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In this paper, we investigate meta-analysis of the overall treatment effect

in the setting of a multi-center clinical trial study in which patient level data are

available. We estimate the overall treatment effect using two methods: meta-

analysis, which uses the summary statistics from each center and a unified com-

bined analysis of patient level data. In the meta-analysis we use a random effects

meta-analysis model and in both analyses we use a parametric proportional haz-

ards model.

In a randomized clinical trial study, subjects are recruited at multiple cen-

ters to accrue large enough samples within an acceptable period of time and to

enhance the generalizability of study results. Heterogeneity between trials may

arise from the center effects or treatment effect itself. To take into account the

heterogeneities, random effects models are used. We performed a data analysis



based on a multi-center clinical trial study in small-cell lung cancer conducted by

the Eastern Cooperative Oncology Group and then parallel data analysis within

a simulation study.

In the simulation study we vary the magnitude of the center and the treatment-

by-center heterogeneity in the data generation and estimated the over all treat-

ment effect using the two methods. We compared the two methods in terms

of bias, mean square error and percentage of significant treatment effect. The

simulation study shows that meta-analysis treatment effects estimate are slightly

biased when covariates are included in the analysis.
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Chapter 1

Introduction

1.1 Background

In a randomized clinical trial, it is often necessary to recruit subjects at

multiple study centers to accrue enough sample size within an acceptable period

of time and to enhance the generalizability of study results. However, there might

be factors that vary by center, which exert influence on the study’s outcomes.

These factors include patient characteristics and medical practice patterns. Such

center effects potentially lead to dependence between outcomes at each center.

In addition to factors that vary by center, heterogeneity between trials may arise

from the treatment effect itself. That is, the treatment may have worked better

in some centers than others. Such treatment-by-trial interaction heterogeneity
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can be accounted for by using random interaction effects between the treatment

and trial in a random effect model. If these effects are sufficiently large, a model

which ignores the center effect or the treatment-by-center effect may lead to in-

correct inference.

When the primary endpoint of interest in the study is the time it takes for

a certain event to occur (time-to-event), a proportional hazards model with ran-

dom effects which includes the treatment-by-center interaction term as well as

the baseline risk term can be used [1]. Another alternative to analyze this kind

of data is meta-analysis in terms survival-analysis models fitted to data for the

individual centers.

Meta-analysis is defined as the statistical analysis of a large collection of anal-

ysis results from individual studies for the purpose of integrating the findings [12].

The objectives of a meta-analysis include increasing power to detect an overall

treatment effect, estimation of the degree of benefit associated with a particu-

lar study treatment, assessment of the amount of variability between studies, or

identification of study characteristics associated with particularly effective treat-

ments. When several studies have conflicting conclusions, a meta-analysis can

be used to estimate an average effect or to identify a subset of studies associated

with a beneficial effect. In meta-analysis, variation between centers can be cap-

tured using a random effects model [3, 4, 13]. As indicated in [4], meta-analysis

includes the following basic steps:
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1. Identification of literature

2. Study selection

3. Data extraction

4. Statistical analysis

Identification of literature: Meta-analysis needs to find all of the relevant

articles on the topic. Sources to be searched include the published literature, un-

published literature, dissertations and drug company studies. Including all trials

which could potentially contribute to the meta-analysis minimizes problems asso-

ciated with selection or publication bias [4, 13, 23]. Although, in general it is true

that meta-analysis needs to find all relevant articles on the topic, a multi-center

clinical trial will have been designed prospectively with a combined analysis of

the data from all centers as its main objective and a meta-analysis can be used

[13]. Individual centers are expected to follow a common protocol.

Study selection: Once the author of a meta-analysis has assembled a large

number of studies, it is important to select studies based on eligibility criteria

used in accepting or rejecting a study. The criteria include whether the study

includes enough information for analysis (a point estimate and a standard devia-

tion or standard error), year and demographic features of the study, study design

(observational or randomized), treatment dose, and sample size.

Data extraction: After identifying an appropriate group of studies, the re-

searcher has to extract the relevant data from each study. There are many sources
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of potential error in data extraction, such as misinterpreting tables and data en-

try.

Statistical analysis: In meta-analysis the type of model to be used should be

specified. The type of model (fixed effects versus random effects) to be used is

specified based on the degree of heterogeneity of between-study variability of the

collected studies. To determine the degree of heterogeneity, a chi-square test is

often used [4]. A fixed effect model assumes that the parameter measuring treat-

ment difference is the same across all trials. A random effects model assumes

this parameter acts as a random variable taking different values from one trial

to the next. More discussion about meta-analysis models including parameter

estimation methods is given in Chapter 3.

1.2 Motivation

In this thesis research we use a multi-center study and investigate the

overall treatment effect using two approaches, the first a unified parametric pro-

portional hazards model and the second a meta-analysis model. We use a dataset

from a multi-center clinical trial EST 1582 in small-cell lung cancer conducted

by the Eastern Cooperative Oncology Group (ECOG). Previous studies on this

dataset have shown that there is significant variation in treatment effect by center

[9, 10]. Thus, in the unified parametric proportional hazards model we include
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random effects for both the treatment-by-center interaction and for baseline risk.

In the meta-analysis model, we assume the studies in separate centers are in-

dependent, and we take from each center the minimum information that might

be published in a journal article (center treatment effect estimate and standard

error). We use a meta-analysis random effects model to account for the hetero-

geneity of treatment effects among centers, beyond the variation accounted for

by fixed effects. In this thesis we are motivated to see how the overall treatment

effect estimate varies from the two models: the meta-analysis random effects

model and the unified parametric proportional hazards model with both center

and treatment-by-center random effects. We have been unable to find any pre-

vious study that used patient level data and analyzed using both unified and

meta-analysis to investigate what could go wrong in the meta-analysis.

1.3 Multi-center data: example

The ECOG EST 1582 study compares two different chemotherapy reg-

imens: a standard therapy consisting of cyclophosphamide, adriamycin and vin-

cristine (CAV) and an alternating regimen (CAV-HEM) where cycles of CAV

were alternated with HEM (hexamethylmelamine, etoposide and methotrexate).

Gray ([9] and [10]) has made a detailed analysis of institutional variation in this

dataset and has shown the variation of treatment effect by center. In Chapter
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4, we use these data to investigate the center effects using a unified parametric

proportional hazards model and a random effects meta-analysis model.

1.4 Survival proportional hazards model with

random effects

Let i be a cluster, i = 1, . . . , g, and let j index subjects in cluster i,

j = 1, . . . , ni. Let Zij be a random death time and let Cij be the corresponding

right-censoring time for subject j in cluster i . We assume that the censoring

times are independent of the survival times and that Tij = min(Zij, Cij), and

δij = I[Zij≤Cij ] are observed rather than Zij, Cij. Each patient will have a binary

variable Xij1 representing the treatment group to which the patient is randomized

(Xij1 = 0 if a patient is in the control group and Xij1 = 1 if the patient is in the

treatment group). The proportional hazards model with random center effects

ui and random treatment-by-center interaction vi is given as

hij(t|ui, vi) = h0(t) exp

( p∑
k=1

Xijkβk + ui + viXij1

)
(1.1)

ui ∼ N(0, σ2), vi ∼ N(0, τ 2), cov(ui, vi) = 0
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where h0(t) is the baseline hazard function, β is the fixed effects vector of dimen-

sion p, and Xij is the vector of covariates. The variance σ2 of the ui represents the

heterogeneity between centers of the overall underling baseline risk and the vari-

ance τ 2 of vi represents the heterogeneity between centers of the overall treatment

effect β1. More discussion about this model and other survival proportional haz-

ards models, in which h0(t) is known except for a finite-dimensional parameter,

is given in Chapter 2.

