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Abstract

We consider the problem of efficiently estimating gradients from stochastic simulation. Although the
primary motivation is their use in simulation optimization, the resulting estimators can also be useful
in other ways, e.g., sensitivity analysis. The main approaches described are finite differences (including
simultaneous perturbations), perturbation analysis, the likelihood ratio/score function method, and the
use of weak derivatives.

1 Introduction

For optimization problems with continuous-valued controllable parameters, the availability of gradients is
clearly helpful in obtaining improved solutions based on an iterative scheme, and can play a critical role in
making a particular problem tractable. This is true in stochastic optimization, as well, especially for such
problems based on an underlying simulation model. However, in this stochastic setting, since the outputs are
themselves random, finding or deriving stochastic gradient estimators can itself be a challenging problem.

We write the general simulation optimization problem as follows:

min
θ∈Θ

J(θ), (1)

where θ ∈ Θ is the controllable parameter and Θ ⊂ Rd is the feasible region, i.e., θ is a d-dimensional vector.
We describe three examples that will be for illustrative purposes. The first example is a stochastic activity

network. The input random variables are the individual activity times X1, X2, . . . , Xd, and the objective
function is the total project duration. The parameters are the mean activity times, i.e., θ = (θ1, . . . , θd),
where θi is the mean of the ith activity, and the dimension of the parameter vector is equal to the number
of activities. The optimization problem is to minimize the expected project duration as a function of the
mean activity times, where a cost is attached to each choice of mean activity time.

The second example is the familiar first-come, first-served (FCFS), single-server queue, with the input
random variables being the interarrival and service times, and the output performance measure being time
spent in the system. The objective function includes a cost on the service rate, and the optimization problem
is

min
θ∈(0,1/λ)

E[T (θ)] + c/θ, (2)

where c is the service rate cost, T (θ) is the average system time, θ is the mean service time (hence θ is
scalar), and λ is the arrival rate. Usually the problem is considered in steady state, and often specializing to
the M/M/1 queue, because this leads to an analytically tractable solution that can be compared with that
obtained using the simulation optimization algorithm.

The third example is an (s, S) inventory control system. Here, the input random variables are related
to demand (amount and possibly timing), with the objective function being a total cost function associated
with inventory levels and order amounts, and the optimization problem being to minimize expected total
cost by the selection of the inventory control parameters s and S, i.e., θ = (s, S) is a two-dimensional vector.

Although the main application of gradient estimation emphasized in this paper is simulation-based op-
timization, derivative estimation has other important applications in simulation, most notably sensitivity
analysis. This can be useful in many different contexts, e.g., factor screening to decide which factors are
the most critical, and hedging of financial instruments and portfolios. The rest of this paper is organized as
follows. A brief overview of gradient-based simulation optimization is provided. Then the main approaches
for stochastic gradient estimation are developed in some detail, including examples, some discussion of desir-
able theoretical properties and computational requirements. Specific applications in different areas are then

1This is a pre-print version of Chapter 19 in Handbooks in Operations Research and Management Science: Simulation,
S.G. Henderson and B.L. Nelson, eds., Elsevier.
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described. Other than a few exceptions — such as acknowledging a specific key result — references to the
literature will be provided in (deferred to) Sections 8 and 9 on applications and probing further.

We conclude this introduction by explicitly stating an implicit assumption that pervades stochastic
gradient estimation research (as well as much of the research reported in this handbook).

Key Implicit Assumption: Each estimate of J at a given θ is expensive to generate.

This is not a very rigorous statement, as it is not even mathematical, but the gist of its implication is
that because estimating J requires a nontrivial amount of effort, it behooves us to make use of its output
more efficiently. The costliness can be due to a number of reasons:

(a) It is expensive to generate input random variables {Xi} used to produce an estimate of J .

(b) A lot of input random variables need to be generated, either because each estimate involves a large
number of input random variables, or because a lot of estimates (simulation replications) need to be
generated to achieve a desired level of precision.

(c) It is a nontrivial task to go from the input random variables {Xi} to the estimate of J .

In most stochastic discrete-event simulation models of practical interest, both (b) and (c) are true. If none
of these conditions hold, then the simulation user should probably just use “brute force” finite difference
techniques, which are described in Section 3.

2 Gradient-Based Simulation Optimization

The two main approaches for conducting simulation-based optimization can be roughly characterized as
follows:

- Carry out all of the simulations first — generally a very large number of replications — and then store
things appropriately (random number seeds, the random numbers themselves, or realizations of random
variates or possibly sample paths), converting the stochastic problem into a deterministic problem that
is based on a large enough set of samples to well approximate the desired problem.

- Carry out a relatively small set of simulations and iteratively improve upon the current solution (or
set of solutions in a population-based approach) until a sufficiently good solution is reached or found.

Previously, the first approach might have been hindered for large problems by constraints in computer
memory, but that has become less of an issue over the past decade, making it a more attractive option, due
to its conceptual simplicity and ability to use the arsenal of deterministic nonlinear optimization algorithms
available. Since our main concern is not deterministic optimization, we will not delve further along this line;
see the last section for some references to the development of the theory and application of this approach,
which has a number of different names: sample average approximation, sample path optimization, and
stochastic counterpart. We note that the gradient estimates discussed here can also be incorporated into,
and often play a critical role in, these algorithms. Often this involves “freezing” the random numbers, to be
able to use them to generate a value of the performance measure at any value of the parameter, and this
value is treated as a deterministic quantity rather than a sample estimate.

The second approach uses the stochastic analog of gradient-based optimization, which is converted to
a zero-finding problem (for the gradient of the objective function) and then addressed using stochastic
approximation, which we now describe.

2.1 Stochastic Approximation

A natural adaptation of “steepest descent” in deterministic nonlinear optimization is stochastic approxima-
tion (SA), an iterative update scheme on the parameter that takes the following general form for finding a
zero of the objective function gradient:

θn+1 := ΠΘ

(
θn − an∇̂J(θn)

)
, (3)
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where the “hat” notation denotes an estimate of the gradient ∇J(θn), {an} denotes the “gain” (step-size
multiplier) sequence, and ΠΘ denotes a projection back into the feasible region Θ when the update (3) takes
θ out of Θ. Whereas in second-order Newton-Raphson schemes, a key enhancer is to use the inverse Hessian
to estimate the optimal step size, this is much less of a concern in SA, especially in the early stages of the
algorithm. In fact, to guarantee almost sure (a.s.) convergence, the gain sequence must vanish in the limit,
but not too quickly. The usual condition is that∑

n

an = ∞,
∑

n

a2
n < ∞.

However, in practice, one often decreases the step size to some value at which it is kept constant. The-
oretically, this leads to weak convergence (in distribution), at best, which might be unsatisfactory. Note
that the sequence need not be deterministic either, in which case the conditions above have to be modified
accordingly. There are also Central Limit Theorem results for the asymptotic behavior of θn, but these are
beyond the scope of this work.

When ∇̂J(θn) is an unbiased estimator of ∇J(θn), the SA algorithm is generally referred to as being of
the Robbins-Monro type, whereas if ∇̂J(θn) is only asymptotically unbiased, e.g., using a finite difference
estimate with the difference going to zero at an appropriate rate, then the algorithm is referred to being of the
Kiefer-Wolfowitz type. The Robbins-Monro SA algorithm generally has a canonical asymptotic convergence
rate of n−1/2, in contrast to n−1/3 for the Kiefer-Wolfowitz SA algorithm, which takes the following form in
the scalar parameter case:

θn+1 := ΠΘ

(
θn + an

Ĵ(θn + cn) − Ĵ(θn − cn)
2cn

)
, (4)

where Ĵ denotes an estimate of J and {cn} denotes a difference sequence that must also decrease to zero at
an appropriate rate satisfying ∑

n

ancn < ∞,
∑

n

a2
n/c2

n < ∞.

Thus, in addition to having a slower canonical asymptotic convergence rate, a Kiefer-Wolfowitz SA algorithm
involves the additional selection of an appropriate difference sequence. In certain special cases involving
common random numbers, however, the best n−1/2 rate can also be achieved in practice. A common form
for the two sequences is an = an−1 for some positive a (harmonic series) and cn = cn−1/6 for positive c. If

Ĵ(θn + cn) − Ĵ(θn)
cn

(5)

is used instead for the gradient estimator in the Kiefer-Wolfowitz SA algorithm (i.e., one-sided forward
difference gradient estimator), then cn = cn−1/4 is commonly used.

Perhaps one of the key drawbacks of using an SA algorithm, especially for the new or inexperienced user,
is the sensitivity of the early “transient” convergence rate to the choices of these sequences. For example,
if the common sequences just mentioned are used, then the behavior will depend on the choices of a and c.
If a is too small, then the algorithm will “crawl” towards the optimum, even at the 1/

√
n asymptotic rate.

On the other hand, if a is chosen too large, then extreme oscillations may occur, resulting in an “unstable”
progression. As far as we know, all of the theoretical results relating to convergence rate of these types of
algorithms are asymptotic results, which may be of little practical use in some applications where all of the
action occurs in a relatively short time.

Another drawback is that in general the SA algorithm converges only to a local optimum, although this
can also be strengthened by the appropriate introduction of “noise” into the algorithm. Finally, in some
settings, it may not be obvious how to project onto the feasible region Θ, which might be specified indirectly
(e.g., in a mathematical programming formulation) and possibly involve “noisy” constraints that also have to
be estimated along with the objective function. These are practical issues that still have not been adequately
addressed for simulation optimization.
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3 Indirect Gradient Estimation

We divide the approaches to stochastic gradient estimation into two main categories — indirect and direct
— which we now define. An indirect gradient estimator usually has two characteristics: (i) it only estimates
an approximation of the true gradient value, e.g., via a secant approximation in the scalar case; and (ii)
it uses only function evaluations (performance measure output samples) from the original (unmodified)
system of interest. A direct gradient estimator tries to estimate the true gradient using some additional
analysis of the underlying stochastics of the model. More specifically, we will refer to the indirect gradient
estimation approach as one in which the simulation output is treated as coming out of a given black box, by
which we mean it satisfies two assumptions: (i) no knowledge of the underlying mechanics of the simulation
model is used in deriving the estimators, such as knowing the input probability distributions; and (ii) no
changes are made in the execution of the simulation model itself, such as changing the input distribution
for importance sampling. Note that this entails satisfying both assumptions; many of the direct gradient
estimation techniques can be implemented without changing anything in the underlying simulation, but they
may require some knowledge of the simulation model, such as the input distributions or some of the system
dynamics. In the case of stochastic simulation, as opposed to online estimation based on an actual system,
it could be argued that to carry out the simulation most of these mechanics need to be known, i.e., one
cannot carry out a stochastic simulation without specifying the input distributions. Here, we simply use
the two assumptions to distinguish between the two categories of approaches and not to debate whether an
estimator is “model” dependent or not. In terms of stochastic approximation algorithms, indirect and direct
gradient estimators generally correspond to Kiefer-Wolfowitz and Robbins-Monro algorithms, respectively.

