing up the costs of the composing
LCF-queries. In this paper, we shall concentrate on estimating the costs for LCF-queries as

they constitute the basics of a global query plan.

In Definition 1, we define two classes of LCF-queries, sp and spj. However, since each class
represents a broad range of queries whose best access methods may greatly vary, we adopt the
classification of [Z1.94] for LCF-queries which is based on whether a clustered, or unclustered
index is present in the selection/join attributes or no index. Table 1 shows the six LCF query
classes (JC7 ~ QCg obtained by this classification. We associate a distinct cost function to
each of these classes. The rationale behind such a classification is that queries in the same class
have the same set of available access methods and are, therefore, most likely to be handled by

the foreign optimizer in the same way.



‘ Cost Factor ‘ Meaning

f constant initialization overhead cost of 1 unit

fa number of messages required to execute an LCF

f3 cardinality of the first operand table

fa average tuple length of the first operand table in bytes
fs cardinality of the second operand table

fs average tuple length of the second operand table in bytes
f7 cardinality of query result

fs average tuple length of query result in bytes

fo total size of query result in bytes

Table 2: Notations for Cost Factors

2.2 Cost Model

In traditional distributed database systems where all sites are running the same DBMS, the
following formula is typically used in estimating the cost of a distributed query plan (with
known local access methods) [ML86, OV91]:

Total cost = Wepy * (number_of instructions) + Wy o * (number of I/0s) +

Whrsa * (number_of _messages) + Wgyrg * (number_of _bytes) (1)

where Wepy, W0, Warsas and Wgyrg, are system-wide constants that denote the weighted
(relative) cost per instruction execution, per I/O operation, per message transmitted and per
byte of data transmitted over the network, respectively. Usually, these weights are empirical
values obtained by running a large set of sample queries and are hard-coded into the DBMS
kernel. Details about the local access methods of the query plan must be known a priori in
order to estimate the parameters including number of instructions executed, number of 1/Os
performed, number of messages and total bytes of data transferred over the network. These
parameters depend not only on the query characteristic and data profile (including table sizes
and query selectivities), but also on the DBMS kernel’s characteristics (including the size of the
code that implements each access method, the buffer manager’s strategies, and the network
interface parameters). These parameters can only be available in proprietary solutions of

homogeneous systems, and therefore are refereed to as system-dependent parameters.

The above formula, however, is of no use for the HDBMS case because the global query
optimizer has no access to the system-dependent parameters and/or knowledge on how the
optimizer of each foreign DBMS will perform. Since system-dependent parameters are unavail-
able, we must use a cost model that is solely based on query/data-dependent parameters such
as query expression, data statistics, and estimated sizes of results. Like [ST79, K¥85, Z1.94],
we assume that all four parameters of formula 1 are in proportion to a few basic quantitative

query/data dependent parameters, called cost factors. ACE uses nine cost factors f; ~ fg



whose meaning is shown in Table 2. For a sp query, the factors f5 and fg are omitted and their
values are zeros. The CPU and I/O costs on the server are captured in the f3 ~ f7 factors
while the rest of them model the communication network and the client-server inter-operation
cost. Exact or pretty accurate estimates of the above factor values can be obtained by the
query feedback as these factors do not depend on the internals of the foreign DBMSs, and can
readily be obtained.

For each query class QC;(1 < j < 6), ACE maintains and uses a cost estimation function:
&(q) = ai; - fi(q) (2)

where é(q), the estimated cost of a LCF query ¢ € QC}, is a linear combination of cost factors
fi(q), with a; ; being the cost coefficients (of query class QC;) that map the cost factors to
the estimated cost. Note that unlike formula 1 where the CPU, 1/0, and network costs are
considered separately, the ACE cost formulae model the cumulative cost of all these costs

regardless of the idiosyncrasies of the underlying DBMS and network.