1.5 Meta-analysis random effects model

Let θ be the central parameter of interest and assume there are i =

1, 2, . . . , g independent studies. Assume that Yi is such that E(Yi) = θ and

let s2
i = var(Yi) be the variance of the summary statistic in the ith study. The

random effects model assumes each study is associated with a different but related

parameter. It postulates that each study summary statistic, Yi, is drawn from a

distribution with a study specific mean, θi and variance, s2
i

Yi|θi, s2
i

indep.∼ N(θi, s
2
i ) (1.2)

Furthermore, each study-specific mean, θi, is assumed to be drawn from some

superpopulation of effects with θ and variance τ , with θi|θ, τ 2 indep.∼ N(θ, τ 2). θ and
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τ represent, respectively, the average treatment effect and inter-study variation.

Although s2
i are assumed known, in reality the the estimated variance of θi,

var(θi), is treated as if it were the true variance s2
i . Details of this model and the

fixed effects meta-analysis model are given in Chapter 3.

1.6 Objective of the study

The objective of this study is to investigate the validity of overall treat-

ment effects estimates from meta-analysis. We do this by comparing treatment

effects estimate from a meta-analysis model and a unified parametric proportional

hazards model. In the meta-analysis, we use a random effect model to capture

center variation and treatment-by-center variation. In the unified parametric

proportional hazards model, we include a center random effect and treatment-

by-center random effect. We study the bias and the mean square errors of the

estimates from the two models. The thesis includes results of data analysis from

a multi-center clinical trial and from a simulation study. In the simulation study,

we vary the design matrix and the degree of center-by-treatment random effect

and compare the treatment effects estimate from the two models.
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1.7 Organization of the thesis

This thesis is organized as follows: Chapter 2 gives a brief review of

survival proportional hazards models. It includes data classifications, basic quan-

tities, development of a parametric proportional hazards model, and estimation

methods. Chapter 3 discusses meta-analysis models and estimation methods.

Chapter 4 reviews the ECOG data from Gray’s paper and presents the results

from the survival analysis and meta-analysis models discussed in Chapter 2 and

3. Chapter 5 presents simulation results. Chapter 6 presents a discussion and

some problems for future research.
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Chapter 2

Survival proportional hazards

models

In Section 2.1 we explain survival data structure and the basic parameters

that are used in modeling survival data. In Section 2.2 we define the proportional

hazards model. First, we define the general model; then we show the presence

of random effects in the model. Finally, we show how we use the NLMIXED

procedure in SAS to get parameter estimates.
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2.1 Survival data and basic quantities

Many types of non-life data, as well as some life data, are complete or

fully observed. In many cases, life data contains uncertainty as to when exactly

an event happened (i.e., when the unit failed). Data containing such uncertainty

as to exactly when the event happened are termed censored data. There are at

least three types of possible censoring schemes, right, left and interval censoring.

Right censoring is the most common type of censoring. For right censored data

all that is known for some individuals is a time beyond which the subject is still

alive. In the second type of censoring, left censoring, a failure time is only known

to be before a certain time. Interval censoring data reflects uncertainty as to the

exact time the units failed within an interval [16, 17, 21].

The two basic quantities used in modeling survival data are the survival func-

tion and the hazard rate function. Let T denote a continuous non-negative ran-

dom survival time, with probability density function f(t) and cumulative distri-

bution function F (t) = Pr(T ≤ t). The survival function is the probability of an

individual surviving beyond time t. It is defined as

S(t) = Pr(T > t). (2.1)
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The hazard function, which is also called the hazard rate or conditional failure

rate in reliability, is defined as

h(t) =
f(t)

S(t)
. (2.2)

The cumulative hazard function, H(t), is the accumulation of the hazard up to

time t; that is, H(t) =
∫ t
0 h(u)du. The survival function and the cumulative

hazard function are related through the identity S(t) = exp{−H(t)}.

2.2 Parametric proportional hazards models

The proportional hazards model is the most popular model in sur-

vival data analysis. It relates the underlying hazard function, describing haz-

ard changes over time, to the effect parameters, describing how hazard relates

to other factors. The proportional hazards assumption is the assumption that

non-time-dependent effect parameters multiply the time-dependent hazard. The

effect parameters specified by the proportional hazards model can be reported as

log hazard ratios for population members with specified covariate values differing

by a unit amount. For the simplest case of treated and control, the proportional

hazards model states that the hazard of treated subject over the hazard of control

subject does not change over time [6, 16]. In general the proportional hazards
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model can be written as

hi(t) = h0(t) exp(X tr
i β) (2.3)

where h0(t) is the baseline hazard function corresponding to the hazard function

of a subject with covariate information Xi equal to 0 and X tr
i is the transpose of

the vector Xi.

The baseline hazard function h0(t) either can be assumed to have a particular

parametric form or can be left unspecified. In parametric proportional hazards

models, we assume a particular parametric function for the baseline hazard h0(t).

One of the most important models is the Weibull baseline hazard, with hazard

function given by

h0(t) = λρtρ−1 (2.4)

with λ > 0, ρ > 0. The scale parameter1 λ provides information on the way

the hazard (or density) is stretched out over time, and the shape parameter ρ

parameterizes a variety of shapes for the density.

When ρ is smaller than 1, the hazard decreases monotonically with time.

However, when ρ is larger than 1, the hazard increases monotonically with time.

When ρ is equal to 1, this hazard (2.4) is the exponential hazard and is constant

1In this thesis we use λ as the scale parameter, but some people use λ−1/ρ as the scale
parameter.
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over time. For a fixed value of λ, ρ determines how fast the hazard function

increases (ρ > 1) or decreases (ρ < 1)

Substituting h0(t) from (2.4) into (2.3), we get

hi(t) = λρtρ−1 exp(X tr
i β) (2.5)

The corresponding survival function and density function for subject i are given

as

Si(t) = exp(−
∫ t

0
λρsρ−1 exp(X tr

i β)ds) = exp(−λtρ exp(X tr
i β)) (2.6)

and

fi(t) = hi(t)Si(t) = λρtρ−1 exp(X tr
i β) exp(−λtρ exp(X tr

i β)) (2.7)

The random survival time Ti with this density has a Weibull distribution, de-

noted as Ti ∼ Weib(λ exp(X tr
i β), ρ). Thus all subjects following model (2.5) are

Weibull distributed with the same shape parameter ρ but differ with respect to

the scale parameter.

Other kinds of distributions that can be used instead of the Weibull include

Gamma, lognormal, loglogistic, normal, and Gompertz. Details of these choices

can be seen in survival analysis books such as the one by Klein and Moeschberger

[16]. When the baseline hazard h0(t) in (2.3) is left unspecified, it has one para-

metric factor, X tr
i β, and one factor which is not specified in a parametric way,

h0(t), and we call the model semiparametric [6].
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In survival data analysis, situations where survival times are not independent

are frequently encountered. Such data tends to arise when different individuals

have some features in common. An example of such data arises in a multi-center

study, in which the survival experience of individuals from the same center may

be more similar than that for individuals from different centers. In this kind of

situation, we might represent the effect of the center by introducing a random ef-

fect in the model. In survival data analysis, a random effect is often referred to as

a frailty [7, 17]. A frailty model is a random effect model for time-to-event data,

where the random effect (the frailty) has a multiplicative effect on the baseline

hazard function. The most common model for frailty is the shared frailty model

where subjects in the same cluster all share the same frailty factor [8, 10, 17,22].

The shared frailty model is defined as

hij(t) = h0(t) exp(X tr
ij β + ui) (2.8)

where hij(t) is the conditional hazard function for the jth subject from the ith

cluster, h0(t) is the baseline hazard, β is the fixed effects vector of dimension p,

Xij is the vector of covariates, and ui is the logarithm of the shared multiplicative

frailty parameter for the ith cluster. The model can be written as

hij(t) = h0(t)wi exp(X tr
ij β) (2.9)
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where wi = exp(ui) is the frailty for the ith cluster. We see that individuals in a

group i with wi > 1 are frail (high risk) and individuals in a group i with wi < 1

are strong (lower risk). The wi are an independent and identically distributed

sample from a distribution with mean 1 and some unknown variance. A math-

ematically convenient choice for the distribution of the wi is the one-parameter

gamma distribution written as

fW (w) =
w1/θ−1 exp(−w/θ)

θ1/θΓ(1/θ)

where Γ denotes the gamma function. With this frailty distribution, the mean

of W is 1 and the variance of W is θ, so that large values of θ reflect a greater

degree of heterogeneity among groups and a stronger association within groups.