We describe two indirect gradient estimators: finite differences and simultaneous perturbations. Following
our definition, these approaches require no knowledge of the workings of the simulation model, which is
treated as a black box.

3.1 Finite Differences

The “brute force” or “näıve” method for estimating a gradient at θ is simply to use finite differences, i.e.,
perturbing the value of each component of θ separately while holding the other components at the nominal
value. If the value of the perturbation is too small, the resulting difference estimator could be extremely
noisy, because the output is stochastic; hence there is a trade-off between bias and variance in making
this selection, and unless all components of the parameter vector are suitably “standardized” a priori, this
choice must be done for each component separately, which could be a burdensome task for high-dimensional
problems. If the goal is sensitivity analysis rather than optimization, then one would generally err on the
side of selecting a relatively larger value for the perturbation.

The ith component of the one-sided forward difference gradient estimator is given by

Ĵ(θ + ciei) − Ĵ(θ)
ci

, (6)

where c is the vector of differences (ci the perturbation in the ith direction) and ei denotes the unit vector
in the ith direction.

The ith component of the two-sided symmetric (or central) difference gradient estimator is given by

Ĵ(θ + ciei) − Ĵ(θ − ciei)
2ci

, (7)

which corresponds to the estimator used in the original Kiefer-Wolfowitz SA algorithm given by (4).
Again, it should be noted that in stochastic simulation, using common random numbers can reduce the

variance of the gradient estimators substantially, although in practice synchronization is clearly an issue, since
merely using the same random number seeds is typically not effective. The symmetric difference estimator
given by (7) is more accurate, but it requires 2d objective function estimates (simulation replications) per
gradient estimate, as opposed to d+1 function estimates (simulation replications) for the one-sided estimator
given by (6). For example, in the stochastic activity network, the symmetric difference estimator would
involve performing simulations by varying the mean of each activity i individually by ±ci while holding the
other activity means at their nominal values, i.e., at parameter settings {θi ± ci, θj , j �= i}, for i = 1, . . . , d.
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3.2 Simultaneous Perturbations

This approach has the advantage that the number of simulation replications needed to form an estimator of
the gradient is independent of the dimension of the parameter vector.

The ith component of the simultaneous perturbations (SP) gradient estimator is given by

Ĵ(θ + c∆) − Ĵ(θ − c∆)
2ci∆i

, (8)

where ∆ = (∆1, . . . , ∆d) is a d-dimensional vector of perturbations, which are generally assumed i.i.d. as a
function of iteration and independent across components. In this case, c is again the set of differences for
each component, but it is a diagonal matrix with the differences {ci} on the diagonal. The key difference
between this estimator and a finite difference estimator is that the numerator of (8) — corresponding to a
difference in the function estimates — is the same for all components (i.e., independent of i), whereas the
numerator in the symmetric difference estimator given by (7) involves a different pair of function estimates
for each component (i.e., is a function of i). Thus, the full gradient estimator requires only two function
estimates, regardless of the size of the parameter dimension d. However, since d random numbers must be
generated to produce the perturbation sequence ∆ at each iteration, if generating the function estimates Ĵ
is relatively “cheap,” then this procedure is likely to be inferior to the previous finite difference approaches.
However, our key implicit assumption is that function estimates are expensive, which is generally true in
the context of stochastic discrete-event simulation. Furthermore, this procedure may also be of benefit in
deterministic situations where J is expensive to generate, e.g., requires a computationally intensive finite
element analysis program.

The key requirement on the perturbation sequence to guarantee a.s. convergence when used in a simulta-
neous perturbation stochastic approximation (SPSA) algorithm is that each term have mean zero and finite
inverse second moments. Thus, the normal (Gaussian) distribution is prohibited, and the most commonly
used distribution is the symmetric Bernoulli, whereby the perturbation takes the positive and negative (equal
in magnitude, e.g., ±1) value w.p. 0.5. Intuitively, convergence comes about from the averaging property
of the random directions selected at each iteration, i.e., in the long-run, each component will converge to
the correct gradient even if at any particular iteration the estimator may appear odd. This estimator was
designed for optimization via stochastic approximation, and is of limited use in sensitivity analysis, although
perhaps averaging over a large number of replications might make it more applicable.

A very similar gradient estimator for use in SA algorithms is the random directions gradient estimator,
whose ith component is given by (

Ĵ(θ + c∆) − Ĵ(θ − c∆)
)

∆i

2ci
. (9)

Instead of dividing by the perturbation component, the difference term multiplies the component. Thus,
normal distributions can be used for the perturbation sequence, and convergence requirements translate the
moment condition to a bound on the second moment, as well as zero mean. Of course, a correspondence to
the SP estimator can be made by simply taking the componentwise inverse, but in practice the performance
of the two resulting SA algorithms differs substantially.

A more recent development in the application of SPSA is to use deterministic sequences for the per-
turbation sequences {∆}. The idea is analogous to the use of quasi-Monte Carlo, whereby the gradient
averaging is the critical factor. There are also relevant connections to literature in the design of experiments
methodology. However, more theoretical work explaining their effectiveness and more numerical examples
establishing their advantage over stochastic sequences is needed.

4 Direct Gradient Estimation

Although indirect gradient estimation offers greater generality, direct gradient estimation has the following
advantages:

• It usually provides an unbiased estimator, which leads to faster convergence rates when implemented
in a simulation optimization algorithm, e.g., stochastic approximation.

5



• It eliminates the need to determine appropriate values for the finite difference perturbations — c in
the estimators given by (4), (5), (6), (7), (8), (9), — which influences the accuracy of the estimator.
Smaller values lead to lower bias but generally at the cost of increased variance, to the point of possibly
giving the wrong sign for small enough values.

• The resulting estimators are usually more computationally efficient. This is almost universally true
when compared to high-dimensional brute force finite differences, but not necessarily the case when
compared with SP estimators. When used in stochastic approximation, this can result in faster con-
vergence rates, as discussed earlier.

Potential challenges in applying direct gradient estimation include the following:

• They require more “off-line” work, which might be as simple as computing some derivatives of density
functions, but could involve quite a bit of problem-specific analysis requiring sophisticated applied
probability tools.

• The implementation usually requires some coding inside the simulation model, and sometimes involves
some changes in the way the simulation is actually carried out.

For expositional purposes, we will assume that the objective function is an expectation, specifically

J(θ) = E[Y (θ)] = E[Y (X1, . . . , XT )], (10)

where Y is the (univariate) output performance measure, {Xi} are the input random variables, and T is a
fixed finite number. This covers many types of performance measures, including distributional performance
measures such as the tail distribution, handled using indicator functions. However, the “dual” performance
measure involving quantiles (e.g., median), and also measures such as the mode, cannot be absorbed into
this framework. The cases where T is random (a stopping time) or as T goes to infinity (steady state), can
also be handled, but require some additional technicalities.

In the right-most expression for the performance measure given in (10), the dependence on θ has not been
displayed, because where θ appears influences which direct gradient estimation technique is most applicable.
In particular, we distinguish between two main dependencies:

• sample (pathwise);

• measure (distributional).

It is important to note that for many performance measures of interest, Y can be expressed such that either
dependency can be used. We will see examples of this in the discussion that follows.

To derive direct gradient estimators, we write the expectation using what is sometimes called the law of
the unconscious statistician:

E[Y (X)] =
∫

ydFY (y) =
∫

Y (x)dFX(x). (11)

In fact, one of our chief views of stochastic simulation is a way of carrying out this relationship, i.e., coming
into the simulation are input random variables, for which we know the distribution; coming out of the
simulation are output random variables, for which we would like to know the distributions. However, what
we have is a way to generate samples of the output random variables as a function of the input random
variables via the simulation model. Of course, if we really knew the distribution of the sample performance
output r.v. Y , then there would probably be little reason to have to simulate the system.

For simplicity in discussion, we will assume henceforth that the parameter θ is scalar, because the vector
case can be handled by taking each component individually. In view of the right-hand side of (11), we
revisit the question as to the location of the parameter in a stochastic setting. Putting it in the sample
performance Y (·; θ) corresponds to the view of perturbation analysis (PA), whereas if it is absorbed in the
distribution F (·; θ), then the approach follows that of the likelihood ratio (LR) method (also known as the
score function (SF) method) or weak derivatives (WD) (also known as measure-valued differentiation). In
the general setting where the parameter is a vector, it is possible that some of the components would be
most naturally located in the sample performance, while others would be easily retained in the distributions,
giving rise to a mixed approach. For example, in the (s, S) inventory control case with random order arrival
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times, it might be most effective to use PA for the control parameters, WD for demand parameters, and
LR/SF for order parameters.

Naming the parameter “Spot” for good measure, we pose a question and offer several observations:

(i) Where is Spot?
This may determine which approach is most appropriate. LR/SF and WD estimators consider distri-
butional parameters, so for them the parameter should appear in the input distribution(s).

(ii) Spot can move!
For the same system, the problem may be formulated such that Spot appears in either spot. We will
demonstrate this in the examples. In the first two examples, it is simply a matter of interpretation of
the underlying stochastics (probability measures), whereas in the (s, S) inventory system, a change of
variables is necessary.

(iii) Spot can make repeat appearances.
For example, in the single-server queue example, where the parameter appears in the service time
distribution, the parameter must be considered every time a service time is generated.