Consider a sp query ¢ of class QCy where the clustered index is maintained as a B-tree. The
cost of shipping the query to the foreign DBMS will be subsumed by a1 1 fi(q) and a1 fo(q).
The cost of navigating the B-tree, which includes the initialization overhead (a constant) and
the number of B-tree nodes retrieved (depending on the height of the tree and the selectiv-
ity of the predicate), will be subsumed by aq1fi(q), as1fs(q) and a7 f7(¢). Similarly, the
cost of retrieving and processing the qualified tuples from the relation will be subsumed by
as1f1(q), ar1f7(q), and agq fs(q); the cost of transmitting the result over the network will
be subsumed by ag 1 fo(g). Similarly, if a linear scan, rather than the B-tree, is chosen as the
access method, the cost of the linear scan can still be properly subsumed by different products
in the cost function. The purpose of the cost coefficients a; ; is to map a query to the cost of
the access method that is most likely to be chosen, based on the characteristics of the query
(which are quantified by the cost factors). The values of a;; determine the accuracy of the

cost estimation.

2.3 Adaptive Cost Estimation

Database calibration [DKS92] and query sampling [Z1.94] techniques have been proposed to
estimate the unknown parameters of a foreign cost function. As discussed in section 1.1,
both methods require a non-trivial periodic tuning and incur substantial overhead. We pro-
pose a much simpler, dynamic, and cost-effective approach for estimating the cost coeflicients,
which uses neither synthetic tables nor sample queries. In our method, the coefficients adjust
gradually after each query execution by using actual cost measurement. The coefficients are
guaranteed to converge to the “optimal values” (which will be defined later) as queries proceed,

thus yielding more and more accurate cost estimates.



Consider the cost function é(q) = 37, a; - fi(¢) that is associated with a query class QC
of a foreign DBMS A. Let ¢1,¢2,...,q1x (k > n) be a sequence of queries from class QC and
€1,€2,...,ct be the corresponding actual query execution times measured. The cost estimation
error for ¢; can be expressed as ¢(¢;) — ¢;. A reasonable way to assign values to @;’s is to find

the values that will minimize the squared sum of the cost estimation errors:



k n
2 (Ela) ) = (D aifile) — )’ (3)
k

= > (Xi-A—¢) (4)

=1

where X; = [f1(a), fa(@)s -+ -, fu(g)] and A = [ay, aq, .. .,a,]" (27 denotes the transpose of z).

This problem is known as the Least Square Problem and its solution A} = [agk), a(zk), .. .,a%k)]T
which minimizes expression 4 can be computed as [Mar87]:

AL = (XTX)TH(xTO) (5)
where X is a k X n matrix with X; being the i’th row, and C' = [¢q, ¢a,...,c;]T. This “stage-

wise” method requires recomputation every time a new estimate error is to be included. For
example, if an additional query gx41 and its observed cost i1y are to be included, then A},
needs to be computed form scratch, because it takes no advantage of previously computed val-
ues of A. A better method, called recursive least-square estimation, [Lee64, You84], eliminates
the duplication by using a recursive expression. It expresses the solution A}, when & > n, in

a recursive form:

“gk) Zgu filar)] Zafk 2 filge) —ex], for1<l<n (6)
91(2 = glm Zgl Y 'fi(‘]k)][z fi(f]k)gff;;l)], for 1 <Il,m<n (7)
=1

where a = 1/(X;, -G - X[I'), G is an n x n matrix with G(4, j)1<ij<n = gl(f;_l).

In the above recursion, the coefficient a;’s are adjusted after each query by subtracting a
corrected term which is in proportion to the estimation error. The g;;’s can be viewed as a
matrix of self-organized memory cells that take subsequent estimation errors as feedback to
support the adaptation of a;’s. Note that the above recursive relation does not hold for k < n
because there does not exist a unique least square solution for a system of k£ equations which
has more than k£ variables. However, if we start the recursion by assigning ago) =0, gfg) =0
for i # j, and gfg) to some large number, then the solution computed using formulae 6 and 7
eventually converges to the one computed using formulae 5 as k increases [You84].