Model (2.8) is a single frailty model, where there is only one random term.

Next we discuss a model where there are two random terms within the same

cluster. A typical example of such a model is a multi-center clinical trial with a

frailty term describing the heterogeneity between centers and a second random

term modeling the center-by-treatment interaction. The second random effect

term describes the treatment heterogeneity between centers [1, 2, 17]. In this

situation a model with two random effects shown in (1.1) can be used. That is

hij(t|ui, vi) = h0(t) exp(
p∑

k=1

Xijkβk + ui + viXij1).
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One factor limiting the practical use of models with random terms is the lack

of a good estimation method. The two approaches used in practice are the EM

algorithm, which treats the frailties as missing values, and the partial penalized

likelihood (PPL) approach, which considers the density of the frailty as a penalty

term in the likelihood.

Another technique of likelihood based analysis of random effect survival data is

to use numerical integration of the random effects based on Gaussian quadrature

[14]. This technique can be implemented in SAS using the NLMIXED procedure

[15]. For the review of the first two methods (EM algorithm approach and PPL

approach) and detailed discussion about the numerical integration of the random

effects based on Gaussian quadrature, see Liu and Huang [14]. In this paper we

use numerical integration, allowing multiple random effects in the random state-

ment in the NLMIXED procedure. The complete code to analyze the ECOG

lung cancer data using model (1.1) is given in the data analysis section.

PROC NLMIXED fits by maximizing an approximation to the likelihood in-

tegrated over the random effects using adaptive Gaussian quadrature integral

approximation. The Dual quasi-Newton algorithm is the default optimization

technique. Other integral approximation methods and optimization techniques

can be specified. PROC NLMIXED gives parameter estimates along with their

approximate standard errors based on the second derivative matrix of the like-

lihood function. Approximate standard errors are computed using the delta
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method. NLMIXED can be used to analyze data that are normal, binomial,

or Poisson or that have any likelihood programmable with SAS statements. In

the model statement, the conditional distribution of the data given the random

effects should be specified. One possibility is to use ‘general(ll)’ which specifies a

general log likelihood function constructed using SAS programming statements.

The random statement defines the random effects and their distribution. The

only available distribution for the random effects is normal(m,v) with mean m

and variance v. The syntax can be written as:

random u ~ normal(0,s2u) subject=study;

where subject specifies the clusters. When two effects are present as in (1.1),

they can be specified as follows

random b1 b2 ~ normal([0,0],[g11,g21,g22]) subject=study;

where [g11,g21,g22] is the lower triangle of the random-effects variance matrix

listed in row order.
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Chapter 3

Meta-analysis models

As mentioned in the Introduction, meta-analysis involves combining summary

information from related but independent studies. In combining information from

different trials, one should consider two possible types of models, fixed effects and

random effects models. In a fixed effects model, the true treatment difference is

considered to be the same for all trials. The standard error of each trial estimate

is based on the variation of the sample within the trial. In a random effects model,

the true treatment difference in each trial is itself assumed to be a realization of

a random variable, which is usually assumed to be normally distributed [3, 4, 5].

In Section 3.1, estimation of the treatment difference in an individual trial is

discussed. In Section 3.2, the meta-analysis fixed effects model and the random

effects model are reviewed. A likelihood approach to the estimation of parameters
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and its implementation in PROC MIXED in SAS is shown.

3.1 Estimating the treatment difference in an

individual trial

Often the meta-analyst has little control over the choice of the summary

measure because most of the decision is dictated by what was employed in the

primary studies [4]. Meta-analysis may be performed on studies for which the

available data are in the form of summary information from trial reports or

publications or on studies for which individual patient data are available. The

form of the data available from each study has implications for the meta-analysis.

Three forms are commonly encountered [4, 13]. The first consists of an estimate of

the treatment difference and its variance or standard error, which is the minimum

amount of information needed. The second form of data is slightly more detailed,

consisting of summary statistics for each treatment group, enabling a choice to

be made between several different parameterizations of the treatment difference.

The third form, individual patient data, allows the most flexibility. In this case it

is possible to choose any sensible parametrization of the treatment difference and

the method of estimation. In addition, if all the studies provide individual patient

data, a more thorough analysis can be undertaken by employing a statistical
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modeling approach. In this section, we describe the estimation of the treatment

difference from an individual study for survival data. Estimation of the treatment

difference for other kinds of data in an individual study, including binary data

and normally distributed data, is described in [4, 13].

A model in survival analysis is expressed in terms of the hazard function or

the survivor function. The hazard function is the limiting probability per unit

time in which the event occurs, conditional on survival until time t. The survivor

function is the probability that the event occurs after time t. Let hT (t|1) and

hT (t|0) represent the hazard functions for the treated and control groups and

ST (t|1) and ST (t|0) their respective survivor functions. Assume the proportional

hazards model under which hT (t|1) = exp(θX)hT (t|0) for all t. The treatment

difference can be measured using the log-hazard ratio

θ = log

{
hT (t|1)

hT (t|0)

}
. (3.1)

3.2 Fixed and random effects models

3.2.1 Fixed study effects model

The fixed-effects model assumes each study measures the same underlying pa-

rameter and that there is no inter-study variation. Let θ be the central parameter
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of interest and assume there are i = 1, 2, . . . , g independent studies. Let θ̂i be an

estimate of θ from the ith study. The fixed effects model is given by

θ̂i = θ + εi, (3.2)

where the εi are the error terms and are realizations of normally distributed

random variables with expected value 0 and variance ξ2
i assumed known. That is

θ̂i ∼ N(θ, ξ2
i ).

Although ξ2
i are assumed known, in reality the estimated variance of θi,

var(θi), is treated as if it were the true variance ξ2
i , that is, no allowance is

made for the error in the calculated term var(θi). Let wi = 1/ξ2
i . When ξ2

i is

assumed known, the maximum likelihood estimator (MLE) of θ is

θ̂MLE =
Σg
i=1wiθ̂i

Σg
i=1wi

. (3.3)

3.2.2 Random study effects model

In a random effects model, it is assumed that the treatment difference parame-

ters in the g studies are a sample of independent observations from an underlying

distribution. In real situations, the underlying distribution is not known. If the
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underlying distribution is normal, then it is completely described by its mean

and its variance. In this paper, we restrict the underlying distribution to nor-

mally distributed random effects with mean θ and unknown variance τ 2 (i.e.,

θ̂i
indep.∼ N(θ, τ 2)). It is important to note that, when the log-hazard ratio (3.1) is

used for center treatment difference, the center-to-center variation is not due to

the baseline risk difference between the centers but is due to treatment-by-center

variation. This is because the baseline risk affects the hazard rates of both the

treated group and control group in the same way, in particular in the same direc-

tion (decrease or increase); the log-hazard ratio remains unaffected. In general

the random study effects model is given by

θ̂i = θ + vi + εi, (3.4)

for i = 1, 2, ..., g, where the vi are normally distributed random effects with

mean 0 and variance τ 2. The terms vi and εi are assumed to be independently

distributed. It follows that

θ̂i ∼ N(θ, ξ2
i + τ 2).
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If both ξ2
i and τ 2 are assumed known, the maximum likelihood (MLE) of θ,

based on data θ̂i, is given by

θ̂(τ)MLE =
Σg
i=1wi(τ)θ̂i

Σg
i=1wi(τ)

(3.5)

where wi(τ) = 1/ξ2
i + τ 2.

In reality, τ 2 is unknown and statistical methods are used to estimate it from

data, either by a likelihood or a Bayesian approach. Here we discuss the likelihood

approach and its implementation in SAS PROC MIXED. A Bayesian method can

be seen in [4].