(iv) Spot can be in two places at once!
It is possible that the parameter appears in both the distribution and in a sample pathwise manner.
Also, the parameter could appear in more than one distribution (as opposed to being in the same
distribution multiple times, as in the previous item).

Let f denote the joint p.d.f. of all of the input random variables. Differentiating (11), and assuming an
interchange of integration and differentiation is permissible, we write two cases:

dE[Y (X)]
dθ

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∫ ∞

−∞
Y (x)

df(x; θ)
dθ

dx (12)

∫ 1

0

dY (X(θ; u))
dθ

du, (13)

where x and u and the integrals are all T -dimensional. For notational simplicity, throughout these T -
dimensional multiple integrals are written as a single integral, and we also assume one random number u
produces one random variate x. In (12), the parameter appears in the distribution directly, whereas in (13),
the underlying uncertainty is considered the uniform random numbers. These correspond to what we called
the distributional (measure) and pathwise (sample) dependencies, respectively.

For expositional ease in introducing the approaches, we begin by assuming that the parameter only
appears in X1, which is generated independently of the other input random variables. So for the case of (13),
we use the chain rule to write

dE[Y (X)]
dθ

=
∫ 1

0

dY (X1(θ; u1), X2, . . .))
dθ

du

=
∫ 1

0

∂Y

∂X1

dX1(θ; u1)
dθ

du. (14)

In other words, the estimator takes the form

∂Y (X)
∂X1

dX1

dθ
, (15)

where the parameter appears in the transformation from random number to random variate, and the deriva-
tive is expressed as the product of a sample path derivative and derivative of a random variable. The issue
of what constitutes the latter will be taken up shortly, but this approach is called infinitesimal perturbation
analysis (IPA). For the M/M/1 queue, the sample path derivative could be derived using Lindley’s equation,
relating the time in system of a customer to the service times (and interarrival times, which are not a function
of the parameter).
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Assume that X1 has marginal p.d.f. f1(·; θ) and that the joint p.d.f. for the remaining input random
variables (X2, . . .) is given by f−1, which has no (functional) dependence on θ. Then the assumed inde-
pendence gives f = f1f−1, and the expression (12) involving differentiation of a density (measure) can be
further manipulated using the product rule of differentiation to yield the following:

dE[Y (X)]
dθ

=
∫ ∞

−∞
Y (x)

∂f1(x1; θ)
∂θ

f−1(x2, . . .)dx (16)

=
∫ ∞

−∞
Y (x)

∂ ln f1(x1; θ)
∂θ

f(x)dx. (17)

In other words, the estimator takes the form

Y (X)
∂ ln f1(X1; θ)

∂θ
. (18)

Since the term ∂ ln f1(·;θ)
∂θ is the well-known (efficient) score function in statistics, this approach has been

called the score function (SF) method. The other name given to this approach — the likelihood ratio (LR)
method — comes from the closely related likelihood ratio function given by

f1(·; θ)
f1(·; θ0)

,

which when differentiated with respect to θ gives

∂f1(·; θ)/∂θ

f1(·; θ0)
,

which is equal to the score function upon setting θ0 = θ.
On the other hand, if instead of expressing the right-hand side of (16) as (17), the density derivative is

written as
∂f1(x1; θ)

∂θ
= c(θ)

(
f

(2)
1 (x1; θ) − f

(1)
1 (x1; θ)

)
,

it leads to the following relationship:

dE[Y (X)]
dθ

=
∫ ∞

−∞
Y (x)

∂f(x; θ)
∂θ

dx,

= c(θ)
(∫ ∞

−∞
Y (x)f (2)

1 (x1; θ)f−1(x2, . . .)dx −
∫ ∞

−∞
Y (x)f (1)

1 (x1; θ)f−1(x2, . . .)dx

)
.

The triple
(
c(θ), f (1)

1 , f
(2)
1

)
constitutes a weak derivative (WD) for f1, which is in general not unique, as we

shall shortly see. The corresponding WD estimator is of the form

c(θ)
(
Y (X(2)

1 , X2, . . .) − Y (X(1)
1 , X2, . . .)

)
, (19)

where X
(1)
1 ∼ f

(1)
1 and X

(2)
1 ∼ f

(2)
1 . The term “weak” derivative comes about from the possibility that

df1(·;θ)
dθ in (16) may not be proper, but its integral may be well-defined, e.g., it might involve delta-functions

(impulses), corresponding to mass functions of discrete distributions.
If in the expression (13), the interchange of expectation and differentiation does not hold (e.g., if Y is an

indicator function), then as long as there is more than one input random variable, appropriate conditioning
will often allow the interchange as follows:

dE[Y (X)]
dθ

=
∫ 1

0

dE[Y (X(θ; u))|Z(u)]
dθ

du, (20)

where Z ⊂ {X1, . . . , XT }. This conditioning is known as smoothed perturbation analysis (SPA), because it
is intended to “smooth” out a discontinuous function. It leads to an estimator of the following form:

∂E[Y (X)|Z]
∂X1

dX1

dθ
, (21)
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Note that taking Z as the entire set leads back to (15).

Remark For SPA, the conditioning in (20) was done with respect to a subset of the input random variables
only. Further conditioning can be done on events in the system, which leads to an estimator of the following
general form:

dY

dθ
+ EZ [δY |B]

dPZ(B)
dθ

, (22)

where the subscript indicates a corresponding conditional expectation/probability, B is an appropriately
selected event, and δY represents a change in the performance measure under the conditioned (usually
called “critical”) event. In this case, if the probability rate dPZ(B)

dθ is 0, the estimator (22) also reduces to
IPA. On the other hand, if the IPA term dY

dθ is zero, the estimator may coincide with the WD estimator in
certain cases, with correspondences between c(θ) and the probability rate, and between the difference term
in (19) and the conditional expectation in (22).

4.1 Desirable Properties

Direct gradient estimators are estimators like any other estimators; they just happen to be estimating
derivatives. Thus, like other estimators, we would like them to be unbiased.

Definition. The stochastic gradient estimator ∇̂J(θ) is unbiased if E[∇̂J(θ)] = ∇θJ(θ).

We would also like the estimators to have low variance. In other words, we want them to be both correct
and precise, as opposed to being wrong and noisy. Strong consistency is another desirable property. For
finite horizon performance measures, we simply invoke the strong law of large numbers. For infinite horizon
or steady-state performance measures, the usual ergodicity considerations come into play, and just as in
steady-state output analysis methodology, this can involve a lot of theoretical tools from applied probability.

Basically, unbiasedness requires the exchange of the operations of differentiation (limit) and integration
(expectation), as was assumed in deriving (12) and (13). Mathematically, this boils down to whether or not
the dominated convergence theorem can be applied (see Section 6). In the case of PA, the bounding involves
properties of the performance measure, whereas in LR/SF and WD, the bounding involves the distribution
functions. In either case, the primary difficulty is in being able to implement the derivative/gradient, just
as building a simulation model is a non-trivial task in implementation, although conceptually there may be
little difficulty.

The applicability of IPA may depend on how the input processes are constructed/generated (see the next
section). In applying SPA, there is the choice of conditioning quantities (cf. (20)/(21)), which affects how
easily the resulting conditional expectation can be estimated from sample paths. There are also a multitude
of choices of WD triples for a given input distribution, and this determines both the amount of additional
simulation required and the variance of the resulting WD output gradient estimator. For LR/SF estimators,
the variance of the estimator could also be a problem if care is not taken in implementation, e.g., the näıve
estimator will lead to a linear increase in variance with respect to the simulation horizon.

4.2 Derivatives of Random Variables

PA estimators — e.g., those shown in (15), (21), (22) — require the notion of derivatives of random variables.
The mathematical problem for defining such derivatives consists of constructing a family of random variables
parameterized by θ on a common probability space, with the point of departure being a set of parameterized
distribution functions {F (·; θ)}. We wish to construct X(θ) ∼ F (·; θ) s.t. ∀θ ∈ Θ, X(θ) is differentiable
w.p.1. The sample derivative is then defined in the intuitive manner as

dX(θ, ω)
dθ

= lim
∆θ→0

X(θ + ∆θ, ω) − X(θ, ω)
∆θ

,

where ω denotes a sample point in the underlying probability space. If the distribution of X is known, we
have

dX(θ)
dθ

= − ∂F (X ; θ)/∂θ

∂F (X ; θ)/∂X
, (23)
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where we use the (slightly abusive) notation
∂F (X ; θ)

∂X
=

∂F (x; θ)
∂x

∣∣∣∣
x=X

.

Definition. For a distribution function F (x; θ), θ is said to be a location parameter if F (x + θ; θ) does
not depend on θ; θ is said to be a scale parameter if F (xθ; θ) does not depend on θ; and θ is said to
be a generalized scale parameter if F (θ̄ + xθ; θ) does not depend on θ, for some fixed θ̄ (usually a location
parameter) not dependent on θ.

In these special cases, one can use the following sample derivatives for the three respective cases (location,
scale, generalized scale):

dX

dθ
= 1,

dX

dθ
=

X

θ
,

dX

dθ
=

X − θ̄

θ
.

The most well-known example is the normal distribution, with the mean being a location parameter and
the standard deviation a generalized scale parameter. Similarly, the two parameters in the Cauchy, Gumbel
(extreme value), and logistic distributions also correspond to location and generalized scale parameters.
Other examples include the mean of the exponential being a scale parameter; and the mean of the uniform
distribution being a location parameter, with the half-width being a generalized scale parameter. In the
special case U(0, θ), the single parameter is an ordinary scale parameter. Also, for N(θ, (θσ)2), θ is an
ordinary scale parameter.

Lastly, note that for a given distribution, there may be multiple ways to generate a random variate, which
leads to different derivatives, some of which may be unbiased and some of which may not. This is called the
role of representations, which we illustrate with a simple example.