The adaptation mechanism starts as soon as the first query is executed. During the first
few queries, the cost estimation errors may be relatively large because the cost function is still
in its learning stage. Our experiments show that, however, after a few queries, the estimated

costs are very close to the actual costs. The advantages of ACE over previous methods include:



o FElfficiency. The coefficients of the cost function are determined and dynamically modified

on-line without I/O access and with negligible CPU overhead.

e Robustness. It is practically difficult to isolate the costs of a query plan that are con-
tributed by the underlying operating system and/or network softwares, because they
are heterogeneous and proprietary systems. In our method, however, these modules are
treated as black-boxes and their contributing costs are subsumed in the cost function im-
plicitly by using a linear combination of query-dependent only parameters with adaptive

coefficients.

o Practicality. Based only on a generic cost function with adaptable parameters and a
simple recursion scheme, ACE is easy to customize for and incorporated into different
database architectures/environments. We have implemented ACE in a client-server based

HDBMS prototype with very little coding overhead.

3 Implementation of ACE

We implemented ACE inside ADM S+, an enhanced multi-site client/server (E-CS) HDBMS,
in which the clients are fully-fledged DBMSs capable of caching and maintaining downloaded
data subsets obtained as a result of running global queries on multiple DBMSs [RK86, RES93,
DRY94]. The database servers are commercial and other prototype DBMSs accessed through
application level gateway software, called ADM S+, which capitalizes on incremental access
methods [Rou91] for downloading and maintaining cached data results in the form of materi-
alized views. The communication between servers and clients is based on TCP /IP Networking
Protocol over LAN/WAN. Figure 2 shows the system architecture of ADM S+ with three
commercial DBMSs and our own ADMS prototype. Each client runs a single-user version of
ADMS, called ADM S—, which maintains on its own local storage materialized views, cached

catalogs, and statistics.

ACE is built into the Global-Query Optimizer of ADM S+ to estimate the costs of different
classes of LCF queries. The Global-Query Optimizer parses a global HDBMS query into a
sequence of LCF-subqueries, obtains statistic information about the operand tables(cardinality,
tuple length, indexes etc.) from the locally stored system catalogs, maps each LCF-subqueries
into its corresponding query class based on the classification criteria defined in Table 1, then
invokes the ACE module to produce the cost estimation for each LCF-subquery. The total cost
of a global query plan can be obtained by summing up the costs of the composing L.CF-queries.
The Global-Query Optimizer then prunes off costly query plans and generates an execution

plan with the minimum cost estimate.

One of the key factors related to the cost estimation is the predicate selectivity, which

is the number of tuples satisfying a given predicate. The accuracy of selectivity estimation
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Figure 2: ADM S+ System Architecture

directly affects the accuracy of the query cost estimation. ADMS uses another adaptive module,
called Adaptive Selectivity Estimator (ASE) [CR94], for interpolating the value distributions
of attributes which are then used to estimate selectivities. ASFE produces accurate estimates of
record selectivities from real attribute value distributions which are adaptively approximated by
a curve-fitting polynomial using the query feedback mechanism. Its accuracy and performance

have been reported in the above paper.

Both ACE and ASE are modules of the global-query optimizer of ADM S+ using query
feedback to adapt. ASE is invoked by ACE when a LCF-subquery with a selection predicate is
generated by the global-query optimizer and its selectivity needs to be estimated. In ADM S5+,
the query feedback consists of (a) the actual selectivity obtained after running the query, (b) the
actual real time cost of the query execution, (c) catalog statistics from the server(s). ASE uses
(a) and (c) while ACE uses (b) and (c). Catalog statistics basically include table cardinalities
and indexing information. These are piggy-backed with the query result from the server(s)

and used to update the locally cached client catalogs.

ACE and ASE require some matrix manipulation and mathematical computation but only
incur CPU cost. In our ADM S+ implementation of ACE and ASE, the overhead of the ACE
and ASE module computation is only a small fraction of the optimization cost and negligible
when compared to the real query execution cost.