Assuming w−1
i = ξ2

i is known, the contribution to the likelihood function from

study i is

L(θ, τ 2; θ̂i) =
1√

2π(w−1
i + τ 2)

exp

{
−(θ̂i − θ)2

2(w−1
i + τ 2)2

}
.

The likelihood function is given by the product of the individual study likelihood

functions, and the log-likelihood function is given by

l(θ, τ 2; θ̂i) = constant− 1

2

g∑
i=1

log(w−1
i + τ 2)− 1

2

g∑
i=1

(θ̂i − θ)2

(w−1
i + τ 2)

.

Maximum likelihood estimates of τ 2 and θ can be found through an iterative

scheme. Each iteration involves two steps: first τ 2 is treated as fixed and the

value of θ, which maximizes the log-likelihood, is calculated. Then θ is treated

as fixed and the value of τ 2, which maximizes the log-likelihood, is calculated.
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Thus, the estimate of θ at the (t+ 1)th cycle of the iteration is given by

θ̂∗t+1 =

∑g
i=1 θ̂iw

∗
it∑g

it w∗it
, (3.6)

for t = 0, 1, 2, . . ., where w∗it = (w−1
i + τ̂ 2

M,t)
2 and τ̂ 2

M,t is the ML estimate of τ 2 at

the tth cycle of the iteration.

The ML estimate of τ 2 is given by

τ̂ 2
M,t+1 =

∑g
i=1(w∗it)

2{(θ̂i − θ̂∗t+1)
2 − w−1

i }∑g
i=1 w∗2it

. (3.7)

An initial estimate of τ 2, τ̂ 2
M,0, can be obtained using the method of moments to

start the iteration process [13].

The maximum likelihood estimator of τ 2 does not take into account the in-

formation used in estimating θ, and, thus, will usually underestimate [13]. We

follow [13] (page 94 to 96) in describing the alternative estimation steps lead-

ing to REML estimates in the model (3.4), which takes account of this loss of

information. The REML log-likelihood function is based on the residual term

(θ̂i − θ̂∗t+1), instead of the observation θ̂i, and given by

lR(τ 2; (θ̂i − θ̂∗t+1)
g
i=1) = constant− 1

2

g∑
i=1

log(w−1
i + τ 2)− 1

2

g∑
i=1

(θ̂i − θ̂∗t+1)
2

(w−1
i + τ 2)

−1

2
log(

g∑
i=1

1

(w−1
i + τ 2))

.
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REML estimates are found via a similar iterative scheme to that described

before, where now w∗it = (w−1
i + τ̂ 2

R,t)
−1. At the (t + 1)th cycle of the iteration,

(3.6) is used to calculate an updated estimate of θ. The REML estimate of the

τ 2 at the (t+ 1)th cycle of the iteration is given by

τ̂ 2
R,t+1 =

∑g
i=1(w∗it)

2{g(θ̂i − θ̂∗t+1)
2/(g − 1)− w−1

i }∑g
i=1(w∗it)

2
. (3.8)
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3.3 SAS statements for meta-analysis

The ML and REML estimates can be found using PROC MIXED pro-

cedure in SAS. As indicated in [13], the following steps are needed to get REML

estimates; first we need to create a diagonal variance matrix with the estimated

within-study variance components as the diagonal elements. To do this, suppose

that the values of i, θi,wi have been entered into the dataset ‘temp’ under the

variable names ‘study’, ‘survtime’, and ‘w ’ respectively. Then the following code

can be used to create the diagonal matrix [13].

data lung;

set temp;

var=1/w;

col=_n_;

row=_n_;

value=var;

Then we use the following PROC MIXED program.

proc mixed data=lung method=reml order=data;

class study;

model survtime=/solution;

random study/gdata=lung;
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repeated diag;

ML estimates can be obtained by replacing ‘method=reml’ with ‘method=ml’.
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Chapter 4

Data analysis

4.1 Review of the ECOG EST 1582 study

In this Chapter, we analyze the treatment effect of the ECOG EST 1582

data, using the unified parametric proportional hazards model and meta-analysis

model. The ECOG EST 1582 study, a multi-center clinical trial in small-cell

lung cancer, compares two different chemotherapy regimens: a standard therapy

consisting of cyclophosphamide, adriamycin and vincristine (CAV) and an alter-

nating regimen (CAV-HEM), where cycles of CAV were alternated with HEM

(hexamethylmelamine, etoposide and methotrexate). The primary end point is

patient death. In addition to the two treatment arms, there are four important

covariates that affected patient survival: presence or absence of bone metastases,
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presence or absence of liver metastases, performance status at study entry, and

weight loss prior to entry.

Gray [9] has made a detailed analysis of center variation in this data. He ex-

cluded centers contributing three or fewer patients, which left 570 patients from

26 centers, with the number of patients per center varying from 5 to 56 (me-

dian=18.5). In his analysis, he showed the presence of fixed treatment difference

between the CAV-HEM and the CAV arms across the participating centers and

discussed the possible causes for center variations in multi-center clinical trials.

Despite the tightly structured protocols, in multi-center clinical trials, center-

to-center variations can be caused by different standards of practice, types of

supportive care, interpretation of dose modifications, patient populations, and so

forth. He used a proportional hazards model shown in (4.1). let Xijk be covariate

k for subject j from center i, and in general assume g centers with ni cases from

center i, and p − 1 covariates, with Xij1 the treatment variable. A piecewise

constant model is used for the underlying hazard. Let 0 = t0 < t1 < . . . < tm be

the fixed boundaries of time intervals, and set Il(t) = I(tl−1 < t ≤ tl). Then, the

full model for the hazard for subject ij is

h(t|Xij, α, β, ui, vi) = exp

{
m∑
l=1

αlIl(t) + ui +
p∑

k=1

Xijkβk + viXij1

}
(4.1)

where the α = (α1, ..., αm)′, β = (β1, ...βp)
′, ui and vi are unknown parameters,

and Xij = (Xijl, ...Xijp)
′. He used m = 30 intervals for the underlying hazard.
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Gray [10] developed tests for group variation and showed that there is signif-

icant center variation among the treatment effects, but the variation among the

baseline hazards is not significant. This means that there is significant institu-

tional variation in patients’ survival in the CAV-HEM arm, but not in the CAV

arm.

4.2 Data analysis results

We fit unified parametric proportional hazards models discussed in Chap-

ter 2 and the meta-analysis models discussed in Chapter 3 to the 570 patient

dataset. For the unified proportional hazards model, we first fit three basic mod-

els and then tried other models with more parameters. The first three models are

a model with no random effect (model (2.3)), a model with center random effect

(model (2.8)), and a model with center and center-by-treatment random effects

(model (1.1)). To perform meta-analysis in this dataset, the following procedures

were used. First, to imitate the usual meta-analysis methods, we fit a paramet-

ric proportional hazards model (model (2.3)) for each center and collected the

log-hazard ratio and the standard error. Then, using the center estimates and

standard errors, we fit the random effect meta-analysis model (3.4).

Parameter estimates and standard errors of the three basic unified propor-

tional hazards model are shown in Table 4.1. Model 0 has the five covariate
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fixed effects but has no random effect. Model 1 has the five covariate effects

and a random center effect. The third model, Model 2, has the five covariate

fixed effects and two random effects, center and treatment-by-center interaction.

The log-hazard ratio of the CAV-HEM treatment relative to the HEM treatment

is −0.339 in model 0, −0.318 in model 1 and −0.332 in Model 2. This shows

that the treatment estimate of the fixed regression effect did not change substan-

tially after including the random effects. All four covariates in all three models

are statistically significant at the 0.05 level. Although standard errors for the

variance components are given, they should not be used directly to test against

zero by assuming normality, since the null hypothesis lies on the boundary of the

parameter space. The asymptotic null distribution of the change in deviance1 is

a mixture of χ2
1 and χ2

0 with equal weights 0.5 [18, 19]. The χ2
0 distribution is

the distribution which gives probability mass 1 to the value 0. If normality is

assumed for the change in deviance, the P -values would be overestimated and

the null hypothesis of no variance would be accepted too often. Here we look at

the magnitude of the change in deviance when we add the random effects in the

model. When center random effect is included (Model 1), the change in deviance

is only 3.2 (1105.0 − 1101.8) compared to Model 0. But when we include both

the center and the treatment-by-center random effects (Model 2), there is a sub-

stantial amount of change in the deviance (1101.8− 1081.1 = 20.7) compared to

1Deviance is defined as the log-liklihood multiplied by (-2). Note that, some authors use
”deviance” to refer to the difference between deviance of the original model and a reference
model.