Example 1 Let

X ∼
{

U(1, 2) w.p. θ, θ ∈ (0, 1),
U(0, 1) w.p. 1 − θ,

a mixture of two uniform distributions, with dE[X ]/dθ = 1. A straightforward construction/representation
using two random numbers is

X = 1{U1 ≤ θ}(1 + U2) + 1{U1 > θ}U2, (24)

where U1, U2 ∼ U(0, 1) are independent and 1{·} denotes the indicator function. However, since

dX

dθ
= 0 w.p.1,

this clearly leads to a biased estimator. Note that viewed as a function of θ, X jumps from U2 to 1 + U2 at
θ = U1. However, an unbiased estimator can be obtained by using the following construction in which the
“coin flipping” and uniform generation are correlated:

X = 1{U ≤ θ}
(

1 +
θ − U

θ

)
+ 1{U > θ}

(
1 − U

1 − θ

)
, where U ∼ U(0, 1),

=⇒ dX

dθ
= 1{U ≤ θ}U

θ2
+ 1{U > θ} 1 − U

(1 − θ)2
,

which is unbiased (has expectation equal to dE[X ]/dθ = 1). This construction is based on the property
that the distributions of the random variable (θ − U)/θ under the condition {U < θ} and the random
variable (1 − U)/(1 − θ) under the condition {U ≥ θ} are both U(0, 1). From a simulation perspective,
this representation has the additional advantage of requiring only a single random number to generate X
instead of two as in the previous construction. In terms of the derivative, the crucial property is that X is
continuous across θ = U . One can easily construct other single random number representations that do not
have this desirable characteristic, e.g.,

X = 1{U ≤ θ}(1 +
U

θ
) + 1{U > θ}U − θ

1 − θ
, where U ∼ U(0, 1),

=⇒ dX

dθ
= 1{U ≤ θ}−U

θ2
+ 1{U > θ}

[
− 1 − U

(1 − θ)2

]
,
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which is biased (has expectation -1), the intuitive reason being the discontinuity of X at U = θ.
For the first representation, where the “natural” construction leads to a biased estimator, we demon-

strate the use of conditioning (SPA) to rectify the situation. First, we derive an alternative estimator by
conditioning on U2, i.e., let

X = E[X1|U2] = (1 + U2)θ + U2(1 − θ) = θ + U2,

leading to the obviously unbiased estimator dX/dθ = 1.
Alternatively, consider the event

B(∆θ) = {U1 ∈ (θ, θ + ∆θ]}, ∆θ > 0.

Intuitively, this event corresponds to those samples such that a perturbation ∆θ > 0 causes a “jump” in the
sample performance from U2 (when U1 > θ) to 1 + U2 (when U1 ≤ θ + ∆θ). The complement of this event
corresponds to the “smooth” case of IPA. Thus, we write for the representation defined by (24):

dE[X ]
dθ

= lim
∆θ→0

E[X(θ + ∆θ) − X(θ)]
∆θ

= lim
∆θ→0

E[(X(θ + ∆θ) − X(θ))1(Bc(∆θ))]
∆θ

+ lim
∆θ→0

E[(X(θ + ∆θ) − X(θ))1(B(∆θ))]
∆θ

= E

[
dX

dθ

]
+ lim

∆θ→0
E[X(θ + ∆θ) − X(θ)|B(∆θ)] lim

∆θ→0

P (B(∆θ))
∆θ

(25)

= lim
∆θ→0

(E[(1 + U2) − U2]) lim
∆θ→0

∆θ

∆θ
= 1,

where Bc denotes the complement of B. In this case, because we can evaluate the difference (1 + U2) − U2

analytically, the final “estimator” is a deterministic quantity equal to the value to be estimated. In more
complicated systems, the challenge is usually in estimating this difference of the sample performance under
two different conditions on the sample path, given by the limiting conditional expectation in (25).

4.3 Derivatives of Measures

As we have seen already, both the LR/SF and WD estimators rely on differentiation of the underlying
measure, so the parameters of interest should appear in the underlying (input) distributions. If this is not
the case, then one approach is to try to “push” the parameter out of the performance measure into the
distribution, so that the usual differentiation can be carried out. This is achieved by a change of variables,
which is problem dependent.

Recall that we introduced the idea of a weak derivative by expressing the derivative of a density as the
difference of two measures, i.e.,

∂f(x; θ)
∂θ

= c(θ)
(
f (2)(x; θ) − f (1)(x; θ)

)
.

This idea can be generalized without the need for a differentiable density, as long as the integral exists with
respect to a certain set of (integrable) “test” functions, say L, e.g., the set of continuous bounded functions.

Definition. The triple (c(θ), F (1), F (2)) is called a weak derivative for distribution (c.d.f.) F if for all
functions g ∈ L (not a function of θ),

d

dθ

∫
g(x)dF (x; θ) = c(θ)

(∫
g(x)dF (2)(x; θ) −

∫
g(x)dF (1)(x; θ)

)
.

Remarks. As mentioned earlier, the derivative is “weak” in the sense that the density derivative may not
be defined in the usual sense, but in terms of generalized functions integrable with respect to the functions
in L, as in the “definition” of a delta function in terms of its integral, i.e., they could include discrete mass
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functions, as well. The concept of a weak derivative need not be restricted to probability measures, but
any finite signed measures. Lastly, note that a WD gradient estimate may require as many as 2d additional
simulations for the vector case (a pair for each component), unlike LR/SF and IPA estimators, which will
always require just a single simulation.

One choice for the weak derivative (density) that is readily available is

df

dθ
= c (f2 − f1) , (26)

where

f1 =
1
c

(
df

dθ

)−
, f2 =

1
c

(
df

dθ

)+

, (27)

x+ ≡ max(x, 0), x− ≡ max(−x, 0), and c =
∫ (

df
dθ

)+

dx =
∫

f2dx =
∫ (

df
dθ

)−
dx, using the fact that∫

f(x)dx = 1 =⇒
∫

df

dθ
dx = 0.

The representation given by (26) and (27) is the Hahn-Jordan decomposition, which will always exist for
probability measures, and results in a decomposition involving two measures with complementary support.
Remarks. The representation is clearly not unique. In fact, for any non-negative integrable function h, we
have

df

dθ
= c ([f1 + h] − [f2 + h]) = c′

(
[f1 + h]/(1 +

∫
h) − [f2 + h]/(1 +

∫
h)
)

,

where c′ = c(1 +
∫

h). Thus, one way to obtain the estimator using the original simulation is to choose a
representation in which both measures have the same support as the original measure. Then importance
sampling can be applied, so that the original simulation can be used to generate the estimator without the
need for simulating the system under alternative input distributions. Perhaps the most direct way to achieve
this is to add the original measure itself to both f1 and f2 and renormalize appropriately, i.e., choose h = f
above:

df

dθ
= 2c ([f1 + f ]/2 − [f2 + f ]/2) .

4.4 Input Distribution Examples

We now demonstrate some of these concepts on a single random variable. Section 5 will consider the examples
introduced at the beginning.

Example 2 Let X ∼ exp(θ), an exponential random variable with mean θ, with p.d.f. given by

f(x; θ) =
1
θ
e−x/θ1{x > 0}.

The usual construction of the r.v. is as follows:

X(θ; u) = −θ ln u,

where u represents a random number. Differentiating, we get

df(x; θ)
dθ

=
[

x

θ2

1
θ
e−x/θ − 1

θ2
e−x/θ

]
1{x > 0}

= f(x; θ)
[

x

θ2
− 1

θ

]
=

1
θ

[ x

θ2
e−x/θ1{x > 0} − f(x; θ)

]
=

1
θe

[ e

θ

(x

θ
− 1
)

e−x/θ1{x > θ} − e

θ

(
1 − x

θ

)
e−x/θ1{0 < x ≤ θ}

]
,

dX(θ; u)
dθ

= − ln u =
X(θ; u)

θ
.
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In the third and fourth lines above, the density derivative (which is itself not a density) has been expressed
as the difference of two densities multiplied by a constant. This demonstrates that the weak derivative
representation is not unique, with the last decomposition being the Hahn-Jordan decomposition, noting that
x = θ is the point at which df(x; θ)/dθ changes sign. The following correspond to the LR/SF, WD (a) &
(b), and IPA estimators, respectively:

Y (X)
1
θ

(
X1

θ
− 1
)

,

1
θ

[
Y (X(2)

1a , . . .) − Y (X(1)
1a , . . .)

]
,

1
θe

[
Y (X(2)

1b , . . .) − Y (X(1)
1b , . . .)

]
,

dY

dX1

X1

θ
,

where X
(1)
1a and X

(2)
1a are random variables distributed as exp(θ) and Erl(2, θ), respectively, and X

(1)
1b and

X
(2)
1b are random variables with densities e

θ

(
1 − x

θ

)
e−x/θ, 0 < x ≤ θ, and e

θ

(
x
θ − 1

)
e−x/θ, x > θ, respectively.

The following is a simple example that demonstrates that the WD estimator is more broadly applicable
than the LR/SF estimator.

Example 3 Let X ∼ U(0, θ). Then we have the following:

f(x; θ) =
1
θ
1{0 < x < θ},

X(θ; u) = uθ,

df(x; θ)
dθ

=
1
θ

[
δ(θ − x) − 1

θ
1{0 < x < θ}

]
(28)

=
1
θ

[δ(θ − x) − f(x; θ)] ,

dX(θ; u)
dθ

= u =
X(θ; u)

θ
,

where we define the Dirac δ-function as the “derivative” of a step function by

1{x ≥ θ} =
∫ x

−∞
δ(y − θ)dy. (29)

On the right-hand side of Equation (28), we have the difference of densities for a mass at θ and the original
U(0, θ) distribution, respectively, i.e., the weak derivative representation (1/θ, θ, F ), where θ indicates a
deterministic distribution with mass at θ. So, for example, the estimator in (19) would be given by

1
θ

(Y (θ, X2, . . .) − Y (X1, X2, . . .)) .

This is a case where the LR/SF estimator is ill-defined, due to the δ-function. Another example is the
following.

Example 4 Let X ∼ Par(α, θ), which represents the Pareto distribution with shape parameter α and scale
parameter θ, and p.d.f. given by

f(x) = θααx−(α+1)1{x ≥ θ}.
Once again the LR/SF estimator does not exist, due to the appearance of the parameter in the indicator
function that controls the support of the distribution, whereas WD estimators can be derived (see Table 1
at the end of the section).