As mentioned above, ACE uses real wall-clock time observed on the client to adapt. For

each query, a start timestamp is obtained by the client just before it begins to transmit the

11



query to the server(s) and an end timestamp is recorded after the last record of the result has
been received. The elapsed time between the timestamps is our metric of cost and measures all
other costs, inter-operation, server CPU, server /O, communication, and server and network

contention factors.

4 Experimental Results

We performed extensive experiments to estimate LCF query cost in ADMS+. The config-
uration of these experiments included three commercial DBMS servers Oracle (v7.0), Oracle
(v6.0) and Ingres (v6.0), our own prototype ADMS (v3.3) server, and the ADM S+ (v2.0) En-
hanced Client-Server HDBMS. Oracle 7 runs on a SparcStation 20, Oracle 6 on a SparcStation
2, Ingres on a DECstation 5000/200, and ADMS on a SparcStation 2. The clients were run on
separate SparcStation 2s. All client and server machines are connected via a shared FEthernet

network. All the experiments were conducted during the night under low network /server loads.

We used the Wisconsin Benchmark relations [BT94] in all our experiments. The eight
tables used along with their statistics are shown in Table 3. These are pre-loaded into each
of the server DBMSs before the experiments are run. A range-varying parametric query for
each of the six LCF classes of queries was used to generate randomly distributed range queries.
These are shown in Table 4 in their ADM S+ extended SQL syntax with €y and C5 being the
variable range parameters and, RIVL1 and RF L2 being relation variables from the database.

The result is to be downloaded to and stored in a materialized view on the client.

For each LCF class, one hundred different ranges were randomly generated but with con-
trolled selectivity to generate results of varying sizes from 10 to 10000 records. Each of these
groups of one hundred queries was regenerated for four different sets of varying size relations to
obtain 400 queries for each class or 2400 queries for the whole experiment. These 2400 queries
were randomly mixed to generate the final query stream used in all server runs of our experi-
ment. The random ranges, the variations of relations and the random mix were employed to

reduce side-effects of shared buffers by similar queries.

The query stream was run from cold start and a single log for each server was generated.
From these logs we make our observations and draw conclusions. We compare the ACE esti-
mated cost with the actual real-time costs and generate histograms and graphs showing the

accuracy of the estimates, the relative errors, and the adaptive capability of ACE.

Figure 3 ~ Figure 6 show the statistical and confidence analysis of ACE’s runs on all four
servers. The histograms show the percentage of queries for each 10% intervals of relative error.
On Oracle7, 92% of the queries had relative error between 0 and 10%. The corresponding
figure for Oracle6 is 90%, for Ingres 78% and for ADMS! 70%. The percentage of queries for

! ADMS is more susceptible to Unix mannerisms and its eager prefetching which are more difficult to estimate.

Another reason for the lower figure for ADMS is that query execution times are much shorter than all the other
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H Relation | Tuple_Length | Cardinality | Clustered_Index | Non_Clustered_Index H

onekl 182 1000 Y Y
onek?2 182 1000 N N
twok1 182 2000 Y Y
twok?2 182 2000 N N
fivekl 182 5000 Y Y
fivek2 182 5000 N N
tenk1 182 10000 Y Y
tenk?2 182 10000 N N

Table 3: Experiment Relations

H Query Type ADM S+ Extended SQL Format H

sp with a select aq,...,a, from DB.REL]
cluster-indexed attribute where un2 > C and un2 < Cs into VIEW 1,
sp with a select aq,...,a, from DB.REL]
non-cluster-indexed attribute | where unl > Cy and unl < C5 into VIEW?2;
sp with no select aq,...,a, from DB.REL]
indexed attribute where k1 > C and k1 < C5 into VIEW3;
spj with a select ay,...,am,b1,...,b, from DB.RELl, DB.REL?2
cluster-indexed attribute where DB.REL1.un2 = DB.REL2.un2 and

DB.RELl.un2 > Cy and DB.REL1.un2 < C5 into VIEW4;
spj with a select ay,...,am,b1,...,b, from DB.RELl, DB.REL?2
non-cluster-indexed attribute | where DB.RELl1.unl = DB.REL2.un2 and