32



Table 4.1: Parameter estimates of the unified parametric proportional hazards
regression models for the ECOG EST 1582 data.

Model 0a Model 1b Model 2c

Estimate Estimate Estimate
Parameter (se) P-value (se) P-value (se) P-value
Scale 1.133 <.0001 1.271 <.0001 1.337 <.0001

(0.129) (0.040) (0.046)
Shape 1.244 <.0001 1.141 <.0001 1.129 <.0001

(0.037) (0.142) (0.144)
Treatment -0.339 0.0001 -0.318 0.0014 -0.332 0.0207

(0.087) (0.089) (0.134)
Bone 0.227 0.0155 0.241 0.0198 0.229 0.0300

(0.094) (0.097) (0.099)
Liver 0.293 0.0012 0.283 0.0050 0.293 0.0047

(0.090) (0.092) (0.094)
Perform -0.523 <.0001 -0.550 <.0001 -0.577 <.0001

(0.104) (0.107) (0.113)
Weight 0.230 0.0097 0.223 0.021 0.270 0.0075

(0.088) (0.091) (0.093)
σ2
u - - 0.032 - 0.011 -

(0.026) (0.023)
σ2
v - - - - 0.234 -

(0.109)
-2LogLik=1105.0 -2LogLik=1101.8 -2LogLik=1081.1

aModel 0 is a labeling for model (2.3).
bModel 1 is a labeling for model (2.8).
cModel 2 is a labeling for model (1.1).

Model 1, which indicates the importance of treatment-by-center random effect

in the model. Next, we fit other models with more parameters and look at the

change in the deviance. We consider Model 2 as our reference and compare the

change in deviance. The results are shown in Table 4.2. Each model in the table

has the treatment and the four fixed covariate effects. Model 3b, which is fit-

ted with the treatment and the four fixed covariate effects, center random effect,

treatment-by-center random effect and random bone effect has a deviance value
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of 1073.1, which is a change of 8 from Model 2. Model 5, which is fitted with

the treatment and the four covarite fixed effects, bone-by-treatment fixed effect,

center random effect, treatment-by-center random effect, and bone random effect

has a substantially smaller deviance from Model 2 (1081.1− 1069.6 = 11.5). As

shown in the table, the other models did not result in substantial change.

For the meta-analysis to have more data in each center, we decided to merge

Table 4.2: Proportional hazards regression and -2logLik values for ECOG data.
(Fixed=Treatment and the four covariate fixed effects, ui=center random ef-
fect, vi=treatment random effect, bi=bone random effect, li=liver random effect,
pi=performance random effect, wi=weight random effect)

# of
Model -2logLik parameters
Model 0: Fixed 1105.0 7
Model 1: Fixed+ui 1101.8 8
Model 2: Fixed+ui+vi 1081.1 9
Model 3b: Fixed+ui+vi+bi 1073.1 10
Model 3l: Fixed+ui+vi+li 1080.2 10
Model 3p: Fixed+ui+vi+pi 1081.1 10
Model 3w: Fixed+ui+vi+wi 1080.5 10
Model 4: Fixed+Bone*Treat+ui+vi 1077.0 10
Model 5: Fixed+Bone*Treat+ui+vi+bi 1069.6 11

some centers based on similarity of the unweighed center average of the covariates

(bone, liver, performance, weight) using a method of divisive hierarchical cluster-

ing. Divisive hierarchical clustering is a top-down clustering method which starts

with a single cluster containing all objects, and then successively splits resulting

clusters until only clusters of individual objects remain [20]. At each stage of the

divisive algorithm the cluster with the largest diameter that is available after the

previous step is selected for the next split. The diameter of a cluster is the largest
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dissimilarity between any two of its observations. Dissimilarities are calculated

using the Euclidean distances, which are the root sum-of-squares of differences.

To divide the selected cluster, the algorithm first looks for its most disparate

observation, that is, the observation which has the largest average dissimilarity

to the other observations of the selected cluster. This observation initiates a

new group (splinter group). In subsequent steps within the same splitting stage,

for each object of the old group we compute the average dissimilarity with the

remaining objects, and compare it to the average dissimilarity with the object

of the splinter group. The average dissimilarity of an object is the average dis-

similarity to all other objects in the group. The algorithm reassigns observations

that are closer to the splinter group than to the old group. The algorithm results

in a division of the selected cluster into two new clusters. We used the diana

function in the R cluster library, based on the center average vectors of the

four covariates from the 26 centers. That is, the data matrix used in diana is

organized in such a way that each row corresponds to a center, and each column

corresponds to a covariate average, where there are 26 rows and 4 columns. We

required each center to have at least 15 patients as a stopping criterion of the

splitting process.

We were left with 18 centers where the sample size varied from 17 to 56. A

proportional hazards model (2.3) on each center was fitted. The log-hazard ra-

tio and standard error estimates for a CAV-HEM treatment relative to the CAV

35



treatment for each center were collected. Table 4.3 shows the treatment effect

estimates for each center, and Figure 4.2 shows the corresponding forest plot.

A forest plot is a graphical display designed to illustrate the relative strength

of treatment effects in multiple studies addressing the same question. In meta-

analysis forest plot is used as a means of graphically representing the results of

each trials (e.g. [4] and [13]). The left-hand column lists the names of the studies

and the right-hand column is a plot of the measure of effect (e.g. log hazard

ratio) for each of these studies incorporating confidence intervals represented by

horizontal lines. The measure of effects is often represented by square, and the

area of each square is proportional to the study’s weight in the meta-analysis.

A vertical line representing no effect is also plotted. If the confidence intervals

for individual studies overlap with this line, it indicates that at the given level

of confidence, their effect size do not differ significantly from no effect for the

individual study.

A negative estimate indicates that CAV-HEM treatment has a beneficial effect

in longer survival. Thirteen centers have negative estimates and the remaining

five centers have positive estimates. Four of the centers (7, 22, 25+41, and 26)

showed a statistically significant difference of the CAV-HEM treatments. In the

other fourteen centers there was no significant difference between the CAV-HEM

and HEM treatments. A random effect meta-analysis model (3.4) was fitted. A

restricted maximum likelihood (REML) estimate of −0.339 with standard error
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of 0.126 was obtained. This shows that the unified proportional hazards model

and the meta-analysis model give very similar estimates. The normality assump-

tion in the meta-analysis model was checked graphically. Histogram, Q-Q plot

and Empirical cumulative density function (CDF) plot, for the error terms based

on 18 error points, are shown in Figure 4.2. None of these plots show violation

of the normality assumption.
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Table 4.3: Estimates of the log hazard ratio for treatment in each center for
ECOG EST 1582 study

Study center # of patients θ̂i se(θ̂i) 95% CI
1 21 -1.018 0.569 (-2.133, 0.098)
5+59 17 -0.782 0.616 (-1.989, 0.425)
7 18 -1.717 0.615 (-2.921, -0.512)
10 27 -0.545 0.480 (-1.485, 0.395)
13 46 0.303 0.352 (-0.387, 0.993)
18+61 31 -0.529 0.383 (-1.280, 0.222)
19+21 28 0.022 0.448 (-0.856, 0.901)
20 48 -0.073 0.298 (-0.656, 0.510)
22 56 -0.696 0.318 (-1.319, -0.073)
25+41 31 -0.974 0.475 (-1.904, -0.044)
26 22 -1.085 0.493 (-2.050, -0.119)
28+52+60 39 -0.432 0.354 (-1.126, 0.262)
33 27 -0.394 0.450 (-1.276, 0.488)
36+51 53 0.405 0.323 (-0.227, 1.037)
38 17 -0.435 0.809 (-2.021, 1.151)
39+49 42 -0.056 0.352 (-0.747, 0.635)
40 23 0.144 0.540 (-0.914, 1.202)
42 24 0.410 0.578 (-0.724, 1.543)
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Figure 4.1: The log-hazard ratio for treatment with CAV-HEM relative to CAV.
The square shows a study estimate and the size is proportional to the inverse of
the variance of the log-hazard ratio.
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Figure 4.2: Error plots of the ECOG EST 1582 data from meta-analysis based
on 18 residual error values.
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4.3 SAS statements for unified analysis