However, the very general exponential family of distributions leads to a nice form for the LR/SF estimator.

Example 5 Let θ denote the vector of parameters in a p.d.f. that can be written in the following form:

f(x; θ) = k(θ) exp

(∑
i

vi(θ)ti(x)

)
h(x),
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where the functions h and {ti} are independent of θ, and the functions k and {vi} do not involve the
argument. Then it is straightforward to derive

∂ ln f(x; θ)
∂θ

=
∇k(θ)
k(θ)

+
∑

i

∇vi(θ)ti(x).

Examples include the normal, gamma, Weibull, and exponential, for the continuous case, and the binomial,
Poisson, and geometric for the discrete case.

Discrete distributions present separate challenges for the two approaches. Basically, when the parameter
appears in the support probabilities, then LR/SF can be easily applied, whereas IPA is in general not
applicable. The reverse is true, however, if the parameter appears instead in the support values. Here are two
examples to demonstrate this, where we work directly with probability mass functions p(x; θ) = P (X = x),
instead of densities with δ-functions. Let Ber(p; a, b) denote a Bernoulli distribution that takes value a with
probability p and b with probability 1 − p.

Example 6 Let X ∼ Ber(θ; a, b), which has mass function

p(x; θ) = θ · 1{x = a} + (1 − θ) · 1{x = b},
so

∂p

∂θ
= 1{x = a} − 1{x = b},

which can be viewed as the difference of two (deterministic) masses at a and b (with c(θ) = 1), and is the
Hahn-Jordan decomposition in this case. For the LR/SF estimator, we have

∂ ln p

∂θ
=

1{x = a} − 1{x = b}
θ1{x = a} + (1 − θ)1{x = b} =

1
θ
1{x = a} − 1

1 − θ
1{x = b}.

In this case, there is no way to construct X such that it will be differentiable w.p.1. For example, the natural
construction/representation

X = a1{U ≤ θ} + b1{U > θ}
yields dX/dθ = 0 w.p.1, so IPA is not applicable.

Example 7 Let X ∼ Ber(p; θ; 0), which has mass function

p(x; θ) = p · 1{x = θ} + (1 − p) · 1{x = 0},
which is not differentiable with respect to θ, so LR/SF and WD estimators cannot be derived.

The natural random variable construction

X = θ · 1{U ≤ p}
leads to the unbiased

dX

dθ
= 1{U ≤ p} = 1{X = θ}

(which in this example also happens to equal X/θ). The IPA estimator dX/dθ = 1{X = θ} holds even if
any number of additional values are added to the underlying support, if all of them do not involve θ. If θ
enters into them, then the estimator can be easily modified to reflect that.

It is straightforward to verify the corresponding derivatives of some common distributions displayed in
Table 1, where geo(p) indicates a geometric distribution with mass function

(1 − p)n−1p, x = 1, 2, . . . ;

bin(n, p) indicates a binomial distribution with mass function(
n
p

)
px(1 − p)n−x, x = 0, 1, . . . ;
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negbin(n, p) indicates a negative binomial distribution with mass function(
x − 1
n − 1

)
(1 − p)x−npn, x = n, n + 1, . . . ;

Poi(λ) indicates a Poisson distribution (mean/variance λ) with mass function

e−λλx

x!
, x = 0, 1, . . . ;

Erl(n, β) indicates an Erlang distribution with p.d.f.

β−nxn−1e−x/β

(n − 1)!
1{x > 0};

Mxw(µ, σ2) indicates a double-sided Maxwell distribution with p.d.f.

(x − µ)2√
2πσ3

e−
(x−µ)2

2σ ;

Wei(α, β) indicates a Weibull distribution with shape parameter α and scale parameter β, and p.d.f.

αβ−αxα−1e−(x/β)α

1{x > 0};

gam(α, β) indicates a gamma distribution with shape parameter α and scale parameter β, and p.d.f.

β−αxα−1e−x/β

Γ(α)
1{x > 0},

where
Γ(α) =

∫ ∞

0

tα−1e−tdt = (α − 1)Γ(α − 1);

recalling that Erl(n, β) = gam(n, β) for positive integer n; Wei(1, β) = gam(1, β) = exp(β); and the special
distribution F ∗(α, θ) has p.d.f. (does this fall into any of the well-known families?)

αβ−2αx2α−1e−(x/β)α

.

Note that our definition of the second parameter β in the gamma and Weibull distributions (also corre-
sponding to the only parameter in the exponential distribution) is the inverse of what is usually found in the
literature (Law and Kelton 2000 being a notable exception), but leads to it being a scale parameter under
our definition.

5 Examples

5.1 Stochastic Activity Network

Let Xi have p.d.f. fi, and assume all of the activity times are independent. Let P ∗ denote the set of activities
on the optimal path corresponding to the project duration (e.g., shortest or longest path, depending on the
problem), so we can write

Y =
∑

j∈P∗
Xj ,

where P ∗ itself is a random variable. We wish to estimate dE[Y ]/dθ. Let θ be a parameter in the distribution
of X1, i.e., in f1 only. Then, the IPA estimator is given by

dY

dθ
=

dX1

dθ
1{1 ∈ P ∗}.
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input dist WD IPA LR/SF
X ∼ F (c, F (2), F (1)) dX

dθ
d ln f(X)

dθ

Ber(θ; a, b) (1, a, b) NA 1
θ1{X = a}

− 1
1−θ1{X = b}

Ber(p; θ, b) NA 1{X = θ} NA
geo(θ) (1

θ , geo(θ), negbin(2, θ)) NA 1
θ + 1−X

1−θ

bin(n, θ) (n, 1 + bin(n− 1, θ), bin(n − 1, θ)) NA X
θ − n−X

1−θ

Poi(θ) (1, 1 + Poi(θ), Poi(θ)) NA X
θ − 1

N(θ, σ2)
(

1√
2πσ

, θ + Wei(2, 1
2σ2 ), θ − Wei(2, 1

2σ2 )
)

1 X−θ
σ2

N(µ, θ2) (1
θ , Mxw(µ, θ2), N(µ, θ2)) X−µ

θ
1
θ

[(
x−µ

θ

)2 − 1
]

U(0, θ) (1
θ , θ, U(0, θ)) X

θ NA
U(θ − γ, θ + γ) ( 1

2γ , θ + γ, θ − γ) 1 NA
U(µ − θ, µ + θ) ( 1

γ , Ber(0.5; µ − θ, µ + θ), U(µ − θ, µ + θ)) X−µ
σ NA

exp(θ) (1
θ , Erl(2, θ), exp(θ)) X

θ
1
θ

(
X
θ − 1

)
Wei(α, θ) (α

θ , F ∗(α, θ), Wei(α, θ)) X
θ

1
θ

[(
X
θ

)α − α
]

gam(α, θ) (α
θ , gam(α + 1, θ), gam(α, θ)) X

θ
1
θ

(
X
θ − α

)
Par(α, θ) (α

θ , Par(α, θ), θ) X
θ NA

Table 1: Derivatives for some common/simple input distributions (“NA” = not applicable).

The LR/SF estimator is given by

Y
∂ ln f1(X1; θ)

∂θ
.

The WD estimator is of the form

c(θ)
(
Y (X(2)

1 , X2, . . . , XT ) − Y (X(1)
1 , X2, . . . , XT )

)
where X

(j)
1 ∼ F

(j)
1 , j = 1, 2, and (c(θ), F (2)

1 , F
(1)
1 ) is a weak derivative for F1.

If we allow the parameter to possibly appear in all of the distributions, then the IPA estimator is found
by applying the chain rule:

dY

dθ
=
∑
i∈P∗

dXi

dθ
;

whereas the LR/SF and WD estimators are derived by applying the product rule of differentiation to the
underlying input distribution, applying the independence that allows the joint distribution to be expressed
as a product of marginals. In particular, the LR/SF estimator is given by

Y (X)

(
d∑

i=1

∂ ln fi(Xi; θ)
∂θ

)
.

The WD estimator is of the form

T∑
i=1

ci(θ)
(
Y (X1, . . . , X

(2)
i , . . . , XT ) − Y (X1, . . . , X

(1)
i , . . . , XT )

)
,

where X
(j)
i ∼ F

(j)
i , j = 1, 2; i = 1, . . . , T , and (ci(θ), F

(2)
i , F

(1)
i ) is a weak derivative for Fi.

If instead we were interested in estimating P (Y > y) for some fixed y, the WD and LR/SF estimators
would simply replace Y with the indicator function 1{Y > y}. However, IPA will not apply, since the
indicator function is inherently discontinuous, so an extension of IPA such as SPA is required. On the
other hand, if the performance measure were P (Y > θ), then since the parameter does not appear in the
distribution of the input random variables, WD and LR/SF estimators cannot be derived without first
carrying out an appropriate change of variables.
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To derive a PA estimator for the derivative of P (Y > y), we first define the following:

Pj = {P ∈ P | j ∈ P} = set of paths containing arc j,

|P |−j = length of path P with Xj = 0.

The idea will be to condition on all activity times except a set that includes activity times dependent on the
parameter. In order to proceed, we need to specify the form of Y . We will take it to be the longest path.
Other forms, such as shortest path, are analogously handled. Again, assuming that θ occurs in the density
of X1 and taking the conditioning quantities to be everything except X1, i.e., Z = {X2, . . . , XT }, we have

LZ(θ) = PZ(Y > y) ≡ E[1{Y > y}|X2, . . . , XT ] =
{

1 ifmaxPi∈P |Pi|−1 > y;
PZ (maxPi∈P1 |Pi| > y) otherwise;

where PZ denotes the conditional (on Z) probability. Since

PZ( max
Pi∈P1

|Pi| > y) = PZ(X1 + max
Pi∈P1

|Pi|−1 > y) = PZ(X1 > y − max
Pi∈P1

|Pi|−1) = F̄1(y − max
Pi∈P1

|Pi|−1),

LZ(θ) = F̄1(y − max
Pi∈P1

|Pi|−1) · 1{max
Pi∈P

|Pi|−1 ≤ y} + 1{max
Pi∈P

|Pi|−1 > y}.
Differentiating,

dLZ

dθ
=

∂F̄1

∂θ
(y − max

Pi∈P1
|Pi|−1) · 1{max

Pi∈P
|Pi|−1 ≤ y}.