DB.RELl.unl > Cy and DB.REL1.unl < C5 into VIEWD;
spj with no select ay,...,am,b1,...,b, from DB.RELl, DB.REL?2
indexed attribute where DB.REL1.k1 = DB.REL2.un2 and

DB.REL1.k1 > (Cy and DB.REL1.k1 < C5 into VIEWE;

Table 4: Experiment Queries

which ACE had relative error of less than 20% range from an impressive 97% for Oracle7 down

to 92% for Ingres.

The right hand side of Figure 3 ~ Figure 6 illustrate the confidence analysis on the mean
relative error for each 10-second query time interval ranging from 0 to the maximum query
time on each server. The confidence coefficient was set to 95%. These graphs show the mean
relative error and its standard deviation contained below the 20% value.

From the experiment logs, we found that more than 98.5% of the of long queries, i.e. with
real-time > 20 seconds, have relative error less than 20% for all four servers with ADMS being

the winner this time with 99.2% of its long queries. This is important because HDBMS queries

server DBMS and thus the standard deviation of the relative error is much more sensitive.
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are by nature more time-consuming than local ones. In our experiments, the larger relative
errors are contributed by the short queries in which the error is perhaps more tolerable. A
20% relative error on a 100 second query is itself intolerable but more acceptable for 1 ~ 5

second queries.

We now show how ACE behaves on some of the LCF classes. It should be noted that the
graphs for each of the classes were extracted from the same log of the 2400 queries but illustrate
ACE’s performance for each individual class. The left hand side of Figure 7 and Figure 8 depict
ACE’s estimated time and the real-time of each query. The queries shown on the x-axis are in
the very same chronological order as they occur in the 2400 query stream and, therefore, have
wide time variation. The graphs on the right hand side of these figures illustrate the relative
errors corresponding to the same chronological order of the queries on the left hand side. They
are included to show the adaptive capability of ACE for the corresponding classes. Note that
ACE was started from “cold” in all experiments and that it only takes a few queries to reduce

the relative error below 20%.

Finally, in Figure 9 we present yet another (and customary) view of some of the LCF-
query classes but now with the x-axis showing the queries sorted on the number of records
they generate. Since queries on all size relations are plotted and since query results of 10 to
1000 are generated from four pairs of relations, there are considerably more points in that
range. Again, these figures show that ACE makes very accurate estimates of the real-time
cost. Note also in these figures the spikes to zero of the estimated cost correspond to the cold

start of the very first query of the class.

5 Conclusion and Future Work

In this paper, we proposed a new technique for estimating the query cost in a heterogeneous
DBMS environment. Accurate cost estimation is very important in such systems because errors
can have a huge impact on actual execution cost. We formulated and provided a solution to
the problem by a detailed cost model which explicitly accounts for server CPU, server 1/0,
and network overhead, but implicitly captures system dependent factors such as hardware

configuration, operating system and underlying DBMS.

The cost formula coefficients are adaptively adjusted by an adaptive cost estimation module
using query feedback and statistics obtained during execution yielding more and more accu-
rate cost estimates. The most important features of our approach are the rapid convergence
capability of ACE and its low overhead which permits continuous adaptation during the run

time of the system.

The implementation of ACE and its experimentation with commercial DBMSs, in conjunc-
tion with the accuracy of the results which have been repeatedly validated for more than two

months, makes us optimistic that sooner, rather than later, there will be available efficient
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query optimizers for HDBMSs. We believe that the work presented in this paper contributes

towards achieving this goal.

There are several directions that the ACE method can be extended. First, additional
experiments with other commercial DBMSs would strengthen the presented results. Second,
the classification of the query types can be refined to improve the accuracy of cost estimation.
Third, the cost estimation formula can be extended to explicitly model system-dependent run-
time parameters such as system and network load. Finally, the method can be extended to

model more complex multi-server queries which require large data moves.
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