The SAS code for the proportional hazards model (1.1) in Chapter 1 with

Weibull baseline hazard rate (Model 2 in Table 4.2) is given below. The code for

the other models in Table 4.2 can be programmed with slight modification.

proc nlmixed data=ECOG;

parms alpha=1 lambda=1 Treatcoff=-1 Bonecoff=1 Livercoff=1

Performcoff=1 Weightcoff=1 s2u=1 s2v=1;

basehaz=alpha*lambda*Time**(alpha-1);

cumbasehaz=lambda*Time**alpha;

mureg=Treatcoff*treat+Bonecoff*bone+Livercoff*liver

+Performcoff*perform+Weightcoff*weight+v*treat+u;

loglik0=-exp(mureg)*cumbasehaz;

if status=0 then loglik=loglik0;

if status=1 then loglik=log(basehaz)+mureg+loglik0;

model Time~general(loglik);

random u v ~ normal([0,0],[s2u,0,s2v]) subject=center;

run;
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Chapter 5

Simulation

5.1 Data simulation

A simulation study was carried out to compare the performance of the

unified approach (Chapter 2 ) and the meta-analysis approach (Chapter 3) in

estimating the treatment effect of a multi-center clinical trial study. True param-

eters for data simulation were considered in line with the ECOG EST 1582 data

used in the previous chapter. Data simulation was carried out in two steps. First,

center random effects (ui) and center-by-treatment interaction random effects (vi)

were generated independently from a normal distribution; i.e. ui ∼ N(0, σ2) and

vi ∼ N(0, τ 2). We varied σ2 to be 0.4 or 0.001 and τ 2 to be 0.3 or 0.16. Then

independent survival times Ti1, . . . , Ting were generated from a Weibull distribu-
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tion assuming the scale parameter λ = 2 and shape parameter ρ = 1.4. That

is, Tij = [−λ−1 log(aij)/ exp(
∑p
k=1Xijkβk + ui + viXij1)]

1/ρ where aij is a random

number generated from a uniform distribution U(0,1).

The number of centers (18) and the number of patients in each center was

taken to be equal to those in the clustered ECOG EST 1582 dataset. Therefore

the total number of patients is 570. We conducted the simulation study with

and without covariates. When covariates are present they are either taken from

the ECOG EST 1582 data or are simulated as independent and identically dis-

tributed binary variables with probability based on the design matrix explained

in the next paragraph and the data is generated with coefficients, βk, for bone,

liver, performance and weight fixed at β2 = 0.2, β3 = 0.3, β4 = −0.5 and β5 = 0.2

respectively. These coefficients in the simulation are fixed based on the coeffi-

cients found in the ECOG EST 1582 data.

We used four different design matrices and Xijk varies depending on the type

of design matrix specified. For each scenario a single design matrix was fixed at

the beginning of the simulation and used throughout the whole iteration. The

first design matrix is the ‘Original Design Matrix (ODM)’, where the ECOG EST

1582 data design matrix was used for both the covariates and treatment. This

means that each center in the simulation has exactly the same design matrix as

the corresponding center in ECOG EST 1582 data. According to ODM, for a case

j in center i in the simulation, the survival time is generated based on the Xij in
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the ECOG EST 1582 data and the aij are generated from a uniform distribution

U(0,1). The second design matrix is ‘Multinomial Design Matrix (MDM)’, where

for center i, the Xijk are randomly generated from Bernouilli distributions with

probability pik equal to the proportion of 1 for variable k in center i. In MDM

treatment assignment is also randomly generated from a Bernouilli distribution

with pi1 equal to the proportion of treated patients in center i. The third design

matrix is the ‘Uniform Design Matrix (UDM)’, which is similar to the the second

one, but the Xijk for each center are randomly generated with probability pk

equal to the overall proportions of 1 for variable k in the ECOG EST 1582 data.

Treatment assignment is also generated using probability p1, which is the overall

proportion of treated patients in the ECOG EST 1582 data. The fourth design

matrix is the ‘Absence of covariates Design Matrix (ADM),’ where covariates are

not included in the data generation and model fitting. The survival times were

generated from Tij = [−λ−1 log(aij)/ exp(Xij1β1 + ui + viXij1)]
1/ρ. Treatment

assignment is taken from the ECOG EST 1582 data. ADM can be seen as the

original design matrix without covariates.

The simulation programs were written using SAS 9.1 and executed on the

SunOS 5.9 platform at the University of Maryland, College Park. The programs

are set up in a batch mode so that they can run to completion without human

interaction. We have experienced two main problems: First, the execution times

were very long. A single simulation scenario with 1000 iterations and all the
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four covariates included takes 14 to 18 hours. Second, the program receives a

terminating signal from an unknown source and stops running before it reaches

completion. In addition to these two main problems, we are unable to run more

than one program at a time. When two or more programs submitted at a time,

all programs stop before completing the full number of iterations. When the

programs stop running before they reach the specified number of iteration, we

re-run until we get the full iteration. Thus, all the simulation results in Section

5.2.1 are based on 1000 iteration and all the results in Section 5.2.2 are based on

500 iteration.

5.2 Results

The simulation results are organized in two sections, section I and sec-

tion II. The first section has results from the basic simulation and each simulation

is replicated 1000 times. Based on the findings in the first section, additional sim-

ulations were conducted, and results are presented in section II. In the second

Section, each simulation is replicated 500 times. In both sections, the unified pro-

portional hazards model (1.1) and random effects meta-analysis model (3.4) were

fitted. For meta-analysis, first a parametric proportional hazards model without

random effect (2.5) was fitted for each center. Then, the log hazard ratio and

standard error from each center were collected and used to fit the random effect
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meta-analysis model. For each simulation scenario, the mean, the median, the

root mean squared error (RMSE) of β̂1, and the percentage of the models with

significant treatment effect were collected and tabulated for both models. The

percentage of the models with significant treatment effect was calculated as the

proportion of simulation runs in which the upper bound of the 95% confidence

interval of the log-hazard ratio was less than zero. Significant treatment effects

always occurred with negative log hazard ratios.

5.2.1 Section I: Basic simulation

The results of the simulation studies using a unified model and meta-analysis

model are summarized in Table 5.1 – Table 5.4. In general, the log-hazard ratio

of treatment (β1) is estimated well in both the unified and meta-analysis models

for all design matrices. The results from the original design matrix are tabu-

lated in Table 5.1. The unified model estimates the log-hazard ratio of treatment

with negligible error; however, the meta-analysis model overestimates the treat-

ment effect, and the variability of β1, as measured by root mean square error

(RMSE), is higher when compared to the unified model. The percentage of a

significant treatment effect in meta-analysis is less than the percentage of a sig-

nificant treatment effect in the unified analysis. For both methods, when the

variance of treatment-by-center random effect is fixed higher in the data simula-
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tion, the percentage of significance decreases as compared when the variance is

fixed lower. For example, consider the case where the true value of β1 is −0.4

and var(ui) is 0.3; when var(vi) is 0.3, the unified and meta-analysis models have

significant treatment effects 68.4% and 66.2% of the time respectively; whereas,

when var(vi) is 0.16, the unified and meta-analysis models have significant treat-

ment effects 86.8% and 80.4% of the time respectively. The results from the

multinomial design matrix are similar to the results with the original design ma-

trix. The results are tabulated in Table 5.2.