For the shortest path problem, simply replace “max” with “min” throughout.
To derive an LR/SF or WD derivative estimator for the performance measure P (Y > θ), there are two

main ways to do the change of variables: subtraction or division.

P (Y − θ > 0), P (Y/θ > 1).

To achieve this requires translating the operation on the output performance measure back to a change of
variables on the input random variables, so this clearly requires some additional knowledge of the system
under consideration. In this particular case, it turns out that two properties make it amenable to a change of
variables: (i) additive performance measure; (ii) clear characterization of paths that need to be considered.
The simplest change of variables is to take

X̃i = Xi/θ ∀i ∈ A,

so that θ now appears as a scale parameter in each distribution fi. If Ỹ represents the performance measure
after the change of variables, then we have

P (Y > θ) = P (Ỹ > 1),

and this can be handled as previously discussed.
Another change of variables that will work in this case is to subtract the quantity θ from an appropriate

set of arc lengths. In particular, the easiest sets are the nodes leading out of the source or the nodes leading
into the sink. Note that minimal cut sets will not necessarily do the trick. Again, if Ỹ represents the
performance measure after the change of variables, then we have

P (Y > θ) = P (Ỹ > 0).

Now the parameter θ appears in the distribution, specifically as a location parameter, but only in a relatively
small subset of the {fi}. Since this transformation results in the parameter appearing in fewer number of
input random variables, it may be preferred, because for both the LR/SF and WD estimators, the amount
of effort is proportional to the number of times the parameter appears in the distributions. The extra work
for a large network can be particularly burdensome for the WD estimator. However, for the LR estimator,
this type of location parameter is problematic, since it changes the support of the input random variable.

Application of PA to the problem of estimating dP (Y > θ)/dθ also requires SPA, the idea being to
condition on all activity times except a special (minimal) set that includes at least one activity that must be
on the optimal (critical) path. Taking any minimal cut set, one can derive an unbiased derivative estimator
for P (Y > θ) by conditioning on the complement set and then taking the sample path derivative. The details
are contained in Fu (2005).
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Figure 1: Quantities used in deriving FCFS single-server queue SPA estimator.

5.2 Single-Server Queue

We illustrate all of the gradient estimators for the queueing example. Let An be the interarrival time between
the (n − 1)st and nth customer (i.i.d. with PDF f1 and CDF F1), Xn the service time of the nth customer
(i.i.d. with PDF f2 and CDF F2), and Tn the system time (in queue plus in service) of the nth customer.
We consider the case where θ is a parameter in the service time distribution, and the sample performance of
interest is the average system time over the first N customers TN = 1

N

∑N
n=1 Tn. Assume that the system

starts empty, so that the times of the first N service completions are completely determined by the first N
interarrival times and first N service times.

The system time of a customer for a FCFS single-server queue satisfies the well-known recursive Lindley
equation:

Tn+1 = Xn+1 + (Tn − An+1)+. (30)

The IPA estimator is obtained by differentiating (30):

dTn+1

dθ
=

dXn+1

dθ
+

dTn

dθ
1{Tn ≥ An+1}. (31)

Using the above recursion, the IPA estimator for the derivative of average system time is given by

dTN

dθ
=

1
N

N∑
n=1

dTn

dθ
=

1
N

M∑
m=1

nm∑
i=nm−1+1

i∑
j=nm−1+1

dXj

dθ
, (32)

where M is the number of busy periods observed and nm is the index of the last customer served in the
mth busy period (n0 = 0 and nM = N for M complete busy periods). Implementation of the estimator
involves keeping track of two running quantities, one for (31) and another for the summation in (32); thus,
the additional computational overhead is minimal, and no alteration of the underlying simulation is required.

The implicit assumption used in deriving an IPA estimator is that small changes in the parameter will
result in small changes in the sample performance. Thus, in the above, this means that the boundary
condition in (31) is unchanged by differentiation. In general, the interchange (12) will typically hold if the
sample performance is continuous with respect to the parameter. For the Lindley equation, although Tn+1

in (30) has a “kink” at Tn = An+1, it is still continuous at that point. This intuitively explains why IPA
works. Unfortunately, the “kink” means that the derivative given by (31) has a discontinuity at Tn = An+1,
so that IPA will fail for the second derivative.

An unbiased SPA second derivative estimator can be derived by conditioning on all previous interarrival
and service times at each departure, which determines the system time, say Tn, with the corresponding
next interarrival time, An+1, unconditioned. We provide a brief informal derivation based on sample path
intuition (refer to Figure 1). For the right-hand estimator, in which we assume ∆Tn > 0 (technically it
should refer to ∆θ), the only “critical” events are those departures that terminate a busy period, with the
possibility that two busy periods coalesce (idle period disappears) due to a perturbation. The corresponding
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probability rate (conditional on Tn) is then calculated as follows:

lim
∆θ→0

P (Tn + ∆Tn ≥ An+1|Tn < An+1)
∆Tn

=
f1(Tn)

1 − F1(Tn)
dTn

dθ
,

and the corresponding effect would be that the ∆Tn perturbation would be propagated to the next busy
period. The complete SPA estimator is given by(

d2TN

dθ2

)
SPA

=
1
N

M∑
m=1

nm∑
i=nm−1+1

i∑
j=nm−1+1

d2Xj

dθ2

+
1
M

M∑
m=1

f1(Tnm)
1 − F1(Tnm)

(
dTnm

dθ

)2

,

where d2X/dθ2 is well-defined when F2(X ; θ) is twice differentiable, d2X
dθ2 = 0 for location, scale, and gener-

alized scale parameters.
To derive the LR/SF estimator, since all the interarrival and service times are independently generated,

the joint p.d.f. f on X will simply be the product of the p.d.f.s of the interarrival and service time distributions
given by

f(θ, A1, ..., AN , X1, ..., XN ) =
N∏

i=1

f1(Ai)
N∏

i=1

f2(Xi; θ). (33)

Thus, the straightforward estimator would be given by(
dT̄N

dθ

)
LR

=
1
N

N∑
i=1

Ti

N∑
j=1

∂ ln f2(Xj ; θ)
∂θ

, (34)

where expressions for some common input distributions can be found in Table 1. However, for large N , the
variance of the estimator, which increases linearly with N , will render it practically useless, so some sort of
truncation is necessary, and in this particular example, the regenerative structure provides such a mechanism.
Using regenerative theory, the mean steady-state system time can be written as a ratio of expectations:

E[T ] =
E[Q]
E[η]

,

where η is the number of customers served in a busy period and Q is the sum of the system times of customers
served in a busy period. Differentiation yields

dE[T ]
dθ

=
dE[Q]/dθ

E[η]
− dE[η]/dθ

E[η]
E[T ].

Now, use the natural LR/SF estimators for each of the terms separately to obtain the following regenerative
estimator over M busy periods:(

dT̄N

dθ

)
LR

=
1
N

M∑
m=1

⎧⎨⎩
nm∑

i=nm−1+1

Ti

nm∑
i=nm−1+1

∂ ln f2(Xi; θ)
∂θ

⎫⎬⎭
− 1

N

M∑
m=1

⎧⎨⎩(nm − nm−1)
nm∑

i=nm−1+1

∂ ln f2(Xi; θ)
∂θ

⎫⎬⎭ 1
N

N∑
j=1

Tj.

The advantage of these estimators is that the summations are bounded by the length of the busy periods,
so as long as the busy periods are not too lengthy, the variance of the estimators should be acceptable.
Furthermore, the second derivative estimator is relatively easy to derive, as well:(

d2T̄N

dθ2

)
LR

=
1
N

M∑
m=1

⎧⎨⎩
nm∑
i=1

Ti

nm∑
i=nm−1+1

[
∂2 ln f2(Xi; θ)

∂θ2
+
(

∂ ln f2(Xi; θ)
∂θ

)2
]⎫⎬⎭

− 1
N

M∑
m=1

⎧⎨⎩(nm − nm−1)
nm∑

i=nm−1+1

[
∂2 ln f2(Xi; θ)

∂θ2
+
(

∂ ln f2(Xi; θ)
∂θ

)2
]⎫⎬⎭ 1

N

N∑
j=1

Tj .
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The WD estimator is also relatively straightforward, just incorporating the product rule of differentiation
as before:(

dT̄N

dθ

)
WD

= c(θ)
N∑

i=1

[
T̄N(A1, . . . , AN , . . . , X

(2)
i , . . .) − T̄N (A1, . . . , AN , . . . , X

(1)
i , . . .)

]
,

where X
(j)
i ∼ F

(j)
2 , j = 1, 2; i = 1, . . . , N for (c(θ), F (1)

2 , F
(2)
2 ) a weak derivative of F2. A second derivative

estimator would take exactly the same form, the only difference being that (c(θ), F (1)
2 , F

(2)
2 ) should be a

weak second derivative of F2. Note that in general, implementation of the estimator requires 2T separate
sample paths and resulting sample performance estimates, because the parameter appears in T input random
variables. Although the variance of the estimator does not increase with T , implementation may not be
practical for large T . However, in many cases, the expression can be simplified, making the computation more
acceptable. The variance properties of the estimators depend heavily on the particular weak derivative(s)
used.

What happens when T is random and when T −→ ∞ is also of theoretical interest. In these settings, the
estimators are extended in the natural way, but proving theoretical properties becomes a more challenging
task.

5.3 (s, S) Inventory System

We now consider the single-item periodic review (s, S) inventory system, in which once every period the
inventory level is reviewed and, if necessary, orders are placed to replenish depleted inventory. An (s, S)
ordering policy specifies that an order be placed when the level of inventory on hand plus that on order
(called inventory position) falls below the level s, and that the amount of the order be the difference between
S and the present inventory position, i.e., order amounts are placed “up to S.” For expositional ease, we
describe only the gradient estimate for average inventory level with respect to the policy parameters s and
q = S − s, which do not enter through probability distributions as in the previous examples.

We consider the model where all excess demand is backlogged and eventually filled, and replenishment
orders are immediately received (zero lead time), so that inventory level and inventory position coincide. We
assume that during the period, demand is satisfied, and then the order replenishment decision is made at
the end of the period. Let Dn be the demand in period n, which is assumed i.i.d. with respective density
and distribution functions given by f and F , and let Vn be the inventory level in period n after demand
satisfaction at the end of the period, but just prior to the order replenishment decision. This quantity
satisfies a recursive equation somewhat analogous to the Lindley equation:

Vn+1 =
{

Vn − Dn+1 if Vn ≥ s,
S − Dn+1 if Vn < s.

(35)

The average inventory level over N periods is given by

V N =
1
N

N∑
n=1

Vn.

From a sample path point of view, the key discrete event in the system is the ordering decision each period.
A change in s, with q held fixed, has no effect on these decisions, so infinitesimal perturbations in s result
in infinitesimal changes in the inventory level and in the sample performance function V N . In particular,
for a perturbation of size ∆s (of any size, not necessarily infinitesimal), Vn(s + ∆s) = Vn(s) + ∆s, and thus
∂V N/∂s = 1 is an unbiased estimator for ∂E[V N ]/∂s. Intuitively, the shape of the sample path is unaltered
by changes in s if q is held constant; the entire sample path is merely shifted by the size of the change
(assuming starting inventory of V0 = S = s + q; else, the statement only holds starting from the first order
point). The IPA estimator can also be obtained by simply differentiating the recursive relationship (35),
noting that Dn does not depend on s or q:

dVn+1

dθ
=

⎧⎨⎩
dVn

dθ
if Vn ≥ s,

1 if Vn < s,
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Figure 2: Quantities used in (s, S) inventory system.

for either θ=s or θ=q. Under the assumption that V0=S=s + q, the expression reduces to 1 for all n when
θ = s.

On the other hand, a change in q with s held fixed may cause a change in the set of ordering decisions,
resulting in a drastic change in the sample path and hence in the performance measure V N . Thus, SPA is
required to derive an unbiased gradient estimator for θ = q. We provide a brief informal derivation for a
right-hand SPA estimator, i.e., ∆q > 0, in which a period where a replenishment order was originally placed
could become one where an order is not placed, for sufficiently large ∆q (refer to Figure 2). To calculate the
probability rate for such an event requires knowing the quantity above the reorder point s prior to demand
being realized in the period, given by ξn = Yn − s in Figure 2, where Yn is the inventory position/level prior
to demand being realized. Conditioning on all demands except the one in the period of interest (in which
an order is placed), Dn, the corresponding probability rate is then given by

lim
∆q→0

P (ξn + ∆q ≥ Dn|ξn < Dn)
∆q

=
f(ξn)

1 − F (ξn)
.

The resulting conditional expected effect on the performance measure requires some further analysis, and is
omitted here, and we simply give the final SPA estimator for ∂E[V N ]/∂q, which can be easily and efficiently
estimated from the original sample path:

1 +
1
N

∑
n≤N :Vn<s

f(ξn)
1 − F (ξn)

[
s − E[D] − V N

]
,

where E[D] is mean demand.
The LR/SF and WD methods require a change of variables in order to move the parameters into the

distribution, which requires some non-trivial analysis; see Pflug and Rubinstein (2002) for details.
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6 Basic Theoretical Tools

The key result used in the theoretical proofs of unbiasedness is the (Lebesgue) dominated convergence
theorem that allows for the exchange of limit and expectation operators required in Equations (12) or (13):

Theorem 1 (Dominated Convergence Theorem) If limn→∞ gn = g a.s. and |gn| ≤ M ∀n a.s. with
E[M ] < ∞, then limn→∞ E[gn] = E[g].

Take ∆θ → 0 instead of n → ∞, and g is the gradient estimator, so g∆θ is the limiting sequence that
defines the sample (path) gradient. Verifying that an actual bound exists is often a non-trivial task in
applications, especially in the case of perturbation analysis.

Looking at (12), we translate these conditions to

g∆θ =
Y (θ + ∆θ) − Y (θ)

∆θ
,

g∆θ = Y (x)
f(x; θ + ∆θ) − f(x; θ)

∆θ
,

for IPA and LR/SF, respectively.
For IPA, the following generalization of the mean value theorem is most useful:

Theorem 2 (Generalized Mean Value Theorem) Let Y be a continuous function that is differentiable
on a compact set Θ̃ = Θ\D̃, where D̃ is a set of countably many points. Then, ∀θ, θ + ∆θ ∈ Θ,∣∣∣∣Y (θ + ∆θ) − Y (θ)

∆θ

∣∣∣∣ ≤ supθ∈Θ̃

∣∣∣∣dY

dθ

∣∣∣∣ .
If Y (θ) can be shown to be continuous and piecewise differentiable on Θ w.p.1, then it just remains to

show

E

[
supθ∈Θ̃

∣∣∣∣dY

dθ

∣∣∣∣] < ∞,

to satisfy the conditions required for unbiasedness via the dominated convergence theorem. Basically, in order
for the chain rule to be applicable, the sample performance function needs to be continuous with respect
to the underlying random variable(s). This translates into requirements on the form of the performance
measure and on the dynamics of the underlying stochastic system.

For the LR/SF method, the bound is applied to the (joint) density (or mass) function. Note that the
bound is for f(x; θ) with respect to the parameter θ and not its usual argument. For WD, the required
interchange is guaranteed by the definition of the weak derivative, but the sample performance must be in
the set of “test” functions L in the definition, which again generally requires the dominated convergence
theorem (or uniform integrability, which is usually difficult to check directly).

The previous examples can be used to show in very simple cases where difficulties arise.
Consider the p.d.f.

f(x; θ) =
1
θ
1{0 < x < θ},

where the LR/SF method does not apply. In this case, f viewed as a function of θ for fixed x has a
discontinuity at θ = x.

Consider the function
P (Y > y) = E[1{Y > y}],

in which IPA will not work. In this case, the performance measure is an indicator function, which is
discontinuous in its argument.

Thus, in both simple examples, the dominated convergence theorem is not applicable as the required
quantity cannot be bounded. However, it is only a sufficient condition, not necessary, so in some (very)
special cases, unbiasedness may hold even without the boundedness (continuity).
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7 Simple Guidelines for the Simulation Practitioner

We summarize the most important considerations in applying the three direct gradient procedures (PA,
LR/SF, WD):

• IPA: cannot handle “bad performance measures, e.g., indicator functions, or non-smooth systems; one
way of checking the latter is the commuting condition, which checks event sequences in the system
(cf. Glasserman 1991); smoothness may depend on system representation (see discussion on role of
representations);

• SPA: choice of what to condition on, and how to compute (estimate) resulting conditional expectation;
may require many additional simulations;

• LR/SF and WD: may encounter difficulties in handling parameters not in distribution (so-called “struc-
tural” parameters); may need to try a change of variables;

• LR/SF: if the parameter appears in an input distribution that is reused frequently (parameter makes
too many repeat appearances), e.g., i.i.d. service times in a queueing system, then may need to find a
way to truncate the estimator to mitigate the linear increase in variance;

• WD: choice of which (non-unique) WD representation to use; also high-dimensional vectors may require
many simulations;

• For discrete distributions, IPA works if the parameter occurs in the support values, whereas LR/SF
and WD work if the parameter occurs in the support probabilities;

• Higher derivative estimates are usually easiest to derive using LR/SF, but even then the variance of
the resulting estimators may be problematic.

The characteristics/choices in applying SPA are strikingly similar to the use of conditional Monte Carlo
for variance reduction. The choice of what to condition on in applying SPA also has analogs to the WD
representation choice. The simplest procedures to use are the LR/SF and IPA estimators. The WD estimator
may be easier to apply than SPA, because one has a set of “standard” choices for a large class of distributions.
However, there is no guarantee that these choices are necessarily good for a particular application.

It should be clear from this brief summary that the direct gradient estimation techniques may require
some effort on the part of the simulation user, whereas the indirect techniques are straightforward to apply.
To put it another way, for direct gradient estimation sometimes it takes some art to do the science.

8 Applications

In discussing applications, the focus is on the direct gradient estimators, since application of the indirect
gradient estimates is generally more straightforward and domain independent. The most dominant applica-
tion of direct gradient estimation in the research literature is clearly queueing systems; however, inventory
management and financial engineering have employed many of these results in real-world practice.

For derivatives with respect to distributional parameters, IPA can be applied in any single-class Jackson-
like network. Here, “Jackson-like” (also called a “generalized Jackson network”) means that the network
retains all of the usual characteristics of a Jackson network except that service times and interarrival times
(in an open network) do not have to be exponentially distributed. This is also true for the LR/SF method
and the WD method. In the latter case, there are often choices of the WD used. However, if the parameter
is the routing probabilities, then IPA cannot be applied directly. Also, if the network is extended to multiple
classes of customers, then IPA is often not applicable.

It is relatively straightforward to apply the LR/SF method to queueing systems, the only caveat being
the potential variance problem mentioned in the previous section. It is also relatively straightforward to
derive weak derivative estimators, but there are generally many choices of distributions, and often one or
more additional simulations using different input distributions will be necessary.

Inventory systems is a domain in which direct gradient estimation has been successfully applied in real-
world applications. Because the parameters of interest are usually those controlling replenishment decisions

23



as in the (s, S) inventory control example of Section 5, PA is most relevant. For so-called base-stock policies,
often IPA suffices. Such IPA estimators are being used to optimize inventory management in the worldwide
supply chain of Caterpillar, and the success of the approach is reported in a Fortune magazine article, “New
Victories in the Supply Chain Revolution” (by Philip Siekman, October 30, 2000); technical details of the
approach can be found in Kapuscinski and Tayur (1999). For more complicated ordering policies such as an
(s, S) policy that comes about with the inclusion of a fixed order cost, extensions of IPA are required; see Fu
and Healy (1992, 1997), Fu (1994b), Bashyam and Fu (1994), Fu and Hu (1994), Zhang and Fu (2005), Pflug
and Rubinstein (2002) for an LR/SF estimator using the push-out method with conditioning, and especially
Chapter 7 of Fu and Hu (1997).