The results of the UDM are displayed in Table 5.3. With the UDM the bias

and RMSE are similar as in the cases with ODM and MDM. However, the per-

centage of a significant treatment effect in the meta-analysis is comparable to the

unified analysis.

The results in ADM are shown in Table 5.4. The results both from the unified

and meta-analysis models are similar by all criteria we compared. In both mod-

els, the treatment effect is estimated with negligible bias and with similar RMSE.

The percentage of significant treatment effects is also similar in both models.

The significance of bias of β̂1 can be tested by constructing a 95% CI for β1

as β̂1 ± (RMSE/
√
R × 1.96), where R is the number of simulation iterations

(1000 or 500). We constructed this confidence interval in Table 5.1 under the

unified analysis, and only the first row has shown a significant bias. Under the

meta-analysis all the estimated β̂1 values are clearly significantly biased. For the
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rest of the simulation tables, the bias of β̂1 can be tested similarly.

The magnitude and direction of the biases of the estimate are shown graph-

ically in Figures 5.1 and 5.2 when the true values are β1 = −0.4, var(ui) = 0.4

and var(vi) = 0.3 under each design matrix. The estimated treatment effect, β̂1,

values are shown by the vertical broken lines.

5.2.2 Section II: Additional simulation

In each of the additional simulations below, we fit the same unified analysis

model (1.1) and random effect meta-analysis model (3.4) while varying the way

the data is generated. From Section I, we have seen that when the covariates

are not included, the estimates both from the unified and meta-analysis models

are unbiased. However, when the covariates are included, bias is introduced in

the meta-analysis estimate. Based on this initial result, we further investigated

the relationship between the number of covariates and the magnitude of the bias.

We conducted simulation studies in the presence of only one covariate (liver) and

two covariates (liver and weight) under MDM and UDM. The results are shown

in Table 5.5. The results show that as the number of covariates increase the bias

in the meta-analysis estimate increases.

Treatment effect estimates, when there are one, two, and four covariates, were

collected from the previous tables and displayed together in Table 5.6. We dis-
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played this table for the purpose of convenience to look at the association between

the number of covariates and the bias in one place.

In addition to the simulation scenarios discussed above, we conducted a com-

parison of the two methods by generating data with random terms in each co-

variate. The random terms generated independent of each other from a normal

distribution with mean zero and variance 0.4, 0.3, 0.1 and 0.24 for bone, liver,

performance, and weight respectively. This is a scenario in which we were fitting

a misspecified model. The results are displayed in Table 5.7. The presence of

random effects on covariates create bias in the unified analysis, where treatment

effects are underestimated. The meta-analysis estimates appear unaffected and

remain with the same magnitude and direction of bias as in section I.

Finally we simulated data with the four fixed effects, treatment fixed effect,

center and treatment-by-center random effects, and bone-by-treatment random

effect. The random term for the bone-by-treatment interaction is generated from

a normal distribution with mean zero and variance 0.2. Multinomial and uniform

design matrices used. The results are displayed in Table 5.8. Both unified and

meta-analysis results are similar to the results in Section I.
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Table 5.1: Simulation results with original design matrix from unified regres-
sion analysis and meta-analysis. (In the table, Unf=Unified regression, and
Meta=Meta-analysis regression)

True Parameters Estimated values

β̂1 % of sig.
(RMSE) Median Effect

β1 σ2 τ 2 Unf Meta Unf Meta Unf Meta
-0.4 0.4 0.3 -0.412a -0.456 -0.405 -0.451 68.4 66.2

(0.161) (0.197)
-0.4 0.4 0.16 -0.398 -0.447 -0.399 -0.445 86.8 80.4

(0.126) (0.164)
-0.4 0.001 0.3 -0.407 -0.452 -0.405 -0.452 71.5 64.3

(0.161) (0.202)
-0.4 0.001 0.16 -0.404 -0.450 -0.405 -0.450 88.7 81.2

(0.130) (0.167)
-0.2 0.4 0.3 -0.206 -0.229 -0.215 -0.233 21.9 23.3

(0.253) (0.261)
-0.2 0.4 0.16 -0.197 -0.223 -0.200 -0.228 34.6 27.5

(0.126) (0.155)
-0.2 0.001 0.3 -0.202 -0.231 -0.207 -0.226 28.9 24.0

(0.158) (0.190)
-0.2 0.001 0.16 -0.206 -0.227 -0.203 -0.225 41.3 35.2

(0.122) (0.155)

aThis single β̂1 is significantly biased. The 95% CI is (−0.422,−0.402), which does not
include the true value of β1 = −0.4.
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Table 5.2: Simulation results with multinomial design matrix from unified regres-
sion analysis and meta-analysis

True Parameters Estimated values

β̂1 % of sig.
(RMSE) Median Effect

β1 σ2 τ 2 Unf Meta Unf Meta Unf Meta
-0.4 0.4 0.3 -0.408 -0.447 -0.409 -0.446 65.4 60.2

(0.161) (0.205)
-0.4 0.4 0.16 -0.411 -0.450 -0.413 -0.453 84.1 76.6

(0.134) (0.173)
-0.4 0.001 0.3 -0.409 -0.446 -0.412 -0.442 73.3 62.0

(0.158) (0.205)
-0.4 0.001 0.16 -0.406 -0.449 -0.403 -0.450 87.4 77.8

(0.130) (0.170)
-0.2 0.4 0.3 -0.200 -0.221 -0.199 -0.223 27.7 21.9

(0.161) (0.202)
-0.2 0.4 0.16 -0.197 -0.223 -0.200 -0.228 34.6 27.5

(0.126) (0.155)
-0.2 0.001 0.3 -0.206 -0.224 -0.206 -0.218 29.8 23.0

(0.158) (0.195)
-0.2 0.001 0.16 -0.201 -0.212 -0.198 -0.214 32.5 25.5

(0.134) (0.170)
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Table 5.3: Simulation results with uniform design matrix from unified regression
analysis and meta-analysis

True Parameters Estimated values

β̂1 % of sig.
(RMSE) Median Effect

β1 σ2 τ 2 Unf Meta Unf Meta Unf Meta
-0.4 0.4 0.3 -0.409 -0.461 -0.406 -0.452 64.6 64.4

(0.161) (0.197)
-0.4 0.4 0.16 -0.411 -0.450 -0.413 -0.453 84.1 76.6

(0.134) (0.173)
-0.4 0.001 0.3 -0.405 -0.465 -0.408 -0.461 71.9 76.6

(0.154) (0.205)
-0.4 0.001 0.16 -0.406 -0.461 -0.406 -0.460 85.5 78.8

(0.138) (0.179)
-0.2 0.4 0.3 -0.215 -0.245 -0.216 -0.246 23.6 25.0

(0.245) (0.249)
-0.2 0.4 0.16 -0.199 -0.225 -0.197 -0.222 36.2 30.2

(0.130) (0.164)
-0.2 0.001 0.3 -0.208 -0.241 -0.214 -0.242 25.5 24.3

(0.249) (0.253)
-0.2 0.001 0.16 -0.215 -0.250 -0.219 -0.246 38.6 36.7

(0.134) (0.176)
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Table 5.4: Simulation results with Absence of Covariate Design Matrix from
unified regression analysis and meta-analysis

True Parameters Estimated values

β̂1 % of sig.
(RMSE) Median Effect

β1 σ2 τ 2 Unf Meta Unf Meta Unf Meta
-0.4 0.4 0.3 -0.406 -0.406 -0.407 -0.411 66.9 69.9

(0.161) (0.167)
-0.4 0.4 0.16 -0.408 -0.404 -0.409 -0.407 82.2 83.5

(0.134) (0.138)
-0.4 0.001 0.3 -0.406 -0.411 -0.407 -0.413 75.1 69.7

(0.155) (0.164)
-0.4 0.001 0.16 -0.399 -0.403 -0.396 -0.399 88.5 86.1

(0.126) (0.130)
-0.2 0.4 0.3 -0.203 -0.200 -0.201 -0.194 22.1 23.8

(0.251) (0.259)
-0.2 0.4 0.16 -0.205 -0.199 -0.210 -0.205 31.3 32.5

(0.235) (0.241)
-0.2 0.001 0.30 -0.201 -0.198 -0.203 -0.204 24.9 24.0

(0.253) (0.261)
-0.2 0.001 0.16 -0.198 -0.195 -0.199 -0.197 32.40 30.90

(0.239) (0.243)
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(a) ODM Unified analysis.
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(b) ODM Meta-analysis.
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(c) MDM Unified analysis.
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(d) MDM Meta-analysis.