Because on Wall Street and elsewhere in the global financial world, Monte Carlo simulation is routinely
used for pricing and hedging derivatives, it is now commonly included in any finance text that addresses
numerical solution methods. Simulation can easily handle the pricing of high-dimensional derivatives, such
as path-dependent claims or systems with a large number of underlying assets and/or uncertainties (e.g.,
stochastic volatility and interest rate models). In hedging, gradients are the most critical ingredients in
determining what positions need to be taken in any portfolio. In equities, they are usually referred to as
“Greeks,” because they are represented by Greek letters. For example, the most common one is the Delta,
which is the sensitivity of a derivative price with respect to the underlying security price, e.g., the price of
a call option with respect to the underlying stock price on which the contract is written. Delta hedging and
other types of hedging are described in most elementary finance textbooks on derivatives such as Hull (2000),
and the text by Clewlow and Strickland (1999) includes simple IPA estimators for calculating Greeks using
Monte Carlo simulation (though they do not use the term IPA nor stochastic gradient estimation). Fu and
Hu (1995) and Broadie and Glasserman (1996) were the first to develop stochastic gradients in these settings;
see also Glasserman (2004). Heidergott (2001b) considered weak derivatives in a similar setting as Fu and
Hu (1995). In fixed income securities, the analogous quantities go by the name of duration and convexity.
In Chen and Fu (2002), IPA is applied to the pricing and hedging of mortgage-backed securities, where both
first and second derivatives are required. For just five parameters, if symmetric differences were used, this
would require 236 (1 + 10 + 225) simulations for each set of performance measures and gradient estimates.
In actual implementation, there was a resulting dramatic 97.2% reduction in computation time. Another
important finance application is the pricing of American-style derivatives: contingent claims in which early
exercise is permitted. One of the earliest proposed approaches to this problem was to parameterize the early
exercise boundary, thus casting the optimal stopping problem as a stochastic optimization problem with
respect to the parameters. The earliest example of applying PA and SA to such an option pricing problem
is given in Fu and Hu (1995). Earlier editions of Hull (2000) and other finance texts claimed that simulation
could be used only to price European options, so this is one of many approaches that dispelled that belief.
See Glasserman (2004) for other approaches and references on this topic.

Other applications include stochastic activity networks (see Rubinstein and Shapiro 1993 for the LR/SF
method, Bowman 1994 for IPA, and Fu 2005 for SPA and WD); preventive maintenance (Fu, Hu, and Shi
1993; Heidergott 1999, 2001a; L’Ecuyer, Martin, and Vazquez-Abad 1999); statistical process control (Fu
and Hu 1999); traffic light signal control (Howell and Fu 2003; also mentioned in Rubinstein and Shapiro
1993, p.3, as an example).

9 Probing Further

Other approaches not treated here include frequency domain experimentation (Schruben and Cogliano 1981;
Schruben 1986; Jacobson, Buss, and Schruben 1991; Jacobson 1994); and Malliavin calculus, which has been
used primarily in financial applications (e.g., Fournié et al. 1999, Benhamou 2002, and references therein).

For gradient-based simulation optimization, further discussion can be found in the papers of Fu (2002),
Andradóttir (1998), Fu (1994a), and Jacobson and Schruben (1989); see also the books by Rubinstein and
Shapiro (1993), Pflug (1996), Fu and Hu (1997), and Spall (2003), as well as Fu (2001b). Both of the well-
known simulation textbooks by Law and Kelton (2000) and Banks et al. (2000) also devote sections to the
topic, but the latter does not discuss gradient estimation, per se. Applications to the single-server queue
example considered here include the theoretical convergence results of Fu (1990), Chong and Ramadge (1992),
and L’Ecuyer and Glynn (1994), and the in-depth numerical comparisons of L’Ecuyer, Girouz, and Glynn
(1994) and Andradóttir (1998). Andradóttir (1996) considers the more general setting of using the LR/SF
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estimators in SA algorithms, and Tang, L’Ecuyer, and Chen (1999) analyze the asymptotic efficiency of an
averaging version of SA using perturbation analysis estimators. Work on sample path optimization (called the
stochastic counterpart method in Rubinstein and Shapiro 1993) includes Plambeck et al. (1996), Robinson
(1996), Gürkan, Özge, and Robinson (1999), Homem-de-Mello, Shapiro, and Spearman (1999); Dussault et
al. (1997) combines the approach with stochastic approximation. See also the chapter by Shapiro (2003) on
using Monte Carlo methods for stochastic programming. The original papers on stochastic approximation are
Robbins and Monro (1951) and Kiefer and Wolfowitz (1952). For a more recent general book on stochastic
approximation, see Kushner and Yin (1997); L’Ecuyer and Yin (1998) discusses convergence rates as a
function of computational budget. Spall (2000) provides both indirect and direct gradient-based SA methods
for obtaining near-optimal or optimal convergence rates via stochastic analogues to the deterministic Newton-
Raphson algorithm, using Hessian matrix estimation. SPSA was introduced by Spall (1992), although the
random directions method was proposed in Kushner and Clark (1978); see http://www.jhuapl.edu/SPSA/
for an extensive annotated bibliography. Application to the settings of this handbook is described in Fu
and Hill (1997), and using deterministic sequences for SPSA is considered in Bhatnagar et al. (2003) and
Xiong, Wang, and Fu (2002). Andradóttir (1998) contains further useful discussion on the application of
SA algorithms in simulation optimization, especially regarding the issues of choosing the gain sequence
and modifying the algorithm in cases where the objective function is not well-behaved. Most stochastic
approximation algorithms involve known constraints; Bashyam and Fu (1998) consider the case of a noisy
constraint that must also be estimated, in particular a service level constraint for an (s, S) inventory system.
Studies on choosing the finite difference used in the Kiefer-Wolfowitz version of SA include Zazanis and Suri
(1993), and L’Ecuyer and Perron (1994).

For perturbation analysis, the books by Glasserman (1991), Ho and Cao (1991), and Cao (1994) treat
IPA extensively (in particular, see Glasserman 1991 for a complete treatment of the commuting condition;
see also Cao 1985 and Heidelberger et al. 1988) and SPA to some extent, whereas the book by Fu and Hu
(1997) is a comprehensive treatment of SPA, which was introduced by Gong and Ho (1987) and Suri and
Zazanis (1988); see also Fu and Hu (1992), Fu (2001a), and Fu and Hu (1991, 1993), where higher derivatives
for multi-server queues are treated. Many of the examples here are adopted from Fu and Hu (1997). More
recent work connecting IPA with Markov decision processes using the idea of potentials, which also relates to
the LR/SF method, include Cao (2000, 2003ab). The field of perturbation analysis for gradient estimation
includes numerous other extensions and variations on IPA not discussed here, including rare perturbation
analysis (Brémaud and Vázquez-Abad 1992); structural IPA (Dai and Ho 1995); discontinuous perturbation
analysis (Shi 1996); and augmented IPA (Gaivoronski, Shi, and Sreenivas 1992). Seminal papers applying
perturbation analysis for estimating the effects of finite perturbations in the parameter include Ho and Li
(1988), Cassandras and Strickland (1989), and Vakili (1991).

For the likelihood ratio or score function method, a good reference is the book by Rubinstein and Shapiro
(1993), which also includes some discussion of IPA (Chapter 5 on the “push in” method), as well as both
first and second derivative estimators for most of the entries in Table 1 (Section 2.2); see also Reiman
and Weiss (1989), Glynn (1990), and Andradóttir (1996). The “push out” method for handling structural
parameters was introduced in Rubinstein (1992); see also Section 2.5.4 in Rubinstein and Shapiro (1993).
Using conditional expectation to reduce variance in the LR/SF method was considered in McLeish and
Rollins (1992); see also Section 3.4 in Rubinstein and Shapiro (1993). A “unified” view of IPA and LR/SF
is presented in L’Ecuyer (1990), which allows the parameter to appear in both the sample performance and
the distribution (see also L’Ecuyer 1995 for further discussion and some technical corrections).

The weak derivative method was introduced by Pflug (1989, 1990, 1996). More recent work attempting
to unify the approach with others such as rare perturbation analysis and smooth perturbation analysis,
includes Heidergott and Vazquez-Abad (2000, 2001), in the setting of general Markov processes, which may
not provide as convenient a framework for the discrete-event simulation setting as generalized semi-Markov
processes (GSMPs). Derivations for many of the entries in Table 1 can be found in Heidergott, Pflug, and
Vazquez-Abad (2003).

10 Future Research Directions

Stochastic gradient estimation research has matured over the last decade to the point that much of the
analysis has become theoretical rather than algorithmic. This line of research addresses many issues that
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also arise in traditional steady-state output analysis – only now for stochastic gradient estimators – and can
involve advanced probabilistic tools. In contrast, two possible directions for future research described briefly
here are more motivated by simulation practice and have much algorithmic room left in them to grow.

How is gradient estimation best employed in simulation optimization? One recent development is the
use of fluid models in this setting. A discrete-event simulation model for which application of the direct
derivative estimation may be difficult is approximated by a stochastic fluid model, which is used to derive
IPA estimators that are then implemented on either the (simulated) stochastic fluid model or sometimes
on the original stochastic discrete-event simulation model. In the former case, where the IPA estimates are
generally unbiased, the optimal settings often provide a good approximation for the optimum in the original
model. In the latter case, the new IPA estimators do not yield unbiased estimators when implemented in
the discrete-event model (so are generally not useful in sensitivity analysis, per se), but they often provide a
good approximation of the zero gradient location when used in optimization; however, the theoretical basis
for this good fortune is still not fully understood. Some papers in this area include Wardi et al. (2002),
Cassandras et al. (2002), Sun et al. (2004), and Panayiotou, Howell, and Fu (2005).

The LR/SF method is closely related to importance sampling. Investigating this connection more thor-
oughly for variance reduction purposes, and doing so in a more general stochastic gradient setting, would be
of benefit to simulationists. Some work along this line in the setting of stochastic programming is contained
in Shapiro and Homem-de-Mello (1998).
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