Figure 5.1: Histogram for simulation results of the log-hazard ratio for ODM and
MDM. In both cases the data is generated with true values β1 = −0.4, σ2 = 0.4
and τ 2 = 0.3. The vertical broken line shows the estimated log hazard ratio β̂1.
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(a) UDM Unified analysis.
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(b) UDM Meta-analysis.

Log−hazard ratio

D
en

si
ty

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2

0.
0

0.
5

1.
0

1.
5

2.
0

(c) No Cov Unified analysis.
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(d) No Cov Meta-analysis.

Figure 5.2: Histogram for simulation results of the log-hazard ratio for UDM and
No Cov. In both cases the data is generated with true values β1 = −0.4, σ2 = 0.4
and τ 2 = 0.3. The vertical broken line shows the estimated log hazard ratio β̂1.
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Table 5.5: Parameter estimates from unified regression and meta-analysis with
one and two covariates with varying design matrices.

True Parameters Estimated values

β̂1 % of sig.
Design (RMSE) Median Effect
Mtrx β1 σ2 τ 2 Unf Meta Unf Meta Unf Meta
One Covariate
UDM -0.4 0.001 0.3 -0.398 -0.409 -0.400 -0.406 72.6 66.6

(0.158) (0.176)
-0.2 0.4 0.16 -0.193 -0.195 -0.193 -0.190 33.2 29.0

(0.134) (0.141)
MDM -0.4 0.001 0.3 -0.402 -0.415 -0.398 -0.405 74.2 67.0

(0.155) (0.167)
-0.2 0.4 0.16 -0.201 -0.218 -0.206 -0.227 39.6 36.2

(0.138) (0.148)
Two Covariates
UDM -0.4 0.001 0.3 -0.417 -0.453 -0.423 -0.458 77.0 73.6

(0.155) (0.182)
-0.2 0.4 0.16 -0.192 -0.202 -0.201 -0.197 37.0 30.6

(0.130) (0.148)
MDM -0.4 0.001 0.3 -0.411 -0.431 -0.424 -0.440 75.6 67.8

(0.158) (0.179)
-0.2 0.4 0.16 -0.202 -0.213 -0.200 -0.212 36.0 28.8

(0.130) (0.148)

Table 5.6: Association between the number of covariates and bias in meta-analysis
(Bias=Unf-Meta).

Design Bias
Mtrx β1 σ2 τ 2 1 Cov 2 Cov 4 Cov
MDM -0.4 0.001 0.3 0.013 0.020 0.037

-0.2 0.4 0.16 0.017 0.011 0.026
UDM -0.4 0.001 0.3 0.011 0.036 0.060

-0.2 0.4 0.16 0.002 0.010 0.026
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Table 5.7: Parameter estimates from unified regression and meta-analysis. Data
generated including both fixed and all covariates random effect.

True Parameters Estimated values

β̂1 % of sig.
Design (RMSE) Median Effect
Mtrx β1 σ2 τ 2 Unf Meta Unf Meta Unf Meta
UDM -0.4 0.4 0.3 -0.369 -0.470 -0.364 -0.475 64.20 65.6

(0.161) (0.212)
-0.2 0.001 0.3 -0.182 -0.243 -0.191 -0.240 26.00 26.5

(0.158) (0.205)
MDM -0.4 0.4 0.16 -0.361 -0.446 -0.364 -0.453 82.4 76.40

(0.134) (0.173)
-0.2 0.001 0.3 -0.176 -0.213 -0.176 -0.217 26.00 20.8

(0.158) (0.200)

Table 5.8: Parameter estimates from unified regression and meta-analysis. Data
generated with all covariates fixed effect, treatment fixed effect, center and
treatment-by-center random effects, and bone-by-treatment random effects.

True Parameters Estimated values

β̂1 Treatment
Design (RMSE) Median Effect(%)
Mtrx β1 σ2 τ 2 Unf Meta Unf Meta Unf Meta
UDM -0.4 0.001 0.3 -0.401 -0.445 -0.398 -0.437 73.4 61.8

(0.158) (0.200)
-0.2 0.4 0.16 -0.213 -0.233 -0.218 -0.244 40.6 31.8

(0.141) (0.176)
MDM -0.4 0.001 0.3 -0.425 -0.443 -0.421 -0.442 76.4 63.3

(0.161) (0.197)
-0.2 0.4 0.16 -0.215 -0.230 -0.222 -0.237 39.6 29.2

(0.138) (0.170)
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Chapter 6

Discussion

In this thesis we conducted data analysis and a simulation study in a multi-

center clinical trial setting. The data that was used (ECOG EST 1582) comes

from a multi-center clinical trial study where previous studies have shown the

treatment effect to vary by center [9, 10]. The simulation study is conducted by

varying parameters in models and designs chosen for similarity with the ECOG

EST 1582 data.

The main goal of our research has been to evaluate meta-analysis treatment

effect estimates by using a patient level data from a multi-center clinical trial

study. Both on the real and simulated dataset we performed a unified analysis

using the patient level data, and a meta-analysis using a summary information

obtained from each center. In the meta-analysis, to imitate the usual practice,
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we took the summary information from each center that might be published in

a journal article and estimated overall treatment effect using meta-analysis. The

estimates from the unified analysis and meta-analysis are compared in terms of

bias, RMSE, and percentage of significant treatment effect.

For the unified analysis, we used a parametric proportional hazards model

with Weibull baseline hazard. The model is fitted by likelihood methods using

a numerical integration of the random effects via Gaussian quadrature, which is

implemented in SAS NLMIXED procedure [14, 15]. For meta-analysis, the ran-

dom effect meta-analysis model is used and REML estimates obtained using the

PROC MIXED procedure in SAS.

Our simulation study has shown that under certain conditions (when covari-

ates are included), meta-analysis yields slightly biased estimates for the overall

treatment effect. The simulation study also showed, surprisingly, that the mag-

nitude of the bias is directly related to the number of covariates. The reasons for

this relationship between the covariates and magnitude of the bias is not known

and needs further investigation. In all the scenarios we considered, when bias

was present, the meta-analysis overestimated the treatment effect. If the bias

had resulted in an underestimate of the treatment effect, it would have been

more dangerous because of a tendency to incorrect hypothesis outcomes.

In the data analysis, we conducted the unified analysis and the meta-analysis

on the ECOG EST 1582 data. The center level analysis shows that there is a
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great variation in treatment effect between the centers; only a few centers have

statistically significant treatment effect and some centers even have a positive

point estimate although it is not statistically significant. But the overall treat-

ment effect estimates from the unified analysis and the meta-analysis are very

similar.

Based on our findings the following areas need further study: first, in our

simulation study we only considered a few scenarios. It is difficult to make a gen-

eral conclusion about the relationship of covariates and bias at this point. More

thorough simulation studies could explore different conditions. For example, what

will happen to the treatment estimates if the center and treatment-by-center ran-

dom effects are correlated? How would the direction and the magnitude of the

bias change if we choose different values for the center and treatment-by-center

variance than we considered here when we generate the data? In this paper,

we choose the center random effect variance as 0.001 or 0.4, and the treatment-

by-center random effect variance as 0.16 or 0.3. Second, the simulation analysis

performed in this thesis is not a theoretical proof. Thus, a theoretical explanation

for the relation between the covariates and the bias needs to be conducted.
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